gallium: remove pipe_buffer from surfaces
[mesa.git] / src / gallium / drivers / nv20 / nv20_state_emit.c
1 #include "nv20_context.h"
2 #include "nv20_state.h"
3 #include "draw/draw_context.h"
4
5 static void nv20_state_emit_blend(struct nv20_context* nv20)
6 {
7 struct nv20_blend_state *b = nv20->blend;
8
9 BEGIN_RING(kelvin, NV20TCL_DITHER_ENABLE, 1);
10 OUT_RING (b->d_enable);
11
12 BEGIN_RING(kelvin, NV20TCL_BLEND_FUNC_ENABLE, 1);
13 OUT_RING (b->b_enable);
14
15 BEGIN_RING(kelvin, NV20TCL_BLEND_FUNC_SRC, 2);
16 OUT_RING (b->b_srcfunc);
17 OUT_RING (b->b_dstfunc);
18
19 BEGIN_RING(kelvin, NV20TCL_COLOR_MASK, 1);
20 OUT_RING (b->c_mask);
21 }
22
23 static void nv20_state_emit_blend_color(struct nv20_context* nv20)
24 {
25 struct pipe_blend_color *c = nv20->blend_color;
26
27 BEGIN_RING(kelvin, NV20TCL_BLEND_COLOR, 1);
28 OUT_RING ((float_to_ubyte(c->color[3]) << 24)|
29 (float_to_ubyte(c->color[0]) << 16)|
30 (float_to_ubyte(c->color[1]) << 8) |
31 (float_to_ubyte(c->color[2]) << 0));
32 }
33
34 static void nv20_state_emit_rast(struct nv20_context* nv20)
35 {
36 struct nv20_rasterizer_state *r = nv20->rast;
37
38 BEGIN_RING(kelvin, NV20TCL_SHADE_MODEL, 2);
39 OUT_RING (r->shade_model);
40 OUT_RING (r->line_width);
41
42
43 BEGIN_RING(kelvin, NV20TCL_POINT_SIZE, 1);
44 OUT_RING (r->point_size);
45
46 BEGIN_RING(kelvin, NV20TCL_POLYGON_MODE_FRONT, 2);
47 OUT_RING (r->poly_mode_front);
48 OUT_RING (r->poly_mode_back);
49
50
51 BEGIN_RING(kelvin, NV20TCL_CULL_FACE, 2);
52 OUT_RING (r->cull_face);
53 OUT_RING (r->front_face);
54
55 BEGIN_RING(kelvin, NV20TCL_LINE_SMOOTH_ENABLE, 2);
56 OUT_RING (r->line_smooth_en);
57 OUT_RING (r->poly_smooth_en);
58
59 BEGIN_RING(kelvin, NV20TCL_CULL_FACE_ENABLE, 1);
60 OUT_RING (r->cull_face_en);
61 }
62
63 static void nv20_state_emit_dsa(struct nv20_context* nv20)
64 {
65 struct nv20_depth_stencil_alpha_state *d = nv20->dsa;
66
67 BEGIN_RING(kelvin, NV20TCL_DEPTH_FUNC, 1);
68 OUT_RING (d->depth.func);
69
70 BEGIN_RING(kelvin, NV20TCL_DEPTH_WRITE_ENABLE, 1);
71 OUT_RING (d->depth.write_enable);
72
73 BEGIN_RING(kelvin, NV20TCL_DEPTH_TEST_ENABLE, 1);
74 OUT_RING (d->depth.test_enable);
75
76 BEGIN_RING(kelvin, NV20TCL_DEPTH_UNK17D8, 1);
77 OUT_RING (1);
78
79 #if 0
80 BEGIN_RING(kelvin, NV20TCL_STENCIL_ENABLE, 1);
81 OUT_RING (d->stencil.enable);
82 BEGIN_RING(kelvin, NV20TCL_STENCIL_MASK, 7);
83 OUT_RINGp ((uint32_t *)&(d->stencil.wmask), 7);
84 #endif
85
86 BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_ENABLE, 1);
87 OUT_RING (d->alpha.enabled);
88
89 BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_FUNC, 1);
90 OUT_RING (d->alpha.func);
91
92 BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_REF, 1);
93 OUT_RING (d->alpha.ref);
94 }
95
96 static void nv20_state_emit_viewport(struct nv20_context* nv20)
97 {
98 }
99
100 static void nv20_state_emit_scissor(struct nv20_context* nv20)
101 {
102 /* NV20TCL_SCISSOR_* is probably a software method */
103 /* struct pipe_scissor_state *s = nv20->scissor;
104 BEGIN_RING(kelvin, NV20TCL_SCISSOR_HORIZ, 2);
105 OUT_RING (((s->maxx - s->minx) << 16) | s->minx);
106 OUT_RING (((s->maxy - s->miny) << 16) | s->miny);*/
107 }
108
109 static void nv20_state_emit_framebuffer(struct nv20_context* nv20)
110 {
111 struct pipe_framebuffer_state* fb = nv20->framebuffer;
112 struct pipe_surface *rt, *zeta = NULL;
113 uint32_t rt_format, w, h;
114 int colour_format = 0, zeta_format = 0;
115 struct nv20_miptree *nv20mt = 0;
116
117 w = fb->cbufs[0]->width;
118 h = fb->cbufs[0]->height;
119 colour_format = fb->cbufs[0]->format;
120 rt = fb->cbufs[0];
121
122 if (fb->zsbuf) {
123 if (colour_format) {
124 assert(w == fb->zsbuf->width);
125 assert(h == fb->zsbuf->height);
126 } else {
127 w = fb->zsbuf->width;
128 h = fb->zsbuf->height;
129 }
130
131 zeta_format = fb->zsbuf->format;
132 zeta = fb->zsbuf;
133 }
134
135 rt_format = NV20TCL_RT_FORMAT_TYPE_LINEAR | 0x20;
136
137 switch (colour_format) {
138 case PIPE_FORMAT_A8R8G8B8_UNORM:
139 case 0:
140 rt_format |= NV20TCL_RT_FORMAT_COLOR_A8R8G8B8;
141 break;
142 case PIPE_FORMAT_R5G6B5_UNORM:
143 rt_format |= NV20TCL_RT_FORMAT_COLOR_R5G6B5;
144 break;
145 default:
146 assert(0);
147 }
148
149 if (zeta) {
150 BEGIN_RING(kelvin, NV20TCL_RT_PITCH, 1);
151 OUT_RING (rt->stride | (zeta->stride << 16));
152 } else {
153 BEGIN_RING(kelvin, NV20TCL_RT_PITCH, 1);
154 OUT_RING (rt->stride | (rt->stride << 16));
155 }
156
157 nv20mt = (struct nv20_miptree *)rt->texture;
158 nv20->rt[0] = nv20mt->buffer;
159
160 if (zeta_format)
161 {
162 nv20mt = (struct nv20_miptree *)zeta->texture;
163 nv20->zeta = nv20mt->buffer;
164 }
165
166 BEGIN_RING(kelvin, NV20TCL_RT_HORIZ, 3);
167 OUT_RING ((w << 16) | 0);
168 OUT_RING ((h << 16) | 0); /*NV20TCL_RT_VERT */
169 OUT_RING (rt_format); /* NV20TCL_RT_FORMAT */
170 BEGIN_RING(kelvin, NV20TCL_VIEWPORT_CLIP_HORIZ(0), 2);
171 OUT_RING (((w - 1) << 16) | 0);
172 OUT_RING (((h - 1) << 16) | 0);
173 }
174
175 static void nv20_vertex_layout(struct nv20_context *nv20)
176 {
177 struct nv20_fragment_program *fp = nv20->fragprog.current;
178 struct draw_context *dc = nv20->draw;
179 int src;
180 int i;
181 struct vertex_info *vinfo = &nv20->vertex_info;
182 const enum interp_mode colorInterp = INTERP_LINEAR;
183 boolean colors[2] = { FALSE };
184 boolean generics[12] = { FALSE };
185 boolean fog = FALSE;
186
187 memset(vinfo, 0, sizeof(*vinfo));
188
189 /*
190 * Assumed NV20 hardware vertex attribute order:
191 * 0 position, 1 ?, 2 ?, 3 col0,
192 * 4 col1?, 5 ?, 6 ?, 7 ?,
193 * 8 ?, 9 tex0, 10 tex1, 11 tex2,
194 * 12 tex3, 13 ?, 14 ?, 15 ?
195 * unaccounted: wgh, nor, fog
196 * There are total 16 attrs.
197 * vinfo->hwfmt[0] has a used-bit corresponding to each of these.
198 * relation to TGSI_SEMANTIC_*:
199 * - POSITION: position (always used)
200 * - COLOR: col1, col0
201 * - GENERIC: tex3, tex2, tex1, tex0, normal, weight
202 * - FOG: fog
203 */
204
205 for (i = 0; i < fp->info.num_inputs; i++) {
206 int isn = fp->info.input_semantic_name[i];
207 int isi = fp->info.input_semantic_index[i];
208 switch (isn) {
209 case TGSI_SEMANTIC_POSITION:
210 break;
211 case TGSI_SEMANTIC_COLOR:
212 assert(isi < 2);
213 colors[isi] = TRUE;
214 break;
215 case TGSI_SEMANTIC_GENERIC:
216 assert(isi < 12);
217 generics[isi] = TRUE;
218 break;
219 case TGSI_SEMANTIC_FOG:
220 fog = TRUE;
221 break;
222 default:
223 assert(0 && "unknown input_semantic_name");
224 }
225 }
226
227 /* always do position */ {
228 src = draw_find_vs_output(dc, TGSI_SEMANTIC_POSITION, 0);
229 draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_LINEAR, src);
230 vinfo->hwfmt[0] |= (1 << 0);
231 }
232
233 /* two unnamed generics */
234 for (i = 4; i < 6; i++) {
235 if (!generics[i])
236 continue;
237 src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
238 draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
239 vinfo->hwfmt[0] |= (1 << (i - 3));
240 }
241
242 if (colors[0]) {
243 src = draw_find_vs_output(dc, TGSI_SEMANTIC_COLOR, 0);
244 draw_emit_vertex_attr(vinfo, EMIT_4F, colorInterp, src);
245 vinfo->hwfmt[0] |= (1 << 3);
246 }
247
248 if (colors[1]) {
249 src = draw_find_vs_output(dc, TGSI_SEMANTIC_COLOR, 1);
250 draw_emit_vertex_attr(vinfo, EMIT_4F, colorInterp, src);
251 vinfo->hwfmt[0] |= (1 << 4);
252 }
253
254 /* four unnamed generics */
255 for (i = 6; i < 10; i++) {
256 if (!generics[i])
257 continue;
258 src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
259 draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
260 vinfo->hwfmt[0] |= (1 << (i - 1));
261 }
262
263 /* tex0, tex1, tex2, tex3 */
264 for (i = 0; i < 4; i++) {
265 if (!generics[i])
266 continue;
267 src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
268 draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
269 vinfo->hwfmt[0] |= (1 << (i + 9));
270 }
271
272 /* two unnamed generics */
273 for (i = 10; i < 12; i++) {
274 if (!generics[i])
275 continue;
276 src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
277 draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
278 vinfo->hwfmt[0] |= (1 << (i + 3));
279 }
280
281 if (fog) {
282 src = draw_find_vs_output(dc, TGSI_SEMANTIC_FOG, 0);
283 draw_emit_vertex_attr(vinfo, EMIT_1F, INTERP_PERSPECTIVE, src);
284 vinfo->hwfmt[0] |= (1 << 15);
285 }
286
287 draw_compute_vertex_size(vinfo);
288 }
289
290 void
291 nv20_emit_hw_state(struct nv20_context *nv20)
292 {
293 int i;
294
295 if (nv20->dirty & NV20_NEW_VERTPROG) {
296 //nv20_vertprog_bind(nv20, nv20->vertprog.current);
297 nv20->dirty &= ~NV20_NEW_VERTPROG;
298 }
299
300 if (nv20->dirty & NV20_NEW_FRAGPROG) {
301 nv20_fragprog_bind(nv20, nv20->fragprog.current);
302 /*XXX: clear NV20_NEW_FRAGPROG if no new program uploaded */
303 nv20->dirty_samplers |= (1<<10);
304 nv20->dirty_samplers = 0;
305 }
306
307 if (nv20->dirty_samplers || (nv20->dirty & NV20_NEW_FRAGPROG)) {
308 nv20_fragtex_bind(nv20);
309 nv20->dirty &= ~NV20_NEW_FRAGPROG;
310 }
311
312 if (nv20->dirty & NV20_NEW_VTXARRAYS) {
313 nv20->dirty &= ~NV20_NEW_VTXARRAYS;
314 nv20_vertex_layout(nv20);
315 nv20_vtxbuf_bind(nv20);
316 }
317
318 if (nv20->dirty & NV20_NEW_BLEND) {
319 nv20->dirty &= ~NV20_NEW_BLEND;
320 nv20_state_emit_blend(nv20);
321 }
322
323 if (nv20->dirty & NV20_NEW_BLENDCOL) {
324 nv20->dirty &= ~NV20_NEW_BLENDCOL;
325 nv20_state_emit_blend_color(nv20);
326 }
327
328 if (nv20->dirty & NV20_NEW_RAST) {
329 nv20->dirty &= ~NV20_NEW_RAST;
330 nv20_state_emit_rast(nv20);
331 }
332
333 if (nv20->dirty & NV20_NEW_DSA) {
334 nv20->dirty &= ~NV20_NEW_DSA;
335 nv20_state_emit_dsa(nv20);
336 }
337
338 if (nv20->dirty & NV20_NEW_VIEWPORT) {
339 nv20->dirty &= ~NV20_NEW_VIEWPORT;
340 nv20_state_emit_viewport(nv20);
341 }
342
343 if (nv20->dirty & NV20_NEW_SCISSOR) {
344 nv20->dirty &= ~NV20_NEW_SCISSOR;
345 nv20_state_emit_scissor(nv20);
346 }
347
348 if (nv20->dirty & NV20_NEW_FRAMEBUFFER) {
349 nv20->dirty &= ~NV20_NEW_FRAMEBUFFER;
350 nv20_state_emit_framebuffer(nv20);
351 }
352
353 /* Emit relocs for every referenced buffer.
354 * This is to ensure the bufmgr has an accurate idea of how
355 * the buffer is used. This isn't very efficient, but we don't
356 * seem to take a significant performance hit. Will be improved
357 * at some point. Vertex arrays are emitted by nv20_vbo.c
358 */
359
360 /* Render target */
361 BEGIN_RING(kelvin, NV20TCL_DMA_COLOR, 1);
362 OUT_RELOCo(nv20->rt[0], NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
363 BEGIN_RING(kelvin, NV20TCL_COLOR_OFFSET, 1);
364 OUT_RELOCl(nv20->rt[0], 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
365
366 if (nv20->zeta) {
367 BEGIN_RING(kelvin, NV20TCL_DMA_ZETA, 1);
368 OUT_RELOCo(nv20->zeta, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
369 BEGIN_RING(kelvin, NV20TCL_ZETA_OFFSET, 1);
370 OUT_RELOCl(nv20->zeta, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
371 /* XXX for when we allocate LMA on nv17 */
372 /* BEGIN_RING(kelvin, NV10TCL_LMA_DEPTH_BUFFER_OFFSET, 1);
373 OUT_RELOCl(nv20->zeta + lma_offset);*/
374 }
375
376 /* Vertex buffer */
377 BEGIN_RING(kelvin, NV20TCL_DMA_VTXBUF0, 1);
378 OUT_RELOCo(nv20->rt[0], NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
379 BEGIN_RING(kelvin, NV20TCL_COLOR_OFFSET, 1);
380 OUT_RELOCl(nv20->rt[0], 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
381
382 /* Texture images */
383 for (i = 0; i < 2; i++) {
384 if (!(nv20->fp_samplers & (1 << i)))
385 continue;
386 BEGIN_RING(kelvin, NV20TCL_TX_OFFSET(i), 1);
387 OUT_RELOCl(nv20->tex[i].buffer, 0, NOUVEAU_BO_VRAM |
388 NOUVEAU_BO_GART | NOUVEAU_BO_RD);
389 BEGIN_RING(kelvin, NV20TCL_TX_FORMAT(i), 1);
390 OUT_RELOCd(nv20->tex[i].buffer, nv20->tex[i].format,
391 NOUVEAU_BO_VRAM | NOUVEAU_BO_GART | NOUVEAU_BO_RD |
392 NOUVEAU_BO_OR, NV20TCL_TX_FORMAT_DMA0,
393 NV20TCL_TX_FORMAT_DMA1);
394 }
395 }
396