nv50: use correct heaps for FP and GP code segments
[mesa.git] / src / gallium / drivers / nouveau / nouveau_buffer.c
1
2 #include "util/u_inlines.h"
3 #include "util/u_memory.h"
4 #include "util/u_math.h"
5 #include "util/u_surface.h"
6
7 #include "nouveau_screen.h"
8 #include "nouveau_context.h"
9 #include "nouveau_winsys.h"
10 #include "nouveau_fence.h"
11 #include "nouveau_buffer.h"
12 #include "nouveau_mm.h"
13
14 #define NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD 192
15
16 struct nouveau_transfer {
17 struct pipe_transfer base;
18
19 uint8_t *map;
20 struct nouveau_bo *bo;
21 struct nouveau_mm_allocation *mm;
22 uint32_t offset;
23 };
24
25 static inline struct nouveau_transfer *
26 nouveau_transfer(struct pipe_transfer *transfer)
27 {
28 return (struct nouveau_transfer *)transfer;
29 }
30
31 static inline bool
32 nouveau_buffer_malloc(struct nv04_resource *buf)
33 {
34 if (!buf->data)
35 buf->data = align_malloc(buf->base.width0, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
36 return !!buf->data;
37 }
38
39 static inline bool
40 nouveau_buffer_allocate(struct nouveau_screen *screen,
41 struct nv04_resource *buf, unsigned domain)
42 {
43 uint32_t size = align(buf->base.width0, 0x100);
44
45 if (domain == NOUVEAU_BO_VRAM) {
46 buf->mm = nouveau_mm_allocate(screen->mm_VRAM, size,
47 &buf->bo, &buf->offset);
48 if (!buf->bo)
49 return nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_GART);
50 NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_vid, buf->base.width0);
51 } else
52 if (domain == NOUVEAU_BO_GART) {
53 buf->mm = nouveau_mm_allocate(screen->mm_GART, size,
54 &buf->bo, &buf->offset);
55 if (!buf->bo)
56 return false;
57 NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_sys, buf->base.width0);
58 } else {
59 assert(domain == 0);
60 if (!nouveau_buffer_malloc(buf))
61 return false;
62 }
63 buf->domain = domain;
64 if (buf->bo)
65 buf->address = buf->bo->offset + buf->offset;
66
67 util_range_set_empty(&buf->valid_buffer_range);
68
69 return true;
70 }
71
72 static inline void
73 release_allocation(struct nouveau_mm_allocation **mm,
74 struct nouveau_fence *fence)
75 {
76 nouveau_fence_work(fence, nouveau_mm_free_work, *mm);
77 (*mm) = NULL;
78 }
79
80 inline void
81 nouveau_buffer_release_gpu_storage(struct nv04_resource *buf)
82 {
83 if (buf->fence && buf->fence->state < NOUVEAU_FENCE_STATE_FLUSHED) {
84 nouveau_fence_work(buf->fence, nouveau_fence_unref_bo, buf->bo);
85 buf->bo = NULL;
86 } else {
87 nouveau_bo_ref(NULL, &buf->bo);
88 }
89
90 if (buf->mm)
91 release_allocation(&buf->mm, buf->fence);
92
93 if (buf->domain == NOUVEAU_BO_VRAM)
94 NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_vid, -(uint64_t)buf->base.width0);
95 if (buf->domain == NOUVEAU_BO_GART)
96 NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_sys, -(uint64_t)buf->base.width0);
97
98 buf->domain = 0;
99 }
100
101 static inline bool
102 nouveau_buffer_reallocate(struct nouveau_screen *screen,
103 struct nv04_resource *buf, unsigned domain)
104 {
105 nouveau_buffer_release_gpu_storage(buf);
106
107 nouveau_fence_ref(NULL, &buf->fence);
108 nouveau_fence_ref(NULL, &buf->fence_wr);
109
110 buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
111
112 return nouveau_buffer_allocate(screen, buf, domain);
113 }
114
115 static void
116 nouveau_buffer_destroy(struct pipe_screen *pscreen,
117 struct pipe_resource *presource)
118 {
119 struct nv04_resource *res = nv04_resource(presource);
120
121 nouveau_buffer_release_gpu_storage(res);
122
123 if (res->data && !(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
124 align_free(res->data);
125
126 nouveau_fence_ref(NULL, &res->fence);
127 nouveau_fence_ref(NULL, &res->fence_wr);
128
129 util_range_destroy(&res->valid_buffer_range);
130
131 FREE(res);
132
133 NOUVEAU_DRV_STAT(nouveau_screen(pscreen), buf_obj_current_count, -1);
134 }
135
136 /* Set up a staging area for the transfer. This is either done in "regular"
137 * system memory if the driver supports push_data (nv50+) and the data is
138 * small enough (and permit_pb == true), or in GART memory.
139 */
140 static uint8_t *
141 nouveau_transfer_staging(struct nouveau_context *nv,
142 struct nouveau_transfer *tx, bool permit_pb)
143 {
144 const unsigned adj = tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK;
145 const unsigned size = align(tx->base.box.width, 4) + adj;
146
147 if (!nv->push_data)
148 permit_pb = false;
149
150 if ((size <= NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD) && permit_pb) {
151 tx->map = align_malloc(size, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
152 if (tx->map)
153 tx->map += adj;
154 } else {
155 tx->mm =
156 nouveau_mm_allocate(nv->screen->mm_GART, size, &tx->bo, &tx->offset);
157 if (tx->bo) {
158 tx->offset += adj;
159 if (!nouveau_bo_map(tx->bo, 0, NULL))
160 tx->map = (uint8_t *)tx->bo->map + tx->offset;
161 }
162 }
163 return tx->map;
164 }
165
166 /* Copies data from the resource into the the transfer's temporary GART
167 * buffer. Also updates buf->data if present.
168 *
169 * Maybe just migrate to GART right away if we actually need to do this. */
170 static bool
171 nouveau_transfer_read(struct nouveau_context *nv, struct nouveau_transfer *tx)
172 {
173 struct nv04_resource *buf = nv04_resource(tx->base.resource);
174 const unsigned base = tx->base.box.x;
175 const unsigned size = tx->base.box.width;
176
177 NOUVEAU_DRV_STAT(nv->screen, buf_read_bytes_staging_vid, size);
178
179 nv->copy_data(nv, tx->bo, tx->offset, NOUVEAU_BO_GART,
180 buf->bo, buf->offset + base, buf->domain, size);
181
182 if (nouveau_bo_wait(tx->bo, NOUVEAU_BO_RD, nv->client))
183 return false;
184
185 if (buf->data)
186 memcpy(buf->data + base, tx->map, size);
187
188 return true;
189 }
190
191 static void
192 nouveau_transfer_write(struct nouveau_context *nv, struct nouveau_transfer *tx,
193 unsigned offset, unsigned size)
194 {
195 struct nv04_resource *buf = nv04_resource(tx->base.resource);
196 uint8_t *data = tx->map + offset;
197 const unsigned base = tx->base.box.x + offset;
198 const bool can_cb = !((base | size) & 3);
199
200 if (buf->data)
201 memcpy(data, buf->data + base, size);
202 else
203 buf->status |= NOUVEAU_BUFFER_STATUS_DIRTY;
204
205 if (buf->domain == NOUVEAU_BO_VRAM)
206 NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_vid, size);
207 if (buf->domain == NOUVEAU_BO_GART)
208 NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_sys, size);
209
210 if (tx->bo)
211 nv->copy_data(nv, buf->bo, buf->offset + base, buf->domain,
212 tx->bo, tx->offset + offset, NOUVEAU_BO_GART, size);
213 else
214 if (nv->push_cb && can_cb)
215 nv->push_cb(nv, buf,
216 base, size / 4, (const uint32_t *)data);
217 else
218 nv->push_data(nv, buf->bo, buf->offset + base, buf->domain, size, data);
219
220 nouveau_fence_ref(nv->screen->fence.current, &buf->fence);
221 nouveau_fence_ref(nv->screen->fence.current, &buf->fence_wr);
222 }
223
224 /* Does a CPU wait for the buffer's backing data to become reliably accessible
225 * for write/read by waiting on the buffer's relevant fences.
226 */
227 static inline bool
228 nouveau_buffer_sync(struct nv04_resource *buf, unsigned rw)
229 {
230 if (rw == PIPE_TRANSFER_READ) {
231 if (!buf->fence_wr)
232 return true;
233 NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
234 !nouveau_fence_signalled(buf->fence_wr));
235 if (!nouveau_fence_wait(buf->fence_wr))
236 return false;
237 } else {
238 if (!buf->fence)
239 return true;
240 NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
241 !nouveau_fence_signalled(buf->fence));
242 if (!nouveau_fence_wait(buf->fence))
243 return false;
244
245 nouveau_fence_ref(NULL, &buf->fence);
246 }
247 nouveau_fence_ref(NULL, &buf->fence_wr);
248
249 return true;
250 }
251
252 static inline bool
253 nouveau_buffer_busy(struct nv04_resource *buf, unsigned rw)
254 {
255 if (rw == PIPE_TRANSFER_READ)
256 return (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr));
257 else
258 return (buf->fence && !nouveau_fence_signalled(buf->fence));
259 }
260
261 static inline void
262 nouveau_buffer_transfer_init(struct nouveau_transfer *tx,
263 struct pipe_resource *resource,
264 const struct pipe_box *box,
265 unsigned usage)
266 {
267 tx->base.resource = resource;
268 tx->base.level = 0;
269 tx->base.usage = usage;
270 tx->base.box.x = box->x;
271 tx->base.box.y = 0;
272 tx->base.box.z = 0;
273 tx->base.box.width = box->width;
274 tx->base.box.height = 1;
275 tx->base.box.depth = 1;
276 tx->base.stride = 0;
277 tx->base.layer_stride = 0;
278
279 tx->bo = NULL;
280 tx->map = NULL;
281 }
282
283 static inline void
284 nouveau_buffer_transfer_del(struct nouveau_context *nv,
285 struct nouveau_transfer *tx)
286 {
287 if (tx->map) {
288 if (likely(tx->bo)) {
289 nouveau_fence_work(nv->screen->fence.current,
290 nouveau_fence_unref_bo, tx->bo);
291 if (tx->mm)
292 release_allocation(&tx->mm, nv->screen->fence.current);
293 } else {
294 align_free(tx->map -
295 (tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK));
296 }
297 }
298 }
299
300 /* Creates a cache in system memory of the buffer data. */
301 static bool
302 nouveau_buffer_cache(struct nouveau_context *nv, struct nv04_resource *buf)
303 {
304 struct nouveau_transfer tx;
305 bool ret;
306 tx.base.resource = &buf->base;
307 tx.base.box.x = 0;
308 tx.base.box.width = buf->base.width0;
309 tx.bo = NULL;
310 tx.map = NULL;
311
312 if (!buf->data)
313 if (!nouveau_buffer_malloc(buf))
314 return false;
315 if (!(buf->status & NOUVEAU_BUFFER_STATUS_DIRTY))
316 return true;
317 nv->stats.buf_cache_count++;
318
319 if (!nouveau_transfer_staging(nv, &tx, false))
320 return false;
321
322 ret = nouveau_transfer_read(nv, &tx);
323 if (ret) {
324 buf->status &= ~NOUVEAU_BUFFER_STATUS_DIRTY;
325 memcpy(buf->data, tx.map, buf->base.width0);
326 }
327 nouveau_buffer_transfer_del(nv, &tx);
328 return ret;
329 }
330
331
332 #define NOUVEAU_TRANSFER_DISCARD \
333 (PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
334
335 /* Checks whether it is possible to completely discard the memory backing this
336 * resource. This can be useful if we would otherwise have to wait for a read
337 * operation to complete on this data.
338 */
339 static inline bool
340 nouveau_buffer_should_discard(struct nv04_resource *buf, unsigned usage)
341 {
342 if (!(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
343 return false;
344 if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
345 return false;
346 if (unlikely(usage & PIPE_TRANSFER_PERSISTENT))
347 return false;
348 return buf->mm && nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE);
349 }
350
351 /* Returns a pointer to a memory area representing a window into the
352 * resource's data.
353 *
354 * This may or may not be the _actual_ memory area of the resource. However
355 * when calling nouveau_buffer_transfer_unmap, if it wasn't the actual memory
356 * area, the contents of the returned map are copied over to the resource.
357 *
358 * The usage indicates what the caller plans to do with the map:
359 *
360 * WRITE means that the user plans to write to it
361 *
362 * READ means that the user plans on reading from it
363 *
364 * DISCARD_WHOLE_RESOURCE means that the whole resource is going to be
365 * potentially overwritten, and even if it isn't, the bits that aren't don't
366 * need to be maintained.
367 *
368 * DISCARD_RANGE means that all the data in the specified range is going to
369 * be overwritten.
370 *
371 * The strategy for determining what kind of memory area to return is complex,
372 * see comments inside of the function.
373 */
374 static void *
375 nouveau_buffer_transfer_map(struct pipe_context *pipe,
376 struct pipe_resource *resource,
377 unsigned level, unsigned usage,
378 const struct pipe_box *box,
379 struct pipe_transfer **ptransfer)
380 {
381 struct nouveau_context *nv = nouveau_context(pipe);
382 struct nv04_resource *buf = nv04_resource(resource);
383 struct nouveau_transfer *tx = MALLOC_STRUCT(nouveau_transfer);
384 uint8_t *map;
385 int ret;
386
387 if (!tx)
388 return NULL;
389 nouveau_buffer_transfer_init(tx, resource, box, usage);
390 *ptransfer = &tx->base;
391
392 if (usage & PIPE_TRANSFER_READ)
393 NOUVEAU_DRV_STAT(nv->screen, buf_transfers_rd, 1);
394 if (usage & PIPE_TRANSFER_WRITE)
395 NOUVEAU_DRV_STAT(nv->screen, buf_transfers_wr, 1);
396
397 /* If we are trying to write to an uninitialized range, the user shouldn't
398 * care what was there before. So we can treat the write as if the target
399 * range were being discarded. Furthermore, since we know that even if this
400 * buffer is busy due to GPU activity, because the contents were
401 * uninitialized, the GPU can't care what was there, and so we can treat
402 * the write as being unsynchronized.
403 */
404 if ((usage & PIPE_TRANSFER_WRITE) &&
405 !util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width))
406 usage |= PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_UNSYNCHRONIZED;
407
408 if (usage & PIPE_TRANSFER_PERSISTENT)
409 usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
410
411 if (buf->domain == NOUVEAU_BO_VRAM) {
412 if (usage & NOUVEAU_TRANSFER_DISCARD) {
413 /* Set up a staging area for the user to write to. It will be copied
414 * back into VRAM on unmap. */
415 if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
416 buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
417 nouveau_transfer_staging(nv, tx, true);
418 } else {
419 if (buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) {
420 /* The GPU is currently writing to this buffer. Copy its current
421 * contents to a staging area in the GART. This is necessary since
422 * not the whole area being mapped is being discarded.
423 */
424 if (buf->data) {
425 align_free(buf->data);
426 buf->data = NULL;
427 }
428 nouveau_transfer_staging(nv, tx, false);
429 nouveau_transfer_read(nv, tx);
430 } else {
431 /* The buffer is currently idle. Create a staging area for writes,
432 * and make sure that the cached data is up-to-date. */
433 if (usage & PIPE_TRANSFER_WRITE)
434 nouveau_transfer_staging(nv, tx, true);
435 if (!buf->data)
436 nouveau_buffer_cache(nv, buf);
437 }
438 }
439 return buf->data ? (buf->data + box->x) : tx->map;
440 } else
441 if (unlikely(buf->domain == 0)) {
442 return buf->data + box->x;
443 }
444
445 /* At this point, buf->domain == GART */
446
447 if (nouveau_buffer_should_discard(buf, usage)) {
448 int ref = buf->base.reference.count - 1;
449 nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
450 if (ref > 0) /* any references inside context possible ? */
451 nv->invalidate_resource_storage(nv, &buf->base, ref);
452 }
453
454 /* Note that nouveau_bo_map ends up doing a nouveau_bo_wait with the
455 * relevant flags. If buf->mm is set, that means this resource is part of a
456 * larger slab bo that holds multiple resources. So in that case, don't
457 * wait on the whole slab and instead use the logic below to return a
458 * reasonable buffer for that case.
459 */
460 ret = nouveau_bo_map(buf->bo,
461 buf->mm ? 0 : nouveau_screen_transfer_flags(usage),
462 nv->client);
463 if (ret) {
464 FREE(tx);
465 return NULL;
466 }
467 map = (uint8_t *)buf->bo->map + buf->offset + box->x;
468
469 /* using kernel fences only if !buf->mm */
470 if ((usage & PIPE_TRANSFER_UNSYNCHRONIZED) || !buf->mm)
471 return map;
472
473 /* If the GPU is currently reading/writing this buffer, we shouldn't
474 * interfere with its progress. So instead we either wait for the GPU to
475 * complete its operation, or set up a staging area to perform our work in.
476 */
477 if (nouveau_buffer_busy(buf, usage & PIPE_TRANSFER_READ_WRITE)) {
478 if (unlikely(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)) {
479 /* Discarding was not possible, must sync because
480 * subsequent transfers might use UNSYNCHRONIZED. */
481 nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
482 } else
483 if (usage & PIPE_TRANSFER_DISCARD_RANGE) {
484 /* The whole range is being discarded, so it doesn't matter what was
485 * there before. No need to copy anything over. */
486 nouveau_transfer_staging(nv, tx, true);
487 map = tx->map;
488 } else
489 if (nouveau_buffer_busy(buf, PIPE_TRANSFER_READ)) {
490 if (usage & PIPE_TRANSFER_DONTBLOCK)
491 map = NULL;
492 else
493 nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
494 } else {
495 /* It is expected that the returned buffer be a representation of the
496 * data in question, so we must copy it over from the buffer. */
497 nouveau_transfer_staging(nv, tx, true);
498 if (tx->map)
499 memcpy(tx->map, map, box->width);
500 map = tx->map;
501 }
502 }
503 if (!map)
504 FREE(tx);
505 return map;
506 }
507
508
509
510 static void
511 nouveau_buffer_transfer_flush_region(struct pipe_context *pipe,
512 struct pipe_transfer *transfer,
513 const struct pipe_box *box)
514 {
515 struct nouveau_transfer *tx = nouveau_transfer(transfer);
516 struct nv04_resource *buf = nv04_resource(transfer->resource);
517
518 if (tx->map)
519 nouveau_transfer_write(nouveau_context(pipe), tx, box->x, box->width);
520
521 util_range_add(&buf->valid_buffer_range,
522 tx->base.box.x + box->x,
523 tx->base.box.x + box->x + box->width);
524 }
525
526 /* Unmap stage of the transfer. If it was a WRITE transfer and the map that
527 * was returned was not the real resource's data, this needs to transfer the
528 * data back to the resource.
529 *
530 * Also marks vbo dirty based on the buffer's binding
531 */
532 static void
533 nouveau_buffer_transfer_unmap(struct pipe_context *pipe,
534 struct pipe_transfer *transfer)
535 {
536 struct nouveau_context *nv = nouveau_context(pipe);
537 struct nouveau_transfer *tx = nouveau_transfer(transfer);
538 struct nv04_resource *buf = nv04_resource(transfer->resource);
539
540 if (tx->base.usage & PIPE_TRANSFER_WRITE) {
541 if (!(tx->base.usage & PIPE_TRANSFER_FLUSH_EXPLICIT)) {
542 if (tx->map)
543 nouveau_transfer_write(nv, tx, 0, tx->base.box.width);
544
545 util_range_add(&buf->valid_buffer_range,
546 tx->base.box.x, tx->base.box.x + tx->base.box.width);
547 }
548
549 if (likely(buf->domain)) {
550 const uint8_t bind = buf->base.bind;
551 /* make sure we invalidate dedicated caches */
552 if (bind & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
553 nv->vbo_dirty = true;
554 }
555 }
556
557 if (!tx->bo && (tx->base.usage & PIPE_TRANSFER_WRITE))
558 NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_direct, tx->base.box.width);
559
560 nouveau_buffer_transfer_del(nv, tx);
561 FREE(tx);
562 }
563
564
565 void
566 nouveau_copy_buffer(struct nouveau_context *nv,
567 struct nv04_resource *dst, unsigned dstx,
568 struct nv04_resource *src, unsigned srcx, unsigned size)
569 {
570 assert(dst->base.target == PIPE_BUFFER && src->base.target == PIPE_BUFFER);
571
572 if (likely(dst->domain) && likely(src->domain)) {
573 nv->copy_data(nv,
574 dst->bo, dst->offset + dstx, dst->domain,
575 src->bo, src->offset + srcx, src->domain, size);
576
577 dst->status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
578 nouveau_fence_ref(nv->screen->fence.current, &dst->fence);
579 nouveau_fence_ref(nv->screen->fence.current, &dst->fence_wr);
580
581 src->status |= NOUVEAU_BUFFER_STATUS_GPU_READING;
582 nouveau_fence_ref(nv->screen->fence.current, &src->fence);
583 } else {
584 struct pipe_box src_box;
585 src_box.x = srcx;
586 src_box.y = 0;
587 src_box.z = 0;
588 src_box.width = size;
589 src_box.height = 1;
590 src_box.depth = 1;
591 util_resource_copy_region(&nv->pipe,
592 &dst->base, 0, dstx, 0, 0,
593 &src->base, 0, &src_box);
594 }
595
596 util_range_add(&dst->valid_buffer_range, dstx, dstx + size);
597 }
598
599
600 void *
601 nouveau_resource_map_offset(struct nouveau_context *nv,
602 struct nv04_resource *res, uint32_t offset,
603 uint32_t flags)
604 {
605 if (unlikely(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
606 return res->data + offset;
607
608 if (res->domain == NOUVEAU_BO_VRAM) {
609 if (!res->data || (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING))
610 nouveau_buffer_cache(nv, res);
611 }
612 if (res->domain != NOUVEAU_BO_GART)
613 return res->data + offset;
614
615 if (res->mm) {
616 unsigned rw;
617 rw = (flags & NOUVEAU_BO_WR) ? PIPE_TRANSFER_WRITE : PIPE_TRANSFER_READ;
618 nouveau_buffer_sync(res, rw);
619 if (nouveau_bo_map(res->bo, 0, NULL))
620 return NULL;
621 } else {
622 if (nouveau_bo_map(res->bo, flags, nv->client))
623 return NULL;
624 }
625 return (uint8_t *)res->bo->map + res->offset + offset;
626 }
627
628
629 const struct u_resource_vtbl nouveau_buffer_vtbl =
630 {
631 u_default_resource_get_handle, /* get_handle */
632 nouveau_buffer_destroy, /* resource_destroy */
633 nouveau_buffer_transfer_map, /* transfer_map */
634 nouveau_buffer_transfer_flush_region, /* transfer_flush_region */
635 nouveau_buffer_transfer_unmap, /* transfer_unmap */
636 u_default_transfer_inline_write /* transfer_inline_write */
637 };
638
639 struct pipe_resource *
640 nouveau_buffer_create(struct pipe_screen *pscreen,
641 const struct pipe_resource *templ)
642 {
643 struct nouveau_screen *screen = nouveau_screen(pscreen);
644 struct nv04_resource *buffer;
645 bool ret;
646
647 buffer = CALLOC_STRUCT(nv04_resource);
648 if (!buffer)
649 return NULL;
650
651 buffer->base = *templ;
652 buffer->vtbl = &nouveau_buffer_vtbl;
653 pipe_reference_init(&buffer->base.reference, 1);
654 buffer->base.screen = pscreen;
655
656 if (buffer->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
657 PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
658 buffer->domain = NOUVEAU_BO_GART;
659 } else if (buffer->base.bind &
660 (screen->vidmem_bindings & screen->sysmem_bindings)) {
661 switch (buffer->base.usage) {
662 case PIPE_USAGE_DEFAULT:
663 case PIPE_USAGE_IMMUTABLE:
664 buffer->domain = NV_VRAM_DOMAIN(screen);
665 break;
666 case PIPE_USAGE_DYNAMIC:
667 /* For most apps, we'd have to do staging transfers to avoid sync
668 * with this usage, and GART -> GART copies would be suboptimal.
669 */
670 buffer->domain = NV_VRAM_DOMAIN(screen);
671 break;
672 case PIPE_USAGE_STAGING:
673 case PIPE_USAGE_STREAM:
674 buffer->domain = NOUVEAU_BO_GART;
675 break;
676 default:
677 assert(0);
678 break;
679 }
680 } else {
681 if (buffer->base.bind & screen->vidmem_bindings)
682 buffer->domain = NV_VRAM_DOMAIN(screen);
683 else
684 if (buffer->base.bind & screen->sysmem_bindings)
685 buffer->domain = NOUVEAU_BO_GART;
686 }
687 ret = nouveau_buffer_allocate(screen, buffer, buffer->domain);
688
689 if (ret == false)
690 goto fail;
691
692 if (buffer->domain == NOUVEAU_BO_VRAM && screen->hint_buf_keep_sysmem_copy)
693 nouveau_buffer_cache(NULL, buffer);
694
695 NOUVEAU_DRV_STAT(screen, buf_obj_current_count, 1);
696
697 util_range_init(&buffer->valid_buffer_range);
698
699 return &buffer->base;
700
701 fail:
702 FREE(buffer);
703 return NULL;
704 }
705
706
707 struct pipe_resource *
708 nouveau_user_buffer_create(struct pipe_screen *pscreen, void *ptr,
709 unsigned bytes, unsigned bind)
710 {
711 struct nv04_resource *buffer;
712
713 buffer = CALLOC_STRUCT(nv04_resource);
714 if (!buffer)
715 return NULL;
716
717 pipe_reference_init(&buffer->base.reference, 1);
718 buffer->vtbl = &nouveau_buffer_vtbl;
719 buffer->base.screen = pscreen;
720 buffer->base.format = PIPE_FORMAT_R8_UNORM;
721 buffer->base.usage = PIPE_USAGE_IMMUTABLE;
722 buffer->base.bind = bind;
723 buffer->base.width0 = bytes;
724 buffer->base.height0 = 1;
725 buffer->base.depth0 = 1;
726
727 buffer->data = ptr;
728 buffer->status = NOUVEAU_BUFFER_STATUS_USER_MEMORY;
729
730 util_range_init(&buffer->valid_buffer_range);
731 util_range_add(&buffer->valid_buffer_range, 0, bytes);
732
733 return &buffer->base;
734 }
735
736 static inline bool
737 nouveau_buffer_data_fetch(struct nouveau_context *nv, struct nv04_resource *buf,
738 struct nouveau_bo *bo, unsigned offset, unsigned size)
739 {
740 if (!nouveau_buffer_malloc(buf))
741 return false;
742 if (nouveau_bo_map(bo, NOUVEAU_BO_RD, nv->client))
743 return false;
744 memcpy(buf->data, (uint8_t *)bo->map + offset, size);
745 return true;
746 }
747
748 /* Migrate a linear buffer (vertex, index, constants) USER -> GART -> VRAM. */
749 bool
750 nouveau_buffer_migrate(struct nouveau_context *nv,
751 struct nv04_resource *buf, const unsigned new_domain)
752 {
753 struct nouveau_screen *screen = nv->screen;
754 struct nouveau_bo *bo;
755 const unsigned old_domain = buf->domain;
756 unsigned size = buf->base.width0;
757 unsigned offset;
758 int ret;
759
760 assert(new_domain != old_domain);
761
762 if (new_domain == NOUVEAU_BO_GART && old_domain == 0) {
763 if (!nouveau_buffer_allocate(screen, buf, new_domain))
764 return false;
765 ret = nouveau_bo_map(buf->bo, 0, nv->client);
766 if (ret)
767 return ret;
768 memcpy((uint8_t *)buf->bo->map + buf->offset, buf->data, size);
769 align_free(buf->data);
770 } else
771 if (old_domain != 0 && new_domain != 0) {
772 struct nouveau_mm_allocation *mm = buf->mm;
773
774 if (new_domain == NOUVEAU_BO_VRAM) {
775 /* keep a system memory copy of our data in case we hit a fallback */
776 if (!nouveau_buffer_data_fetch(nv, buf, buf->bo, buf->offset, size))
777 return false;
778 if (nouveau_mesa_debug)
779 debug_printf("migrating %u KiB to VRAM\n", size / 1024);
780 }
781
782 offset = buf->offset;
783 bo = buf->bo;
784 buf->bo = NULL;
785 buf->mm = NULL;
786 nouveau_buffer_allocate(screen, buf, new_domain);
787
788 nv->copy_data(nv, buf->bo, buf->offset, new_domain,
789 bo, offset, old_domain, buf->base.width0);
790
791 nouveau_fence_work(screen->fence.current, nouveau_fence_unref_bo, bo);
792 if (mm)
793 release_allocation(&mm, screen->fence.current);
794 } else
795 if (new_domain == NOUVEAU_BO_VRAM && old_domain == 0) {
796 struct nouveau_transfer tx;
797 if (!nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_VRAM))
798 return false;
799 tx.base.resource = &buf->base;
800 tx.base.box.x = 0;
801 tx.base.box.width = buf->base.width0;
802 tx.bo = NULL;
803 tx.map = NULL;
804 if (!nouveau_transfer_staging(nv, &tx, false))
805 return false;
806 nouveau_transfer_write(nv, &tx, 0, tx.base.box.width);
807 nouveau_buffer_transfer_del(nv, &tx);
808 } else
809 return false;
810
811 assert(buf->domain == new_domain);
812 return true;
813 }
814
815 /* Migrate data from glVertexAttribPointer(non-VBO) user buffers to GART.
816 * We'd like to only allocate @size bytes here, but then we'd have to rebase
817 * the vertex indices ...
818 */
819 bool
820 nouveau_user_buffer_upload(struct nouveau_context *nv,
821 struct nv04_resource *buf,
822 unsigned base, unsigned size)
823 {
824 struct nouveau_screen *screen = nouveau_screen(buf->base.screen);
825 int ret;
826
827 assert(buf->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY);
828
829 buf->base.width0 = base + size;
830 if (!nouveau_buffer_reallocate(screen, buf, NOUVEAU_BO_GART))
831 return false;
832
833 ret = nouveau_bo_map(buf->bo, 0, nv->client);
834 if (ret)
835 return false;
836 memcpy((uint8_t *)buf->bo->map + buf->offset + base, buf->data + base, size);
837
838 return true;
839 }
840
841
842 /* Scratch data allocation. */
843
844 static inline int
845 nouveau_scratch_bo_alloc(struct nouveau_context *nv, struct nouveau_bo **pbo,
846 unsigned size)
847 {
848 return nouveau_bo_new(nv->screen->device, NOUVEAU_BO_GART | NOUVEAU_BO_MAP,
849 4096, size, NULL, pbo);
850 }
851
852 static void
853 nouveau_scratch_unref_bos(void *d)
854 {
855 struct runout *b = d;
856 int i;
857
858 for (i = 0; i < b->nr; ++i)
859 nouveau_bo_ref(NULL, &b->bo[i]);
860
861 FREE(b);
862 }
863
864 void
865 nouveau_scratch_runout_release(struct nouveau_context *nv)
866 {
867 if (!nv->scratch.runout)
868 return;
869
870 if (!nouveau_fence_work(nv->screen->fence.current, nouveau_scratch_unref_bos,
871 nv->scratch.runout))
872 return;
873
874 nv->scratch.end = 0;
875 nv->scratch.runout = NULL;
876 }
877
878 /* Allocate an extra bo if we can't fit everything we need simultaneously.
879 * (Could happen for very large user arrays.)
880 */
881 static inline bool
882 nouveau_scratch_runout(struct nouveau_context *nv, unsigned size)
883 {
884 int ret;
885 unsigned n;
886
887 if (nv->scratch.runout)
888 n = nv->scratch.runout->nr;
889 else
890 n = 0;
891 nv->scratch.runout = REALLOC(nv->scratch.runout, n == 0 ? 0 :
892 (sizeof(*nv->scratch.runout) + (n + 0) * sizeof(void *)),
893 sizeof(*nv->scratch.runout) + (n + 1) * sizeof(void *));
894 nv->scratch.runout->nr = n + 1;
895 nv->scratch.runout->bo[n] = NULL;
896
897 ret = nouveau_scratch_bo_alloc(nv, &nv->scratch.runout->bo[n], size);
898 if (!ret) {
899 ret = nouveau_bo_map(nv->scratch.runout->bo[n], 0, NULL);
900 if (ret)
901 nouveau_bo_ref(NULL, &nv->scratch.runout->bo[--nv->scratch.runout->nr]);
902 }
903 if (!ret) {
904 nv->scratch.current = nv->scratch.runout->bo[n];
905 nv->scratch.offset = 0;
906 nv->scratch.end = size;
907 nv->scratch.map = nv->scratch.current->map;
908 }
909 return !ret;
910 }
911
912 /* Continue to next scratch buffer, if available (no wrapping, large enough).
913 * Allocate it if it has not yet been created.
914 */
915 static inline bool
916 nouveau_scratch_next(struct nouveau_context *nv, unsigned size)
917 {
918 struct nouveau_bo *bo;
919 int ret;
920 const unsigned i = (nv->scratch.id + 1) % NOUVEAU_MAX_SCRATCH_BUFS;
921
922 if ((size > nv->scratch.bo_size) || (i == nv->scratch.wrap))
923 return false;
924 nv->scratch.id = i;
925
926 bo = nv->scratch.bo[i];
927 if (!bo) {
928 ret = nouveau_scratch_bo_alloc(nv, &bo, nv->scratch.bo_size);
929 if (ret)
930 return false;
931 nv->scratch.bo[i] = bo;
932 }
933 nv->scratch.current = bo;
934 nv->scratch.offset = 0;
935 nv->scratch.end = nv->scratch.bo_size;
936
937 ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, nv->client);
938 if (!ret)
939 nv->scratch.map = bo->map;
940 return !ret;
941 }
942
943 static bool
944 nouveau_scratch_more(struct nouveau_context *nv, unsigned min_size)
945 {
946 bool ret;
947
948 ret = nouveau_scratch_next(nv, min_size);
949 if (!ret)
950 ret = nouveau_scratch_runout(nv, min_size);
951 return ret;
952 }
953
954
955 /* Copy data to a scratch buffer and return address & bo the data resides in. */
956 uint64_t
957 nouveau_scratch_data(struct nouveau_context *nv,
958 const void *data, unsigned base, unsigned size,
959 struct nouveau_bo **bo)
960 {
961 unsigned bgn = MAX2(base, nv->scratch.offset);
962 unsigned end = bgn + size;
963
964 if (end >= nv->scratch.end) {
965 end = base + size;
966 if (!nouveau_scratch_more(nv, end))
967 return 0;
968 bgn = base;
969 }
970 nv->scratch.offset = align(end, 4);
971
972 memcpy(nv->scratch.map + bgn, (const uint8_t *)data + base, size);
973
974 *bo = nv->scratch.current;
975 return (*bo)->offset + (bgn - base);
976 }
977
978 void *
979 nouveau_scratch_get(struct nouveau_context *nv,
980 unsigned size, uint64_t *gpu_addr, struct nouveau_bo **pbo)
981 {
982 unsigned bgn = nv->scratch.offset;
983 unsigned end = nv->scratch.offset + size;
984
985 if (end >= nv->scratch.end) {
986 end = size;
987 if (!nouveau_scratch_more(nv, end))
988 return NULL;
989 bgn = 0;
990 }
991 nv->scratch.offset = align(end, 4);
992
993 *pbo = nv->scratch.current;
994 *gpu_addr = nv->scratch.current->offset + bgn;
995 return nv->scratch.map + bgn;
996 }