1cfaf3aefae25e0148241a637eaf4ae841e70577
[mesa.git] / src / gallium / drivers / nv50 / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 }
27
28 #include "nv50_ir.h"
29 #include "nv50_ir_util.h"
30 #include "nv50_ir_build_util.h"
31
32 namespace tgsi {
33
34 class Source;
35
36 static nv50_ir::operation translateOpcode(uint opcode);
37 static nv50_ir::DataFile translateFile(uint file);
38 static nv50_ir::TexTarget translateTexture(uint texTarg);
39 static nv50_ir::SVSemantic translateSysVal(uint sysval);
40
41 class Instruction
42 {
43 public:
44 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
45
46 class SrcRegister
47 {
48 public:
49 SrcRegister(const struct tgsi_full_src_register *src)
50 : reg(src->Register),
51 fsr(src)
52 { }
53
54 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
55
56 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
57 {
58 struct tgsi_src_register reg;
59 memset(&reg, 0, sizeof(reg));
60 reg.Index = off.Index;
61 reg.File = off.File;
62 reg.SwizzleX = off.SwizzleX;
63 reg.SwizzleY = off.SwizzleY;
64 reg.SwizzleZ = off.SwizzleZ;
65 return reg;
66 }
67
68 SrcRegister(const struct tgsi_texture_offset& off) :
69 reg(offsetToSrc(off)),
70 fsr(NULL)
71 { }
72
73 uint getFile() const { return reg.File; }
74
75 bool is2D() const { return reg.Dimension; }
76
77 bool isIndirect(int dim) const
78 {
79 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
80 }
81
82 int getIndex(int dim) const
83 {
84 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
85 }
86
87 int getSwizzle(int chan) const
88 {
89 return tgsi_util_get_src_register_swizzle(&reg, chan);
90 }
91
92 nv50_ir::Modifier getMod(int chan) const;
93
94 SrcRegister getIndirect(int dim) const
95 {
96 assert(fsr && isIndirect(dim));
97 if (dim)
98 return SrcRegister(fsr->DimIndirect);
99 return SrcRegister(fsr->Indirect);
100 }
101
102 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
103 {
104 assert(reg.File == TGSI_FILE_IMMEDIATE);
105 assert(!reg.Absolute);
106 assert(!reg.Negate);
107 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
108 }
109
110 private:
111 const struct tgsi_src_register reg;
112 const struct tgsi_full_src_register *fsr;
113 };
114
115 class DstRegister
116 {
117 public:
118 DstRegister(const struct tgsi_full_dst_register *dst)
119 : reg(dst->Register),
120 fdr(dst)
121 { }
122
123 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
124
125 uint getFile() const { return reg.File; }
126
127 bool is2D() const { return reg.Dimension; }
128
129 bool isIndirect(int dim) const
130 {
131 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
132 }
133
134 int getIndex(int dim) const
135 {
136 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
137 }
138
139 unsigned int getMask() const { return reg.WriteMask; }
140
141 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
142
143 SrcRegister getIndirect(int dim) const
144 {
145 assert(fdr && isIndirect(dim));
146 if (dim)
147 return SrcRegister(fdr->DimIndirect);
148 return SrcRegister(fdr->Indirect);
149 }
150
151 private:
152 const struct tgsi_dst_register reg;
153 const struct tgsi_full_dst_register *fdr;
154 };
155
156 inline uint getOpcode() const { return insn->Instruction.Opcode; }
157
158 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
159 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
160
161 // mask of used components of source s
162 unsigned int srcMask(unsigned int s) const;
163
164 SrcRegister getSrc(unsigned int s) const
165 {
166 assert(s < srcCount());
167 return SrcRegister(&insn->Src[s]);
168 }
169
170 DstRegister getDst(unsigned int d) const
171 {
172 assert(d < dstCount());
173 return DstRegister(&insn->Dst[d]);
174 }
175
176 SrcRegister getTexOffset(unsigned int i) const
177 {
178 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
179 return SrcRegister(insn->TexOffsets[i]);
180 }
181
182 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
183
184 bool checkDstSrcAliasing() const;
185
186 inline nv50_ir::operation getOP() const {
187 return translateOpcode(getOpcode()); }
188
189 nv50_ir::DataType inferSrcType() const;
190 nv50_ir::DataType inferDstType() const;
191
192 nv50_ir::CondCode getSetCond() const;
193
194 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
195
196 inline uint getLabel() { return insn->Label.Label; }
197
198 unsigned getSaturate() const { return insn->Instruction.Saturate; }
199
200 void print() const
201 {
202 tgsi_dump_instruction(insn, 1);
203 }
204
205 private:
206 const struct tgsi_full_instruction *insn;
207 };
208
209 unsigned int Instruction::srcMask(unsigned int s) const
210 {
211 unsigned int mask = insn->Dst[0].Register.WriteMask;
212
213 switch (insn->Instruction.Opcode) {
214 case TGSI_OPCODE_COS:
215 case TGSI_OPCODE_SIN:
216 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
217 case TGSI_OPCODE_DP3:
218 return 0x7;
219 case TGSI_OPCODE_DP4:
220 case TGSI_OPCODE_DPH:
221 case TGSI_OPCODE_KIL: /* WriteMask ignored */
222 return 0xf;
223 case TGSI_OPCODE_DST:
224 return mask & (s ? 0xa : 0x6);
225 case TGSI_OPCODE_EX2:
226 case TGSI_OPCODE_EXP:
227 case TGSI_OPCODE_LG2:
228 case TGSI_OPCODE_LOG:
229 case TGSI_OPCODE_POW:
230 case TGSI_OPCODE_RCP:
231 case TGSI_OPCODE_RSQ:
232 case TGSI_OPCODE_SCS:
233 return 0x1;
234 case TGSI_OPCODE_IF:
235 return 0x1;
236 case TGSI_OPCODE_LIT:
237 return 0xb;
238 case TGSI_OPCODE_TEX:
239 case TGSI_OPCODE_TXB:
240 case TGSI_OPCODE_TXD:
241 case TGSI_OPCODE_TXL:
242 case TGSI_OPCODE_TXP:
243 {
244 const struct tgsi_instruction_texture *tex = &insn->Texture;
245
246 assert(insn->Instruction.Texture);
247
248 mask = 0x7;
249 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
250 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
251 mask |= 0x8; /* bias, lod or proj */
252
253 switch (tex->Texture) {
254 case TGSI_TEXTURE_1D:
255 mask &= 0x9;
256 break;
257 case TGSI_TEXTURE_SHADOW1D:
258 mask &= 0x5;
259 break;
260 case TGSI_TEXTURE_1D_ARRAY:
261 case TGSI_TEXTURE_2D:
262 case TGSI_TEXTURE_RECT:
263 mask &= 0xb;
264 break;
265 default:
266 break;
267 }
268 }
269 return mask;
270 case TGSI_OPCODE_XPD:
271 {
272 unsigned int x = 0;
273 if (mask & 1) x |= 0x6;
274 if (mask & 2) x |= 0x5;
275 if (mask & 4) x |= 0x3;
276 return x;
277 }
278 default:
279 break;
280 }
281
282 return mask;
283 }
284
285 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
286 {
287 nv50_ir::Modifier m(0);
288
289 if (reg.Absolute)
290 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
291 if (reg.Negate)
292 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
293 return m;
294 }
295
296 static nv50_ir::DataFile translateFile(uint file)
297 {
298 switch (file) {
299 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
300 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
301 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
302 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
303 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
304 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
305 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
306 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
307 case TGSI_FILE_IMMEDIATE_ARRAY: return nv50_ir::FILE_IMMEDIATE;
308 case TGSI_FILE_TEMPORARY_ARRAY: return nv50_ir::FILE_MEMORY_LOCAL;
309 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
310 case TGSI_FILE_SAMPLER:
311 case TGSI_FILE_NULL:
312 default:
313 return nv50_ir::FILE_NULL;
314 }
315 }
316
317 static nv50_ir::SVSemantic translateSysVal(uint sysval)
318 {
319 switch (sysval) {
320 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
321 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
322 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
323 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
324 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
325 default:
326 assert(0);
327 return nv50_ir::SV_CLOCK;
328 }
329 }
330
331 #define NV50_IR_TEX_TARG_CASE(a, b) \
332 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
333
334 static nv50_ir::TexTarget translateTexture(uint tex)
335 {
336 switch (tex) {
337 NV50_IR_TEX_TARG_CASE(1D, 1D);
338 NV50_IR_TEX_TARG_CASE(2D, 2D);
339 NV50_IR_TEX_TARG_CASE(3D, 3D);
340 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
341 NV50_IR_TEX_TARG_CASE(RECT, RECT);
342 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
343 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
344 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
345 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
346 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
347 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
348 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
349 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
350
351 case TGSI_TEXTURE_UNKNOWN:
352 default:
353 assert(!"invalid texture target");
354 return nv50_ir::TEX_TARGET_2D;
355 }
356 }
357
358 nv50_ir::DataType Instruction::inferSrcType() const
359 {
360 switch (getOpcode()) {
361 case TGSI_OPCODE_AND:
362 case TGSI_OPCODE_OR:
363 case TGSI_OPCODE_XOR:
364 case TGSI_OPCODE_NOT:
365 case TGSI_OPCODE_U2F:
366 case TGSI_OPCODE_UADD:
367 case TGSI_OPCODE_UDIV:
368 case TGSI_OPCODE_UMOD:
369 case TGSI_OPCODE_UMAD:
370 case TGSI_OPCODE_UMUL:
371 case TGSI_OPCODE_UMAX:
372 case TGSI_OPCODE_UMIN:
373 case TGSI_OPCODE_USEQ:
374 case TGSI_OPCODE_USGE:
375 case TGSI_OPCODE_USLT:
376 case TGSI_OPCODE_USNE:
377 case TGSI_OPCODE_USHR:
378 case TGSI_OPCODE_UCMP:
379 return nv50_ir::TYPE_U32;
380 case TGSI_OPCODE_I2F:
381 case TGSI_OPCODE_IDIV:
382 case TGSI_OPCODE_IMAX:
383 case TGSI_OPCODE_IMIN:
384 case TGSI_OPCODE_IABS:
385 case TGSI_OPCODE_INEG:
386 case TGSI_OPCODE_ISGE:
387 case TGSI_OPCODE_ISHR:
388 case TGSI_OPCODE_ISLT:
389 case TGSI_OPCODE_ISSG:
390 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
391 case TGSI_OPCODE_MOD:
392 case TGSI_OPCODE_UARL:
393 return nv50_ir::TYPE_S32;
394 default:
395 return nv50_ir::TYPE_F32;
396 }
397 }
398
399 nv50_ir::DataType Instruction::inferDstType() const
400 {
401 switch (getOpcode()) {
402 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
403 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
404 case TGSI_OPCODE_I2F:
405 case TGSI_OPCODE_U2F:
406 return nv50_ir::TYPE_F32;
407 default:
408 return inferSrcType();
409 }
410 }
411
412 nv50_ir::CondCode Instruction::getSetCond() const
413 {
414 using namespace nv50_ir;
415
416 switch (getOpcode()) {
417 case TGSI_OPCODE_SLT:
418 case TGSI_OPCODE_ISLT:
419 case TGSI_OPCODE_USLT:
420 return CC_LT;
421 case TGSI_OPCODE_SLE:
422 return CC_LE;
423 case TGSI_OPCODE_SGE:
424 case TGSI_OPCODE_ISGE:
425 case TGSI_OPCODE_USGE:
426 return CC_GE;
427 case TGSI_OPCODE_SGT:
428 return CC_GT;
429 case TGSI_OPCODE_SEQ:
430 case TGSI_OPCODE_USEQ:
431 return CC_EQ;
432 case TGSI_OPCODE_SNE:
433 return CC_NEU;
434 case TGSI_OPCODE_USNE:
435 return CC_NE;
436 case TGSI_OPCODE_SFL:
437 return CC_NEVER;
438 case TGSI_OPCODE_STR:
439 default:
440 return CC_ALWAYS;
441 }
442 }
443
444 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
445
446 static nv50_ir::operation translateOpcode(uint opcode)
447 {
448 switch (opcode) {
449 NV50_IR_OPCODE_CASE(ARL, SHL);
450 NV50_IR_OPCODE_CASE(MOV, MOV);
451
452 NV50_IR_OPCODE_CASE(RCP, RCP);
453 NV50_IR_OPCODE_CASE(RSQ, RSQ);
454
455 NV50_IR_OPCODE_CASE(MUL, MUL);
456 NV50_IR_OPCODE_CASE(ADD, ADD);
457
458 NV50_IR_OPCODE_CASE(MIN, MIN);
459 NV50_IR_OPCODE_CASE(MAX, MAX);
460 NV50_IR_OPCODE_CASE(SLT, SET);
461 NV50_IR_OPCODE_CASE(SGE, SET);
462 NV50_IR_OPCODE_CASE(MAD, MAD);
463 NV50_IR_OPCODE_CASE(SUB, SUB);
464
465 NV50_IR_OPCODE_CASE(FLR, FLOOR);
466 NV50_IR_OPCODE_CASE(ROUND, CVT);
467 NV50_IR_OPCODE_CASE(EX2, EX2);
468 NV50_IR_OPCODE_CASE(LG2, LG2);
469 NV50_IR_OPCODE_CASE(POW, POW);
470
471 NV50_IR_OPCODE_CASE(ABS, ABS);
472
473 NV50_IR_OPCODE_CASE(COS, COS);
474 NV50_IR_OPCODE_CASE(DDX, DFDX);
475 NV50_IR_OPCODE_CASE(DDY, DFDY);
476 NV50_IR_OPCODE_CASE(KILP, DISCARD);
477
478 NV50_IR_OPCODE_CASE(SEQ, SET);
479 NV50_IR_OPCODE_CASE(SFL, SET);
480 NV50_IR_OPCODE_CASE(SGT, SET);
481 NV50_IR_OPCODE_CASE(SIN, SIN);
482 NV50_IR_OPCODE_CASE(SLE, SET);
483 NV50_IR_OPCODE_CASE(SNE, SET);
484 NV50_IR_OPCODE_CASE(STR, SET);
485 NV50_IR_OPCODE_CASE(TEX, TEX);
486 NV50_IR_OPCODE_CASE(TXD, TXD);
487 NV50_IR_OPCODE_CASE(TXP, TEX);
488
489 NV50_IR_OPCODE_CASE(BRA, BRA);
490 NV50_IR_OPCODE_CASE(CAL, CALL);
491 NV50_IR_OPCODE_CASE(RET, RET);
492 NV50_IR_OPCODE_CASE(CMP, SLCT);
493
494 NV50_IR_OPCODE_CASE(TXB, TXB);
495
496 NV50_IR_OPCODE_CASE(DIV, DIV);
497
498 NV50_IR_OPCODE_CASE(TXL, TXL);
499
500 NV50_IR_OPCODE_CASE(CEIL, CEIL);
501 NV50_IR_OPCODE_CASE(I2F, CVT);
502 NV50_IR_OPCODE_CASE(NOT, NOT);
503 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
504 NV50_IR_OPCODE_CASE(SHL, SHL);
505
506 NV50_IR_OPCODE_CASE(AND, AND);
507 NV50_IR_OPCODE_CASE(OR, OR);
508 NV50_IR_OPCODE_CASE(MOD, MOD);
509 NV50_IR_OPCODE_CASE(XOR, XOR);
510 NV50_IR_OPCODE_CASE(SAD, SAD);
511 NV50_IR_OPCODE_CASE(TXF, TXF);
512 NV50_IR_OPCODE_CASE(TXQ, TXQ);
513
514 NV50_IR_OPCODE_CASE(EMIT, EMIT);
515 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
516
517 NV50_IR_OPCODE_CASE(KIL, DISCARD);
518
519 NV50_IR_OPCODE_CASE(F2I, CVT);
520 NV50_IR_OPCODE_CASE(IDIV, DIV);
521 NV50_IR_OPCODE_CASE(IMAX, MAX);
522 NV50_IR_OPCODE_CASE(IMIN, MIN);
523 NV50_IR_OPCODE_CASE(IABS, ABS);
524 NV50_IR_OPCODE_CASE(INEG, NEG);
525 NV50_IR_OPCODE_CASE(ISGE, SET);
526 NV50_IR_OPCODE_CASE(ISHR, SHR);
527 NV50_IR_OPCODE_CASE(ISLT, SET);
528 NV50_IR_OPCODE_CASE(F2U, CVT);
529 NV50_IR_OPCODE_CASE(U2F, CVT);
530 NV50_IR_OPCODE_CASE(UADD, ADD);
531 NV50_IR_OPCODE_CASE(UDIV, DIV);
532 NV50_IR_OPCODE_CASE(UMAD, MAD);
533 NV50_IR_OPCODE_CASE(UMAX, MAX);
534 NV50_IR_OPCODE_CASE(UMIN, MIN);
535 NV50_IR_OPCODE_CASE(UMOD, MOD);
536 NV50_IR_OPCODE_CASE(UMUL, MUL);
537 NV50_IR_OPCODE_CASE(USEQ, SET);
538 NV50_IR_OPCODE_CASE(USGE, SET);
539 NV50_IR_OPCODE_CASE(USHR, SHR);
540 NV50_IR_OPCODE_CASE(USLT, SET);
541 NV50_IR_OPCODE_CASE(USNE, SET);
542
543 NV50_IR_OPCODE_CASE(LOAD, TXF);
544 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
545 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
546 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
547 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
548 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
549 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
550 NV50_IR_OPCODE_CASE(GATHER4, TXG);
551 NV50_IR_OPCODE_CASE(RESINFO, TXQ);
552
553 NV50_IR_OPCODE_CASE(END, EXIT);
554
555 default:
556 return nv50_ir::OP_NOP;
557 }
558 }
559
560 bool Instruction::checkDstSrcAliasing() const
561 {
562 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
563 return false;
564
565 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
566 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
567 break;
568 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
569 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
570 return true;
571 }
572 return false;
573 }
574
575 class Source
576 {
577 public:
578 Source(struct nv50_ir_prog_info *);
579 ~Source();
580
581 public:
582 bool scanSource();
583 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
584
585 public:
586 struct tgsi_shader_info scan;
587 struct tgsi_full_instruction *insns;
588 const struct tgsi_token *tokens;
589 struct nv50_ir_prog_info *info;
590
591 nv50_ir::DynArray tempArrays;
592 nv50_ir::DynArray immdArrays;
593 int tempArrayCount;
594 int immdArrayCount;
595
596 bool mainTempsInLMem;
597
598 int clipVertexOutput;
599
600 uint8_t *resourceTargets; // TGSI_TEXTURE_*
601 unsigned resourceCount;
602
603 private:
604 int inferSysValDirection(unsigned sn) const;
605 bool scanDeclaration(const struct tgsi_full_declaration *);
606 bool scanInstruction(const struct tgsi_full_instruction *);
607 void scanProperty(const struct tgsi_full_property *);
608 void scanImmediate(const struct tgsi_full_immediate *);
609
610 inline bool isEdgeFlagPassthrough(const Instruction&) const;
611 };
612
613 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
614 {
615 tokens = (const struct tgsi_token *)info->bin.source;
616
617 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
618 tgsi_dump(tokens, 0);
619
620 resourceTargets = NULL;
621
622 mainTempsInLMem = FALSE;
623 }
624
625 Source::~Source()
626 {
627 if (insns)
628 FREE(insns);
629
630 if (info->immd.data)
631 FREE(info->immd.data);
632 if (info->immd.type)
633 FREE(info->immd.type);
634
635 if (resourceTargets)
636 delete[] resourceTargets;
637 }
638
639 bool Source::scanSource()
640 {
641 unsigned insnCount = 0;
642 struct tgsi_parse_context parse;
643
644 tgsi_scan_shader(tokens, &scan);
645
646 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
647 sizeof(insns[0]));
648 if (!insns)
649 return false;
650
651 clipVertexOutput = -1;
652
653 resourceCount = scan.file_max[TGSI_FILE_RESOURCE] + 1;
654 resourceTargets = new uint8_t[resourceCount];
655
656 info->immd.bufSize = 0;
657 tempArrayCount = 0;
658 immdArrayCount = 0;
659
660 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
661 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
662 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
663
664 if (info->type == PIPE_SHADER_FRAGMENT) {
665 info->prop.fp.writesDepth = scan.writes_z;
666 info->prop.fp.usesDiscard = scan.uses_kill;
667 } else
668 if (info->type == PIPE_SHADER_GEOMETRY) {
669 info->prop.gp.instanceCount = 1; // default value
670 }
671
672 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
673 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
674
675 tgsi_parse_init(&parse, tokens);
676 while (!tgsi_parse_end_of_tokens(&parse)) {
677 tgsi_parse_token(&parse);
678
679 switch (parse.FullToken.Token.Type) {
680 case TGSI_TOKEN_TYPE_IMMEDIATE:
681 scanImmediate(&parse.FullToken.FullImmediate);
682 break;
683 case TGSI_TOKEN_TYPE_DECLARATION:
684 scanDeclaration(&parse.FullToken.FullDeclaration);
685 break;
686 case TGSI_TOKEN_TYPE_INSTRUCTION:
687 insns[insnCount++] = parse.FullToken.FullInstruction;
688 scanInstruction(&parse.FullToken.FullInstruction);
689 break;
690 case TGSI_TOKEN_TYPE_PROPERTY:
691 scanProperty(&parse.FullToken.FullProperty);
692 break;
693 default:
694 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
695 break;
696 }
697 }
698 tgsi_parse_free(&parse);
699
700 if (mainTempsInLMem)
701 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
702
703 if (info->io.genUserClip > 0) {
704 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
705
706 for (unsigned int n = 0; n < ((info->io.genUserClip + 3) / 4); ++n) {
707 unsigned int i = info->numOutputs++;
708 info->out[i].id = i;
709 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
710 info->out[i].si = n;
711 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
712 }
713 }
714
715 return info->assignSlots(info) == 0;
716 }
717
718 void Source::scanProperty(const struct tgsi_full_property *prop)
719 {
720 switch (prop->Property.PropertyName) {
721 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
722 info->prop.gp.outputPrim = prop->u[0].Data;
723 break;
724 case TGSI_PROPERTY_GS_INPUT_PRIM:
725 info->prop.gp.inputPrim = prop->u[0].Data;
726 break;
727 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
728 info->prop.gp.maxVertices = prop->u[0].Data;
729 break;
730 #if 0
731 case TGSI_PROPERTY_GS_INSTANCE_COUNT:
732 info->prop.gp.instanceCount = prop->u[0].Data;
733 break;
734 #endif
735 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
736 info->prop.fp.separateFragData = TRUE;
737 break;
738 case TGSI_PROPERTY_FS_COORD_ORIGIN:
739 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
740 // we don't care
741 break;
742 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
743 info->io.genUserClip = -1;
744 break;
745 default:
746 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
747 break;
748 }
749 }
750
751 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
752 {
753 const unsigned n = info->immd.count++;
754
755 assert(n < scan.immediate_count);
756
757 for (int c = 0; c < 4; ++c)
758 info->immd.data[n * 4 + c] = imm->u[c].Uint;
759
760 info->immd.type[n] = imm->Immediate.DataType;
761 }
762
763 int Source::inferSysValDirection(unsigned sn) const
764 {
765 switch (sn) {
766 case TGSI_SEMANTIC_INSTANCEID:
767 case TGSI_SEMANTIC_VERTEXID:
768 return 1;
769 #if 0
770 case TGSI_SEMANTIC_LAYER:
771 case TGSI_SEMANTIC_VIEWPORTINDEX:
772 return 0;
773 #endif
774 case TGSI_SEMANTIC_PRIMID:
775 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
776 default:
777 return 0;
778 }
779 }
780
781 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
782 {
783 unsigned i;
784 unsigned sn = TGSI_SEMANTIC_GENERIC;
785 unsigned si = 0;
786 const unsigned first = decl->Range.First, last = decl->Range.Last;
787
788 if (decl->Declaration.Semantic) {
789 sn = decl->Semantic.Name;
790 si = decl->Semantic.Index;
791 }
792
793 switch (decl->Declaration.File) {
794 case TGSI_FILE_INPUT:
795 if (info->type == PIPE_SHADER_VERTEX) {
796 // all vertex attributes are equal
797 for (i = first; i <= last; ++i) {
798 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
799 info->in[i].si = i;
800 }
801 } else {
802 for (i = first; i <= last; ++i, ++si) {
803 info->in[i].id = i;
804 info->in[i].sn = sn;
805 info->in[i].si = si;
806 if (info->type == PIPE_SHADER_FRAGMENT) {
807 // translate interpolation mode
808 switch (decl->Declaration.Interpolate) {
809 case TGSI_INTERPOLATE_CONSTANT:
810 info->in[i].flat = 1;
811 break;
812 case TGSI_INTERPOLATE_COLOR:
813 info->in[i].sc = 1;
814 break;
815 case TGSI_INTERPOLATE_LINEAR:
816 info->in[i].linear = 1;
817 break;
818 default:
819 break;
820 }
821 if (decl->Declaration.Centroid)
822 info->in[i].centroid = 1;
823 }
824 }
825 }
826 break;
827 case TGSI_FILE_OUTPUT:
828 for (i = first; i <= last; ++i, ++si) {
829 switch (sn) {
830 case TGSI_SEMANTIC_POSITION:
831 if (info->type == PIPE_SHADER_FRAGMENT)
832 info->io.fragDepth = i;
833 else
834 if (clipVertexOutput < 0)
835 clipVertexOutput = i;
836 break;
837 case TGSI_SEMANTIC_COLOR:
838 if (info->type == PIPE_SHADER_FRAGMENT)
839 info->prop.fp.numColourResults++;
840 break;
841 case TGSI_SEMANTIC_EDGEFLAG:
842 info->io.edgeFlagOut = i;
843 break;
844 case TGSI_SEMANTIC_CLIPVERTEX:
845 clipVertexOutput = i;
846 break;
847 case TGSI_SEMANTIC_CLIPDIST:
848 info->io.clipDistanceMask |=
849 decl->Declaration.UsageMask << (si * 4);
850 info->io.genUserClip = -1;
851 break;
852 default:
853 break;
854 }
855 info->out[i].id = i;
856 info->out[i].sn = sn;
857 info->out[i].si = si;
858 }
859 break;
860 case TGSI_FILE_SYSTEM_VALUE:
861 switch (sn) {
862 case TGSI_SEMANTIC_VERTEXID:
863 info->io.vertexId = first;
864 break;
865 default:
866 break;
867 }
868 for (i = first; i <= last; ++i, ++si) {
869 info->sv[i].sn = sn;
870 info->sv[i].si = si;
871 info->sv[i].input = inferSysValDirection(sn);
872 }
873 break;
874 case TGSI_FILE_RESOURCE:
875 for (i = first; i <= last; ++i)
876 resourceTargets[i] = decl->Resource.Resource;
877 break;
878 case TGSI_FILE_IMMEDIATE_ARRAY:
879 {
880 if (decl->Dim.Index2D >= immdArrayCount)
881 immdArrayCount = decl->Dim.Index2D + 1;
882 immdArrays[decl->Dim.Index2D].u32 = (last + 1) << 2;
883 int c;
884 uint32_t base, count;
885 switch (decl->Declaration.UsageMask) {
886 case 0x1: c = 1; break;
887 case 0x3: c = 2; break;
888 default:
889 c = 4;
890 break;
891 }
892 immdArrays[decl->Dim.Index2D].u32 |= c;
893 count = (last + 1) * c;
894 base = info->immd.bufSize / 4;
895 info->immd.bufSize = (info->immd.bufSize + count * 4 + 0xf) & ~0xf;
896 info->immd.buf = (uint32_t *)REALLOC(info->immd.buf, base * 4,
897 info->immd.bufSize);
898 // NOTE: this assumes array declarations are ordered by Dim.Index2D
899 for (i = 0; i < count; ++i)
900 info->immd.buf[base + i] = decl->ImmediateData.u[i].Uint;
901 }
902 break;
903 case TGSI_FILE_TEMPORARY_ARRAY:
904 {
905 if (decl->Dim.Index2D >= tempArrayCount)
906 tempArrayCount = decl->Dim.Index2D + 1;
907 tempArrays[decl->Dim.Index2D].u32 = (last + 1) << 2;
908 int c;
909 uint32_t count;
910 switch (decl->Declaration.UsageMask) {
911 case 0x1: c = 1; break;
912 case 0x3: c = 2; break;
913 default:
914 c = 4;
915 break;
916 }
917 tempArrays[decl->Dim.Index2D].u32 |= c;
918 count = (last + 1) * c;
919 info->bin.tlsSpace += (info->bin.tlsSpace + count * 4 + 0xf) & ~0xf;
920 }
921 break;
922 case TGSI_FILE_NULL:
923 case TGSI_FILE_TEMPORARY:
924 case TGSI_FILE_ADDRESS:
925 case TGSI_FILE_CONSTANT:
926 case TGSI_FILE_IMMEDIATE:
927 case TGSI_FILE_PREDICATE:
928 case TGSI_FILE_SAMPLER:
929 break;
930 default:
931 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
932 return false;
933 }
934 return true;
935 }
936
937 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
938 {
939 return insn.getOpcode() == TGSI_OPCODE_MOV &&
940 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
941 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
942 }
943
944 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
945 {
946 Instruction insn(inst);
947
948 if (insn.dstCount()) {
949 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
950 Instruction::DstRegister dst = insn.getDst(0);
951
952 if (dst.isIndirect(0))
953 for (unsigned i = 0; i < info->numOutputs; ++i)
954 info->out[i].mask = 0xf;
955 else
956 info->out[dst.getIndex(0)].mask |= dst.getMask();
957
958 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE)
959 info->out[dst.getIndex(0)].mask &= 1;
960
961 if (isEdgeFlagPassthrough(insn))
962 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
963 } else
964 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
965 if (insn.getDst(0).isIndirect(0))
966 mainTempsInLMem = TRUE;
967 }
968 }
969
970 for (unsigned s = 0; s < insn.srcCount(); ++s) {
971 Instruction::SrcRegister src = insn.getSrc(s);
972 if (src.getFile() == TGSI_FILE_TEMPORARY)
973 if (src.isIndirect(0))
974 mainTempsInLMem = TRUE;
975 if (src.getFile() != TGSI_FILE_INPUT)
976 continue;
977 unsigned mask = insn.srcMask(s);
978
979 if (src.isIndirect(0)) {
980 for (unsigned i = 0; i < info->numInputs; ++i)
981 info->in[i].mask = 0xf;
982 } else {
983 for (unsigned c = 0; c < 4; ++c) {
984 if (!(mask & (1 << c)))
985 continue;
986 int k = src.getSwizzle(c);
987 int i = src.getIndex(0);
988 if (info->in[i].sn != TGSI_SEMANTIC_FOG || k == TGSI_SWIZZLE_X)
989 if (k <= TGSI_SWIZZLE_W)
990 info->in[i].mask |= 1 << k;
991 }
992 }
993 }
994 return true;
995 }
996
997 nv50_ir::TexInstruction::Target
998 Instruction::getTexture(const tgsi::Source *code, int s) const
999 {
1000 if (insn->Instruction.Texture) {
1001 return translateTexture(insn->Texture.Texture);
1002 } else {
1003 // XXX: indirect access
1004 unsigned int r = getSrc(s).getIndex(0);
1005 assert(r < code->resourceCount);
1006 return translateTexture(code->resourceTargets[r]);
1007 }
1008 }
1009
1010 } // namespace tgsi
1011
1012 namespace {
1013
1014 using namespace nv50_ir;
1015
1016 class Converter : public BuildUtil
1017 {
1018 public:
1019 Converter(Program *, const tgsi::Source *);
1020 ~Converter();
1021
1022 bool run();
1023
1024 private:
1025 struct Subroutine
1026 {
1027 Subroutine(Function *f) : f(f) { }
1028 Function *f;
1029 ValueMap values;
1030 };
1031
1032 Value *getVertexBase(int s);
1033 DataArray *getArrayForFile(unsigned file, int idx);
1034 Value *fetchSrc(int s, int c);
1035 Value *acquireDst(int d, int c);
1036 void storeDst(int d, int c, Value *);
1037
1038 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1039 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1040 Value *val, Value *ptr);
1041
1042 Value *applySrcMod(Value *, int s, int c);
1043
1044 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1045 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1046 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1047
1048 bool handleInstruction(const struct tgsi_full_instruction *);
1049 void exportOutputs();
1050 inline Subroutine *getSubroutine(unsigned ip);
1051 inline Subroutine *getSubroutine(Function *);
1052 inline bool isEndOfSubroutine(uint ip);
1053
1054 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1055
1056 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1057 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1058 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1059 void handleTXF(Value *dst0[4], int R);
1060 void handleTXQ(Value *dst0[4], enum TexQuery);
1061 void handleLIT(Value *dst0[4]);
1062 void handleUserClipPlanes();
1063
1064 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1065
1066 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1067
1068 Value *buildDot(int dim);
1069
1070 class BindArgumentsPass : public Pass {
1071 public:
1072 BindArgumentsPass(Converter &conv) : conv(conv) { }
1073
1074 private:
1075 Converter &conv;
1076 Subroutine *sub;
1077
1078 template<typename T> inline void
1079 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1080 T (Function::*proto));
1081
1082 template<typename T> inline void
1083 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1084 T (Function::*proto));
1085
1086 protected:
1087 bool visit(Function *);
1088 bool visit(BasicBlock *bb) { return false; }
1089 };
1090
1091 private:
1092 const struct tgsi::Source *code;
1093 const struct nv50_ir_prog_info *info;
1094
1095 struct {
1096 std::map<unsigned, Subroutine> map;
1097 Subroutine *cur;
1098 } sub;
1099
1100 uint ip; // instruction pointer
1101
1102 tgsi::Instruction tgsi;
1103
1104 DataType dstTy;
1105 DataType srcTy;
1106
1107 DataArray tData; // TGSI_FILE_TEMPORARY
1108 DataArray aData; // TGSI_FILE_ADDRESS
1109 DataArray pData; // TGSI_FILE_PREDICATE
1110 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1111 std::vector<DataArray> lData; // TGSI_FILE_TEMPORARY_ARRAY
1112 std::vector<DataArray> iData; // TGSI_FILE_IMMEDIATE_ARRAY
1113
1114 Value *zero;
1115 Value *fragCoord[4];
1116 Value *clipVtx[4];
1117
1118 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1119 uint8_t vtxBaseValid;
1120
1121 Stack condBBs; // fork BB, then else clause BB
1122 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1123 Stack loopBBs; // loop headers
1124 Stack breakBBs; // end of / after loop
1125 };
1126
1127 Symbol *
1128 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1129 {
1130 const int swz = src.getSwizzle(c);
1131
1132 return makeSym(src.getFile(),
1133 src.is2D() ? src.getIndex(1) : 0,
1134 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1135 src.getIndex(0) * 16 + swz * 4);
1136 }
1137
1138 Symbol *
1139 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1140 {
1141 return makeSym(dst.getFile(),
1142 dst.is2D() ? dst.getIndex(1) : 0,
1143 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1144 dst.getIndex(0) * 16 + c * 4);
1145 }
1146
1147 Symbol *
1148 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1149 {
1150 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1151
1152 sym->reg.fileIndex = fileIdx;
1153
1154 if (idx >= 0) {
1155 if (sym->reg.file == FILE_SHADER_INPUT)
1156 sym->setOffset(info->in[idx].slot[c] * 4);
1157 else
1158 if (sym->reg.file == FILE_SHADER_OUTPUT)
1159 sym->setOffset(info->out[idx].slot[c] * 4);
1160 else
1161 if (sym->reg.file == FILE_SYSTEM_VALUE)
1162 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1163 else
1164 sym->setOffset(address);
1165 } else {
1166 sym->setOffset(address);
1167 }
1168 return sym;
1169 }
1170
1171 static inline uint8_t
1172 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1173 {
1174 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1175
1176 if (var->flat)
1177 mode = NV50_IR_INTERP_FLAT;
1178 else
1179 if (var->linear)
1180 mode = NV50_IR_INTERP_LINEAR;
1181 else
1182 if (var->sc)
1183 mode = NV50_IR_INTERP_SC;
1184
1185 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1186 ? OP_PINTERP : OP_LINTERP;
1187
1188 if (var->centroid)
1189 mode |= NV50_IR_INTERP_CENTROID;
1190
1191 return mode;
1192 }
1193
1194 Value *
1195 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1196 {
1197 operation op;
1198
1199 // XXX: no way to know interpolation mode if we don't know what's accessed
1200 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1201 src.getIndex(0)], op);
1202
1203 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1204
1205 insn->setDef(0, getScratch());
1206 insn->setSrc(0, srcToSym(src, c));
1207 if (op == OP_PINTERP)
1208 insn->setSrc(1, fragCoord[3]);
1209 if (ptr)
1210 insn->setIndirect(0, 0, ptr);
1211
1212 insn->setInterpolate(mode);
1213
1214 bb->insertTail(insn);
1215 return insn->getDef(0);
1216 }
1217
1218 Value *
1219 Converter::applySrcMod(Value *val, int s, int c)
1220 {
1221 Modifier m = tgsi.getSrc(s).getMod(c);
1222 DataType ty = tgsi.inferSrcType();
1223
1224 if (m & Modifier(NV50_IR_MOD_ABS))
1225 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1226
1227 if (m & Modifier(NV50_IR_MOD_NEG))
1228 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1229
1230 return val;
1231 }
1232
1233 Value *
1234 Converter::getVertexBase(int s)
1235 {
1236 assert(s < 5);
1237 if (!(vtxBaseValid & (1 << s))) {
1238 const int index = tgsi.getSrc(s).getIndex(1);
1239 Value *rel = NULL;
1240 if (tgsi.getSrc(s).isIndirect(1))
1241 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1242 vtxBaseValid |= 1 << s;
1243 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(), mkImm(index), rel);
1244 }
1245 return vtxBase[s];
1246 }
1247
1248 Value *
1249 Converter::fetchSrc(int s, int c)
1250 {
1251 Value *res;
1252 Value *ptr = NULL, *dimRel = NULL;
1253
1254 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1255
1256 if (src.isIndirect(0))
1257 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1258
1259 if (src.is2D()) {
1260 switch (src.getFile()) {
1261 case TGSI_FILE_INPUT:
1262 dimRel = getVertexBase(s);
1263 break;
1264 case TGSI_FILE_CONSTANT:
1265 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1266 if (src.isIndirect(1))
1267 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1268 break;
1269 default:
1270 break;
1271 }
1272 }
1273
1274 res = fetchSrc(src, c, ptr);
1275
1276 if (dimRel)
1277 res->getInsn()->setIndirect(0, 1, dimRel);
1278
1279 return applySrcMod(res, s, c);
1280 }
1281
1282 Converter::DataArray *
1283 Converter::getArrayForFile(unsigned file, int idx)
1284 {
1285 switch (file) {
1286 case TGSI_FILE_TEMPORARY:
1287 return &tData;
1288 case TGSI_FILE_PREDICATE:
1289 return &pData;
1290 case TGSI_FILE_ADDRESS:
1291 return &aData;
1292 case TGSI_FILE_TEMPORARY_ARRAY:
1293 assert(idx < code->tempArrayCount);
1294 return &lData[idx];
1295 case TGSI_FILE_IMMEDIATE_ARRAY:
1296 assert(idx < code->immdArrayCount);
1297 return &iData[idx];
1298 case TGSI_FILE_OUTPUT:
1299 assert(prog->getType() == Program::TYPE_FRAGMENT);
1300 return &oData;
1301 default:
1302 assert(!"invalid/unhandled TGSI source file");
1303 return NULL;
1304 }
1305 }
1306
1307 Value *
1308 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1309 {
1310 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1311 const int idx = src.getIndex(0);
1312 const int swz = src.getSwizzle(c);
1313
1314 switch (src.getFile()) {
1315 case TGSI_FILE_IMMEDIATE:
1316 assert(!ptr);
1317 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1318 case TGSI_FILE_CONSTANT:
1319 return mkLoad(TYPE_U32, srcToSym(src, c), ptr);
1320 case TGSI_FILE_INPUT:
1321 if (prog->getType() == Program::TYPE_FRAGMENT) {
1322 // don't load masked inputs, won't be assigned a slot
1323 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1324 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1325 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1326 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1327 return interpolate(src, c, ptr);
1328 }
1329 return mkLoad(TYPE_U32, srcToSym(src, c), ptr);
1330 case TGSI_FILE_OUTPUT:
1331 assert(!"load from output file");
1332 return NULL;
1333 case TGSI_FILE_SYSTEM_VALUE:
1334 assert(!ptr);
1335 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1336 default:
1337 return getArrayForFile(src.getFile(), idx2d)->load(
1338 sub.cur->values, idx, swz, ptr);
1339 }
1340 }
1341
1342 Value *
1343 Converter::acquireDst(int d, int c)
1344 {
1345 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1346 const unsigned f = dst.getFile();
1347 const int idx = dst.getIndex(0);
1348 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1349
1350 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1351 return NULL;
1352
1353 if (dst.isIndirect(0) ||
1354 f == TGSI_FILE_TEMPORARY_ARRAY ||
1355 f == TGSI_FILE_SYSTEM_VALUE ||
1356 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1357 return getScratch();
1358
1359 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1360 }
1361
1362 void
1363 Converter::storeDst(int d, int c, Value *val)
1364 {
1365 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1366
1367 switch (tgsi.getSaturate()) {
1368 case TGSI_SAT_NONE:
1369 break;
1370 case TGSI_SAT_ZERO_ONE:
1371 mkOp1(OP_SAT, dstTy, val, val);
1372 break;
1373 case TGSI_SAT_MINUS_PLUS_ONE:
1374 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1375 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1376 break;
1377 default:
1378 assert(!"invalid saturation mode");
1379 break;
1380 }
1381
1382 Value *ptr = dst.isIndirect(0) ?
1383 fetchSrc(dst.getIndirect(0), 0, NULL) : NULL;
1384
1385 if (info->io.genUserClip > 0 &&
1386 dst.getFile() == TGSI_FILE_OUTPUT &&
1387 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1388 mkMov(clipVtx[c], val);
1389 val = clipVtx[c];
1390 }
1391
1392 storeDst(dst, c, val, ptr);
1393 }
1394
1395 void
1396 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1397 Value *val, Value *ptr)
1398 {
1399 const unsigned f = dst.getFile();
1400 const int idx = dst.getIndex(0);
1401 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1402
1403 if (f == TGSI_FILE_SYSTEM_VALUE) {
1404 assert(!ptr);
1405 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1406 } else
1407 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1408 if (ptr || (info->out[idx].mask & (1 << c)))
1409 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1410 } else
1411 if (f == TGSI_FILE_TEMPORARY ||
1412 f == TGSI_FILE_TEMPORARY_ARRAY ||
1413 f == TGSI_FILE_PREDICATE ||
1414 f == TGSI_FILE_ADDRESS ||
1415 f == TGSI_FILE_OUTPUT) {
1416 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1417 } else {
1418 assert(!"invalid dst file");
1419 }
1420 }
1421
1422 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1423 for (chan = 0; chan < 4; ++chan) \
1424 if (!inst.getDst(d).isMasked(chan))
1425
1426 Value *
1427 Converter::buildDot(int dim)
1428 {
1429 assert(dim > 0);
1430
1431 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1432 Value *dotp = getScratch();
1433
1434 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1435
1436 for (int c = 1; c < dim; ++c) {
1437 src0 = fetchSrc(0, c);
1438 src1 = fetchSrc(1, c);
1439 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1440 }
1441 return dotp;
1442 }
1443
1444 void
1445 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1446 {
1447 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1448 join->fixed = 1;
1449 conv->insertHead(join);
1450
1451 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1452 fork->insertBefore(fork->getExit(), fork->joinAt);
1453 }
1454
1455 void
1456 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1457 {
1458 unsigned rIdx = 0, sIdx = 0;
1459
1460 if (R >= 0)
1461 rIdx = tgsi.getSrc(R).getIndex(0);
1462 if (S >= 0)
1463 sIdx = tgsi.getSrc(S).getIndex(0);
1464
1465 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1466
1467 if (tgsi.getSrc(R).isIndirect(0)) {
1468 tex->tex.rIndirectSrc = s;
1469 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1470 }
1471 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1472 tex->tex.sIndirectSrc = s;
1473 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1474 }
1475 }
1476
1477 void
1478 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1479 {
1480 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1481 tex->tex.query = query;
1482 unsigned int c, d;
1483
1484 for (d = 0, c = 0; c < 4; ++c) {
1485 if (!dst0[c])
1486 continue;
1487 tex->tex.mask |= 1 << c;
1488 tex->setDef(d++, dst0[c]);
1489 }
1490 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1491
1492 setTexRS(tex, c, 1, -1);
1493
1494 bb->insertTail(tex);
1495 }
1496
1497 void
1498 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1499 {
1500 Value *proj = fetchSrc(0, 3);
1501 Instruction *insn = proj->getUniqueInsn();
1502 int c;
1503
1504 if (insn->op == OP_PINTERP) {
1505 bb->insertTail(insn = cloneForward(func, insn));
1506 insn->op = OP_LINTERP;
1507 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1508 insn->setSrc(1, NULL);
1509 proj = insn->getDef(0);
1510 }
1511 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1512
1513 for (c = 0; c < 4; ++c) {
1514 if (!(mask & (1 << c)))
1515 continue;
1516 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1517 continue;
1518 mask &= ~(1 << c);
1519
1520 bb->insertTail(insn = cloneForward(func, insn));
1521 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1522 insn->setSrc(1, proj);
1523 dst[c] = insn->getDef(0);
1524 }
1525 if (!mask)
1526 return;
1527
1528 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1529
1530 for (c = 0; c < 4; ++c)
1531 if (mask & (1 << c))
1532 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1533 }
1534
1535 // order of nv50 ir sources: x y z layer lod/bias shadow
1536 // order of TGSI TEX sources: x y z layer shadow lod/bias
1537 // lowering will finally set the hw specific order (like array first on nvc0)
1538 void
1539 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1540 {
1541 Value *val;
1542 Value *arg[4], *src[8];
1543 Value *lod = NULL, *shd = NULL;
1544 unsigned int s, c, d;
1545 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1546
1547 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1548
1549 for (s = 0; s < tgt.getArgCount(); ++s)
1550 arg[s] = src[s] = fetchSrc(0, s);
1551
1552 if (texi->op == OP_TXL || texi->op == OP_TXB)
1553 lod = fetchSrc(L >> 4, L & 3);
1554
1555 if (C == 0x0f)
1556 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1557
1558 if (tgt.isShadow())
1559 shd = fetchSrc(C >> 4, C & 3);
1560
1561 if (texi->op == OP_TXD) {
1562 for (c = 0; c < tgt.getDim(); ++c) {
1563 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1564 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1565 }
1566 }
1567
1568 // cube textures don't care about projection value, it's divided out
1569 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1570 unsigned int n = tgt.getDim();
1571 if (shd) {
1572 arg[n] = shd;
1573 ++n;
1574 assert(tgt.getDim() == tgt.getArgCount());
1575 }
1576 loadProjTexCoords(src, arg, (1 << n) - 1);
1577 if (shd)
1578 shd = src[n - 1];
1579 }
1580
1581 if (tgt.isCube()) {
1582 for (c = 0; c < 3; ++c)
1583 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1584 val = getScratch();
1585 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1586 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1587 mkOp1(OP_RCP, TYPE_F32, val, val);
1588 for (c = 0; c < 3; ++c)
1589 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1590 }
1591
1592 for (c = 0, d = 0; c < 4; ++c) {
1593 if (dst[c]) {
1594 texi->setDef(d++, dst[c]);
1595 texi->tex.mask |= 1 << c;
1596 } else {
1597 // NOTE: maybe hook up def too, for CSE
1598 }
1599 }
1600 for (s = 0; s < tgt.getArgCount(); ++s)
1601 texi->setSrc(s, src[s]);
1602 if (lod)
1603 texi->setSrc(s++, lod);
1604 if (shd)
1605 texi->setSrc(s++, shd);
1606
1607 setTexRS(texi, s, R, S);
1608
1609 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1610 texi->tex.levelZero = true;
1611
1612 bb->insertTail(texi);
1613 }
1614
1615 // 1st source: xyz = coordinates, w = lod
1616 // 2nd source: offset
1617 void
1618 Converter::handleTXF(Value *dst[4], int R)
1619 {
1620 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1621 unsigned int c, d, s;
1622
1623 texi->tex.target = tgsi.getTexture(code, R);
1624
1625 for (c = 0, d = 0; c < 4; ++c) {
1626 if (dst[c]) {
1627 texi->setDef(d++, dst[c]);
1628 texi->tex.mask |= 1 << c;
1629 }
1630 }
1631 for (c = 0; c < texi->tex.target.getArgCount(); ++c)
1632 texi->setSrc(c, fetchSrc(0, c));
1633 texi->setSrc(c++, fetchSrc(0, 3)); // lod
1634
1635 setTexRS(texi, c, R, -1);
1636
1637 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1638 for (c = 0; c < 3; ++c) {
1639 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1640 if (texi->tex.offset[s][c])
1641 texi->tex.useOffsets = s + 1;
1642 }
1643 }
1644
1645 bb->insertTail(texi);
1646 }
1647
1648 void
1649 Converter::handleLIT(Value *dst0[4])
1650 {
1651 Value *val0 = NULL;
1652 unsigned int mask = tgsi.getDst(0).getMask();
1653
1654 if (mask & (1 << 0))
1655 loadImm(dst0[0], 1.0f);
1656
1657 if (mask & (1 << 3))
1658 loadImm(dst0[3], 1.0f);
1659
1660 if (mask & (3 << 1)) {
1661 val0 = getScratch();
1662 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1663 if (mask & (1 << 1))
1664 mkMov(dst0[1], val0);
1665 }
1666
1667 if (mask & (1 << 2)) {
1668 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1669 Value *val1 = getScratch(), *val3 = getScratch();
1670
1671 Value *pos128 = loadImm(NULL, +127.999999f);
1672 Value *neg128 = loadImm(NULL, -127.999999f);
1673
1674 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1675 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1676 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1677 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1678
1679 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], val3, zero, val0);
1680 }
1681 }
1682
1683 Converter::Subroutine *
1684 Converter::getSubroutine(unsigned ip)
1685 {
1686 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
1687
1688 if (it == sub.map.end())
1689 it = sub.map.insert(std::make_pair(
1690 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
1691
1692 return &it->second;
1693 }
1694
1695 Converter::Subroutine *
1696 Converter::getSubroutine(Function *f)
1697 {
1698 unsigned ip = f->getLabel();
1699 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
1700
1701 if (it == sub.map.end())
1702 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
1703
1704 return &it->second;
1705 }
1706
1707 bool
1708 Converter::isEndOfSubroutine(uint ip)
1709 {
1710 assert(ip < code->scan.num_instructions);
1711 tgsi::Instruction insn(&code->insns[ip]);
1712 return (insn.getOpcode() == TGSI_OPCODE_END ||
1713 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
1714 // does END occur at end of main or the very end ?
1715 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
1716 }
1717
1718 bool
1719 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
1720 {
1721 Value *dst0[4], *rDst0[4];
1722 Value *src0, *src1, *src2;
1723 Value *val0, *val1;
1724 int c;
1725
1726 tgsi = tgsi::Instruction(insn);
1727
1728 bool useScratchDst = tgsi.checkDstSrcAliasing();
1729
1730 operation op = tgsi.getOP();
1731 dstTy = tgsi.inferDstType();
1732 srcTy = tgsi.inferSrcType();
1733
1734 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
1735
1736 if (tgsi.dstCount()) {
1737 for (c = 0; c < 4; ++c) {
1738 rDst0[c] = acquireDst(0, c);
1739 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
1740 }
1741 }
1742
1743 switch (tgsi.getOpcode()) {
1744 case TGSI_OPCODE_ADD:
1745 case TGSI_OPCODE_UADD:
1746 case TGSI_OPCODE_AND:
1747 case TGSI_OPCODE_DIV:
1748 case TGSI_OPCODE_IDIV:
1749 case TGSI_OPCODE_UDIV:
1750 case TGSI_OPCODE_MAX:
1751 case TGSI_OPCODE_MIN:
1752 case TGSI_OPCODE_IMAX:
1753 case TGSI_OPCODE_IMIN:
1754 case TGSI_OPCODE_UMAX:
1755 case TGSI_OPCODE_UMIN:
1756 case TGSI_OPCODE_MOD:
1757 case TGSI_OPCODE_UMOD:
1758 case TGSI_OPCODE_MUL:
1759 case TGSI_OPCODE_UMUL:
1760 case TGSI_OPCODE_OR:
1761 case TGSI_OPCODE_POW:
1762 case TGSI_OPCODE_SHL:
1763 case TGSI_OPCODE_ISHR:
1764 case TGSI_OPCODE_USHR:
1765 case TGSI_OPCODE_SUB:
1766 case TGSI_OPCODE_XOR:
1767 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1768 src0 = fetchSrc(0, c);
1769 src1 = fetchSrc(1, c);
1770 mkOp2(op, dstTy, dst0[c], src0, src1);
1771 }
1772 break;
1773 case TGSI_OPCODE_MAD:
1774 case TGSI_OPCODE_UMAD:
1775 case TGSI_OPCODE_SAD:
1776 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1777 src0 = fetchSrc(0, c);
1778 src1 = fetchSrc(1, c);
1779 src2 = fetchSrc(2, c);
1780 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
1781 }
1782 break;
1783 case TGSI_OPCODE_MOV:
1784 case TGSI_OPCODE_ABS:
1785 case TGSI_OPCODE_CEIL:
1786 case TGSI_OPCODE_FLR:
1787 case TGSI_OPCODE_TRUNC:
1788 case TGSI_OPCODE_RCP:
1789 case TGSI_OPCODE_IABS:
1790 case TGSI_OPCODE_INEG:
1791 case TGSI_OPCODE_NOT:
1792 case TGSI_OPCODE_DDX:
1793 case TGSI_OPCODE_DDY:
1794 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1795 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
1796 break;
1797 case TGSI_OPCODE_RSQ:
1798 src0 = fetchSrc(0, 0);
1799 val0 = getScratch();
1800 mkOp1(OP_ABS, TYPE_F32, val0, src0);
1801 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
1802 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1803 mkMov(dst0[c], val0);
1804 break;
1805 case TGSI_OPCODE_ARL:
1806 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1807 src0 = fetchSrc(0, c);
1808 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
1809 mkOp2(OP_SHL, TYPE_U32, dst0[c], dst0[c], mkImm(4));
1810 }
1811 break;
1812 case TGSI_OPCODE_UARL:
1813 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1814 mkOp2(OP_SHL, TYPE_U32, dst0[c], fetchSrc(0, c), mkImm(4));
1815 break;
1816 case TGSI_OPCODE_EX2:
1817 case TGSI_OPCODE_LG2:
1818 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
1819 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1820 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
1821 break;
1822 case TGSI_OPCODE_COS:
1823 case TGSI_OPCODE_SIN:
1824 val0 = getScratch();
1825 if (mask & 7) {
1826 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
1827 mkOp1(op, TYPE_F32, val0, val0);
1828 for (c = 0; c < 3; ++c)
1829 if (dst0[c])
1830 mkMov(dst0[c], val0);
1831 }
1832 if (dst0[3]) {
1833 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
1834 mkOp1(op, TYPE_F32, dst0[3], val0);
1835 }
1836 break;
1837 case TGSI_OPCODE_SCS:
1838 if (mask & 3) {
1839 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
1840 if (dst0[0])
1841 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
1842 if (dst0[1])
1843 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
1844 }
1845 if (dst0[2])
1846 loadImm(dst0[2], 0.0f);
1847 if (dst0[3])
1848 loadImm(dst0[3], 1.0f);
1849 break;
1850 case TGSI_OPCODE_EXP:
1851 src0 = fetchSrc(0, 0);
1852 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
1853 if (dst0[1])
1854 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
1855 if (dst0[0])
1856 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
1857 if (dst0[2])
1858 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
1859 if (dst0[3])
1860 loadImm(dst0[3], 1.0f);
1861 break;
1862 case TGSI_OPCODE_LOG:
1863 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
1864 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
1865 if (dst0[0] || dst0[1])
1866 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
1867 if (dst0[1]) {
1868 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
1869 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
1870 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
1871 }
1872 if (dst0[3])
1873 loadImm(dst0[3], 1.0f);
1874 break;
1875 case TGSI_OPCODE_DP2:
1876 val0 = buildDot(2);
1877 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1878 mkMov(dst0[c], val0);
1879 break;
1880 case TGSI_OPCODE_DP3:
1881 val0 = buildDot(3);
1882 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1883 mkMov(dst0[c], val0);
1884 break;
1885 case TGSI_OPCODE_DP4:
1886 val0 = buildDot(4);
1887 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1888 mkMov(dst0[c], val0);
1889 break;
1890 case TGSI_OPCODE_DPH:
1891 val0 = buildDot(3);
1892 src1 = fetchSrc(1, 3);
1893 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
1894 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1895 mkMov(dst0[c], val0);
1896 break;
1897 case TGSI_OPCODE_DST:
1898 if (dst0[0])
1899 loadImm(dst0[0], 1.0f);
1900 if (dst0[1]) {
1901 src0 = fetchSrc(0, 1);
1902 src1 = fetchSrc(1, 1);
1903 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
1904 }
1905 if (dst0[2])
1906 mkMov(dst0[2], fetchSrc(0, 2));
1907 if (dst0[3])
1908 mkMov(dst0[3], fetchSrc(1, 3));
1909 break;
1910 case TGSI_OPCODE_LRP:
1911 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1912 src0 = fetchSrc(0, c);
1913 src1 = fetchSrc(1, c);
1914 src2 = fetchSrc(2, c);
1915 mkOp3(OP_MAD, TYPE_F32, dst0[c],
1916 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
1917 }
1918 break;
1919 case TGSI_OPCODE_LIT:
1920 handleLIT(dst0);
1921 break;
1922 case TGSI_OPCODE_XPD:
1923 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1924 if (c < 3) {
1925 val0 = getSSA();
1926 src0 = fetchSrc(1, (c + 1) % 3);
1927 src1 = fetchSrc(0, (c + 2) % 3);
1928 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
1929 mkOp1(OP_NEG, TYPE_F32, val0, val0);
1930
1931 src0 = fetchSrc(0, (c + 1) % 3);
1932 src1 = fetchSrc(1, (c + 2) % 3);
1933 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
1934 } else {
1935 loadImm(dst0[c], 1.0f);
1936 }
1937 }
1938 break;
1939 case TGSI_OPCODE_ISSG:
1940 case TGSI_OPCODE_SSG:
1941 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1942 src0 = fetchSrc(0, c);
1943 val0 = getScratch();
1944 val1 = getScratch();
1945 mkCmp(OP_SET, CC_GT, srcTy, val0, src0, zero);
1946 mkCmp(OP_SET, CC_LT, srcTy, val1, src0, zero);
1947 if (srcTy == TYPE_F32)
1948 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
1949 else
1950 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
1951 }
1952 break;
1953 case TGSI_OPCODE_UCMP:
1954 case TGSI_OPCODE_CMP:
1955 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1956 src0 = fetchSrc(0, c);
1957 src1 = fetchSrc(1, c);
1958 src2 = fetchSrc(2, c);
1959 if (src1 == src2)
1960 mkMov(dst0[c], src1);
1961 else
1962 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
1963 srcTy, dst0[c], src1, src2, src0);
1964 }
1965 break;
1966 case TGSI_OPCODE_FRC:
1967 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1968 src0 = fetchSrc(0, c);
1969 val0 = getScratch();
1970 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
1971 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
1972 }
1973 break;
1974 case TGSI_OPCODE_ROUND:
1975 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1976 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
1977 ->rnd = ROUND_NI;
1978 break;
1979 case TGSI_OPCODE_CLAMP:
1980 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
1981 src0 = fetchSrc(0, c);
1982 src1 = fetchSrc(1, c);
1983 src2 = fetchSrc(2, c);
1984 val0 = getScratch();
1985 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
1986 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
1987 }
1988 break;
1989 case TGSI_OPCODE_SLT:
1990 case TGSI_OPCODE_SGE:
1991 case TGSI_OPCODE_SEQ:
1992 case TGSI_OPCODE_SFL:
1993 case TGSI_OPCODE_SGT:
1994 case TGSI_OPCODE_SLE:
1995 case TGSI_OPCODE_SNE:
1996 case TGSI_OPCODE_STR:
1997 case TGSI_OPCODE_ISGE:
1998 case TGSI_OPCODE_ISLT:
1999 case TGSI_OPCODE_USEQ:
2000 case TGSI_OPCODE_USGE:
2001 case TGSI_OPCODE_USLT:
2002 case TGSI_OPCODE_USNE:
2003 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2004 src0 = fetchSrc(0, c);
2005 src1 = fetchSrc(1, c);
2006 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], src0, src1);
2007 }
2008 break;
2009 case TGSI_OPCODE_KIL:
2010 val0 = new_LValue(func, FILE_PREDICATE);
2011 for (c = 0; c < 4; ++c) {
2012 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, fetchSrc(0, c), zero);
2013 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2014 }
2015 break;
2016 case TGSI_OPCODE_KILP:
2017 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2018 break;
2019 case TGSI_OPCODE_TEX:
2020 case TGSI_OPCODE_TXB:
2021 case TGSI_OPCODE_TXL:
2022 case TGSI_OPCODE_TXP:
2023 // R S L C Dx Dy
2024 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2025 break;
2026 case TGSI_OPCODE_TXD:
2027 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2028 break;
2029 case TGSI_OPCODE_SAMPLE:
2030 case TGSI_OPCODE_SAMPLE_B:
2031 case TGSI_OPCODE_SAMPLE_D:
2032 case TGSI_OPCODE_SAMPLE_L:
2033 case TGSI_OPCODE_SAMPLE_C:
2034 case TGSI_OPCODE_SAMPLE_C_LZ:
2035 handleTEX(dst0, 1, 2, 0x30, 0x31, 0x40, 0x50);
2036 break;
2037 case TGSI_OPCODE_TXF:
2038 case TGSI_OPCODE_LOAD:
2039 handleTXF(dst0, 1);
2040 break;
2041 case TGSI_OPCODE_TXQ:
2042 case TGSI_OPCODE_RESINFO:
2043 handleTXQ(dst0, TXQ_DIMS);
2044 break;
2045 case TGSI_OPCODE_F2I:
2046 case TGSI_OPCODE_F2U:
2047 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2048 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2049 break;
2050 case TGSI_OPCODE_I2F:
2051 case TGSI_OPCODE_U2F:
2052 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2053 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2054 break;
2055 case TGSI_OPCODE_EMIT:
2056 case TGSI_OPCODE_ENDPRIM:
2057 // get vertex stream if specified (must be immediate)
2058 src0 = tgsi.srcCount() ?
2059 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2060 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2061 break;
2062 case TGSI_OPCODE_IF:
2063 {
2064 BasicBlock *ifBB = new BasicBlock(func);
2065
2066 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2067 condBBs.push(bb);
2068 joinBBs.push(bb);
2069
2070 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0));
2071
2072 setPosition(ifBB, true);
2073 }
2074 break;
2075 case TGSI_OPCODE_ELSE:
2076 {
2077 BasicBlock *elseBB = new BasicBlock(func);
2078 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2079
2080 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2081 condBBs.push(bb);
2082
2083 forkBB->getExit()->asFlow()->target.bb = elseBB;
2084 if (!bb->isTerminated())
2085 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2086
2087 setPosition(elseBB, true);
2088 }
2089 break;
2090 case TGSI_OPCODE_ENDIF:
2091 {
2092 BasicBlock *convBB = new BasicBlock(func);
2093 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2094 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2095
2096 if (!bb->isTerminated()) {
2097 // we only want join if none of the clauses ended with CONT/BREAK/RET
2098 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2099 insertConvergenceOps(convBB, forkBB);
2100 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2101 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2102 }
2103
2104 if (prevBB->getExit()->op == OP_BRA) {
2105 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2106 prevBB->getExit()->asFlow()->target.bb = convBB;
2107 }
2108 setPosition(convBB, true);
2109 }
2110 break;
2111 case TGSI_OPCODE_BGNLOOP:
2112 {
2113 BasicBlock *lbgnBB = new BasicBlock(func);
2114 BasicBlock *lbrkBB = new BasicBlock(func);
2115
2116 loopBBs.push(lbgnBB);
2117 breakBBs.push(lbrkBB);
2118 if (loopBBs.getSize() > func->loopNestingBound)
2119 func->loopNestingBound++;
2120
2121 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2122
2123 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2124 setPosition(lbgnBB, true);
2125 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2126 }
2127 break;
2128 case TGSI_OPCODE_ENDLOOP:
2129 {
2130 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2131
2132 if (!bb->isTerminated()) {
2133 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2134 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2135 }
2136 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2137 }
2138 break;
2139 case TGSI_OPCODE_BRK:
2140 {
2141 if (bb->isTerminated())
2142 break;
2143 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2144 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2145 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2146 }
2147 break;
2148 case TGSI_OPCODE_CONT:
2149 {
2150 if (bb->isTerminated())
2151 break;
2152 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2153 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2154 contBB->explicitCont = true;
2155 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2156 }
2157 break;
2158 case TGSI_OPCODE_BGNSUB:
2159 {
2160 Subroutine *s = getSubroutine(ip);
2161 BasicBlock *entry = new BasicBlock(s->f);
2162 BasicBlock *leave = new BasicBlock(s->f);
2163
2164 // multiple entrypoints possible, keep the graph connected
2165 if (prog->getType() == Program::TYPE_COMPUTE)
2166 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2167
2168 sub.cur = s;
2169 s->f->setEntry(entry);
2170 s->f->setExit(leave);
2171 setPosition(entry, true);
2172 return true;
2173 }
2174 case TGSI_OPCODE_ENDSUB:
2175 {
2176 sub.cur = getSubroutine(prog->main);
2177 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2178 return true;
2179 }
2180 case TGSI_OPCODE_CAL:
2181 {
2182 Subroutine *s = getSubroutine(tgsi.getLabel());
2183 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2184 func->call.attach(&s->f->call, Graph::Edge::TREE);
2185 return true;
2186 }
2187 case TGSI_OPCODE_RET:
2188 {
2189 if (bb->isTerminated())
2190 return true;
2191 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2192
2193 if (!isEndOfSubroutine(ip + 1)) {
2194 // insert a PRERET at the entry if this is an early return
2195 // (only needed for sharing code in the epilogue)
2196 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2197 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2198 } else {
2199 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2200 bb->cfg.attach(&leave->cfg, Graph::Edge::TREE);
2201 }
2202 }
2203 break;
2204 case TGSI_OPCODE_END:
2205 {
2206 // attach and generate epilogue code
2207 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2208 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2209 setPosition(epilogue, true);
2210 if (prog->getType() == Program::TYPE_FRAGMENT)
2211 exportOutputs();
2212 if (info->io.genUserClip > 0)
2213 handleUserClipPlanes();
2214 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2215 }
2216 break;
2217 case TGSI_OPCODE_SWITCH:
2218 case TGSI_OPCODE_CASE:
2219 ERROR("switch/case opcode encountered, should have been lowered\n");
2220 abort();
2221 break;
2222 default:
2223 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2224 assert(0);
2225 break;
2226 }
2227
2228 if (tgsi.dstCount()) {
2229 for (c = 0; c < 4; ++c) {
2230 if (!dst0[c])
2231 continue;
2232 if (dst0[c] != rDst0[c])
2233 mkMov(rDst0[c], dst0[c]);
2234 storeDst(0, c, rDst0[c]);
2235 }
2236 }
2237 vtxBaseValid = 0;
2238
2239 return true;
2240 }
2241
2242 void
2243 Converter::handleUserClipPlanes()
2244 {
2245 Value *res[8];
2246 int n, i, c;
2247
2248 for (c = 0; c < 4; ++c) {
2249 for (i = 0; i < info->io.genUserClip; ++i) {
2250 Value *ucp;
2251 ucp = mkLoad(TYPE_F32, mkSymbol(FILE_MEMORY_CONST, 15, TYPE_F32,
2252 i * 16 + c * 4), NULL);
2253 if (c == 0)
2254 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2255 else
2256 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2257 }
2258 }
2259
2260 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2261
2262 for (i = 0; i < info->io.genUserClip; ++i) {
2263 n = i / 4 + first;
2264 c = i % 4;
2265 Symbol *sym =
2266 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2267 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2268 }
2269 }
2270
2271 void
2272 Converter::exportOutputs()
2273 {
2274 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2275 for (unsigned int c = 0; c < 4; ++c) {
2276 if (!oData.exists(sub.cur->values, i, c))
2277 continue;
2278 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2279 info->out[i].slot[c] * 4);
2280 Value *val = oData.load(sub.cur->values, i, c, NULL);
2281 if (val)
2282 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2283 }
2284 }
2285 }
2286
2287 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2288 code(code),
2289 tgsi(NULL),
2290 tData(this), aData(this), pData(this), oData(this)
2291 {
2292 info = code->info;
2293
2294 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2295
2296 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2297 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2298 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2299 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2300
2301 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2302 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2303 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_ADDRESS, 0);
2304 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2305
2306 for (int vol = 0, i = 0; i < code->tempArrayCount; ++i) {
2307 int len = code->tempArrays[i].u32 >> 2;
2308 int dim = code->tempArrays[i].u32 & 3;
2309
2310 lData.push_back(DataArray(this));
2311 lData.back().setup(TGSI_FILE_TEMPORARY_ARRAY, i, vol, len, dim, 4,
2312 FILE_MEMORY_LOCAL, 0);
2313
2314 vol += (len * dim * 4 + 0xf) & ~0xf;
2315 }
2316
2317 for (int vol = 0, i = 0; i < code->immdArrayCount; ++i) {
2318 int len = code->immdArrays[i].u32 >> 2;
2319 int dim = code->immdArrays[i].u32 & 3;
2320
2321 lData.push_back(DataArray(this));
2322 lData.back().setup(TGSI_FILE_IMMEDIATE_ARRAY, i, vol, len, dim, 4,
2323 FILE_MEMORY_CONST, 14);
2324
2325 vol += (len * dim * 4 + 0xf) & ~0xf;
2326 }
2327
2328 zero = mkImm((uint32_t)0);
2329
2330 vtxBaseValid = 0;
2331 }
2332
2333 Converter::~Converter()
2334 {
2335 }
2336
2337 template<typename T> inline void
2338 Converter::BindArgumentsPass::updateCallArgs(
2339 Instruction *i, void (Instruction::*setArg)(int, Value *),
2340 T (Function::*proto))
2341 {
2342 Function *g = i->asFlow()->target.fn;
2343 Subroutine *subg = conv.getSubroutine(g);
2344
2345 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2346 Value *v = (g->*proto)[a].get();
2347 const Converter::Location &l = subg->values.l.find(v)->second;
2348 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2349
2350 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2351 }
2352 }
2353
2354 template<typename T> inline void
2355 Converter::BindArgumentsPass::updatePrototype(
2356 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2357 {
2358 (func->*updateSet)();
2359
2360 for (unsigned i = 0; i < set->getSize(); ++i) {
2361 Value *v = func->getLValue(i);
2362
2363 // only include values with a matching TGSI register
2364 if (set->test(i) && sub->values.l.find(v) != sub->values.l.end())
2365 (func->*proto).push_back(v);
2366 }
2367 }
2368
2369 bool
2370 Converter::BindArgumentsPass::visit(Function *f)
2371 {
2372 sub = conv.getSubroutine(f);
2373
2374 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2375 !bi.end(); bi.next()) {
2376 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2377 i; i = i->next) {
2378 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2379 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2380 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2381 }
2382 }
2383 }
2384
2385 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2386 return true;
2387 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2388 &Function::buildLiveSets, &Function::ins);
2389 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2390 &Function::buildDefSets, &Function::outs);
2391
2392 return true;
2393 }
2394
2395 bool
2396 Converter::run()
2397 {
2398 BasicBlock *entry = new BasicBlock(prog->main);
2399 BasicBlock *leave = new BasicBlock(prog->main);
2400
2401 prog->main->setEntry(entry);
2402 prog->main->setExit(leave);
2403
2404 setPosition(entry, true);
2405 sub.cur = getSubroutine(prog->main);
2406
2407 if (info->io.genUserClip > 0) {
2408 for (int c = 0; c < 4; ++c)
2409 clipVtx[c] = getScratch();
2410 }
2411
2412 if (prog->getType() == Program::TYPE_FRAGMENT) {
2413 Symbol *sv = mkSysVal(SV_POSITION, 3);
2414 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2415 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2416 }
2417
2418 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2419 if (!handleInstruction(&code->insns[ip]))
2420 return false;
2421 }
2422
2423 if (!BindArgumentsPass(*this).run(prog))
2424 return false;
2425
2426 return true;
2427 }
2428
2429 } // unnamed namespace
2430
2431 namespace nv50_ir {
2432
2433 bool
2434 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2435 {
2436 tgsi::Source src(info);
2437 if (!src.scanSource())
2438 return false;
2439 tlsSize = info->bin.tlsSpace;
2440
2441 Converter builder(this, &src);
2442 return builder.run();
2443 }
2444
2445 } // namespace nv50_ir