gm107/ir: fix indirect txq emission
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_peephole.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_target.h"
25 #include "codegen/nv50_ir_build_util.h"
26
27 extern "C" {
28 #include "util/u_math.h"
29 }
30
31 namespace nv50_ir {
32
33 bool
34 Instruction::isNop() const
35 {
36 if (op == OP_PHI || op == OP_SPLIT || op == OP_MERGE || op == OP_CONSTRAINT)
37 return true;
38 if (terminator || join) // XXX: should terminator imply flow ?
39 return false;
40 if (op == OP_ATOM)
41 return false;
42 if (!fixed && op == OP_NOP)
43 return true;
44
45 if (defExists(0) && def(0).rep()->reg.data.id < 0) {
46 for (int d = 1; defExists(d); ++d)
47 if (def(d).rep()->reg.data.id >= 0)
48 WARN("part of vector result is unused !\n");
49 return true;
50 }
51
52 if (op == OP_MOV || op == OP_UNION) {
53 if (!getDef(0)->equals(getSrc(0)))
54 return false;
55 if (op == OP_UNION)
56 if (!def(0).rep()->equals(getSrc(1)))
57 return false;
58 return true;
59 }
60
61 return false;
62 }
63
64 bool Instruction::isDead() const
65 {
66 if (op == OP_STORE ||
67 op == OP_EXPORT ||
68 op == OP_ATOM ||
69 op == OP_SUSTB || op == OP_SUSTP || op == OP_SUREDP || op == OP_SUREDB ||
70 op == OP_WRSV)
71 return false;
72
73 for (int d = 0; defExists(d); ++d)
74 if (getDef(d)->refCount() || getDef(d)->reg.data.id >= 0)
75 return false;
76
77 if (terminator || asFlow())
78 return false;
79 if (fixed)
80 return false;
81
82 return true;
83 };
84
85 // =============================================================================
86
87 class CopyPropagation : public Pass
88 {
89 private:
90 virtual bool visit(BasicBlock *);
91 };
92
93 // Propagate all MOVs forward to make subsequent optimization easier, except if
94 // the sources stem from a phi, in which case we don't want to mess up potential
95 // swaps $rX <-> $rY, i.e. do not create live range overlaps of phi src and def.
96 bool
97 CopyPropagation::visit(BasicBlock *bb)
98 {
99 Instruction *mov, *si, *next;
100
101 for (mov = bb->getEntry(); mov; mov = next) {
102 next = mov->next;
103 if (mov->op != OP_MOV || mov->fixed || !mov->getSrc(0)->asLValue())
104 continue;
105 if (mov->getPredicate())
106 continue;
107 if (mov->def(0).getFile() != mov->src(0).getFile())
108 continue;
109 si = mov->getSrc(0)->getInsn();
110 if (mov->getDef(0)->reg.data.id < 0 && si && si->op != OP_PHI) {
111 // propagate
112 mov->def(0).replace(mov->getSrc(0), false);
113 delete_Instruction(prog, mov);
114 }
115 }
116 return true;
117 }
118
119 // =============================================================================
120
121 class MergeSplits : public Pass
122 {
123 private:
124 virtual bool visit(BasicBlock *);
125 };
126
127 // For SPLIT / MERGE pairs that operate on the same registers, replace the
128 // post-merge def with the SPLIT's source.
129 bool
130 MergeSplits::visit(BasicBlock *bb)
131 {
132 Instruction *i, *next, *si;
133
134 for (i = bb->getEntry(); i; i = next) {
135 next = i->next;
136 if (i->op != OP_MERGE || typeSizeof(i->dType) != 8)
137 continue;
138 si = i->getSrc(0)->getInsn();
139 if (si->op != OP_SPLIT || si != i->getSrc(1)->getInsn())
140 continue;
141 i->def(0).replace(si->getSrc(0), false);
142 delete_Instruction(prog, i);
143 }
144
145 return true;
146 }
147
148 // =============================================================================
149
150 class LoadPropagation : public Pass
151 {
152 private:
153 virtual bool visit(BasicBlock *);
154
155 void checkSwapSrc01(Instruction *);
156
157 bool isCSpaceLoad(Instruction *);
158 bool isImmd32Load(Instruction *);
159 bool isAttribOrSharedLoad(Instruction *);
160 };
161
162 bool
163 LoadPropagation::isCSpaceLoad(Instruction *ld)
164 {
165 return ld && ld->op == OP_LOAD && ld->src(0).getFile() == FILE_MEMORY_CONST;
166 }
167
168 bool
169 LoadPropagation::isImmd32Load(Instruction *ld)
170 {
171 if (!ld || (ld->op != OP_MOV) || (typeSizeof(ld->dType) != 4))
172 return false;
173 return ld->src(0).getFile() == FILE_IMMEDIATE;
174 }
175
176 bool
177 LoadPropagation::isAttribOrSharedLoad(Instruction *ld)
178 {
179 return ld &&
180 (ld->op == OP_VFETCH ||
181 (ld->op == OP_LOAD &&
182 (ld->src(0).getFile() == FILE_SHADER_INPUT ||
183 ld->src(0).getFile() == FILE_MEMORY_SHARED)));
184 }
185
186 void
187 LoadPropagation::checkSwapSrc01(Instruction *insn)
188 {
189 if (!prog->getTarget()->getOpInfo(insn).commutative)
190 if (insn->op != OP_SET && insn->op != OP_SLCT)
191 return;
192 if (insn->src(1).getFile() != FILE_GPR)
193 return;
194
195 Instruction *i0 = insn->getSrc(0)->getInsn();
196 Instruction *i1 = insn->getSrc(1)->getInsn();
197
198 if (isCSpaceLoad(i0)) {
199 if (!isCSpaceLoad(i1))
200 insn->swapSources(0, 1);
201 else
202 return;
203 } else
204 if (isImmd32Load(i0)) {
205 if (!isCSpaceLoad(i1) && !isImmd32Load(i1))
206 insn->swapSources(0, 1);
207 else
208 return;
209 } else
210 if (isAttribOrSharedLoad(i1)) {
211 if (!isAttribOrSharedLoad(i0))
212 insn->swapSources(0, 1);
213 else
214 return;
215 } else {
216 return;
217 }
218
219 if (insn->op == OP_SET || insn->op == OP_SET_AND ||
220 insn->op == OP_SET_OR || insn->op == OP_SET_XOR)
221 insn->asCmp()->setCond = reverseCondCode(insn->asCmp()->setCond);
222 else
223 if (insn->op == OP_SLCT)
224 insn->asCmp()->setCond = inverseCondCode(insn->asCmp()->setCond);
225 }
226
227 bool
228 LoadPropagation::visit(BasicBlock *bb)
229 {
230 const Target *targ = prog->getTarget();
231 Instruction *next;
232
233 for (Instruction *i = bb->getEntry(); i; i = next) {
234 next = i->next;
235
236 if (i->op == OP_CALL) // calls have args as sources, they must be in regs
237 continue;
238
239 if (i->op == OP_PFETCH) // pfetch expects arg1 to be a reg
240 continue;
241
242 if (i->srcExists(1))
243 checkSwapSrc01(i);
244
245 for (int s = 0; i->srcExists(s); ++s) {
246 Instruction *ld = i->getSrc(s)->getInsn();
247
248 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV))
249 continue;
250 if (!targ->insnCanLoad(i, s, ld))
251 continue;
252
253 // propagate !
254 i->setSrc(s, ld->getSrc(0));
255 if (ld->src(0).isIndirect(0))
256 i->setIndirect(s, 0, ld->getIndirect(0, 0));
257
258 if (ld->getDef(0)->refCount() == 0)
259 delete_Instruction(prog, ld);
260 }
261 }
262 return true;
263 }
264
265 // =============================================================================
266
267 // Evaluate constant expressions.
268 class ConstantFolding : public Pass
269 {
270 public:
271 bool foldAll(Program *);
272
273 private:
274 virtual bool visit(BasicBlock *);
275
276 void expr(Instruction *, ImmediateValue&, ImmediateValue&);
277 void expr(Instruction *, ImmediateValue&, ImmediateValue&, ImmediateValue&);
278 void opnd(Instruction *, ImmediateValue&, int s);
279
280 void unary(Instruction *, const ImmediateValue&);
281
282 void tryCollapseChainedMULs(Instruction *, const int s, ImmediateValue&);
283
284 CmpInstruction *findOriginForTestWithZero(Value *);
285
286 unsigned int foldCount;
287
288 BuildUtil bld;
289 };
290
291 // TODO: remember generated immediates and only revisit these
292 bool
293 ConstantFolding::foldAll(Program *prog)
294 {
295 unsigned int iterCount = 0;
296 do {
297 foldCount = 0;
298 if (!run(prog))
299 return false;
300 } while (foldCount && ++iterCount < 2);
301 return true;
302 }
303
304 bool
305 ConstantFolding::visit(BasicBlock *bb)
306 {
307 Instruction *i, *next;
308
309 for (i = bb->getEntry(); i; i = next) {
310 next = i->next;
311 if (i->op == OP_MOV || i->op == OP_CALL)
312 continue;
313
314 ImmediateValue src0, src1, src2;
315
316 if (i->srcExists(2) &&
317 i->src(0).getImmediate(src0) &&
318 i->src(1).getImmediate(src1) &&
319 i->src(2).getImmediate(src2))
320 expr(i, src0, src1, src2);
321 else
322 if (i->srcExists(1) &&
323 i->src(0).getImmediate(src0) && i->src(1).getImmediate(src1))
324 expr(i, src0, src1);
325 else
326 if (i->srcExists(0) && i->src(0).getImmediate(src0))
327 opnd(i, src0, 0);
328 else
329 if (i->srcExists(1) && i->src(1).getImmediate(src1))
330 opnd(i, src1, 1);
331 }
332 return true;
333 }
334
335 CmpInstruction *
336 ConstantFolding::findOriginForTestWithZero(Value *value)
337 {
338 if (!value)
339 return NULL;
340 Instruction *insn = value->getInsn();
341
342 if (insn->asCmp() && insn->op != OP_SLCT)
343 return insn->asCmp();
344
345 /* Sometimes mov's will sneak in as a result of other folding. This gets
346 * cleaned up later.
347 */
348 if (insn->op == OP_MOV)
349 return findOriginForTestWithZero(insn->getSrc(0));
350
351 /* Deal with AND 1.0 here since nv50 can't fold into boolean float */
352 if (insn->op == OP_AND) {
353 int s = 0;
354 ImmediateValue imm;
355 if (!insn->src(s).getImmediate(imm)) {
356 s = 1;
357 if (!insn->src(s).getImmediate(imm))
358 return NULL;
359 }
360 if (imm.reg.data.f32 != 1.0f)
361 return NULL;
362 /* TODO: Come up with a way to handle the condition being inverted */
363 if (insn->src(!s).mod != Modifier(0))
364 return NULL;
365 return findOriginForTestWithZero(insn->getSrc(!s));
366 }
367
368 return NULL;
369 }
370
371 void
372 Modifier::applyTo(ImmediateValue& imm) const
373 {
374 if (!bits) // avoid failure if imm.reg.type is unhandled (e.g. b128)
375 return;
376 switch (imm.reg.type) {
377 case TYPE_F32:
378 if (bits & NV50_IR_MOD_ABS)
379 imm.reg.data.f32 = fabsf(imm.reg.data.f32);
380 if (bits & NV50_IR_MOD_NEG)
381 imm.reg.data.f32 = -imm.reg.data.f32;
382 if (bits & NV50_IR_MOD_SAT) {
383 if (imm.reg.data.f32 < 0.0f)
384 imm.reg.data.f32 = 0.0f;
385 else
386 if (imm.reg.data.f32 > 1.0f)
387 imm.reg.data.f32 = 1.0f;
388 }
389 assert(!(bits & NV50_IR_MOD_NOT));
390 break;
391
392 case TYPE_S8: // NOTE: will be extended
393 case TYPE_S16:
394 case TYPE_S32:
395 case TYPE_U8: // NOTE: treated as signed
396 case TYPE_U16:
397 case TYPE_U32:
398 if (bits & NV50_IR_MOD_ABS)
399 imm.reg.data.s32 = (imm.reg.data.s32 >= 0) ?
400 imm.reg.data.s32 : -imm.reg.data.s32;
401 if (bits & NV50_IR_MOD_NEG)
402 imm.reg.data.s32 = -imm.reg.data.s32;
403 if (bits & NV50_IR_MOD_NOT)
404 imm.reg.data.s32 = ~imm.reg.data.s32;
405 break;
406
407 case TYPE_F64:
408 if (bits & NV50_IR_MOD_ABS)
409 imm.reg.data.f64 = fabs(imm.reg.data.f64);
410 if (bits & NV50_IR_MOD_NEG)
411 imm.reg.data.f64 = -imm.reg.data.f64;
412 if (bits & NV50_IR_MOD_SAT) {
413 if (imm.reg.data.f64 < 0.0)
414 imm.reg.data.f64 = 0.0;
415 else
416 if (imm.reg.data.f64 > 1.0)
417 imm.reg.data.f64 = 1.0;
418 }
419 assert(!(bits & NV50_IR_MOD_NOT));
420 break;
421
422 default:
423 assert(!"invalid/unhandled type");
424 imm.reg.data.u64 = 0;
425 break;
426 }
427 }
428
429 operation
430 Modifier::getOp() const
431 {
432 switch (bits) {
433 case NV50_IR_MOD_ABS: return OP_ABS;
434 case NV50_IR_MOD_NEG: return OP_NEG;
435 case NV50_IR_MOD_SAT: return OP_SAT;
436 case NV50_IR_MOD_NOT: return OP_NOT;
437 case 0:
438 return OP_MOV;
439 default:
440 return OP_CVT;
441 }
442 }
443
444 void
445 ConstantFolding::expr(Instruction *i,
446 ImmediateValue &imm0, ImmediateValue &imm1)
447 {
448 struct Storage *const a = &imm0.reg, *const b = &imm1.reg;
449 struct Storage res;
450
451 memset(&res.data, 0, sizeof(res.data));
452
453 switch (i->op) {
454 case OP_MAD:
455 case OP_FMA:
456 case OP_MUL:
457 if (i->dnz && i->dType == TYPE_F32) {
458 if (!isfinite(a->data.f32))
459 a->data.f32 = 0.0f;
460 if (!isfinite(b->data.f32))
461 b->data.f32 = 0.0f;
462 }
463 switch (i->dType) {
464 case TYPE_F32:
465 res.data.f32 = a->data.f32 * b->data.f32 * exp2f(i->postFactor);
466 break;
467 case TYPE_F64: res.data.f64 = a->data.f64 * b->data.f64; break;
468 case TYPE_S32:
469 if (i->subOp == NV50_IR_SUBOP_MUL_HIGH) {
470 res.data.s32 = ((int64_t)a->data.s32 * b->data.s32) >> 32;
471 break;
472 }
473 /* fallthrough */
474 case TYPE_U32:
475 if (i->subOp == NV50_IR_SUBOP_MUL_HIGH) {
476 res.data.u32 = ((uint64_t)a->data.u32 * b->data.u32) >> 32;
477 break;
478 }
479 res.data.u32 = a->data.u32 * b->data.u32; break;
480 default:
481 return;
482 }
483 break;
484 case OP_DIV:
485 if (b->data.u32 == 0)
486 break;
487 switch (i->dType) {
488 case TYPE_F32: res.data.f32 = a->data.f32 / b->data.f32; break;
489 case TYPE_F64: res.data.f64 = a->data.f64 / b->data.f64; break;
490 case TYPE_S32: res.data.s32 = a->data.s32 / b->data.s32; break;
491 case TYPE_U32: res.data.u32 = a->data.u32 / b->data.u32; break;
492 default:
493 return;
494 }
495 break;
496 case OP_ADD:
497 switch (i->dType) {
498 case TYPE_F32: res.data.f32 = a->data.f32 + b->data.f32; break;
499 case TYPE_F64: res.data.f64 = a->data.f64 + b->data.f64; break;
500 case TYPE_S32:
501 case TYPE_U32: res.data.u32 = a->data.u32 + b->data.u32; break;
502 default:
503 return;
504 }
505 break;
506 case OP_POW:
507 switch (i->dType) {
508 case TYPE_F32: res.data.f32 = pow(a->data.f32, b->data.f32); break;
509 case TYPE_F64: res.data.f64 = pow(a->data.f64, b->data.f64); break;
510 default:
511 return;
512 }
513 break;
514 case OP_MAX:
515 switch (i->dType) {
516 case TYPE_F32: res.data.f32 = MAX2(a->data.f32, b->data.f32); break;
517 case TYPE_F64: res.data.f64 = MAX2(a->data.f64, b->data.f64); break;
518 case TYPE_S32: res.data.s32 = MAX2(a->data.s32, b->data.s32); break;
519 case TYPE_U32: res.data.u32 = MAX2(a->data.u32, b->data.u32); break;
520 default:
521 return;
522 }
523 break;
524 case OP_MIN:
525 switch (i->dType) {
526 case TYPE_F32: res.data.f32 = MIN2(a->data.f32, b->data.f32); break;
527 case TYPE_F64: res.data.f64 = MIN2(a->data.f64, b->data.f64); break;
528 case TYPE_S32: res.data.s32 = MIN2(a->data.s32, b->data.s32); break;
529 case TYPE_U32: res.data.u32 = MIN2(a->data.u32, b->data.u32); break;
530 default:
531 return;
532 }
533 break;
534 case OP_AND:
535 res.data.u64 = a->data.u64 & b->data.u64;
536 break;
537 case OP_OR:
538 res.data.u64 = a->data.u64 | b->data.u64;
539 break;
540 case OP_XOR:
541 res.data.u64 = a->data.u64 ^ b->data.u64;
542 break;
543 case OP_SHL:
544 res.data.u32 = a->data.u32 << b->data.u32;
545 break;
546 case OP_SHR:
547 switch (i->dType) {
548 case TYPE_S32: res.data.s32 = a->data.s32 >> b->data.u32; break;
549 case TYPE_U32: res.data.u32 = a->data.u32 >> b->data.u32; break;
550 default:
551 return;
552 }
553 break;
554 case OP_SLCT:
555 if (a->data.u32 != b->data.u32)
556 return;
557 res.data.u32 = a->data.u32;
558 break;
559 case OP_EXTBF: {
560 int offset = b->data.u32 & 0xff;
561 int width = (b->data.u32 >> 8) & 0xff;
562 int rshift = offset;
563 int lshift = 0;
564 if (width == 0) {
565 res.data.u32 = 0;
566 break;
567 }
568 if (width + offset < 32) {
569 rshift = 32 - width;
570 lshift = 32 - width - offset;
571 }
572 if (i->subOp == NV50_IR_SUBOP_EXTBF_REV)
573 res.data.u32 = util_bitreverse(a->data.u32);
574 else
575 res.data.u32 = a->data.u32;
576 switch (i->dType) {
577 case TYPE_S32: res.data.s32 = (res.data.s32 << lshift) >> rshift; break;
578 case TYPE_U32: res.data.u32 = (res.data.u32 << lshift) >> rshift; break;
579 default:
580 return;
581 }
582 break;
583 }
584 case OP_POPCNT:
585 res.data.u32 = util_bitcount(a->data.u32 & b->data.u32);
586 break;
587 case OP_PFETCH:
588 // The two arguments to pfetch are logically added together. Normally
589 // the second argument will not be constant, but that can happen.
590 res.data.u32 = a->data.u32 + b->data.u32;
591 break;
592 default:
593 return;
594 }
595 ++foldCount;
596
597 i->src(0).mod = Modifier(0);
598 i->src(1).mod = Modifier(0);
599 i->postFactor = 0;
600
601 i->setSrc(0, new_ImmediateValue(i->bb->getProgram(), res.data.u32));
602 i->setSrc(1, NULL);
603
604 i->getSrc(0)->reg.data = res.data;
605
606 switch (i->op) {
607 case OP_MAD:
608 case OP_FMA: {
609 i->op = OP_ADD;
610
611 /* Move the immediate to the second arg, otherwise the ADD operation
612 * won't be emittable
613 */
614 i->setSrc(1, i->getSrc(0));
615 i->setSrc(0, i->getSrc(2));
616 i->src(0).mod = i->src(2).mod;
617 i->setSrc(2, NULL);
618
619 ImmediateValue src0;
620 if (i->src(0).getImmediate(src0))
621 expr(i, src0, *i->getSrc(1)->asImm());
622 if (i->saturate && !prog->getTarget()->isSatSupported(i)) {
623 bld.setPosition(i, false);
624 i->setSrc(1, bld.loadImm(NULL, res.data.u32));
625 }
626 break;
627 }
628 case OP_PFETCH:
629 // Leave PFETCH alone... we just folded its 2 args into 1.
630 break;
631 default:
632 i->op = i->saturate ? OP_SAT : OP_MOV; /* SAT handled by unary() */
633 break;
634 }
635 i->subOp = 0;
636 }
637
638 void
639 ConstantFolding::expr(Instruction *i,
640 ImmediateValue &imm0,
641 ImmediateValue &imm1,
642 ImmediateValue &imm2)
643 {
644 struct Storage *const a = &imm0.reg, *const b = &imm1.reg, *const c = &imm2.reg;
645 struct Storage res;
646
647 memset(&res.data, 0, sizeof(res.data));
648
649 switch (i->op) {
650 case OP_INSBF: {
651 int offset = b->data.u32 & 0xff;
652 int width = (b->data.u32 >> 8) & 0xff;
653 unsigned bitmask = ((1 << width) - 1) << offset;
654 res.data.u32 = ((a->data.u32 << offset) & bitmask) | (c->data.u32 & ~bitmask);
655 break;
656 }
657 default:
658 return;
659 }
660
661 ++foldCount;
662 i->src(0).mod = Modifier(0);
663 i->src(1).mod = Modifier(0);
664 i->src(2).mod = Modifier(0);
665
666 i->setSrc(0, new_ImmediateValue(i->bb->getProgram(), res.data.u32));
667 i->setSrc(1, NULL);
668 i->setSrc(2, NULL);
669
670 i->getSrc(0)->reg.data = res.data;
671
672 i->op = OP_MOV;
673 }
674
675 void
676 ConstantFolding::unary(Instruction *i, const ImmediateValue &imm)
677 {
678 Storage res;
679
680 if (i->dType != TYPE_F32)
681 return;
682 switch (i->op) {
683 case OP_NEG: res.data.f32 = -imm.reg.data.f32; break;
684 case OP_ABS: res.data.f32 = fabsf(imm.reg.data.f32); break;
685 case OP_SAT: res.data.f32 = CLAMP(imm.reg.data.f32, 0.0f, 1.0f); break;
686 case OP_RCP: res.data.f32 = 1.0f / imm.reg.data.f32; break;
687 case OP_RSQ: res.data.f32 = 1.0f / sqrtf(imm.reg.data.f32); break;
688 case OP_LG2: res.data.f32 = log2f(imm.reg.data.f32); break;
689 case OP_EX2: res.data.f32 = exp2f(imm.reg.data.f32); break;
690 case OP_SIN: res.data.f32 = sinf(imm.reg.data.f32); break;
691 case OP_COS: res.data.f32 = cosf(imm.reg.data.f32); break;
692 case OP_SQRT: res.data.f32 = sqrtf(imm.reg.data.f32); break;
693 case OP_PRESIN:
694 case OP_PREEX2:
695 // these should be handled in subsequent OP_SIN/COS/EX2
696 res.data.f32 = imm.reg.data.f32;
697 break;
698 default:
699 return;
700 }
701 i->op = OP_MOV;
702 i->setSrc(0, new_ImmediateValue(i->bb->getProgram(), res.data.f32));
703 i->src(0).mod = Modifier(0);
704 }
705
706 void
707 ConstantFolding::tryCollapseChainedMULs(Instruction *mul2,
708 const int s, ImmediateValue& imm2)
709 {
710 const int t = s ? 0 : 1;
711 Instruction *insn;
712 Instruction *mul1 = NULL; // mul1 before mul2
713 int e = 0;
714 float f = imm2.reg.data.f32 * exp2f(mul2->postFactor);
715 ImmediateValue imm1;
716
717 assert(mul2->op == OP_MUL && mul2->dType == TYPE_F32);
718
719 if (mul2->getSrc(t)->refCount() == 1) {
720 insn = mul2->getSrc(t)->getInsn();
721 if (!mul2->src(t).mod && insn->op == OP_MUL && insn->dType == TYPE_F32)
722 mul1 = insn;
723 if (mul1 && !mul1->saturate) {
724 int s1;
725
726 if (mul1->src(s1 = 0).getImmediate(imm1) ||
727 mul1->src(s1 = 1).getImmediate(imm1)) {
728 bld.setPosition(mul1, false);
729 // a = mul r, imm1
730 // d = mul a, imm2 -> d = mul r, (imm1 * imm2)
731 mul1->setSrc(s1, bld.loadImm(NULL, f * imm1.reg.data.f32));
732 mul1->src(s1).mod = Modifier(0);
733 mul2->def(0).replace(mul1->getDef(0), false);
734 mul1->saturate = mul2->saturate;
735 } else
736 if (prog->getTarget()->isPostMultiplySupported(OP_MUL, f, e)) {
737 // c = mul a, b
738 // d = mul c, imm -> d = mul_x_imm a, b
739 mul1->postFactor = e;
740 mul2->def(0).replace(mul1->getDef(0), false);
741 if (f < 0)
742 mul1->src(0).mod *= Modifier(NV50_IR_MOD_NEG);
743 mul1->saturate = mul2->saturate;
744 }
745 return;
746 }
747 }
748 if (mul2->getDef(0)->refCount() == 1 && !mul2->saturate) {
749 // b = mul a, imm
750 // d = mul b, c -> d = mul_x_imm a, c
751 int s2, t2;
752 insn = (*mul2->getDef(0)->uses.begin())->getInsn();
753 if (!insn)
754 return;
755 mul1 = mul2;
756 mul2 = NULL;
757 s2 = insn->getSrc(0) == mul1->getDef(0) ? 0 : 1;
758 t2 = s2 ? 0 : 1;
759 if (insn->op == OP_MUL && insn->dType == TYPE_F32)
760 if (!insn->src(s2).mod && !insn->src(t2).getImmediate(imm1))
761 mul2 = insn;
762 if (mul2 && prog->getTarget()->isPostMultiplySupported(OP_MUL, f, e)) {
763 mul2->postFactor = e;
764 mul2->setSrc(s2, mul1->src(t));
765 if (f < 0)
766 mul2->src(s2).mod *= Modifier(NV50_IR_MOD_NEG);
767 }
768 }
769 }
770
771 void
772 ConstantFolding::opnd(Instruction *i, ImmediateValue &imm0, int s)
773 {
774 const int t = !s;
775 const operation op = i->op;
776 Instruction *newi = i;
777
778 switch (i->op) {
779 case OP_MUL:
780 if (i->dType == TYPE_F32)
781 tryCollapseChainedMULs(i, s, imm0);
782
783 if (i->subOp == NV50_IR_SUBOP_MUL_HIGH) {
784 assert(!isFloatType(i->sType));
785 if (imm0.isInteger(1) && i->dType == TYPE_S32) {
786 bld.setPosition(i, false);
787 // Need to set to the sign value, which is a compare.
788 newi = bld.mkCmp(OP_SET, CC_LT, TYPE_S32, i->getDef(0),
789 TYPE_S32, i->getSrc(t), bld.mkImm(0));
790 delete_Instruction(prog, i);
791 } else if (imm0.isInteger(0) || imm0.isInteger(1)) {
792 // The high bits can't be set in this case (either mul by 0 or
793 // unsigned by 1)
794 i->op = OP_MOV;
795 i->subOp = 0;
796 i->setSrc(0, new_ImmediateValue(prog, 0u));
797 i->src(0).mod = Modifier(0);
798 i->setSrc(1, NULL);
799 } else if (!imm0.isNegative() && imm0.isPow2()) {
800 // Translate into a shift
801 imm0.applyLog2();
802 i->op = OP_SHR;
803 i->subOp = 0;
804 imm0.reg.data.u32 = 32 - imm0.reg.data.u32;
805 i->setSrc(0, i->getSrc(t));
806 i->src(0).mod = i->src(t).mod;
807 i->setSrc(1, new_ImmediateValue(prog, imm0.reg.data.u32));
808 i->src(1).mod = 0;
809 }
810 } else
811 if (imm0.isInteger(0)) {
812 i->op = OP_MOV;
813 i->setSrc(0, new_ImmediateValue(prog, 0u));
814 i->src(0).mod = Modifier(0);
815 i->postFactor = 0;
816 i->setSrc(1, NULL);
817 } else
818 if (!i->postFactor && (imm0.isInteger(1) || imm0.isInteger(-1))) {
819 if (imm0.isNegative())
820 i->src(t).mod = i->src(t).mod ^ Modifier(NV50_IR_MOD_NEG);
821 i->op = i->src(t).mod.getOp();
822 if (s == 0) {
823 i->setSrc(0, i->getSrc(1));
824 i->src(0).mod = i->src(1).mod;
825 i->src(1).mod = 0;
826 }
827 if (i->op != OP_CVT)
828 i->src(0).mod = 0;
829 i->setSrc(1, NULL);
830 } else
831 if (!i->postFactor && (imm0.isInteger(2) || imm0.isInteger(-2))) {
832 if (imm0.isNegative())
833 i->src(t).mod = i->src(t).mod ^ Modifier(NV50_IR_MOD_NEG);
834 i->op = OP_ADD;
835 i->setSrc(s, i->getSrc(t));
836 i->src(s).mod = i->src(t).mod;
837 } else
838 if (!isFloatType(i->sType) && !imm0.isNegative() && imm0.isPow2()) {
839 i->op = OP_SHL;
840 imm0.applyLog2();
841 i->setSrc(0, i->getSrc(t));
842 i->src(0).mod = i->src(t).mod;
843 i->setSrc(1, new_ImmediateValue(prog, imm0.reg.data.u32));
844 i->src(1).mod = 0;
845 }
846 break;
847 case OP_MAD:
848 if (imm0.isInteger(0)) {
849 i->setSrc(0, i->getSrc(2));
850 i->src(0).mod = i->src(2).mod;
851 i->setSrc(1, NULL);
852 i->setSrc(2, NULL);
853 i->op = i->src(0).mod.getOp();
854 if (i->op != OP_CVT)
855 i->src(0).mod = 0;
856 } else
857 if (imm0.isInteger(1) || imm0.isInteger(-1)) {
858 if (imm0.isNegative())
859 i->src(t).mod = i->src(t).mod ^ Modifier(NV50_IR_MOD_NEG);
860 if (s == 0) {
861 i->setSrc(0, i->getSrc(1));
862 i->src(0).mod = i->src(1).mod;
863 }
864 i->setSrc(1, i->getSrc(2));
865 i->src(1).mod = i->src(2).mod;
866 i->setSrc(2, NULL);
867 i->op = OP_ADD;
868 }
869 break;
870 case OP_ADD:
871 if (i->usesFlags())
872 break;
873 if (imm0.isInteger(0)) {
874 if (s == 0) {
875 i->setSrc(0, i->getSrc(1));
876 i->src(0).mod = i->src(1).mod;
877 }
878 i->setSrc(1, NULL);
879 i->op = i->src(0).mod.getOp();
880 if (i->op != OP_CVT)
881 i->src(0).mod = Modifier(0);
882 }
883 break;
884
885 case OP_DIV:
886 if (s != 1 || (i->dType != TYPE_S32 && i->dType != TYPE_U32))
887 break;
888 bld.setPosition(i, false);
889 if (imm0.reg.data.u32 == 0) {
890 break;
891 } else
892 if (imm0.reg.data.u32 == 1) {
893 i->op = OP_MOV;
894 i->setSrc(1, NULL);
895 } else
896 if (i->dType == TYPE_U32 && imm0.isPow2()) {
897 i->op = OP_SHR;
898 i->setSrc(1, bld.mkImm(util_logbase2(imm0.reg.data.u32)));
899 } else
900 if (i->dType == TYPE_U32) {
901 Instruction *mul;
902 Value *tA, *tB;
903 const uint32_t d = imm0.reg.data.u32;
904 uint32_t m;
905 int r, s;
906 uint32_t l = util_logbase2(d);
907 if (((uint32_t)1 << l) < d)
908 ++l;
909 m = (((uint64_t)1 << 32) * (((uint64_t)1 << l) - d)) / d + 1;
910 r = l ? 1 : 0;
911 s = l ? (l - 1) : 0;
912
913 tA = bld.getSSA();
914 tB = bld.getSSA();
915 mul = bld.mkOp2(OP_MUL, TYPE_U32, tA, i->getSrc(0),
916 bld.loadImm(NULL, m));
917 mul->subOp = NV50_IR_SUBOP_MUL_HIGH;
918 bld.mkOp2(OP_SUB, TYPE_U32, tB, i->getSrc(0), tA);
919 tA = bld.getSSA();
920 if (r)
921 bld.mkOp2(OP_SHR, TYPE_U32, tA, tB, bld.mkImm(r));
922 else
923 tA = tB;
924 tB = s ? bld.getSSA() : i->getDef(0);
925 newi = bld.mkOp2(OP_ADD, TYPE_U32, tB, mul->getDef(0), tA);
926 if (s)
927 bld.mkOp2(OP_SHR, TYPE_U32, i->getDef(0), tB, bld.mkImm(s));
928
929 delete_Instruction(prog, i);
930 } else
931 if (imm0.reg.data.s32 == -1) {
932 i->op = OP_NEG;
933 i->setSrc(1, NULL);
934 } else {
935 LValue *tA, *tB;
936 LValue *tD;
937 const int32_t d = imm0.reg.data.s32;
938 int32_t m;
939 int32_t l = util_logbase2(static_cast<unsigned>(abs(d)));
940 if ((1 << l) < abs(d))
941 ++l;
942 if (!l)
943 l = 1;
944 m = ((uint64_t)1 << (32 + l - 1)) / abs(d) + 1 - ((uint64_t)1 << 32);
945
946 tA = bld.getSSA();
947 tB = bld.getSSA();
948 bld.mkOp3(OP_MAD, TYPE_S32, tA, i->getSrc(0), bld.loadImm(NULL, m),
949 i->getSrc(0))->subOp = NV50_IR_SUBOP_MUL_HIGH;
950 if (l > 1)
951 bld.mkOp2(OP_SHR, TYPE_S32, tB, tA, bld.mkImm(l - 1));
952 else
953 tB = tA;
954 tA = bld.getSSA();
955 bld.mkCmp(OP_SET, CC_LT, TYPE_S32, tA, TYPE_S32, i->getSrc(0), bld.mkImm(0));
956 tD = (d < 0) ? bld.getSSA() : i->getDef(0)->asLValue();
957 newi = bld.mkOp2(OP_SUB, TYPE_U32, tD, tB, tA);
958 if (d < 0)
959 bld.mkOp1(OP_NEG, TYPE_S32, i->getDef(0), tB);
960
961 delete_Instruction(prog, i);
962 }
963 break;
964
965 case OP_MOD:
966 if (i->sType == TYPE_U32 && imm0.isPow2()) {
967 bld.setPosition(i, false);
968 i->op = OP_AND;
969 i->setSrc(1, bld.loadImm(NULL, imm0.reg.data.u32 - 1));
970 }
971 break;
972
973 case OP_SET: // TODO: SET_AND,OR,XOR
974 {
975 /* This optimizes the case where the output of a set is being compared
976 * to zero. Since the set can only produce 0/-1 (int) or 0/1 (float), we
977 * can be a lot cleverer in our comparison.
978 */
979 CmpInstruction *si = findOriginForTestWithZero(i->getSrc(t));
980 CondCode cc, ccZ;
981 if (imm0.reg.data.u32 != 0 || !si)
982 return;
983 cc = si->setCond;
984 ccZ = (CondCode)((unsigned int)i->asCmp()->setCond & ~CC_U);
985 // We do everything assuming var (cmp) 0, reverse the condition if 0 is
986 // first.
987 if (s == 0)
988 ccZ = reverseCondCode(ccZ);
989 // If there is a negative modifier, we need to undo that, by flipping
990 // the comparison to zero.
991 if (i->src(t).mod.neg())
992 ccZ = reverseCondCode(ccZ);
993 // If this is a signed comparison, we expect the input to be a regular
994 // boolean, i.e. 0/-1. However the rest of the logic assumes that true
995 // is positive, so just flip the sign.
996 if (i->sType == TYPE_S32) {
997 assert(!isFloatType(si->dType));
998 ccZ = reverseCondCode(ccZ);
999 }
1000 switch (ccZ) {
1001 case CC_LT: cc = CC_FL; break; // bool < 0 -- this is never true
1002 case CC_GE: cc = CC_TR; break; // bool >= 0 -- this is always true
1003 case CC_EQ: cc = inverseCondCode(cc); break; // bool == 0 -- !bool
1004 case CC_LE: cc = inverseCondCode(cc); break; // bool <= 0 -- !bool
1005 case CC_GT: break; // bool > 0 -- bool
1006 case CC_NE: break; // bool != 0 -- bool
1007 default:
1008 return;
1009 }
1010
1011 // Update the condition of this SET to be identical to the origin set,
1012 // but with the updated condition code. The original SET should get
1013 // DCE'd, ideally.
1014 i->op = si->op;
1015 i->asCmp()->setCond = cc;
1016 i->setSrc(0, si->src(0));
1017 i->setSrc(1, si->src(1));
1018 if (si->srcExists(2))
1019 i->setSrc(2, si->src(2));
1020 i->sType = si->sType;
1021 }
1022 break;
1023
1024 case OP_AND:
1025 {
1026 CmpInstruction *cmp = i->getSrc(t)->getInsn()->asCmp();
1027 if (!cmp || cmp->op == OP_SLCT || cmp->getDef(0)->refCount() > 1)
1028 return;
1029 if (!prog->getTarget()->isOpSupported(cmp->op, TYPE_F32))
1030 return;
1031 if (imm0.reg.data.f32 != 1.0)
1032 return;
1033 if (i->getSrc(t)->getInsn()->dType != TYPE_U32)
1034 return;
1035
1036 i->getSrc(t)->getInsn()->dType = TYPE_F32;
1037 if (i->src(t).mod != Modifier(0)) {
1038 assert(i->src(t).mod == Modifier(NV50_IR_MOD_NOT));
1039 i->src(t).mod = Modifier(0);
1040 cmp->setCond = inverseCondCode(cmp->setCond);
1041 }
1042 i->op = OP_MOV;
1043 i->setSrc(s, NULL);
1044 if (t) {
1045 i->setSrc(0, i->getSrc(t));
1046 i->setSrc(t, NULL);
1047 }
1048 }
1049 break;
1050
1051 case OP_SHL:
1052 {
1053 if (s != 1 || i->src(0).mod != Modifier(0))
1054 break;
1055 // try to concatenate shifts
1056 Instruction *si = i->getSrc(0)->getInsn();
1057 if (!si || si->op != OP_SHL)
1058 break;
1059 ImmediateValue imm1;
1060 if (si->src(1).getImmediate(imm1)) {
1061 bld.setPosition(i, false);
1062 i->setSrc(0, si->getSrc(0));
1063 i->setSrc(1, bld.loadImm(NULL, imm0.reg.data.u32 + imm1.reg.data.u32));
1064 }
1065 }
1066 break;
1067
1068 case OP_ABS:
1069 case OP_NEG:
1070 case OP_SAT:
1071 case OP_LG2:
1072 case OP_RCP:
1073 case OP_SQRT:
1074 case OP_RSQ:
1075 case OP_PRESIN:
1076 case OP_SIN:
1077 case OP_COS:
1078 case OP_PREEX2:
1079 case OP_EX2:
1080 unary(i, imm0);
1081 break;
1082 case OP_BFIND: {
1083 int32_t res;
1084 switch (i->dType) {
1085 case TYPE_S32: res = util_last_bit_signed(imm0.reg.data.s32) - 1; break;
1086 case TYPE_U32: res = util_last_bit(imm0.reg.data.u32) - 1; break;
1087 default:
1088 return;
1089 }
1090 if (i->subOp == NV50_IR_SUBOP_BFIND_SAMT && res >= 0)
1091 res = 31 - res;
1092 bld.setPosition(i, false); /* make sure bld is init'ed */
1093 i->setSrc(0, bld.mkImm(res));
1094 i->setSrc(1, NULL);
1095 i->op = OP_MOV;
1096 i->subOp = 0;
1097 break;
1098 }
1099 case OP_POPCNT: {
1100 // Only deal with 1-arg POPCNT here
1101 if (i->srcExists(1))
1102 break;
1103 uint32_t res = util_bitcount(imm0.reg.data.u32);
1104 i->setSrc(0, new_ImmediateValue(i->bb->getProgram(), res));
1105 i->setSrc(1, NULL);
1106 i->op = OP_MOV;
1107 break;
1108 }
1109 default:
1110 return;
1111 }
1112 if (newi->op != op)
1113 foldCount++;
1114 }
1115
1116 // =============================================================================
1117
1118 // Merge modifier operations (ABS, NEG, NOT) into ValueRefs where allowed.
1119 class ModifierFolding : public Pass
1120 {
1121 private:
1122 virtual bool visit(BasicBlock *);
1123 };
1124
1125 bool
1126 ModifierFolding::visit(BasicBlock *bb)
1127 {
1128 const Target *target = prog->getTarget();
1129
1130 Instruction *i, *next, *mi;
1131 Modifier mod;
1132
1133 for (i = bb->getEntry(); i; i = next) {
1134 next = i->next;
1135
1136 if (0 && i->op == OP_SUB) {
1137 // turn "sub" into "add neg" (do we really want this ?)
1138 i->op = OP_ADD;
1139 i->src(0).mod = i->src(0).mod ^ Modifier(NV50_IR_MOD_NEG);
1140 }
1141
1142 for (int s = 0; s < 3 && i->srcExists(s); ++s) {
1143 mi = i->getSrc(s)->getInsn();
1144 if (!mi ||
1145 mi->predSrc >= 0 || mi->getDef(0)->refCount() > 8)
1146 continue;
1147 if (i->sType == TYPE_U32 && mi->dType == TYPE_S32) {
1148 if ((i->op != OP_ADD &&
1149 i->op != OP_MUL) ||
1150 (mi->op != OP_ABS &&
1151 mi->op != OP_NEG))
1152 continue;
1153 } else
1154 if (i->sType != mi->dType) {
1155 continue;
1156 }
1157 if ((mod = Modifier(mi->op)) == Modifier(0))
1158 continue;
1159 mod *= mi->src(0).mod;
1160
1161 if ((i->op == OP_ABS) || i->src(s).mod.abs()) {
1162 // abs neg [abs] = abs
1163 mod = mod & Modifier(~(NV50_IR_MOD_NEG | NV50_IR_MOD_ABS));
1164 } else
1165 if ((i->op == OP_NEG) && mod.neg()) {
1166 assert(s == 0);
1167 // neg as both opcode and modifier on same insn is prohibited
1168 // neg neg abs = abs, neg neg = identity
1169 mod = mod & Modifier(~NV50_IR_MOD_NEG);
1170 i->op = mod.getOp();
1171 mod = mod & Modifier(~NV50_IR_MOD_ABS);
1172 if (mod == Modifier(0))
1173 i->op = OP_MOV;
1174 }
1175
1176 if (target->isModSupported(i, s, mod)) {
1177 i->setSrc(s, mi->getSrc(0));
1178 i->src(s).mod *= mod;
1179 }
1180 }
1181
1182 if (i->op == OP_SAT) {
1183 mi = i->getSrc(0)->getInsn();
1184 if (mi &&
1185 mi->getDef(0)->refCount() <= 1 && target->isSatSupported(mi)) {
1186 mi->saturate = 1;
1187 mi->setDef(0, i->getDef(0));
1188 delete_Instruction(prog, i);
1189 }
1190 }
1191 }
1192
1193 return true;
1194 }
1195
1196 // =============================================================================
1197
1198 // MUL + ADD -> MAD/FMA
1199 // MIN/MAX(a, a) -> a, etc.
1200 // SLCT(a, b, const) -> cc(const) ? a : b
1201 // RCP(RCP(a)) -> a
1202 // MUL(MUL(a, b), const) -> MUL_Xconst(a, b)
1203 class AlgebraicOpt : public Pass
1204 {
1205 private:
1206 virtual bool visit(BasicBlock *);
1207
1208 void handleABS(Instruction *);
1209 bool handleADD(Instruction *);
1210 bool tryADDToMADOrSAD(Instruction *, operation toOp);
1211 void handleMINMAX(Instruction *);
1212 void handleRCP(Instruction *);
1213 void handleSLCT(Instruction *);
1214 void handleLOGOP(Instruction *);
1215 void handleCVT(Instruction *);
1216 void handleSUCLAMP(Instruction *);
1217
1218 BuildUtil bld;
1219 };
1220
1221 void
1222 AlgebraicOpt::handleABS(Instruction *abs)
1223 {
1224 Instruction *sub = abs->getSrc(0)->getInsn();
1225 DataType ty;
1226 if (!sub ||
1227 !prog->getTarget()->isOpSupported(OP_SAD, abs->dType))
1228 return;
1229 // expect not to have mods yet, if we do, bail
1230 if (sub->src(0).mod || sub->src(1).mod)
1231 return;
1232 // hidden conversion ?
1233 ty = intTypeToSigned(sub->dType);
1234 if (abs->dType != abs->sType || ty != abs->sType)
1235 return;
1236
1237 if ((sub->op != OP_ADD && sub->op != OP_SUB) ||
1238 sub->src(0).getFile() != FILE_GPR || sub->src(0).mod ||
1239 sub->src(1).getFile() != FILE_GPR || sub->src(1).mod)
1240 return;
1241
1242 Value *src0 = sub->getSrc(0);
1243 Value *src1 = sub->getSrc(1);
1244
1245 if (sub->op == OP_ADD) {
1246 Instruction *neg = sub->getSrc(1)->getInsn();
1247 if (neg && neg->op != OP_NEG) {
1248 neg = sub->getSrc(0)->getInsn();
1249 src0 = sub->getSrc(1);
1250 }
1251 if (!neg || neg->op != OP_NEG ||
1252 neg->dType != neg->sType || neg->sType != ty)
1253 return;
1254 src1 = neg->getSrc(0);
1255 }
1256
1257 // found ABS(SUB))
1258 abs->moveSources(1, 2); // move sources >=1 up by 2
1259 abs->op = OP_SAD;
1260 abs->setType(sub->dType);
1261 abs->setSrc(0, src0);
1262 abs->setSrc(1, src1);
1263 bld.setPosition(abs, false);
1264 abs->setSrc(2, bld.loadImm(bld.getSSA(typeSizeof(ty)), 0));
1265 }
1266
1267 bool
1268 AlgebraicOpt::handleADD(Instruction *add)
1269 {
1270 Value *src0 = add->getSrc(0);
1271 Value *src1 = add->getSrc(1);
1272
1273 if (src0->reg.file != FILE_GPR || src1->reg.file != FILE_GPR)
1274 return false;
1275
1276 bool changed = false;
1277 if (!changed && prog->getTarget()->isOpSupported(OP_MAD, add->dType))
1278 changed = tryADDToMADOrSAD(add, OP_MAD);
1279 if (!changed && prog->getTarget()->isOpSupported(OP_SAD, add->dType))
1280 changed = tryADDToMADOrSAD(add, OP_SAD);
1281 return changed;
1282 }
1283
1284 // ADD(SAD(a,b,0), c) -> SAD(a,b,c)
1285 // ADD(MUL(a,b), c) -> MAD(a,b,c)
1286 bool
1287 AlgebraicOpt::tryADDToMADOrSAD(Instruction *add, operation toOp)
1288 {
1289 Value *src0 = add->getSrc(0);
1290 Value *src1 = add->getSrc(1);
1291 Value *src;
1292 int s;
1293 const operation srcOp = toOp == OP_SAD ? OP_SAD : OP_MUL;
1294 const Modifier modBad = Modifier(~((toOp == OP_MAD) ? NV50_IR_MOD_NEG : 0));
1295 Modifier mod[4];
1296
1297 if (src0->refCount() == 1 &&
1298 src0->getUniqueInsn() && src0->getUniqueInsn()->op == srcOp)
1299 s = 0;
1300 else
1301 if (src1->refCount() == 1 &&
1302 src1->getUniqueInsn() && src1->getUniqueInsn()->op == srcOp)
1303 s = 1;
1304 else
1305 return false;
1306
1307 if ((src0->getUniqueInsn() && src0->getUniqueInsn()->bb != add->bb) ||
1308 (src1->getUniqueInsn() && src1->getUniqueInsn()->bb != add->bb))
1309 return false;
1310
1311 src = add->getSrc(s);
1312
1313 if (src->getInsn()->postFactor)
1314 return false;
1315 if (toOp == OP_SAD) {
1316 ImmediateValue imm;
1317 if (!src->getInsn()->src(2).getImmediate(imm))
1318 return false;
1319 if (!imm.isInteger(0))
1320 return false;
1321 }
1322
1323 mod[0] = add->src(0).mod;
1324 mod[1] = add->src(1).mod;
1325 mod[2] = src->getUniqueInsn()->src(0).mod;
1326 mod[3] = src->getUniqueInsn()->src(1).mod;
1327
1328 if (((mod[0] | mod[1]) | (mod[2] | mod[3])) & modBad)
1329 return false;
1330
1331 add->op = toOp;
1332 add->subOp = src->getInsn()->subOp; // potentially mul-high
1333
1334 add->setSrc(2, add->src(s ? 0 : 1));
1335
1336 add->setSrc(0, src->getInsn()->getSrc(0));
1337 add->src(0).mod = mod[2] ^ mod[s];
1338 add->setSrc(1, src->getInsn()->getSrc(1));
1339 add->src(1).mod = mod[3];
1340
1341 return true;
1342 }
1343
1344 void
1345 AlgebraicOpt::handleMINMAX(Instruction *minmax)
1346 {
1347 Value *src0 = minmax->getSrc(0);
1348 Value *src1 = minmax->getSrc(1);
1349
1350 if (src0 != src1 || src0->reg.file != FILE_GPR)
1351 return;
1352 if (minmax->src(0).mod == minmax->src(1).mod) {
1353 if (minmax->def(0).mayReplace(minmax->src(0))) {
1354 minmax->def(0).replace(minmax->src(0), false);
1355 minmax->bb->remove(minmax);
1356 } else {
1357 minmax->op = OP_CVT;
1358 minmax->setSrc(1, NULL);
1359 }
1360 } else {
1361 // TODO:
1362 // min(x, -x) = -abs(x)
1363 // min(x, -abs(x)) = -abs(x)
1364 // min(x, abs(x)) = x
1365 // max(x, -abs(x)) = x
1366 // max(x, abs(x)) = abs(x)
1367 // max(x, -x) = abs(x)
1368 }
1369 }
1370
1371 void
1372 AlgebraicOpt::handleRCP(Instruction *rcp)
1373 {
1374 Instruction *si = rcp->getSrc(0)->getUniqueInsn();
1375
1376 if (si && si->op == OP_RCP) {
1377 Modifier mod = rcp->src(0).mod * si->src(0).mod;
1378 rcp->op = mod.getOp();
1379 rcp->setSrc(0, si->getSrc(0));
1380 }
1381 }
1382
1383 void
1384 AlgebraicOpt::handleSLCT(Instruction *slct)
1385 {
1386 if (slct->getSrc(2)->reg.file == FILE_IMMEDIATE) {
1387 if (slct->getSrc(2)->asImm()->compare(slct->asCmp()->setCond, 0.0f))
1388 slct->setSrc(0, slct->getSrc(1));
1389 } else
1390 if (slct->getSrc(0) != slct->getSrc(1)) {
1391 return;
1392 }
1393 slct->op = OP_MOV;
1394 slct->setSrc(1, NULL);
1395 slct->setSrc(2, NULL);
1396 }
1397
1398 void
1399 AlgebraicOpt::handleLOGOP(Instruction *logop)
1400 {
1401 Value *src0 = logop->getSrc(0);
1402 Value *src1 = logop->getSrc(1);
1403
1404 if (src0->reg.file != FILE_GPR || src1->reg.file != FILE_GPR)
1405 return;
1406
1407 if (src0 == src1) {
1408 if ((logop->op == OP_AND || logop->op == OP_OR) &&
1409 logop->def(0).mayReplace(logop->src(0))) {
1410 logop->def(0).replace(logop->src(0), false);
1411 delete_Instruction(prog, logop);
1412 }
1413 } else {
1414 // try AND(SET, SET) -> SET_AND(SET)
1415 Instruction *set0 = src0->getInsn();
1416 Instruction *set1 = src1->getInsn();
1417
1418 if (!set0 || set0->fixed || !set1 || set1->fixed)
1419 return;
1420 if (set1->op != OP_SET) {
1421 Instruction *xchg = set0;
1422 set0 = set1;
1423 set1 = xchg;
1424 if (set1->op != OP_SET)
1425 return;
1426 }
1427 operation redOp = (logop->op == OP_AND ? OP_SET_AND :
1428 logop->op == OP_XOR ? OP_SET_XOR : OP_SET_OR);
1429 if (!prog->getTarget()->isOpSupported(redOp, set1->sType))
1430 return;
1431 if (set0->op != OP_SET &&
1432 set0->op != OP_SET_AND &&
1433 set0->op != OP_SET_OR &&
1434 set0->op != OP_SET_XOR)
1435 return;
1436 if (set0->getDef(0)->refCount() > 1 &&
1437 set1->getDef(0)->refCount() > 1)
1438 return;
1439 if (set0->getPredicate() || set1->getPredicate())
1440 return;
1441 // check that they don't source each other
1442 for (int s = 0; s < 2; ++s)
1443 if (set0->getSrc(s) == set1->getDef(0) ||
1444 set1->getSrc(s) == set0->getDef(0))
1445 return;
1446
1447 set0 = cloneForward(func, set0);
1448 set1 = cloneShallow(func, set1);
1449 logop->bb->insertAfter(logop, set1);
1450 logop->bb->insertAfter(logop, set0);
1451
1452 set0->dType = TYPE_U8;
1453 set0->getDef(0)->reg.file = FILE_PREDICATE;
1454 set0->getDef(0)->reg.size = 1;
1455 set1->setSrc(2, set0->getDef(0));
1456 set1->op = redOp;
1457 set1->setDef(0, logop->getDef(0));
1458 delete_Instruction(prog, logop);
1459 }
1460 }
1461
1462 // F2I(NEG(SET with result 1.0f/0.0f)) -> SET with result -1/0
1463 // nv50:
1464 // F2I(NEG(I2F(ABS(SET))))
1465 void
1466 AlgebraicOpt::handleCVT(Instruction *cvt)
1467 {
1468 if (cvt->sType != TYPE_F32 ||
1469 cvt->dType != TYPE_S32 || cvt->src(0).mod != Modifier(0))
1470 return;
1471 Instruction *insn = cvt->getSrc(0)->getInsn();
1472 if (!insn || insn->op != OP_NEG || insn->dType != TYPE_F32)
1473 return;
1474 if (insn->src(0).mod != Modifier(0))
1475 return;
1476 insn = insn->getSrc(0)->getInsn();
1477
1478 // check for nv50 SET(-1,0) -> SET(1.0f/0.0f) chain and nvc0's f32 SET
1479 if (insn && insn->op == OP_CVT &&
1480 insn->dType == TYPE_F32 &&
1481 insn->sType == TYPE_S32) {
1482 insn = insn->getSrc(0)->getInsn();
1483 if (!insn || insn->op != OP_ABS || insn->sType != TYPE_S32 ||
1484 insn->src(0).mod)
1485 return;
1486 insn = insn->getSrc(0)->getInsn();
1487 if (!insn || insn->op != OP_SET || insn->dType != TYPE_U32)
1488 return;
1489 } else
1490 if (!insn || insn->op != OP_SET || insn->dType != TYPE_F32) {
1491 return;
1492 }
1493
1494 Instruction *bset = cloneShallow(func, insn);
1495 bset->dType = TYPE_U32;
1496 bset->setDef(0, cvt->getDef(0));
1497 cvt->bb->insertAfter(cvt, bset);
1498 delete_Instruction(prog, cvt);
1499 }
1500
1501 // SUCLAMP dst, (ADD b imm), k, 0 -> SUCLAMP dst, b, k, imm (if imm fits s6)
1502 void
1503 AlgebraicOpt::handleSUCLAMP(Instruction *insn)
1504 {
1505 ImmediateValue imm;
1506 int32_t val = insn->getSrc(2)->asImm()->reg.data.s32;
1507 int s;
1508 Instruction *add;
1509
1510 assert(insn->srcExists(0) && insn->src(0).getFile() == FILE_GPR);
1511
1512 // look for ADD (TODO: only count references by non-SUCLAMP)
1513 if (insn->getSrc(0)->refCount() > 1)
1514 return;
1515 add = insn->getSrc(0)->getInsn();
1516 if (!add || add->op != OP_ADD ||
1517 (add->dType != TYPE_U32 &&
1518 add->dType != TYPE_S32))
1519 return;
1520
1521 // look for immediate
1522 for (s = 0; s < 2; ++s)
1523 if (add->src(s).getImmediate(imm))
1524 break;
1525 if (s >= 2)
1526 return;
1527 s = s ? 0 : 1;
1528 // determine if immediate fits
1529 val += imm.reg.data.s32;
1530 if (val > 31 || val < -32)
1531 return;
1532 // determine if other addend fits
1533 if (add->src(s).getFile() != FILE_GPR || add->src(s).mod != Modifier(0))
1534 return;
1535
1536 bld.setPosition(insn, false); // make sure bld is init'ed
1537 // replace sources
1538 insn->setSrc(2, bld.mkImm(val));
1539 insn->setSrc(0, add->getSrc(s));
1540 }
1541
1542 bool
1543 AlgebraicOpt::visit(BasicBlock *bb)
1544 {
1545 Instruction *next;
1546 for (Instruction *i = bb->getEntry(); i; i = next) {
1547 next = i->next;
1548 switch (i->op) {
1549 case OP_ABS:
1550 handleABS(i);
1551 break;
1552 case OP_ADD:
1553 handleADD(i);
1554 break;
1555 case OP_RCP:
1556 handleRCP(i);
1557 break;
1558 case OP_MIN:
1559 case OP_MAX:
1560 handleMINMAX(i);
1561 break;
1562 case OP_SLCT:
1563 handleSLCT(i);
1564 break;
1565 case OP_AND:
1566 case OP_OR:
1567 case OP_XOR:
1568 handleLOGOP(i);
1569 break;
1570 case OP_CVT:
1571 handleCVT(i);
1572 break;
1573 case OP_SUCLAMP:
1574 handleSUCLAMP(i);
1575 break;
1576 default:
1577 break;
1578 }
1579 }
1580
1581 return true;
1582 }
1583
1584 // =============================================================================
1585
1586 static inline void
1587 updateLdStOffset(Instruction *ldst, int32_t offset, Function *fn)
1588 {
1589 if (offset != ldst->getSrc(0)->reg.data.offset) {
1590 if (ldst->getSrc(0)->refCount() > 1)
1591 ldst->setSrc(0, cloneShallow(fn, ldst->getSrc(0)));
1592 ldst->getSrc(0)->reg.data.offset = offset;
1593 }
1594 }
1595
1596 // Combine loads and stores, forward stores to loads where possible.
1597 class MemoryOpt : public Pass
1598 {
1599 private:
1600 class Record
1601 {
1602 public:
1603 Record *next;
1604 Instruction *insn;
1605 const Value *rel[2];
1606 const Value *base;
1607 int32_t offset;
1608 int8_t fileIndex;
1609 uint8_t size;
1610 bool locked;
1611 Record *prev;
1612
1613 bool overlaps(const Instruction *ldst) const;
1614
1615 inline void link(Record **);
1616 inline void unlink(Record **);
1617 inline void set(const Instruction *ldst);
1618 };
1619
1620 public:
1621 MemoryOpt();
1622
1623 Record *loads[DATA_FILE_COUNT];
1624 Record *stores[DATA_FILE_COUNT];
1625
1626 MemoryPool recordPool;
1627
1628 private:
1629 virtual bool visit(BasicBlock *);
1630 bool runOpt(BasicBlock *);
1631
1632 Record **getList(const Instruction *);
1633
1634 Record *findRecord(const Instruction *, bool load, bool& isAdjacent) const;
1635
1636 // merge @insn into load/store instruction from @rec
1637 bool combineLd(Record *rec, Instruction *ld);
1638 bool combineSt(Record *rec, Instruction *st);
1639
1640 bool replaceLdFromLd(Instruction *ld, Record *ldRec);
1641 bool replaceLdFromSt(Instruction *ld, Record *stRec);
1642 bool replaceStFromSt(Instruction *restrict st, Record *stRec);
1643
1644 void addRecord(Instruction *ldst);
1645 void purgeRecords(Instruction *const st, DataFile);
1646 void lockStores(Instruction *const ld);
1647 void reset();
1648
1649 private:
1650 Record *prevRecord;
1651 };
1652
1653 MemoryOpt::MemoryOpt() : recordPool(sizeof(MemoryOpt::Record), 6)
1654 {
1655 for (int i = 0; i < DATA_FILE_COUNT; ++i) {
1656 loads[i] = NULL;
1657 stores[i] = NULL;
1658 }
1659 prevRecord = NULL;
1660 }
1661
1662 void
1663 MemoryOpt::reset()
1664 {
1665 for (unsigned int i = 0; i < DATA_FILE_COUNT; ++i) {
1666 Record *it, *next;
1667 for (it = loads[i]; it; it = next) {
1668 next = it->next;
1669 recordPool.release(it);
1670 }
1671 loads[i] = NULL;
1672 for (it = stores[i]; it; it = next) {
1673 next = it->next;
1674 recordPool.release(it);
1675 }
1676 stores[i] = NULL;
1677 }
1678 }
1679
1680 bool
1681 MemoryOpt::combineLd(Record *rec, Instruction *ld)
1682 {
1683 int32_t offRc = rec->offset;
1684 int32_t offLd = ld->getSrc(0)->reg.data.offset;
1685 int sizeRc = rec->size;
1686 int sizeLd = typeSizeof(ld->dType);
1687 int size = sizeRc + sizeLd;
1688 int d, j;
1689
1690 if (!prog->getTarget()->
1691 isAccessSupported(ld->getSrc(0)->reg.file, typeOfSize(size)))
1692 return false;
1693 // no unaligned loads
1694 if (((size == 0x8) && (MIN2(offLd, offRc) & 0x7)) ||
1695 ((size == 0xc) && (MIN2(offLd, offRc) & 0xf)))
1696 return false;
1697
1698 assert(sizeRc + sizeLd <= 16 && offRc != offLd);
1699
1700 for (j = 0; sizeRc; sizeRc -= rec->insn->getDef(j)->reg.size, ++j);
1701
1702 if (offLd < offRc) {
1703 int sz;
1704 for (sz = 0, d = 0; sz < sizeLd; sz += ld->getDef(d)->reg.size, ++d);
1705 // d: nr of definitions in ld
1706 // j: nr of definitions in rec->insn, move:
1707 for (d = d + j - 1; j > 0; --j, --d)
1708 rec->insn->setDef(d, rec->insn->getDef(j - 1));
1709
1710 if (rec->insn->getSrc(0)->refCount() > 1)
1711 rec->insn->setSrc(0, cloneShallow(func, rec->insn->getSrc(0)));
1712 rec->offset = rec->insn->getSrc(0)->reg.data.offset = offLd;
1713
1714 d = 0;
1715 } else {
1716 d = j;
1717 }
1718 // move definitions of @ld to @rec->insn
1719 for (j = 0; sizeLd; ++j, ++d) {
1720 sizeLd -= ld->getDef(j)->reg.size;
1721 rec->insn->setDef(d, ld->getDef(j));
1722 }
1723
1724 rec->size = size;
1725 rec->insn->getSrc(0)->reg.size = size;
1726 rec->insn->setType(typeOfSize(size));
1727
1728 delete_Instruction(prog, ld);
1729
1730 return true;
1731 }
1732
1733 bool
1734 MemoryOpt::combineSt(Record *rec, Instruction *st)
1735 {
1736 int32_t offRc = rec->offset;
1737 int32_t offSt = st->getSrc(0)->reg.data.offset;
1738 int sizeRc = rec->size;
1739 int sizeSt = typeSizeof(st->dType);
1740 int s = sizeSt / 4;
1741 int size = sizeRc + sizeSt;
1742 int j, k;
1743 Value *src[4]; // no modifiers in ValueRef allowed for st
1744 Value *extra[3];
1745
1746 if (!prog->getTarget()->
1747 isAccessSupported(st->getSrc(0)->reg.file, typeOfSize(size)))
1748 return false;
1749 if (size == 8 && MIN2(offRc, offSt) & 0x7)
1750 return false;
1751
1752 st->takeExtraSources(0, extra); // save predicate and indirect address
1753
1754 if (offRc < offSt) {
1755 // save values from @st
1756 for (s = 0; sizeSt; ++s) {
1757 sizeSt -= st->getSrc(s + 1)->reg.size;
1758 src[s] = st->getSrc(s + 1);
1759 }
1760 // set record's values as low sources of @st
1761 for (j = 1; sizeRc; ++j) {
1762 sizeRc -= rec->insn->getSrc(j)->reg.size;
1763 st->setSrc(j, rec->insn->getSrc(j));
1764 }
1765 // set saved values as high sources of @st
1766 for (k = j, j = 0; j < s; ++j)
1767 st->setSrc(k++, src[j]);
1768
1769 updateLdStOffset(st, offRc, func);
1770 } else {
1771 for (j = 1; sizeSt; ++j)
1772 sizeSt -= st->getSrc(j)->reg.size;
1773 for (s = 1; sizeRc; ++j, ++s) {
1774 sizeRc -= rec->insn->getSrc(s)->reg.size;
1775 st->setSrc(j, rec->insn->getSrc(s));
1776 }
1777 rec->offset = offSt;
1778 }
1779 st->putExtraSources(0, extra); // restore pointer and predicate
1780
1781 delete_Instruction(prog, rec->insn);
1782 rec->insn = st;
1783 rec->size = size;
1784 rec->insn->getSrc(0)->reg.size = size;
1785 rec->insn->setType(typeOfSize(size));
1786 return true;
1787 }
1788
1789 void
1790 MemoryOpt::Record::set(const Instruction *ldst)
1791 {
1792 const Symbol *mem = ldst->getSrc(0)->asSym();
1793 fileIndex = mem->reg.fileIndex;
1794 rel[0] = ldst->getIndirect(0, 0);
1795 rel[1] = ldst->getIndirect(0, 1);
1796 offset = mem->reg.data.offset;
1797 base = mem->getBase();
1798 size = typeSizeof(ldst->sType);
1799 }
1800
1801 void
1802 MemoryOpt::Record::link(Record **list)
1803 {
1804 next = *list;
1805 if (next)
1806 next->prev = this;
1807 prev = NULL;
1808 *list = this;
1809 }
1810
1811 void
1812 MemoryOpt::Record::unlink(Record **list)
1813 {
1814 if (next)
1815 next->prev = prev;
1816 if (prev)
1817 prev->next = next;
1818 else
1819 *list = next;
1820 }
1821
1822 MemoryOpt::Record **
1823 MemoryOpt::getList(const Instruction *insn)
1824 {
1825 if (insn->op == OP_LOAD || insn->op == OP_VFETCH)
1826 return &loads[insn->src(0).getFile()];
1827 return &stores[insn->src(0).getFile()];
1828 }
1829
1830 void
1831 MemoryOpt::addRecord(Instruction *i)
1832 {
1833 Record **list = getList(i);
1834 Record *it = reinterpret_cast<Record *>(recordPool.allocate());
1835
1836 it->link(list);
1837 it->set(i);
1838 it->insn = i;
1839 it->locked = false;
1840 }
1841
1842 MemoryOpt::Record *
1843 MemoryOpt::findRecord(const Instruction *insn, bool load, bool& isAdj) const
1844 {
1845 const Symbol *sym = insn->getSrc(0)->asSym();
1846 const int size = typeSizeof(insn->sType);
1847 Record *rec = NULL;
1848 Record *it = load ? loads[sym->reg.file] : stores[sym->reg.file];
1849
1850 for (; it; it = it->next) {
1851 if (it->locked && insn->op != OP_LOAD)
1852 continue;
1853 if ((it->offset >> 4) != (sym->reg.data.offset >> 4) ||
1854 it->rel[0] != insn->getIndirect(0, 0) ||
1855 it->fileIndex != sym->reg.fileIndex ||
1856 it->rel[1] != insn->getIndirect(0, 1))
1857 continue;
1858
1859 if (it->offset < sym->reg.data.offset) {
1860 if (it->offset + it->size >= sym->reg.data.offset) {
1861 isAdj = (it->offset + it->size == sym->reg.data.offset);
1862 if (!isAdj)
1863 return it;
1864 if (!(it->offset & 0x7))
1865 rec = it;
1866 }
1867 } else {
1868 isAdj = it->offset != sym->reg.data.offset;
1869 if (size <= it->size && !isAdj)
1870 return it;
1871 else
1872 if (!(sym->reg.data.offset & 0x7))
1873 if (it->offset - size <= sym->reg.data.offset)
1874 rec = it;
1875 }
1876 }
1877 return rec;
1878 }
1879
1880 bool
1881 MemoryOpt::replaceLdFromSt(Instruction *ld, Record *rec)
1882 {
1883 Instruction *st = rec->insn;
1884 int32_t offSt = rec->offset;
1885 int32_t offLd = ld->getSrc(0)->reg.data.offset;
1886 int d, s;
1887
1888 for (s = 1; offSt != offLd && st->srcExists(s); ++s)
1889 offSt += st->getSrc(s)->reg.size;
1890 if (offSt != offLd)
1891 return false;
1892
1893 for (d = 0; ld->defExists(d) && st->srcExists(s); ++d, ++s) {
1894 if (ld->getDef(d)->reg.size != st->getSrc(s)->reg.size)
1895 return false;
1896 if (st->getSrc(s)->reg.file != FILE_GPR)
1897 return false;
1898 ld->def(d).replace(st->src(s), false);
1899 }
1900 ld->bb->remove(ld);
1901 return true;
1902 }
1903
1904 bool
1905 MemoryOpt::replaceLdFromLd(Instruction *ldE, Record *rec)
1906 {
1907 Instruction *ldR = rec->insn;
1908 int32_t offR = rec->offset;
1909 int32_t offE = ldE->getSrc(0)->reg.data.offset;
1910 int dR, dE;
1911
1912 assert(offR <= offE);
1913 for (dR = 0; offR < offE && ldR->defExists(dR); ++dR)
1914 offR += ldR->getDef(dR)->reg.size;
1915 if (offR != offE)
1916 return false;
1917
1918 for (dE = 0; ldE->defExists(dE) && ldR->defExists(dR); ++dE, ++dR) {
1919 if (ldE->getDef(dE)->reg.size != ldR->getDef(dR)->reg.size)
1920 return false;
1921 ldE->def(dE).replace(ldR->getDef(dR), false);
1922 }
1923
1924 delete_Instruction(prog, ldE);
1925 return true;
1926 }
1927
1928 bool
1929 MemoryOpt::replaceStFromSt(Instruction *restrict st, Record *rec)
1930 {
1931 const Instruction *const ri = rec->insn;
1932 Value *extra[3];
1933
1934 int32_t offS = st->getSrc(0)->reg.data.offset;
1935 int32_t offR = rec->offset;
1936 int32_t endS = offS + typeSizeof(st->dType);
1937 int32_t endR = offR + typeSizeof(ri->dType);
1938
1939 rec->size = MAX2(endS, endR) - MIN2(offS, offR);
1940
1941 st->takeExtraSources(0, extra);
1942
1943 if (offR < offS) {
1944 Value *vals[10];
1945 int s, n;
1946 int k = 0;
1947 // get non-replaced sources of ri
1948 for (s = 1; offR < offS; offR += ri->getSrc(s)->reg.size, ++s)
1949 vals[k++] = ri->getSrc(s);
1950 n = s;
1951 // get replaced sources of st
1952 for (s = 1; st->srcExists(s); offS += st->getSrc(s)->reg.size, ++s)
1953 vals[k++] = st->getSrc(s);
1954 // skip replaced sources of ri
1955 for (s = n; offR < endS; offR += ri->getSrc(s)->reg.size, ++s);
1956 // get non-replaced sources after values covered by st
1957 for (; offR < endR; offR += ri->getSrc(s)->reg.size, ++s)
1958 vals[k++] = ri->getSrc(s);
1959 assert((unsigned int)k <= Elements(vals));
1960 for (s = 0; s < k; ++s)
1961 st->setSrc(s + 1, vals[s]);
1962 st->setSrc(0, ri->getSrc(0));
1963 } else
1964 if (endR > endS) {
1965 int j, s;
1966 for (j = 1; offR < endS; offR += ri->getSrc(j++)->reg.size);
1967 for (s = 1; offS < endS; offS += st->getSrc(s++)->reg.size);
1968 for (; offR < endR; offR += ri->getSrc(j++)->reg.size)
1969 st->setSrc(s++, ri->getSrc(j));
1970 }
1971 st->putExtraSources(0, extra);
1972
1973 delete_Instruction(prog, rec->insn);
1974
1975 rec->insn = st;
1976 rec->offset = st->getSrc(0)->reg.data.offset;
1977
1978 st->setType(typeOfSize(rec->size));
1979
1980 return true;
1981 }
1982
1983 bool
1984 MemoryOpt::Record::overlaps(const Instruction *ldst) const
1985 {
1986 Record that;
1987 that.set(ldst);
1988
1989 if (this->fileIndex != that.fileIndex)
1990 return false;
1991
1992 if (this->rel[0] || that.rel[0])
1993 return this->base == that.base;
1994 return
1995 (this->offset < that.offset + that.size) &&
1996 (this->offset + this->size > that.offset);
1997 }
1998
1999 // We must not eliminate stores that affect the result of @ld if
2000 // we find later stores to the same location, and we may no longer
2001 // merge them with later stores.
2002 // The stored value can, however, still be used to determine the value
2003 // returned by future loads.
2004 void
2005 MemoryOpt::lockStores(Instruction *const ld)
2006 {
2007 for (Record *r = stores[ld->src(0).getFile()]; r; r = r->next)
2008 if (!r->locked && r->overlaps(ld))
2009 r->locked = true;
2010 }
2011
2012 // Prior loads from the location of @st are no longer valid.
2013 // Stores to the location of @st may no longer be used to derive
2014 // the value at it nor be coalesced into later stores.
2015 void
2016 MemoryOpt::purgeRecords(Instruction *const st, DataFile f)
2017 {
2018 if (st)
2019 f = st->src(0).getFile();
2020
2021 for (Record *r = loads[f]; r; r = r->next)
2022 if (!st || r->overlaps(st))
2023 r->unlink(&loads[f]);
2024
2025 for (Record *r = stores[f]; r; r = r->next)
2026 if (!st || r->overlaps(st))
2027 r->unlink(&stores[f]);
2028 }
2029
2030 bool
2031 MemoryOpt::visit(BasicBlock *bb)
2032 {
2033 bool ret = runOpt(bb);
2034 // Run again, one pass won't combine 4 32 bit ld/st to a single 128 bit ld/st
2035 // where 96 bit memory operations are forbidden.
2036 if (ret)
2037 ret = runOpt(bb);
2038 return ret;
2039 }
2040
2041 bool
2042 MemoryOpt::runOpt(BasicBlock *bb)
2043 {
2044 Instruction *ldst, *next;
2045 Record *rec;
2046 bool isAdjacent = true;
2047
2048 for (ldst = bb->getEntry(); ldst; ldst = next) {
2049 bool keep = true;
2050 bool isLoad = true;
2051 next = ldst->next;
2052
2053 if (ldst->op == OP_LOAD || ldst->op == OP_VFETCH) {
2054 if (ldst->isDead()) {
2055 // might have been produced by earlier optimization
2056 delete_Instruction(prog, ldst);
2057 continue;
2058 }
2059 } else
2060 if (ldst->op == OP_STORE || ldst->op == OP_EXPORT) {
2061 isLoad = false;
2062 } else {
2063 // TODO: maybe have all fixed ops act as barrier ?
2064 if (ldst->op == OP_CALL ||
2065 ldst->op == OP_BAR ||
2066 ldst->op == OP_MEMBAR) {
2067 purgeRecords(NULL, FILE_MEMORY_LOCAL);
2068 purgeRecords(NULL, FILE_MEMORY_GLOBAL);
2069 purgeRecords(NULL, FILE_MEMORY_SHARED);
2070 purgeRecords(NULL, FILE_SHADER_OUTPUT);
2071 } else
2072 if (ldst->op == OP_ATOM || ldst->op == OP_CCTL) {
2073 if (ldst->src(0).getFile() == FILE_MEMORY_GLOBAL) {
2074 purgeRecords(NULL, FILE_MEMORY_LOCAL);
2075 purgeRecords(NULL, FILE_MEMORY_GLOBAL);
2076 purgeRecords(NULL, FILE_MEMORY_SHARED);
2077 } else {
2078 purgeRecords(NULL, ldst->src(0).getFile());
2079 }
2080 } else
2081 if (ldst->op == OP_EMIT || ldst->op == OP_RESTART) {
2082 purgeRecords(NULL, FILE_SHADER_OUTPUT);
2083 }
2084 continue;
2085 }
2086 if (ldst->getPredicate()) // TODO: handle predicated ld/st
2087 continue;
2088
2089 if (isLoad) {
2090 DataFile file = ldst->src(0).getFile();
2091
2092 // if ld l[]/g[] look for previous store to eliminate the reload
2093 if (file == FILE_MEMORY_GLOBAL || file == FILE_MEMORY_LOCAL) {
2094 // TODO: shared memory ?
2095 rec = findRecord(ldst, false, isAdjacent);
2096 if (rec && !isAdjacent)
2097 keep = !replaceLdFromSt(ldst, rec);
2098 }
2099
2100 // or look for ld from the same location and replace this one
2101 rec = keep ? findRecord(ldst, true, isAdjacent) : NULL;
2102 if (rec) {
2103 if (!isAdjacent)
2104 keep = !replaceLdFromLd(ldst, rec);
2105 else
2106 // or combine a previous load with this one
2107 keep = !combineLd(rec, ldst);
2108 }
2109 if (keep)
2110 lockStores(ldst);
2111 } else {
2112 rec = findRecord(ldst, false, isAdjacent);
2113 if (rec) {
2114 if (!isAdjacent)
2115 keep = !replaceStFromSt(ldst, rec);
2116 else
2117 keep = !combineSt(rec, ldst);
2118 }
2119 if (keep)
2120 purgeRecords(ldst, DATA_FILE_COUNT);
2121 }
2122 if (keep)
2123 addRecord(ldst);
2124 }
2125 reset();
2126
2127 return true;
2128 }
2129
2130 // =============================================================================
2131
2132 // Turn control flow into predicated instructions (after register allocation !).
2133 // TODO:
2134 // Could move this to before register allocation on NVC0 and also handle nested
2135 // constructs.
2136 class FlatteningPass : public Pass
2137 {
2138 private:
2139 virtual bool visit(BasicBlock *);
2140
2141 bool tryPredicateConditional(BasicBlock *);
2142 void predicateInstructions(BasicBlock *, Value *pred, CondCode cc);
2143 void tryPropagateBranch(BasicBlock *);
2144 inline bool isConstantCondition(Value *pred);
2145 inline bool mayPredicate(const Instruction *, const Value *pred) const;
2146 inline void removeFlow(Instruction *);
2147 };
2148
2149 bool
2150 FlatteningPass::isConstantCondition(Value *pred)
2151 {
2152 Instruction *insn = pred->getUniqueInsn();
2153 assert(insn);
2154 if (insn->op != OP_SET || insn->srcExists(2))
2155 return false;
2156
2157 for (int s = 0; s < 2 && insn->srcExists(s); ++s) {
2158 Instruction *ld = insn->getSrc(s)->getUniqueInsn();
2159 DataFile file;
2160 if (ld) {
2161 if (ld->op != OP_MOV && ld->op != OP_LOAD)
2162 return false;
2163 if (ld->src(0).isIndirect(0))
2164 return false;
2165 file = ld->src(0).getFile();
2166 } else {
2167 file = insn->src(s).getFile();
2168 // catch $r63 on NVC0
2169 if (file == FILE_GPR && insn->getSrc(s)->reg.data.id > prog->maxGPR)
2170 file = FILE_IMMEDIATE;
2171 }
2172 if (file != FILE_IMMEDIATE && file != FILE_MEMORY_CONST)
2173 return false;
2174 }
2175 return true;
2176 }
2177
2178 void
2179 FlatteningPass::removeFlow(Instruction *insn)
2180 {
2181 FlowInstruction *term = insn ? insn->asFlow() : NULL;
2182 if (!term)
2183 return;
2184 Graph::Edge::Type ty = term->bb->cfg.outgoing().getType();
2185
2186 if (term->op == OP_BRA) {
2187 // TODO: this might get more difficult when we get arbitrary BRAs
2188 if (ty == Graph::Edge::CROSS || ty == Graph::Edge::BACK)
2189 return;
2190 } else
2191 if (term->op != OP_JOIN)
2192 return;
2193
2194 Value *pred = term->getPredicate();
2195
2196 delete_Instruction(prog, term);
2197
2198 if (pred && pred->refCount() == 0) {
2199 Instruction *pSet = pred->getUniqueInsn();
2200 pred->join->reg.data.id = -1; // deallocate
2201 if (pSet->isDead())
2202 delete_Instruction(prog, pSet);
2203 }
2204 }
2205
2206 void
2207 FlatteningPass::predicateInstructions(BasicBlock *bb, Value *pred, CondCode cc)
2208 {
2209 for (Instruction *i = bb->getEntry(); i; i = i->next) {
2210 if (i->isNop())
2211 continue;
2212 assert(!i->getPredicate());
2213 i->setPredicate(cc, pred);
2214 }
2215 removeFlow(bb->getExit());
2216 }
2217
2218 bool
2219 FlatteningPass::mayPredicate(const Instruction *insn, const Value *pred) const
2220 {
2221 if (insn->isPseudo())
2222 return true;
2223 // TODO: calls where we don't know which registers are modified
2224
2225 if (!prog->getTarget()->mayPredicate(insn, pred))
2226 return false;
2227 for (int d = 0; insn->defExists(d); ++d)
2228 if (insn->getDef(d)->equals(pred))
2229 return false;
2230 return true;
2231 }
2232
2233 // If we jump to BRA/RET/EXIT, replace the jump with it.
2234 // NOTE: We do not update the CFG anymore here !
2235 //
2236 // TODO: Handle cases where we skip over a branch (maybe do that elsewhere ?):
2237 // BB:0
2238 // @p0 bra BB:2 -> @!p0 bra BB:3 iff (!) BB:2 immediately adjoins BB:1
2239 // BB1:
2240 // bra BB:3
2241 // BB2:
2242 // ...
2243 // BB3:
2244 // ...
2245 void
2246 FlatteningPass::tryPropagateBranch(BasicBlock *bb)
2247 {
2248 for (Instruction *i = bb->getExit(); i && i->op == OP_BRA; i = i->prev) {
2249 BasicBlock *bf = i->asFlow()->target.bb;
2250
2251 if (bf->getInsnCount() != 1)
2252 continue;
2253
2254 FlowInstruction *bra = i->asFlow();
2255 FlowInstruction *rep = bf->getExit()->asFlow();
2256
2257 if (!rep || rep->getPredicate())
2258 continue;
2259 if (rep->op != OP_BRA &&
2260 rep->op != OP_JOIN &&
2261 rep->op != OP_EXIT)
2262 continue;
2263
2264 // TODO: If there are multiple branches to @rep, only the first would
2265 // be replaced, so only remove them after this pass is done ?
2266 // Also, need to check all incident blocks for fall-through exits and
2267 // add the branch there.
2268 bra->op = rep->op;
2269 bra->target.bb = rep->target.bb;
2270 if (bf->cfg.incidentCount() == 1)
2271 bf->remove(rep);
2272 }
2273 }
2274
2275 bool
2276 FlatteningPass::visit(BasicBlock *bb)
2277 {
2278 if (tryPredicateConditional(bb))
2279 return true;
2280
2281 // try to attach join to previous instruction
2282 if (prog->getTarget()->hasJoin) {
2283 Instruction *insn = bb->getExit();
2284 if (insn && insn->op == OP_JOIN && !insn->getPredicate()) {
2285 insn = insn->prev;
2286 if (insn && !insn->getPredicate() &&
2287 !insn->asFlow() &&
2288 insn->op != OP_TEXBAR &&
2289 !isTextureOp(insn->op) && // probably just nve4
2290 !isSurfaceOp(insn->op) && // not confirmed
2291 insn->op != OP_LINTERP && // probably just nve4
2292 insn->op != OP_PINTERP && // probably just nve4
2293 ((insn->op != OP_LOAD && insn->op != OP_STORE) ||
2294 (typeSizeof(insn->dType) <= 4 && !insn->src(0).isIndirect(0))) &&
2295 !insn->isNop()) {
2296 insn->join = 1;
2297 bb->remove(bb->getExit());
2298 return true;
2299 }
2300 }
2301 }
2302
2303 tryPropagateBranch(bb);
2304
2305 return true;
2306 }
2307
2308 bool
2309 FlatteningPass::tryPredicateConditional(BasicBlock *bb)
2310 {
2311 BasicBlock *bL = NULL, *bR = NULL;
2312 unsigned int nL = 0, nR = 0, limit = 12;
2313 Instruction *insn;
2314 unsigned int mask;
2315
2316 mask = bb->initiatesSimpleConditional();
2317 if (!mask)
2318 return false;
2319
2320 assert(bb->getExit());
2321 Value *pred = bb->getExit()->getPredicate();
2322 assert(pred);
2323
2324 if (isConstantCondition(pred))
2325 limit = 4;
2326
2327 Graph::EdgeIterator ei = bb->cfg.outgoing();
2328
2329 if (mask & 1) {
2330 bL = BasicBlock::get(ei.getNode());
2331 for (insn = bL->getEntry(); insn; insn = insn->next, ++nL)
2332 if (!mayPredicate(insn, pred))
2333 return false;
2334 if (nL > limit)
2335 return false; // too long, do a real branch
2336 }
2337 ei.next();
2338
2339 if (mask & 2) {
2340 bR = BasicBlock::get(ei.getNode());
2341 for (insn = bR->getEntry(); insn; insn = insn->next, ++nR)
2342 if (!mayPredicate(insn, pred))
2343 return false;
2344 if (nR > limit)
2345 return false; // too long, do a real branch
2346 }
2347
2348 if (bL)
2349 predicateInstructions(bL, pred, bb->getExit()->cc);
2350 if (bR)
2351 predicateInstructions(bR, pred, inverseCondCode(bb->getExit()->cc));
2352
2353 if (bb->joinAt) {
2354 bb->remove(bb->joinAt);
2355 bb->joinAt = NULL;
2356 }
2357 removeFlow(bb->getExit()); // delete the branch/join at the fork point
2358
2359 // remove potential join operations at the end of the conditional
2360 if (prog->getTarget()->joinAnterior) {
2361 bb = BasicBlock::get((bL ? bL : bR)->cfg.outgoing().getNode());
2362 if (bb->getEntry() && bb->getEntry()->op == OP_JOIN)
2363 removeFlow(bb->getEntry());
2364 }
2365
2366 return true;
2367 }
2368
2369 // =============================================================================
2370
2371 // Fold Immediate into MAD; must be done after register allocation due to
2372 // constraint SDST == SSRC2
2373 // TODO:
2374 // Does NVC0+ have other situations where this pass makes sense?
2375 class NV50PostRaConstantFolding : public Pass
2376 {
2377 private:
2378 virtual bool visit(BasicBlock *);
2379 };
2380
2381 bool
2382 NV50PostRaConstantFolding::visit(BasicBlock *bb)
2383 {
2384 Value *vtmp;
2385 Instruction *def;
2386
2387 for (Instruction *i = bb->getFirst(); i; i = i->next) {
2388 switch (i->op) {
2389 case OP_MAD:
2390 if (i->def(0).getFile() != FILE_GPR ||
2391 i->src(0).getFile() != FILE_GPR ||
2392 i->src(1).getFile() != FILE_GPR ||
2393 i->src(2).getFile() != FILE_GPR ||
2394 i->getDef(0)->reg.data.id != i->getSrc(2)->reg.data.id ||
2395 !isFloatType(i->dType))
2396 break;
2397
2398 def = i->getSrc(1)->getInsn();
2399 if (def->op == OP_MOV && def->src(0).getFile() == FILE_IMMEDIATE) {
2400 vtmp = i->getSrc(1);
2401 i->setSrc(1, def->getSrc(0));
2402
2403 /* There's no post-RA dead code elimination, so do it here
2404 * XXX: if we add more code-removing post-RA passes, we might
2405 * want to create a post-RA dead-code elim pass */
2406 if (vtmp->refCount() == 0)
2407 delete_Instruction(bb->getProgram(), def);
2408
2409 break;
2410 }
2411 break;
2412 default:
2413 break;
2414 }
2415 }
2416
2417 return true;
2418 }
2419
2420 // =============================================================================
2421
2422 // Common subexpression elimination. Stupid O^2 implementation.
2423 class LocalCSE : public Pass
2424 {
2425 private:
2426 virtual bool visit(BasicBlock *);
2427
2428 inline bool tryReplace(Instruction **, Instruction *);
2429
2430 DLList ops[OP_LAST + 1];
2431 };
2432
2433 class GlobalCSE : public Pass
2434 {
2435 private:
2436 virtual bool visit(BasicBlock *);
2437 };
2438
2439 bool
2440 Instruction::isActionEqual(const Instruction *that) const
2441 {
2442 if (this->op != that->op ||
2443 this->dType != that->dType ||
2444 this->sType != that->sType)
2445 return false;
2446 if (this->cc != that->cc)
2447 return false;
2448
2449 if (this->asTex()) {
2450 if (memcmp(&this->asTex()->tex,
2451 &that->asTex()->tex,
2452 sizeof(this->asTex()->tex)))
2453 return false;
2454 } else
2455 if (this->asCmp()) {
2456 if (this->asCmp()->setCond != that->asCmp()->setCond)
2457 return false;
2458 } else
2459 if (this->asFlow()) {
2460 return false;
2461 } else {
2462 if (this->ipa != that->ipa ||
2463 this->lanes != that->lanes ||
2464 this->perPatch != that->perPatch)
2465 return false;
2466 if (this->postFactor != that->postFactor)
2467 return false;
2468 }
2469
2470 if (this->subOp != that->subOp ||
2471 this->saturate != that->saturate ||
2472 this->rnd != that->rnd ||
2473 this->ftz != that->ftz ||
2474 this->dnz != that->dnz ||
2475 this->cache != that->cache ||
2476 this->mask != that->mask)
2477 return false;
2478
2479 return true;
2480 }
2481
2482 bool
2483 Instruction::isResultEqual(const Instruction *that) const
2484 {
2485 unsigned int d, s;
2486
2487 // NOTE: location of discard only affects tex with liveOnly and quadops
2488 if (!this->defExists(0) && this->op != OP_DISCARD)
2489 return false;
2490
2491 if (!isActionEqual(that))
2492 return false;
2493
2494 if (this->predSrc != that->predSrc)
2495 return false;
2496
2497 for (d = 0; this->defExists(d); ++d) {
2498 if (!that->defExists(d) ||
2499 !this->getDef(d)->equals(that->getDef(d), false))
2500 return false;
2501 }
2502 if (that->defExists(d))
2503 return false;
2504
2505 for (s = 0; this->srcExists(s); ++s) {
2506 if (!that->srcExists(s))
2507 return false;
2508 if (this->src(s).mod != that->src(s).mod)
2509 return false;
2510 if (!this->getSrc(s)->equals(that->getSrc(s), true))
2511 return false;
2512 }
2513 if (that->srcExists(s))
2514 return false;
2515
2516 if (op == OP_LOAD || op == OP_VFETCH) {
2517 switch (src(0).getFile()) {
2518 case FILE_MEMORY_CONST:
2519 case FILE_SHADER_INPUT:
2520 return true;
2521 default:
2522 return false;
2523 }
2524 }
2525
2526 return true;
2527 }
2528
2529 // pull through common expressions from different in-blocks
2530 bool
2531 GlobalCSE::visit(BasicBlock *bb)
2532 {
2533 Instruction *phi, *next, *ik;
2534 int s;
2535
2536 // TODO: maybe do this with OP_UNION, too
2537
2538 for (phi = bb->getPhi(); phi && phi->op == OP_PHI; phi = next) {
2539 next = phi->next;
2540 if (phi->getSrc(0)->refCount() > 1)
2541 continue;
2542 ik = phi->getSrc(0)->getInsn();
2543 if (!ik)
2544 continue; // probably a function input
2545 for (s = 1; phi->srcExists(s); ++s) {
2546 if (phi->getSrc(s)->refCount() > 1)
2547 break;
2548 if (!phi->getSrc(s)->getInsn() ||
2549 !phi->getSrc(s)->getInsn()->isResultEqual(ik))
2550 break;
2551 }
2552 if (!phi->srcExists(s)) {
2553 Instruction *entry = bb->getEntry();
2554 ik->bb->remove(ik);
2555 if (!entry || entry->op != OP_JOIN)
2556 bb->insertHead(ik);
2557 else
2558 bb->insertAfter(entry, ik);
2559 ik->setDef(0, phi->getDef(0));
2560 delete_Instruction(prog, phi);
2561 }
2562 }
2563
2564 return true;
2565 }
2566
2567 bool
2568 LocalCSE::tryReplace(Instruction **ptr, Instruction *i)
2569 {
2570 Instruction *old = *ptr;
2571
2572 // TODO: maybe relax this later (causes trouble with OP_UNION)
2573 if (i->isPredicated())
2574 return false;
2575
2576 if (!old->isResultEqual(i))
2577 return false;
2578
2579 for (int d = 0; old->defExists(d); ++d)
2580 old->def(d).replace(i->getDef(d), false);
2581 delete_Instruction(prog, old);
2582 *ptr = NULL;
2583 return true;
2584 }
2585
2586 bool
2587 LocalCSE::visit(BasicBlock *bb)
2588 {
2589 unsigned int replaced;
2590
2591 do {
2592 Instruction *ir, *next;
2593
2594 replaced = 0;
2595
2596 // will need to know the order of instructions
2597 int serial = 0;
2598 for (ir = bb->getFirst(); ir; ir = ir->next)
2599 ir->serial = serial++;
2600
2601 for (ir = bb->getEntry(); ir; ir = next) {
2602 int s;
2603 Value *src = NULL;
2604
2605 next = ir->next;
2606
2607 if (ir->fixed) {
2608 ops[ir->op].insert(ir);
2609 continue;
2610 }
2611
2612 for (s = 0; ir->srcExists(s); ++s)
2613 if (ir->getSrc(s)->asLValue())
2614 if (!src || ir->getSrc(s)->refCount() < src->refCount())
2615 src = ir->getSrc(s);
2616
2617 if (src) {
2618 for (Value::UseIterator it = src->uses.begin();
2619 it != src->uses.end(); ++it) {
2620 Instruction *ik = (*it)->getInsn();
2621 if (ik && ik->bb == ir->bb && ik->serial < ir->serial)
2622 if (tryReplace(&ir, ik))
2623 break;
2624 }
2625 } else {
2626 DLLIST_FOR_EACH(&ops[ir->op], iter)
2627 {
2628 Instruction *ik = reinterpret_cast<Instruction *>(iter.get());
2629 if (tryReplace(&ir, ik))
2630 break;
2631 }
2632 }
2633
2634 if (ir)
2635 ops[ir->op].insert(ir);
2636 else
2637 ++replaced;
2638 }
2639 for (unsigned int i = 0; i <= OP_LAST; ++i)
2640 ops[i].clear();
2641
2642 } while (replaced);
2643
2644 return true;
2645 }
2646
2647 // =============================================================================
2648
2649 // Remove computations of unused values.
2650 class DeadCodeElim : public Pass
2651 {
2652 public:
2653 bool buryAll(Program *);
2654
2655 private:
2656 virtual bool visit(BasicBlock *);
2657
2658 void checkSplitLoad(Instruction *ld); // for partially dead loads
2659
2660 unsigned int deadCount;
2661 };
2662
2663 bool
2664 DeadCodeElim::buryAll(Program *prog)
2665 {
2666 do {
2667 deadCount = 0;
2668 if (!this->run(prog, false, false))
2669 return false;
2670 } while (deadCount);
2671
2672 return true;
2673 }
2674
2675 bool
2676 DeadCodeElim::visit(BasicBlock *bb)
2677 {
2678 Instruction *next;
2679
2680 for (Instruction *i = bb->getFirst(); i; i = next) {
2681 next = i->next;
2682 if (i->isDead()) {
2683 ++deadCount;
2684 delete_Instruction(prog, i);
2685 } else
2686 if (i->defExists(1) && (i->op == OP_VFETCH || i->op == OP_LOAD)) {
2687 checkSplitLoad(i);
2688 } else
2689 if (i->defExists(0) && !i->getDef(0)->refCount()) {
2690 if (i->op == OP_ATOM ||
2691 i->op == OP_SUREDP ||
2692 i->op == OP_SUREDB)
2693 i->setDef(0, NULL);
2694 }
2695 }
2696 return true;
2697 }
2698
2699 void
2700 DeadCodeElim::checkSplitLoad(Instruction *ld1)
2701 {
2702 Instruction *ld2 = NULL; // can get at most 2 loads
2703 Value *def1[4];
2704 Value *def2[4];
2705 int32_t addr1, addr2;
2706 int32_t size1, size2;
2707 int d, n1, n2;
2708 uint32_t mask = 0xffffffff;
2709
2710 for (d = 0; ld1->defExists(d); ++d)
2711 if (!ld1->getDef(d)->refCount() && ld1->getDef(d)->reg.data.id < 0)
2712 mask &= ~(1 << d);
2713 if (mask == 0xffffffff)
2714 return;
2715
2716 addr1 = ld1->getSrc(0)->reg.data.offset;
2717 n1 = n2 = 0;
2718 size1 = size2 = 0;
2719 for (d = 0; ld1->defExists(d); ++d) {
2720 if (mask & (1 << d)) {
2721 if (size1 && (addr1 & 0x7))
2722 break;
2723 def1[n1] = ld1->getDef(d);
2724 size1 += def1[n1++]->reg.size;
2725 } else
2726 if (!n1) {
2727 addr1 += ld1->getDef(d)->reg.size;
2728 } else {
2729 break;
2730 }
2731 }
2732 for (addr2 = addr1 + size1; ld1->defExists(d); ++d) {
2733 if (mask & (1 << d)) {
2734 def2[n2] = ld1->getDef(d);
2735 size2 += def2[n2++]->reg.size;
2736 } else {
2737 assert(!n2);
2738 addr2 += ld1->getDef(d)->reg.size;
2739 }
2740 }
2741
2742 updateLdStOffset(ld1, addr1, func);
2743 ld1->setType(typeOfSize(size1));
2744 for (d = 0; d < 4; ++d)
2745 ld1->setDef(d, (d < n1) ? def1[d] : NULL);
2746
2747 if (!n2)
2748 return;
2749
2750 ld2 = cloneShallow(func, ld1);
2751 updateLdStOffset(ld2, addr2, func);
2752 ld2->setType(typeOfSize(size2));
2753 for (d = 0; d < 4; ++d)
2754 ld2->setDef(d, (d < n2) ? def2[d] : NULL);
2755
2756 ld1->bb->insertAfter(ld1, ld2);
2757 }
2758
2759 // =============================================================================
2760
2761 #define RUN_PASS(l, n, f) \
2762 if (level >= (l)) { \
2763 if (dbgFlags & NV50_IR_DEBUG_VERBOSE) \
2764 INFO("PEEPHOLE: %s\n", #n); \
2765 n pass; \
2766 if (!pass.f(this)) \
2767 return false; \
2768 }
2769
2770 bool
2771 Program::optimizeSSA(int level)
2772 {
2773 RUN_PASS(1, DeadCodeElim, buryAll);
2774 RUN_PASS(1, CopyPropagation, run);
2775 RUN_PASS(1, MergeSplits, run);
2776 RUN_PASS(2, GlobalCSE, run);
2777 RUN_PASS(1, LocalCSE, run);
2778 RUN_PASS(2, AlgebraicOpt, run);
2779 RUN_PASS(2, ModifierFolding, run); // before load propagation -> less checks
2780 RUN_PASS(1, ConstantFolding, foldAll);
2781 RUN_PASS(1, LoadPropagation, run);
2782 RUN_PASS(2, MemoryOpt, run);
2783 RUN_PASS(2, LocalCSE, run);
2784 RUN_PASS(0, DeadCodeElim, buryAll);
2785
2786 return true;
2787 }
2788
2789 bool
2790 Program::optimizePostRA(int level)
2791 {
2792 RUN_PASS(2, FlatteningPass, run);
2793 if (getTarget()->getChipset() < 0xc0)
2794 RUN_PASS(2, NV50PostRaConstantFolding, run);
2795
2796 return true;
2797 }
2798
2799 }