nvc0/ir: make sure to align the second arg of TXD to 4, as we do for TEX
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48 Value *def[2];
49
50 bld.setPosition(i, false);
51 def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52 def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53 switch (i->dType) {
54 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56 default:
57 return;
58 }
59 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60 bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
64 call->fixed = 1;
65 call->absolute = call->builtin = 1;
66 call->target.builtin = builtin;
67 delete_Instruction(prog, i);
68 }
69
70 void
71 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72 {
73 assert(i->dType == TYPE_F64);
74 // There are instructions that will compute the high 32 bits of the 64-bit
75 // float. We will just stick 0 in the bottom 32 bits.
76
77 bld.setPosition(i, false);
78
79 // 1. Take the source and it up.
80 Value *src[2], *dst[2], *def = i->getDef(0);
81 bld.mkSplit(src, 4, i->getSrc(0));
82
83 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84 dst[0] = bld.loadImm(NULL, 0);
85 dst[1] = bld.getSSA();
86
87 // 3. The new version of the instruction takes the high 32 bits of the
88 // source and outputs the high 32 bits of the destination.
89 i->setSrc(0, src[1]);
90 i->setDef(0, dst[1]);
91 i->setType(TYPE_F32);
92 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
94 // 4. Recombine the two dst pieces back into the original destination.
95 bld.setPosition(i, true);
96 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97 }
98
99 void
100 NVC0LegalizeSSA::handleFTZ(Instruction *i)
101 {
102 // Only want to flush float inputs
103 assert(i->sType == TYPE_F32);
104
105 // If we're already flushing denorms (and NaN's) to zero, no need for this.
106 if (i->dnz)
107 return;
108
109 // Only certain classes of operations can flush
110 OpClass cls = prog->getTarget()->getOpClass(i->op);
111 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112 cls != OPCLASS_CONVERT)
113 return;
114
115 i->ftz = true;
116 }
117
118 bool
119 NVC0LegalizeSSA::visit(Function *fn)
120 {
121 bld.setProgram(fn->getProgram());
122 return true;
123 }
124
125 bool
126 NVC0LegalizeSSA::visit(BasicBlock *bb)
127 {
128 Instruction *next;
129 for (Instruction *i = bb->getEntry(); i; i = next) {
130 next = i->next;
131 if (i->sType == TYPE_F32) {
132 if (prog->getType() != Program::TYPE_COMPUTE)
133 handleFTZ(i);
134 continue;
135 }
136 switch (i->op) {
137 case OP_DIV:
138 case OP_MOD:
139 handleDIV(i);
140 break;
141 case OP_RCP:
142 case OP_RSQ:
143 if (i->dType == TYPE_F64)
144 handleRCPRSQ(i);
145 break;
146 default:
147 break;
148 }
149 }
150 return true;
151 }
152
153 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154 : rZero(NULL),
155 carry(NULL),
156 pOne(NULL),
157 needTexBar(prog->getTarget()->getChipset() >= 0xe0)
158 {
159 }
160
161 bool
162 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
163 const Instruction *early) const
164 {
165 if (early->bb == later->bb)
166 return early->serial < later->serial;
167 return later->bb->dominatedBy(early->bb);
168 }
169
170 void
171 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
172 Instruction *usei, const Instruction *texi)
173 {
174 bool add = true;
175 for (std::list<TexUse>::iterator it = uses.begin();
176 it != uses.end();) {
177 if (insnDominatedBy(usei, it->insn)) {
178 add = false;
179 break;
180 }
181 if (insnDominatedBy(it->insn, usei))
182 it = uses.erase(it);
183 else
184 ++it;
185 }
186 if (add)
187 uses.push_back(TexUse(usei, texi));
188 }
189
190 // While it might be tempting to use the an algorithm that just looks at tex
191 // uses, not all texture results are guaranteed to be used on all paths. In
192 // the case where along some control flow path a texture result is never used,
193 // we might reuse that register for something else, creating a
194 // write-after-write hazard. So we have to manually look through all
195 // instructions looking for ones that reference the registers in question.
196 void
197 NVC0LegalizePostRA::findFirstUses(
198 Instruction *texi, std::list<TexUse> &uses)
199 {
200 int minGPR = texi->def(0).rep()->reg.data.id;
201 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
202
203 unordered_set<const BasicBlock *> visited;
204 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
205 }
206
207 void
208 NVC0LegalizePostRA::findFirstUsesBB(
209 int minGPR, int maxGPR, Instruction *start,
210 const Instruction *texi, std::list<TexUse> &uses,
211 unordered_set<const BasicBlock *> &visited)
212 {
213 const BasicBlock *bb = start->bb;
214
215 // We don't process the whole bb the first time around. This is correct,
216 // however we might be in a loop and hit this BB again, and need to process
217 // the full thing. So only mark a bb as visited if we processed it from the
218 // beginning.
219 if (start == bb->getEntry()) {
220 if (visited.find(bb) != visited.end())
221 return;
222 visited.insert(bb);
223 }
224
225 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
226 if (insn->isNop())
227 continue;
228
229 for (int d = 0; insn->defExists(d); ++d) {
230 if (insn->def(d).getFile() != FILE_GPR ||
231 insn->def(d).rep()->reg.data.id < minGPR ||
232 insn->def(d).rep()->reg.data.id > maxGPR)
233 continue;
234 addTexUse(uses, insn, texi);
235 return;
236 }
237
238 for (int s = 0; insn->srcExists(s); ++s) {
239 if (insn->src(s).getFile() != FILE_GPR ||
240 insn->src(s).rep()->reg.data.id < minGPR ||
241 insn->src(s).rep()->reg.data.id > maxGPR)
242 continue;
243 addTexUse(uses, insn, texi);
244 return;
245 }
246 }
247
248 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
249 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
250 texi, uses, visited);
251 }
252 }
253
254 // Texture barriers:
255 // This pass is a bit long and ugly and can probably be optimized.
256 //
257 // 1. obtain a list of TEXes and their outputs' first use(s)
258 // 2. calculate the barrier level of each first use (minimal number of TEXes,
259 // over all paths, between the TEX and the use in question)
260 // 3. for each barrier, if all paths from the source TEX to that barrier
261 // contain a barrier of lesser level, it can be culled
262 bool
263 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
264 {
265 std::list<TexUse> *uses;
266 std::vector<Instruction *> texes;
267 std::vector<int> bbFirstTex;
268 std::vector<int> bbFirstUse;
269 std::vector<int> texCounts;
270 std::vector<TexUse> useVec;
271 ArrayList insns;
272
273 fn->orderInstructions(insns);
274
275 texCounts.resize(fn->allBBlocks.getSize(), 0);
276 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
277 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
278
279 // tag BB CFG nodes by their id for later
280 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
281 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
282 if (bb)
283 bb->cfg.tag = bb->getId();
284 }
285
286 // gather the first uses for each TEX
287 for (int i = 0; i < insns.getSize(); ++i) {
288 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
289 if (isTextureOp(tex->op)) {
290 texes.push_back(tex);
291 if (!texCounts.at(tex->bb->getId()))
292 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
293 texCounts[tex->bb->getId()]++;
294 }
295 }
296 insns.clear();
297 if (texes.empty())
298 return false;
299 uses = new std::list<TexUse>[texes.size()];
300 if (!uses)
301 return false;
302 for (size_t i = 0; i < texes.size(); ++i) {
303 findFirstUses(texes[i], uses[i]);
304 }
305
306 // determine the barrier level at each use
307 for (size_t i = 0; i < texes.size(); ++i) {
308 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
309 ++u) {
310 BasicBlock *tb = texes[i]->bb;
311 BasicBlock *ub = u->insn->bb;
312 if (tb == ub) {
313 u->level = 0;
314 for (size_t j = i + 1; j < texes.size() &&
315 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
316 ++j)
317 u->level++;
318 } else {
319 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
320 &ub->cfg, texCounts);
321 if (u->level < 0) {
322 WARN("Failed to find path TEX -> TEXBAR\n");
323 u->level = 0;
324 continue;
325 }
326 // this counted all TEXes in the origin block, correct that
327 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
328 // and did not count the TEXes in the destination block, add those
329 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
330 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
331 ++j)
332 u->level++;
333 }
334 assert(u->level >= 0);
335 useVec.push_back(*u);
336 }
337 }
338 delete[] uses;
339
340 // insert the barriers
341 for (size_t i = 0; i < useVec.size(); ++i) {
342 Instruction *prev = useVec[i].insn->prev;
343 if (useVec[i].level < 0)
344 continue;
345 if (prev && prev->op == OP_TEXBAR) {
346 if (prev->subOp > useVec[i].level)
347 prev->subOp = useVec[i].level;
348 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
349 } else {
350 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
351 bar->fixed = 1;
352 bar->subOp = useVec[i].level;
353 // make use explicit to ease latency calculation
354 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
355 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
356 }
357 }
358
359 if (fn->getProgram()->optLevel < 3)
360 return true;
361
362 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
363
364 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
365 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
366 limitS.resize(fn->allBBlocks.getSize());
367
368 // cull unneeded barriers (should do that earlier, but for simplicity)
369 IteratorRef bi = fn->cfg.iteratorCFG();
370 // first calculate min/max outstanding TEXes for each BB
371 for (bi->reset(); !bi->end(); bi->next()) {
372 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
373 BasicBlock *bb = BasicBlock::get(n);
374 int min = 0;
375 int max = std::numeric_limits<int>::max();
376 for (Instruction *i = bb->getFirst(); i; i = i->next) {
377 if (isTextureOp(i->op)) {
378 min++;
379 if (max < std::numeric_limits<int>::max())
380 max++;
381 } else
382 if (i->op == OP_TEXBAR) {
383 min = MIN2(min, i->subOp);
384 max = MIN2(max, i->subOp);
385 }
386 }
387 // limits when looking at an isolated block
388 limitS[bb->getId()].min = min;
389 limitS[bb->getId()].max = max;
390 }
391 // propagate the min/max values
392 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
393 for (bi->reset(); !bi->end(); bi->next()) {
394 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
395 BasicBlock *bb = BasicBlock::get(n);
396 const int bbId = bb->getId();
397 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
398 BasicBlock *in = BasicBlock::get(ei.getNode());
399 const int inId = in->getId();
400 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
401 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
402 }
403 // I just hope this is correct ...
404 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
405 // no barrier
406 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
407 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
408 } else {
409 // block contained a barrier
410 limitB[bbId].min = MIN2(limitS[bbId].max,
411 limitT[bbId].min + limitS[bbId].min);
412 limitB[bbId].max = MIN2(limitS[bbId].max,
413 limitT[bbId].max + limitS[bbId].min);
414 }
415 }
416 }
417 // finally delete unnecessary barriers
418 for (bi->reset(); !bi->end(); bi->next()) {
419 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
420 BasicBlock *bb = BasicBlock::get(n);
421 Instruction *prev = NULL;
422 Instruction *next;
423 int max = limitT[bb->getId()].max;
424 for (Instruction *i = bb->getFirst(); i; i = next) {
425 next = i->next;
426 if (i->op == OP_TEXBAR) {
427 if (i->subOp >= max) {
428 delete_Instruction(prog, i);
429 i = NULL;
430 } else {
431 max = i->subOp;
432 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
433 delete_Instruction(prog, prev);
434 prev = NULL;
435 }
436 }
437 } else
438 if (isTextureOp(i->op)) {
439 max++;
440 }
441 if (i && !i->isNop())
442 prev = i;
443 }
444 }
445 return true;
446 }
447
448 bool
449 NVC0LegalizePostRA::visit(Function *fn)
450 {
451 if (needTexBar)
452 insertTextureBarriers(fn);
453
454 rZero = new_LValue(fn, FILE_GPR);
455 pOne = new_LValue(fn, FILE_PREDICATE);
456 carry = new_LValue(fn, FILE_FLAGS);
457
458 rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
459 carry->reg.data.id = 0;
460 pOne->reg.data.id = 7;
461
462 return true;
463 }
464
465 void
466 NVC0LegalizePostRA::replaceZero(Instruction *i)
467 {
468 for (int s = 0; i->srcExists(s); ++s) {
469 if (s == 2 && i->op == OP_SUCLAMP)
470 continue;
471 ImmediateValue *imm = i->getSrc(s)->asImm();
472 if (imm) {
473 if (i->op == OP_SELP && s == 2) {
474 i->setSrc(s, pOne);
475 if (imm->reg.data.u64 == 0)
476 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
477 } else if (imm->reg.data.u64 == 0) {
478 i->setSrc(s, rZero);
479 }
480 }
481 }
482 }
483
484 // replace CONT with BRA for single unconditional continue
485 bool
486 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
487 {
488 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
489 return false;
490 Graph::EdgeIterator ei = bb->cfg.incident();
491 if (ei.getType() != Graph::Edge::BACK)
492 ei.next();
493 if (ei.getType() != Graph::Edge::BACK)
494 return false;
495 BasicBlock *contBB = BasicBlock::get(ei.getNode());
496
497 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
498 contBB->getExit()->getPredicate())
499 return false;
500 contBB->getExit()->op = OP_BRA;
501 bb->remove(bb->getEntry()); // delete PRECONT
502
503 ei.next();
504 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
505 return true;
506 }
507
508 // replace branches to join blocks with join ops
509 void
510 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
511 {
512 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
513 return;
514 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
515 BasicBlock *in = BasicBlock::get(ei.getNode());
516 Instruction *exit = in->getExit();
517 if (!exit) {
518 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
519 // there should always be a terminator instruction
520 WARN("inserted missing terminator in BB:%i\n", in->getId());
521 } else
522 if (exit->op == OP_BRA) {
523 exit->op = OP_JOIN;
524 exit->asFlow()->limit = 1; // must-not-propagate marker
525 }
526 }
527 bb->remove(bb->getEntry());
528 }
529
530 bool
531 NVC0LegalizePostRA::visit(BasicBlock *bb)
532 {
533 Instruction *i, *next;
534
535 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
536 for (i = bb->getFirst(); i; i = next) {
537 next = i->next;
538 if (i->op == OP_EMIT || i->op == OP_RESTART) {
539 if (!i->getDef(0)->refCount())
540 i->setDef(0, NULL);
541 if (i->src(0).getFile() == FILE_IMMEDIATE)
542 i->setSrc(0, rZero); // initial value must be 0
543 replaceZero(i);
544 } else
545 if (i->isNop()) {
546 bb->remove(i);
547 } else
548 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
549 prog->getType() != Program::TYPE_COMPUTE) {
550 // It seems like barriers are never required for tessellation since
551 // the warp size is 32, and there are always at most 32 tcs threads.
552 bb->remove(i);
553 } else
554 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
555 int offset = i->src(0).get()->reg.data.offset;
556 if (abs(offset) > 0x10000)
557 i->src(0).get()->reg.fileIndex += offset >> 16;
558 i->src(0).get()->reg.data.offset = (int)(short)offset;
559 } else {
560 // TODO: Move this to before register allocation for operations that
561 // need the $c register !
562 if (typeSizeof(i->dType) == 8) {
563 Instruction *hi;
564 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
565 if (hi)
566 next = hi;
567 }
568
569 if (i->op != OP_MOV && i->op != OP_PFETCH)
570 replaceZero(i);
571 }
572 }
573 if (!bb->getEntry())
574 return true;
575
576 if (!tryReplaceContWithBra(bb))
577 propagateJoin(bb);
578
579 return true;
580 }
581
582 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
583 {
584 bld.setProgram(prog);
585 gMemBase = NULL;
586 }
587
588 bool
589 NVC0LoweringPass::visit(Function *fn)
590 {
591 if (prog->getType() == Program::TYPE_GEOMETRY) {
592 assert(!strncmp(fn->getName(), "MAIN", 4));
593 // TODO: when we generate actual functions pass this value along somehow
594 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
595 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
596 if (fn->cfgExit) {
597 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
598 bld.mkMovToReg(0, gpEmitAddress);
599 }
600 }
601 return true;
602 }
603
604 bool
605 NVC0LoweringPass::visit(BasicBlock *bb)
606 {
607 return true;
608 }
609
610 inline Value *
611 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
612 {
613 uint8_t b = prog->driver->io.auxCBSlot;
614 uint32_t off = prog->driver->io.texBindBase + slot * 4;
615 return bld.
616 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
617 }
618
619 // move array source to first slot, convert to u16, add indirections
620 bool
621 NVC0LoweringPass::handleTEX(TexInstruction *i)
622 {
623 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
624 const int arg = i->tex.target.getArgCount();
625 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
626 const int chipset = prog->getTarget()->getChipset();
627
628 /* Only normalize in the non-explicit derivatives case. For explicit
629 * derivatives, this is handled in handleManualTXD.
630 */
631 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
632 Value *src[3], *val;
633 int c;
634 for (c = 0; c < 3; ++c)
635 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
636 val = bld.getScratch();
637 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
638 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
639 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
640 for (c = 0; c < 3; ++c) {
641 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
642 i->getSrc(c), val));
643 }
644 }
645
646 // Arguments to the TEX instruction are a little insane. Even though the
647 // encoding is identical between SM20 and SM30, the arguments mean
648 // different things between Fermi and Kepler+. A lot of arguments are
649 // optional based on flags passed to the instruction. This summarizes the
650 // order of things.
651 //
652 // Fermi:
653 // array/indirect
654 // coords
655 // sample
656 // lod bias
657 // depth compare
658 // offsets:
659 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
660 // - other: 4 bits each, single reg
661 //
662 // Kepler+:
663 // indirect handle
664 // array (+ offsets for txd in upper 16 bits)
665 // coords
666 // sample
667 // lod bias
668 // depth compare
669 // offsets (same as fermi, except txd which takes it with array)
670 //
671 // Maxwell (tex):
672 // array
673 // coords
674 // indirect handle
675 // sample
676 // lod bias
677 // depth compare
678 // offsets
679 //
680 // Maxwell (txd):
681 // indirect handle
682 // coords
683 // array + offsets
684 // derivatives
685
686 if (chipset >= NVISA_GK104_CHIPSET) {
687 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
688 // XXX this ignores tsc, and assumes a 1:1 mapping
689 assert(i->tex.rIndirectSrc >= 0);
690 Value *hnd = loadTexHandle(
691 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
692 i->getIndirectR(), bld.mkImm(2)),
693 i->tex.r);
694 i->tex.r = 0xff;
695 i->tex.s = 0x1f;
696 i->setIndirectR(hnd);
697 i->setIndirectS(NULL);
698 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
699 i->tex.r += prog->driver->io.texBindBase / 4;
700 i->tex.s = 0; // only a single cX[] value possible here
701 } else {
702 Value *hnd = bld.getScratch();
703 Value *rHnd = loadTexHandle(NULL, i->tex.r);
704 Value *sHnd = loadTexHandle(NULL, i->tex.s);
705
706 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
707
708 i->tex.r = 0; // not used for indirect tex
709 i->tex.s = 0;
710 i->setIndirectR(hnd);
711 }
712 if (i->tex.target.isArray()) {
713 LValue *layer = new_LValue(func, FILE_GPR);
714 Value *src = i->getSrc(lyr);
715 const int sat = (i->op == OP_TXF) ? 1 : 0;
716 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
717 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
718 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
719 for (int s = dim; s >= 1; --s)
720 i->setSrc(s, i->getSrc(s - 1));
721 i->setSrc(0, layer);
722 } else {
723 i->setSrc(dim, layer);
724 }
725 }
726 // Move the indirect reference to the first place
727 if (i->tex.rIndirectSrc >= 0 && (
728 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
729 Value *hnd = i->getIndirectR();
730
731 i->setIndirectR(NULL);
732 i->moveSources(0, 1);
733 i->setSrc(0, hnd);
734 i->tex.rIndirectSrc = 0;
735 i->tex.sIndirectSrc = -1;
736 }
737 } else
738 // (nvc0) generate and move the tsc/tic/array source to the front
739 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
740 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
741
742 Value *ticRel = i->getIndirectR();
743 Value *tscRel = i->getIndirectS();
744
745 if (ticRel) {
746 i->setSrc(i->tex.rIndirectSrc, NULL);
747 if (i->tex.r)
748 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
749 ticRel, bld.mkImm(i->tex.r));
750 }
751 if (tscRel) {
752 i->setSrc(i->tex.sIndirectSrc, NULL);
753 if (i->tex.s)
754 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
755 tscRel, bld.mkImm(i->tex.s));
756 }
757
758 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
759 if (arrayIndex) {
760 for (int s = dim; s >= 1; --s)
761 i->setSrc(s, i->getSrc(s - 1));
762 i->setSrc(0, arrayIndex);
763 } else {
764 i->moveSources(0, 1);
765 }
766
767 if (arrayIndex) {
768 int sat = (i->op == OP_TXF) ? 1 : 0;
769 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
770 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
771 } else {
772 bld.loadImm(src, 0);
773 }
774
775 if (ticRel)
776 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
777 if (tscRel)
778 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
779
780 i->setSrc(0, src);
781 }
782
783 // For nvc0, the sample id has to be in the second operand, as the offset
784 // does. Right now we don't know how to pass both in, and this case can't
785 // happen with OpenGL. On nve0, the sample id is part of the texture
786 // coordinate argument.
787 assert(chipset >= NVISA_GK104_CHIPSET ||
788 !i->tex.useOffsets || !i->tex.target.isMS());
789
790 // offset is between lod and dc
791 if (i->tex.useOffsets) {
792 int n, c;
793 int s = i->srcCount(0xff, true);
794 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
795 if (i->tex.target.isShadow())
796 s--;
797 if (i->srcExists(s)) // move potential predicate out of the way
798 i->moveSources(s, 1);
799 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
800 i->moveSources(s + 1, 1);
801 }
802 if (i->op == OP_TXG) {
803 // Either there is 1 offset, which goes into the 2 low bytes of the
804 // first source, or there are 4 offsets, which go into 2 sources (8
805 // values, 1 byte each).
806 Value *offs[2] = {NULL, NULL};
807 for (n = 0; n < i->tex.useOffsets; n++) {
808 for (c = 0; c < 2; ++c) {
809 if ((n % 2) == 0 && c == 0)
810 offs[n / 2] = i->offset[n][c].get();
811 else
812 bld.mkOp3(OP_INSBF, TYPE_U32,
813 offs[n / 2],
814 i->offset[n][c].get(),
815 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
816 offs[n / 2]);
817 }
818 }
819 i->setSrc(s, offs[0]);
820 if (offs[1])
821 i->setSrc(s + 1, offs[1]);
822 } else {
823 unsigned imm = 0;
824 assert(i->tex.useOffsets == 1);
825 for (c = 0; c < 3; ++c) {
826 ImmediateValue val;
827 if (!i->offset[0][c].getImmediate(val))
828 assert(!"non-immediate offset passed to non-TXG");
829 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
830 }
831 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
832 // The offset goes into the upper 16 bits of the array index. So
833 // create it if it's not already there, and INSBF it if it already
834 // is.
835 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
836 if (chipset >= NVISA_GM107_CHIPSET)
837 s += dim;
838 if (i->tex.target.isArray()) {
839 bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
840 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
841 i->getSrc(s));
842 } else {
843 i->moveSources(s, 1);
844 i->setSrc(s, bld.loadImm(NULL, imm << 16));
845 }
846 } else {
847 i->setSrc(s, bld.loadImm(NULL, imm));
848 }
849 }
850 }
851
852 if (chipset >= NVISA_GK104_CHIPSET) {
853 //
854 // If TEX requires more than 4 sources, the 2nd register tuple must be
855 // aligned to 4, even if it consists of just a single 4-byte register.
856 //
857 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
858 //
859 int s = i->srcCount(0xff, true);
860 if (s > 4 && s < 7) {
861 if (i->srcExists(s)) // move potential predicate out of the way
862 i->moveSources(s, 7 - s);
863 while (s < 7)
864 i->setSrc(s++, bld.loadImm(NULL, 0));
865 }
866 }
867
868 return true;
869 }
870
871 bool
872 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
873 {
874 static const uint8_t qOps[4][2] =
875 {
876 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
877 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
878 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
879 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
880 };
881 Value *def[4][4];
882 Value *crd[3];
883 Instruction *tex;
884 Value *zero = bld.loadImm(bld.getSSA(), 0);
885 int l, c;
886 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
887
888 // This function is invoked after handleTEX lowering, so we have to expect
889 // the arguments in the order that the hw wants them. For Fermi, array and
890 // indirect are both in the leading arg, while for Kepler, array and
891 // indirect are separate (and both precede the coordinates). Maxwell is
892 // handled in a separate function.
893 unsigned array;
894 if (targ->getChipset() < NVISA_GK104_CHIPSET)
895 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
896 else
897 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
898
899 i->op = OP_TEX; // no need to clone dPdx/dPdy later
900
901 for (c = 0; c < dim; ++c)
902 crd[c] = bld.getScratch();
903
904 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
905 for (l = 0; l < 4; ++l) {
906 Value *src[3], *val;
907 // mov coordinates from lane l to all lanes
908 for (c = 0; c < dim; ++c)
909 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
910 // add dPdx from lane l to lanes dx
911 for (c = 0; c < dim; ++c)
912 bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
913 // add dPdy from lane l to lanes dy
914 for (c = 0; c < dim; ++c)
915 bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
916 // normalize cube coordinates
917 if (i->tex.target.isCube()) {
918 for (c = 0; c < 3; ++c)
919 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
920 val = bld.getScratch();
921 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
922 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
923 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
924 for (c = 0; c < 3; ++c)
925 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
926 } else {
927 for (c = 0; c < dim; ++c)
928 src[c] = crd[c];
929 }
930 // texture
931 bld.insert(tex = cloneForward(func, i));
932 for (c = 0; c < dim; ++c)
933 tex->setSrc(c + array, src[c]);
934 // save results
935 for (c = 0; i->defExists(c); ++c) {
936 Instruction *mov;
937 def[c][l] = bld.getSSA();
938 mov = bld.mkMov(def[c][l], tex->getDef(c));
939 mov->fixed = 1;
940 mov->lanes = 1 << l;
941 }
942 }
943 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
944
945 for (c = 0; i->defExists(c); ++c) {
946 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
947 for (l = 0; l < 4; ++l)
948 u->setSrc(l, def[c][l]);
949 }
950
951 i->bb->remove(i);
952 return true;
953 }
954
955 bool
956 NVC0LoweringPass::handleTXD(TexInstruction *txd)
957 {
958 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
959 unsigned arg = txd->tex.target.getArgCount();
960 unsigned expected_args = arg;
961 const int chipset = prog->getTarget()->getChipset();
962
963 if (chipset >= NVISA_GK104_CHIPSET) {
964 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
965 expected_args++;
966 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
967 expected_args++;
968 } else {
969 if (txd->tex.useOffsets)
970 expected_args++;
971 if (!txd->tex.target.isArray() && (
972 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
973 expected_args++;
974 }
975
976 if (expected_args > 4 ||
977 dim > 2 ||
978 txd->tex.target.isShadow())
979 txd->op = OP_TEX;
980
981 handleTEX(txd);
982 while (txd->srcExists(arg))
983 ++arg;
984
985 txd->tex.derivAll = true;
986 if (txd->op == OP_TEX)
987 return handleManualTXD(txd);
988
989 assert(arg == expected_args);
990 for (int c = 0; c < dim; ++c) {
991 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
992 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
993 txd->dPdx[c].set(NULL);
994 txd->dPdy[c].set(NULL);
995 }
996
997 // In this case we have fewer than 4 "real" arguments, which means that
998 // handleTEX didn't apply any padding. However we have to make sure that
999 // the second "group" of arguments still gets padded up to 4.
1000 if (chipset >= NVISA_GK104_CHIPSET) {
1001 int s = arg + 2 * dim;
1002 if (s >= 4 && s < 7) {
1003 if (txd->srcExists(s)) // move potential predicate out of the way
1004 txd->moveSources(s, 7 - s);
1005 while (s < 7)
1006 txd->setSrc(s++, bld.loadImm(NULL, 0));
1007 }
1008 }
1009
1010 return true;
1011 }
1012
1013 bool
1014 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1015 {
1016 const int chipset = prog->getTarget()->getChipset();
1017 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1018 txq->tex.r += prog->driver->io.texBindBase / 4;
1019
1020 if (txq->tex.rIndirectSrc < 0)
1021 return true;
1022
1023 Value *ticRel = txq->getIndirectR();
1024
1025 txq->setIndirectS(NULL);
1026 txq->tex.sIndirectSrc = -1;
1027
1028 assert(ticRel);
1029
1030 if (chipset < NVISA_GK104_CHIPSET) {
1031 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1032
1033 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1034 if (txq->tex.r)
1035 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1036 ticRel, bld.mkImm(txq->tex.r));
1037
1038 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1039
1040 txq->moveSources(0, 1);
1041 txq->setSrc(0, src);
1042 } else {
1043 Value *hnd = loadTexHandle(
1044 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1045 txq->getIndirectR(), bld.mkImm(2)),
1046 txq->tex.r);
1047 txq->tex.r = 0xff;
1048 txq->tex.s = 0x1f;
1049
1050 txq->setIndirectR(NULL);
1051 txq->moveSources(0, 1);
1052 txq->setSrc(0, hnd);
1053 txq->tex.rIndirectSrc = 0;
1054 }
1055
1056 return true;
1057 }
1058
1059 bool
1060 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1061 {
1062 /* The outputs are inverted compared to what the TGSI instruction
1063 * expects. Take that into account in the mask.
1064 */
1065 assert((i->tex.mask & ~3) == 0);
1066 if (i->tex.mask == 1)
1067 i->tex.mask = 2;
1068 else if (i->tex.mask == 2)
1069 i->tex.mask = 1;
1070 handleTEX(i);
1071 bld.setPosition(i, true);
1072
1073 /* The returned values are not quite what we want:
1074 * (a) convert from s16/u16 to f32
1075 * (b) multiply by 1/256
1076 */
1077 for (int def = 0; def < 2; ++def) {
1078 if (!i->defExists(def))
1079 continue;
1080 enum DataType type = TYPE_S16;
1081 if (i->tex.mask == 2 || def > 0)
1082 type = TYPE_U16;
1083 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1084 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1085 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1086 }
1087 if (i->tex.mask == 3) {
1088 LValue *t = new_LValue(func, FILE_GPR);
1089 bld.mkMov(t, i->getDef(0));
1090 bld.mkMov(i->getDef(0), i->getDef(1));
1091 bld.mkMov(i->getDef(1), t);
1092 }
1093 return true;
1094 }
1095
1096 bool
1097 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1098 {
1099 bufq->op = OP_MOV;
1100 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1101 bufq->getSrc(0)->reg.fileIndex * 16));
1102 bufq->setIndirect(0, 0, NULL);
1103 bufq->setIndirect(0, 1, NULL);
1104 return true;
1105 }
1106
1107 void
1108 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1109 {
1110 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1111
1112 BasicBlock *currBB = atom->bb;
1113 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1114 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1115 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1116 BasicBlock *failLockBB = new BasicBlock(func);
1117
1118 bld.setPosition(currBB, true);
1119 assert(!currBB->joinAt);
1120 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1121
1122 CmpInstruction *pred =
1123 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1124 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1125
1126 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1127 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1128
1129 bld.setPosition(tryLockBB, true);
1130
1131 Instruction *ld =
1132 bld.mkLoad(TYPE_U32, atom->getDef(0),
1133 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0), NULL);
1134 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1135 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1136
1137 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1138 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1139 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1140 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1141
1142 tryLockBB->cfg.detach(&joinBB->cfg);
1143 bld.remove(atom);
1144
1145 bld.setPosition(setAndUnlockBB, true);
1146 Value *stVal;
1147 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1148 // Read the old value, and write the new one.
1149 stVal = atom->getSrc(1);
1150 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1151 CmpInstruction *set =
1152 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1153 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1154
1155 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1156 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1157 } else {
1158 operation op;
1159
1160 switch (atom->subOp) {
1161 case NV50_IR_SUBOP_ATOM_ADD:
1162 op = OP_ADD;
1163 break;
1164 case NV50_IR_SUBOP_ATOM_AND:
1165 op = OP_AND;
1166 break;
1167 case NV50_IR_SUBOP_ATOM_OR:
1168 op = OP_OR;
1169 break;
1170 case NV50_IR_SUBOP_ATOM_XOR:
1171 op = OP_XOR;
1172 break;
1173 case NV50_IR_SUBOP_ATOM_MIN:
1174 op = OP_MIN;
1175 break;
1176 case NV50_IR_SUBOP_ATOM_MAX:
1177 op = OP_MAX;
1178 break;
1179 default:
1180 assert(0);
1181 return;
1182 }
1183
1184 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1185 atom->getSrc(1));
1186 }
1187
1188 Instruction *st =
1189 bld.mkStore(OP_STORE, TYPE_U32,
1190 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0),
1191 NULL, stVal);
1192 st->setDef(0, pred->getDef(0));
1193 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1194
1195 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1196 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1197
1198 // Lock until the store has not been performed.
1199 bld.setPosition(failLockBB, true);
1200 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1201 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1202 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1203 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1204
1205 bld.setPosition(joinBB, false);
1206 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1207 }
1208
1209 void
1210 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1211 {
1212 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1213
1214 BasicBlock *currBB = atom->bb;
1215 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1216 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1217
1218 bld.setPosition(currBB, true);
1219 assert(!currBB->joinAt);
1220 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1221
1222 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1223 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1224
1225 bld.setPosition(tryLockAndSetBB, true);
1226
1227 Instruction *ld =
1228 bld.mkLoad(TYPE_U32, atom->getDef(0),
1229 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0), NULL);
1230 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1231 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1232
1233 Value *stVal;
1234 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1235 // Read the old value, and write the new one.
1236 stVal = atom->getSrc(1);
1237 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1238 CmpInstruction *set =
1239 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1240 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1241 set->setPredicate(CC_P, ld->getDef(1));
1242
1243 Instruction *selp =
1244 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1245 atom->getSrc(2), set->getDef(0));
1246 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1247 selp->setPredicate(CC_P, ld->getDef(1));
1248
1249 stVal = selp->getDef(0);
1250 } else {
1251 operation op;
1252
1253 switch (atom->subOp) {
1254 case NV50_IR_SUBOP_ATOM_ADD:
1255 op = OP_ADD;
1256 break;
1257 case NV50_IR_SUBOP_ATOM_AND:
1258 op = OP_AND;
1259 break;
1260 case NV50_IR_SUBOP_ATOM_OR:
1261 op = OP_OR;
1262 break;
1263 case NV50_IR_SUBOP_ATOM_XOR:
1264 op = OP_XOR;
1265 break;
1266 case NV50_IR_SUBOP_ATOM_MIN:
1267 op = OP_MIN;
1268 break;
1269 case NV50_IR_SUBOP_ATOM_MAX:
1270 op = OP_MAX;
1271 break;
1272 default:
1273 assert(0);
1274 return;
1275 }
1276
1277 Instruction *i =
1278 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1279 atom->getSrc(1));
1280 i->setPredicate(CC_P, ld->getDef(1));
1281
1282 stVal = i->getDef(0);
1283 }
1284
1285 Instruction *st =
1286 bld.mkStore(OP_STORE, TYPE_U32,
1287 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0),
1288 NULL, stVal);
1289 st->setPredicate(CC_P, ld->getDef(1));
1290 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1291
1292 // Loop until the lock is acquired.
1293 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1294 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1295 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1296 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1297
1298 bld.remove(atom);
1299
1300 bld.setPosition(joinBB, false);
1301 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1302 }
1303
1304 bool
1305 NVC0LoweringPass::handleATOM(Instruction *atom)
1306 {
1307 SVSemantic sv;
1308 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1309
1310 switch (atom->src(0).getFile()) {
1311 case FILE_MEMORY_LOCAL:
1312 sv = SV_LBASE;
1313 break;
1314 case FILE_MEMORY_SHARED:
1315 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1316 // operations on shared memory. For Maxwell, ATOMS is enough.
1317 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1318 handleSharedATOM(atom);
1319 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1320 handleSharedATOMNVE4(atom);
1321 return true;
1322 default:
1323 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1324 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1325 assert(base->reg.size == 8);
1326 if (ptr)
1327 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1328 assert(base->reg.size == 8);
1329 atom->setIndirect(0, 0, base);
1330 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1331 return true;
1332 }
1333 base =
1334 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1335
1336 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1337 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1338 if (ptr)
1339 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1340 atom->setIndirect(0, 1, NULL);
1341 atom->setIndirect(0, 0, base);
1342
1343 return true;
1344 }
1345
1346 bool
1347 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1348 {
1349 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1350 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1351 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1352 return false;
1353 }
1354 }
1355
1356 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1357 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1358 return false;
1359 bld.setPosition(cas, true);
1360
1361 if (needCctl) {
1362 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1363 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1364 cctl->fixed = 1;
1365 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1366 if (cas->isPredicated())
1367 cctl->setPredicate(cas->cc, cas->getPredicate());
1368 }
1369
1370 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1371 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1372 // should be set to the high part of the double reg or bad things will
1373 // happen elsewhere in the universe.
1374 // Also, it sometimes returns the new value instead of the old one
1375 // under mysterious circumstances.
1376 Value *dreg = bld.getSSA(8);
1377 bld.setPosition(cas, false);
1378 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1379 cas->setSrc(1, dreg);
1380 cas->setSrc(2, dreg);
1381 }
1382
1383 return true;
1384 }
1385
1386 inline Value *
1387 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1388 {
1389 uint8_t b = prog->driver->io.auxCBSlot;
1390 off += base;
1391
1392 return bld.
1393 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1394 }
1395
1396 inline Value *
1397 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1398 {
1399 uint8_t b = prog->driver->io.auxCBSlot;
1400 off += base;
1401
1402 if (ptr)
1403 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1404
1405 return bld.
1406 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1407 }
1408
1409 inline Value *
1410 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1411 {
1412 uint8_t b = prog->driver->io.auxCBSlot;
1413 off += base;
1414
1415 if (ptr)
1416 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1417
1418 return bld.
1419 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1420 }
1421
1422 inline Value *
1423 NVC0LoweringPass::loadSuInfo32(Value *ptr, uint32_t off)
1424 {
1425 return loadResInfo32(ptr, off, prog->driver->io.suInfoBase);
1426 }
1427
1428 inline Value *
1429 NVC0LoweringPass::loadSuInfo64(Value *ptr, uint32_t off)
1430 {
1431 return loadResInfo64(ptr, off, prog->driver->io.suInfoBase);
1432 }
1433
1434 inline Value *
1435 NVC0LoweringPass::loadSuLength32(Value *ptr, uint32_t off)
1436 {
1437 return loadResLength32(ptr, off, prog->driver->io.suInfoBase);
1438 }
1439
1440 inline Value *
1441 NVC0LoweringPass::loadBufInfo32(Value *ptr, uint32_t off)
1442 {
1443 return loadResInfo32(ptr, off, prog->driver->io.bufInfoBase);
1444 }
1445
1446 inline Value *
1447 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1448 {
1449 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1450 }
1451
1452 inline Value *
1453 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1454 {
1455 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1456 }
1457
1458 inline Value *
1459 NVC0LoweringPass::loadUboInfo32(Value *ptr, uint32_t off)
1460 {
1461 return loadResInfo32(ptr, off, prog->driver->io.uboInfoBase);
1462 }
1463
1464 inline Value *
1465 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1466 {
1467 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1468 }
1469
1470 inline Value *
1471 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1472 {
1473 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1474 }
1475
1476 inline Value *
1477 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1478 {
1479 uint8_t b = prog->driver->io.msInfoCBSlot;
1480 off += prog->driver->io.msInfoBase;
1481 return bld.
1482 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1483 }
1484
1485 /* On nvc0, surface info is obtained via the surface binding points passed
1486 * to the SULD/SUST instructions.
1487 * On nve4, surface info is stored in c[] and is used by various special
1488 * instructions, e.g. for clamping coordiantes or generating an address.
1489 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1490 */
1491 #define NVE4_SU_INFO_ADDR 0x00
1492 #define NVE4_SU_INFO_FMT 0x04
1493 #define NVE4_SU_INFO_DIM_X 0x08
1494 #define NVE4_SU_INFO_PITCH 0x0c
1495 #define NVE4_SU_INFO_DIM_Y 0x10
1496 #define NVE4_SU_INFO_ARRAY 0x14
1497 #define NVE4_SU_INFO_DIM_Z 0x18
1498 #define NVE4_SU_INFO_UNK1C 0x1c
1499 #define NVE4_SU_INFO_WIDTH 0x20
1500 #define NVE4_SU_INFO_HEIGHT 0x24
1501 #define NVE4_SU_INFO_DEPTH 0x28
1502 #define NVE4_SU_INFO_TARGET 0x2c
1503 #define NVE4_SU_INFO_BSIZE 0x30
1504 #define NVE4_SU_INFO_RAW_X 0x34
1505 #define NVE4_SU_INFO_MS_X 0x38
1506 #define NVE4_SU_INFO_MS_Y 0x3c
1507
1508 #define NVE4_SU_INFO__STRIDE 0x40
1509
1510 #define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8)
1511 #define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1512 #define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4)
1513
1514 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1515 {
1516 switch (su->tex.target.getEnum()) {
1517 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1518 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1519 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1520 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1521 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1522 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1523 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1524 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1525 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1526 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1527 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1528 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1529 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1530 default:
1531 assert(0);
1532 return 0;
1533 }
1534 }
1535
1536 bool
1537 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1538 {
1539 int dim = suq->tex.target.getDim();
1540 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1541 uint8_t s = prog->driver->io.auxCBSlot;
1542 Value *ind = suq->getIndirectR();
1543 uint32_t base;
1544 int c;
1545
1546 base = prog->driver->io.suInfoBase + suq->tex.r * NVE4_SU_INFO__STRIDE;
1547
1548 if (ind)
1549 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(),
1550 ind, bld.mkImm(6));
1551
1552 for (c = 0; c < arg; ++c) {
1553 if (suq->defExists(c)) {
1554 int offset;
1555
1556 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1557 offset = base + NVE4_SU_INFO_SIZE(2);
1558 } else {
1559 offset = base + NVE4_SU_INFO_SIZE(c);
1560 }
1561 bld.mkLoad(TYPE_U32, suq->getDef(c),
1562 bld.mkSymbol(FILE_MEMORY_CONST, s, TYPE_U32, offset), ind);
1563 }
1564 }
1565
1566 if (suq->tex.target.isCube()) {
1567 if (suq->defExists(2)) {
1568 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(2), suq->getDef(2),
1569 bld.loadImm(NULL, 6));
1570 }
1571 }
1572
1573 if (suq->defExists(3)) {
1574 // .w contains the number of samples for multi-sampled images but we
1575 // don't support them for now.
1576 bld.mkMov(suq->getDef(3), bld.loadImm(NULL, 1));
1577 }
1578
1579 bld.remove(suq);
1580 return true;
1581 }
1582
1583 void
1584 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1585 {
1586 const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
1587 const int arg = tex->tex.target.getArgCount();
1588
1589 if (tex->tex.target == TEX_TARGET_2D_MS)
1590 tex->tex.target = TEX_TARGET_2D;
1591 else
1592 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1593 tex->tex.target = TEX_TARGET_2D_ARRAY;
1594 else
1595 return;
1596
1597 Value *x = tex->getSrc(0);
1598 Value *y = tex->getSrc(1);
1599 Value *s = tex->getSrc(arg - 1);
1600
1601 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1602 Value *ind = NULL;
1603
1604 if (tex->tex.rIndirectSrc >= 0) {
1605 assert(tex->tex.r == 0);
1606 // FIXME: out of bounds
1607 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1608 tex->getIndirectR(), bld.mkImm(6));
1609 }
1610
1611 Value *ms_x = loadSuInfo32(ind, base + NVE4_SU_INFO_MS(0));
1612 Value *ms_y = loadSuInfo32(ind, base + NVE4_SU_INFO_MS(1));
1613
1614 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1615 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1616
1617 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1618 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1619
1620 Value *dx = loadMsInfo32(ts, 0x0);
1621 Value *dy = loadMsInfo32(ts, 0x4);
1622
1623 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1624 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1625
1626 tex->setSrc(0, tx);
1627 tex->setSrc(1, ty);
1628 tex->moveSources(arg, -1);
1629 }
1630
1631 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1632 // They're computed from the coordinates using the surface info in c[] space.
1633 void
1634 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1635 {
1636 Instruction *insn;
1637 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1638 const bool raw =
1639 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1640 const int idx = su->tex.r;
1641 const int dim = su->tex.target.getDim();
1642 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
1643 const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1644 int c;
1645 Value *zero = bld.mkImm(0);
1646 Value *p1 = NULL;
1647 Value *v;
1648 Value *src[3];
1649 Value *bf, *eau, *off;
1650 Value *addr, *pred;
1651 Value *ind = NULL;
1652
1653 off = bld.getScratch(4);
1654 bf = bld.getScratch(4);
1655 addr = bld.getSSA(8);
1656 pred = bld.getScratch(1, FILE_PREDICATE);
1657
1658 bld.setPosition(su, false);
1659
1660 adjustCoordinatesMS(su);
1661
1662 if (su->tex.rIndirectSrc >= 0) {
1663 // FIXME: out of bounds
1664 assert(su->tex.r == 0);
1665 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1666 su->getIndirectR(), bld.mkImm(6));
1667 }
1668
1669 // calculate clamped coordinates
1670 for (c = 0; c < arg; ++c) {
1671 int dimc = c;
1672
1673 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
1674 // The array index is stored in the Z component for 1D arrays.
1675 dimc = 2;
1676 }
1677
1678 src[c] = bld.getScratch();
1679 if (c == 0 && raw)
1680 v = loadSuInfo32(ind, base + NVE4_SU_INFO_RAW_X);
1681 else
1682 v = loadSuInfo32(ind, base + NVE4_SU_INFO_DIM(dimc));
1683 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1684 ->subOp = getSuClampSubOp(su, dimc);
1685 }
1686 for (; c < 3; ++c)
1687 src[c] = zero;
1688
1689 // set predicate output
1690 if (su->tex.target == TEX_TARGET_BUFFER) {
1691 src[0]->getInsn()->setFlagsDef(1, pred);
1692 } else
1693 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1694 p1 = bld.getSSA(1, FILE_PREDICATE);
1695 src[dim]->getInsn()->setFlagsDef(1, p1);
1696 }
1697
1698 // calculate pixel offset
1699 if (dim == 1) {
1700 if (su->tex.target != TEX_TARGET_BUFFER)
1701 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1702 } else
1703 if (dim == 3) {
1704 v = loadSuInfo32(ind, base + NVE4_SU_INFO_UNK1C);
1705 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1706 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1707
1708 v = loadSuInfo32(ind, base + NVE4_SU_INFO_PITCH);
1709 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1710 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1711 } else {
1712 assert(dim == 2);
1713 v = loadSuInfo32(ind, base + NVE4_SU_INFO_PITCH);
1714 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1715 ->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
1716 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1717 }
1718
1719 // calculate effective address part 1
1720 if (su->tex.target == TEX_TARGET_BUFFER) {
1721 if (raw) {
1722 bf = src[0];
1723 } else {
1724 v = loadSuInfo32(ind, base + NVE4_SU_INFO_FMT);
1725 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1726 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1727 }
1728 } else {
1729 Value *y = src[1];
1730 Value *z = src[2];
1731 uint16_t subOp = 0;
1732
1733 switch (dim) {
1734 case 1:
1735 y = zero;
1736 z = zero;
1737 break;
1738 case 2:
1739 z = off;
1740 if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
1741 z = loadSuInfo32(ind, base + NVE4_SU_INFO_UNK1C);
1742 subOp = NV50_IR_SUBOP_SUBFM_3D;
1743 }
1744 break;
1745 default:
1746 subOp = NV50_IR_SUBOP_SUBFM_3D;
1747 assert(dim == 3);
1748 break;
1749 }
1750 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1751 insn->subOp = subOp;
1752 insn->setFlagsDef(1, pred);
1753 }
1754
1755 // part 2
1756 v = loadSuInfo32(ind, base + NVE4_SU_INFO_ADDR);
1757
1758 if (su->tex.target == TEX_TARGET_BUFFER) {
1759 eau = v;
1760 } else {
1761 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1762 }
1763 // add array layer offset
1764 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1765 v = loadSuInfo32(ind, base + NVE4_SU_INFO_ARRAY);
1766 if (dim == 1)
1767 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1768 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1769 else
1770 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1771 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1772 // combine predicates
1773 assert(p1);
1774 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1775 }
1776
1777 if (atom) {
1778 Value *lo = bf;
1779 if (su->tex.target == TEX_TARGET_BUFFER) {
1780 lo = zero;
1781 bld.mkMov(off, bf);
1782 }
1783 // bf == g[] address & 0xff
1784 // eau == g[] address >> 8
1785 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1786 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1787 } else
1788 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1789 // Convert from u32 to u8 address format, which is what the library code
1790 // doing SULDP currently uses.
1791 // XXX: can SUEAU do this ?
1792 // XXX: does it matter that we don't mask high bytes in bf ?
1793 // Grrr.
1794 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1795 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1796 }
1797
1798 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1799
1800 if (atom && su->tex.target == TEX_TARGET_BUFFER)
1801 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1802
1803 // let's just set it 0 for raw access and hope it works
1804 v = raw ?
1805 bld.mkImm(0) : loadSuInfo32(ind, base + NVE4_SU_INFO_FMT);
1806
1807 // get rid of old coordinate sources, make space for fmt info and predicate
1808 su->moveSources(arg, 3 - arg);
1809 // set 64 bit address and 32-bit format sources
1810 su->setSrc(0, addr);
1811 su->setSrc(1, v);
1812 su->setSrc(2, pred);
1813
1814 // prevent read fault when the image is not actually bound
1815 CmpInstruction *pred1 =
1816 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1817 TYPE_U32, bld.mkImm(0),
1818 loadSuInfo32(ind, base + NVE4_SU_INFO_ADDR));
1819
1820 if (su->tex.format) {
1821 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1822 int blockwidth = format->bits[0] + format->bits[1] +
1823 format->bits[2] + format->bits[3];
1824
1825 if (blockwidth >= 8) {
1826 // make sure that the format doesn't mismatch
1827 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
1828 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
1829 loadSuInfo32(ind, base + NVE4_SU_INFO_BSIZE),
1830 pred1->getDef(0));
1831 }
1832 }
1833 su->setPredicate(CC_NOT_P, pred1->getDef(0));
1834
1835 // TODO: initialize def values to 0 when the surface operation is not
1836 // performed (not needed for stores). Also, fix the "address bounds test"
1837 // subtests from arb_shader_image_load_store-invalid for buffers, because it
1838 // seems like that the predicate is not correctly set by suclamp.
1839 }
1840
1841 static DataType
1842 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
1843 {
1844 switch (t->type) {
1845 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
1846 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
1847 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
1848 case UINT:
1849 return (t->bits[c] == 8 ? TYPE_U8 :
1850 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
1851 case SINT:
1852 return (t->bits[c] == 8 ? TYPE_S8 :
1853 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
1854 }
1855 return TYPE_NONE;
1856 }
1857
1858 static DataType
1859 getDestType(const ImgType type) {
1860 switch (type) {
1861 case FLOAT:
1862 case UNORM:
1863 case SNORM:
1864 return TYPE_F32;
1865 case UINT:
1866 return TYPE_U32;
1867 case SINT:
1868 return TYPE_S32;
1869 default:
1870 assert(!"Impossible type");
1871 return TYPE_NONE;
1872 }
1873 }
1874
1875 void
1876 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
1877 {
1878 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1879 int width = format->bits[0] + format->bits[1] +
1880 format->bits[2] + format->bits[3];
1881 Value *untypedDst[4] = {};
1882 Value *typedDst[4] = {};
1883
1884 // We must convert this to a generic load.
1885 su->op = OP_SULDB;
1886
1887 su->dType = typeOfSize(width / 8);
1888 su->sType = TYPE_U8;
1889
1890 for (int i = 0; i < width / 32; i++)
1891 untypedDst[i] = bld.getSSA();
1892 if (width < 32)
1893 untypedDst[0] = bld.getSSA();
1894
1895 for (int i = 0; i < 4; i++) {
1896 typedDst[i] = su->getDef(i);
1897 }
1898
1899 // Set the untyped dsts as the su's destinations
1900 for (int i = 0; i < 4; i++)
1901 su->setDef(i, untypedDst[i]);
1902
1903 bld.setPosition(su, true);
1904
1905 // Unpack each component into the typed dsts
1906 int bits = 0;
1907 for (int i = 0; i < 4; bits += format->bits[i], i++) {
1908 if (!typedDst[i])
1909 continue;
1910 if (i >= format->components) {
1911 if (format->type == FLOAT ||
1912 format->type == UNORM ||
1913 format->type == SNORM)
1914 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
1915 else
1916 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
1917 continue;
1918 }
1919
1920 // Get just that component's data into the relevant place
1921 if (format->bits[i] == 32)
1922 bld.mkMov(typedDst[i], untypedDst[i]);
1923 else if (format->bits[i] == 16)
1924 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1925 getSrcType(format, i), untypedDst[i / 2])
1926 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
1927 else if (format->bits[i] == 8)
1928 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1929 getSrcType(format, i), untypedDst[0])->subOp = i;
1930 else {
1931 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
1932 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
1933 if (format->type == UNORM || format->type == SNORM)
1934 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
1935 }
1936
1937 // Normalize / convert as necessary
1938 if (format->type == UNORM)
1939 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
1940 else if (format->type == SNORM)
1941 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
1942 else if (format->type == FLOAT && format->bits[i] < 16) {
1943 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
1944 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
1945 }
1946 }
1947 }
1948
1949 void
1950 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1951 {
1952 processSurfaceCoordsNVE4(su);
1953
1954 if (su->op == OP_SULDP)
1955 convertSurfaceFormat(su);
1956
1957 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1958 Value *pred = su->getSrc(2);
1959 CondCode cc = CC_NOT_P;
1960 if (su->getPredicate()) {
1961 pred = bld.getScratch(1, FILE_PREDICATE);
1962 cc = su->cc;
1963 if (cc == CC_NOT_P) {
1964 bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1965 } else {
1966 bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1967 pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
1968 }
1969 }
1970 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
1971 red->subOp = su->subOp;
1972 if (!gMemBase)
1973 gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
1974 red->setSrc(0, gMemBase);
1975 red->setSrc(1, su->getSrc(3));
1976 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1977 red->setSrc(2, su->getSrc(4));
1978 red->setIndirect(0, 0, su->getSrc(0));
1979
1980 // make sure to initialize dst value when the atomic operation is not
1981 // performed
1982 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
1983
1984 assert(cc == CC_NOT_P);
1985 red->setPredicate(cc, pred);
1986 mov->setPredicate(CC_P, pred);
1987
1988 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
1989 red->getDef(0), mov->getDef(0));
1990
1991 delete_Instruction(bld.getProgram(), su);
1992 handleCasExch(red, true);
1993 }
1994
1995 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
1996 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1997 }
1998
1999 bool
2000 NVC0LoweringPass::handleWRSV(Instruction *i)
2001 {
2002 Instruction *st;
2003 Symbol *sym;
2004 uint32_t addr;
2005
2006 // must replace, $sreg are not writeable
2007 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2008 if (addr >= 0x400)
2009 return false;
2010 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2011
2012 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2013 i->getSrc(1));
2014 st->perPatch = i->perPatch;
2015
2016 bld.getBB()->remove(i);
2017 return true;
2018 }
2019
2020 void
2021 NVC0LoweringPass::handleLDST(Instruction *i)
2022 {
2023 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2024 if (prog->getType() == Program::TYPE_COMPUTE) {
2025 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2026 i->getSrc(0)->reg.fileIndex = 0;
2027 } else
2028 if (prog->getType() == Program::TYPE_GEOMETRY &&
2029 i->src(0).isIndirect(0)) {
2030 // XXX: this assumes vec4 units
2031 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2032 i->getIndirect(0, 0), bld.mkImm(4));
2033 i->setIndirect(0, 0, ptr);
2034 i->op = OP_VFETCH;
2035 } else {
2036 i->op = OP_VFETCH;
2037 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2038 }
2039 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2040 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2041 prog->getType() == Program::TYPE_COMPUTE) {
2042 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2043 // requires at least 12 UBOs. To bypass this limitation, we store the
2044 // addrs into the driver constbuf and we directly load from the global
2045 // memory.
2046 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2047 Value *ind = i->getIndirect(0, 1);
2048 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2049
2050 // TODO: clamp the offset to the maximum number of const buf.
2051 if (i->src(0).isIndirect(1)) {
2052 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2053 Value *length = loadUboLength32(ind, fileIndex * 16);
2054 Value *pred = new_LValue(func, FILE_PREDICATE);
2055 if (i->src(0).isIndirect(0)) {
2056 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2057 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2058 }
2059 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2060 i->setIndirect(0, 1, NULL);
2061 i->setIndirect(0, 0, ptr);
2062 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2063 i->setPredicate(CC_NOT_P, pred);
2064 if (i->defExists(0)) {
2065 bld.mkMov(i->getDef(0), bld.mkImm(0));
2066 }
2067 } else if (fileIndex >= 0) {
2068 if (i->src(0).isIndirect(0)) {
2069 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2070 }
2071 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2072 i->setIndirect(0, 1, NULL);
2073 i->setIndirect(0, 0, ptr);
2074 }
2075 } else if (i->src(0).isIndirect(1)) {
2076 Value *ptr;
2077 if (i->src(0).isIndirect(0))
2078 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2079 i->getIndirect(0, 1), bld.mkImm(0x1010),
2080 i->getIndirect(0, 0));
2081 else
2082 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2083 i->getIndirect(0, 1), bld.mkImm(16));
2084 i->setIndirect(0, 1, NULL);
2085 i->setIndirect(0, 0, ptr);
2086 i->subOp = NV50_IR_SUBOP_LDC_IS;
2087 }
2088 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2089 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2090 i->op = OP_VFETCH;
2091 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2092 Value *ind = i->getIndirect(0, 1);
2093 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2094 // XXX come up with a way not to do this for EVERY little access but
2095 // rather to batch these up somehow. Unfortunately we've lost the
2096 // information about the field width by the time we get here.
2097 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2098 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2099 Value *pred = new_LValue(func, FILE_PREDICATE);
2100 if (i->src(0).isIndirect(0)) {
2101 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2102 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2103 }
2104 i->setIndirect(0, 1, NULL);
2105 i->setIndirect(0, 0, ptr);
2106 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2107 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2108 i->setPredicate(CC_NOT_P, pred);
2109 if (i->defExists(0)) {
2110 bld.mkMov(i->getDef(0), bld.mkImm(0));
2111 }
2112 }
2113 }
2114
2115 void
2116 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2117 {
2118 Value *laneid = bld.getSSA();
2119 Value *x, *y;
2120
2121 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2122
2123 if (c == 0) {
2124 x = dst;
2125 y = NULL;
2126 } else
2127 if (c == 1) {
2128 x = NULL;
2129 y = dst;
2130 } else {
2131 assert(c == 2);
2132 x = bld.getSSA();
2133 y = bld.getSSA();
2134 }
2135 if (x)
2136 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2137 if (y)
2138 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2139
2140 if (c == 2) {
2141 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2142 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2143 }
2144 }
2145
2146 bool
2147 NVC0LoweringPass::handleRDSV(Instruction *i)
2148 {
2149 Symbol *sym = i->getSrc(0)->asSym();
2150 const SVSemantic sv = sym->reg.data.sv.sv;
2151 Value *vtx = NULL;
2152 Instruction *ld;
2153 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2154
2155 if (addr >= 0x400) {
2156 // mov $sreg
2157 if (sym->reg.data.sv.index == 3) {
2158 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2159 i->op = OP_MOV;
2160 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2161 }
2162 if (sv == SV_VERTEX_COUNT) {
2163 bld.setPosition(i, true);
2164 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2165 }
2166 return true;
2167 }
2168
2169 switch (sv) {
2170 case SV_POSITION:
2171 assert(prog->getType() == Program::TYPE_FRAGMENT);
2172 if (i->srcExists(1)) {
2173 // Pass offset through to the interpolation logic
2174 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2175 i->getDef(0), addr, NULL);
2176 ld->setSrc(1, i->getSrc(1));
2177 } else {
2178 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2179 }
2180 break;
2181 case SV_FACE:
2182 {
2183 Value *face = i->getDef(0);
2184 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2185 if (i->dType == TYPE_F32) {
2186 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2187 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2188 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2189 }
2190 }
2191 break;
2192 case SV_TESS_COORD:
2193 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2194 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2195 break;
2196 case SV_NTID:
2197 case SV_NCTAID:
2198 case SV_GRIDID:
2199 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2200 if (sym->reg.data.sv.index == 3) {
2201 i->op = OP_MOV;
2202 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2203 return true;
2204 }
2205 addr += prog->driver->prop.cp.gridInfoBase;
2206 bld.mkLoad(TYPE_U32, i->getDef(0),
2207 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2208 TYPE_U32, addr), NULL);
2209 break;
2210 case SV_SAMPLE_INDEX:
2211 // TODO: Properly pass source as an address in the PIX address space
2212 // (which can be of the form [r0+offset]). But this is currently
2213 // unnecessary.
2214 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2215 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2216 break;
2217 case SV_SAMPLE_POS: {
2218 Value *off = new_LValue(func, FILE_GPR);
2219 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2220 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2221 bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
2222 bld.mkLoad(TYPE_F32,
2223 i->getDef(0),
2224 bld.mkSymbol(
2225 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2226 TYPE_U32, prog->driver->io.sampleInfoBase +
2227 4 * sym->reg.data.sv.index),
2228 off);
2229 break;
2230 }
2231 case SV_SAMPLE_MASK: {
2232 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2233 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2234 Instruction *sampleid =
2235 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2236 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2237 Value *masked =
2238 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2239 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2240 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2241 if (prog->driver->prop.fp.persampleInvocation) {
2242 bld.mkMov(i->getDef(0), masked);
2243 } else {
2244 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2245 bld.mkImm(0))
2246 ->subOp = 1;
2247 }
2248 break;
2249 }
2250 case SV_BASEVERTEX:
2251 case SV_BASEINSTANCE:
2252 case SV_DRAWID:
2253 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2254 bld.mkSymbol(FILE_MEMORY_CONST,
2255 prog->driver->io.auxCBSlot,
2256 TYPE_U32,
2257 prog->driver->io.drawInfoBase +
2258 4 * (sv - SV_BASEVERTEX)),
2259 NULL);
2260 break;
2261 default:
2262 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2263 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2264 ld = bld.mkFetch(i->getDef(0), i->dType,
2265 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2266 ld->perPatch = i->perPatch;
2267 break;
2268 }
2269 bld.getBB()->remove(i);
2270 return true;
2271 }
2272
2273 bool
2274 NVC0LoweringPass::handleDIV(Instruction *i)
2275 {
2276 if (!isFloatType(i->dType))
2277 return true;
2278 bld.setPosition(i, false);
2279 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
2280 i->op = OP_MUL;
2281 i->setSrc(1, rcp->getDef(0));
2282 return true;
2283 }
2284
2285 bool
2286 NVC0LoweringPass::handleMOD(Instruction *i)
2287 {
2288 if (!isFloatType(i->dType))
2289 return true;
2290 LValue *value = bld.getScratch(typeSizeof(i->dType));
2291 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
2292 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
2293 bld.mkOp1(OP_TRUNC, i->dType, value, value);
2294 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
2295 i->op = OP_SUB;
2296 i->setSrc(1, value);
2297 return true;
2298 }
2299
2300 bool
2301 NVC0LoweringPass::handleSQRT(Instruction *i)
2302 {
2303 if (i->dType == TYPE_F64) {
2304 Value *pred = bld.getSSA(1, FILE_PREDICATE);
2305 Value *zero = bld.loadImm(NULL, 0.0);
2306 Value *dst = bld.getSSA(8);
2307 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
2308 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
2309 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
2310 i->op = OP_MUL;
2311 i->setSrc(1, dst);
2312 // TODO: Handle this properly with a library function
2313 } else {
2314 bld.setPosition(i, true);
2315 i->op = OP_RSQ;
2316 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
2317 }
2318
2319 return true;
2320 }
2321
2322 bool
2323 NVC0LoweringPass::handlePOW(Instruction *i)
2324 {
2325 LValue *val = bld.getScratch();
2326
2327 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
2328 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
2329 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
2330
2331 i->op = OP_EX2;
2332 i->setSrc(0, val);
2333 i->setSrc(1, NULL);
2334
2335 return true;
2336 }
2337
2338 bool
2339 NVC0LoweringPass::handleEXPORT(Instruction *i)
2340 {
2341 if (prog->getType() == Program::TYPE_FRAGMENT) {
2342 int id = i->getSrc(0)->reg.data.offset / 4;
2343
2344 if (i->src(0).isIndirect(0)) // TODO, ugly
2345 return false;
2346 i->op = OP_MOV;
2347 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
2348 i->src(0).set(i->src(1));
2349 i->setSrc(1, NULL);
2350 i->setDef(0, new_LValue(func, FILE_GPR));
2351 i->getDef(0)->reg.data.id = id;
2352
2353 prog->maxGPR = MAX2(prog->maxGPR, id);
2354 } else
2355 if (prog->getType() == Program::TYPE_GEOMETRY) {
2356 i->setIndirect(0, 1, gpEmitAddress);
2357 }
2358 return true;
2359 }
2360
2361 bool
2362 NVC0LoweringPass::handleOUT(Instruction *i)
2363 {
2364 Instruction *prev = i->prev;
2365 ImmediateValue stream, prevStream;
2366
2367 // Only merge if the stream ids match. Also, note that the previous
2368 // instruction would have already been lowered, so we take arg1 from it.
2369 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
2370 i->src(0).getImmediate(stream) &&
2371 prev->src(1).getImmediate(prevStream) &&
2372 stream.reg.data.u32 == prevStream.reg.data.u32) {
2373 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
2374 delete_Instruction(prog, i);
2375 } else {
2376 assert(gpEmitAddress);
2377 i->setDef(0, gpEmitAddress);
2378 i->setSrc(1, i->getSrc(0));
2379 i->setSrc(0, gpEmitAddress);
2380 }
2381 return true;
2382 }
2383
2384 // Generate a binary predicate if an instruction is predicated by
2385 // e.g. an f32 value.
2386 void
2387 NVC0LoweringPass::checkPredicate(Instruction *insn)
2388 {
2389 Value *pred = insn->getPredicate();
2390 Value *pdst;
2391
2392 if (!pred || pred->reg.file == FILE_PREDICATE)
2393 return;
2394 pdst = new_LValue(func, FILE_PREDICATE);
2395
2396 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
2397 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
2398
2399 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
2400
2401 insn->setPredicate(insn->cc, pdst);
2402 }
2403
2404 //
2405 // - add quadop dance for texturing
2406 // - put FP outputs in GPRs
2407 // - convert instruction sequences
2408 //
2409 bool
2410 NVC0LoweringPass::visit(Instruction *i)
2411 {
2412 bool ret = true;
2413 bld.setPosition(i, false);
2414
2415 if (i->cc != CC_ALWAYS)
2416 checkPredicate(i);
2417
2418 switch (i->op) {
2419 case OP_TEX:
2420 case OP_TXB:
2421 case OP_TXL:
2422 case OP_TXF:
2423 case OP_TXG:
2424 return handleTEX(i->asTex());
2425 case OP_TXD:
2426 return handleTXD(i->asTex());
2427 case OP_TXLQ:
2428 return handleTXLQ(i->asTex());
2429 case OP_TXQ:
2430 return handleTXQ(i->asTex());
2431 case OP_EX2:
2432 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
2433 i->setSrc(0, i->getDef(0));
2434 break;
2435 case OP_POW:
2436 return handlePOW(i);
2437 case OP_DIV:
2438 return handleDIV(i);
2439 case OP_MOD:
2440 return handleMOD(i);
2441 case OP_SQRT:
2442 return handleSQRT(i);
2443 case OP_EXPORT:
2444 ret = handleEXPORT(i);
2445 break;
2446 case OP_EMIT:
2447 case OP_RESTART:
2448 return handleOUT(i);
2449 case OP_RDSV:
2450 return handleRDSV(i);
2451 case OP_WRSV:
2452 return handleWRSV(i);
2453 case OP_STORE:
2454 case OP_LOAD:
2455 handleLDST(i);
2456 break;
2457 case OP_ATOM:
2458 {
2459 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
2460 handleATOM(i);
2461 handleCasExch(i, cctl);
2462 }
2463 break;
2464 case OP_SULDB:
2465 case OP_SULDP:
2466 case OP_SUSTB:
2467 case OP_SUSTP:
2468 case OP_SUREDB:
2469 case OP_SUREDP:
2470 if (targ->getChipset() >= NVISA_GK104_CHIPSET)
2471 handleSurfaceOpNVE4(i->asTex());
2472 break;
2473 case OP_SUQ:
2474 handleSUQ(i->asTex());
2475 break;
2476 case OP_BUFQ:
2477 handleBUFQ(i);
2478 break;
2479 default:
2480 break;
2481 }
2482
2483 /* Kepler+ has a special opcode to compute a new base address to be used
2484 * for indirect loads.
2485 */
2486 if (targ->getChipset() >= NVISA_GK104_CHIPSET && !i->perPatch &&
2487 (i->op == OP_VFETCH || i->op == OP_EXPORT) && i->src(0).isIndirect(0)) {
2488 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
2489 cloneShallow(func, i->getSrc(0)));
2490 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
2491 i->src(0).get()->reg.data.offset = 0;
2492 i->setIndirect(0, 0, afetch->getDef(0));
2493 }
2494
2495 return ret;
2496 }
2497
2498 bool
2499 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
2500 {
2501 if (stage == CG_STAGE_PRE_SSA) {
2502 NVC0LoweringPass pass(prog);
2503 return pass.run(prog, false, true);
2504 } else
2505 if (stage == CG_STAGE_POST_RA) {
2506 NVC0LegalizePostRA pass(prog);
2507 return pass.run(prog, false, true);
2508 } else
2509 if (stage == CG_STAGE_SSA) {
2510 NVC0LegalizeSSA pass;
2511 return pass.run(prog, false, true);
2512 }
2513 return false;
2514 }
2515
2516 } // namespace nv50_ir