gm200/ir: add native OP_SQRT support
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48
49 bld.setPosition(i, false);
50
51 // Generate movs to the input regs for the call we want to generate
52 for (int s = 0; i->srcExists(s); ++s) {
53 Instruction *ld = i->getSrc(s)->getInsn();
54 assert(ld->getSrc(0) != NULL);
55 // check if we are moving an immediate, propagate it in that case
56 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
57 !(ld->src(0).getFile() == FILE_IMMEDIATE))
58 bld.mkMovToReg(s, i->getSrc(s));
59 else {
60 bld.mkMovToReg(s, ld->getSrc(0));
61 // Clear the src, to make code elimination possible here before we
62 // delete the instruction i later
63 i->setSrc(s, NULL);
64 if (ld->isDead())
65 delete_Instruction(prog, ld);
66 }
67 }
68
69 switch (i->dType) {
70 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72 default:
73 return;
74 }
75 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76 bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79
80 call->fixed = 1;
81 call->absolute = call->builtin = 1;
82 call->target.builtin = builtin;
83 delete_Instruction(prog, i);
84 }
85
86 void
87 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
88 {
89 assert(i->dType == TYPE_F64);
90 // There are instructions that will compute the high 32 bits of the 64-bit
91 // float. We will just stick 0 in the bottom 32 bits.
92
93 bld.setPosition(i, false);
94
95 // 1. Take the source and it up.
96 Value *src[2], *dst[2], *def = i->getDef(0);
97 bld.mkSplit(src, 4, i->getSrc(0));
98
99 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
100 dst[0] = bld.loadImm(NULL, 0);
101 dst[1] = bld.getSSA();
102
103 // 3. The new version of the instruction takes the high 32 bits of the
104 // source and outputs the high 32 bits of the destination.
105 i->setSrc(0, src[1]);
106 i->setDef(0, dst[1]);
107 i->setType(TYPE_F32);
108 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
109
110 // 4. Recombine the two dst pieces back into the original destination.
111 bld.setPosition(i, true);
112 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
113 }
114
115 void
116 NVC0LegalizeSSA::handleFTZ(Instruction *i)
117 {
118 // Only want to flush float inputs
119 assert(i->sType == TYPE_F32);
120
121 // If we're already flushing denorms (and NaN's) to zero, no need for this.
122 if (i->dnz)
123 return;
124
125 // Only certain classes of operations can flush
126 OpClass cls = prog->getTarget()->getOpClass(i->op);
127 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
128 cls != OPCLASS_CONVERT)
129 return;
130
131 i->ftz = true;
132 }
133
134 void
135 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
136 {
137 if (i->tex.levelZero)
138 return;
139
140 ImmediateValue lod;
141
142 // The LOD argument comes right after the coordinates (before depth bias,
143 // offsets, etc).
144 int arg = i->tex.target.getArgCount();
145
146 // SM30+ stores the indirect handle as a separate arg, which comes before
147 // the LOD.
148 if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
149 i->tex.rIndirectSrc >= 0)
150 arg++;
151 // SM20 stores indirect handle combined with array coordinate
152 if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
153 !i->tex.target.isArray() &&
154 i->tex.rIndirectSrc >= 0)
155 arg++;
156
157 if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
158 return;
159
160 if (i->op == OP_TXL)
161 i->op = OP_TEX;
162 i->tex.levelZero = true;
163 i->moveSources(arg + 1, -1);
164 }
165
166 void
167 NVC0LegalizeSSA::handleShift(Instruction *lo)
168 {
169 Value *shift = lo->getSrc(1);
170 Value *dst64 = lo->getDef(0);
171 Value *src[2], *dst[2];
172 operation op = lo->op;
173
174 bld.setPosition(lo, false);
175
176 bld.mkSplit(src, 4, lo->getSrc(0));
177
178 // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
179 // be completely emulated. For SM35+, we can use the more directed SHF
180 // operations.
181 if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
182 // The strategy here is to handle shifts >= 32 and less than 32 as
183 // separate parts.
184 //
185 // For SHL:
186 // If the shift is <= 32, then
187 // (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
188 // If the shift is > 32, then
189 // (HI,LO) << x = (LO << (x - 32), 0)
190 //
191 // For SHR:
192 // If the shift is <= 32, then
193 // (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
194 // If the shift is > 32, then
195 // (HI,LO) >> x = (0, HI >> (x - 32))
196 //
197 // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
198 // can use to our advantage. Also note the structural similarities
199 // between the right/left cases. The main difference is swapping hi/lo
200 // on input and output.
201
202 Value *x32_minus_shift, *pred, *hi1, *hi2;
203 DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
204 operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
205 if (op == OP_SHR)
206 std::swap(src[0], src[1]);
207 bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
208 ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
209 bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
210 TYPE_U32, shift, bld.mkImm(32));
211 // Compute HI (shift <= 32)
212 bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
213 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
214 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
215 ->setPredicate(CC_P, pred);
216 // Compute LO (all shift values)
217 bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
218 // Compute HI (shift > 32)
219 bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
220 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
221 ->setPredicate(CC_NOT_P, pred);
222 bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
223 if (op == OP_SHR)
224 std::swap(dst[0], dst[1]);
225 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
226 delete_Instruction(prog, lo);
227 return;
228 }
229
230 Instruction *hi = new_Instruction(func, op, TYPE_U32);
231 lo->bb->insertAfter(lo, hi);
232
233 hi->sType = lo->sType;
234 lo->dType = TYPE_U32;
235
236 hi->setDef(0, (dst[1] = bld.getSSA()));
237 if (lo->op == OP_SHR)
238 hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
239 lo->setDef(0, (dst[0] = bld.getSSA()));
240
241 bld.setPosition(hi, true);
242
243 if (lo->op == OP_SHL)
244 std::swap(hi, lo);
245
246 hi->setSrc(0, new_ImmediateValue(prog, 0u));
247 hi->setSrc(1, shift);
248 hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
249
250 lo->setSrc(0, src[0]);
251 lo->setSrc(1, shift);
252 lo->setSrc(2, src[1]);
253
254 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
255 }
256
257 void
258 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
259 {
260 DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
261 Value *carry;
262 Value *src0[2], *src1[2];
263 bld.setPosition(cmp, false);
264
265 bld.mkSplit(src0, 4, cmp->getSrc(0));
266 bld.mkSplit(src1, 4, cmp->getSrc(1));
267 bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
268 ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
269 cmp->setFlagsSrc(cmp->srcCount(), carry);
270 cmp->setSrc(0, src0[1]);
271 cmp->setSrc(1, src1[1]);
272 cmp->sType = hTy;
273 }
274
275 bool
276 NVC0LegalizeSSA::visit(Function *fn)
277 {
278 bld.setProgram(fn->getProgram());
279 return true;
280 }
281
282 bool
283 NVC0LegalizeSSA::visit(BasicBlock *bb)
284 {
285 Instruction *next;
286 for (Instruction *i = bb->getEntry(); i; i = next) {
287 next = i->next;
288
289 if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
290 handleFTZ(i);
291
292 switch (i->op) {
293 case OP_DIV:
294 case OP_MOD:
295 if (i->sType != TYPE_F32)
296 handleDIV(i);
297 break;
298 case OP_RCP:
299 case OP_RSQ:
300 if (i->dType == TYPE_F64)
301 handleRCPRSQ(i);
302 break;
303 case OP_TXL:
304 case OP_TXF:
305 handleTEXLOD(i->asTex());
306 break;
307 case OP_SHR:
308 case OP_SHL:
309 if (typeSizeof(i->sType) == 8)
310 handleShift(i);
311 break;
312 case OP_SET:
313 case OP_SET_AND:
314 case OP_SET_OR:
315 case OP_SET_XOR:
316 if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
317 handleSET(i->asCmp());
318 break;
319 default:
320 break;
321 }
322 }
323 return true;
324 }
325
326 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
327 : rZero(NULL),
328 carry(NULL),
329 pOne(NULL),
330 needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
331 prog->getTarget()->getChipset() < 0x110)
332 {
333 }
334
335 bool
336 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
337 const Instruction *early) const
338 {
339 if (early->bb == later->bb)
340 return early->serial < later->serial;
341 return later->bb->dominatedBy(early->bb);
342 }
343
344 void
345 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
346 Instruction *usei, const Instruction *texi)
347 {
348 bool add = true;
349 bool dominated = insnDominatedBy(usei, texi);
350 // Uses before the tex have to all be included. Just because an earlier
351 // instruction dominates another instruction doesn't mean that there's no
352 // way to get from the tex to the later instruction. For example you could
353 // have nested loops, with the tex in the inner loop, and uses before it in
354 // both loops - even though the outer loop's instruction would dominate the
355 // inner's, we still want a texbar before the inner loop's instruction.
356 //
357 // However we can still use the eliding logic between uses dominated by the
358 // tex instruction, as that is unambiguously correct.
359 if (dominated) {
360 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
361 if (it->after) {
362 if (insnDominatedBy(usei, it->insn)) {
363 add = false;
364 break;
365 }
366 if (insnDominatedBy(it->insn, usei)) {
367 it = uses.erase(it);
368 continue;
369 }
370 }
371 ++it;
372 }
373 }
374 if (add)
375 uses.push_back(TexUse(usei, texi, dominated));
376 }
377
378 // While it might be tempting to use the an algorithm that just looks at tex
379 // uses, not all texture results are guaranteed to be used on all paths. In
380 // the case where along some control flow path a texture result is never used,
381 // we might reuse that register for something else, creating a
382 // write-after-write hazard. So we have to manually look through all
383 // instructions looking for ones that reference the registers in question.
384 void
385 NVC0LegalizePostRA::findFirstUses(
386 Instruction *texi, std::list<TexUse> &uses)
387 {
388 int minGPR = texi->def(0).rep()->reg.data.id;
389 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
390
391 unordered_set<const BasicBlock *> visited;
392 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
393 }
394
395 void
396 NVC0LegalizePostRA::findFirstUsesBB(
397 int minGPR, int maxGPR, Instruction *start,
398 const Instruction *texi, std::list<TexUse> &uses,
399 unordered_set<const BasicBlock *> &visited)
400 {
401 const BasicBlock *bb = start->bb;
402
403 // We don't process the whole bb the first time around. This is correct,
404 // however we might be in a loop and hit this BB again, and need to process
405 // the full thing. So only mark a bb as visited if we processed it from the
406 // beginning.
407 if (start == bb->getEntry()) {
408 if (visited.find(bb) != visited.end())
409 return;
410 visited.insert(bb);
411 }
412
413 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
414 if (insn->isNop())
415 continue;
416
417 for (int d = 0; insn->defExists(d); ++d) {
418 const Value *def = insn->def(d).rep();
419 if (insn->def(d).getFile() != FILE_GPR ||
420 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
421 def->reg.data.id > maxGPR)
422 continue;
423 addTexUse(uses, insn, texi);
424 return;
425 }
426
427 for (int s = 0; insn->srcExists(s); ++s) {
428 const Value *src = insn->src(s).rep();
429 if (insn->src(s).getFile() != FILE_GPR ||
430 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
431 src->reg.data.id > maxGPR)
432 continue;
433 addTexUse(uses, insn, texi);
434 return;
435 }
436 }
437
438 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
439 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
440 texi, uses, visited);
441 }
442 }
443
444 // Texture barriers:
445 // This pass is a bit long and ugly and can probably be optimized.
446 //
447 // 1. obtain a list of TEXes and their outputs' first use(s)
448 // 2. calculate the barrier level of each first use (minimal number of TEXes,
449 // over all paths, between the TEX and the use in question)
450 // 3. for each barrier, if all paths from the source TEX to that barrier
451 // contain a barrier of lesser level, it can be culled
452 bool
453 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
454 {
455 std::list<TexUse> *uses;
456 std::vector<Instruction *> texes;
457 std::vector<int> bbFirstTex;
458 std::vector<int> bbFirstUse;
459 std::vector<int> texCounts;
460 std::vector<TexUse> useVec;
461 ArrayList insns;
462
463 fn->orderInstructions(insns);
464
465 texCounts.resize(fn->allBBlocks.getSize(), 0);
466 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
467 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
468
469 // tag BB CFG nodes by their id for later
470 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
471 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
472 if (bb)
473 bb->cfg.tag = bb->getId();
474 }
475
476 // gather the first uses for each TEX
477 for (int i = 0; i < insns.getSize(); ++i) {
478 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
479 if (isTextureOp(tex->op)) {
480 texes.push_back(tex);
481 if (!texCounts.at(tex->bb->getId()))
482 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
483 texCounts[tex->bb->getId()]++;
484 }
485 }
486 insns.clear();
487 if (texes.empty())
488 return false;
489 uses = new std::list<TexUse>[texes.size()];
490 if (!uses)
491 return false;
492 for (size_t i = 0; i < texes.size(); ++i) {
493 findFirstUses(texes[i], uses[i]);
494 }
495
496 // determine the barrier level at each use
497 for (size_t i = 0; i < texes.size(); ++i) {
498 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
499 ++u) {
500 BasicBlock *tb = texes[i]->bb;
501 BasicBlock *ub = u->insn->bb;
502 if (tb == ub) {
503 u->level = 0;
504 for (size_t j = i + 1; j < texes.size() &&
505 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
506 ++j)
507 u->level++;
508 } else {
509 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
510 &ub->cfg, texCounts);
511 if (u->level < 0) {
512 WARN("Failed to find path TEX -> TEXBAR\n");
513 u->level = 0;
514 continue;
515 }
516 // this counted all TEXes in the origin block, correct that
517 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
518 // and did not count the TEXes in the destination block, add those
519 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
520 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
521 ++j)
522 u->level++;
523 }
524 assert(u->level >= 0);
525 useVec.push_back(*u);
526 }
527 }
528 delete[] uses;
529
530 // insert the barriers
531 for (size_t i = 0; i < useVec.size(); ++i) {
532 Instruction *prev = useVec[i].insn->prev;
533 if (useVec[i].level < 0)
534 continue;
535 if (prev && prev->op == OP_TEXBAR) {
536 if (prev->subOp > useVec[i].level)
537 prev->subOp = useVec[i].level;
538 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
539 } else {
540 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
541 bar->fixed = 1;
542 bar->subOp = useVec[i].level;
543 // make use explicit to ease latency calculation
544 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
545 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
546 }
547 }
548
549 if (fn->getProgram()->optLevel < 3)
550 return true;
551
552 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
553
554 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
555 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
556 limitS.resize(fn->allBBlocks.getSize());
557
558 // cull unneeded barriers (should do that earlier, but for simplicity)
559 IteratorRef bi = fn->cfg.iteratorCFG();
560 // first calculate min/max outstanding TEXes for each BB
561 for (bi->reset(); !bi->end(); bi->next()) {
562 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
563 BasicBlock *bb = BasicBlock::get(n);
564 int min = 0;
565 int max = std::numeric_limits<int>::max();
566 for (Instruction *i = bb->getFirst(); i; i = i->next) {
567 if (isTextureOp(i->op)) {
568 min++;
569 if (max < std::numeric_limits<int>::max())
570 max++;
571 } else
572 if (i->op == OP_TEXBAR) {
573 min = MIN2(min, i->subOp);
574 max = MIN2(max, i->subOp);
575 }
576 }
577 // limits when looking at an isolated block
578 limitS[bb->getId()].min = min;
579 limitS[bb->getId()].max = max;
580 }
581 // propagate the min/max values
582 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
583 for (bi->reset(); !bi->end(); bi->next()) {
584 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
585 BasicBlock *bb = BasicBlock::get(n);
586 const int bbId = bb->getId();
587 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
588 BasicBlock *in = BasicBlock::get(ei.getNode());
589 const int inId = in->getId();
590 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
591 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
592 }
593 // I just hope this is correct ...
594 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
595 // no barrier
596 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
597 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
598 } else {
599 // block contained a barrier
600 limitB[bbId].min = MIN2(limitS[bbId].max,
601 limitT[bbId].min + limitS[bbId].min);
602 limitB[bbId].max = MIN2(limitS[bbId].max,
603 limitT[bbId].max + limitS[bbId].min);
604 }
605 }
606 }
607 // finally delete unnecessary barriers
608 for (bi->reset(); !bi->end(); bi->next()) {
609 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
610 BasicBlock *bb = BasicBlock::get(n);
611 Instruction *prev = NULL;
612 Instruction *next;
613 int max = limitT[bb->getId()].max;
614 for (Instruction *i = bb->getFirst(); i; i = next) {
615 next = i->next;
616 if (i->op == OP_TEXBAR) {
617 if (i->subOp >= max) {
618 delete_Instruction(prog, i);
619 i = NULL;
620 } else {
621 max = i->subOp;
622 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
623 delete_Instruction(prog, prev);
624 prev = NULL;
625 }
626 }
627 } else
628 if (isTextureOp(i->op)) {
629 max++;
630 }
631 if (i && !i->isNop())
632 prev = i;
633 }
634 }
635 return true;
636 }
637
638 bool
639 NVC0LegalizePostRA::visit(Function *fn)
640 {
641 if (needTexBar)
642 insertTextureBarriers(fn);
643
644 rZero = new_LValue(fn, FILE_GPR);
645 pOne = new_LValue(fn, FILE_PREDICATE);
646 carry = new_LValue(fn, FILE_FLAGS);
647
648 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
649 carry->reg.data.id = 0;
650 pOne->reg.data.id = 7;
651
652 return true;
653 }
654
655 void
656 NVC0LegalizePostRA::replaceZero(Instruction *i)
657 {
658 for (int s = 0; i->srcExists(s); ++s) {
659 if (s == 2 && i->op == OP_SUCLAMP)
660 continue;
661 if (s == 1 && i->op == OP_SHLADD)
662 continue;
663 ImmediateValue *imm = i->getSrc(s)->asImm();
664 if (imm) {
665 if (i->op == OP_SELP && s == 2) {
666 i->setSrc(s, pOne);
667 if (imm->reg.data.u64 == 0)
668 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
669 } else if (imm->reg.data.u64 == 0) {
670 i->setSrc(s, rZero);
671 }
672 }
673 }
674 }
675
676 // replace CONT with BRA for single unconditional continue
677 bool
678 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
679 {
680 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
681 return false;
682 Graph::EdgeIterator ei = bb->cfg.incident();
683 if (ei.getType() != Graph::Edge::BACK)
684 ei.next();
685 if (ei.getType() != Graph::Edge::BACK)
686 return false;
687 BasicBlock *contBB = BasicBlock::get(ei.getNode());
688
689 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
690 contBB->getExit()->getPredicate())
691 return false;
692 contBB->getExit()->op = OP_BRA;
693 bb->remove(bb->getEntry()); // delete PRECONT
694
695 ei.next();
696 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
697 return true;
698 }
699
700 // replace branches to join blocks with join ops
701 void
702 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
703 {
704 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
705 return;
706 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
707 BasicBlock *in = BasicBlock::get(ei.getNode());
708 Instruction *exit = in->getExit();
709 if (!exit) {
710 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
711 // there should always be a terminator instruction
712 WARN("inserted missing terminator in BB:%i\n", in->getId());
713 } else
714 if (exit->op == OP_BRA) {
715 exit->op = OP_JOIN;
716 exit->asFlow()->limit = 1; // must-not-propagate marker
717 }
718 }
719 bb->remove(bb->getEntry());
720 }
721
722 bool
723 NVC0LegalizePostRA::visit(BasicBlock *bb)
724 {
725 Instruction *i, *next;
726
727 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
728 for (i = bb->getFirst(); i; i = next) {
729 next = i->next;
730 if (i->op == OP_EMIT || i->op == OP_RESTART) {
731 if (!i->getDef(0)->refCount())
732 i->setDef(0, NULL);
733 if (i->src(0).getFile() == FILE_IMMEDIATE)
734 i->setSrc(0, rZero); // initial value must be 0
735 replaceZero(i);
736 } else
737 if (i->isNop()) {
738 bb->remove(i);
739 } else
740 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
741 prog->getType() != Program::TYPE_COMPUTE) {
742 // It seems like barriers are never required for tessellation since
743 // the warp size is 32, and there are always at most 32 tcs threads.
744 bb->remove(i);
745 } else
746 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
747 int offset = i->src(0).get()->reg.data.offset;
748 if (abs(offset) >= 0x10000)
749 i->src(0).get()->reg.fileIndex += offset >> 16;
750 i->src(0).get()->reg.data.offset = (int)(short)offset;
751 } else {
752 // TODO: Move this to before register allocation for operations that
753 // need the $c register !
754 if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
755 Instruction *hi;
756 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
757 if (hi)
758 next = hi;
759 }
760
761 if (i->op != OP_MOV && i->op != OP_PFETCH)
762 replaceZero(i);
763 }
764 }
765 if (!bb->getEntry())
766 return true;
767
768 if (!tryReplaceContWithBra(bb))
769 propagateJoin(bb);
770
771 return true;
772 }
773
774 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
775 {
776 bld.setProgram(prog);
777 }
778
779 bool
780 NVC0LoweringPass::visit(Function *fn)
781 {
782 if (prog->getType() == Program::TYPE_GEOMETRY) {
783 assert(!strncmp(fn->getName(), "MAIN", 4));
784 // TODO: when we generate actual functions pass this value along somehow
785 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
786 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
787 if (fn->cfgExit) {
788 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
789 bld.mkMovToReg(0, gpEmitAddress);
790 }
791 }
792 return true;
793 }
794
795 bool
796 NVC0LoweringPass::visit(BasicBlock *bb)
797 {
798 return true;
799 }
800
801 inline Value *
802 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
803 {
804 uint8_t b = prog->driver->io.auxCBSlot;
805 uint32_t off = prog->driver->io.texBindBase + slot * 4;
806
807 if (ptr)
808 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
809
810 return bld.
811 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
812 }
813
814 // move array source to first slot, convert to u16, add indirections
815 bool
816 NVC0LoweringPass::handleTEX(TexInstruction *i)
817 {
818 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
819 const int arg = i->tex.target.getArgCount();
820 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
821 const int chipset = prog->getTarget()->getChipset();
822
823 /* Only normalize in the non-explicit derivatives case. For explicit
824 * derivatives, this is handled in handleManualTXD.
825 */
826 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
827 Value *src[3], *val;
828 int c;
829 for (c = 0; c < 3; ++c)
830 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
831 val = bld.getScratch();
832 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
833 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
834 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
835 for (c = 0; c < 3; ++c) {
836 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
837 i->getSrc(c), val));
838 }
839 }
840
841 // Arguments to the TEX instruction are a little insane. Even though the
842 // encoding is identical between SM20 and SM30, the arguments mean
843 // different things between Fermi and Kepler+. A lot of arguments are
844 // optional based on flags passed to the instruction. This summarizes the
845 // order of things.
846 //
847 // Fermi:
848 // array/indirect
849 // coords
850 // sample
851 // lod bias
852 // depth compare
853 // offsets:
854 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
855 // - other: 4 bits each, single reg
856 //
857 // Kepler+:
858 // indirect handle
859 // array (+ offsets for txd in upper 16 bits)
860 // coords
861 // sample
862 // lod bias
863 // depth compare
864 // offsets (same as fermi, except txd which takes it with array)
865 //
866 // Maxwell (tex):
867 // array
868 // coords
869 // indirect handle
870 // sample
871 // lod bias
872 // depth compare
873 // offsets
874 //
875 // Maxwell (txd):
876 // indirect handle
877 // coords
878 // array + offsets
879 // derivatives
880
881 if (chipset >= NVISA_GK104_CHIPSET) {
882 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
883 // XXX this ignores tsc, and assumes a 1:1 mapping
884 assert(i->tex.rIndirectSrc >= 0);
885 if (!i->tex.bindless) {
886 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
887 i->tex.r = 0xff;
888 i->tex.s = 0x1f;
889 i->setIndirectR(hnd);
890 }
891 i->setIndirectS(NULL);
892 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
893 if (i->tex.r == 0xffff)
894 i->tex.r = prog->driver->io.fbtexBindBase / 4;
895 else
896 i->tex.r += prog->driver->io.texBindBase / 4;
897 i->tex.s = 0; // only a single cX[] value possible here
898 } else {
899 Value *hnd = bld.getScratch();
900 Value *rHnd = loadTexHandle(NULL, i->tex.r);
901 Value *sHnd = loadTexHandle(NULL, i->tex.s);
902
903 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
904
905 i->tex.r = 0; // not used for indirect tex
906 i->tex.s = 0;
907 i->setIndirectR(hnd);
908 }
909 if (i->tex.target.isArray()) {
910 LValue *layer = new_LValue(func, FILE_GPR);
911 Value *src = i->getSrc(lyr);
912 const int sat = (i->op == OP_TXF) ? 1 : 0;
913 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
914 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
915 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
916 for (int s = dim; s >= 1; --s)
917 i->setSrc(s, i->getSrc(s - 1));
918 i->setSrc(0, layer);
919 } else {
920 i->setSrc(dim, layer);
921 }
922 }
923 // Move the indirect reference to the first place
924 if (i->tex.rIndirectSrc >= 0 && (
925 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
926 Value *hnd = i->getIndirectR();
927
928 i->setIndirectR(NULL);
929 i->moveSources(0, 1);
930 i->setSrc(0, hnd);
931 i->tex.rIndirectSrc = 0;
932 i->tex.sIndirectSrc = -1;
933 }
934 // Move the indirect reference to right after the coords
935 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
936 Value *hnd = i->getIndirectR();
937
938 i->setIndirectR(NULL);
939 i->moveSources(arg, 1);
940 i->setSrc(arg, hnd);
941 i->tex.rIndirectSrc = 0;
942 i->tex.sIndirectSrc = -1;
943 }
944 } else
945 // (nvc0) generate and move the tsc/tic/array source to the front
946 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
947 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
948
949 Value *ticRel = i->getIndirectR();
950 Value *tscRel = i->getIndirectS();
951
952 if (i->tex.r == 0xffff) {
953 i->tex.r = 0x20;
954 i->tex.s = 0x10;
955 }
956
957 if (ticRel) {
958 i->setSrc(i->tex.rIndirectSrc, NULL);
959 if (i->tex.r)
960 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
961 ticRel, bld.mkImm(i->tex.r));
962 }
963 if (tscRel) {
964 i->setSrc(i->tex.sIndirectSrc, NULL);
965 if (i->tex.s)
966 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
967 tscRel, bld.mkImm(i->tex.s));
968 }
969
970 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
971 if (arrayIndex) {
972 for (int s = dim; s >= 1; --s)
973 i->setSrc(s, i->getSrc(s - 1));
974 i->setSrc(0, arrayIndex);
975 } else {
976 i->moveSources(0, 1);
977 }
978
979 if (arrayIndex) {
980 int sat = (i->op == OP_TXF) ? 1 : 0;
981 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
982 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
983 } else {
984 bld.loadImm(src, 0);
985 }
986
987 if (ticRel)
988 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
989 if (tscRel)
990 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
991
992 i->setSrc(0, src);
993 }
994
995 // For nvc0, the sample id has to be in the second operand, as the offset
996 // does. Right now we don't know how to pass both in, and this case can't
997 // happen with OpenGL. On nve0, the sample id is part of the texture
998 // coordinate argument.
999 assert(chipset >= NVISA_GK104_CHIPSET ||
1000 !i->tex.useOffsets || !i->tex.target.isMS());
1001
1002 // offset is between lod and dc
1003 if (i->tex.useOffsets) {
1004 int n, c;
1005 int s = i->srcCount(0xff, true);
1006 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1007 if (i->tex.target.isShadow())
1008 s--;
1009 if (i->srcExists(s)) // move potential predicate out of the way
1010 i->moveSources(s, 1);
1011 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1012 i->moveSources(s + 1, 1);
1013 }
1014 if (i->op == OP_TXG) {
1015 // Either there is 1 offset, which goes into the 2 low bytes of the
1016 // first source, or there are 4 offsets, which go into 2 sources (8
1017 // values, 1 byte each).
1018 Value *offs[2] = {NULL, NULL};
1019 for (n = 0; n < i->tex.useOffsets; n++) {
1020 for (c = 0; c < 2; ++c) {
1021 if ((n % 2) == 0 && c == 0)
1022 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1023 else
1024 bld.mkOp3(OP_INSBF, TYPE_U32,
1025 offs[n / 2],
1026 i->offset[n][c].get(),
1027 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1028 offs[n / 2]);
1029 }
1030 }
1031 i->setSrc(s, offs[0]);
1032 if (offs[1])
1033 i->setSrc(s + 1, offs[1]);
1034 } else {
1035 unsigned imm = 0;
1036 assert(i->tex.useOffsets == 1);
1037 for (c = 0; c < 3; ++c) {
1038 ImmediateValue val;
1039 if (!i->offset[0][c].getImmediate(val))
1040 assert(!"non-immediate offset passed to non-TXG");
1041 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1042 }
1043 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1044 // The offset goes into the upper 16 bits of the array index. So
1045 // create it if it's not already there, and INSBF it if it already
1046 // is.
1047 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1048 if (chipset >= NVISA_GM107_CHIPSET)
1049 s += dim;
1050 if (i->tex.target.isArray()) {
1051 Value *offset = bld.getScratch();
1052 bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1053 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1054 i->getSrc(s));
1055 i->setSrc(s, offset);
1056 } else {
1057 i->moveSources(s, 1);
1058 i->setSrc(s, bld.loadImm(NULL, imm << 16));
1059 }
1060 } else {
1061 i->setSrc(s, bld.loadImm(NULL, imm));
1062 }
1063 }
1064 }
1065
1066 if (chipset >= NVISA_GK104_CHIPSET) {
1067 //
1068 // If TEX requires more than 4 sources, the 2nd register tuple must be
1069 // aligned to 4, even if it consists of just a single 4-byte register.
1070 //
1071 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
1072 //
1073 int s = i->srcCount(0xff, true);
1074 if (s > 4 && s < 7) {
1075 if (i->srcExists(s)) // move potential predicate out of the way
1076 i->moveSources(s, 7 - s);
1077 while (s < 7)
1078 i->setSrc(s++, bld.loadImm(NULL, 0));
1079 }
1080 }
1081
1082 return true;
1083 }
1084
1085 bool
1086 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1087 {
1088 // Always done from the l0 perspective. This is the way that NVIDIA's
1089 // driver does it, and doing it from the "current" lane's perpsective
1090 // doesn't seem to always work for reasons that aren't altogether clear,
1091 // even in frag shaders.
1092 //
1093 // Note that we must move not only the coordinates into lane0, but also all
1094 // ancillary arguments, like array indices and depth compare as they may
1095 // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1096 // leave them alone.
1097 static const uint8_t qOps[2] =
1098 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) };
1099
1100 Value *def[4][4];
1101 Value *crd[3], *arr[2], *shadow;
1102 Instruction *tex;
1103 Value *zero = bld.loadImm(bld.getSSA(), 0);
1104 int l, c;
1105 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1106
1107 // This function is invoked after handleTEX lowering, so we have to expect
1108 // the arguments in the order that the hw wants them. For Fermi, array and
1109 // indirect are both in the leading arg, while for Kepler, array and
1110 // indirect are separate (and both precede the coordinates). Maxwell is
1111 // handled in a separate function.
1112 int array;
1113 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1114 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1115 else
1116 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1117
1118 i->op = OP_TEX; // no need to clone dPdx/dPdy later
1119
1120 for (c = 0; c < dim; ++c)
1121 crd[c] = bld.getScratch();
1122 for (c = 0; c < array; ++c)
1123 arr[c] = bld.getScratch();
1124 shadow = bld.getScratch();
1125
1126 for (l = 0; l < 4; ++l) {
1127 Value *src[3], *val;
1128
1129 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1130 // we're using the texture result from lane 0 in all cases, so make sure
1131 // that lane 0 is pointing at the proper array index, indirect value,
1132 // and depth compare.
1133 if (l != 0) {
1134 for (c = 0; c < array; ++c)
1135 bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1136 if (i->tex.target.isShadow()) {
1137 // The next argument after coords is the depth compare
1138 bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1139 }
1140 }
1141 // mov position coordinates from lane l to all lanes
1142 for (c = 0; c < dim; ++c)
1143 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1144 // add dPdx from lane l to lanes dx
1145 for (c = 0; c < dim; ++c)
1146 bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1147 // add dPdy from lane l to lanes dy
1148 for (c = 0; c < dim; ++c)
1149 bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1150 // normalize cube coordinates
1151 if (i->tex.target.isCube()) {
1152 for (c = 0; c < 3; ++c)
1153 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1154 val = bld.getScratch();
1155 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1156 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1157 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1158 for (c = 0; c < 3; ++c)
1159 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1160 } else {
1161 for (c = 0; c < dim; ++c)
1162 src[c] = crd[c];
1163 }
1164 // texture
1165 bld.insert(tex = cloneForward(func, i));
1166 if (l != 0) {
1167 for (c = 0; c < array; ++c)
1168 tex->setSrc(c, arr[c]);
1169 if (i->tex.target.isShadow())
1170 tex->setSrc(array + dim, shadow);
1171 }
1172 for (c = 0; c < dim; ++c)
1173 tex->setSrc(c + array, src[c]);
1174 // broadcast results from lane 0 to all lanes so that the moves *into*
1175 // the target lane pick up the proper value.
1176 if (l != 0)
1177 for (c = 0; i->defExists(c); ++c)
1178 bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1179 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1180
1181 // save results
1182 for (c = 0; i->defExists(c); ++c) {
1183 Instruction *mov;
1184 def[c][l] = bld.getSSA();
1185 mov = bld.mkMov(def[c][l], tex->getDef(c));
1186 mov->fixed = 1;
1187 mov->lanes = 1 << l;
1188 }
1189 }
1190
1191 for (c = 0; i->defExists(c); ++c) {
1192 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1193 for (l = 0; l < 4; ++l)
1194 u->setSrc(l, def[c][l]);
1195 }
1196
1197 i->bb->remove(i);
1198 return true;
1199 }
1200
1201 bool
1202 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1203 {
1204 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1205 unsigned arg = txd->tex.target.getArgCount();
1206 unsigned expected_args = arg;
1207 const int chipset = prog->getTarget()->getChipset();
1208
1209 if (chipset >= NVISA_GK104_CHIPSET) {
1210 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1211 expected_args++;
1212 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1213 expected_args++;
1214 } else {
1215 if (txd->tex.useOffsets)
1216 expected_args++;
1217 if (!txd->tex.target.isArray() && (
1218 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1219 expected_args++;
1220 }
1221
1222 if (expected_args > 4 ||
1223 dim > 2 ||
1224 txd->tex.target.isShadow())
1225 txd->op = OP_TEX;
1226
1227 handleTEX(txd);
1228 while (txd->srcExists(arg))
1229 ++arg;
1230
1231 txd->tex.derivAll = true;
1232 if (txd->op == OP_TEX)
1233 return handleManualTXD(txd);
1234
1235 assert(arg == expected_args);
1236 for (int c = 0; c < dim; ++c) {
1237 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1238 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1239 txd->dPdx[c].set(NULL);
1240 txd->dPdy[c].set(NULL);
1241 }
1242
1243 // In this case we have fewer than 4 "real" arguments, which means that
1244 // handleTEX didn't apply any padding. However we have to make sure that
1245 // the second "group" of arguments still gets padded up to 4.
1246 if (chipset >= NVISA_GK104_CHIPSET) {
1247 int s = arg + 2 * dim;
1248 if (s >= 4 && s < 7) {
1249 if (txd->srcExists(s)) // move potential predicate out of the way
1250 txd->moveSources(s, 7 - s);
1251 while (s < 7)
1252 txd->setSrc(s++, bld.loadImm(NULL, 0));
1253 }
1254 }
1255
1256 return true;
1257 }
1258
1259 bool
1260 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1261 {
1262 const int chipset = prog->getTarget()->getChipset();
1263 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1264 txq->tex.r += prog->driver->io.texBindBase / 4;
1265
1266 if (txq->tex.rIndirectSrc < 0)
1267 return true;
1268
1269 Value *ticRel = txq->getIndirectR();
1270
1271 txq->setIndirectS(NULL);
1272 txq->tex.sIndirectSrc = -1;
1273
1274 assert(ticRel);
1275
1276 if (chipset < NVISA_GK104_CHIPSET) {
1277 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1278
1279 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1280 if (txq->tex.r)
1281 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1282 ticRel, bld.mkImm(txq->tex.r));
1283
1284 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1285
1286 txq->moveSources(0, 1);
1287 txq->setSrc(0, src);
1288 } else {
1289 Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1290 txq->tex.r = 0xff;
1291 txq->tex.s = 0x1f;
1292
1293 txq->setIndirectR(NULL);
1294 txq->moveSources(0, 1);
1295 txq->setSrc(0, hnd);
1296 txq->tex.rIndirectSrc = 0;
1297 }
1298
1299 return true;
1300 }
1301
1302 bool
1303 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1304 {
1305 /* The outputs are inverted compared to what the TGSI instruction
1306 * expects. Take that into account in the mask.
1307 */
1308 assert((i->tex.mask & ~3) == 0);
1309 if (i->tex.mask == 1)
1310 i->tex.mask = 2;
1311 else if (i->tex.mask == 2)
1312 i->tex.mask = 1;
1313 handleTEX(i);
1314 bld.setPosition(i, true);
1315
1316 /* The returned values are not quite what we want:
1317 * (a) convert from s16/u16 to f32
1318 * (b) multiply by 1/256
1319 */
1320 for (int def = 0; def < 2; ++def) {
1321 if (!i->defExists(def))
1322 continue;
1323 enum DataType type = TYPE_S16;
1324 if (i->tex.mask == 2 || def > 0)
1325 type = TYPE_U16;
1326 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1327 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1328 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1329 }
1330 if (i->tex.mask == 3) {
1331 LValue *t = new_LValue(func, FILE_GPR);
1332 bld.mkMov(t, i->getDef(0));
1333 bld.mkMov(i->getDef(0), i->getDef(1));
1334 bld.mkMov(i->getDef(1), t);
1335 }
1336 return true;
1337 }
1338
1339 bool
1340 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1341 {
1342 bufq->op = OP_MOV;
1343 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1344 bufq->getSrc(0)->reg.fileIndex * 16));
1345 bufq->setIndirect(0, 0, NULL);
1346 bufq->setIndirect(0, 1, NULL);
1347 return true;
1348 }
1349
1350 void
1351 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1352 {
1353 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1354
1355 BasicBlock *currBB = atom->bb;
1356 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1357 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1358 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1359 BasicBlock *failLockBB = new BasicBlock(func);
1360
1361 bld.setPosition(currBB, true);
1362 assert(!currBB->joinAt);
1363 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1364
1365 CmpInstruction *pred =
1366 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1367 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1368
1369 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1370 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1371
1372 bld.setPosition(tryLockBB, true);
1373
1374 Instruction *ld =
1375 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1376 atom->getIndirect(0, 0));
1377 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1378 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1379
1380 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1381 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1382 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1383 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1384
1385 tryLockBB->cfg.detach(&joinBB->cfg);
1386 bld.remove(atom);
1387
1388 bld.setPosition(setAndUnlockBB, true);
1389 Value *stVal;
1390 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1391 // Read the old value, and write the new one.
1392 stVal = atom->getSrc(1);
1393 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1394 CmpInstruction *set =
1395 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1396 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1397
1398 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1399 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1400 } else {
1401 operation op;
1402
1403 switch (atom->subOp) {
1404 case NV50_IR_SUBOP_ATOM_ADD:
1405 op = OP_ADD;
1406 break;
1407 case NV50_IR_SUBOP_ATOM_AND:
1408 op = OP_AND;
1409 break;
1410 case NV50_IR_SUBOP_ATOM_OR:
1411 op = OP_OR;
1412 break;
1413 case NV50_IR_SUBOP_ATOM_XOR:
1414 op = OP_XOR;
1415 break;
1416 case NV50_IR_SUBOP_ATOM_MIN:
1417 op = OP_MIN;
1418 break;
1419 case NV50_IR_SUBOP_ATOM_MAX:
1420 op = OP_MAX;
1421 break;
1422 default:
1423 assert(0);
1424 return;
1425 }
1426
1427 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1428 atom->getSrc(1));
1429 }
1430
1431 Instruction *st =
1432 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1433 atom->getIndirect(0, 0), stVal);
1434 st->setDef(0, pred->getDef(0));
1435 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1436
1437 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1438 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1439
1440 // Lock until the store has not been performed.
1441 bld.setPosition(failLockBB, true);
1442 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1443 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1444 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1445 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1446
1447 bld.setPosition(joinBB, false);
1448 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1449 }
1450
1451 void
1452 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1453 {
1454 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1455
1456 BasicBlock *currBB = atom->bb;
1457 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1458 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1459
1460 bld.setPosition(currBB, true);
1461 assert(!currBB->joinAt);
1462 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1463
1464 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1465 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1466
1467 bld.setPosition(tryLockAndSetBB, true);
1468
1469 Instruction *ld =
1470 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1471 atom->getIndirect(0, 0));
1472 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1473 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1474
1475 Value *stVal;
1476 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1477 // Read the old value, and write the new one.
1478 stVal = atom->getSrc(1);
1479 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1480 CmpInstruction *set =
1481 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1482 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1483 set->setPredicate(CC_P, ld->getDef(1));
1484
1485 Instruction *selp =
1486 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1487 atom->getSrc(2), set->getDef(0));
1488 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1489 selp->setPredicate(CC_P, ld->getDef(1));
1490
1491 stVal = selp->getDef(0);
1492 } else {
1493 operation op;
1494
1495 switch (atom->subOp) {
1496 case NV50_IR_SUBOP_ATOM_ADD:
1497 op = OP_ADD;
1498 break;
1499 case NV50_IR_SUBOP_ATOM_AND:
1500 op = OP_AND;
1501 break;
1502 case NV50_IR_SUBOP_ATOM_OR:
1503 op = OP_OR;
1504 break;
1505 case NV50_IR_SUBOP_ATOM_XOR:
1506 op = OP_XOR;
1507 break;
1508 case NV50_IR_SUBOP_ATOM_MIN:
1509 op = OP_MIN;
1510 break;
1511 case NV50_IR_SUBOP_ATOM_MAX:
1512 op = OP_MAX;
1513 break;
1514 default:
1515 assert(0);
1516 return;
1517 }
1518
1519 Instruction *i =
1520 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1521 atom->getSrc(1));
1522 i->setPredicate(CC_P, ld->getDef(1));
1523
1524 stVal = i->getDef(0);
1525 }
1526
1527 Instruction *st =
1528 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1529 atom->getIndirect(0, 0), stVal);
1530 st->setPredicate(CC_P, ld->getDef(1));
1531 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1532
1533 // Loop until the lock is acquired.
1534 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1535 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1536 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1537 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1538
1539 bld.remove(atom);
1540
1541 bld.setPosition(joinBB, false);
1542 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1543 }
1544
1545 bool
1546 NVC0LoweringPass::handleATOM(Instruction *atom)
1547 {
1548 SVSemantic sv;
1549 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1550
1551 switch (atom->src(0).getFile()) {
1552 case FILE_MEMORY_LOCAL:
1553 sv = SV_LBASE;
1554 break;
1555 case FILE_MEMORY_SHARED:
1556 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1557 // operations on shared memory. For Maxwell, ATOMS is enough.
1558 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1559 handleSharedATOM(atom);
1560 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1561 handleSharedATOMNVE4(atom);
1562 return true;
1563 default:
1564 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1565 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1566 assert(base->reg.size == 8);
1567 if (ptr)
1568 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1569 assert(base->reg.size == 8);
1570 atom->setIndirect(0, 0, base);
1571 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1572
1573 // Harden against out-of-bounds accesses
1574 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1575 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1576 Value *pred = new_LValue(func, FILE_PREDICATE);
1577 if (ptr)
1578 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1579 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1580 atom->setPredicate(CC_NOT_P, pred);
1581 if (atom->defExists(0)) {
1582 Value *zero, *dst = atom->getDef(0);
1583 atom->setDef(0, bld.getSSA());
1584
1585 bld.setPosition(atom, true);
1586 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1587 ->setPredicate(CC_P, pred);
1588 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1589 }
1590
1591 return true;
1592 }
1593 base =
1594 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1595
1596 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1597 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1598 if (ptr)
1599 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1600 atom->setIndirect(0, 1, NULL);
1601 atom->setIndirect(0, 0, base);
1602
1603 return true;
1604 }
1605
1606 bool
1607 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1608 {
1609 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1610 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1611 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1612 return false;
1613 }
1614 }
1615
1616 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1617 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1618 return false;
1619 bld.setPosition(cas, true);
1620
1621 if (needCctl) {
1622 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1623 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1624 cctl->fixed = 1;
1625 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1626 if (cas->isPredicated())
1627 cctl->setPredicate(cas->cc, cas->getPredicate());
1628 }
1629
1630 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1631 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1632 // should be set to the high part of the double reg or bad things will
1633 // happen elsewhere in the universe.
1634 // Also, it sometimes returns the new value instead of the old one
1635 // under mysterious circumstances.
1636 Value *dreg = bld.getSSA(8);
1637 bld.setPosition(cas, false);
1638 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1639 cas->setSrc(1, dreg);
1640 cas->setSrc(2, dreg);
1641 }
1642
1643 return true;
1644 }
1645
1646 inline Value *
1647 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1648 {
1649 uint8_t b = prog->driver->io.auxCBSlot;
1650 off += base;
1651
1652 return bld.
1653 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1654 }
1655
1656 inline Value *
1657 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1658 {
1659 uint8_t b = prog->driver->io.auxCBSlot;
1660 off += base;
1661
1662 if (ptr)
1663 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1664
1665 return bld.
1666 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1667 }
1668
1669 inline Value *
1670 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1671 {
1672 uint8_t b = prog->driver->io.auxCBSlot;
1673 off += base;
1674
1675 if (ptr)
1676 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1677
1678 return bld.
1679 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1680 }
1681
1682 inline Value *
1683 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1684 {
1685 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1686 }
1687
1688 inline Value *
1689 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1690 {
1691 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1692 }
1693
1694 inline Value *
1695 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1696 {
1697 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1698 }
1699
1700 inline Value *
1701 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1702 {
1703 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1704 }
1705
1706 inline Value *
1707 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1708 {
1709 uint8_t b = prog->driver->io.msInfoCBSlot;
1710 off += prog->driver->io.msInfoBase;
1711 return bld.
1712 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1713 }
1714
1715 inline Value *
1716 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1717 {
1718 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1719
1720 if (ptr) {
1721 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1722 if (bindless)
1723 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1724 else
1725 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1726 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1727 base = 0;
1728 }
1729 off += base;
1730
1731 return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1732 prog->driver->io.suInfoBase);
1733 }
1734
1735 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1736 {
1737 switch (su->tex.target.getEnum()) {
1738 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1739 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1740 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1741 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1742 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1743 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1744 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1745 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1746 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1747 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1748 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1749 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1750 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1751 default:
1752 assert(0);
1753 return 0;
1754 }
1755 }
1756
1757 bool
1758 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1759 {
1760 int mask = suq->tex.mask;
1761 int dim = suq->tex.target.getDim();
1762 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1763 Value *ind = suq->getIndirectR();
1764 int slot = suq->tex.r;
1765 int c, d;
1766
1767 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1768 if (c >= arg || !(mask & 1))
1769 continue;
1770
1771 int offset;
1772
1773 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1774 offset = NVC0_SU_INFO_SIZE(2);
1775 } else {
1776 offset = NVC0_SU_INFO_SIZE(c);
1777 }
1778 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1779 if (c == 2 && suq->tex.target.isCube())
1780 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1781 bld.loadImm(NULL, 6));
1782 }
1783
1784 if (mask & 1) {
1785 if (suq->tex.target.isMS()) {
1786 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1787 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1788 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1789 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1790 } else {
1791 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1792 }
1793 }
1794
1795 bld.remove(suq);
1796 return true;
1797 }
1798
1799 void
1800 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1801 {
1802 const int arg = tex->tex.target.getArgCount();
1803 int slot = tex->tex.r;
1804
1805 if (tex->tex.target == TEX_TARGET_2D_MS)
1806 tex->tex.target = TEX_TARGET_2D;
1807 else
1808 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1809 tex->tex.target = TEX_TARGET_2D_ARRAY;
1810 else
1811 return;
1812
1813 Value *x = tex->getSrc(0);
1814 Value *y = tex->getSrc(1);
1815 Value *s = tex->getSrc(arg - 1);
1816
1817 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1818 Value *ind = tex->getIndirectR();
1819
1820 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), tex->tex.bindless);
1821 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), tex->tex.bindless);
1822
1823 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1824 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1825
1826 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1827 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1828
1829 Value *dx = loadMsInfo32(ts, 0x0);
1830 Value *dy = loadMsInfo32(ts, 0x4);
1831
1832 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1833 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1834
1835 tex->setSrc(0, tx);
1836 tex->setSrc(1, ty);
1837 tex->moveSources(arg, -1);
1838 }
1839
1840 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1841 // They're computed from the coordinates using the surface info in c[] space.
1842 void
1843 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1844 {
1845 Instruction *insn;
1846 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1847 const bool raw =
1848 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1849 const int slot = su->tex.r;
1850 const int dim = su->tex.target.getDim();
1851 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
1852 int c;
1853 Value *zero = bld.mkImm(0);
1854 Value *p1 = NULL;
1855 Value *v;
1856 Value *src[3];
1857 Value *bf, *eau, *off;
1858 Value *addr, *pred;
1859 Value *ind = su->getIndirectR();
1860
1861 off = bld.getScratch(4);
1862 bf = bld.getScratch(4);
1863 addr = bld.getSSA(8);
1864 pred = bld.getScratch(1, FILE_PREDICATE);
1865
1866 bld.setPosition(su, false);
1867
1868 adjustCoordinatesMS(su);
1869
1870 // calculate clamped coordinates
1871 for (c = 0; c < arg; ++c) {
1872 int dimc = c;
1873
1874 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
1875 // The array index is stored in the Z component for 1D arrays.
1876 dimc = 2;
1877 }
1878
1879 src[c] = bld.getScratch();
1880 if (c == 0 && raw)
1881 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
1882 else
1883 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
1884 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1885 ->subOp = getSuClampSubOp(su, dimc);
1886 }
1887 for (; c < 3; ++c)
1888 src[c] = zero;
1889
1890 // set predicate output
1891 if (su->tex.target == TEX_TARGET_BUFFER) {
1892 src[0]->getInsn()->setFlagsDef(1, pred);
1893 } else
1894 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1895 p1 = bld.getSSA(1, FILE_PREDICATE);
1896 src[dim]->getInsn()->setFlagsDef(1, p1);
1897 }
1898
1899 // calculate pixel offset
1900 if (dim == 1) {
1901 if (su->tex.target != TEX_TARGET_BUFFER)
1902 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1903 } else
1904 if (dim == 3) {
1905 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
1906 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1907 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1908
1909 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
1910 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1911 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1912 } else {
1913 assert(dim == 2);
1914 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
1915 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1916 ->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
1917 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1918 }
1919
1920 // calculate effective address part 1
1921 if (su->tex.target == TEX_TARGET_BUFFER) {
1922 if (raw) {
1923 bf = src[0];
1924 } else {
1925 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
1926 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1927 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1928 }
1929 } else {
1930 Value *y = src[1];
1931 Value *z = src[2];
1932 uint16_t subOp = 0;
1933
1934 switch (dim) {
1935 case 1:
1936 y = zero;
1937 z = zero;
1938 break;
1939 case 2:
1940 z = off;
1941 if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
1942 z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
1943 subOp = NV50_IR_SUBOP_SUBFM_3D;
1944 }
1945 break;
1946 default:
1947 subOp = NV50_IR_SUBOP_SUBFM_3D;
1948 assert(dim == 3);
1949 break;
1950 }
1951 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1952 insn->subOp = subOp;
1953 insn->setFlagsDef(1, pred);
1954 }
1955
1956 // part 2
1957 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
1958
1959 if (su->tex.target == TEX_TARGET_BUFFER) {
1960 eau = v;
1961 } else {
1962 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1963 }
1964 // add array layer offset
1965 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1966 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
1967 if (dim == 1)
1968 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1969 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1970 else
1971 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1972 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1973 // combine predicates
1974 assert(p1);
1975 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1976 }
1977
1978 if (atom) {
1979 Value *lo = bf;
1980 if (su->tex.target == TEX_TARGET_BUFFER) {
1981 lo = zero;
1982 bld.mkMov(off, bf);
1983 }
1984 // bf == g[] address & 0xff
1985 // eau == g[] address >> 8
1986 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1987 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1988 } else
1989 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1990 // Convert from u32 to u8 address format, which is what the library code
1991 // doing SULDP currently uses.
1992 // XXX: can SUEAU do this ?
1993 // XXX: does it matter that we don't mask high bytes in bf ?
1994 // Grrr.
1995 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1996 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1997 }
1998
1999 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2000
2001 if (atom && su->tex.target == TEX_TARGET_BUFFER)
2002 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2003
2004 // let's just set it 0 for raw access and hope it works
2005 v = raw ?
2006 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2007
2008 // get rid of old coordinate sources, make space for fmt info and predicate
2009 su->moveSources(arg, 3 - arg);
2010 // set 64 bit address and 32-bit format sources
2011 su->setSrc(0, addr);
2012 su->setSrc(1, v);
2013 su->setSrc(2, pred);
2014 su->setIndirectR(NULL);
2015
2016 // prevent read fault when the image is not actually bound
2017 CmpInstruction *pred1 =
2018 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2019 TYPE_U32, bld.mkImm(0),
2020 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2021
2022 if (su->op != OP_SUSTP && su->tex.format) {
2023 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2024 int blockwidth = format->bits[0] + format->bits[1] +
2025 format->bits[2] + format->bits[3];
2026
2027 // make sure that the format doesn't mismatch
2028 assert(format->components != 0);
2029 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2030 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2031 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2032 pred1->getDef(0));
2033 }
2034 su->setPredicate(CC_NOT_P, pred1->getDef(0));
2035
2036 // TODO: initialize def values to 0 when the surface operation is not
2037 // performed (not needed for stores). Also, fix the "address bounds test"
2038 // subtests from arb_shader_image_load_store-invalid for buffers, because it
2039 // seems like that the predicate is not correctly set by suclamp.
2040 }
2041
2042 static DataType
2043 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2044 {
2045 switch (t->type) {
2046 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2047 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2048 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2049 case UINT:
2050 return (t->bits[c] == 8 ? TYPE_U8 :
2051 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2052 case SINT:
2053 return (t->bits[c] == 8 ? TYPE_S8 :
2054 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2055 }
2056 return TYPE_NONE;
2057 }
2058
2059 static DataType
2060 getDestType(const ImgType type) {
2061 switch (type) {
2062 case FLOAT:
2063 case UNORM:
2064 case SNORM:
2065 return TYPE_F32;
2066 case UINT:
2067 return TYPE_U32;
2068 case SINT:
2069 return TYPE_S32;
2070 default:
2071 assert(!"Impossible type");
2072 return TYPE_NONE;
2073 }
2074 }
2075
2076 void
2077 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
2078 {
2079 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2080 int width = format->bits[0] + format->bits[1] +
2081 format->bits[2] + format->bits[3];
2082 Value *untypedDst[4] = {};
2083 Value *typedDst[4] = {};
2084
2085 // We must convert this to a generic load.
2086 su->op = OP_SULDB;
2087
2088 su->dType = typeOfSize(width / 8);
2089 su->sType = TYPE_U8;
2090
2091 for (int i = 0; i < width / 32; i++)
2092 untypedDst[i] = bld.getSSA();
2093 if (width < 32)
2094 untypedDst[0] = bld.getSSA();
2095
2096 for (int i = 0; i < 4; i++) {
2097 typedDst[i] = su->getDef(i);
2098 }
2099
2100 // Set the untyped dsts as the su's destinations
2101 for (int i = 0; i < 4; i++)
2102 su->setDef(i, untypedDst[i]);
2103
2104 bld.setPosition(su, true);
2105
2106 // Unpack each component into the typed dsts
2107 int bits = 0;
2108 for (int i = 0; i < 4; bits += format->bits[i], i++) {
2109 if (!typedDst[i])
2110 continue;
2111 if (i >= format->components) {
2112 if (format->type == FLOAT ||
2113 format->type == UNORM ||
2114 format->type == SNORM)
2115 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2116 else
2117 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2118 continue;
2119 }
2120
2121 // Get just that component's data into the relevant place
2122 if (format->bits[i] == 32)
2123 bld.mkMov(typedDst[i], untypedDst[i]);
2124 else if (format->bits[i] == 16)
2125 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2126 getSrcType(format, i), untypedDst[i / 2])
2127 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2128 else if (format->bits[i] == 8)
2129 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2130 getSrcType(format, i), untypedDst[0])->subOp = i;
2131 else {
2132 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2133 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2134 if (format->type == UNORM || format->type == SNORM)
2135 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2136 }
2137
2138 // Normalize / convert as necessary
2139 if (format->type == UNORM)
2140 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2141 else if (format->type == SNORM)
2142 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2143 else if (format->type == FLOAT && format->bits[i] < 16) {
2144 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2145 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2146 }
2147 }
2148
2149 if (format->bgra) {
2150 std::swap(typedDst[0], typedDst[2]);
2151 }
2152 }
2153
2154 void
2155 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2156 {
2157 processSurfaceCoordsNVE4(su);
2158
2159 if (su->op == OP_SULDP)
2160 convertSurfaceFormat(su);
2161
2162 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2163 assert(su->getPredicate());
2164 Value *pred =
2165 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2166 su->getPredicate(), su->getSrc(2));
2167
2168 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2169 red->subOp = su->subOp;
2170 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2171 red->setSrc(1, su->getSrc(3));
2172 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2173 red->setSrc(2, su->getSrc(4));
2174 red->setIndirect(0, 0, su->getSrc(0));
2175
2176 // make sure to initialize dst value when the atomic operation is not
2177 // performed
2178 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2179
2180 assert(su->cc == CC_NOT_P);
2181 red->setPredicate(su->cc, pred);
2182 mov->setPredicate(CC_P, pred);
2183
2184 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2185 red->getDef(0), mov->getDef(0));
2186
2187 delete_Instruction(bld.getProgram(), su);
2188 handleCasExch(red, true);
2189 }
2190
2191 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2192 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2193 }
2194
2195 void
2196 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2197 {
2198 const int slot = su->tex.r;
2199 const int dim = su->tex.target.getDim();
2200 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2201 int c;
2202 Value *zero = bld.mkImm(0);
2203 Value *src[3];
2204 Value *v;
2205 Value *ind = su->getIndirectR();
2206
2207 bld.setPosition(su, false);
2208
2209 adjustCoordinatesMS(su);
2210
2211 if (ind) {
2212 Value *ptr;
2213 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2214 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2215 su->setIndirectR(ptr);
2216 }
2217
2218 // get surface coordinates
2219 for (c = 0; c < arg; ++c)
2220 src[c] = su->getSrc(c);
2221 for (; c < 3; ++c)
2222 src[c] = zero;
2223
2224 // calculate pixel offset
2225 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2226 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2227 su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
2228 }
2229
2230 // add array layer offset
2231 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2232 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2233 assert(dim > 1);
2234 su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
2235 }
2236
2237 // prevent read fault when the image is not actually bound
2238 CmpInstruction *pred =
2239 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2240 TYPE_U32, bld.mkImm(0),
2241 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2242 if (su->op != OP_SUSTP && su->tex.format) {
2243 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2244 int blockwidth = format->bits[0] + format->bits[1] +
2245 format->bits[2] + format->bits[3];
2246
2247 assert(format->components != 0);
2248 // make sure that the format doesn't mismatch when it's not FMT_NONE
2249 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2250 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2251 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2252 pred->getDef(0));
2253 }
2254 su->setPredicate(CC_NOT_P, pred->getDef(0));
2255 }
2256
2257 void
2258 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2259 {
2260 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2261 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2262 * will simplify the lowering pass and the texture constraints. */
2263 su->moveSources(1, 1);
2264 su->setSrc(1, bld.loadImm(NULL, 0));
2265 su->tex.target = TEX_TARGET_2D_ARRAY;
2266 }
2267
2268 processSurfaceCoordsNVC0(su);
2269
2270 if (su->op == OP_SULDP)
2271 convertSurfaceFormat(su);
2272
2273 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2274 const int dim = su->tex.target.getDim();
2275 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2276 LValue *addr = bld.getSSA(8);
2277 Value *def = su->getDef(0);
2278
2279 su->op = OP_SULEA;
2280
2281 // Set the destination to the address
2282 su->dType = TYPE_U64;
2283 su->setDef(0, addr);
2284 su->setDef(1, su->getPredicate());
2285
2286 bld.setPosition(su, true);
2287
2288 // Perform the atomic op
2289 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2290 red->subOp = su->subOp;
2291 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2292 red->setSrc(1, su->getSrc(arg));
2293 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2294 red->setSrc(2, su->getSrc(arg + 1));
2295 red->setIndirect(0, 0, addr);
2296
2297 // make sure to initialize dst value when the atomic operation is not
2298 // performed
2299 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2300
2301 assert(su->cc == CC_NOT_P);
2302 red->setPredicate(su->cc, su->getPredicate());
2303 mov->setPredicate(CC_P, su->getPredicate());
2304
2305 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2306
2307 handleCasExch(red, false);
2308 }
2309 }
2310
2311 void
2312 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su)
2313 {
2314 const int slot = su->tex.r;
2315 const int dim = su->tex.target.getDim();
2316 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2317 Value *ind = su->getIndirectR();
2318 Value *handle;
2319 int pos = 0;
2320
2321 bld.setPosition(su, false);
2322
2323 adjustCoordinatesMS(su);
2324
2325 // add texture handle
2326 switch (su->op) {
2327 case OP_SUSTP:
2328 pos = 4;
2329 break;
2330 case OP_SUREDP:
2331 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2332 break;
2333 default:
2334 assert(pos == 0);
2335 break;
2336 }
2337 if (su->tex.bindless)
2338 handle = ind;
2339 else
2340 handle = loadTexHandle(ind, slot + 32);
2341 su->setSrc(arg + pos, handle);
2342
2343 // The address check doesn't make sense here. The format check could make
2344 // sense but it's a bit of a pain.
2345 if (su->tex.bindless)
2346 return;
2347
2348 // prevent read fault when the image is not actually bound
2349 CmpInstruction *pred =
2350 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2351 TYPE_U32, bld.mkImm(0),
2352 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2353 if (su->op != OP_SUSTP && su->tex.format) {
2354 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2355 int blockwidth = format->bits[0] + format->bits[1] +
2356 format->bits[2] + format->bits[3];
2357
2358 assert(format->components != 0);
2359 // make sure that the format doesn't mismatch when it's not FMT_NONE
2360 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2361 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2362 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2363 pred->getDef(0));
2364 }
2365 su->setPredicate(CC_NOT_P, pred->getDef(0));
2366 }
2367
2368 void
2369 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2370 {
2371 processSurfaceCoordsGM107(su);
2372
2373 if (su->op == OP_SULDP)
2374 convertSurfaceFormat(su);
2375
2376 if (su->op == OP_SUREDP) {
2377 Value *def = su->getDef(0);
2378
2379 su->op = OP_SUREDB;
2380
2381 // There may not be a predicate in the bindless case.
2382 if (su->getPredicate()) {
2383 su->setDef(0, bld.getSSA());
2384
2385 bld.setPosition(su, true);
2386
2387 // make sure to initialize dst value when the atomic operation is not
2388 // performed
2389 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2390
2391 assert(su->cc == CC_NOT_P);
2392 mov->setPredicate(CC_P, su->getPredicate());
2393
2394 bld.mkOp2(OP_UNION, TYPE_U32, def, su->getDef(0), mov->getDef(0));
2395 }
2396 }
2397 }
2398
2399 bool
2400 NVC0LoweringPass::handleWRSV(Instruction *i)
2401 {
2402 Instruction *st;
2403 Symbol *sym;
2404 uint32_t addr;
2405
2406 // must replace, $sreg are not writeable
2407 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2408 if (addr >= 0x400)
2409 return false;
2410 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2411
2412 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2413 i->getSrc(1));
2414 st->perPatch = i->perPatch;
2415
2416 bld.getBB()->remove(i);
2417 return true;
2418 }
2419
2420 void
2421 NVC0LoweringPass::handleLDST(Instruction *i)
2422 {
2423 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2424 if (prog->getType() == Program::TYPE_COMPUTE) {
2425 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2426 i->getSrc(0)->reg.fileIndex = 0;
2427 } else
2428 if (prog->getType() == Program::TYPE_GEOMETRY &&
2429 i->src(0).isIndirect(0)) {
2430 // XXX: this assumes vec4 units
2431 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2432 i->getIndirect(0, 0), bld.mkImm(4));
2433 i->setIndirect(0, 0, ptr);
2434 i->op = OP_VFETCH;
2435 } else {
2436 i->op = OP_VFETCH;
2437 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2438 }
2439 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2440 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2441 prog->getType() == Program::TYPE_COMPUTE) {
2442 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2443 // requires at least 12 UBOs. To bypass this limitation, we store the
2444 // addrs into the driver constbuf and we directly load from the global
2445 // memory.
2446 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2447 Value *ind = i->getIndirect(0, 1);
2448
2449 if (!ind && fileIndex == -1)
2450 return;
2451
2452 if (ind) {
2453 // Clamp the UBO index when an indirect access is used to avoid
2454 // loading information from the wrong place in the driver cb.
2455 // TODO - synchronize the max with the driver.
2456 ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2457 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2458 ind, bld.loadImm(NULL, fileIndex)),
2459 bld.loadImm(NULL, 13));
2460 fileIndex = 0;
2461 }
2462
2463 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2464 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2465 Value *length = loadUboLength32(ind, fileIndex * 16);
2466 Value *pred = new_LValue(func, FILE_PREDICATE);
2467 if (i->src(0).isIndirect(0)) {
2468 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2469 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2470 }
2471 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2472 i->setIndirect(0, 1, NULL);
2473 i->setIndirect(0, 0, ptr);
2474 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2475 i->setPredicate(CC_NOT_P, pred);
2476 Value *zero, *dst = i->getDef(0);
2477 i->setDef(0, bld.getSSA());
2478
2479 bld.setPosition(i, true);
2480 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2481 ->setPredicate(CC_P, pred);
2482 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2483 } else if (i->src(0).isIndirect(1)) {
2484 Value *ptr;
2485 if (i->src(0).isIndirect(0))
2486 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2487 i->getIndirect(0, 1), bld.mkImm(0x1010),
2488 i->getIndirect(0, 0));
2489 else
2490 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2491 i->getIndirect(0, 1), bld.mkImm(16));
2492 i->setIndirect(0, 1, NULL);
2493 i->setIndirect(0, 0, ptr);
2494 i->subOp = NV50_IR_SUBOP_LDC_IS;
2495 }
2496 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2497 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2498 i->op = OP_VFETCH;
2499 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2500 Value *ind = i->getIndirect(0, 1);
2501 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2502 // XXX come up with a way not to do this for EVERY little access but
2503 // rather to batch these up somehow. Unfortunately we've lost the
2504 // information about the field width by the time we get here.
2505 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2506 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2507 Value *pred = new_LValue(func, FILE_PREDICATE);
2508 if (i->src(0).isIndirect(0)) {
2509 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2510 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2511 }
2512 i->setIndirect(0, 1, NULL);
2513 i->setIndirect(0, 0, ptr);
2514 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2515 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2516 i->setPredicate(CC_NOT_P, pred);
2517 if (i->defExists(0)) {
2518 Value *zero, *dst = i->getDef(0);
2519 i->setDef(0, bld.getSSA());
2520
2521 bld.setPosition(i, true);
2522 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2523 ->setPredicate(CC_P, pred);
2524 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2525 }
2526 }
2527 }
2528
2529 void
2530 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2531 {
2532 Value *laneid = bld.getSSA();
2533 Value *x, *y;
2534
2535 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2536
2537 if (c == 0) {
2538 x = dst;
2539 y = NULL;
2540 } else
2541 if (c == 1) {
2542 x = NULL;
2543 y = dst;
2544 } else {
2545 assert(c == 2);
2546 if (prog->driver->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2547 bld.mkMov(dst, bld.loadImm(NULL, 0));
2548 return;
2549 }
2550 x = bld.getSSA();
2551 y = bld.getSSA();
2552 }
2553 if (x)
2554 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2555 if (y)
2556 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2557
2558 if (c == 2) {
2559 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2560 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2561 }
2562 }
2563
2564 bool
2565 NVC0LoweringPass::handleRDSV(Instruction *i)
2566 {
2567 Symbol *sym = i->getSrc(0)->asSym();
2568 const SVSemantic sv = sym->reg.data.sv.sv;
2569 Value *vtx = NULL;
2570 Instruction *ld;
2571 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2572
2573 if (addr >= 0x400) {
2574 // mov $sreg
2575 if (sym->reg.data.sv.index == 3) {
2576 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2577 i->op = OP_MOV;
2578 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2579 } else
2580 if (sv == SV_TID) {
2581 // Help CSE combine TID fetches
2582 Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2583 bld.mkSysVal(SV_COMBINED_TID, 0));
2584 i->op = OP_EXTBF;
2585 i->setSrc(0, tid);
2586 switch (sym->reg.data.sv.index) {
2587 case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2588 case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2589 case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2590 }
2591 }
2592 if (sv == SV_VERTEX_COUNT) {
2593 bld.setPosition(i, true);
2594 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2595 }
2596 return true;
2597 }
2598
2599 switch (sv) {
2600 case SV_POSITION:
2601 assert(prog->getType() == Program::TYPE_FRAGMENT);
2602 if (i->srcExists(1)) {
2603 // Pass offset through to the interpolation logic
2604 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2605 i->getDef(0), addr, NULL);
2606 ld->setSrc(1, i->getSrc(1));
2607 } else {
2608 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2609 }
2610 break;
2611 case SV_FACE:
2612 {
2613 Value *face = i->getDef(0);
2614 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2615 if (i->dType == TYPE_F32) {
2616 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2617 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2618 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2619 }
2620 }
2621 break;
2622 case SV_TESS_COORD:
2623 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2624 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2625 break;
2626 case SV_NTID:
2627 case SV_NCTAID:
2628 case SV_GRIDID:
2629 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2630 if (sym->reg.data.sv.index == 3) {
2631 i->op = OP_MOV;
2632 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2633 return true;
2634 }
2635 // Fallthrough
2636 case SV_WORK_DIM:
2637 addr += prog->driver->prop.cp.gridInfoBase;
2638 bld.mkLoad(TYPE_U32, i->getDef(0),
2639 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2640 TYPE_U32, addr), NULL);
2641 break;
2642 case SV_SAMPLE_INDEX:
2643 // TODO: Properly pass source as an address in the PIX address space
2644 // (which can be of the form [r0+offset]). But this is currently
2645 // unnecessary.
2646 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2647 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2648 break;
2649 case SV_SAMPLE_POS: {
2650 Value *sampleID = bld.getScratch();
2651 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
2652 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2653 Value *offset = calculateSampleOffset(sampleID);
2654
2655 assert(prog->driver->prop.fp.readsSampleLocations);
2656
2657 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
2658 bld.mkLoad(TYPE_F32,
2659 i->getDef(0),
2660 bld.mkSymbol(
2661 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2662 TYPE_U32, prog->driver->io.sampleInfoBase),
2663 offset);
2664 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
2665 bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
2666 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
2667 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
2668 } else {
2669 bld.mkLoad(TYPE_F32,
2670 i->getDef(0),
2671 bld.mkSymbol(
2672 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2673 TYPE_U32, prog->driver->io.sampleInfoBase +
2674 4 * sym->reg.data.sv.index),
2675 offset);
2676 }
2677 break;
2678 }
2679 case SV_SAMPLE_MASK: {
2680 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2681 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2682 Instruction *sampleid =
2683 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2684 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2685 Value *masked =
2686 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2687 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2688 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2689 if (prog->driver->prop.fp.persampleInvocation) {
2690 bld.mkMov(i->getDef(0), masked);
2691 } else {
2692 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2693 bld.mkImm(0))
2694 ->subOp = 1;
2695 }
2696 break;
2697 }
2698 case SV_BASEVERTEX:
2699 case SV_BASEINSTANCE:
2700 case SV_DRAWID:
2701 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2702 bld.mkSymbol(FILE_MEMORY_CONST,
2703 prog->driver->io.auxCBSlot,
2704 TYPE_U32,
2705 prog->driver->io.drawInfoBase +
2706 4 * (sv - SV_BASEVERTEX)),
2707 NULL);
2708 break;
2709 default:
2710 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2711 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2712 if (prog->getType() == Program::TYPE_FRAGMENT) {
2713 bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
2714 } else {
2715 ld = bld.mkFetch(i->getDef(0), i->dType,
2716 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2717 ld->perPatch = i->perPatch;
2718 }
2719 break;
2720 }
2721 bld.getBB()->remove(i);
2722 return true;
2723 }
2724
2725 bool
2726 NVC0LoweringPass::handleDIV(Instruction *i)
2727 {
2728 if (!isFloatType(i->dType))
2729 return true;
2730 bld.setPosition(i, false);
2731 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
2732 i->op = OP_MUL;
2733 i->setSrc(1, rcp->getDef(0));
2734 return true;
2735 }
2736
2737 bool
2738 NVC0LoweringPass::handleMOD(Instruction *i)
2739 {
2740 if (!isFloatType(i->dType))
2741 return true;
2742 LValue *value = bld.getScratch(typeSizeof(i->dType));
2743 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
2744 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
2745 bld.mkOp1(OP_TRUNC, i->dType, value, value);
2746 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
2747 i->op = OP_SUB;
2748 i->setSrc(1, value);
2749 return true;
2750 }
2751
2752 bool
2753 NVC0LoweringPass::handleSQRT(Instruction *i)
2754 {
2755 if (targ->isOpSupported(OP_SQRT, i->dType))
2756 return true;
2757
2758 if (i->dType == TYPE_F64) {
2759 Value *pred = bld.getSSA(1, FILE_PREDICATE);
2760 Value *zero = bld.loadImm(NULL, 0.0);
2761 Value *dst = bld.getSSA(8);
2762 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
2763 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
2764 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
2765 i->op = OP_MUL;
2766 i->setSrc(1, dst);
2767 // TODO: Handle this properly with a library function
2768 } else {
2769 bld.setPosition(i, true);
2770 i->op = OP_RSQ;
2771 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
2772 }
2773
2774 return true;
2775 }
2776
2777 bool
2778 NVC0LoweringPass::handlePOW(Instruction *i)
2779 {
2780 LValue *val = bld.getScratch();
2781
2782 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
2783 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
2784 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
2785
2786 i->op = OP_EX2;
2787 i->setSrc(0, val);
2788 i->setSrc(1, NULL);
2789
2790 return true;
2791 }
2792
2793 bool
2794 NVC0LoweringPass::handleEXPORT(Instruction *i)
2795 {
2796 if (prog->getType() == Program::TYPE_FRAGMENT) {
2797 int id = i->getSrc(0)->reg.data.offset / 4;
2798
2799 if (i->src(0).isIndirect(0)) // TODO, ugly
2800 return false;
2801 i->op = OP_MOV;
2802 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
2803 i->src(0).set(i->src(1));
2804 i->setSrc(1, NULL);
2805 i->setDef(0, new_LValue(func, FILE_GPR));
2806 i->getDef(0)->reg.data.id = id;
2807
2808 prog->maxGPR = MAX2(prog->maxGPR, id);
2809 } else
2810 if (prog->getType() == Program::TYPE_GEOMETRY) {
2811 i->setIndirect(0, 1, gpEmitAddress);
2812 }
2813 return true;
2814 }
2815
2816 bool
2817 NVC0LoweringPass::handleOUT(Instruction *i)
2818 {
2819 Instruction *prev = i->prev;
2820 ImmediateValue stream, prevStream;
2821
2822 // Only merge if the stream ids match. Also, note that the previous
2823 // instruction would have already been lowered, so we take arg1 from it.
2824 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
2825 i->src(0).getImmediate(stream) &&
2826 prev->src(1).getImmediate(prevStream) &&
2827 stream.reg.data.u32 == prevStream.reg.data.u32) {
2828 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
2829 delete_Instruction(prog, i);
2830 } else {
2831 assert(gpEmitAddress);
2832 i->setDef(0, gpEmitAddress);
2833 i->setSrc(1, i->getSrc(0));
2834 i->setSrc(0, gpEmitAddress);
2835 }
2836 return true;
2837 }
2838
2839 Value *
2840 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
2841 {
2842 Value *offset = bld.getScratch();
2843 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
2844 // Sample location offsets (in bytes) are calculated like so:
2845 // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
2846 // offset = offset * 32 + sampleID % 8 * 4;
2847 // which is equivalent to:
2848 // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
2849 // offset += sampleID << 2
2850
2851 // The second operand (src1) of the INSBF instructions are like so:
2852 // 0xssll where ss is the size and ll is the offset.
2853 // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
2854
2855 // Add sample ID (offset = (sampleID & 0x7) << 2)
2856 bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
2857
2858 Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
2859 Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
2860 Value *coord = bld.getScratch();
2861
2862 // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
2863 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
2864 targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
2865 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
2866 ->rnd = ROUND_ZI;
2867 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
2868
2869 // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
2870 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
2871 targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
2872 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
2873 ->rnd = ROUND_ZI;
2874 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
2875 } else {
2876 bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
2877 }
2878 return offset;
2879 }
2880
2881 // Handle programmable sample locations for GM20x+
2882 void
2883 NVC0LoweringPass::handlePIXLD(Instruction *i)
2884 {
2885 if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
2886 return;
2887 if (targ->getChipset() < NVISA_GM200_CHIPSET)
2888 return;
2889
2890 assert(prog->driver->prop.fp.readsSampleLocations);
2891
2892 bld.mkLoad(TYPE_F32,
2893 i->getDef(0),
2894 bld.mkSymbol(
2895 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2896 TYPE_U32, prog->driver->io.sampleInfoBase),
2897 calculateSampleOffset(i->getSrc(0)));
2898
2899 bld.getBB()->remove(i);
2900 }
2901
2902 // Generate a binary predicate if an instruction is predicated by
2903 // e.g. an f32 value.
2904 void
2905 NVC0LoweringPass::checkPredicate(Instruction *insn)
2906 {
2907 Value *pred = insn->getPredicate();
2908 Value *pdst;
2909
2910 if (!pred || pred->reg.file == FILE_PREDICATE)
2911 return;
2912 pdst = new_LValue(func, FILE_PREDICATE);
2913
2914 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
2915 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
2916
2917 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
2918
2919 insn->setPredicate(insn->cc, pdst);
2920 }
2921
2922 //
2923 // - add quadop dance for texturing
2924 // - put FP outputs in GPRs
2925 // - convert instruction sequences
2926 //
2927 bool
2928 NVC0LoweringPass::visit(Instruction *i)
2929 {
2930 bool ret = true;
2931 bld.setPosition(i, false);
2932
2933 if (i->cc != CC_ALWAYS)
2934 checkPredicate(i);
2935
2936 switch (i->op) {
2937 case OP_TEX:
2938 case OP_TXB:
2939 case OP_TXL:
2940 case OP_TXF:
2941 case OP_TXG:
2942 return handleTEX(i->asTex());
2943 case OP_TXD:
2944 return handleTXD(i->asTex());
2945 case OP_TXLQ:
2946 return handleTXLQ(i->asTex());
2947 case OP_TXQ:
2948 return handleTXQ(i->asTex());
2949 case OP_EX2:
2950 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
2951 i->setSrc(0, i->getDef(0));
2952 break;
2953 case OP_POW:
2954 return handlePOW(i);
2955 case OP_DIV:
2956 return handleDIV(i);
2957 case OP_MOD:
2958 return handleMOD(i);
2959 case OP_SQRT:
2960 return handleSQRT(i);
2961 case OP_EXPORT:
2962 ret = handleEXPORT(i);
2963 break;
2964 case OP_EMIT:
2965 case OP_RESTART:
2966 return handleOUT(i);
2967 case OP_RDSV:
2968 return handleRDSV(i);
2969 case OP_WRSV:
2970 return handleWRSV(i);
2971 case OP_STORE:
2972 case OP_LOAD:
2973 handleLDST(i);
2974 break;
2975 case OP_ATOM:
2976 {
2977 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
2978 handleATOM(i);
2979 handleCasExch(i, cctl);
2980 }
2981 break;
2982 case OP_SULDB:
2983 case OP_SULDP:
2984 case OP_SUSTB:
2985 case OP_SUSTP:
2986 case OP_SUREDB:
2987 case OP_SUREDP:
2988 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
2989 handleSurfaceOpGM107(i->asTex());
2990 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
2991 handleSurfaceOpNVE4(i->asTex());
2992 else
2993 handleSurfaceOpNVC0(i->asTex());
2994 break;
2995 case OP_SUQ:
2996 handleSUQ(i->asTex());
2997 break;
2998 case OP_BUFQ:
2999 handleBUFQ(i);
3000 break;
3001 case OP_PIXLD:
3002 handlePIXLD(i);
3003 break;
3004 default:
3005 break;
3006 }
3007
3008 /* Kepler+ has a special opcode to compute a new base address to be used
3009 * for indirect loads.
3010 *
3011 * Maxwell+ has an additional similar requirement for indirect
3012 * interpolation ops in frag shaders.
3013 */
3014 bool doAfetch = false;
3015 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3016 !i->perPatch &&
3017 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3018 i->src(0).isIndirect(0)) {
3019 doAfetch = true;
3020 }
3021 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3022 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3023 i->src(0).isIndirect(0)) {
3024 doAfetch = true;
3025 }
3026
3027 if (doAfetch) {
3028 Value *addr = cloneShallow(func, i->getSrc(0));
3029 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3030 i->getSrc(0));
3031 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3032 addr->reg.data.offset = 0;
3033 i->setSrc(0, addr);
3034 i->setIndirect(0, 0, afetch->getDef(0));
3035 }
3036
3037 return ret;
3038 }
3039
3040 bool
3041 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3042 {
3043 if (stage == CG_STAGE_PRE_SSA) {
3044 NVC0LoweringPass pass(prog);
3045 return pass.run(prog, false, true);
3046 } else
3047 if (stage == CG_STAGE_POST_RA) {
3048 NVC0LegalizePostRA pass(prog);
3049 return pass.run(prog, false, true);
3050 } else
3051 if (stage == CG_STAGE_SSA) {
3052 NVC0LegalizeSSA pass;
3053 return pass.run(prog, false, true);
3054 }
3055 return false;
3056 }
3057
3058 } // namespace nv50_ir