nv50/ir: only unspill once ahead of a group of instructions
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_ra.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_target.h"
25
26 #include <algorithm>
27 #include <stack>
28 #include <limits>
29 #if __cplusplus >= 201103L
30 #include <unordered_map>
31 #else
32 #include <tr1/unordered_map>
33 #endif
34
35 namespace nv50_ir {
36
37 #if __cplusplus >= 201103L
38 using std::hash;
39 using std::unordered_map;
40 #elif !defined(ANDROID)
41 using std::tr1::hash;
42 using std::tr1::unordered_map;
43 #else
44 #error Android release before Lollipop is not supported!
45 #endif
46
47 #define MAX_REGISTER_FILE_SIZE 256
48
49 class RegisterSet
50 {
51 public:
52 RegisterSet(const Target *);
53
54 void init(const Target *);
55 void reset(DataFile, bool resetMax = false);
56
57 void periodicMask(DataFile f, uint32_t lock, uint32_t unlock);
58 void intersect(DataFile f, const RegisterSet *);
59
60 bool assign(int32_t& reg, DataFile f, unsigned int size);
61 void release(DataFile f, int32_t reg, unsigned int size);
62 void occupy(DataFile f, int32_t reg, unsigned int size);
63 void occupy(const Value *);
64 void occupyMask(DataFile f, int32_t reg, uint8_t mask);
65 bool isOccupied(DataFile f, int32_t reg, unsigned int size) const;
66 bool testOccupy(const Value *);
67 bool testOccupy(DataFile f, int32_t reg, unsigned int size);
68
69 inline int getMaxAssigned(DataFile f) const { return fill[f]; }
70
71 inline unsigned int getFileSize(DataFile f, uint8_t regSize) const
72 {
73 if (restrictedGPR16Range && f == FILE_GPR && regSize == 2)
74 return (last[f] + 1) / 2;
75 return last[f] + 1;
76 }
77
78 inline unsigned int units(DataFile f, unsigned int size) const
79 {
80 return size >> unit[f];
81 }
82 // for regs of size >= 4, id is counted in 4-byte words (like nv50/c0 binary)
83 inline unsigned int idToBytes(const Value *v) const
84 {
85 return v->reg.data.id * MIN2(v->reg.size, 4);
86 }
87 inline unsigned int idToUnits(const Value *v) const
88 {
89 return units(v->reg.file, idToBytes(v));
90 }
91 inline int bytesToId(Value *v, unsigned int bytes) const
92 {
93 if (v->reg.size < 4)
94 return units(v->reg.file, bytes);
95 return bytes / 4;
96 }
97 inline int unitsToId(DataFile f, int u, uint8_t size) const
98 {
99 if (u < 0)
100 return -1;
101 return (size < 4) ? u : ((u << unit[f]) / 4);
102 }
103
104 void print() const;
105
106 private:
107 BitSet bits[LAST_REGISTER_FILE + 1];
108
109 int unit[LAST_REGISTER_FILE + 1]; // log2 of allocation granularity
110
111 int last[LAST_REGISTER_FILE + 1];
112 int fill[LAST_REGISTER_FILE + 1];
113
114 const bool restrictedGPR16Range;
115 };
116
117 void
118 RegisterSet::reset(DataFile f, bool resetMax)
119 {
120 bits[f].fill(0);
121 if (resetMax)
122 fill[f] = -1;
123 }
124
125 void
126 RegisterSet::init(const Target *targ)
127 {
128 for (unsigned int rf = 0; rf <= FILE_ADDRESS; ++rf) {
129 DataFile f = static_cast<DataFile>(rf);
130 last[rf] = targ->getFileSize(f) - 1;
131 unit[rf] = targ->getFileUnit(f);
132 fill[rf] = -1;
133 assert(last[rf] < MAX_REGISTER_FILE_SIZE);
134 bits[rf].allocate(last[rf] + 1, true);
135 }
136 }
137
138 RegisterSet::RegisterSet(const Target *targ)
139 : restrictedGPR16Range(targ->getChipset() < 0xc0)
140 {
141 init(targ);
142 for (unsigned int i = 0; i <= LAST_REGISTER_FILE; ++i)
143 reset(static_cast<DataFile>(i));
144 }
145
146 void
147 RegisterSet::periodicMask(DataFile f, uint32_t lock, uint32_t unlock)
148 {
149 bits[f].periodicMask32(lock, unlock);
150 }
151
152 void
153 RegisterSet::intersect(DataFile f, const RegisterSet *set)
154 {
155 bits[f] |= set->bits[f];
156 }
157
158 void
159 RegisterSet::print() const
160 {
161 INFO("GPR:");
162 bits[FILE_GPR].print();
163 INFO("\n");
164 }
165
166 bool
167 RegisterSet::assign(int32_t& reg, DataFile f, unsigned int size)
168 {
169 reg = bits[f].findFreeRange(size);
170 if (reg < 0)
171 return false;
172 fill[f] = MAX2(fill[f], (int32_t)(reg + size - 1));
173 return true;
174 }
175
176 bool
177 RegisterSet::isOccupied(DataFile f, int32_t reg, unsigned int size) const
178 {
179 return bits[f].testRange(reg, size);
180 }
181
182 void
183 RegisterSet::occupy(const Value *v)
184 {
185 occupy(v->reg.file, idToUnits(v), v->reg.size >> unit[v->reg.file]);
186 }
187
188 void
189 RegisterSet::occupyMask(DataFile f, int32_t reg, uint8_t mask)
190 {
191 bits[f].setMask(reg & ~31, static_cast<uint32_t>(mask) << (reg % 32));
192 }
193
194 void
195 RegisterSet::occupy(DataFile f, int32_t reg, unsigned int size)
196 {
197 bits[f].setRange(reg, size);
198
199 INFO_DBG(0, REG_ALLOC, "reg occupy: %u[%i] %u\n", f, reg, size);
200
201 fill[f] = MAX2(fill[f], (int32_t)(reg + size - 1));
202 }
203
204 bool
205 RegisterSet::testOccupy(const Value *v)
206 {
207 return testOccupy(v->reg.file,
208 idToUnits(v), v->reg.size >> unit[v->reg.file]);
209 }
210
211 bool
212 RegisterSet::testOccupy(DataFile f, int32_t reg, unsigned int size)
213 {
214 if (isOccupied(f, reg, size))
215 return false;
216 occupy(f, reg, size);
217 return true;
218 }
219
220 void
221 RegisterSet::release(DataFile f, int32_t reg, unsigned int size)
222 {
223 bits[f].clrRange(reg, size);
224
225 INFO_DBG(0, REG_ALLOC, "reg release: %u[%i] %u\n", f, reg, size);
226 }
227
228 class RegAlloc
229 {
230 public:
231 RegAlloc(Program *program) : prog(program), sequence(0) { }
232
233 bool exec();
234 bool execFunc();
235
236 private:
237 class PhiMovesPass : public Pass {
238 private:
239 virtual bool visit(BasicBlock *);
240 inline bool needNewElseBlock(BasicBlock *b, BasicBlock *p);
241 inline void splitEdges(BasicBlock *b);
242 };
243
244 class ArgumentMovesPass : public Pass {
245 private:
246 virtual bool visit(BasicBlock *);
247 };
248
249 class BuildIntervalsPass : public Pass {
250 private:
251 virtual bool visit(BasicBlock *);
252 void collectLiveValues(BasicBlock *);
253 void addLiveRange(Value *, const BasicBlock *, int end);
254 };
255
256 class InsertConstraintsPass : public Pass {
257 public:
258 bool exec(Function *func);
259 private:
260 virtual bool visit(BasicBlock *);
261
262 bool insertConstraintMoves();
263
264 void condenseDefs(Instruction *);
265 void condenseSrcs(Instruction *, const int first, const int last);
266
267 void addHazard(Instruction *i, const ValueRef *src);
268 void textureMask(TexInstruction *);
269 void addConstraint(Instruction *, int s, int n);
270 bool detectConflict(Instruction *, int s);
271
272 // target specific functions, TODO: put in subclass or Target
273 void texConstraintNV50(TexInstruction *);
274 void texConstraintNVC0(TexInstruction *);
275 void texConstraintNVE0(TexInstruction *);
276 void texConstraintGM107(TexInstruction *);
277
278 std::list<Instruction *> constrList;
279
280 const Target *targ;
281 };
282
283 bool buildLiveSets(BasicBlock *);
284
285 private:
286 Program *prog;
287 Function *func;
288
289 // instructions in control flow / chronological order
290 ArrayList insns;
291
292 int sequence; // for manual passes through CFG
293 };
294
295 typedef std::pair<Value *, Value *> ValuePair;
296
297 class SpillCodeInserter
298 {
299 public:
300 SpillCodeInserter(Function *fn) : func(fn), stackSize(0), stackBase(0) { }
301
302 bool run(const std::list<ValuePair>&);
303
304 Symbol *assignSlot(const Interval&, const unsigned int size);
305 Value *offsetSlot(Value *, const LValue *);
306 inline int32_t getStackSize() const { return stackSize; }
307
308 private:
309 Function *func;
310
311 struct SpillSlot
312 {
313 Interval occup;
314 std::list<Value *> residents; // needed to recalculate occup
315 Symbol *sym;
316 int32_t offset;
317 inline uint8_t size() const { return sym->reg.size; }
318 };
319 std::list<SpillSlot> slots;
320 int32_t stackSize;
321 int32_t stackBase;
322
323 LValue *unspill(Instruction *usei, LValue *, Value *slot);
324 void spill(Instruction *defi, Value *slot, LValue *);
325 };
326
327 void
328 RegAlloc::BuildIntervalsPass::addLiveRange(Value *val,
329 const BasicBlock *bb,
330 int end)
331 {
332 Instruction *insn = val->getUniqueInsn();
333
334 if (!insn)
335 insn = bb->getFirst();
336
337 assert(bb->getFirst()->serial <= bb->getExit()->serial);
338 assert(bb->getExit()->serial + 1 >= end);
339
340 int begin = insn->serial;
341 if (begin < bb->getEntry()->serial || begin > bb->getExit()->serial)
342 begin = bb->getEntry()->serial;
343
344 INFO_DBG(prog->dbgFlags, REG_ALLOC, "%%%i <- live range [%i(%i), %i)\n",
345 val->id, begin, insn->serial, end);
346
347 if (begin != end) // empty ranges are only added as hazards for fixed regs
348 val->livei.extend(begin, end);
349 }
350
351 bool
352 RegAlloc::PhiMovesPass::needNewElseBlock(BasicBlock *b, BasicBlock *p)
353 {
354 if (b->cfg.incidentCount() <= 1)
355 return false;
356
357 int n = 0;
358 for (Graph::EdgeIterator ei = p->cfg.outgoing(); !ei.end(); ei.next())
359 if (ei.getType() == Graph::Edge::TREE ||
360 ei.getType() == Graph::Edge::FORWARD)
361 ++n;
362 return (n == 2);
363 }
364
365 struct PhiMapHash {
366 size_t operator()(const std::pair<Instruction *, BasicBlock *>& val) const {
367 return hash<Instruction*>()(val.first) * 31 +
368 hash<BasicBlock*>()(val.second);
369 }
370 };
371
372 typedef unordered_map<
373 std::pair<Instruction *, BasicBlock *>, Value *, PhiMapHash> PhiMap;
374
375 // Critical edges need to be split up so that work can be inserted along
376 // specific edge transitions. Unfortunately manipulating incident edges into a
377 // BB invalidates all the PHI nodes since their sources are implicitly ordered
378 // by incident edge order.
379 //
380 // TODO: Make it so that that is not the case, and PHI nodes store pointers to
381 // the original BBs.
382 void
383 RegAlloc::PhiMovesPass::splitEdges(BasicBlock *bb)
384 {
385 BasicBlock *pb, *pn;
386 Instruction *phi;
387 Graph::EdgeIterator ei;
388 std::stack<BasicBlock *> stack;
389 int j = 0;
390
391 for (ei = bb->cfg.incident(); !ei.end(); ei.next()) {
392 pb = BasicBlock::get(ei.getNode());
393 assert(pb);
394 if (needNewElseBlock(bb, pb))
395 stack.push(pb);
396 }
397
398 // No critical edges were found, no need to perform any work.
399 if (stack.empty())
400 return;
401
402 // We're about to, potentially, reorder the inbound edges. This means that
403 // we need to hold on to the (phi, bb) -> src mapping, and fix up the phi
404 // nodes after the graph has been modified.
405 PhiMap phis;
406
407 j = 0;
408 for (ei = bb->cfg.incident(); !ei.end(); ei.next(), j++) {
409 pb = BasicBlock::get(ei.getNode());
410 for (phi = bb->getPhi(); phi && phi->op == OP_PHI; phi = phi->next)
411 phis.insert(std::make_pair(std::make_pair(phi, pb), phi->getSrc(j)));
412 }
413
414 while (!stack.empty()) {
415 pb = stack.top();
416 pn = new BasicBlock(func);
417 stack.pop();
418
419 pb->cfg.detach(&bb->cfg);
420 pb->cfg.attach(&pn->cfg, Graph::Edge::TREE);
421 pn->cfg.attach(&bb->cfg, Graph::Edge::FORWARD);
422
423 assert(pb->getExit()->op != OP_CALL);
424 if (pb->getExit()->asFlow()->target.bb == bb)
425 pb->getExit()->asFlow()->target.bb = pn;
426
427 for (phi = bb->getPhi(); phi && phi->op == OP_PHI; phi = phi->next) {
428 PhiMap::iterator it = phis.find(std::make_pair(phi, pb));
429 assert(it != phis.end());
430 phis.insert(std::make_pair(std::make_pair(phi, pn), it->second));
431 phis.erase(it);
432 }
433 }
434
435 // Now go through and fix up all of the phi node sources.
436 j = 0;
437 for (ei = bb->cfg.incident(); !ei.end(); ei.next(), j++) {
438 pb = BasicBlock::get(ei.getNode());
439 for (phi = bb->getPhi(); phi && phi->op == OP_PHI; phi = phi->next) {
440 PhiMap::const_iterator it = phis.find(std::make_pair(phi, pb));
441 assert(it != phis.end());
442
443 phi->setSrc(j, it->second);
444 }
445 }
446 }
447
448 // For each operand of each PHI in b, generate a new value by inserting a MOV
449 // at the end of the block it is coming from and replace the operand with its
450 // result. This eliminates liveness conflicts and enables us to let values be
451 // copied to the right register if such a conflict exists nonetheless.
452 //
453 // These MOVs are also crucial in making sure the live intervals of phi srces
454 // are extended until the end of the loop, since they are not included in the
455 // live-in sets.
456 bool
457 RegAlloc::PhiMovesPass::visit(BasicBlock *bb)
458 {
459 Instruction *phi, *mov;
460
461 splitEdges(bb);
462
463 // insert MOVs (phi->src(j) should stem from j-th in-BB)
464 int j = 0;
465 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
466 BasicBlock *pb = BasicBlock::get(ei.getNode());
467 if (!pb->isTerminated())
468 pb->insertTail(new_FlowInstruction(func, OP_BRA, bb));
469
470 for (phi = bb->getPhi(); phi && phi->op == OP_PHI; phi = phi->next) {
471 LValue *tmp = new_LValue(func, phi->getDef(0)->asLValue());
472 mov = new_Instruction(func, OP_MOV, typeOfSize(tmp->reg.size));
473
474 mov->setSrc(0, phi->getSrc(j));
475 mov->setDef(0, tmp);
476 phi->setSrc(j, tmp);
477
478 pb->insertBefore(pb->getExit(), mov);
479 }
480 ++j;
481 }
482
483 return true;
484 }
485
486 bool
487 RegAlloc::ArgumentMovesPass::visit(BasicBlock *bb)
488 {
489 // Bind function call inputs/outputs to the same physical register
490 // the callee uses, inserting moves as appropriate for the case a
491 // conflict arises.
492 for (Instruction *i = bb->getEntry(); i; i = i->next) {
493 FlowInstruction *cal = i->asFlow();
494 // TODO: Handle indirect calls.
495 // Right now they should only be generated for builtins.
496 if (!cal || cal->op != OP_CALL || cal->builtin || cal->indirect)
497 continue;
498 RegisterSet clobberSet(prog->getTarget());
499
500 // Bind input values.
501 for (int s = cal->indirect ? 1 : 0; cal->srcExists(s); ++s) {
502 const int t = cal->indirect ? (s - 1) : s;
503 LValue *tmp = new_LValue(func, cal->getSrc(s)->asLValue());
504 tmp->reg.data.id = cal->target.fn->ins[t].rep()->reg.data.id;
505
506 Instruction *mov =
507 new_Instruction(func, OP_MOV, typeOfSize(tmp->reg.size));
508 mov->setDef(0, tmp);
509 mov->setSrc(0, cal->getSrc(s));
510 cal->setSrc(s, tmp);
511
512 bb->insertBefore(cal, mov);
513 }
514
515 // Bind output values.
516 for (int d = 0; cal->defExists(d); ++d) {
517 LValue *tmp = new_LValue(func, cal->getDef(d)->asLValue());
518 tmp->reg.data.id = cal->target.fn->outs[d].rep()->reg.data.id;
519
520 Instruction *mov =
521 new_Instruction(func, OP_MOV, typeOfSize(tmp->reg.size));
522 mov->setSrc(0, tmp);
523 mov->setDef(0, cal->getDef(d));
524 cal->setDef(d, tmp);
525
526 bb->insertAfter(cal, mov);
527 clobberSet.occupy(tmp);
528 }
529
530 // Bind clobbered values.
531 for (std::deque<Value *>::iterator it = cal->target.fn->clobbers.begin();
532 it != cal->target.fn->clobbers.end();
533 ++it) {
534 if (clobberSet.testOccupy(*it)) {
535 Value *tmp = new_LValue(func, (*it)->asLValue());
536 tmp->reg.data.id = (*it)->reg.data.id;
537 cal->setDef(cal->defCount(), tmp);
538 }
539 }
540 }
541
542 // Update the clobber set of the function.
543 if (BasicBlock::get(func->cfgExit) == bb) {
544 func->buildDefSets();
545 for (unsigned int i = 0; i < bb->defSet.getSize(); ++i)
546 if (bb->defSet.test(i))
547 func->clobbers.push_back(func->getLValue(i));
548 }
549
550 return true;
551 }
552
553 // Build the set of live-in variables of bb.
554 bool
555 RegAlloc::buildLiveSets(BasicBlock *bb)
556 {
557 Function *f = bb->getFunction();
558 BasicBlock *bn;
559 Instruction *i;
560 unsigned int s, d;
561
562 INFO_DBG(prog->dbgFlags, REG_ALLOC, "buildLiveSets(BB:%i)\n", bb->getId());
563
564 bb->liveSet.allocate(func->allLValues.getSize(), false);
565
566 int n = 0;
567 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
568 bn = BasicBlock::get(ei.getNode());
569 if (bn == bb)
570 continue;
571 if (bn->cfg.visit(sequence))
572 if (!buildLiveSets(bn))
573 return false;
574 if (n++ || bb->liveSet.marker)
575 bb->liveSet |= bn->liveSet;
576 else
577 bb->liveSet = bn->liveSet;
578 }
579 if (!n && !bb->liveSet.marker)
580 bb->liveSet.fill(0);
581 bb->liveSet.marker = true;
582
583 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC) {
584 INFO("BB:%i live set of out blocks:\n", bb->getId());
585 bb->liveSet.print();
586 }
587
588 // if (!bb->getEntry())
589 // return true;
590
591 if (bb == BasicBlock::get(f->cfgExit)) {
592 for (std::deque<ValueRef>::iterator it = f->outs.begin();
593 it != f->outs.end(); ++it) {
594 assert(it->get()->asLValue());
595 bb->liveSet.set(it->get()->id);
596 }
597 }
598
599 for (i = bb->getExit(); i && i != bb->getEntry()->prev; i = i->prev) {
600 for (d = 0; i->defExists(d); ++d)
601 bb->liveSet.clr(i->getDef(d)->id);
602 for (s = 0; i->srcExists(s); ++s)
603 if (i->getSrc(s)->asLValue())
604 bb->liveSet.set(i->getSrc(s)->id);
605 }
606 for (i = bb->getPhi(); i && i->op == OP_PHI; i = i->next)
607 bb->liveSet.clr(i->getDef(0)->id);
608
609 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC) {
610 INFO("BB:%i live set after propagation:\n", bb->getId());
611 bb->liveSet.print();
612 }
613
614 return true;
615 }
616
617 void
618 RegAlloc::BuildIntervalsPass::collectLiveValues(BasicBlock *bb)
619 {
620 BasicBlock *bbA = NULL, *bbB = NULL;
621
622 if (bb->cfg.outgoingCount()) {
623 // trickery to save a loop of OR'ing liveSets
624 // aliasing works fine with BitSet::setOr
625 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
626 if (ei.getType() == Graph::Edge::DUMMY)
627 continue;
628 if (bbA) {
629 bb->liveSet.setOr(&bbA->liveSet, &bbB->liveSet);
630 bbA = bb;
631 } else {
632 bbA = bbB;
633 }
634 bbB = BasicBlock::get(ei.getNode());
635 }
636 bb->liveSet.setOr(&bbB->liveSet, bbA ? &bbA->liveSet : NULL);
637 } else
638 if (bb->cfg.incidentCount()) {
639 bb->liveSet.fill(0);
640 }
641 }
642
643 bool
644 RegAlloc::BuildIntervalsPass::visit(BasicBlock *bb)
645 {
646 collectLiveValues(bb);
647
648 INFO_DBG(prog->dbgFlags, REG_ALLOC, "BuildIntervals(BB:%i)\n", bb->getId());
649
650 // go through out blocks and delete phi sources that do not originate from
651 // the current block from the live set
652 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
653 BasicBlock *out = BasicBlock::get(ei.getNode());
654
655 for (Instruction *i = out->getPhi(); i && i->op == OP_PHI; i = i->next) {
656 bb->liveSet.clr(i->getDef(0)->id);
657
658 for (int s = 0; i->srcExists(s); ++s) {
659 assert(i->src(s).getInsn());
660 if (i->getSrc(s)->getUniqueInsn()->bb == bb) // XXX: reachableBy ?
661 bb->liveSet.set(i->getSrc(s)->id);
662 else
663 bb->liveSet.clr(i->getSrc(s)->id);
664 }
665 }
666 }
667
668 // remaining live-outs are live until end
669 if (bb->getExit()) {
670 for (unsigned int j = 0; j < bb->liveSet.getSize(); ++j)
671 if (bb->liveSet.test(j))
672 addLiveRange(func->getLValue(j), bb, bb->getExit()->serial + 1);
673 }
674
675 for (Instruction *i = bb->getExit(); i && i->op != OP_PHI; i = i->prev) {
676 for (int d = 0; i->defExists(d); ++d) {
677 bb->liveSet.clr(i->getDef(d)->id);
678 if (i->getDef(d)->reg.data.id >= 0) // add hazard for fixed regs
679 i->getDef(d)->livei.extend(i->serial, i->serial);
680 }
681
682 for (int s = 0; i->srcExists(s); ++s) {
683 if (!i->getSrc(s)->asLValue())
684 continue;
685 if (!bb->liveSet.test(i->getSrc(s)->id)) {
686 bb->liveSet.set(i->getSrc(s)->id);
687 addLiveRange(i->getSrc(s), bb, i->serial);
688 }
689 }
690 }
691
692 if (bb == BasicBlock::get(func->cfg.getRoot())) {
693 for (std::deque<ValueDef>::iterator it = func->ins.begin();
694 it != func->ins.end(); ++it) {
695 if (it->get()->reg.data.id >= 0) // add hazard for fixed regs
696 it->get()->livei.extend(0, 1);
697 }
698 }
699
700 return true;
701 }
702
703
704 #define JOIN_MASK_PHI (1 << 0)
705 #define JOIN_MASK_UNION (1 << 1)
706 #define JOIN_MASK_MOV (1 << 2)
707 #define JOIN_MASK_TEX (1 << 3)
708
709 class GCRA
710 {
711 public:
712 GCRA(Function *, SpillCodeInserter&);
713 ~GCRA();
714
715 bool allocateRegisters(ArrayList& insns);
716
717 void printNodeInfo() const;
718
719 private:
720 class RIG_Node : public Graph::Node
721 {
722 public:
723 RIG_Node();
724
725 void init(const RegisterSet&, LValue *);
726
727 void addInterference(RIG_Node *);
728 void addRegPreference(RIG_Node *);
729
730 inline LValue *getValue() const
731 {
732 return reinterpret_cast<LValue *>(data);
733 }
734 inline void setValue(LValue *lval) { data = lval; }
735
736 inline uint8_t getCompMask() const
737 {
738 return ((1 << colors) - 1) << (reg & 7);
739 }
740
741 static inline RIG_Node *get(const Graph::EdgeIterator& ei)
742 {
743 return static_cast<RIG_Node *>(ei.getNode());
744 }
745
746 public:
747 uint32_t degree;
748 uint16_t degreeLimit; // if deg < degLimit, node is trivially colourable
749 uint16_t colors;
750
751 DataFile f;
752 int32_t reg;
753
754 float weight;
755
756 // list pointers for simplify() phase
757 RIG_Node *next;
758 RIG_Node *prev;
759
760 // union of the live intervals of all coalesced values (we want to retain
761 // the separate intervals for testing interference of compound values)
762 Interval livei;
763
764 std::list<RIG_Node *> prefRegs;
765 };
766
767 private:
768 inline RIG_Node *getNode(const LValue *v) const { return &nodes[v->id]; }
769
770 void buildRIG(ArrayList&);
771 bool coalesce(ArrayList&);
772 bool doCoalesce(ArrayList&, unsigned int mask);
773 void calculateSpillWeights();
774 void simplify();
775 bool selectRegisters();
776 void cleanup(const bool success);
777
778 void simplifyEdge(RIG_Node *, RIG_Node *);
779 void simplifyNode(RIG_Node *);
780
781 bool coalesceValues(Value *, Value *, bool force);
782 void resolveSplitsAndMerges();
783 void makeCompound(Instruction *, bool isSplit);
784
785 inline void checkInterference(const RIG_Node *, Graph::EdgeIterator&);
786
787 inline void insertOrderedTail(std::list<RIG_Node *>&, RIG_Node *);
788 void checkList(std::list<RIG_Node *>&);
789
790 private:
791 std::stack<uint32_t> stack;
792
793 // list headers for simplify() phase
794 RIG_Node lo[2];
795 RIG_Node hi;
796
797 Graph RIG;
798 RIG_Node *nodes;
799 unsigned int nodeCount;
800
801 Function *func;
802 Program *prog;
803
804 static uint8_t relDegree[17][17];
805
806 RegisterSet regs;
807
808 // need to fixup register id for participants of OP_MERGE/SPLIT
809 std::list<Instruction *> merges;
810 std::list<Instruction *> splits;
811
812 SpillCodeInserter& spill;
813 std::list<ValuePair> mustSpill;
814 };
815
816 uint8_t GCRA::relDegree[17][17];
817
818 GCRA::RIG_Node::RIG_Node() : Node(NULL), next(this), prev(this)
819 {
820 colors = 0;
821 }
822
823 void
824 GCRA::printNodeInfo() const
825 {
826 for (unsigned int i = 0; i < nodeCount; ++i) {
827 if (!nodes[i].colors)
828 continue;
829 INFO("RIG_Node[%%%i]($[%u]%i): %u colors, weight %f, deg %u/%u\n X",
830 i,
831 nodes[i].f,nodes[i].reg,nodes[i].colors,
832 nodes[i].weight,
833 nodes[i].degree, nodes[i].degreeLimit);
834
835 for (Graph::EdgeIterator ei = nodes[i].outgoing(); !ei.end(); ei.next())
836 INFO(" %%%i", RIG_Node::get(ei)->getValue()->id);
837 for (Graph::EdgeIterator ei = nodes[i].incident(); !ei.end(); ei.next())
838 INFO(" %%%i", RIG_Node::get(ei)->getValue()->id);
839 INFO("\n");
840 }
841 }
842
843 void
844 GCRA::RIG_Node::init(const RegisterSet& regs, LValue *lval)
845 {
846 setValue(lval);
847 if (lval->reg.data.id >= 0)
848 lval->noSpill = lval->fixedReg = 1;
849
850 colors = regs.units(lval->reg.file, lval->reg.size);
851 f = lval->reg.file;
852 reg = -1;
853 if (lval->reg.data.id >= 0)
854 reg = regs.idToUnits(lval);
855
856 weight = std::numeric_limits<float>::infinity();
857 degree = 0;
858 degreeLimit = regs.getFileSize(f, lval->reg.size);
859 degreeLimit -= relDegree[1][colors] - 1;
860
861 livei.insert(lval->livei);
862 }
863
864 bool
865 GCRA::coalesceValues(Value *dst, Value *src, bool force)
866 {
867 LValue *rep = dst->join->asLValue();
868 LValue *val = src->join->asLValue();
869
870 if (!force && val->reg.data.id >= 0) {
871 rep = src->join->asLValue();
872 val = dst->join->asLValue();
873 }
874 RIG_Node *nRep = &nodes[rep->id];
875 RIG_Node *nVal = &nodes[val->id];
876
877 if (src->reg.file != dst->reg.file) {
878 if (!force)
879 return false;
880 WARN("forced coalescing of values in different files !\n");
881 }
882 if (!force && dst->reg.size != src->reg.size)
883 return false;
884
885 if ((rep->reg.data.id >= 0) && (rep->reg.data.id != val->reg.data.id)) {
886 if (force) {
887 if (val->reg.data.id >= 0)
888 WARN("forced coalescing of values in different fixed regs !\n");
889 } else {
890 if (val->reg.data.id >= 0)
891 return false;
892 // make sure that there is no overlap with the fixed register of rep
893 for (ArrayList::Iterator it = func->allLValues.iterator();
894 !it.end(); it.next()) {
895 Value *reg = reinterpret_cast<Value *>(it.get())->asLValue();
896 assert(reg);
897 if (reg->interfers(rep) && reg->livei.overlaps(nVal->livei))
898 return false;
899 }
900 }
901 }
902
903 if (!force && nRep->livei.overlaps(nVal->livei))
904 return false;
905
906 INFO_DBG(prog->dbgFlags, REG_ALLOC, "joining %%%i($%i) <- %%%i\n",
907 rep->id, rep->reg.data.id, val->id);
908
909 // set join pointer of all values joined with val
910 for (Value::DefIterator def = val->defs.begin(); def != val->defs.end();
911 ++def)
912 (*def)->get()->join = rep;
913 assert(rep->join == rep && val->join == rep);
914
915 // add val's definitions to rep and extend the live interval of its RIG node
916 rep->defs.insert(rep->defs.end(), val->defs.begin(), val->defs.end());
917 nRep->livei.unify(nVal->livei);
918 return true;
919 }
920
921 bool
922 GCRA::coalesce(ArrayList& insns)
923 {
924 bool ret = doCoalesce(insns, JOIN_MASK_PHI);
925 if (!ret)
926 return false;
927 switch (func->getProgram()->getTarget()->getChipset() & ~0xf) {
928 case 0x50:
929 case 0x80:
930 case 0x90:
931 case 0xa0:
932 ret = doCoalesce(insns, JOIN_MASK_UNION | JOIN_MASK_TEX);
933 break;
934 case 0xc0:
935 case 0xd0:
936 case 0xe0:
937 case 0xf0:
938 case 0x100:
939 case 0x110:
940 ret = doCoalesce(insns, JOIN_MASK_UNION);
941 break;
942 default:
943 break;
944 }
945 if (!ret)
946 return false;
947 return doCoalesce(insns, JOIN_MASK_MOV);
948 }
949
950 static inline uint8_t makeCompMask(int compSize, int base, int size)
951 {
952 uint8_t m = ((1 << size) - 1) << base;
953
954 switch (compSize) {
955 case 1:
956 return 0xff;
957 case 2:
958 m |= (m << 2);
959 return (m << 4) | m;
960 case 3:
961 case 4:
962 return (m << 4) | m;
963 default:
964 assert(compSize <= 8);
965 return m;
966 }
967 }
968
969 // Used when coalescing moves. The non-compound value will become one, e.g.:
970 // mov b32 $r0 $r2 / merge b64 $r0d { $r0 $r1 }
971 // split b64 { $r0 $r1 } $r0d / mov b64 $r0d f64 $r2d
972 static inline void copyCompound(Value *dst, Value *src)
973 {
974 LValue *ldst = dst->asLValue();
975 LValue *lsrc = src->asLValue();
976
977 if (ldst->compound && !lsrc->compound) {
978 LValue *swap = lsrc;
979 lsrc = ldst;
980 ldst = swap;
981 }
982
983 ldst->compound = lsrc->compound;
984 ldst->compMask = lsrc->compMask;
985 }
986
987 void
988 GCRA::makeCompound(Instruction *insn, bool split)
989 {
990 LValue *rep = (split ? insn->getSrc(0) : insn->getDef(0))->asLValue();
991
992 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC) {
993 INFO("makeCompound(split = %i): ", split);
994 insn->print();
995 }
996
997 const unsigned int size = getNode(rep)->colors;
998 unsigned int base = 0;
999
1000 if (!rep->compound)
1001 rep->compMask = 0xff;
1002 rep->compound = 1;
1003
1004 for (int c = 0; split ? insn->defExists(c) : insn->srcExists(c); ++c) {
1005 LValue *val = (split ? insn->getDef(c) : insn->getSrc(c))->asLValue();
1006
1007 val->compound = 1;
1008 if (!val->compMask)
1009 val->compMask = 0xff;
1010 val->compMask &= makeCompMask(size, base, getNode(val)->colors);
1011 assert(val->compMask);
1012
1013 INFO_DBG(prog->dbgFlags, REG_ALLOC, "compound: %%%i:%02x <- %%%i:%02x\n",
1014 rep->id, rep->compMask, val->id, val->compMask);
1015
1016 base += getNode(val)->colors;
1017 }
1018 assert(base == size);
1019 }
1020
1021 bool
1022 GCRA::doCoalesce(ArrayList& insns, unsigned int mask)
1023 {
1024 int c, n;
1025
1026 for (n = 0; n < insns.getSize(); ++n) {
1027 Instruction *i;
1028 Instruction *insn = reinterpret_cast<Instruction *>(insns.get(n));
1029
1030 switch (insn->op) {
1031 case OP_PHI:
1032 if (!(mask & JOIN_MASK_PHI))
1033 break;
1034 for (c = 0; insn->srcExists(c); ++c)
1035 if (!coalesceValues(insn->getDef(0), insn->getSrc(c), false)) {
1036 // this is bad
1037 ERROR("failed to coalesce phi operands\n");
1038 return false;
1039 }
1040 break;
1041 case OP_UNION:
1042 case OP_MERGE:
1043 if (!(mask & JOIN_MASK_UNION))
1044 break;
1045 for (c = 0; insn->srcExists(c); ++c)
1046 coalesceValues(insn->getDef(0), insn->getSrc(c), true);
1047 if (insn->op == OP_MERGE) {
1048 merges.push_back(insn);
1049 if (insn->srcExists(1))
1050 makeCompound(insn, false);
1051 }
1052 break;
1053 case OP_SPLIT:
1054 if (!(mask & JOIN_MASK_UNION))
1055 break;
1056 splits.push_back(insn);
1057 for (c = 0; insn->defExists(c); ++c)
1058 coalesceValues(insn->getSrc(0), insn->getDef(c), true);
1059 makeCompound(insn, true);
1060 break;
1061 case OP_MOV:
1062 if (!(mask & JOIN_MASK_MOV))
1063 break;
1064 i = NULL;
1065 if (!insn->getDef(0)->uses.empty())
1066 i = (*insn->getDef(0)->uses.begin())->getInsn();
1067 // if this is a contraint-move there will only be a single use
1068 if (i && i->op == OP_MERGE) // do we really still need this ?
1069 break;
1070 i = insn->getSrc(0)->getUniqueInsn();
1071 if (i && !i->constrainedDefs()) {
1072 if (coalesceValues(insn->getDef(0), insn->getSrc(0), false))
1073 copyCompound(insn->getSrc(0), insn->getDef(0));
1074 }
1075 break;
1076 case OP_TEX:
1077 case OP_TXB:
1078 case OP_TXL:
1079 case OP_TXF:
1080 case OP_TXQ:
1081 case OP_TXD:
1082 case OP_TXG:
1083 case OP_TXLQ:
1084 case OP_TEXCSAA:
1085 case OP_TEXPREP:
1086 if (!(mask & JOIN_MASK_TEX))
1087 break;
1088 for (c = 0; insn->srcExists(c) && c != insn->predSrc; ++c)
1089 coalesceValues(insn->getDef(c), insn->getSrc(c), true);
1090 break;
1091 default:
1092 break;
1093 }
1094 }
1095 return true;
1096 }
1097
1098 void
1099 GCRA::RIG_Node::addInterference(RIG_Node *node)
1100 {
1101 this->degree += relDegree[node->colors][colors];
1102 node->degree += relDegree[colors][node->colors];
1103
1104 this->attach(node, Graph::Edge::CROSS);
1105 }
1106
1107 void
1108 GCRA::RIG_Node::addRegPreference(RIG_Node *node)
1109 {
1110 prefRegs.push_back(node);
1111 }
1112
1113 GCRA::GCRA(Function *fn, SpillCodeInserter& spill) :
1114 func(fn),
1115 regs(fn->getProgram()->getTarget()),
1116 spill(spill)
1117 {
1118 prog = func->getProgram();
1119
1120 // initialize relative degrees array - i takes away from j
1121 for (int i = 1; i <= 16; ++i)
1122 for (int j = 1; j <= 16; ++j)
1123 relDegree[i][j] = j * ((i + j - 1) / j);
1124 }
1125
1126 GCRA::~GCRA()
1127 {
1128 if (nodes)
1129 delete[] nodes;
1130 }
1131
1132 void
1133 GCRA::checkList(std::list<RIG_Node *>& lst)
1134 {
1135 GCRA::RIG_Node *prev = NULL;
1136
1137 for (std::list<RIG_Node *>::iterator it = lst.begin();
1138 it != lst.end();
1139 ++it) {
1140 assert((*it)->getValue()->join == (*it)->getValue());
1141 if (prev)
1142 assert(prev->livei.begin() <= (*it)->livei.begin());
1143 prev = *it;
1144 }
1145 }
1146
1147 void
1148 GCRA::insertOrderedTail(std::list<RIG_Node *>& list, RIG_Node *node)
1149 {
1150 if (node->livei.isEmpty())
1151 return;
1152 // only the intervals of joined values don't necessarily arrive in order
1153 std::list<RIG_Node *>::iterator prev, it;
1154 for (it = list.end(); it != list.begin(); it = prev) {
1155 prev = it;
1156 --prev;
1157 if ((*prev)->livei.begin() <= node->livei.begin())
1158 break;
1159 }
1160 list.insert(it, node);
1161 }
1162
1163 void
1164 GCRA::buildRIG(ArrayList& insns)
1165 {
1166 std::list<RIG_Node *> values, active;
1167
1168 for (std::deque<ValueDef>::iterator it = func->ins.begin();
1169 it != func->ins.end(); ++it)
1170 insertOrderedTail(values, getNode(it->get()->asLValue()));
1171
1172 for (int i = 0; i < insns.getSize(); ++i) {
1173 Instruction *insn = reinterpret_cast<Instruction *>(insns.get(i));
1174 for (int d = 0; insn->defExists(d); ++d)
1175 if (insn->getDef(d)->rep() == insn->getDef(d))
1176 insertOrderedTail(values, getNode(insn->getDef(d)->asLValue()));
1177 }
1178 checkList(values);
1179
1180 while (!values.empty()) {
1181 RIG_Node *cur = values.front();
1182
1183 for (std::list<RIG_Node *>::iterator it = active.begin();
1184 it != active.end();) {
1185 RIG_Node *node = *it;
1186
1187 if (node->livei.end() <= cur->livei.begin()) {
1188 it = active.erase(it);
1189 } else {
1190 if (node->f == cur->f && node->livei.overlaps(cur->livei))
1191 cur->addInterference(node);
1192 ++it;
1193 }
1194 }
1195 values.pop_front();
1196 active.push_back(cur);
1197 }
1198 }
1199
1200 void
1201 GCRA::calculateSpillWeights()
1202 {
1203 for (unsigned int i = 0; i < nodeCount; ++i) {
1204 RIG_Node *const n = &nodes[i];
1205 if (!nodes[i].colors || nodes[i].livei.isEmpty())
1206 continue;
1207 if (nodes[i].reg >= 0) {
1208 // update max reg
1209 regs.occupy(n->f, n->reg, n->colors);
1210 continue;
1211 }
1212 LValue *val = nodes[i].getValue();
1213
1214 if (!val->noSpill) {
1215 int rc = 0;
1216 for (Value::DefIterator it = val->defs.begin();
1217 it != val->defs.end();
1218 ++it)
1219 rc += (*it)->get()->refCount();
1220
1221 nodes[i].weight =
1222 (float)rc * (float)rc / (float)nodes[i].livei.extent();
1223 }
1224
1225 if (nodes[i].degree < nodes[i].degreeLimit) {
1226 int l = 0;
1227 if (val->reg.size > 4)
1228 l = 1;
1229 DLLIST_ADDHEAD(&lo[l], &nodes[i]);
1230 } else {
1231 DLLIST_ADDHEAD(&hi, &nodes[i]);
1232 }
1233 }
1234 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC)
1235 printNodeInfo();
1236 }
1237
1238 void
1239 GCRA::simplifyEdge(RIG_Node *a, RIG_Node *b)
1240 {
1241 bool move = b->degree >= b->degreeLimit;
1242
1243 INFO_DBG(prog->dbgFlags, REG_ALLOC,
1244 "edge: (%%%i, deg %u/%u) >-< (%%%i, deg %u/%u)\n",
1245 a->getValue()->id, a->degree, a->degreeLimit,
1246 b->getValue()->id, b->degree, b->degreeLimit);
1247
1248 b->degree -= relDegree[a->colors][b->colors];
1249
1250 move = move && b->degree < b->degreeLimit;
1251 if (move && !DLLIST_EMPTY(b)) {
1252 int l = (b->getValue()->reg.size > 4) ? 1 : 0;
1253 DLLIST_DEL(b);
1254 DLLIST_ADDTAIL(&lo[l], b);
1255 }
1256 }
1257
1258 void
1259 GCRA::simplifyNode(RIG_Node *node)
1260 {
1261 for (Graph::EdgeIterator ei = node->outgoing(); !ei.end(); ei.next())
1262 simplifyEdge(node, RIG_Node::get(ei));
1263
1264 for (Graph::EdgeIterator ei = node->incident(); !ei.end(); ei.next())
1265 simplifyEdge(node, RIG_Node::get(ei));
1266
1267 DLLIST_DEL(node);
1268 stack.push(node->getValue()->id);
1269
1270 INFO_DBG(prog->dbgFlags, REG_ALLOC, "SIMPLIFY: pushed %%%i%s\n",
1271 node->getValue()->id,
1272 (node->degree < node->degreeLimit) ? "" : "(spill)");
1273 }
1274
1275 void
1276 GCRA::simplify()
1277 {
1278 for (;;) {
1279 if (!DLLIST_EMPTY(&lo[0])) {
1280 do {
1281 simplifyNode(lo[0].next);
1282 } while (!DLLIST_EMPTY(&lo[0]));
1283 } else
1284 if (!DLLIST_EMPTY(&lo[1])) {
1285 simplifyNode(lo[1].next);
1286 } else
1287 if (!DLLIST_EMPTY(&hi)) {
1288 RIG_Node *best = hi.next;
1289 float bestScore = best->weight / (float)best->degree;
1290 // spill candidate
1291 for (RIG_Node *it = best->next; it != &hi; it = it->next) {
1292 float score = it->weight / (float)it->degree;
1293 if (score < bestScore) {
1294 best = it;
1295 bestScore = score;
1296 }
1297 }
1298 if (isinf(bestScore)) {
1299 ERROR("no viable spill candidates left\n");
1300 break;
1301 }
1302 simplifyNode(best);
1303 } else {
1304 break;
1305 }
1306 }
1307 }
1308
1309 void
1310 GCRA::checkInterference(const RIG_Node *node, Graph::EdgeIterator& ei)
1311 {
1312 const RIG_Node *intf = RIG_Node::get(ei);
1313
1314 if (intf->reg < 0)
1315 return;
1316 const LValue *vA = node->getValue();
1317 const LValue *vB = intf->getValue();
1318
1319 const uint8_t intfMask = ((1 << intf->colors) - 1) << (intf->reg & 7);
1320
1321 if (vA->compound | vB->compound) {
1322 // NOTE: this only works for >aligned< register tuples !
1323 for (Value::DefCIterator D = vA->defs.begin(); D != vA->defs.end(); ++D) {
1324 for (Value::DefCIterator d = vB->defs.begin(); d != vB->defs.end(); ++d) {
1325 const LValue *vD = (*D)->get()->asLValue();
1326 const LValue *vd = (*d)->get()->asLValue();
1327
1328 if (!vD->livei.overlaps(vd->livei)) {
1329 INFO_DBG(prog->dbgFlags, REG_ALLOC, "(%%%i) X (%%%i): no overlap\n",
1330 vD->id, vd->id);
1331 continue;
1332 }
1333
1334 uint8_t mask = vD->compound ? vD->compMask : ~0;
1335 if (vd->compound) {
1336 assert(vB->compound);
1337 mask &= vd->compMask & vB->compMask;
1338 } else {
1339 mask &= intfMask;
1340 }
1341
1342 INFO_DBG(prog->dbgFlags, REG_ALLOC,
1343 "(%%%i)%02x X (%%%i)%02x & %02x: $r%i.%02x\n",
1344 vD->id,
1345 vD->compound ? vD->compMask : 0xff,
1346 vd->id,
1347 vd->compound ? vd->compMask : intfMask,
1348 vB->compMask, intf->reg & ~7, mask);
1349 if (mask)
1350 regs.occupyMask(node->f, intf->reg & ~7, mask);
1351 }
1352 }
1353 } else {
1354 INFO_DBG(prog->dbgFlags, REG_ALLOC,
1355 "(%%%i) X (%%%i): $r%i + %u\n",
1356 vA->id, vB->id, intf->reg, intf->colors);
1357 regs.occupy(node->f, intf->reg, intf->colors);
1358 }
1359 }
1360
1361 bool
1362 GCRA::selectRegisters()
1363 {
1364 INFO_DBG(prog->dbgFlags, REG_ALLOC, "\nSELECT phase\n");
1365
1366 while (!stack.empty()) {
1367 RIG_Node *node = &nodes[stack.top()];
1368 stack.pop();
1369
1370 regs.reset(node->f);
1371
1372 INFO_DBG(prog->dbgFlags, REG_ALLOC, "\nNODE[%%%i, %u colors]\n",
1373 node->getValue()->id, node->colors);
1374
1375 for (Graph::EdgeIterator ei = node->outgoing(); !ei.end(); ei.next())
1376 checkInterference(node, ei);
1377 for (Graph::EdgeIterator ei = node->incident(); !ei.end(); ei.next())
1378 checkInterference(node, ei);
1379
1380 if (!node->prefRegs.empty()) {
1381 for (std::list<RIG_Node *>::const_iterator it = node->prefRegs.begin();
1382 it != node->prefRegs.end();
1383 ++it) {
1384 if ((*it)->reg >= 0 &&
1385 regs.testOccupy(node->f, (*it)->reg, node->colors)) {
1386 node->reg = (*it)->reg;
1387 break;
1388 }
1389 }
1390 }
1391 if (node->reg >= 0)
1392 continue;
1393 LValue *lval = node->getValue();
1394 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC)
1395 regs.print();
1396 bool ret = regs.assign(node->reg, node->f, node->colors);
1397 if (ret) {
1398 INFO_DBG(prog->dbgFlags, REG_ALLOC, "assigned reg %i\n", node->reg);
1399 lval->compMask = node->getCompMask();
1400 } else {
1401 INFO_DBG(prog->dbgFlags, REG_ALLOC, "must spill: %%%i (size %u)\n",
1402 lval->id, lval->reg.size);
1403 Symbol *slot = NULL;
1404 if (lval->reg.file == FILE_GPR)
1405 slot = spill.assignSlot(node->livei, lval->reg.size);
1406 mustSpill.push_back(ValuePair(lval, slot));
1407 }
1408 }
1409 if (!mustSpill.empty())
1410 return false;
1411 for (unsigned int i = 0; i < nodeCount; ++i) {
1412 LValue *lval = nodes[i].getValue();
1413 if (nodes[i].reg >= 0 && nodes[i].colors > 0)
1414 lval->reg.data.id =
1415 regs.unitsToId(nodes[i].f, nodes[i].reg, lval->reg.size);
1416 }
1417 return true;
1418 }
1419
1420 bool
1421 GCRA::allocateRegisters(ArrayList& insns)
1422 {
1423 bool ret;
1424
1425 INFO_DBG(prog->dbgFlags, REG_ALLOC,
1426 "allocateRegisters to %u instructions\n", insns.getSize());
1427
1428 nodeCount = func->allLValues.getSize();
1429 nodes = new RIG_Node[nodeCount];
1430 if (!nodes)
1431 return false;
1432 for (unsigned int i = 0; i < nodeCount; ++i) {
1433 LValue *lval = reinterpret_cast<LValue *>(func->allLValues.get(i));
1434 if (lval) {
1435 nodes[i].init(regs, lval);
1436 RIG.insert(&nodes[i]);
1437 }
1438 }
1439
1440 // coalesce first, we use only 1 RIG node for a group of joined values
1441 ret = coalesce(insns);
1442 if (!ret)
1443 goto out;
1444
1445 if (func->getProgram()->dbgFlags & NV50_IR_DEBUG_REG_ALLOC)
1446 func->printLiveIntervals();
1447
1448 buildRIG(insns);
1449 calculateSpillWeights();
1450 simplify();
1451
1452 ret = selectRegisters();
1453 if (!ret) {
1454 INFO_DBG(prog->dbgFlags, REG_ALLOC,
1455 "selectRegisters failed, inserting spill code ...\n");
1456 regs.reset(FILE_GPR, true);
1457 spill.run(mustSpill);
1458 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC)
1459 func->print();
1460 } else {
1461 prog->maxGPR = std::max(prog->maxGPR, regs.getMaxAssigned(FILE_GPR));
1462 }
1463
1464 out:
1465 cleanup(ret);
1466 return ret;
1467 }
1468
1469 void
1470 GCRA::cleanup(const bool success)
1471 {
1472 mustSpill.clear();
1473
1474 for (ArrayList::Iterator it = func->allLValues.iterator();
1475 !it.end(); it.next()) {
1476 LValue *lval = reinterpret_cast<LValue *>(it.get());
1477
1478 lval->livei.clear();
1479
1480 lval->compound = 0;
1481 lval->compMask = 0;
1482
1483 if (lval->join == lval)
1484 continue;
1485
1486 if (success) {
1487 lval->reg.data.id = lval->join->reg.data.id;
1488 } else {
1489 for (Value::DefIterator d = lval->defs.begin(); d != lval->defs.end();
1490 ++d)
1491 lval->join->defs.remove(*d);
1492 lval->join = lval;
1493 }
1494 }
1495
1496 if (success)
1497 resolveSplitsAndMerges();
1498 splits.clear(); // avoid duplicate entries on next coalesce pass
1499 merges.clear();
1500
1501 delete[] nodes;
1502 nodes = NULL;
1503 }
1504
1505 Symbol *
1506 SpillCodeInserter::assignSlot(const Interval &livei, const unsigned int size)
1507 {
1508 SpillSlot slot;
1509 int32_t offsetBase = stackSize;
1510 int32_t offset;
1511 std::list<SpillSlot>::iterator pos = slots.end(), it = slots.begin();
1512
1513 if (offsetBase % size)
1514 offsetBase += size - (offsetBase % size);
1515
1516 slot.sym = NULL;
1517
1518 for (offset = offsetBase; offset < stackSize; offset += size) {
1519 const int32_t entryEnd = offset + size;
1520 while (it != slots.end() && it->offset < offset)
1521 ++it;
1522 if (it == slots.end()) // no slots left
1523 break;
1524 std::list<SpillSlot>::iterator bgn = it;
1525
1526 while (it != slots.end() && it->offset < entryEnd) {
1527 it->occup.print();
1528 if (it->occup.overlaps(livei))
1529 break;
1530 ++it;
1531 }
1532 if (it == slots.end() || it->offset >= entryEnd) {
1533 // fits
1534 for (; bgn != slots.end() && bgn->offset < entryEnd; ++bgn) {
1535 bgn->occup.insert(livei);
1536 if (bgn->size() == size)
1537 slot.sym = bgn->sym;
1538 }
1539 break;
1540 }
1541 }
1542 if (!slot.sym) {
1543 stackSize = offset + size;
1544 slot.offset = offset;
1545 slot.sym = new_Symbol(func->getProgram(), FILE_MEMORY_LOCAL);
1546 if (!func->stackPtr)
1547 offset += func->tlsBase;
1548 slot.sym->setAddress(NULL, offset);
1549 slot.sym->reg.size = size;
1550 slots.insert(pos, slot)->occup.insert(livei);
1551 }
1552 return slot.sym;
1553 }
1554
1555 Value *
1556 SpillCodeInserter::offsetSlot(Value *base, const LValue *lval)
1557 {
1558 if (!lval->compound || (lval->compMask & 0x1))
1559 return base;
1560 Value *slot = cloneShallow(func, base);
1561
1562 slot->reg.data.offset += (ffs(lval->compMask) - 1) * lval->reg.size;
1563 slot->reg.size = lval->reg.size;
1564
1565 return slot;
1566 }
1567
1568 void
1569 SpillCodeInserter::spill(Instruction *defi, Value *slot, LValue *lval)
1570 {
1571 const DataType ty = typeOfSize(lval->reg.size);
1572
1573 slot = offsetSlot(slot, lval);
1574
1575 Instruction *st;
1576 if (slot->reg.file == FILE_MEMORY_LOCAL) {
1577 lval->noSpill = 1;
1578 if (ty != TYPE_B96) {
1579 st = new_Instruction(func, OP_STORE, ty);
1580 st->setSrc(0, slot);
1581 st->setSrc(1, lval);
1582 } else {
1583 st = new_Instruction(func, OP_SPLIT, ty);
1584 st->setSrc(0, lval);
1585 for (int d = 0; d < lval->reg.size / 4; ++d)
1586 st->setDef(d, new_LValue(func, FILE_GPR));
1587
1588 for (int d = lval->reg.size / 4 - 1; d >= 0; --d) {
1589 Value *tmp = cloneShallow(func, slot);
1590 tmp->reg.size = 4;
1591 tmp->reg.data.offset += 4 * d;
1592
1593 Instruction *s = new_Instruction(func, OP_STORE, TYPE_U32);
1594 s->setSrc(0, tmp);
1595 s->setSrc(1, st->getDef(d));
1596 defi->bb->insertAfter(defi, s);
1597 }
1598 }
1599 } else {
1600 st = new_Instruction(func, OP_CVT, ty);
1601 st->setDef(0, slot);
1602 st->setSrc(0, lval);
1603 if (lval->reg.file == FILE_FLAGS)
1604 st->flagsSrc = 0;
1605 }
1606 defi->bb->insertAfter(defi, st);
1607 }
1608
1609 LValue *
1610 SpillCodeInserter::unspill(Instruction *usei, LValue *lval, Value *slot)
1611 {
1612 const DataType ty = typeOfSize(lval->reg.size);
1613
1614 slot = offsetSlot(slot, lval);
1615 lval = cloneShallow(func, lval);
1616
1617 Instruction *ld;
1618 if (slot->reg.file == FILE_MEMORY_LOCAL) {
1619 lval->noSpill = 1;
1620 if (ty != TYPE_B96) {
1621 ld = new_Instruction(func, OP_LOAD, ty);
1622 } else {
1623 ld = new_Instruction(func, OP_MERGE, ty);
1624 for (int d = 0; d < lval->reg.size / 4; ++d) {
1625 Value *tmp = cloneShallow(func, slot);
1626 LValue *val;
1627 tmp->reg.size = 4;
1628 tmp->reg.data.offset += 4 * d;
1629
1630 Instruction *l = new_Instruction(func, OP_LOAD, TYPE_U32);
1631 l->setDef(0, (val = new_LValue(func, FILE_GPR)));
1632 l->setSrc(0, tmp);
1633 usei->bb->insertBefore(usei, l);
1634 ld->setSrc(d, val);
1635 val->noSpill = 1;
1636 }
1637 ld->setDef(0, lval);
1638 usei->bb->insertBefore(usei, ld);
1639 return lval;
1640 }
1641 } else {
1642 ld = new_Instruction(func, OP_CVT, ty);
1643 }
1644 ld->setDef(0, lval);
1645 ld->setSrc(0, slot);
1646 if (lval->reg.file == FILE_FLAGS)
1647 ld->flagsDef = 0;
1648
1649 usei->bb->insertBefore(usei, ld);
1650 return lval;
1651 }
1652
1653 static bool
1654 value_cmp(ValueRef *a, ValueRef *b) {
1655 Instruction *ai = a->getInsn(), *bi = b->getInsn();
1656 if (ai->bb != bi->bb)
1657 return ai->bb->getId() < bi->bb->getId();
1658 return ai->serial < bi->serial;
1659 }
1660
1661 // For each value that is to be spilled, go through all its definitions.
1662 // A value can have multiple definitions if it has been coalesced before.
1663 // For each definition, first go through all its uses and insert an unspill
1664 // instruction before it, then replace the use with the temporary register.
1665 // Unspill can be either a load from memory or simply a move to another
1666 // register file.
1667 // For "Pseudo" instructions (like PHI, SPLIT, MERGE) we can erase the use
1668 // if we have spilled to a memory location, or simply with the new register.
1669 // No load or conversion instruction should be needed.
1670 bool
1671 SpillCodeInserter::run(const std::list<ValuePair>& lst)
1672 {
1673 for (std::list<ValuePair>::const_iterator it = lst.begin(); it != lst.end();
1674 ++it) {
1675 LValue *lval = it->first->asLValue();
1676 Symbol *mem = it->second ? it->second->asSym() : NULL;
1677
1678 // Keep track of which instructions to delete later. Deleting them
1679 // inside the loop is unsafe since a single instruction may have
1680 // multiple destinations that all need to be spilled (like OP_SPLIT).
1681 unordered_set<Instruction *> to_del;
1682
1683 for (Value::DefIterator d = lval->defs.begin(); d != lval->defs.end();
1684 ++d) {
1685 Value *slot = mem ?
1686 static_cast<Value *>(mem) : new_LValue(func, FILE_GPR);
1687 Value *tmp = NULL;
1688 Instruction *last = NULL;
1689
1690 LValue *dval = (*d)->get()->asLValue();
1691 Instruction *defi = (*d)->getInsn();
1692
1693 // Sort all the uses by BB/instruction so that we don't unspill
1694 // multiple times in a row, and also remove a source of
1695 // non-determinism.
1696 std::vector<ValueRef *> refs(dval->uses.begin(), dval->uses.end());
1697 std::sort(refs.begin(), refs.end(), value_cmp);
1698
1699 // Unspill at each use *before* inserting spill instructions,
1700 // we don't want to have the spill instructions in the use list here.
1701 for (std::vector<ValueRef*>::const_iterator it = refs.begin();
1702 it != refs.end(); ++it) {
1703 ValueRef *u = *it;
1704 Instruction *usei = u->getInsn();
1705 assert(usei);
1706 if (usei->isPseudo()) {
1707 tmp = (slot->reg.file == FILE_MEMORY_LOCAL) ? NULL : slot;
1708 last = NULL;
1709 } else {
1710 if (!last || (usei != last->next && usei != last))
1711 tmp = unspill(usei, dval, slot);
1712 last = usei;
1713 }
1714 u->set(tmp);
1715 }
1716
1717 assert(defi);
1718 if (defi->isPseudo()) {
1719 d = lval->defs.erase(d);
1720 --d;
1721 if (slot->reg.file == FILE_MEMORY_LOCAL)
1722 to_del.insert(defi);
1723 else
1724 defi->setDef(0, slot);
1725 } else {
1726 spill(defi, slot, dval);
1727 }
1728 }
1729
1730 for (unordered_set<Instruction *>::const_iterator it = to_del.begin();
1731 it != to_del.end(); ++it)
1732 delete_Instruction(func->getProgram(), *it);
1733 }
1734
1735 // TODO: We're not trying to reuse old slots in a potential next iteration.
1736 // We have to update the slots' livei intervals to be able to do that.
1737 stackBase = stackSize;
1738 slots.clear();
1739 return true;
1740 }
1741
1742 bool
1743 RegAlloc::exec()
1744 {
1745 for (IteratorRef it = prog->calls.iteratorDFS(false);
1746 !it->end(); it->next()) {
1747 func = Function::get(reinterpret_cast<Graph::Node *>(it->get()));
1748
1749 func->tlsBase = prog->tlsSize;
1750 if (!execFunc())
1751 return false;
1752 prog->tlsSize += func->tlsSize;
1753 }
1754 return true;
1755 }
1756
1757 bool
1758 RegAlloc::execFunc()
1759 {
1760 InsertConstraintsPass insertConstr;
1761 PhiMovesPass insertPhiMoves;
1762 ArgumentMovesPass insertArgMoves;
1763 BuildIntervalsPass buildIntervals;
1764 SpillCodeInserter insertSpills(func);
1765
1766 GCRA gcra(func, insertSpills);
1767
1768 unsigned int i, retries;
1769 bool ret;
1770
1771 if (!func->ins.empty()) {
1772 // Insert a nop at the entry so inputs only used by the first instruction
1773 // don't count as having an empty live range.
1774 Instruction *nop = new_Instruction(func, OP_NOP, TYPE_NONE);
1775 BasicBlock::get(func->cfg.getRoot())->insertHead(nop);
1776 }
1777
1778 ret = insertConstr.exec(func);
1779 if (!ret)
1780 goto out;
1781
1782 ret = insertPhiMoves.run(func);
1783 if (!ret)
1784 goto out;
1785
1786 ret = insertArgMoves.run(func);
1787 if (!ret)
1788 goto out;
1789
1790 // TODO: need to fix up spill slot usage ranges to support > 1 retry
1791 for (retries = 0; retries < 3; ++retries) {
1792 if (retries && (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC))
1793 INFO("Retry: %i\n", retries);
1794 if (prog->dbgFlags & NV50_IR_DEBUG_REG_ALLOC)
1795 func->print();
1796
1797 // spilling to registers may add live ranges, need to rebuild everything
1798 ret = true;
1799 for (sequence = func->cfg.nextSequence(), i = 0;
1800 ret && i <= func->loopNestingBound;
1801 sequence = func->cfg.nextSequence(), ++i)
1802 ret = buildLiveSets(BasicBlock::get(func->cfg.getRoot()));
1803 // reset marker
1804 for (ArrayList::Iterator bi = func->allBBlocks.iterator();
1805 !bi.end(); bi.next())
1806 BasicBlock::get(bi)->liveSet.marker = false;
1807 if (!ret)
1808 break;
1809 func->orderInstructions(this->insns);
1810
1811 ret = buildIntervals.run(func);
1812 if (!ret)
1813 break;
1814 ret = gcra.allocateRegisters(insns);
1815 if (ret)
1816 break; // success
1817 }
1818 INFO_DBG(prog->dbgFlags, REG_ALLOC, "RegAlloc done: %i\n", ret);
1819
1820 func->tlsSize = insertSpills.getStackSize();
1821 out:
1822 return ret;
1823 }
1824
1825 // TODO: check if modifying Instruction::join here breaks anything
1826 void
1827 GCRA::resolveSplitsAndMerges()
1828 {
1829 for (std::list<Instruction *>::iterator it = splits.begin();
1830 it != splits.end();
1831 ++it) {
1832 Instruction *split = *it;
1833 unsigned int reg = regs.idToBytes(split->getSrc(0));
1834 for (int d = 0; split->defExists(d); ++d) {
1835 Value *v = split->getDef(d);
1836 v->reg.data.id = regs.bytesToId(v, reg);
1837 v->join = v;
1838 reg += v->reg.size;
1839 }
1840 }
1841 splits.clear();
1842
1843 for (std::list<Instruction *>::iterator it = merges.begin();
1844 it != merges.end();
1845 ++it) {
1846 Instruction *merge = *it;
1847 unsigned int reg = regs.idToBytes(merge->getDef(0));
1848 for (int s = 0; merge->srcExists(s); ++s) {
1849 Value *v = merge->getSrc(s);
1850 v->reg.data.id = regs.bytesToId(v, reg);
1851 v->join = v;
1852 // If the value is defined by a phi/union node, we also need to
1853 // perform the same fixup on that node's sources, since after RA
1854 // their registers should be identical.
1855 if (v->getInsn()->op == OP_PHI || v->getInsn()->op == OP_UNION) {
1856 Instruction *phi = v->getInsn();
1857 for (int phis = 0; phi->srcExists(phis); ++phis)
1858 phi->getSrc(phis)->join = v;
1859 }
1860 reg += v->reg.size;
1861 }
1862 }
1863 merges.clear();
1864 }
1865
1866 bool Program::registerAllocation()
1867 {
1868 RegAlloc ra(this);
1869 return ra.exec();
1870 }
1871
1872 bool
1873 RegAlloc::InsertConstraintsPass::exec(Function *ir)
1874 {
1875 constrList.clear();
1876
1877 bool ret = run(ir, true, true);
1878 if (ret)
1879 ret = insertConstraintMoves();
1880 return ret;
1881 }
1882
1883 // TODO: make part of texture insn
1884 void
1885 RegAlloc::InsertConstraintsPass::textureMask(TexInstruction *tex)
1886 {
1887 Value *def[4];
1888 int c, k, d;
1889 uint8_t mask = 0;
1890
1891 for (d = 0, k = 0, c = 0; c < 4; ++c) {
1892 if (!(tex->tex.mask & (1 << c)))
1893 continue;
1894 if (tex->getDef(k)->refCount()) {
1895 mask |= 1 << c;
1896 def[d++] = tex->getDef(k);
1897 }
1898 ++k;
1899 }
1900 tex->tex.mask = mask;
1901
1902 for (c = 0; c < d; ++c)
1903 tex->setDef(c, def[c]);
1904 for (; c < 4; ++c)
1905 tex->setDef(c, NULL);
1906 }
1907
1908 bool
1909 RegAlloc::InsertConstraintsPass::detectConflict(Instruction *cst, int s)
1910 {
1911 Value *v = cst->getSrc(s);
1912
1913 // current register allocation can't handle it if a value participates in
1914 // multiple constraints
1915 for (Value::UseIterator it = v->uses.begin(); it != v->uses.end(); ++it) {
1916 if (cst != (*it)->getInsn())
1917 return true;
1918 }
1919
1920 // can start at s + 1 because detectConflict is called on all sources
1921 for (int c = s + 1; cst->srcExists(c); ++c)
1922 if (v == cst->getSrc(c))
1923 return true;
1924
1925 Instruction *defi = v->getInsn();
1926
1927 return (!defi || defi->constrainedDefs());
1928 }
1929
1930 void
1931 RegAlloc::InsertConstraintsPass::addConstraint(Instruction *i, int s, int n)
1932 {
1933 Instruction *cst;
1934 int d;
1935
1936 // first, look for an existing identical constraint op
1937 for (std::list<Instruction *>::iterator it = constrList.begin();
1938 it != constrList.end();
1939 ++it) {
1940 cst = (*it);
1941 if (!i->bb->dominatedBy(cst->bb))
1942 break;
1943 for (d = 0; d < n; ++d)
1944 if (cst->getSrc(d) != i->getSrc(d + s))
1945 break;
1946 if (d >= n) {
1947 for (d = 0; d < n; ++d, ++s)
1948 i->setSrc(s, cst->getDef(d));
1949 return;
1950 }
1951 }
1952 cst = new_Instruction(func, OP_CONSTRAINT, i->dType);
1953
1954 for (d = 0; d < n; ++s, ++d) {
1955 cst->setDef(d, new_LValue(func, FILE_GPR));
1956 cst->setSrc(d, i->getSrc(s));
1957 i->setSrc(s, cst->getDef(d));
1958 }
1959 i->bb->insertBefore(i, cst);
1960
1961 constrList.push_back(cst);
1962 }
1963
1964 // Add a dummy use of the pointer source of >= 8 byte loads after the load
1965 // to prevent it from being assigned a register which overlapping the load's
1966 // destination, which would produce random corruptions.
1967 void
1968 RegAlloc::InsertConstraintsPass::addHazard(Instruction *i, const ValueRef *src)
1969 {
1970 Instruction *hzd = new_Instruction(func, OP_NOP, TYPE_NONE);
1971 hzd->setSrc(0, src->get());
1972 i->bb->insertAfter(i, hzd);
1973
1974 }
1975
1976 // b32 { %r0 %r1 %r2 %r3 } -> b128 %r0q
1977 void
1978 RegAlloc::InsertConstraintsPass::condenseDefs(Instruction *insn)
1979 {
1980 uint8_t size = 0;
1981 int n;
1982 for (n = 0; insn->defExists(n) && insn->def(n).getFile() == FILE_GPR; ++n)
1983 size += insn->getDef(n)->reg.size;
1984 if (n < 2)
1985 return;
1986 LValue *lval = new_LValue(func, FILE_GPR);
1987 lval->reg.size = size;
1988
1989 Instruction *split = new_Instruction(func, OP_SPLIT, typeOfSize(size));
1990 split->setSrc(0, lval);
1991 for (int d = 0; d < n; ++d) {
1992 split->setDef(d, insn->getDef(d));
1993 insn->setDef(d, NULL);
1994 }
1995 insn->setDef(0, lval);
1996
1997 for (int k = 1, d = n; insn->defExists(d); ++d, ++k) {
1998 insn->setDef(k, insn->getDef(d));
1999 insn->setDef(d, NULL);
2000 }
2001 // carry over predicate if any (mainly for OP_UNION uses)
2002 split->setPredicate(insn->cc, insn->getPredicate());
2003
2004 insn->bb->insertAfter(insn, split);
2005 constrList.push_back(split);
2006 }
2007 void
2008 RegAlloc::InsertConstraintsPass::condenseSrcs(Instruction *insn,
2009 const int a, const int b)
2010 {
2011 uint8_t size = 0;
2012 if (a >= b)
2013 return;
2014 for (int s = a; s <= b; ++s)
2015 size += insn->getSrc(s)->reg.size;
2016 if (!size)
2017 return;
2018 LValue *lval = new_LValue(func, FILE_GPR);
2019 lval->reg.size = size;
2020
2021 Value *save[3];
2022 insn->takeExtraSources(0, save);
2023
2024 Instruction *merge = new_Instruction(func, OP_MERGE, typeOfSize(size));
2025 merge->setDef(0, lval);
2026 for (int s = a, i = 0; s <= b; ++s, ++i) {
2027 merge->setSrc(i, insn->getSrc(s));
2028 insn->setSrc(s, NULL);
2029 }
2030 insn->setSrc(a, lval);
2031
2032 for (int k = a + 1, s = b + 1; insn->srcExists(s); ++s, ++k) {
2033 insn->setSrc(k, insn->getSrc(s));
2034 insn->setSrc(s, NULL);
2035 }
2036 insn->bb->insertBefore(insn, merge);
2037
2038 insn->putExtraSources(0, save);
2039
2040 constrList.push_back(merge);
2041 }
2042
2043 void
2044 RegAlloc::InsertConstraintsPass::texConstraintGM107(TexInstruction *tex)
2045 {
2046 int n, s;
2047
2048 if (isTextureOp(tex->op))
2049 textureMask(tex);
2050 condenseDefs(tex);
2051
2052 if (tex->op == OP_SUSTB || tex->op == OP_SUSTP) {
2053 condenseSrcs(tex, 3, (3 + typeSizeof(tex->dType) / 4) - 1);
2054 } else
2055 if (isTextureOp(tex->op)) {
2056 if (tex->op != OP_TXQ) {
2057 s = tex->tex.target.getArgCount() - tex->tex.target.isMS();
2058 if (tex->op == OP_TXD) {
2059 // Indirect handle belongs in the first arg
2060 if (tex->tex.rIndirectSrc >= 0)
2061 s++;
2062 if (!tex->tex.target.isArray() && tex->tex.useOffsets)
2063 s++;
2064 }
2065 n = tex->srcCount(0xff) - s;
2066 } else {
2067 s = tex->srcCount(0xff);
2068 n = 0;
2069 }
2070
2071 if (s > 1)
2072 condenseSrcs(tex, 0, s - 1);
2073 if (n > 1) // NOTE: first call modified positions already
2074 condenseSrcs(tex, 1, n);
2075 }
2076 }
2077
2078 void
2079 RegAlloc::InsertConstraintsPass::texConstraintNVE0(TexInstruction *tex)
2080 {
2081 if (isTextureOp(tex->op))
2082 textureMask(tex);
2083 condenseDefs(tex);
2084
2085 if (tex->op == OP_SUSTB || tex->op == OP_SUSTP) {
2086 condenseSrcs(tex, 3, (3 + typeSizeof(tex->dType) / 4) - 1);
2087 } else
2088 if (isTextureOp(tex->op)) {
2089 int n = tex->srcCount(0xff, true);
2090 if (n > 4) {
2091 condenseSrcs(tex, 0, 3);
2092 if (n > 5) // NOTE: first call modified positions already
2093 condenseSrcs(tex, 4 - (4 - 1), n - 1 - (4 - 1));
2094 } else
2095 if (n > 1) {
2096 condenseSrcs(tex, 0, n - 1);
2097 }
2098 }
2099 }
2100
2101 void
2102 RegAlloc::InsertConstraintsPass::texConstraintNVC0(TexInstruction *tex)
2103 {
2104 int n, s;
2105
2106 if (isTextureOp(tex->op))
2107 textureMask(tex);
2108
2109 if (tex->op == OP_TXQ) {
2110 s = tex->srcCount(0xff);
2111 n = 0;
2112 } else {
2113 s = tex->tex.target.getArgCount() - tex->tex.target.isMS();
2114 if (!tex->tex.target.isArray() &&
2115 (tex->tex.rIndirectSrc >= 0 || tex->tex.sIndirectSrc >= 0))
2116 ++s;
2117 if (tex->op == OP_TXD && tex->tex.useOffsets)
2118 ++s;
2119 n = tex->srcCount(0xff) - s;
2120 assert(n <= 4);
2121 }
2122
2123 if (s > 1)
2124 condenseSrcs(tex, 0, s - 1);
2125 if (n > 1) // NOTE: first call modified positions already
2126 condenseSrcs(tex, 1, n);
2127
2128 condenseDefs(tex);
2129 }
2130
2131 void
2132 RegAlloc::InsertConstraintsPass::texConstraintNV50(TexInstruction *tex)
2133 {
2134 Value *pred = tex->getPredicate();
2135 if (pred)
2136 tex->setPredicate(tex->cc, NULL);
2137
2138 textureMask(tex);
2139
2140 assert(tex->defExists(0) && tex->srcExists(0));
2141 // make src and def count match
2142 int c;
2143 for (c = 0; tex->srcExists(c) || tex->defExists(c); ++c) {
2144 if (!tex->srcExists(c))
2145 tex->setSrc(c, new_LValue(func, tex->getSrc(0)->asLValue()));
2146 if (!tex->defExists(c))
2147 tex->setDef(c, new_LValue(func, tex->getDef(0)->asLValue()));
2148 }
2149 if (pred)
2150 tex->setPredicate(tex->cc, pred);
2151 condenseDefs(tex);
2152 condenseSrcs(tex, 0, c - 1);
2153 }
2154
2155 // Insert constraint markers for instructions whose multiple sources must be
2156 // located in consecutive registers.
2157 bool
2158 RegAlloc::InsertConstraintsPass::visit(BasicBlock *bb)
2159 {
2160 TexInstruction *tex;
2161 Instruction *next;
2162 int s, size;
2163
2164 targ = bb->getProgram()->getTarget();
2165
2166 for (Instruction *i = bb->getEntry(); i; i = next) {
2167 next = i->next;
2168
2169 if ((tex = i->asTex())) {
2170 switch (targ->getChipset() & ~0xf) {
2171 case 0x50:
2172 case 0x80:
2173 case 0x90:
2174 case 0xa0:
2175 texConstraintNV50(tex);
2176 break;
2177 case 0xc0:
2178 case 0xd0:
2179 texConstraintNVC0(tex);
2180 break;
2181 case 0xe0:
2182 case 0xf0:
2183 case 0x100:
2184 texConstraintNVE0(tex);
2185 break;
2186 case 0x110:
2187 texConstraintGM107(tex);
2188 break;
2189 default:
2190 break;
2191 }
2192 } else
2193 if (i->op == OP_EXPORT || i->op == OP_STORE) {
2194 for (size = typeSizeof(i->dType), s = 1; size > 0; ++s) {
2195 assert(i->srcExists(s));
2196 size -= i->getSrc(s)->reg.size;
2197 }
2198 condenseSrcs(i, 1, s - 1);
2199 } else
2200 if (i->op == OP_LOAD || i->op == OP_VFETCH) {
2201 condenseDefs(i);
2202 if (i->src(0).isIndirect(0) && typeSizeof(i->dType) >= 8)
2203 addHazard(i, i->src(0).getIndirect(0));
2204 if (i->src(0).isIndirect(1) && typeSizeof(i->dType) >= 8)
2205 addHazard(i, i->src(0).getIndirect(1));
2206 } else
2207 if (i->op == OP_UNION ||
2208 i->op == OP_MERGE ||
2209 i->op == OP_SPLIT) {
2210 constrList.push_back(i);
2211 }
2212 }
2213 return true;
2214 }
2215
2216 // Insert extra moves so that, if multiple register constraints on a value are
2217 // in conflict, these conflicts can be resolved.
2218 bool
2219 RegAlloc::InsertConstraintsPass::insertConstraintMoves()
2220 {
2221 for (std::list<Instruction *>::iterator it = constrList.begin();
2222 it != constrList.end();
2223 ++it) {
2224 Instruction *cst = *it;
2225 Instruction *mov;
2226
2227 if (cst->op == OP_SPLIT && 0) {
2228 // spilling splits is annoying, just make sure they're separate
2229 for (int d = 0; cst->defExists(d); ++d) {
2230 if (!cst->getDef(d)->refCount())
2231 continue;
2232 LValue *lval = new_LValue(func, cst->def(d).getFile());
2233 const uint8_t size = cst->def(d).getSize();
2234 lval->reg.size = size;
2235
2236 mov = new_Instruction(func, OP_MOV, typeOfSize(size));
2237 mov->setSrc(0, lval);
2238 mov->setDef(0, cst->getDef(d));
2239 cst->setDef(d, mov->getSrc(0));
2240 cst->bb->insertAfter(cst, mov);
2241
2242 cst->getSrc(0)->asLValue()->noSpill = 1;
2243 mov->getSrc(0)->asLValue()->noSpill = 1;
2244 }
2245 } else
2246 if (cst->op == OP_MERGE || cst->op == OP_UNION) {
2247 for (int s = 0; cst->srcExists(s); ++s) {
2248 const uint8_t size = cst->src(s).getSize();
2249
2250 if (!cst->getSrc(s)->defs.size()) {
2251 mov = new_Instruction(func, OP_NOP, typeOfSize(size));
2252 mov->setDef(0, cst->getSrc(s));
2253 cst->bb->insertBefore(cst, mov);
2254 continue;
2255 }
2256 assert(cst->getSrc(s)->defs.size() == 1); // still SSA
2257
2258 Instruction *defi = cst->getSrc(s)->defs.front()->getInsn();
2259 // catch some cases where don't really need MOVs
2260 if (cst->getSrc(s)->refCount() == 1 && !defi->constrainedDefs())
2261 continue;
2262
2263 LValue *lval = new_LValue(func, cst->src(s).getFile());
2264 lval->reg.size = size;
2265
2266 mov = new_Instruction(func, OP_MOV, typeOfSize(size));
2267 mov->setDef(0, lval);
2268 mov->setSrc(0, cst->getSrc(s));
2269 cst->setSrc(s, mov->getDef(0));
2270 cst->bb->insertBefore(cst, mov);
2271
2272 cst->getDef(0)->asLValue()->noSpill = 1; // doesn't help
2273
2274 if (cst->op == OP_UNION)
2275 mov->setPredicate(defi->cc, defi->getPredicate());
2276 }
2277 }
2278 }
2279
2280 return true;
2281 }
2282
2283 } // namespace nv50_ir