nvc0/ir: be careful about propagating very large offsets into const load
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48 Value *def[2];
49
50 bld.setPosition(i, false);
51 def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52 def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53 switch (i->dType) {
54 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56 default:
57 return;
58 }
59 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60 bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
64 call->fixed = 1;
65 call->absolute = call->builtin = 1;
66 call->target.builtin = builtin;
67 delete_Instruction(prog, i);
68 }
69
70 void
71 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72 {
73 assert(i->dType == TYPE_F64);
74 // There are instructions that will compute the high 32 bits of the 64-bit
75 // float. We will just stick 0 in the bottom 32 bits.
76
77 bld.setPosition(i, false);
78
79 // 1. Take the source and it up.
80 Value *src[2], *dst[2], *def = i->getDef(0);
81 bld.mkSplit(src, 4, i->getSrc(0));
82
83 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84 dst[0] = bld.loadImm(NULL, 0);
85 dst[1] = bld.getSSA();
86
87 // 3. The new version of the instruction takes the high 32 bits of the
88 // source and outputs the high 32 bits of the destination.
89 i->setSrc(0, src[1]);
90 i->setDef(0, dst[1]);
91 i->setType(TYPE_F32);
92 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
94 // 4. Recombine the two dst pieces back into the original destination.
95 bld.setPosition(i, true);
96 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97 }
98
99 void
100 NVC0LegalizeSSA::handleFTZ(Instruction *i)
101 {
102 // Only want to flush float inputs
103 assert(i->sType == TYPE_F32);
104
105 // If we're already flushing denorms (and NaN's) to zero, no need for this.
106 if (i->dnz)
107 return;
108
109 // Only certain classes of operations can flush
110 OpClass cls = prog->getTarget()->getOpClass(i->op);
111 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112 cls != OPCLASS_CONVERT)
113 return;
114
115 i->ftz = true;
116 }
117
118 bool
119 NVC0LegalizeSSA::visit(Function *fn)
120 {
121 bld.setProgram(fn->getProgram());
122 return true;
123 }
124
125 bool
126 NVC0LegalizeSSA::visit(BasicBlock *bb)
127 {
128 Instruction *next;
129 for (Instruction *i = bb->getEntry(); i; i = next) {
130 next = i->next;
131 if (i->sType == TYPE_F32) {
132 if (prog->getType() != Program::TYPE_COMPUTE)
133 handleFTZ(i);
134 continue;
135 }
136 switch (i->op) {
137 case OP_DIV:
138 case OP_MOD:
139 handleDIV(i);
140 break;
141 case OP_RCP:
142 case OP_RSQ:
143 if (i->dType == TYPE_F64)
144 handleRCPRSQ(i);
145 break;
146 default:
147 break;
148 }
149 }
150 return true;
151 }
152
153 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154 : rZero(NULL),
155 carry(NULL),
156 needTexBar(prog->getTarget()->getChipset() >= 0xe0)
157 {
158 }
159
160 bool
161 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
162 const Instruction *early) const
163 {
164 if (early->bb == later->bb)
165 return early->serial < later->serial;
166 return later->bb->dominatedBy(early->bb);
167 }
168
169 void
170 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
171 Instruction *usei, const Instruction *texi)
172 {
173 bool add = true;
174 for (std::list<TexUse>::iterator it = uses.begin();
175 it != uses.end();) {
176 if (insnDominatedBy(usei, it->insn)) {
177 add = false;
178 break;
179 }
180 if (insnDominatedBy(it->insn, usei))
181 it = uses.erase(it);
182 else
183 ++it;
184 }
185 if (add)
186 uses.push_back(TexUse(usei, texi));
187 }
188
189 // While it might be tempting to use the an algorithm that just looks at tex
190 // uses, not all texture results are guaranteed to be used on all paths. In
191 // the case where along some control flow path a texture result is never used,
192 // we might reuse that register for something else, creating a
193 // write-after-write hazard. So we have to manually look through all
194 // instructions looking for ones that reference the registers in question.
195 void
196 NVC0LegalizePostRA::findFirstUses(
197 Instruction *texi, std::list<TexUse> &uses)
198 {
199 int minGPR = texi->def(0).rep()->reg.data.id;
200 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
201
202 unordered_set<const BasicBlock *> visited;
203 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
204 }
205
206 void
207 NVC0LegalizePostRA::findFirstUsesBB(
208 int minGPR, int maxGPR, Instruction *start,
209 const Instruction *texi, std::list<TexUse> &uses,
210 unordered_set<const BasicBlock *> &visited)
211 {
212 const BasicBlock *bb = start->bb;
213
214 // We don't process the whole bb the first time around. This is correct,
215 // however we might be in a loop and hit this BB again, and need to process
216 // the full thing. So only mark a bb as visited if we processed it from the
217 // beginning.
218 if (start == bb->getEntry()) {
219 if (visited.find(bb) != visited.end())
220 return;
221 visited.insert(bb);
222 }
223
224 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
225 if (insn->isNop())
226 continue;
227
228 for (int d = 0; insn->defExists(d); ++d) {
229 if (insn->def(d).getFile() != FILE_GPR ||
230 insn->def(d).rep()->reg.data.id < minGPR ||
231 insn->def(d).rep()->reg.data.id > maxGPR)
232 continue;
233 addTexUse(uses, insn, texi);
234 return;
235 }
236
237 for (int s = 0; insn->srcExists(s); ++s) {
238 if (insn->src(s).getFile() != FILE_GPR ||
239 insn->src(s).rep()->reg.data.id < minGPR ||
240 insn->src(s).rep()->reg.data.id > maxGPR)
241 continue;
242 addTexUse(uses, insn, texi);
243 return;
244 }
245 }
246
247 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
248 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
249 texi, uses, visited);
250 }
251 }
252
253 // Texture barriers:
254 // This pass is a bit long and ugly and can probably be optimized.
255 //
256 // 1. obtain a list of TEXes and their outputs' first use(s)
257 // 2. calculate the barrier level of each first use (minimal number of TEXes,
258 // over all paths, between the TEX and the use in question)
259 // 3. for each barrier, if all paths from the source TEX to that barrier
260 // contain a barrier of lesser level, it can be culled
261 bool
262 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
263 {
264 std::list<TexUse> *uses;
265 std::vector<Instruction *> texes;
266 std::vector<int> bbFirstTex;
267 std::vector<int> bbFirstUse;
268 std::vector<int> texCounts;
269 std::vector<TexUse> useVec;
270 ArrayList insns;
271
272 fn->orderInstructions(insns);
273
274 texCounts.resize(fn->allBBlocks.getSize(), 0);
275 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
276 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
277
278 // tag BB CFG nodes by their id for later
279 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
280 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
281 if (bb)
282 bb->cfg.tag = bb->getId();
283 }
284
285 // gather the first uses for each TEX
286 for (int i = 0; i < insns.getSize(); ++i) {
287 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
288 if (isTextureOp(tex->op)) {
289 texes.push_back(tex);
290 if (!texCounts.at(tex->bb->getId()))
291 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
292 texCounts[tex->bb->getId()]++;
293 }
294 }
295 insns.clear();
296 if (texes.empty())
297 return false;
298 uses = new std::list<TexUse>[texes.size()];
299 if (!uses)
300 return false;
301 for (size_t i = 0; i < texes.size(); ++i) {
302 findFirstUses(texes[i], uses[i]);
303 }
304
305 // determine the barrier level at each use
306 for (size_t i = 0; i < texes.size(); ++i) {
307 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
308 ++u) {
309 BasicBlock *tb = texes[i]->bb;
310 BasicBlock *ub = u->insn->bb;
311 if (tb == ub) {
312 u->level = 0;
313 for (size_t j = i + 1; j < texes.size() &&
314 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
315 ++j)
316 u->level++;
317 } else {
318 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
319 &ub->cfg, texCounts);
320 if (u->level < 0) {
321 WARN("Failed to find path TEX -> TEXBAR\n");
322 u->level = 0;
323 continue;
324 }
325 // this counted all TEXes in the origin block, correct that
326 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
327 // and did not count the TEXes in the destination block, add those
328 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
329 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
330 ++j)
331 u->level++;
332 }
333 assert(u->level >= 0);
334 useVec.push_back(*u);
335 }
336 }
337 delete[] uses;
338
339 // insert the barriers
340 for (size_t i = 0; i < useVec.size(); ++i) {
341 Instruction *prev = useVec[i].insn->prev;
342 if (useVec[i].level < 0)
343 continue;
344 if (prev && prev->op == OP_TEXBAR) {
345 if (prev->subOp > useVec[i].level)
346 prev->subOp = useVec[i].level;
347 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
348 } else {
349 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
350 bar->fixed = 1;
351 bar->subOp = useVec[i].level;
352 // make use explicit to ease latency calculation
353 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
354 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
355 }
356 }
357
358 if (fn->getProgram()->optLevel < 3)
359 return true;
360
361 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
362
363 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
364 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
365 limitS.resize(fn->allBBlocks.getSize());
366
367 // cull unneeded barriers (should do that earlier, but for simplicity)
368 IteratorRef bi = fn->cfg.iteratorCFG();
369 // first calculate min/max outstanding TEXes for each BB
370 for (bi->reset(); !bi->end(); bi->next()) {
371 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
372 BasicBlock *bb = BasicBlock::get(n);
373 int min = 0;
374 int max = std::numeric_limits<int>::max();
375 for (Instruction *i = bb->getFirst(); i; i = i->next) {
376 if (isTextureOp(i->op)) {
377 min++;
378 if (max < std::numeric_limits<int>::max())
379 max++;
380 } else
381 if (i->op == OP_TEXBAR) {
382 min = MIN2(min, i->subOp);
383 max = MIN2(max, i->subOp);
384 }
385 }
386 // limits when looking at an isolated block
387 limitS[bb->getId()].min = min;
388 limitS[bb->getId()].max = max;
389 }
390 // propagate the min/max values
391 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
392 for (bi->reset(); !bi->end(); bi->next()) {
393 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
394 BasicBlock *bb = BasicBlock::get(n);
395 const int bbId = bb->getId();
396 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
397 BasicBlock *in = BasicBlock::get(ei.getNode());
398 const int inId = in->getId();
399 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
400 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
401 }
402 // I just hope this is correct ...
403 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
404 // no barrier
405 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
406 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
407 } else {
408 // block contained a barrier
409 limitB[bbId].min = MIN2(limitS[bbId].max,
410 limitT[bbId].min + limitS[bbId].min);
411 limitB[bbId].max = MIN2(limitS[bbId].max,
412 limitT[bbId].max + limitS[bbId].min);
413 }
414 }
415 }
416 // finally delete unnecessary barriers
417 for (bi->reset(); !bi->end(); bi->next()) {
418 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
419 BasicBlock *bb = BasicBlock::get(n);
420 Instruction *prev = NULL;
421 Instruction *next;
422 int max = limitT[bb->getId()].max;
423 for (Instruction *i = bb->getFirst(); i; i = next) {
424 next = i->next;
425 if (i->op == OP_TEXBAR) {
426 if (i->subOp >= max) {
427 delete_Instruction(prog, i);
428 i = NULL;
429 } else {
430 max = i->subOp;
431 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
432 delete_Instruction(prog, prev);
433 prev = NULL;
434 }
435 }
436 } else
437 if (isTextureOp(i->op)) {
438 max++;
439 }
440 if (i && !i->isNop())
441 prev = i;
442 }
443 }
444 return true;
445 }
446
447 bool
448 NVC0LegalizePostRA::visit(Function *fn)
449 {
450 if (needTexBar)
451 insertTextureBarriers(fn);
452
453 rZero = new_LValue(fn, FILE_GPR);
454 carry = new_LValue(fn, FILE_FLAGS);
455
456 rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
457 carry->reg.data.id = 0;
458
459 return true;
460 }
461
462 void
463 NVC0LegalizePostRA::replaceZero(Instruction *i)
464 {
465 for (int s = 0; i->srcExists(s); ++s) {
466 if (s == 2 && i->op == OP_SUCLAMP)
467 continue;
468 ImmediateValue *imm = i->getSrc(s)->asImm();
469 if (imm && imm->reg.data.u64 == 0)
470 i->setSrc(s, rZero);
471 }
472 }
473
474 // replace CONT with BRA for single unconditional continue
475 bool
476 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
477 {
478 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
479 return false;
480 Graph::EdgeIterator ei = bb->cfg.incident();
481 if (ei.getType() != Graph::Edge::BACK)
482 ei.next();
483 if (ei.getType() != Graph::Edge::BACK)
484 return false;
485 BasicBlock *contBB = BasicBlock::get(ei.getNode());
486
487 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
488 contBB->getExit()->getPredicate())
489 return false;
490 contBB->getExit()->op = OP_BRA;
491 bb->remove(bb->getEntry()); // delete PRECONT
492
493 ei.next();
494 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
495 return true;
496 }
497
498 // replace branches to join blocks with join ops
499 void
500 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
501 {
502 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
503 return;
504 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
505 BasicBlock *in = BasicBlock::get(ei.getNode());
506 Instruction *exit = in->getExit();
507 if (!exit) {
508 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
509 // there should always be a terminator instruction
510 WARN("inserted missing terminator in BB:%i\n", in->getId());
511 } else
512 if (exit->op == OP_BRA) {
513 exit->op = OP_JOIN;
514 exit->asFlow()->limit = 1; // must-not-propagate marker
515 }
516 }
517 bb->remove(bb->getEntry());
518 }
519
520 bool
521 NVC0LegalizePostRA::visit(BasicBlock *bb)
522 {
523 Instruction *i, *next;
524
525 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
526 for (i = bb->getFirst(); i; i = next) {
527 next = i->next;
528 if (i->op == OP_EMIT || i->op == OP_RESTART) {
529 if (!i->getDef(0)->refCount())
530 i->setDef(0, NULL);
531 if (i->src(0).getFile() == FILE_IMMEDIATE)
532 i->setSrc(0, rZero); // initial value must be 0
533 replaceZero(i);
534 } else
535 if (i->isNop()) {
536 bb->remove(i);
537 } else
538 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
539 prog->getType() != Program::TYPE_COMPUTE) {
540 // It seems like barriers are never required for tessellation since
541 // the warp size is 32, and there are always at most 32 tcs threads.
542 bb->remove(i);
543 } else
544 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
545 int offset = i->src(0).get()->reg.data.offset;
546 if (abs(offset) > 0x10000)
547 i->src(0).get()->reg.fileIndex += offset >> 16;
548 i->src(0).get()->reg.data.offset = (int)(short)offset;
549 } else {
550 // TODO: Move this to before register allocation for operations that
551 // need the $c register !
552 if (typeSizeof(i->dType) == 8) {
553 Instruction *hi;
554 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
555 if (hi)
556 next = hi;
557 }
558
559 if (i->op != OP_MOV && i->op != OP_PFETCH)
560 replaceZero(i);
561 }
562 }
563 if (!bb->getEntry())
564 return true;
565
566 if (!tryReplaceContWithBra(bb))
567 propagateJoin(bb);
568
569 return true;
570 }
571
572 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
573 {
574 bld.setProgram(prog);
575 gMemBase = NULL;
576 }
577
578 bool
579 NVC0LoweringPass::visit(Function *fn)
580 {
581 if (prog->getType() == Program::TYPE_GEOMETRY) {
582 assert(!strncmp(fn->getName(), "MAIN", 4));
583 // TODO: when we generate actual functions pass this value along somehow
584 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
585 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
586 if (fn->cfgExit) {
587 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
588 bld.mkMovToReg(0, gpEmitAddress);
589 }
590 }
591 return true;
592 }
593
594 bool
595 NVC0LoweringPass::visit(BasicBlock *bb)
596 {
597 return true;
598 }
599
600 inline Value *
601 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
602 {
603 uint8_t b = prog->driver->io.resInfoCBSlot;
604 uint32_t off = prog->driver->io.texBindBase + slot * 4;
605 return bld.
606 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
607 }
608
609 // move array source to first slot, convert to u16, add indirections
610 bool
611 NVC0LoweringPass::handleTEX(TexInstruction *i)
612 {
613 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
614 const int arg = i->tex.target.getArgCount();
615 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
616 const int chipset = prog->getTarget()->getChipset();
617
618 // Arguments to the TEX instruction are a little insane. Even though the
619 // encoding is identical between SM20 and SM30, the arguments mean
620 // different things between Fermi and Kepler+. A lot of arguments are
621 // optional based on flags passed to the instruction. This summarizes the
622 // order of things.
623 //
624 // Fermi:
625 // array/indirect
626 // coords
627 // sample
628 // lod bias
629 // depth compare
630 // offsets:
631 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
632 // - other: 4 bits each, single reg
633 //
634 // Kepler+:
635 // indirect handle
636 // array (+ offsets for txd in upper 16 bits)
637 // coords
638 // sample
639 // lod bias
640 // depth compare
641 // offsets (same as fermi, except txd which takes it with array)
642 //
643 // Maxwell (tex):
644 // array
645 // coords
646 // indirect handle
647 // sample
648 // lod bias
649 // depth compare
650 // offsets
651 //
652 // Maxwell (txd):
653 // indirect handle
654 // coords
655 // array + offsets
656 // derivatives
657
658 if (chipset >= NVISA_GK104_CHIPSET) {
659 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
660 // XXX this ignores tsc, and assumes a 1:1 mapping
661 assert(i->tex.rIndirectSrc >= 0);
662 Value *hnd = loadTexHandle(
663 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
664 i->getIndirectR(), bld.mkImm(2)),
665 i->tex.r);
666 i->tex.r = 0xff;
667 i->tex.s = 0x1f;
668 i->setIndirectR(hnd);
669 i->setIndirectS(NULL);
670 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
671 i->tex.r += prog->driver->io.texBindBase / 4;
672 i->tex.s = 0; // only a single cX[] value possible here
673 } else {
674 Value *hnd = bld.getScratch();
675 Value *rHnd = loadTexHandle(NULL, i->tex.r);
676 Value *sHnd = loadTexHandle(NULL, i->tex.s);
677
678 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
679
680 i->tex.r = 0; // not used for indirect tex
681 i->tex.s = 0;
682 i->setIndirectR(hnd);
683 }
684 if (i->tex.target.isArray()) {
685 LValue *layer = new_LValue(func, FILE_GPR);
686 Value *src = i->getSrc(lyr);
687 const int sat = (i->op == OP_TXF) ? 1 : 0;
688 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
689 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
690 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
691 for (int s = dim; s >= 1; --s)
692 i->setSrc(s, i->getSrc(s - 1));
693 i->setSrc(0, layer);
694 } else {
695 i->setSrc(dim, layer);
696 }
697 }
698 // Move the indirect reference to the first place
699 if (i->tex.rIndirectSrc >= 0 && (
700 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
701 Value *hnd = i->getIndirectR();
702
703 i->setIndirectR(NULL);
704 i->moveSources(0, 1);
705 i->setSrc(0, hnd);
706 i->tex.rIndirectSrc = 0;
707 i->tex.sIndirectSrc = -1;
708 }
709 } else
710 // (nvc0) generate and move the tsc/tic/array source to the front
711 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
712 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
713
714 Value *ticRel = i->getIndirectR();
715 Value *tscRel = i->getIndirectS();
716
717 if (ticRel) {
718 i->setSrc(i->tex.rIndirectSrc, NULL);
719 if (i->tex.r)
720 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
721 ticRel, bld.mkImm(i->tex.r));
722 }
723 if (tscRel) {
724 i->setSrc(i->tex.sIndirectSrc, NULL);
725 if (i->tex.s)
726 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
727 tscRel, bld.mkImm(i->tex.s));
728 }
729
730 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
731 for (int s = dim; s >= 1; --s)
732 i->setSrc(s, i->getSrc(s - 1));
733 i->setSrc(0, arrayIndex);
734
735 if (arrayIndex) {
736 int sat = (i->op == OP_TXF) ? 1 : 0;
737 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
738 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
739 } else {
740 bld.loadImm(src, 0);
741 }
742
743 if (ticRel)
744 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
745 if (tscRel)
746 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
747
748 i->setSrc(0, src);
749 }
750
751 // For nvc0, the sample id has to be in the second operand, as the offset
752 // does. Right now we don't know how to pass both in, and this case can't
753 // happen with OpenGL. On nve0, the sample id is part of the texture
754 // coordinate argument.
755 assert(chipset >= NVISA_GK104_CHIPSET ||
756 !i->tex.useOffsets || !i->tex.target.isMS());
757
758 // offset is between lod and dc
759 if (i->tex.useOffsets) {
760 int n, c;
761 int s = i->srcCount(0xff, true);
762 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
763 if (i->tex.target.isShadow())
764 s--;
765 if (i->srcExists(s)) // move potential predicate out of the way
766 i->moveSources(s, 1);
767 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
768 i->moveSources(s + 1, 1);
769 }
770 if (i->op == OP_TXG) {
771 // Either there is 1 offset, which goes into the 2 low bytes of the
772 // first source, or there are 4 offsets, which go into 2 sources (8
773 // values, 1 byte each).
774 Value *offs[2] = {NULL, NULL};
775 for (n = 0; n < i->tex.useOffsets; n++) {
776 for (c = 0; c < 2; ++c) {
777 if ((n % 2) == 0 && c == 0)
778 offs[n / 2] = i->offset[n][c].get();
779 else
780 bld.mkOp3(OP_INSBF, TYPE_U32,
781 offs[n / 2],
782 i->offset[n][c].get(),
783 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
784 offs[n / 2]);
785 }
786 }
787 i->setSrc(s, offs[0]);
788 if (offs[1])
789 i->setSrc(s + 1, offs[1]);
790 } else {
791 unsigned imm = 0;
792 assert(i->tex.useOffsets == 1);
793 for (c = 0; c < 3; ++c) {
794 ImmediateValue val;
795 if (!i->offset[0][c].getImmediate(val))
796 assert(!"non-immediate offset passed to non-TXG");
797 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
798 }
799 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
800 // The offset goes into the upper 16 bits of the array index. So
801 // create it if it's not already there, and INSBF it if it already
802 // is.
803 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
804 if (chipset >= NVISA_GM107_CHIPSET)
805 s += dim;
806 if (i->tex.target.isArray()) {
807 bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
808 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
809 i->getSrc(s));
810 } else {
811 i->moveSources(s, 1);
812 i->setSrc(s, bld.loadImm(NULL, imm << 16));
813 }
814 } else {
815 i->setSrc(s, bld.loadImm(NULL, imm));
816 }
817 }
818 }
819
820 if (chipset >= NVISA_GK104_CHIPSET) {
821 //
822 // If TEX requires more than 4 sources, the 2nd register tuple must be
823 // aligned to 4, even if it consists of just a single 4-byte register.
824 //
825 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
826 //
827 int s = i->srcCount(0xff, true);
828 if (s > 4 && s < 7) {
829 if (i->srcExists(s)) // move potential predicate out of the way
830 i->moveSources(s, 7 - s);
831 while (s < 7)
832 i->setSrc(s++, bld.loadImm(NULL, 0));
833 }
834 }
835
836 return true;
837 }
838
839 bool
840 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
841 {
842 static const uint8_t qOps[4][2] =
843 {
844 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
845 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
846 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
847 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
848 };
849 Value *def[4][4];
850 Value *crd[3];
851 Instruction *tex;
852 Value *zero = bld.loadImm(bld.getSSA(), 0);
853 int l, c;
854 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
855 const int array = i->tex.target.isArray();
856
857 i->op = OP_TEX; // no need to clone dPdx/dPdy later
858
859 for (c = 0; c < dim; ++c)
860 crd[c] = bld.getScratch();
861
862 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
863 for (l = 0; l < 4; ++l) {
864 // mov coordinates from lane l to all lanes
865 for (c = 0; c < dim; ++c)
866 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
867 // add dPdx from lane l to lanes dx
868 for (c = 0; c < dim; ++c)
869 bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
870 // add dPdy from lane l to lanes dy
871 for (c = 0; c < dim; ++c)
872 bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
873 // texture
874 bld.insert(tex = cloneForward(func, i));
875 for (c = 0; c < dim; ++c)
876 tex->setSrc(c + array, crd[c]);
877 // save results
878 for (c = 0; i->defExists(c); ++c) {
879 Instruction *mov;
880 def[c][l] = bld.getSSA();
881 mov = bld.mkMov(def[c][l], tex->getDef(c));
882 mov->fixed = 1;
883 mov->lanes = 1 << l;
884 }
885 }
886 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
887
888 for (c = 0; i->defExists(c); ++c) {
889 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
890 for (l = 0; l < 4; ++l)
891 u->setSrc(l, def[c][l]);
892 }
893
894 i->bb->remove(i);
895 return true;
896 }
897
898 bool
899 NVC0LoweringPass::handleTXD(TexInstruction *txd)
900 {
901 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
902 unsigned arg = txd->tex.target.getArgCount();
903 unsigned expected_args = arg;
904 const int chipset = prog->getTarget()->getChipset();
905
906 if (chipset >= NVISA_GK104_CHIPSET) {
907 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
908 expected_args++;
909 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
910 expected_args++;
911 } else {
912 if (txd->tex.useOffsets)
913 expected_args++;
914 if (!txd->tex.target.isArray() && (
915 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
916 expected_args++;
917 }
918
919 if (expected_args > 4 ||
920 dim > 2 ||
921 txd->tex.target.isShadow())
922 txd->op = OP_TEX;
923
924 handleTEX(txd);
925 while (txd->srcExists(arg))
926 ++arg;
927
928 txd->tex.derivAll = true;
929 if (txd->op == OP_TEX)
930 return handleManualTXD(txd);
931
932 assert(arg == expected_args);
933 for (int c = 0; c < dim; ++c) {
934 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
935 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
936 txd->dPdx[c].set(NULL);
937 txd->dPdy[c].set(NULL);
938 }
939 return true;
940 }
941
942 bool
943 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
944 {
945 const int chipset = prog->getTarget()->getChipset();
946 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
947 txq->tex.r += prog->driver->io.texBindBase / 4;
948
949 if (txq->tex.rIndirectSrc < 0)
950 return true;
951
952 Value *ticRel = txq->getIndirectR();
953
954 txq->setIndirectS(NULL);
955 txq->tex.sIndirectSrc = -1;
956
957 assert(ticRel);
958
959 if (chipset < NVISA_GK104_CHIPSET) {
960 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
961
962 txq->setSrc(txq->tex.rIndirectSrc, NULL);
963 if (txq->tex.r)
964 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
965 ticRel, bld.mkImm(txq->tex.r));
966
967 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
968
969 txq->moveSources(0, 1);
970 txq->setSrc(0, src);
971 } else {
972 Value *hnd = loadTexHandle(
973 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
974 txq->getIndirectR(), bld.mkImm(2)),
975 txq->tex.r);
976 txq->tex.r = 0xff;
977 txq->tex.s = 0x1f;
978
979 txq->setIndirectR(NULL);
980 txq->moveSources(0, 1);
981 txq->setSrc(0, hnd);
982 txq->tex.rIndirectSrc = 0;
983 }
984
985 return true;
986 }
987
988 bool
989 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
990 {
991 /* The outputs are inverted compared to what the TGSI instruction
992 * expects. Take that into account in the mask.
993 */
994 assert((i->tex.mask & ~3) == 0);
995 if (i->tex.mask == 1)
996 i->tex.mask = 2;
997 else if (i->tex.mask == 2)
998 i->tex.mask = 1;
999 handleTEX(i);
1000 bld.setPosition(i, true);
1001
1002 /* The returned values are not quite what we want:
1003 * (a) convert from s16/u16 to f32
1004 * (b) multiply by 1/256
1005 */
1006 for (int def = 0; def < 2; ++def) {
1007 if (!i->defExists(def))
1008 continue;
1009 enum DataType type = TYPE_S16;
1010 if (i->tex.mask == 2 || def > 0)
1011 type = TYPE_U16;
1012 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1013 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1014 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1015 }
1016 if (i->tex.mask == 3) {
1017 LValue *t = new_LValue(func, FILE_GPR);
1018 bld.mkMov(t, i->getDef(0));
1019 bld.mkMov(i->getDef(0), i->getDef(1));
1020 bld.mkMov(i->getDef(1), t);
1021 }
1022 return true;
1023 }
1024
1025
1026 bool
1027 NVC0LoweringPass::handleATOM(Instruction *atom)
1028 {
1029 SVSemantic sv;
1030
1031 switch (atom->src(0).getFile()) {
1032 case FILE_MEMORY_LOCAL:
1033 sv = SV_LBASE;
1034 break;
1035 case FILE_MEMORY_SHARED:
1036 sv = SV_SBASE;
1037 break;
1038 default:
1039 assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL);
1040 return true;
1041 }
1042 Value *base =
1043 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1044 Value *ptr = atom->getIndirect(0, 0);
1045
1046 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1047 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1048 if (ptr)
1049 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1050 atom->setIndirect(0, 0, base);
1051
1052 return true;
1053 }
1054
1055 bool
1056 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1057 {
1058 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1059 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1060 return false;
1061 bld.setPosition(cas, true);
1062
1063 if (needCctl) {
1064 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1065 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1066 cctl->fixed = 1;
1067 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1068 if (cas->isPredicated())
1069 cctl->setPredicate(cas->cc, cas->getPredicate());
1070 }
1071
1072 if (cas->defExists(0) && cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1073 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1074 // should be set to the high part of the double reg or bad things will
1075 // happen elsewhere in the universe.
1076 // Also, it sometimes returns the new value instead of the old one
1077 // under mysterious circumstances.
1078 Value *dreg = bld.getSSA(8);
1079 bld.setPosition(cas, false);
1080 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1081 cas->setSrc(1, dreg);
1082 }
1083
1084 return true;
1085 }
1086
1087 inline Value *
1088 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off)
1089 {
1090 uint8_t b = prog->driver->io.resInfoCBSlot;
1091 off += prog->driver->io.suInfoBase;
1092 return bld.
1093 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1094 }
1095
1096 inline Value *
1097 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1098 {
1099 uint8_t b = prog->driver->io.msInfoCBSlot;
1100 off += prog->driver->io.msInfoBase;
1101 return bld.
1102 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1103 }
1104
1105 /* On nvc0, surface info is obtained via the surface binding points passed
1106 * to the SULD/SUST instructions.
1107 * On nve4, surface info is stored in c[] and is used by various special
1108 * instructions, e.g. for clamping coordiantes or generating an address.
1109 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1110 */
1111 #define NVE4_SU_INFO_ADDR 0x00
1112 #define NVE4_SU_INFO_FMT 0x04
1113 #define NVE4_SU_INFO_DIM_X 0x08
1114 #define NVE4_SU_INFO_PITCH 0x0c
1115 #define NVE4_SU_INFO_DIM_Y 0x10
1116 #define NVE4_SU_INFO_ARRAY 0x14
1117 #define NVE4_SU_INFO_DIM_Z 0x18
1118 #define NVE4_SU_INFO_UNK1C 0x1c
1119 #define NVE4_SU_INFO_WIDTH 0x20
1120 #define NVE4_SU_INFO_HEIGHT 0x24
1121 #define NVE4_SU_INFO_DEPTH 0x28
1122 #define NVE4_SU_INFO_TARGET 0x2c
1123 #define NVE4_SU_INFO_CALL 0x30
1124 #define NVE4_SU_INFO_RAW_X 0x34
1125 #define NVE4_SU_INFO_MS_X 0x38
1126 #define NVE4_SU_INFO_MS_Y 0x3c
1127
1128 #define NVE4_SU_INFO__STRIDE 0x40
1129
1130 #define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8)
1131 #define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1132 #define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4)
1133
1134 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1135 {
1136 switch (su->tex.target.getEnum()) {
1137 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1138 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1139 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1140 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1141 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1142 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1143 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1144 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1145 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1146 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1147 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1148 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1149 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1150 default:
1151 assert(0);
1152 return 0;
1153 }
1154 }
1155
1156 void
1157 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1158 {
1159 const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
1160 const int arg = tex->tex.target.getArgCount();
1161
1162 if (tex->tex.target == TEX_TARGET_2D_MS)
1163 tex->tex.target = TEX_TARGET_2D;
1164 else
1165 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1166 tex->tex.target = TEX_TARGET_2D_ARRAY;
1167 else
1168 return;
1169
1170 Value *x = tex->getSrc(0);
1171 Value *y = tex->getSrc(1);
1172 Value *s = tex->getSrc(arg - 1);
1173
1174 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1175
1176 Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0));
1177 Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1));
1178
1179 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1180 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1181
1182 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1183 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1184
1185 Value *dx = loadMsInfo32(ts, 0x0);
1186 Value *dy = loadMsInfo32(ts, 0x4);
1187
1188 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1189 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1190
1191 tex->setSrc(0, tx);
1192 tex->setSrc(1, ty);
1193 tex->moveSources(arg, -1);
1194 }
1195
1196 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1197 // They're computed from the coordinates using the surface info in c[] space.
1198 void
1199 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1200 {
1201 Instruction *insn;
1202 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1203 const bool raw =
1204 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1205 const int idx = su->tex.r;
1206 const int dim = su->tex.target.getDim();
1207 const int arg = dim + (su->tex.target.isArray() ? 1 : 0);
1208 const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1209 int c;
1210 Value *zero = bld.mkImm(0);
1211 Value *p1 = NULL;
1212 Value *v;
1213 Value *src[3];
1214 Value *bf, *eau, *off;
1215 Value *addr, *pred;
1216
1217 off = bld.getScratch(4);
1218 bf = bld.getScratch(4);
1219 addr = bld.getSSA(8);
1220 pred = bld.getScratch(1, FILE_PREDICATE);
1221
1222 bld.setPosition(su, false);
1223
1224 adjustCoordinatesMS(su);
1225
1226 // calculate clamped coordinates
1227 for (c = 0; c < arg; ++c) {
1228 src[c] = bld.getScratch();
1229 if (c == 0 && raw)
1230 v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X);
1231 else
1232 v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c));
1233 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1234 ->subOp = getSuClampSubOp(su, c);
1235 }
1236 for (; c < 3; ++c)
1237 src[c] = zero;
1238
1239 // set predicate output
1240 if (su->tex.target == TEX_TARGET_BUFFER) {
1241 src[0]->getInsn()->setFlagsDef(1, pred);
1242 } else
1243 if (su->tex.target.isArray()) {
1244 p1 = bld.getSSA(1, FILE_PREDICATE);
1245 src[dim]->getInsn()->setFlagsDef(1, p1);
1246 }
1247
1248 // calculate pixel offset
1249 if (dim == 1) {
1250 if (su->tex.target != TEX_TARGET_BUFFER)
1251 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1252 } else
1253 if (dim == 3) {
1254 v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1255 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1256 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1257
1258 v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1259 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1260 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1261 } else {
1262 assert(dim == 2);
1263 v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1264 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1265 ->subOp = su->tex.target.isArray() ?
1266 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1267 }
1268
1269 // calculate effective address part 1
1270 if (su->tex.target == TEX_TARGET_BUFFER) {
1271 if (raw) {
1272 bf = src[0];
1273 } else {
1274 v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1275 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1276 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1277 }
1278 } else {
1279 Value *y = src[1];
1280 Value *z = src[2];
1281 uint16_t subOp = 0;
1282
1283 switch (dim) {
1284 case 1:
1285 y = zero;
1286 z = zero;
1287 break;
1288 case 2:
1289 z = off;
1290 if (!su->tex.target.isArray()) {
1291 z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1292 subOp = NV50_IR_SUBOP_SUBFM_3D;
1293 }
1294 break;
1295 default:
1296 subOp = NV50_IR_SUBOP_SUBFM_3D;
1297 assert(dim == 3);
1298 break;
1299 }
1300 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1301 insn->subOp = subOp;
1302 insn->setFlagsDef(1, pred);
1303 }
1304
1305 // part 2
1306 v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR);
1307
1308 if (su->tex.target == TEX_TARGET_BUFFER) {
1309 eau = v;
1310 } else {
1311 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1312 }
1313 // add array layer offset
1314 if (su->tex.target.isArray()) {
1315 v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY);
1316 if (dim == 1)
1317 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1318 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1319 else
1320 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1321 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1322 // combine predicates
1323 assert(p1);
1324 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1325 }
1326
1327 if (atom) {
1328 Value *lo = bf;
1329 if (su->tex.target == TEX_TARGET_BUFFER) {
1330 lo = zero;
1331 bld.mkMov(off, bf);
1332 }
1333 // bf == g[] address & 0xff
1334 // eau == g[] address >> 8
1335 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1336 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1337 } else
1338 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1339 // Convert from u32 to u8 address format, which is what the library code
1340 // doing SULDP currently uses.
1341 // XXX: can SUEAU do this ?
1342 // XXX: does it matter that we don't mask high bytes in bf ?
1343 // Grrr.
1344 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1345 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1346 }
1347
1348 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1349
1350 if (atom && su->tex.target == TEX_TARGET_BUFFER)
1351 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1352
1353 // let's just set it 0 for raw access and hope it works
1354 v = raw ?
1355 bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1356
1357 // get rid of old coordinate sources, make space for fmt info and predicate
1358 su->moveSources(arg, 3 - arg);
1359 // set 64 bit address and 32-bit format sources
1360 su->setSrc(0, addr);
1361 su->setSrc(1, v);
1362 su->setSrc(2, pred);
1363 }
1364
1365 void
1366 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1367 {
1368 processSurfaceCoordsNVE4(su);
1369
1370 // Who do we hate more ? The person who decided that nvc0's SULD doesn't
1371 // have to support conversion or the person who decided that, in OpenCL,
1372 // you don't have to specify the format here like you do in OpenGL ?
1373
1374 if (su->op == OP_SULDP) {
1375 // We don't patch shaders. Ever.
1376 // You get an indirect call to our library blob here.
1377 // But at least it's uniform.
1378 FlowInstruction *call;
1379 LValue *p[3];
1380 LValue *r[5];
1381 uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL;
1382
1383 for (int i = 0; i < 4; ++i)
1384 (r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i;
1385 for (int i = 0; i < 3; ++i)
1386 (p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i;
1387 (r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4;
1388
1389 bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8);
1390 bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8);
1391 bld.mkMov(p[0], su->getSrc(2), TYPE_U8);
1392 bld.mkMov(r[4], su->getSrc(0), TYPE_U64);
1393 bld.mkMov(r[2], su->getSrc(1), TYPE_U32);
1394
1395 call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate());
1396
1397 call->indirect = 1;
1398 call->absolute = 1;
1399 call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST,
1400 prog->driver->io.resInfoCBSlot, TYPE_U32,
1401 prog->driver->io.suInfoBase + base));
1402 call->setSrc(1, r[2]);
1403 call->setSrc(2, r[4]);
1404 for (int i = 0; i < 3; ++i)
1405 call->setSrc(3 + i, p[i]);
1406 for (int i = 0; i < 4; ++i) {
1407 call->setDef(i, r[i]);
1408 bld.mkMov(su->getDef(i), r[i]);
1409 }
1410 call->setDef(4, p[1]);
1411 delete_Instruction(bld.getProgram(), su);
1412 }
1413
1414 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1415 // FIXME: for out of bounds access, destination value will be undefined !
1416 Value *pred = su->getSrc(2);
1417 CondCode cc = CC_NOT_P;
1418 if (su->getPredicate()) {
1419 pred = bld.getScratch(1, FILE_PREDICATE);
1420 cc = su->cc;
1421 if (cc == CC_NOT_P) {
1422 bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1423 } else {
1424 bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1425 pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
1426 }
1427 }
1428 Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0));
1429 red->subOp = su->subOp;
1430 if (!gMemBase)
1431 gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
1432 red->setSrc(0, gMemBase);
1433 red->setSrc(1, su->getSrc(3));
1434 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1435 red->setSrc(2, su->getSrc(4));
1436 red->setIndirect(0, 0, su->getSrc(0));
1437 red->setPredicate(cc, pred);
1438 delete_Instruction(bld.getProgram(), su);
1439 handleCasExch(red, true);
1440 } else {
1441 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1442 }
1443 }
1444
1445 bool
1446 NVC0LoweringPass::handleWRSV(Instruction *i)
1447 {
1448 Instruction *st;
1449 Symbol *sym;
1450 uint32_t addr;
1451
1452 // must replace, $sreg are not writeable
1453 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
1454 if (addr >= 0x400)
1455 return false;
1456 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
1457
1458 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
1459 i->getSrc(1));
1460 st->perPatch = i->perPatch;
1461
1462 bld.getBB()->remove(i);
1463 return true;
1464 }
1465
1466 void
1467 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
1468 {
1469 Value *laneid = bld.getSSA();
1470 Value *x, *y;
1471
1472 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
1473
1474 if (c == 0) {
1475 x = dst;
1476 y = NULL;
1477 } else
1478 if (c == 1) {
1479 x = NULL;
1480 y = dst;
1481 } else {
1482 assert(c == 2);
1483 x = bld.getSSA();
1484 y = bld.getSSA();
1485 }
1486 if (x)
1487 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
1488 if (y)
1489 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
1490
1491 if (c == 2) {
1492 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
1493 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
1494 }
1495 }
1496
1497 bool
1498 NVC0LoweringPass::handleRDSV(Instruction *i)
1499 {
1500 Symbol *sym = i->getSrc(0)->asSym();
1501 const SVSemantic sv = sym->reg.data.sv.sv;
1502 Value *vtx = NULL;
1503 Instruction *ld;
1504 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
1505
1506 if (addr >= 0x400) {
1507 // mov $sreg
1508 if (sym->reg.data.sv.index == 3) {
1509 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
1510 i->op = OP_MOV;
1511 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
1512 }
1513 if (sv == SV_VERTEX_COUNT) {
1514 bld.setPosition(i, true);
1515 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
1516 }
1517 return true;
1518 }
1519
1520 switch (sv) {
1521 case SV_POSITION:
1522 assert(prog->getType() == Program::TYPE_FRAGMENT);
1523 if (i->srcExists(1)) {
1524 // Pass offset through to the interpolation logic
1525 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
1526 i->getDef(0), addr, NULL);
1527 ld->setSrc(1, i->getSrc(1));
1528 } else {
1529 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
1530 }
1531 break;
1532 case SV_FACE:
1533 {
1534 Value *face = i->getDef(0);
1535 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
1536 if (i->dType == TYPE_F32) {
1537 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
1538 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
1539 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
1540 }
1541 }
1542 break;
1543 case SV_TESS_COORD:
1544 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
1545 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
1546 break;
1547 case SV_NTID:
1548 case SV_NCTAID:
1549 case SV_GRIDID:
1550 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
1551 if (sym->reg.data.sv.index == 3) {
1552 i->op = OP_MOV;
1553 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
1554 return true;
1555 }
1556 addr += prog->driver->prop.cp.gridInfoBase;
1557 bld.mkLoad(TYPE_U32, i->getDef(0),
1558 bld.mkSymbol(FILE_MEMORY_CONST, 0, TYPE_U32, addr), NULL);
1559 break;
1560 case SV_SAMPLE_INDEX:
1561 // TODO: Properly pass source as an address in the PIX address space
1562 // (which can be of the form [r0+offset]). But this is currently
1563 // unnecessary.
1564 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1565 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1566 break;
1567 case SV_SAMPLE_POS: {
1568 Value *off = new_LValue(func, FILE_GPR);
1569 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1570 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1571 bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
1572 bld.mkLoad(TYPE_F32,
1573 i->getDef(0),
1574 bld.mkSymbol(
1575 FILE_MEMORY_CONST, prog->driver->io.resInfoCBSlot,
1576 TYPE_U32, prog->driver->io.sampleInfoBase +
1577 4 * sym->reg.data.sv.index),
1578 off);
1579 break;
1580 }
1581 case SV_SAMPLE_MASK:
1582 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1583 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
1584 break;
1585 case SV_BASEVERTEX:
1586 case SV_BASEINSTANCE:
1587 case SV_DRAWID:
1588 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
1589 bld.mkSymbol(FILE_MEMORY_CONST,
1590 prog->driver->io.auxCBSlot,
1591 TYPE_U32,
1592 prog->driver->io.drawInfoBase +
1593 4 * (sv - SV_BASEVERTEX)),
1594 NULL);
1595 break;
1596 default:
1597 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
1598 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
1599 ld = bld.mkFetch(i->getDef(0), i->dType,
1600 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
1601 ld->perPatch = i->perPatch;
1602 break;
1603 }
1604 bld.getBB()->remove(i);
1605 return true;
1606 }
1607
1608 bool
1609 NVC0LoweringPass::handleDIV(Instruction *i)
1610 {
1611 if (!isFloatType(i->dType))
1612 return true;
1613 bld.setPosition(i, false);
1614 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
1615 i->op = OP_MUL;
1616 i->setSrc(1, rcp->getDef(0));
1617 return true;
1618 }
1619
1620 bool
1621 NVC0LoweringPass::handleMOD(Instruction *i)
1622 {
1623 if (!isFloatType(i->dType))
1624 return true;
1625 LValue *value = bld.getScratch(typeSizeof(i->dType));
1626 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
1627 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
1628 bld.mkOp1(OP_TRUNC, i->dType, value, value);
1629 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
1630 i->op = OP_SUB;
1631 i->setSrc(1, value);
1632 return true;
1633 }
1634
1635 bool
1636 NVC0LoweringPass::handleSQRT(Instruction *i)
1637 {
1638 Value *pred = bld.getSSA(1, FILE_PREDICATE);
1639 Value *zero = bld.getSSA();
1640 Instruction *rsq;
1641
1642 bld.mkOp1(OP_MOV, TYPE_U32, zero, bld.mkImm(0));
1643 if (i->dType == TYPE_F64)
1644 zero = bld.mkOp2v(OP_MERGE, TYPE_U64, bld.getSSA(8), zero, zero);
1645 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
1646 bld.mkOp1(OP_MOV, i->dType, i->getDef(0), zero)->setPredicate(CC_P, pred);
1647 rsq = bld.mkOp1(OP_RSQ, i->dType,
1648 bld.getSSA(typeSizeof(i->dType)), i->getSrc(0));
1649 rsq->setPredicate(CC_NOT_P, pred);
1650 i->op = OP_MUL;
1651 i->setSrc(1, rsq->getDef(0));
1652 i->setPredicate(CC_NOT_P, pred);
1653
1654
1655 return true;
1656 }
1657
1658 bool
1659 NVC0LoweringPass::handlePOW(Instruction *i)
1660 {
1661 LValue *val = bld.getScratch();
1662
1663 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
1664 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
1665 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
1666
1667 i->op = OP_EX2;
1668 i->setSrc(0, val);
1669 i->setSrc(1, NULL);
1670
1671 return true;
1672 }
1673
1674 bool
1675 NVC0LoweringPass::handleEXPORT(Instruction *i)
1676 {
1677 if (prog->getType() == Program::TYPE_FRAGMENT) {
1678 int id = i->getSrc(0)->reg.data.offset / 4;
1679
1680 if (i->src(0).isIndirect(0)) // TODO, ugly
1681 return false;
1682 i->op = OP_MOV;
1683 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
1684 i->src(0).set(i->src(1));
1685 i->setSrc(1, NULL);
1686 i->setDef(0, new_LValue(func, FILE_GPR));
1687 i->getDef(0)->reg.data.id = id;
1688
1689 prog->maxGPR = MAX2(prog->maxGPR, id);
1690 } else
1691 if (prog->getType() == Program::TYPE_GEOMETRY) {
1692 i->setIndirect(0, 1, gpEmitAddress);
1693 }
1694 return true;
1695 }
1696
1697 bool
1698 NVC0LoweringPass::handleOUT(Instruction *i)
1699 {
1700 Instruction *prev = i->prev;
1701 ImmediateValue stream, prevStream;
1702
1703 // Only merge if the stream ids match. Also, note that the previous
1704 // instruction would have already been lowered, so we take arg1 from it.
1705 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
1706 i->src(0).getImmediate(stream) &&
1707 prev->src(1).getImmediate(prevStream) &&
1708 stream.reg.data.u32 == prevStream.reg.data.u32) {
1709 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
1710 delete_Instruction(prog, i);
1711 } else {
1712 assert(gpEmitAddress);
1713 i->setDef(0, gpEmitAddress);
1714 i->setSrc(1, i->getSrc(0));
1715 i->setSrc(0, gpEmitAddress);
1716 }
1717 return true;
1718 }
1719
1720 // Generate a binary predicate if an instruction is predicated by
1721 // e.g. an f32 value.
1722 void
1723 NVC0LoweringPass::checkPredicate(Instruction *insn)
1724 {
1725 Value *pred = insn->getPredicate();
1726 Value *pdst;
1727
1728 if (!pred || pred->reg.file == FILE_PREDICATE)
1729 return;
1730 pdst = new_LValue(func, FILE_PREDICATE);
1731
1732 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
1733 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
1734
1735 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
1736
1737 insn->setPredicate(insn->cc, pdst);
1738 }
1739
1740 //
1741 // - add quadop dance for texturing
1742 // - put FP outputs in GPRs
1743 // - convert instruction sequences
1744 //
1745 bool
1746 NVC0LoweringPass::visit(Instruction *i)
1747 {
1748 bool ret = true;
1749 bld.setPosition(i, false);
1750
1751 if (i->cc != CC_ALWAYS)
1752 checkPredicate(i);
1753
1754 switch (i->op) {
1755 case OP_TEX:
1756 case OP_TXB:
1757 case OP_TXL:
1758 case OP_TXF:
1759 case OP_TXG:
1760 return handleTEX(i->asTex());
1761 case OP_TXD:
1762 return handleTXD(i->asTex());
1763 case OP_TXLQ:
1764 return handleTXLQ(i->asTex());
1765 case OP_TXQ:
1766 return handleTXQ(i->asTex());
1767 case OP_EX2:
1768 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
1769 i->setSrc(0, i->getDef(0));
1770 break;
1771 case OP_POW:
1772 return handlePOW(i);
1773 case OP_DIV:
1774 return handleDIV(i);
1775 case OP_MOD:
1776 return handleMOD(i);
1777 case OP_SQRT:
1778 return handleSQRT(i);
1779 case OP_EXPORT:
1780 ret = handleEXPORT(i);
1781 break;
1782 case OP_EMIT:
1783 case OP_RESTART:
1784 return handleOUT(i);
1785 case OP_RDSV:
1786 return handleRDSV(i);
1787 case OP_WRSV:
1788 return handleWRSV(i);
1789 case OP_LOAD:
1790 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
1791 if (prog->getType() == Program::TYPE_COMPUTE) {
1792 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
1793 i->getSrc(0)->reg.fileIndex = 0;
1794 } else
1795 if (prog->getType() == Program::TYPE_GEOMETRY &&
1796 i->src(0).isIndirect(0)) {
1797 // XXX: this assumes vec4 units
1798 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1799 i->getIndirect(0, 0), bld.mkImm(4));
1800 i->setIndirect(0, 0, ptr);
1801 i->op = OP_VFETCH;
1802 } else {
1803 i->op = OP_VFETCH;
1804 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
1805 }
1806 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
1807 if (i->src(0).isIndirect(1)) {
1808 Value *ptr;
1809 if (i->src(0).isIndirect(0))
1810 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
1811 i->getIndirect(0, 1), bld.mkImm(0x1010),
1812 i->getIndirect(0, 0));
1813 else
1814 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1815 i->getIndirect(0, 1), bld.mkImm(16));
1816 i->setIndirect(0, 1, NULL);
1817 i->setIndirect(0, 0, ptr);
1818 i->subOp = NV50_IR_SUBOP_LDC_IS;
1819 }
1820 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
1821 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1822 i->op = OP_VFETCH;
1823 }
1824 break;
1825 case OP_ATOM:
1826 {
1827 const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL;
1828 handleATOM(i);
1829 handleCasExch(i, cctl);
1830 }
1831 break;
1832 case OP_SULDB:
1833 case OP_SULDP:
1834 case OP_SUSTB:
1835 case OP_SUSTP:
1836 case OP_SUREDB:
1837 case OP_SUREDP:
1838 if (targ->getChipset() >= NVISA_GK104_CHIPSET)
1839 handleSurfaceOpNVE4(i->asTex());
1840 break;
1841 default:
1842 break;
1843 }
1844
1845 /* Kepler+ has a special opcode to compute a new base address to be used
1846 * for indirect loads.
1847 */
1848 if (targ->getChipset() >= NVISA_GK104_CHIPSET && !i->perPatch &&
1849 (i->op == OP_VFETCH || i->op == OP_EXPORT) && i->src(0).isIndirect(0)) {
1850 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
1851 cloneShallow(func, i->getSrc(0)));
1852 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
1853 i->src(0).get()->reg.data.offset = 0;
1854 i->setIndirect(0, 0, afetch->getDef(0));
1855 }
1856
1857 return ret;
1858 }
1859
1860 bool
1861 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
1862 {
1863 if (stage == CG_STAGE_PRE_SSA) {
1864 NVC0LoweringPass pass(prog);
1865 return pass.run(prog, false, true);
1866 } else
1867 if (stage == CG_STAGE_POST_RA) {
1868 NVC0LegalizePostRA pass(prog);
1869 return pass.run(prog, false, true);
1870 } else
1871 if (stage == CG_STAGE_SSA) {
1872 NVC0LegalizeSSA pass;
1873 return pass.run(prog, false, true);
1874 }
1875 return false;
1876 }
1877
1878 } // namespace nv50_ir