tgsi: rename the TGSI fragment kill opcodes
[mesa.git] / src / gallium / drivers / nv30 / nvfx_fragprog.c
1 #include <float.h>
2 #include "pipe/p_context.h"
3 #include "pipe/p_defines.h"
4 #include "pipe/p_state.h"
5 #include "util/u_linkage.h"
6 #include "util/u_inlines.h"
7 #include "util/u_debug.h"
8
9 #include "pipe/p_shader_tokens.h"
10 #include "tgsi/tgsi_parse.h"
11 #include "tgsi/tgsi_util.h"
12 #include "tgsi/tgsi_dump.h"
13 #include "tgsi/tgsi_ureg.h"
14
15 #include "nv30-40_3d.xml.h"
16 #include "nv30_context.h"
17 #include "nvfx_shader.h"
18
19 struct nvfx_fpc {
20 struct nv30_fragprog *fp;
21
22 unsigned max_temps;
23 unsigned long long r_temps;
24 unsigned long long r_temps_discard;
25 struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
26 struct nvfx_reg r_input[PIPE_MAX_SHADER_INPUTS];
27 struct nvfx_reg *r_temp;
28
29 int num_regs;
30
31 unsigned inst_offset;
32 unsigned have_const;
33
34 struct util_dynarray imm_data;
35
36 struct nvfx_reg* r_imm;
37 unsigned nr_imm;
38
39 struct util_dynarray if_stack;
40 //struct util_dynarray loop_stack;
41 struct util_dynarray label_relocs;
42 };
43
44 static INLINE struct nvfx_reg
45 temp(struct nvfx_fpc *fpc)
46 {
47 int idx = __builtin_ctzll(~fpc->r_temps);
48
49 if (idx >= fpc->max_temps) {
50 NOUVEAU_ERR("out of temps!!\n");
51 assert(0);
52 return nvfx_reg(NVFXSR_TEMP, 0);
53 }
54
55 fpc->r_temps |= (1ULL << idx);
56 fpc->r_temps_discard |= (1ULL << idx);
57 return nvfx_reg(NVFXSR_TEMP, idx);
58 }
59
60 static INLINE void
61 release_temps(struct nvfx_fpc *fpc)
62 {
63 fpc->r_temps &= ~fpc->r_temps_discard;
64 fpc->r_temps_discard = 0ULL;
65 }
66
67 static inline struct nvfx_reg
68 nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d)
69 {
70 float v[4] = {a, b, c, d};
71 int idx = fpc->imm_data.size >> 4;
72
73 memcpy(util_dynarray_grow(&fpc->imm_data, sizeof(float) * 4), v, 4 * sizeof(float));
74 return nvfx_reg(NVFXSR_IMM, idx);
75 }
76
77 static void
78 grow_insns(struct nvfx_fpc *fpc, int size)
79 {
80 struct nv30_fragprog *fp = fpc->fp;
81
82 fp->insn_len += size;
83 fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
84 }
85
86 static void
87 emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src)
88 {
89 struct nv30_fragprog *fp = fpc->fp;
90 uint32_t *hw = &fp->insn[fpc->inst_offset];
91 uint32_t sr = 0;
92
93 switch (src.reg.type) {
94 case NVFXSR_INPUT:
95 sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
96 hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT);
97 break;
98 case NVFXSR_OUTPUT:
99 sr |= NVFX_FP_REG_SRC_HALF;
100 /* fall-through */
101 case NVFXSR_TEMP:
102 sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
103 sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT);
104 break;
105 case NVFXSR_IMM:
106 if (!fpc->have_const) {
107 grow_insns(fpc, 4);
108 hw = &fp->insn[fpc->inst_offset];
109 fpc->have_const = 1;
110 }
111
112 memcpy(&fp->insn[fpc->inst_offset + 4],
113 (float*)fpc->imm_data.data + src.reg.index * 4,
114 sizeof(uint32_t) * 4);
115
116 sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
117 break;
118 case NVFXSR_CONST:
119 if (!fpc->have_const) {
120 grow_insns(fpc, 4);
121 hw = &fp->insn[fpc->inst_offset];
122 fpc->have_const = 1;
123 }
124
125 {
126 struct nv30_fragprog_data *fpd;
127
128 fp->consts = realloc(fp->consts, ++fp->nr_consts *
129 sizeof(*fpd));
130 fpd = &fp->consts[fp->nr_consts - 1];
131 fpd->offset = fpc->inst_offset + 4;
132 fpd->index = src.reg.index;
133 memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
134 }
135
136 sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
137 break;
138 case NVFXSR_NONE:
139 sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
140 break;
141 default:
142 assert(0);
143 }
144
145 if (src.negate)
146 sr |= NVFX_FP_REG_NEGATE;
147
148 if (src.abs)
149 hw[1] |= (1 << (29 + pos));
150
151 sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) |
152 (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) |
153 (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) |
154 (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT));
155
156 hw[pos + 1] |= sr;
157 }
158
159 static void
160 emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst)
161 {
162 struct nv30_fragprog *fp = fpc->fp;
163 uint32_t *hw = &fp->insn[fpc->inst_offset];
164
165 switch (dst.type) {
166 case NVFXSR_OUTPUT:
167 if (dst.index == 1)
168 fp->fp_control |= 0x0000000e;
169 else {
170 hw[0] |= NVFX_FP_OP_OUT_REG_HALF;
171 dst.index <<= 1;
172 }
173 /* fall-through */
174 case NVFXSR_TEMP:
175 if (fpc->num_regs < (dst.index + 1))
176 fpc->num_regs = dst.index + 1;
177 break;
178 case NVFXSR_NONE:
179 hw[0] |= (1 << 30);
180 break;
181 default:
182 assert(0);
183 }
184
185 hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT);
186 }
187
188 static void
189 nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn)
190 {
191 struct nv30_fragprog *fp = fpc->fp;
192 uint32_t *hw;
193
194 fpc->inst_offset = fp->insn_len;
195 fpc->have_const = 0;
196 grow_insns(fpc, 4);
197 hw = &fp->insn[fpc->inst_offset];
198 memset(hw, 0, sizeof(uint32_t) * 4);
199
200 if (insn.op == NVFX_FP_OP_OPCODE_KILL_IF)
201 fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL;
202 hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT);
203 hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT);
204 hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT);
205
206 if (insn.sat)
207 hw[0] |= NVFX_FP_OP_OUT_SAT;
208
209 if (insn.cc_update)
210 hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE;
211 hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT);
212 hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
213 (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
214 (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
215 (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT));
216
217 if(insn.unit >= 0)
218 {
219 hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT);
220 }
221
222 emit_dst(fpc, insn.dst);
223 emit_src(fpc, 0, insn.src[0]);
224 emit_src(fpc, 1, insn.src[1]);
225 emit_src(fpc, 2, insn.src[2]);
226 }
227
228 #define arith(s,o,d,m,s0,s1,s2) \
229 nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \
230 (d), (m), (s0), (s1), (s2))
231
232 #define tex(s,o,u,d,m,s0,s1,s2) \
233 nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \
234 (d), (m), (s0), none, none)
235
236 /* IF src.x != 0, as TGSI specifies */
237 static void
238 nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src)
239 {
240 const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
241 struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none);
242 uint32_t *hw;
243 insn.cc_update = 1;
244 nvfx_fp_emit(fpc, insn);
245
246 fpc->inst_offset = fpc->fp->insn_len;
247 grow_insns(fpc, 4);
248 hw = &fpc->fp->insn[fpc->inst_offset];
249 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
250 hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
251 NV40_FP_OP_OUT_NONE |
252 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
253 /* Use .xxxx swizzle so that we check only src[0].x*/
254 hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
255 (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
256 (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
257 (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) |
258 (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT);
259 hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */
260 hw[3] = 0; /* | endif_offset */
261 util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset);
262 }
263
264 /* IF src.x != 0, as TGSI specifies */
265 static void
266 nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target)
267 {
268 struct nvfx_relocation reloc;
269 uint32_t *hw;
270 fpc->inst_offset = fpc->fp->insn_len;
271 grow_insns(fpc, 4);
272 hw = &fpc->fp->insn[fpc->inst_offset];
273 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
274 hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT);
275 /* Use .xxxx swizzle so that we check only src[0].x*/
276 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
277 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
278 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
279 hw[3] = 0;
280 reloc.target = target;
281 reloc.location = fpc->inst_offset + 2;
282 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
283 }
284
285 static void
286 nv40_fp_ret(struct nvfx_fpc *fpc)
287 {
288 uint32_t *hw;
289 fpc->inst_offset = fpc->fp->insn_len;
290 grow_insns(fpc, 4);
291 hw = &fpc->fp->insn[fpc->inst_offset];
292 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
293 hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT);
294 /* Use .xxxx swizzle so that we check only src[0].x*/
295 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
296 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
297 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
298 hw[3] = 0;
299 }
300
301 static void
302 nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target)
303 {
304 struct nvfx_relocation reloc;
305 uint32_t *hw;
306 fpc->inst_offset = fpc->fp->insn_len;
307 grow_insns(fpc, 4);
308 hw = &fpc->fp->insn[fpc->inst_offset];
309 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
310 hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) |
311 NV40_FP_OP_OUT_NONE |
312 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
313 /* Use .xxxx swizzle so that we check only src[0].x*/
314 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
315 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
316 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH |
317 (count << NV40_FP_OP_REP_COUNT1_SHIFT) |
318 (count << NV40_FP_OP_REP_COUNT2_SHIFT) |
319 (count << NV40_FP_OP_REP_COUNT3_SHIFT);
320 hw[3] = 0; /* | end_offset */
321 reloc.target = target;
322 reloc.location = fpc->inst_offset + 3;
323 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
324 //util_dynarray_append(&fpc->loop_stack, unsigned, target);
325 }
326
327 /* warning: this only works forward, and probably only if not inside any IF */
328 static void
329 nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target)
330 {
331 struct nvfx_relocation reloc;
332 uint32_t *hw;
333 fpc->inst_offset = fpc->fp->insn_len;
334 grow_insns(fpc, 4);
335 hw = &fpc->fp->insn[fpc->inst_offset];
336 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
337 hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
338 NV40_FP_OP_OUT_NONE |
339 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
340 /* Use .xxxx swizzle so that we check only src[0].x*/
341 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
342 (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT);
343 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */
344 hw[3] = 0; /* | endif_offset */
345 reloc.target = target;
346 reloc.location = fpc->inst_offset + 2;
347 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
348 reloc.target = target;
349 reloc.location = fpc->inst_offset + 3;
350 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
351 }
352
353 static void
354 nv40_fp_brk(struct nvfx_fpc *fpc)
355 {
356 uint32_t *hw;
357 fpc->inst_offset = fpc->fp->insn_len;
358 grow_insns(fpc, 4);
359 hw = &fpc->fp->insn[fpc->inst_offset];
360 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
361 hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) |
362 NV40_FP_OP_OUT_NONE;
363 /* Use .xxxx swizzle so that we check only src[0].x*/
364 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
365 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
366 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH;
367 hw[3] = 0;
368 }
369
370 static INLINE struct nvfx_src
371 tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc)
372 {
373 struct nvfx_src src;
374
375 switch (fsrc->Register.File) {
376 case TGSI_FILE_INPUT:
377 src.reg = fpc->r_input[fsrc->Register.Index];
378 break;
379 case TGSI_FILE_CONSTANT:
380 src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index);
381 break;
382 case TGSI_FILE_IMMEDIATE:
383 assert(fsrc->Register.Index < fpc->nr_imm);
384 src.reg = fpc->r_imm[fsrc->Register.Index];
385 break;
386 case TGSI_FILE_TEMPORARY:
387 src.reg = fpc->r_temp[fsrc->Register.Index];
388 break;
389 /* NV40 fragprog result regs are just temps, so this is simple */
390 case TGSI_FILE_OUTPUT:
391 src.reg = fpc->r_result[fsrc->Register.Index];
392 break;
393 default:
394 NOUVEAU_ERR("bad src file\n");
395 src.reg.index = 0;
396 src.reg.type = 0;
397 break;
398 }
399
400 src.abs = fsrc->Register.Absolute;
401 src.negate = fsrc->Register.Negate;
402 src.swz[0] = fsrc->Register.SwizzleX;
403 src.swz[1] = fsrc->Register.SwizzleY;
404 src.swz[2] = fsrc->Register.SwizzleZ;
405 src.swz[3] = fsrc->Register.SwizzleW;
406 src.indirect = 0;
407 src.indirect_reg = 0;
408 src.indirect_swz = 0;
409 return src;
410 }
411
412 static INLINE struct nvfx_reg
413 tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
414 switch (fdst->Register.File) {
415 case TGSI_FILE_OUTPUT:
416 return fpc->r_result[fdst->Register.Index];
417 case TGSI_FILE_TEMPORARY:
418 return fpc->r_temp[fdst->Register.Index];
419 case TGSI_FILE_NULL:
420 return nvfx_reg(NVFXSR_NONE, 0);
421 default:
422 NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
423 return nvfx_reg(NVFXSR_NONE, 0);
424 }
425 }
426
427 static INLINE int
428 tgsi_mask(uint tgsi)
429 {
430 int mask = 0;
431
432 if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X;
433 if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y;
434 if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z;
435 if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W;
436 return mask;
437 }
438
439 static boolean
440 nvfx_fragprog_parse_instruction(struct nv30_context* nvfx, struct nvfx_fpc *fpc,
441 const struct tgsi_full_instruction *finst)
442 {
443 const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
444 struct nvfx_insn insn;
445 struct nvfx_src src[3], tmp;
446 struct nvfx_reg dst;
447 int mask, sat, unit = 0;
448 int ai = -1, ci = -1, ii = -1;
449 int i;
450
451 if (finst->Instruction.Opcode == TGSI_OPCODE_END)
452 return TRUE;
453
454 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
455 const struct tgsi_full_src_register *fsrc;
456
457 fsrc = &finst->Src[i];
458 if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
459 src[i] = tgsi_src(fpc, fsrc);
460 }
461 }
462
463 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
464 const struct tgsi_full_src_register *fsrc;
465
466 fsrc = &finst->Src[i];
467
468 switch (fsrc->Register.File) {
469 case TGSI_FILE_INPUT:
470 if(fpc->fp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0
471 || fsrc->Register.SwizzleX == PIPE_SWIZZLE_ALPHA
472 || fsrc->Register.SwizzleY == PIPE_SWIZZLE_ALPHA
473 || fsrc->Register.SwizzleZ == PIPE_SWIZZLE_ALPHA
474 || fsrc->Register.SwizzleW == PIPE_SWIZZLE_ALPHA
475 )) {
476 /* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */
477 struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1));
478 addend.swz[0] = fsrc->Register.SwizzleX;
479 addend.swz[1] = fsrc->Register.SwizzleY;
480 addend.swz[2] = fsrc->Register.SwizzleZ;
481 addend.swz[3] = fsrc->Register.SwizzleW;
482 src[i] = nvfx_src(temp(fpc));
483 nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none));
484 } else if (ai == -1 || ai == fsrc->Register.Index) {
485 ai = fsrc->Register.Index;
486 src[i] = tgsi_src(fpc, fsrc);
487 } else {
488 src[i] = nvfx_src(temp(fpc));
489 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
490 }
491 break;
492 case TGSI_FILE_CONSTANT:
493 if ((ci == -1 && ii == -1) ||
494 ci == fsrc->Register.Index) {
495 ci = fsrc->Register.Index;
496 src[i] = tgsi_src(fpc, fsrc);
497 } else {
498 src[i] = nvfx_src(temp(fpc));
499 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
500 }
501 break;
502 case TGSI_FILE_IMMEDIATE:
503 if ((ci == -1 && ii == -1) ||
504 ii == fsrc->Register.Index) {
505 ii = fsrc->Register.Index;
506 src[i] = tgsi_src(fpc, fsrc);
507 } else {
508 src[i] = nvfx_src(temp(fpc));
509 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
510 }
511 break;
512 case TGSI_FILE_TEMPORARY:
513 /* handled above */
514 break;
515 case TGSI_FILE_SAMPLER:
516 unit = fsrc->Register.Index;
517 break;
518 case TGSI_FILE_OUTPUT:
519 break;
520 default:
521 NOUVEAU_ERR("bad src file\n");
522 return FALSE;
523 }
524 }
525
526 dst = tgsi_dst(fpc, &finst->Dst[0]);
527 mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
528 sat = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE);
529
530 switch (finst->Instruction.Opcode) {
531 case TGSI_OPCODE_ABS:
532 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, abs(src[0]), none, none));
533 break;
534 case TGSI_OPCODE_ADD:
535 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none));
536 break;
537 case TGSI_OPCODE_CEIL:
538 tmp = nvfx_src(temp(fpc));
539 nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, neg(src[0]), none, none));
540 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, neg(tmp), none, none));
541 break;
542 case TGSI_OPCODE_CMP:
543 insn = arith(0, MOV, none.reg, mask, src[0], none, none);
544 insn.cc_update = 1;
545 nvfx_fp_emit(fpc, insn);
546
547 insn = arith(sat, MOV, dst, mask, src[2], none, none);
548 insn.cc_test = NVFX_COND_GE;
549 nvfx_fp_emit(fpc, insn);
550
551 insn = arith(sat, MOV, dst, mask, src[1], none, none);
552 insn.cc_test = NVFX_COND_LT;
553 nvfx_fp_emit(fpc, insn);
554 break;
555 case TGSI_OPCODE_COS:
556 nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none));
557 break;
558 case TGSI_OPCODE_DDX:
559 if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
560 tmp = nvfx_src(temp(fpc));
561 nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
562 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
563 nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
564 nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
565 } else {
566 nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none));
567 }
568 break;
569 case TGSI_OPCODE_DDY:
570 if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
571 tmp = nvfx_src(temp(fpc));
572 nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
573 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
574 nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
575 nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
576 } else {
577 nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none));
578 }
579 break;
580 case TGSI_OPCODE_DP2:
581 tmp = nvfx_src(temp(fpc));
582 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none));
583 nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none));
584 break;
585 case TGSI_OPCODE_DP3:
586 nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none));
587 break;
588 case TGSI_OPCODE_DP4:
589 nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none));
590 break;
591 case TGSI_OPCODE_DPH:
592 tmp = nvfx_src(temp(fpc));
593 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[1], none));
594 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, swz(tmp, X, X, X, X), swz(src[1], W, W, W, W), none));
595 break;
596 case TGSI_OPCODE_DST:
597 nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none));
598 break;
599 case TGSI_OPCODE_EX2:
600 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none));
601 break;
602 case TGSI_OPCODE_FLR:
603 nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none));
604 break;
605 case TGSI_OPCODE_FRC:
606 nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none));
607 break;
608 case TGSI_OPCODE_KILL:
609 nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none));
610 break;
611 case TGSI_OPCODE_KILL_IF:
612 insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none);
613 insn.cc_update = 1;
614 nvfx_fp_emit(fpc, insn);
615
616 insn = arith(0, KIL, none.reg, 0, none, none, none);
617 insn.cc_test = NVFX_COND_LT;
618 nvfx_fp_emit(fpc, insn);
619 break;
620 case TGSI_OPCODE_LG2:
621 nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none));
622 break;
623 case TGSI_OPCODE_LIT:
624 if(!nvfx->is_nv4x)
625 nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], none, none));
626 else {
627 /* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by
628 * specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement
629 *
630 * NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead
631 */
632 struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0));
633 tmp = nvfx_src(temp(fpc));
634 if (ci>= 0 || ii >= 0) {
635 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none));
636 maxs = tmp;
637 }
638 nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none));
639 nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none));
640 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none));
641 nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none));
642 }
643 break;
644 case TGSI_OPCODE_LRP:
645 if(!nvfx->is_nv4x)
646 nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2]));
647 else {
648 tmp = nvfx_src(temp(fpc));
649 nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
650 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp));
651 }
652 break;
653 case TGSI_OPCODE_MAD:
654 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2]));
655 break;
656 case TGSI_OPCODE_MAX:
657 nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none));
658 break;
659 case TGSI_OPCODE_MIN:
660 nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none));
661 break;
662 case TGSI_OPCODE_MOV:
663 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none));
664 break;
665 case TGSI_OPCODE_MUL:
666 nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none));
667 break;
668 case TGSI_OPCODE_NOP:
669 break;
670 case TGSI_OPCODE_POW:
671 if(!nvfx->is_nv4x)
672 nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none));
673 else {
674 tmp = nvfx_src(temp(fpc));
675 nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
676 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
677 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none));
678 }
679 break;
680 case TGSI_OPCODE_RCP:
681 nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none));
682 break;
683 case TGSI_OPCODE_RFL:
684 if(!nvfx->is_nv4x)
685 nvfx_fp_emit(fpc, arith(0, RFL_NV30, dst, mask, src[0], src[1], none));
686 else {
687 tmp = nvfx_src(temp(fpc));
688 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[0], none));
689 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_Y, src[0], src[1], none));
690 insn = arith(0, DIV, tmp.reg, NVFX_FP_MASK_Z, swz(tmp, Y, Y, Y, Y), swz(tmp, X, X, X, X), none);
691 insn.scale = NVFX_FP_OP_DST_SCALE_2X;
692 nvfx_fp_emit(fpc, insn);
693 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, swz(tmp, Z, Z, Z, Z), src[0], neg(src[1])));
694 }
695 break;
696 case TGSI_OPCODE_RSQ:
697 if(!nvfx->is_nv4x)
698 nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none));
699 else {
700 tmp = nvfx_src(temp(fpc));
701 insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none);
702 insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X;
703 nvfx_fp_emit(fpc, insn);
704 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none));
705 }
706 break;
707 case TGSI_OPCODE_SCS:
708 /* avoid overwriting the source */
709 if(src[0].swz[NVFX_SWZ_X] != NVFX_SWZ_X)
710 {
711 if (mask & NVFX_FP_MASK_X)
712 nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
713 if (mask & NVFX_FP_MASK_Y)
714 nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
715 }
716 else
717 {
718 if (mask & NVFX_FP_MASK_Y)
719 nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
720 if (mask & NVFX_FP_MASK_X)
721 nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
722 }
723 break;
724 case TGSI_OPCODE_SEQ:
725 nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none));
726 break;
727 case TGSI_OPCODE_SFL:
728 nvfx_fp_emit(fpc, arith(sat, SFL, dst, mask, src[0], src[1], none));
729 break;
730 case TGSI_OPCODE_SGE:
731 nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none));
732 break;
733 case TGSI_OPCODE_SGT:
734 nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none));
735 break;
736 case TGSI_OPCODE_SIN:
737 nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none));
738 break;
739 case TGSI_OPCODE_SLE:
740 nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none));
741 break;
742 case TGSI_OPCODE_SLT:
743 nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none));
744 break;
745 case TGSI_OPCODE_SNE:
746 nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none));
747 break;
748 case TGSI_OPCODE_SSG:
749 {
750 struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X);
751
752 insn = arith(sat, MOV, dst, mask, src[0], none, none);
753 insn.cc_update = 1;
754 nvfx_fp_emit(fpc, insn);
755
756 insn = arith(0, STR, dst, mask, none, none, none);
757 insn.cc_test = NVFX_COND_GT;
758 nvfx_fp_emit(fpc, insn);
759
760 if(!sat) {
761 insn = arith(0, MOV, dst, mask, minones, none, none);
762 insn.cc_test = NVFX_COND_LT;
763 nvfx_fp_emit(fpc, insn);
764 }
765 break;
766 }
767 case TGSI_OPCODE_STR:
768 nvfx_fp_emit(fpc, arith(sat, STR, dst, mask, src[0], src[1], none));
769 break;
770 case TGSI_OPCODE_SUB:
771 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], neg(src[1]), none));
772 break;
773 case TGSI_OPCODE_TEX:
774 nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
775 break;
776 case TGSI_OPCODE_TRUNC:
777 tmp = nvfx_src(temp(fpc));
778 insn = arith(0, MOV, none.reg, mask, src[0], none, none);
779 insn.cc_update = 1;
780 nvfx_fp_emit(fpc, insn);
781
782 nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none));
783 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none));
784
785 insn = arith(sat, MOV, dst, mask, neg(tmp), none, none);
786 insn.cc_test = NVFX_COND_LT;
787 nvfx_fp_emit(fpc, insn);
788 break;
789 case TGSI_OPCODE_TXB:
790 nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none));
791 break;
792 case TGSI_OPCODE_TXL:
793 if(nvfx->is_nv4x)
794 nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none));
795 else /* unsupported on nv30, use TEX and hope they like it */
796 nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
797 break;
798 case TGSI_OPCODE_TXP:
799 nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none));
800 break;
801 case TGSI_OPCODE_XPD:
802 tmp = nvfx_src(temp(fpc));
803 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none));
804 nvfx_fp_emit(fpc, arith(sat, MAD, dst, (mask & ~NVFX_FP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)));
805 break;
806
807 case TGSI_OPCODE_IF:
808 // MOVRC0 R31 (TR0.xyzw), R<src>:
809 // IF (NE.xxxx) ELSE <else> END <end>
810 if(!nvfx->use_nv4x)
811 goto nv3x_cflow;
812 nv40_fp_if(fpc, src[0]);
813 break;
814
815 case TGSI_OPCODE_ELSE:
816 {
817 uint32_t *hw;
818 if(!nvfx->use_nv4x)
819 goto nv3x_cflow;
820 assert(util_dynarray_contains(&fpc->if_stack, unsigned));
821 hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)];
822 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
823 break;
824 }
825
826 case TGSI_OPCODE_ENDIF:
827 {
828 uint32_t *hw;
829 if(!nvfx->use_nv4x)
830 goto nv3x_cflow;
831 assert(util_dynarray_contains(&fpc->if_stack, unsigned));
832 hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)];
833 if(!hw[2])
834 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
835 hw[3] = fpc->fp->insn_len;
836 break;
837 }
838
839 case TGSI_OPCODE_BRA:
840 /* This can in limited cases be implemented with an IF with the else and endif labels pointing to the target */
841 /* no state tracker uses this, so don't implement this for now */
842 assert(0);
843 nv40_fp_bra(fpc, finst->Label.Label);
844 break;
845
846 case TGSI_OPCODE_BGNSUB:
847 case TGSI_OPCODE_ENDSUB:
848 /* nothing to do here */
849 break;
850
851 case TGSI_OPCODE_CAL:
852 if(!nvfx->use_nv4x)
853 goto nv3x_cflow;
854 nv40_fp_cal(fpc, finst->Label.Label);
855 break;
856
857 case TGSI_OPCODE_RET:
858 if(!nvfx->use_nv4x)
859 goto nv3x_cflow;
860 nv40_fp_ret(fpc);
861 break;
862
863 case TGSI_OPCODE_BGNLOOP:
864 if(!nvfx->use_nv4x)
865 goto nv3x_cflow;
866 /* TODO: we should support using two nested REPs to allow a > 255 iteration count */
867 nv40_fp_rep(fpc, 255, finst->Label.Label);
868 break;
869
870 case TGSI_OPCODE_ENDLOOP:
871 break;
872
873 case TGSI_OPCODE_BRK:
874 if(!nvfx->use_nv4x)
875 goto nv3x_cflow;
876 nv40_fp_brk(fpc);
877 break;
878
879 case TGSI_OPCODE_CONT:
880 {
881 static int warned = 0;
882 if(!warned) {
883 NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n");
884 warned = 1;
885 }
886 break;
887 }
888
889 default:
890 NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
891 return FALSE;
892 }
893
894 out:
895 release_temps(fpc);
896 return TRUE;
897 nv3x_cflow:
898 {
899 static int warned = 0;
900 if(!warned) {
901 NOUVEAU_ERR(
902 "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n"
903 "If rendering is incorrect, try to disable GLSL support in the application.\n");
904 warned = 1;
905 }
906 }
907 goto out;
908 }
909
910 static boolean
911 nvfx_fragprog_parse_decl_input(struct nv30_context *nvfx, struct nvfx_fpc *fpc,
912 const struct tgsi_full_declaration *fdec)
913 {
914 unsigned idx = fdec->Range.First;
915 unsigned hw;
916
917 switch (fdec->Semantic.Name) {
918 case TGSI_SEMANTIC_POSITION:
919 hw = NVFX_FP_OP_INPUT_SRC_POSITION;
920 break;
921 case TGSI_SEMANTIC_COLOR:
922 hw = NVFX_FP_OP_INPUT_SRC_COL0 + fdec->Semantic.Index;
923 break;
924 case TGSI_SEMANTIC_FOG:
925 hw = NVFX_FP_OP_INPUT_SRC_FOGC;
926 break;
927 case TGSI_SEMANTIC_FACE:
928 hw = NV40_FP_OP_INPUT_SRC_FACING;
929 break;
930 case TGSI_SEMANTIC_TEXCOORD:
931 assert(fdec->Semantic.Index < 8);
932 fpc->fp->texcoord[fdec->Semantic.Index] = fdec->Semantic.Index;
933 fpc->fp->texcoords |= (1 << fdec->Semantic.Index);
934 fpc->fp->vp_or |= (0x00004000 << fdec->Semantic.Index);
935 hw = NVFX_FP_OP_INPUT_SRC_TC(fdec->Semantic.Index);
936 break;
937 case TGSI_SEMANTIC_GENERIC:
938 case TGSI_SEMANTIC_PCOORD:
939 /* will be assigned to remaining TC slots later */
940 return TRUE;
941 default:
942 assert(0);
943 return FALSE;
944 }
945
946 fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
947 return TRUE;
948 }
949
950 static boolean
951 nvfx_fragprog_assign_generic(struct nv30_context *nvfx, struct nvfx_fpc *fpc,
952 const struct tgsi_full_declaration *fdec)
953 {
954 unsigned num_texcoords = nvfx->use_nv4x ? 10 : 8;
955 unsigned idx = fdec->Range.First;
956 unsigned hw;
957
958 switch (fdec->Semantic.Name) {
959 case TGSI_SEMANTIC_GENERIC:
960 case TGSI_SEMANTIC_PCOORD:
961 for (hw = 0; hw < num_texcoords; hw++) {
962 if (fpc->fp->texcoord[hw] == 0xffff) {
963 if (hw <= 7) {
964 fpc->fp->texcoords |= (0x1 << hw);
965 fpc->fp->vp_or |= (0x00004000 << hw);
966 } else {
967 fpc->fp->vp_or |= (0x00001000 << (hw - 8));
968 }
969 if (fdec->Semantic.Name == TGSI_SEMANTIC_PCOORD) {
970 fpc->fp->texcoord[hw] = 0xfffe;
971 fpc->fp->point_sprite_control |= (0x00000100 << hw);
972 } else {
973 fpc->fp->texcoord[hw] = fdec->Semantic.Index + 8;
974 }
975 hw = NVFX_FP_OP_INPUT_SRC_TC(hw);
976 fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
977 return TRUE;
978 }
979 return FALSE;
980 }
981 return TRUE;
982 default:
983 return TRUE;
984 }
985 }
986
987 static boolean
988 nvfx_fragprog_parse_decl_output(struct nv30_context* nvfx, struct nvfx_fpc *fpc,
989 const struct tgsi_full_declaration *fdec)
990 {
991 unsigned idx = fdec->Range.First;
992 unsigned hw;
993
994 switch (fdec->Semantic.Name) {
995 case TGSI_SEMANTIC_POSITION:
996 hw = 1;
997 break;
998 case TGSI_SEMANTIC_COLOR:
999 hw = ~0;
1000 switch (fdec->Semantic.Index) {
1001 case 0: hw = 0; break;
1002 case 1: hw = 2; break;
1003 case 2: hw = 3; break;
1004 case 3: hw = 4; break;
1005 }
1006 if(hw > ((nvfx->use_nv4x) ? 4 : 2)) {
1007 NOUVEAU_ERR("bad rcol index\n");
1008 return FALSE;
1009 }
1010 break;
1011 default:
1012 NOUVEAU_ERR("bad output semantic\n");
1013 return FALSE;
1014 }
1015
1016 fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
1017 fpc->r_temps |= (1ULL << hw);
1018 return TRUE;
1019 }
1020
1021 static boolean
1022 nvfx_fragprog_prepare(struct nv30_context* nvfx, struct nvfx_fpc *fpc)
1023 {
1024 struct tgsi_parse_context p;
1025 int high_temp = -1, i;
1026
1027 fpc->r_imm = CALLOC(fpc->fp->info.immediate_count, sizeof(struct nvfx_reg));
1028
1029 tgsi_parse_init(&p, fpc->fp->pipe.tokens);
1030 while (!tgsi_parse_end_of_tokens(&p)) {
1031 const union tgsi_full_token *tok = &p.FullToken;
1032
1033 tgsi_parse_token(&p);
1034 switch(tok->Token.Type) {
1035 case TGSI_TOKEN_TYPE_DECLARATION:
1036 {
1037 const struct tgsi_full_declaration *fdec;
1038 fdec = &p.FullToken.FullDeclaration;
1039 switch (fdec->Declaration.File) {
1040 case TGSI_FILE_INPUT:
1041 if (!nvfx_fragprog_parse_decl_input(nvfx, fpc, fdec))
1042 goto out_err;
1043 break;
1044 case TGSI_FILE_OUTPUT:
1045 if (!nvfx_fragprog_parse_decl_output(nvfx, fpc, fdec))
1046 goto out_err;
1047 break;
1048 case TGSI_FILE_TEMPORARY:
1049 if (fdec->Range.Last > high_temp) {
1050 high_temp =
1051 fdec->Range.Last;
1052 }
1053 break;
1054 default:
1055 break;
1056 }
1057 }
1058 break;
1059 case TGSI_TOKEN_TYPE_IMMEDIATE:
1060 {
1061 struct tgsi_full_immediate *imm;
1062
1063 imm = &p.FullToken.FullImmediate;
1064 assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
1065 assert(fpc->nr_imm < fpc->fp->info.immediate_count);
1066
1067 fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float);
1068 break;
1069 }
1070 default:
1071 break;
1072 }
1073 }
1074 tgsi_parse_free(&p);
1075
1076 tgsi_parse_init(&p, fpc->fp->pipe.tokens);
1077 while (!tgsi_parse_end_of_tokens(&p)) {
1078 const struct tgsi_full_declaration *fdec;
1079 tgsi_parse_token(&p);
1080 switch(p.FullToken.Token.Type) {
1081 case TGSI_TOKEN_TYPE_DECLARATION:
1082 fdec = &p.FullToken.FullDeclaration;
1083 switch (fdec->Declaration.File) {
1084 case TGSI_FILE_INPUT:
1085 if (!nvfx_fragprog_assign_generic(nvfx, fpc, fdec))
1086 goto out_err;
1087 break;
1088 default:
1089 break;
1090 }
1091 break;
1092 default:
1093 break;
1094 }
1095 }
1096 tgsi_parse_free(&p);
1097
1098 if (++high_temp) {
1099 fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
1100 for (i = 0; i < high_temp; i++)
1101 fpc->r_temp[i] = temp(fpc);
1102 fpc->r_temps_discard = 0ULL;
1103 }
1104
1105 return TRUE;
1106
1107 out_err:
1108 FREE(fpc->r_temp);
1109 fpc->r_temp = NULL;
1110
1111 tgsi_parse_free(&p);
1112 return FALSE;
1113 }
1114
1115 DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", FALSE)
1116
1117 void
1118 _nvfx_fragprog_translate(struct nv30_context *nvfx, struct nv30_fragprog *fp,
1119 boolean emulate_sprite_flipping)
1120 {
1121 struct tgsi_parse_context parse;
1122 struct nvfx_fpc *fpc = NULL;
1123 struct util_dynarray insns;
1124
1125 fp->translated = FALSE;
1126 fp->point_sprite_control = 0;
1127 fp->vp_or = 0;
1128
1129 fpc = CALLOC_STRUCT(nvfx_fpc);
1130 if (!fpc)
1131 goto out_err;
1132
1133 fpc->max_temps = nvfx->use_nv4x ? 48 : 32;
1134 fpc->fp = fp;
1135 fpc->num_regs = 2;
1136 memset(fp->texcoord, 0xff, sizeof(fp->texcoord));
1137
1138 for (unsigned i = 0; i < fp->info.num_properties; ++i) {
1139 switch (fp->info.properties[i].name) {
1140 case TGSI_PROPERTY_FS_COORD_ORIGIN:
1141 if (fp->info.properties[i].data[0])
1142 fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED;
1143 break;
1144 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1145 if (fp->info.properties[i].data[0])
1146 fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER;
1147 break;
1148 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1149 if (fp->info.properties[i].data[0])
1150 fp->rt_enable |= NV30_3D_RT_ENABLE_MRT;
1151 break;
1152 default:
1153 break;
1154 }
1155 }
1156
1157 if (!nvfx_fragprog_prepare(nvfx, fpc))
1158 goto out_err;
1159
1160 tgsi_parse_init(&parse, fp->pipe.tokens);
1161 util_dynarray_init(&insns);
1162
1163 while (!tgsi_parse_end_of_tokens(&parse)) {
1164 tgsi_parse_token(&parse);
1165
1166 switch (parse.FullToken.Token.Type) {
1167 case TGSI_TOKEN_TYPE_INSTRUCTION:
1168 {
1169 const struct tgsi_full_instruction *finst;
1170
1171 util_dynarray_append(&insns, unsigned, fp->insn_len);
1172 finst = &parse.FullToken.FullInstruction;
1173 if (!nvfx_fragprog_parse_instruction(nvfx, fpc, finst))
1174 goto out_err;
1175 }
1176 break;
1177 default:
1178 break;
1179 }
1180 }
1181 util_dynarray_append(&insns, unsigned, fp->insn_len);
1182
1183 for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
1184 {
1185 struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i);
1186 fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target];
1187 }
1188 util_dynarray_fini(&insns);
1189
1190 if(!nvfx->is_nv4x)
1191 fp->fp_control |= (fpc->num_regs-1)/2;
1192 else
1193 fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT;
1194
1195 /* Terminate final instruction */
1196 if(fp->insn)
1197 fp->insn[fpc->inst_offset] |= 0x00000001;
1198
1199 /* Append NOP + END instruction for branches to the end of the program */
1200 fpc->inst_offset = fp->insn_len;
1201 grow_insns(fpc, 4);
1202 fp->insn[fpc->inst_offset + 0] = 0x00000001;
1203 fp->insn[fpc->inst_offset + 1] = 0x00000000;
1204 fp->insn[fpc->inst_offset + 2] = 0x00000000;
1205 fp->insn[fpc->inst_offset + 3] = 0x00000000;
1206
1207 if(debug_get_option_nvfx_dump_fp())
1208 {
1209 debug_printf("\n");
1210 tgsi_dump(fp->pipe.tokens, 0);
1211
1212 debug_printf("\n%s fragment program:\n", nvfx->is_nv4x ? "nv4x" : "nv3x");
1213 for (unsigned i = 0; i < fp->insn_len; i += 4)
1214 debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]);
1215 debug_printf("\n");
1216 }
1217
1218 fp->translated = TRUE;
1219
1220 out:
1221 tgsi_parse_free(&parse);
1222 if(fpc)
1223 {
1224 FREE(fpc->r_temp);
1225 util_dynarray_fini(&fpc->if_stack);
1226 util_dynarray_fini(&fpc->label_relocs);
1227 util_dynarray_fini(&fpc->imm_data);
1228 //util_dynarray_fini(&fpc->loop_stack);
1229 FREE(fpc);
1230 }
1231
1232 return;
1233
1234 out_err:
1235 _debug_printf("Error: failed to compile this fragment program:\n");
1236 tgsi_dump(fp->pipe.tokens, 0);
1237 goto out;
1238 }
1239
1240 static inline void
1241 nvfx_fp_memcpy(void* dst, const void* src, size_t len)
1242 {
1243 #ifndef PIPE_ARCH_BIG_ENDIAN
1244 memcpy(dst, src, len);
1245 #else
1246 size_t i;
1247 for(i = 0; i < len; i += 4) {
1248 uint32_t v = *(uint32_t*)((char*)src + i);
1249 *(uint32_t*)((char*)dst + i) = (v >> 16) | (v << 16);
1250 }
1251 #endif
1252 }