32c6fe819faf3d4b66e561465d1c4fc8a625dac9
[mesa.git] / src / gallium / drivers / nv50 / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "nv50_ir.h"
32 #include "nv50_ir_util.h"
33 #include "nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KIL: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 {
259 const struct tgsi_instruction_texture *tex = &insn->Texture;
260
261 assert(insn->Instruction.Texture);
262
263 mask = 0x7;
264 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
265 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
266 mask |= 0x8; /* bias, lod or proj */
267
268 switch (tex->Texture) {
269 case TGSI_TEXTURE_1D:
270 mask &= 0x9;
271 break;
272 case TGSI_TEXTURE_SHADOW1D:
273 mask &= 0xd;
274 break;
275 case TGSI_TEXTURE_1D_ARRAY:
276 case TGSI_TEXTURE_2D:
277 case TGSI_TEXTURE_RECT:
278 mask &= 0xb;
279 break;
280 case TGSI_TEXTURE_CUBE_ARRAY:
281 case TGSI_TEXTURE_SHADOW2D_ARRAY:
282 case TGSI_TEXTURE_SHADOWCUBE:
283 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
284 mask |= 0x8;
285 break;
286 default:
287 break;
288 }
289 }
290 return mask;
291 case TGSI_OPCODE_XPD:
292 {
293 unsigned int x = 0;
294 if (mask & 1) x |= 0x6;
295 if (mask & 2) x |= 0x5;
296 if (mask & 4) x |= 0x3;
297 return x;
298 }
299 default:
300 break;
301 }
302
303 return mask;
304 }
305
306 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
307 {
308 nv50_ir::Modifier m(0);
309
310 if (reg.Absolute)
311 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
312 if (reg.Negate)
313 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
314 return m;
315 }
316
317 static nv50_ir::DataFile translateFile(uint file)
318 {
319 switch (file) {
320 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
321 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
322 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
323 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
324 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
325 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
326 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
327 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
328 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
329 case TGSI_FILE_SAMPLER:
330 case TGSI_FILE_NULL:
331 default:
332 return nv50_ir::FILE_NULL;
333 }
334 }
335
336 static nv50_ir::SVSemantic translateSysVal(uint sysval)
337 {
338 switch (sysval) {
339 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
340 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
341 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
342 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
343 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
344 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
345 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
346 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
347 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
348 default:
349 assert(0);
350 return nv50_ir::SV_CLOCK;
351 }
352 }
353
354 #define NV50_IR_TEX_TARG_CASE(a, b) \
355 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
356
357 static nv50_ir::TexTarget translateTexture(uint tex)
358 {
359 switch (tex) {
360 NV50_IR_TEX_TARG_CASE(1D, 1D);
361 NV50_IR_TEX_TARG_CASE(2D, 2D);
362 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
363 NV50_IR_TEX_TARG_CASE(3D, 3D);
364 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
365 NV50_IR_TEX_TARG_CASE(RECT, RECT);
366 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
367 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
368 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
369 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
370 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
371 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
372 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
373 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
374 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
375 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
377 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
378
379 case TGSI_TEXTURE_UNKNOWN:
380 default:
381 assert(!"invalid texture target");
382 return nv50_ir::TEX_TARGET_2D;
383 }
384 }
385
386 nv50_ir::DataType Instruction::inferSrcType() const
387 {
388 switch (getOpcode()) {
389 case TGSI_OPCODE_UIF:
390 case TGSI_OPCODE_AND:
391 case TGSI_OPCODE_OR:
392 case TGSI_OPCODE_XOR:
393 case TGSI_OPCODE_NOT:
394 case TGSI_OPCODE_U2F:
395 case TGSI_OPCODE_UADD:
396 case TGSI_OPCODE_UDIV:
397 case TGSI_OPCODE_UMOD:
398 case TGSI_OPCODE_UMAD:
399 case TGSI_OPCODE_UMUL:
400 case TGSI_OPCODE_UMAX:
401 case TGSI_OPCODE_UMIN:
402 case TGSI_OPCODE_USEQ:
403 case TGSI_OPCODE_USGE:
404 case TGSI_OPCODE_USLT:
405 case TGSI_OPCODE_USNE:
406 case TGSI_OPCODE_USHR:
407 case TGSI_OPCODE_UCMP:
408 case TGSI_OPCODE_ATOMUADD:
409 case TGSI_OPCODE_ATOMXCHG:
410 case TGSI_OPCODE_ATOMCAS:
411 case TGSI_OPCODE_ATOMAND:
412 case TGSI_OPCODE_ATOMOR:
413 case TGSI_OPCODE_ATOMXOR:
414 case TGSI_OPCODE_ATOMUMIN:
415 case TGSI_OPCODE_ATOMUMAX:
416 return nv50_ir::TYPE_U32;
417 case TGSI_OPCODE_I2F:
418 case TGSI_OPCODE_IDIV:
419 case TGSI_OPCODE_IMAX:
420 case TGSI_OPCODE_IMIN:
421 case TGSI_OPCODE_IABS:
422 case TGSI_OPCODE_INEG:
423 case TGSI_OPCODE_ISGE:
424 case TGSI_OPCODE_ISHR:
425 case TGSI_OPCODE_ISLT:
426 case TGSI_OPCODE_ISSG:
427 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
428 case TGSI_OPCODE_MOD:
429 case TGSI_OPCODE_UARL:
430 case TGSI_OPCODE_ATOMIMIN:
431 case TGSI_OPCODE_ATOMIMAX:
432 return nv50_ir::TYPE_S32;
433 default:
434 return nv50_ir::TYPE_F32;
435 }
436 }
437
438 nv50_ir::DataType Instruction::inferDstType() const
439 {
440 switch (getOpcode()) {
441 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
442 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
443 case TGSI_OPCODE_I2F:
444 case TGSI_OPCODE_U2F:
445 return nv50_ir::TYPE_F32;
446 default:
447 return inferSrcType();
448 }
449 }
450
451 nv50_ir::CondCode Instruction::getSetCond() const
452 {
453 using namespace nv50_ir;
454
455 switch (getOpcode()) {
456 case TGSI_OPCODE_SLT:
457 case TGSI_OPCODE_ISLT:
458 case TGSI_OPCODE_USLT:
459 return CC_LT;
460 case TGSI_OPCODE_SLE:
461 return CC_LE;
462 case TGSI_OPCODE_SGE:
463 case TGSI_OPCODE_ISGE:
464 case TGSI_OPCODE_USGE:
465 return CC_GE;
466 case TGSI_OPCODE_SGT:
467 return CC_GT;
468 case TGSI_OPCODE_SEQ:
469 case TGSI_OPCODE_USEQ:
470 return CC_EQ;
471 case TGSI_OPCODE_SNE:
472 return CC_NEU;
473 case TGSI_OPCODE_USNE:
474 return CC_NE;
475 case TGSI_OPCODE_SFL:
476 return CC_NEVER;
477 case TGSI_OPCODE_STR:
478 default:
479 return CC_ALWAYS;
480 }
481 }
482
483 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
484
485 static nv50_ir::operation translateOpcode(uint opcode)
486 {
487 switch (opcode) {
488 NV50_IR_OPCODE_CASE(ARL, SHL);
489 NV50_IR_OPCODE_CASE(MOV, MOV);
490
491 NV50_IR_OPCODE_CASE(RCP, RCP);
492 NV50_IR_OPCODE_CASE(RSQ, RSQ);
493
494 NV50_IR_OPCODE_CASE(MUL, MUL);
495 NV50_IR_OPCODE_CASE(ADD, ADD);
496
497 NV50_IR_OPCODE_CASE(MIN, MIN);
498 NV50_IR_OPCODE_CASE(MAX, MAX);
499 NV50_IR_OPCODE_CASE(SLT, SET);
500 NV50_IR_OPCODE_CASE(SGE, SET);
501 NV50_IR_OPCODE_CASE(MAD, MAD);
502 NV50_IR_OPCODE_CASE(SUB, SUB);
503
504 NV50_IR_OPCODE_CASE(FLR, FLOOR);
505 NV50_IR_OPCODE_CASE(ROUND, CVT);
506 NV50_IR_OPCODE_CASE(EX2, EX2);
507 NV50_IR_OPCODE_CASE(LG2, LG2);
508 NV50_IR_OPCODE_CASE(POW, POW);
509
510 NV50_IR_OPCODE_CASE(ABS, ABS);
511
512 NV50_IR_OPCODE_CASE(COS, COS);
513 NV50_IR_OPCODE_CASE(DDX, DFDX);
514 NV50_IR_OPCODE_CASE(DDY, DFDY);
515 NV50_IR_OPCODE_CASE(KILP, DISCARD);
516
517 NV50_IR_OPCODE_CASE(SEQ, SET);
518 NV50_IR_OPCODE_CASE(SFL, SET);
519 NV50_IR_OPCODE_CASE(SGT, SET);
520 NV50_IR_OPCODE_CASE(SIN, SIN);
521 NV50_IR_OPCODE_CASE(SLE, SET);
522 NV50_IR_OPCODE_CASE(SNE, SET);
523 NV50_IR_OPCODE_CASE(STR, SET);
524 NV50_IR_OPCODE_CASE(TEX, TEX);
525 NV50_IR_OPCODE_CASE(TXD, TXD);
526 NV50_IR_OPCODE_CASE(TXP, TEX);
527
528 NV50_IR_OPCODE_CASE(BRA, BRA);
529 NV50_IR_OPCODE_CASE(CAL, CALL);
530 NV50_IR_OPCODE_CASE(RET, RET);
531 NV50_IR_OPCODE_CASE(CMP, SLCT);
532
533 NV50_IR_OPCODE_CASE(TXB, TXB);
534
535 NV50_IR_OPCODE_CASE(DIV, DIV);
536
537 NV50_IR_OPCODE_CASE(TXL, TXL);
538
539 NV50_IR_OPCODE_CASE(CEIL, CEIL);
540 NV50_IR_OPCODE_CASE(I2F, CVT);
541 NV50_IR_OPCODE_CASE(NOT, NOT);
542 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
543 NV50_IR_OPCODE_CASE(SHL, SHL);
544
545 NV50_IR_OPCODE_CASE(AND, AND);
546 NV50_IR_OPCODE_CASE(OR, OR);
547 NV50_IR_OPCODE_CASE(MOD, MOD);
548 NV50_IR_OPCODE_CASE(XOR, XOR);
549 NV50_IR_OPCODE_CASE(SAD, SAD);
550 NV50_IR_OPCODE_CASE(TXF, TXF);
551 NV50_IR_OPCODE_CASE(TXQ, TXQ);
552
553 NV50_IR_OPCODE_CASE(EMIT, EMIT);
554 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
555
556 NV50_IR_OPCODE_CASE(KIL, DISCARD);
557
558 NV50_IR_OPCODE_CASE(F2I, CVT);
559 NV50_IR_OPCODE_CASE(IDIV, DIV);
560 NV50_IR_OPCODE_CASE(IMAX, MAX);
561 NV50_IR_OPCODE_CASE(IMIN, MIN);
562 NV50_IR_OPCODE_CASE(IABS, ABS);
563 NV50_IR_OPCODE_CASE(INEG, NEG);
564 NV50_IR_OPCODE_CASE(ISGE, SET);
565 NV50_IR_OPCODE_CASE(ISHR, SHR);
566 NV50_IR_OPCODE_CASE(ISLT, SET);
567 NV50_IR_OPCODE_CASE(F2U, CVT);
568 NV50_IR_OPCODE_CASE(U2F, CVT);
569 NV50_IR_OPCODE_CASE(UADD, ADD);
570 NV50_IR_OPCODE_CASE(UDIV, DIV);
571 NV50_IR_OPCODE_CASE(UMAD, MAD);
572 NV50_IR_OPCODE_CASE(UMAX, MAX);
573 NV50_IR_OPCODE_CASE(UMIN, MIN);
574 NV50_IR_OPCODE_CASE(UMOD, MOD);
575 NV50_IR_OPCODE_CASE(UMUL, MUL);
576 NV50_IR_OPCODE_CASE(USEQ, SET);
577 NV50_IR_OPCODE_CASE(USGE, SET);
578 NV50_IR_OPCODE_CASE(USHR, SHR);
579 NV50_IR_OPCODE_CASE(USLT, SET);
580 NV50_IR_OPCODE_CASE(USNE, SET);
581
582 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
583 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
584 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
585 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
586 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
587 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
588 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
589 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
590 NV50_IR_OPCODE_CASE(GATHER4, TXG);
591 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
592
593 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
594 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
595 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
596 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
597 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
598 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
599 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
600 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
601 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
602 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
603
604 NV50_IR_OPCODE_CASE(TEX2, TEX);
605 NV50_IR_OPCODE_CASE(TXB2, TXB);
606 NV50_IR_OPCODE_CASE(TXL2, TXL);
607
608 NV50_IR_OPCODE_CASE(END, EXIT);
609
610 default:
611 return nv50_ir::OP_NOP;
612 }
613 }
614
615 static uint16_t opcodeToSubOp(uint opcode)
616 {
617 switch (opcode) {
618 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
619 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
620 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
621 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
622 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
623 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
624 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
625 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
626 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
627 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
628 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
629 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
630 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
631 default:
632 return 0;
633 }
634 }
635
636 bool Instruction::checkDstSrcAliasing() const
637 {
638 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
639 return false;
640
641 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
642 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
643 break;
644 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
645 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
646 return true;
647 }
648 return false;
649 }
650
651 class Source
652 {
653 public:
654 Source(struct nv50_ir_prog_info *);
655 ~Source();
656
657 public:
658 bool scanSource();
659 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
660
661 public:
662 struct tgsi_shader_info scan;
663 struct tgsi_full_instruction *insns;
664 const struct tgsi_token *tokens;
665 struct nv50_ir_prog_info *info;
666
667 nv50_ir::DynArray tempArrays;
668 nv50_ir::DynArray immdArrays;
669
670 typedef nv50_ir::BuildUtil::Location Location;
671 // these registers are per-subroutine, cannot be used for parameter passing
672 std::set<Location> locals;
673
674 bool mainTempsInLMem;
675
676 int clipVertexOutput;
677
678 struct TextureView {
679 uint8_t target; // TGSI_TEXTURE_*
680 };
681 std::vector<TextureView> textureViews;
682
683 struct Resource {
684 uint8_t target; // TGSI_TEXTURE_*
685 bool raw;
686 uint8_t slot; // $surface index
687 };
688 std::vector<Resource> resources;
689
690 private:
691 int inferSysValDirection(unsigned sn) const;
692 bool scanDeclaration(const struct tgsi_full_declaration *);
693 bool scanInstruction(const struct tgsi_full_instruction *);
694 void scanProperty(const struct tgsi_full_property *);
695 void scanImmediate(const struct tgsi_full_immediate *);
696
697 inline bool isEdgeFlagPassthrough(const Instruction&) const;
698 };
699
700 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
701 {
702 tokens = (const struct tgsi_token *)info->bin.source;
703
704 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
705 tgsi_dump(tokens, 0);
706
707 mainTempsInLMem = FALSE;
708 }
709
710 Source::~Source()
711 {
712 if (insns)
713 FREE(insns);
714
715 if (info->immd.data)
716 FREE(info->immd.data);
717 if (info->immd.type)
718 FREE(info->immd.type);
719 }
720
721 bool Source::scanSource()
722 {
723 unsigned insnCount = 0;
724 struct tgsi_parse_context parse;
725
726 tgsi_scan_shader(tokens, &scan);
727
728 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
729 sizeof(insns[0]));
730 if (!insns)
731 return false;
732
733 clipVertexOutput = -1;
734
735 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
736 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
737
738 info->immd.bufSize = 0;
739
740 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
741 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
742 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
743
744 if (info->type == PIPE_SHADER_FRAGMENT) {
745 info->prop.fp.writesDepth = scan.writes_z;
746 info->prop.fp.usesDiscard = scan.uses_kill;
747 } else
748 if (info->type == PIPE_SHADER_GEOMETRY) {
749 info->prop.gp.instanceCount = 1; // default value
750 }
751
752 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
753 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
754
755 tgsi_parse_init(&parse, tokens);
756 while (!tgsi_parse_end_of_tokens(&parse)) {
757 tgsi_parse_token(&parse);
758
759 switch (parse.FullToken.Token.Type) {
760 case TGSI_TOKEN_TYPE_IMMEDIATE:
761 scanImmediate(&parse.FullToken.FullImmediate);
762 break;
763 case TGSI_TOKEN_TYPE_DECLARATION:
764 scanDeclaration(&parse.FullToken.FullDeclaration);
765 break;
766 case TGSI_TOKEN_TYPE_INSTRUCTION:
767 insns[insnCount++] = parse.FullToken.FullInstruction;
768 scanInstruction(&parse.FullToken.FullInstruction);
769 break;
770 case TGSI_TOKEN_TYPE_PROPERTY:
771 scanProperty(&parse.FullToken.FullProperty);
772 break;
773 default:
774 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
775 break;
776 }
777 }
778 tgsi_parse_free(&parse);
779
780 if (mainTempsInLMem)
781 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
782
783 if (info->io.genUserClip > 0) {
784 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
785
786 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
787
788 for (unsigned int n = 0; n < nOut; ++n) {
789 unsigned int i = info->numOutputs++;
790 info->out[i].id = i;
791 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
792 info->out[i].si = n;
793 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
794 }
795 }
796
797 return info->assignSlots(info) == 0;
798 }
799
800 void Source::scanProperty(const struct tgsi_full_property *prop)
801 {
802 switch (prop->Property.PropertyName) {
803 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
804 info->prop.gp.outputPrim = prop->u[0].Data;
805 break;
806 case TGSI_PROPERTY_GS_INPUT_PRIM:
807 info->prop.gp.inputPrim = prop->u[0].Data;
808 break;
809 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
810 info->prop.gp.maxVertices = prop->u[0].Data;
811 break;
812 #if 0
813 case TGSI_PROPERTY_GS_INSTANCE_COUNT:
814 info->prop.gp.instanceCount = prop->u[0].Data;
815 break;
816 #endif
817 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
818 info->prop.fp.separateFragData = TRUE;
819 break;
820 case TGSI_PROPERTY_FS_COORD_ORIGIN:
821 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
822 // we don't care
823 break;
824 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
825 info->io.genUserClip = -1;
826 break;
827 default:
828 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
829 break;
830 }
831 }
832
833 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
834 {
835 const unsigned n = info->immd.count++;
836
837 assert(n < scan.immediate_count);
838
839 for (int c = 0; c < 4; ++c)
840 info->immd.data[n * 4 + c] = imm->u[c].Uint;
841
842 info->immd.type[n] = imm->Immediate.DataType;
843 }
844
845 int Source::inferSysValDirection(unsigned sn) const
846 {
847 switch (sn) {
848 case TGSI_SEMANTIC_INSTANCEID:
849 case TGSI_SEMANTIC_VERTEXID:
850 return 1;
851 #if 0
852 case TGSI_SEMANTIC_LAYER:
853 case TGSI_SEMANTIC_VIEWPORTINDEX:
854 return 0;
855 #endif
856 case TGSI_SEMANTIC_PRIMID:
857 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
858 default:
859 return 0;
860 }
861 }
862
863 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
864 {
865 unsigned i, c;
866 unsigned sn = TGSI_SEMANTIC_GENERIC;
867 unsigned si = 0;
868 const unsigned first = decl->Range.First, last = decl->Range.Last;
869
870 if (decl->Declaration.Semantic) {
871 sn = decl->Semantic.Name;
872 si = decl->Semantic.Index;
873 }
874
875 if (decl->Declaration.Local) {
876 for (i = first; i <= last; ++i) {
877 for (c = 0; c < 4; ++c) {
878 locals.insert(
879 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
880 }
881 }
882 }
883
884 switch (decl->Declaration.File) {
885 case TGSI_FILE_INPUT:
886 if (info->type == PIPE_SHADER_VERTEX) {
887 // all vertex attributes are equal
888 for (i = first; i <= last; ++i) {
889 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
890 info->in[i].si = i;
891 }
892 } else {
893 for (i = first; i <= last; ++i, ++si) {
894 info->in[i].id = i;
895 info->in[i].sn = sn;
896 info->in[i].si = si;
897 if (info->type == PIPE_SHADER_FRAGMENT) {
898 // translate interpolation mode
899 switch (decl->Interp.Interpolate) {
900 case TGSI_INTERPOLATE_CONSTANT:
901 info->in[i].flat = 1;
902 break;
903 case TGSI_INTERPOLATE_COLOR:
904 info->in[i].sc = 1;
905 break;
906 case TGSI_INTERPOLATE_LINEAR:
907 info->in[i].linear = 1;
908 break;
909 default:
910 break;
911 }
912 if (decl->Interp.Centroid)
913 info->in[i].centroid = 1;
914 }
915 }
916 }
917 break;
918 case TGSI_FILE_OUTPUT:
919 for (i = first; i <= last; ++i, ++si) {
920 switch (sn) {
921 case TGSI_SEMANTIC_POSITION:
922 if (info->type == PIPE_SHADER_FRAGMENT)
923 info->io.fragDepth = i;
924 else
925 if (clipVertexOutput < 0)
926 clipVertexOutput = i;
927 break;
928 case TGSI_SEMANTIC_COLOR:
929 if (info->type == PIPE_SHADER_FRAGMENT)
930 info->prop.fp.numColourResults++;
931 break;
932 case TGSI_SEMANTIC_EDGEFLAG:
933 info->io.edgeFlagOut = i;
934 break;
935 case TGSI_SEMANTIC_CLIPVERTEX:
936 clipVertexOutput = i;
937 break;
938 case TGSI_SEMANTIC_CLIPDIST:
939 info->io.clipDistanceMask |=
940 decl->Declaration.UsageMask << (si * 4);
941 info->io.genUserClip = -1;
942 break;
943 default:
944 break;
945 }
946 info->out[i].id = i;
947 info->out[i].sn = sn;
948 info->out[i].si = si;
949 }
950 break;
951 case TGSI_FILE_SYSTEM_VALUE:
952 switch (sn) {
953 case TGSI_SEMANTIC_INSTANCEID:
954 info->io.instanceId = first;
955 break;
956 case TGSI_SEMANTIC_VERTEXID:
957 info->io.vertexId = first;
958 break;
959 default:
960 break;
961 }
962 for (i = first; i <= last; ++i, ++si) {
963 info->sv[i].sn = sn;
964 info->sv[i].si = si;
965 info->sv[i].input = inferSysValDirection(sn);
966 }
967 break;
968 case TGSI_FILE_RESOURCE:
969 for (i = first; i <= last; ++i) {
970 resources[i].target = decl->Resource.Resource;
971 resources[i].raw = decl->Resource.Raw;
972 resources[i].slot = i;
973 }
974 break;
975 case TGSI_FILE_SAMPLER_VIEW:
976 for (i = first; i <= last; ++i)
977 textureViews[i].target = decl->SamplerView.Resource;
978 break;
979 case TGSI_FILE_NULL:
980 case TGSI_FILE_TEMPORARY:
981 case TGSI_FILE_ADDRESS:
982 case TGSI_FILE_CONSTANT:
983 case TGSI_FILE_IMMEDIATE:
984 case TGSI_FILE_PREDICATE:
985 case TGSI_FILE_SAMPLER:
986 break;
987 default:
988 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
989 return false;
990 }
991 return true;
992 }
993
994 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
995 {
996 return insn.getOpcode() == TGSI_OPCODE_MOV &&
997 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
998 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
999 }
1000
1001 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1002 {
1003 Instruction insn(inst);
1004
1005 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1006 info->numBarriers = 1;
1007
1008 if (insn.dstCount()) {
1009 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1010 Instruction::DstRegister dst = insn.getDst(0);
1011
1012 if (dst.isIndirect(0))
1013 for (unsigned i = 0; i < info->numOutputs; ++i)
1014 info->out[i].mask = 0xf;
1015 else
1016 info->out[dst.getIndex(0)].mask |= dst.getMask();
1017
1018 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1019 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1020 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1021 info->out[dst.getIndex(0)].mask &= 1;
1022
1023 if (isEdgeFlagPassthrough(insn))
1024 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1025 } else
1026 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1027 if (insn.getDst(0).isIndirect(0))
1028 mainTempsInLMem = TRUE;
1029 }
1030 }
1031
1032 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1033 Instruction::SrcRegister src = insn.getSrc(s);
1034 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1035 if (src.isIndirect(0))
1036 mainTempsInLMem = TRUE;
1037 } else
1038 if (src.getFile() == TGSI_FILE_RESOURCE) {
1039 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1040 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1041 0x1 : 0x2;
1042 }
1043 if (src.getFile() != TGSI_FILE_INPUT)
1044 continue;
1045 unsigned mask = insn.srcMask(s);
1046
1047 if (src.isIndirect(0)) {
1048 for (unsigned i = 0; i < info->numInputs; ++i)
1049 info->in[i].mask = 0xf;
1050 } else {
1051 const int i = src.getIndex(0);
1052 for (unsigned c = 0; c < 4; ++c) {
1053 if (!(mask & (1 << c)))
1054 continue;
1055 int k = src.getSwizzle(c);
1056 if (k <= TGSI_SWIZZLE_W)
1057 info->in[i].mask |= 1 << k;
1058 }
1059 switch (info->in[i].sn) {
1060 case TGSI_SEMANTIC_PSIZE:
1061 case TGSI_SEMANTIC_PRIMID:
1062 case TGSI_SEMANTIC_FOG:
1063 info->in[i].mask &= 0x1;
1064 break;
1065 case TGSI_SEMANTIC_PCOORD:
1066 info->in[i].mask &= 0x3;
1067 break;
1068 default:
1069 break;
1070 }
1071 }
1072 }
1073 return true;
1074 }
1075
1076 nv50_ir::TexInstruction::Target
1077 Instruction::getTexture(const tgsi::Source *code, int s) const
1078 {
1079 // XXX: indirect access
1080 unsigned int r;
1081
1082 switch (getSrc(s).getFile()) {
1083 case TGSI_FILE_RESOURCE:
1084 r = getSrc(s).getIndex(0);
1085 return translateTexture(code->resources.at(r).target);
1086 case TGSI_FILE_SAMPLER_VIEW:
1087 r = getSrc(s).getIndex(0);
1088 return translateTexture(code->textureViews.at(r).target);
1089 default:
1090 return translateTexture(insn->Texture.Texture);
1091 }
1092 }
1093
1094 } // namespace tgsi
1095
1096 namespace {
1097
1098 using namespace nv50_ir;
1099
1100 class Converter : public BuildUtil
1101 {
1102 public:
1103 Converter(Program *, const tgsi::Source *);
1104 ~Converter();
1105
1106 bool run();
1107
1108 private:
1109 struct Subroutine
1110 {
1111 Subroutine(Function *f) : f(f) { }
1112 Function *f;
1113 ValueMap values;
1114 };
1115
1116 Value *getVertexBase(int s);
1117 DataArray *getArrayForFile(unsigned file, int idx);
1118 Value *fetchSrc(int s, int c);
1119 Value *acquireDst(int d, int c);
1120 void storeDst(int d, int c, Value *);
1121
1122 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1123 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1124 Value *val, Value *ptr);
1125
1126 Value *applySrcMod(Value *, int s, int c);
1127
1128 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1129 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1130 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1131
1132 bool handleInstruction(const struct tgsi_full_instruction *);
1133 void exportOutputs();
1134 inline Subroutine *getSubroutine(unsigned ip);
1135 inline Subroutine *getSubroutine(Function *);
1136 inline bool isEndOfSubroutine(uint ip);
1137
1138 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1139
1140 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1141 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1142 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1143 void handleTXF(Value *dst0[4], int R, int L_M);
1144 void handleTXQ(Value *dst0[4], enum TexQuery);
1145 void handleLIT(Value *dst0[4]);
1146 void handleUserClipPlanes();
1147
1148 Symbol *getResourceBase(int r);
1149 void getResourceCoords(std::vector<Value *>&, int r, int s);
1150
1151 void handleLOAD(Value *dst0[4]);
1152 void handleSTORE();
1153 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1154
1155 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1156
1157 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1158
1159 Value *buildDot(int dim);
1160
1161 class BindArgumentsPass : public Pass {
1162 public:
1163 BindArgumentsPass(Converter &conv) : conv(conv) { }
1164
1165 private:
1166 Converter &conv;
1167 Subroutine *sub;
1168
1169 inline const Location *getValueLocation(Subroutine *, Value *);
1170
1171 template<typename T> inline void
1172 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1173 T (Function::*proto));
1174
1175 template<typename T> inline void
1176 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1177 T (Function::*proto));
1178
1179 protected:
1180 bool visit(Function *);
1181 bool visit(BasicBlock *bb) { return false; }
1182 };
1183
1184 private:
1185 const struct tgsi::Source *code;
1186 const struct nv50_ir_prog_info *info;
1187
1188 struct {
1189 std::map<unsigned, Subroutine> map;
1190 Subroutine *cur;
1191 } sub;
1192
1193 uint ip; // instruction pointer
1194
1195 tgsi::Instruction tgsi;
1196
1197 DataType dstTy;
1198 DataType srcTy;
1199
1200 DataArray tData; // TGSI_FILE_TEMPORARY
1201 DataArray aData; // TGSI_FILE_ADDRESS
1202 DataArray pData; // TGSI_FILE_PREDICATE
1203 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1204
1205 Value *zero;
1206 Value *fragCoord[4];
1207 Value *clipVtx[4];
1208
1209 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1210 uint8_t vtxBaseValid;
1211
1212 Stack condBBs; // fork BB, then else clause BB
1213 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1214 Stack loopBBs; // loop headers
1215 Stack breakBBs; // end of / after loop
1216 };
1217
1218 Symbol *
1219 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1220 {
1221 const int swz = src.getSwizzle(c);
1222
1223 return makeSym(src.getFile(),
1224 src.is2D() ? src.getIndex(1) : 0,
1225 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1226 src.getIndex(0) * 16 + swz * 4);
1227 }
1228
1229 Symbol *
1230 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1231 {
1232 return makeSym(dst.getFile(),
1233 dst.is2D() ? dst.getIndex(1) : 0,
1234 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1235 dst.getIndex(0) * 16 + c * 4);
1236 }
1237
1238 Symbol *
1239 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1240 {
1241 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1242
1243 sym->reg.fileIndex = fileIdx;
1244
1245 if (idx >= 0) {
1246 if (sym->reg.file == FILE_SHADER_INPUT)
1247 sym->setOffset(info->in[idx].slot[c] * 4);
1248 else
1249 if (sym->reg.file == FILE_SHADER_OUTPUT)
1250 sym->setOffset(info->out[idx].slot[c] * 4);
1251 else
1252 if (sym->reg.file == FILE_SYSTEM_VALUE)
1253 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1254 else
1255 sym->setOffset(address);
1256 } else {
1257 sym->setOffset(address);
1258 }
1259 return sym;
1260 }
1261
1262 static inline uint8_t
1263 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1264 {
1265 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1266
1267 if (var->flat)
1268 mode = NV50_IR_INTERP_FLAT;
1269 else
1270 if (var->linear)
1271 mode = NV50_IR_INTERP_LINEAR;
1272 else
1273 if (var->sc)
1274 mode = NV50_IR_INTERP_SC;
1275
1276 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1277 ? OP_PINTERP : OP_LINTERP;
1278
1279 if (var->centroid)
1280 mode |= NV50_IR_INTERP_CENTROID;
1281
1282 return mode;
1283 }
1284
1285 Value *
1286 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1287 {
1288 operation op;
1289
1290 // XXX: no way to know interpolation mode if we don't know what's accessed
1291 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1292 src.getIndex(0)], op);
1293
1294 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1295
1296 insn->setDef(0, getScratch());
1297 insn->setSrc(0, srcToSym(src, c));
1298 if (op == OP_PINTERP)
1299 insn->setSrc(1, fragCoord[3]);
1300 if (ptr)
1301 insn->setIndirect(0, 0, ptr);
1302
1303 insn->setInterpolate(mode);
1304
1305 bb->insertTail(insn);
1306 return insn->getDef(0);
1307 }
1308
1309 Value *
1310 Converter::applySrcMod(Value *val, int s, int c)
1311 {
1312 Modifier m = tgsi.getSrc(s).getMod(c);
1313 DataType ty = tgsi.inferSrcType();
1314
1315 if (m & Modifier(NV50_IR_MOD_ABS))
1316 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1317
1318 if (m & Modifier(NV50_IR_MOD_NEG))
1319 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1320
1321 return val;
1322 }
1323
1324 Value *
1325 Converter::getVertexBase(int s)
1326 {
1327 assert(s < 5);
1328 if (!(vtxBaseValid & (1 << s))) {
1329 const int index = tgsi.getSrc(s).getIndex(1);
1330 Value *rel = NULL;
1331 if (tgsi.getSrc(s).isIndirect(1))
1332 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1333 vtxBaseValid |= 1 << s;
1334 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(), mkImm(index), rel);
1335 }
1336 return vtxBase[s];
1337 }
1338
1339 Value *
1340 Converter::fetchSrc(int s, int c)
1341 {
1342 Value *res;
1343 Value *ptr = NULL, *dimRel = NULL;
1344
1345 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1346
1347 if (src.isIndirect(0))
1348 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1349
1350 if (src.is2D()) {
1351 switch (src.getFile()) {
1352 case TGSI_FILE_INPUT:
1353 dimRel = getVertexBase(s);
1354 break;
1355 case TGSI_FILE_CONSTANT:
1356 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1357 if (src.isIndirect(1))
1358 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1359 break;
1360 default:
1361 break;
1362 }
1363 }
1364
1365 res = fetchSrc(src, c, ptr);
1366
1367 if (dimRel)
1368 res->getInsn()->setIndirect(0, 1, dimRel);
1369
1370 return applySrcMod(res, s, c);
1371 }
1372
1373 Converter::DataArray *
1374 Converter::getArrayForFile(unsigned file, int idx)
1375 {
1376 switch (file) {
1377 case TGSI_FILE_TEMPORARY:
1378 return &tData;
1379 case TGSI_FILE_PREDICATE:
1380 return &pData;
1381 case TGSI_FILE_ADDRESS:
1382 return &aData;
1383 case TGSI_FILE_OUTPUT:
1384 assert(prog->getType() == Program::TYPE_FRAGMENT);
1385 return &oData;
1386 default:
1387 assert(!"invalid/unhandled TGSI source file");
1388 return NULL;
1389 }
1390 }
1391
1392 Value *
1393 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1394 {
1395 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1396 const int idx = src.getIndex(0);
1397 const int swz = src.getSwizzle(c);
1398
1399 switch (src.getFile()) {
1400 case TGSI_FILE_IMMEDIATE:
1401 assert(!ptr);
1402 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1403 case TGSI_FILE_CONSTANT:
1404 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1405 case TGSI_FILE_INPUT:
1406 if (prog->getType() == Program::TYPE_FRAGMENT) {
1407 // don't load masked inputs, won't be assigned a slot
1408 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1409 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1410 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1411 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1412 return interpolate(src, c, ptr);
1413 }
1414 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1415 case TGSI_FILE_OUTPUT:
1416 assert(!"load from output file");
1417 return NULL;
1418 case TGSI_FILE_SYSTEM_VALUE:
1419 assert(!ptr);
1420 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1421 default:
1422 return getArrayForFile(src.getFile(), idx2d)->load(
1423 sub.cur->values, idx, swz, ptr);
1424 }
1425 }
1426
1427 Value *
1428 Converter::acquireDst(int d, int c)
1429 {
1430 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1431 const unsigned f = dst.getFile();
1432 const int idx = dst.getIndex(0);
1433 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1434
1435 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1436 return NULL;
1437
1438 if (dst.isIndirect(0) ||
1439 f == TGSI_FILE_SYSTEM_VALUE ||
1440 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1441 return getScratch();
1442
1443 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1444 }
1445
1446 void
1447 Converter::storeDst(int d, int c, Value *val)
1448 {
1449 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1450
1451 switch (tgsi.getSaturate()) {
1452 case TGSI_SAT_NONE:
1453 break;
1454 case TGSI_SAT_ZERO_ONE:
1455 mkOp1(OP_SAT, dstTy, val, val);
1456 break;
1457 case TGSI_SAT_MINUS_PLUS_ONE:
1458 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1459 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1460 break;
1461 default:
1462 assert(!"invalid saturation mode");
1463 break;
1464 }
1465
1466 Value *ptr = dst.isIndirect(0) ?
1467 fetchSrc(dst.getIndirect(0), 0, NULL) : NULL;
1468
1469 if (info->io.genUserClip > 0 &&
1470 dst.getFile() == TGSI_FILE_OUTPUT &&
1471 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1472 mkMov(clipVtx[c], val);
1473 val = clipVtx[c];
1474 }
1475
1476 storeDst(dst, c, val, ptr);
1477 }
1478
1479 void
1480 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1481 Value *val, Value *ptr)
1482 {
1483 const unsigned f = dst.getFile();
1484 const int idx = dst.getIndex(0);
1485 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1486
1487 if (f == TGSI_FILE_SYSTEM_VALUE) {
1488 assert(!ptr);
1489 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1490 } else
1491 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1492 if (ptr || (info->out[idx].mask & (1 << c)))
1493 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1494 } else
1495 if (f == TGSI_FILE_TEMPORARY ||
1496 f == TGSI_FILE_PREDICATE ||
1497 f == TGSI_FILE_ADDRESS ||
1498 f == TGSI_FILE_OUTPUT) {
1499 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1500 } else {
1501 assert(!"invalid dst file");
1502 }
1503 }
1504
1505 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1506 for (chan = 0; chan < 4; ++chan) \
1507 if (!inst.getDst(d).isMasked(chan))
1508
1509 Value *
1510 Converter::buildDot(int dim)
1511 {
1512 assert(dim > 0);
1513
1514 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1515 Value *dotp = getScratch();
1516
1517 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1518
1519 for (int c = 1; c < dim; ++c) {
1520 src0 = fetchSrc(0, c);
1521 src1 = fetchSrc(1, c);
1522 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1523 }
1524 return dotp;
1525 }
1526
1527 void
1528 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1529 {
1530 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1531 join->fixed = 1;
1532 conv->insertHead(join);
1533
1534 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1535 fork->insertBefore(fork->getExit(), fork->joinAt);
1536 }
1537
1538 void
1539 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1540 {
1541 unsigned rIdx = 0, sIdx = 0;
1542
1543 if (R >= 0)
1544 rIdx = tgsi.getSrc(R).getIndex(0);
1545 if (S >= 0)
1546 sIdx = tgsi.getSrc(S).getIndex(0);
1547
1548 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1549
1550 if (tgsi.getSrc(R).isIndirect(0)) {
1551 tex->tex.rIndirectSrc = s;
1552 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1553 }
1554 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1555 tex->tex.sIndirectSrc = s;
1556 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1557 }
1558 }
1559
1560 void
1561 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1562 {
1563 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1564 tex->tex.query = query;
1565 unsigned int c, d;
1566
1567 for (d = 0, c = 0; c < 4; ++c) {
1568 if (!dst0[c])
1569 continue;
1570 tex->tex.mask |= 1 << c;
1571 tex->setDef(d++, dst0[c]);
1572 }
1573 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1574
1575 setTexRS(tex, c, 1, -1);
1576
1577 bb->insertTail(tex);
1578 }
1579
1580 void
1581 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1582 {
1583 Value *proj = fetchSrc(0, 3);
1584 Instruction *insn = proj->getUniqueInsn();
1585 int c;
1586
1587 if (insn->op == OP_PINTERP) {
1588 bb->insertTail(insn = cloneForward(func, insn));
1589 insn->op = OP_LINTERP;
1590 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1591 insn->setSrc(1, NULL);
1592 proj = insn->getDef(0);
1593 }
1594 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1595
1596 for (c = 0; c < 4; ++c) {
1597 if (!(mask & (1 << c)))
1598 continue;
1599 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1600 continue;
1601 mask &= ~(1 << c);
1602
1603 bb->insertTail(insn = cloneForward(func, insn));
1604 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1605 insn->setSrc(1, proj);
1606 dst[c] = insn->getDef(0);
1607 }
1608 if (!mask)
1609 return;
1610
1611 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1612
1613 for (c = 0; c < 4; ++c)
1614 if (mask & (1 << c))
1615 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1616 }
1617
1618 // order of nv50 ir sources: x y z layer lod/bias shadow
1619 // order of TGSI TEX sources: x y z layer shadow lod/bias
1620 // lowering will finally set the hw specific order (like array first on nvc0)
1621 void
1622 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1623 {
1624 Value *val;
1625 Value *arg[4], *src[8];
1626 Value *lod = NULL, *shd = NULL;
1627 unsigned int s, c, d;
1628 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1629
1630 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1631
1632 for (s = 0; s < tgt.getArgCount(); ++s)
1633 arg[s] = src[s] = fetchSrc(0, s);
1634
1635 if (texi->op == OP_TXL || texi->op == OP_TXB)
1636 lod = fetchSrc(L >> 4, L & 3);
1637
1638 if (C == 0x0f)
1639 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1640
1641 if (tgt.isShadow())
1642 shd = fetchSrc(C >> 4, C & 3);
1643
1644 if (texi->op == OP_TXD) {
1645 for (c = 0; c < tgt.getDim(); ++c) {
1646 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1647 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1648 }
1649 }
1650
1651 // cube textures don't care about projection value, it's divided out
1652 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1653 unsigned int n = tgt.getDim();
1654 if (shd) {
1655 arg[n] = shd;
1656 ++n;
1657 assert(tgt.getDim() == tgt.getArgCount());
1658 }
1659 loadProjTexCoords(src, arg, (1 << n) - 1);
1660 if (shd)
1661 shd = src[n - 1];
1662 }
1663
1664 if (tgt.isCube()) {
1665 for (c = 0; c < 3; ++c)
1666 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1667 val = getScratch();
1668 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1669 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1670 mkOp1(OP_RCP, TYPE_F32, val, val);
1671 for (c = 0; c < 3; ++c)
1672 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1673 }
1674
1675 for (c = 0, d = 0; c < 4; ++c) {
1676 if (dst[c]) {
1677 texi->setDef(d++, dst[c]);
1678 texi->tex.mask |= 1 << c;
1679 } else {
1680 // NOTE: maybe hook up def too, for CSE
1681 }
1682 }
1683 for (s = 0; s < tgt.getArgCount(); ++s)
1684 texi->setSrc(s, src[s]);
1685 if (lod)
1686 texi->setSrc(s++, lod);
1687 if (shd)
1688 texi->setSrc(s++, shd);
1689
1690 setTexRS(texi, s, R, S);
1691
1692 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1693 texi->tex.levelZero = true;
1694
1695 bb->insertTail(texi);
1696 }
1697
1698 // 1st source: xyz = coordinates, w = lod/sample
1699 // 2nd source: offset
1700 void
1701 Converter::handleTXF(Value *dst[4], int R, int L_M)
1702 {
1703 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1704 int ms;
1705 unsigned int c, d, s;
1706
1707 texi->tex.target = tgsi.getTexture(code, R);
1708
1709 ms = texi->tex.target.isMS() ? 1 : 0;
1710 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1711
1712 for (c = 0, d = 0; c < 4; ++c) {
1713 if (dst[c]) {
1714 texi->setDef(d++, dst[c]);
1715 texi->tex.mask |= 1 << c;
1716 }
1717 }
1718 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1719 texi->setSrc(c, fetchSrc(0, c));
1720 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1721
1722 setTexRS(texi, c, R, -1);
1723
1724 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1725 for (c = 0; c < 3; ++c) {
1726 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1727 if (texi->tex.offset[s][c])
1728 texi->tex.useOffsets = s + 1;
1729 }
1730 }
1731
1732 bb->insertTail(texi);
1733 }
1734
1735 void
1736 Converter::handleLIT(Value *dst0[4])
1737 {
1738 Value *val0 = NULL;
1739 unsigned int mask = tgsi.getDst(0).getMask();
1740
1741 if (mask & (1 << 0))
1742 loadImm(dst0[0], 1.0f);
1743
1744 if (mask & (1 << 3))
1745 loadImm(dst0[3], 1.0f);
1746
1747 if (mask & (3 << 1)) {
1748 val0 = getScratch();
1749 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1750 if (mask & (1 << 1))
1751 mkMov(dst0[1], val0);
1752 }
1753
1754 if (mask & (1 << 2)) {
1755 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1756 Value *val1 = getScratch(), *val3 = getScratch();
1757
1758 Value *pos128 = loadImm(NULL, +127.999999f);
1759 Value *neg128 = loadImm(NULL, -127.999999f);
1760
1761 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1762 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1763 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1764 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1765
1766 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], val3, zero, val0);
1767 }
1768 }
1769
1770 static inline bool
1771 isResourceSpecial(const int r)
1772 {
1773 return (r == TGSI_RESOURCE_GLOBAL ||
1774 r == TGSI_RESOURCE_LOCAL ||
1775 r == TGSI_RESOURCE_PRIVATE ||
1776 r == TGSI_RESOURCE_INPUT);
1777 }
1778
1779 static inline bool
1780 isResourceRaw(const struct tgsi::Source *code, const int r)
1781 {
1782 return isResourceSpecial(r) || code->resources[r].raw;
1783 }
1784
1785 static inline nv50_ir::TexTarget
1786 getResourceTarget(const struct tgsi::Source *code, int r)
1787 {
1788 if (isResourceSpecial(r))
1789 return nv50_ir::TEX_TARGET_BUFFER;
1790 return tgsi::translateTexture(code->resources.at(r).target);
1791 }
1792
1793 Symbol *
1794 Converter::getResourceBase(const int r)
1795 {
1796 Symbol *sym = NULL;
1797
1798 switch (r) {
1799 case TGSI_RESOURCE_GLOBAL:
1800 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1801 break;
1802 case TGSI_RESOURCE_LOCAL:
1803 assert(prog->getType() == Program::TYPE_COMPUTE);
1804 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1805 info->prop.cp.sharedOffset);
1806 break;
1807 case TGSI_RESOURCE_PRIVATE:
1808 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1809 info->bin.tlsSpace);
1810 break;
1811 case TGSI_RESOURCE_INPUT:
1812 assert(prog->getType() == Program::TYPE_COMPUTE);
1813 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1814 info->prop.cp.inputOffset);
1815 break;
1816 default:
1817 sym = new_Symbol(prog,
1818 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1819 break;
1820 }
1821 return sym;
1822 }
1823
1824 void
1825 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1826 {
1827 const int arg =
1828 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1829
1830 for (int c = 0; c < arg; ++c)
1831 coords.push_back(fetchSrc(s, c));
1832
1833 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1834 if (r == TGSI_RESOURCE_LOCAL ||
1835 r == TGSI_RESOURCE_PRIVATE ||
1836 r == TGSI_RESOURCE_INPUT)
1837 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1838 coords[0]);
1839 }
1840
1841 static inline int
1842 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1843 {
1844 int n = 0;
1845
1846 while (mask) {
1847 if (mask & 1) {
1848 size[n]++;
1849 } else {
1850 if (size[n])
1851 comp[n = 1] = size[0] + 1;
1852 else
1853 comp[n]++;
1854 }
1855 mask >>= 1;
1856 }
1857 if (size[0] == 3) {
1858 n = 1;
1859 size[0] = (comp[0] == 1) ? 1 : 2;
1860 size[1] = 3 - size[0];
1861 comp[1] = comp[0] + size[0];
1862 }
1863 return n + 1;
1864 }
1865
1866 // For raw loads, granularity is 4 byte.
1867 // Usage of the texture read mask on OP_SULDP is not allowed.
1868 void
1869 Converter::handleLOAD(Value *dst0[4])
1870 {
1871 const int r = tgsi.getSrc(0).getIndex(0);
1872 int c;
1873 std::vector<Value *> off, src, ldv, def;
1874
1875 getResourceCoords(off, r, 1);
1876
1877 if (isResourceRaw(code, r)) {
1878 uint8_t mask = 0;
1879 uint8_t comp[2] = { 0, 0 };
1880 uint8_t size[2] = { 0, 0 };
1881
1882 Symbol *base = getResourceBase(r);
1883
1884 // determine the base and size of the at most 2 load ops
1885 for (c = 0; c < 4; ++c)
1886 if (!tgsi.getDst(0).isMasked(c))
1887 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1888
1889 int n = partitionLoadStore(comp, size, mask);
1890
1891 src = off;
1892
1893 def.resize(4); // index by component, the ones we need will be non-NULL
1894 for (c = 0; c < 4; ++c) {
1895 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1896 def[c] = dst0[c];
1897 else
1898 if (mask & (1 << c))
1899 def[c] = getScratch();
1900 }
1901
1902 const bool useLd = isResourceSpecial(r) ||
1903 (info->io.nv50styleSurfaces &&
1904 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1905
1906 for (int i = 0; i < n; ++i) {
1907 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
1908
1909 if (comp[i]) // adjust x component of source address if necessary
1910 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1911 off[0], mkImm(comp[i] * 4));
1912 else
1913 src[0] = off[0];
1914
1915 if (useLd) {
1916 Instruction *ld =
1917 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
1918 for (size_t c = 1; c < ldv.size(); ++c)
1919 ld->setDef(c, ldv[c]);
1920 } else {
1921 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
1922 0, ldv, src)->dType = typeOfSize(size[i] * 4);
1923 }
1924 }
1925 } else {
1926 def.resize(4);
1927 for (c = 0; c < 4; ++c) {
1928 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
1929 def[c] = getScratch();
1930 else
1931 def[c] = dst0[c];
1932 }
1933
1934 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
1935 def, off);
1936 }
1937 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1938 if (dst0[c] != def[c])
1939 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
1940 }
1941
1942 // For formatted stores, the write mask on OP_SUSTP can be used.
1943 // Raw stores have to be split.
1944 void
1945 Converter::handleSTORE()
1946 {
1947 const int r = tgsi.getDst(0).getIndex(0);
1948 int c;
1949 std::vector<Value *> off, src, dummy;
1950
1951 getResourceCoords(off, r, 0);
1952 src = off;
1953 const int s = src.size();
1954
1955 if (isResourceRaw(code, r)) {
1956 uint8_t comp[2] = { 0, 0 };
1957 uint8_t size[2] = { 0, 0 };
1958
1959 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
1960
1961 Symbol *base = getResourceBase(r);
1962
1963 const bool useSt = isResourceSpecial(r) ||
1964 (info->io.nv50styleSurfaces &&
1965 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1966
1967 for (int i = 0; i < n; ++i) {
1968 if (comp[i]) // adjust x component of source address if necessary
1969 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1970 off[0], mkImm(comp[i] * 4));
1971 else
1972 src[0] = off[0];
1973
1974 const DataType stTy = typeOfSize(size[i] * 4);
1975
1976 if (useSt) {
1977 Instruction *st =
1978 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
1979 for (c = 1; c < size[i]; ++c)
1980 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
1981 st->setIndirect(0, 0, src[0]);
1982 } else {
1983 // attach values to be stored
1984 src.resize(s + size[i]);
1985 for (c = 0; c < size[i]; ++c)
1986 src[s + c] = fetchSrc(1, comp[i] + c);
1987 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
1988 0, dummy, src)->setType(stTy);
1989 }
1990 }
1991 } else {
1992 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1993 src.push_back(fetchSrc(1, c));
1994
1995 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
1996 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
1997 }
1998 }
1999
2000 // XXX: These only work on resources with the single-component u32/s32 formats.
2001 // Therefore the result is replicated. This might not be intended by TGSI, but
2002 // operating on more than 1 component would produce undefined results because
2003 // they do not exist.
2004 void
2005 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2006 {
2007 const int r = tgsi.getSrc(0).getIndex(0);
2008 std::vector<Value *> srcv;
2009 std::vector<Value *> defv;
2010 LValue *dst = getScratch();
2011
2012 getResourceCoords(srcv, r, 1);
2013
2014 if (isResourceSpecial(r)) {
2015 assert(r != TGSI_RESOURCE_INPUT);
2016 Instruction *insn;
2017 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2018 insn->subOp = subOp;
2019 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2020 insn->setSrc(2, fetchSrc(3, 0));
2021 insn->setIndirect(0, 0, srcv.at(0));
2022 } else {
2023 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2024 TexTarget targ = getResourceTarget(code, r);
2025 int idx = code->resources[r].slot;
2026 defv.push_back(dst);
2027 srcv.push_back(fetchSrc(2, 0));
2028 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2029 srcv.push_back(fetchSrc(3, 0));
2030 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2031 tex->subOp = subOp;
2032 tex->tex.mask = 1;
2033 tex->setType(ty);
2034 }
2035
2036 for (int c = 0; c < 4; ++c)
2037 if (dst0[c])
2038 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2039 }
2040
2041 Converter::Subroutine *
2042 Converter::getSubroutine(unsigned ip)
2043 {
2044 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2045
2046 if (it == sub.map.end())
2047 it = sub.map.insert(std::make_pair(
2048 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2049
2050 return &it->second;
2051 }
2052
2053 Converter::Subroutine *
2054 Converter::getSubroutine(Function *f)
2055 {
2056 unsigned ip = f->getLabel();
2057 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2058
2059 if (it == sub.map.end())
2060 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2061
2062 return &it->second;
2063 }
2064
2065 bool
2066 Converter::isEndOfSubroutine(uint ip)
2067 {
2068 assert(ip < code->scan.num_instructions);
2069 tgsi::Instruction insn(&code->insns[ip]);
2070 return (insn.getOpcode() == TGSI_OPCODE_END ||
2071 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2072 // does END occur at end of main or the very end ?
2073 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2074 }
2075
2076 bool
2077 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2078 {
2079 Instruction *geni;
2080
2081 Value *dst0[4], *rDst0[4];
2082 Value *src0, *src1, *src2;
2083 Value *val0, *val1;
2084 int c;
2085
2086 tgsi = tgsi::Instruction(insn);
2087
2088 bool useScratchDst = tgsi.checkDstSrcAliasing();
2089
2090 operation op = tgsi.getOP();
2091 dstTy = tgsi.inferDstType();
2092 srcTy = tgsi.inferSrcType();
2093
2094 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2095
2096 if (tgsi.dstCount()) {
2097 for (c = 0; c < 4; ++c) {
2098 rDst0[c] = acquireDst(0, c);
2099 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2100 }
2101 }
2102
2103 switch (tgsi.getOpcode()) {
2104 case TGSI_OPCODE_ADD:
2105 case TGSI_OPCODE_UADD:
2106 case TGSI_OPCODE_AND:
2107 case TGSI_OPCODE_DIV:
2108 case TGSI_OPCODE_IDIV:
2109 case TGSI_OPCODE_UDIV:
2110 case TGSI_OPCODE_MAX:
2111 case TGSI_OPCODE_MIN:
2112 case TGSI_OPCODE_IMAX:
2113 case TGSI_OPCODE_IMIN:
2114 case TGSI_OPCODE_UMAX:
2115 case TGSI_OPCODE_UMIN:
2116 case TGSI_OPCODE_MOD:
2117 case TGSI_OPCODE_UMOD:
2118 case TGSI_OPCODE_MUL:
2119 case TGSI_OPCODE_UMUL:
2120 case TGSI_OPCODE_OR:
2121 case TGSI_OPCODE_POW:
2122 case TGSI_OPCODE_SHL:
2123 case TGSI_OPCODE_ISHR:
2124 case TGSI_OPCODE_USHR:
2125 case TGSI_OPCODE_SUB:
2126 case TGSI_OPCODE_XOR:
2127 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2128 src0 = fetchSrc(0, c);
2129 src1 = fetchSrc(1, c);
2130 mkOp2(op, dstTy, dst0[c], src0, src1);
2131 }
2132 break;
2133 case TGSI_OPCODE_MAD:
2134 case TGSI_OPCODE_UMAD:
2135 case TGSI_OPCODE_SAD:
2136 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2137 src0 = fetchSrc(0, c);
2138 src1 = fetchSrc(1, c);
2139 src2 = fetchSrc(2, c);
2140 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2141 }
2142 break;
2143 case TGSI_OPCODE_MOV:
2144 case TGSI_OPCODE_ABS:
2145 case TGSI_OPCODE_CEIL:
2146 case TGSI_OPCODE_FLR:
2147 case TGSI_OPCODE_TRUNC:
2148 case TGSI_OPCODE_RCP:
2149 case TGSI_OPCODE_IABS:
2150 case TGSI_OPCODE_INEG:
2151 case TGSI_OPCODE_NOT:
2152 case TGSI_OPCODE_DDX:
2153 case TGSI_OPCODE_DDY:
2154 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2155 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2156 break;
2157 case TGSI_OPCODE_RSQ:
2158 src0 = fetchSrc(0, 0);
2159 val0 = getScratch();
2160 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2161 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2162 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2163 mkMov(dst0[c], val0);
2164 break;
2165 case TGSI_OPCODE_ARL:
2166 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2167 src0 = fetchSrc(0, c);
2168 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2169 mkOp2(OP_SHL, TYPE_U32, dst0[c], dst0[c], mkImm(4));
2170 }
2171 break;
2172 case TGSI_OPCODE_UARL:
2173 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2174 mkOp2(OP_SHL, TYPE_U32, dst0[c], fetchSrc(0, c), mkImm(4));
2175 break;
2176 case TGSI_OPCODE_EX2:
2177 case TGSI_OPCODE_LG2:
2178 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2179 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2180 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2181 break;
2182 case TGSI_OPCODE_COS:
2183 case TGSI_OPCODE_SIN:
2184 val0 = getScratch();
2185 if (mask & 7) {
2186 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2187 mkOp1(op, TYPE_F32, val0, val0);
2188 for (c = 0; c < 3; ++c)
2189 if (dst0[c])
2190 mkMov(dst0[c], val0);
2191 }
2192 if (dst0[3]) {
2193 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2194 mkOp1(op, TYPE_F32, dst0[3], val0);
2195 }
2196 break;
2197 case TGSI_OPCODE_SCS:
2198 if (mask & 3) {
2199 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2200 if (dst0[0])
2201 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2202 if (dst0[1])
2203 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2204 }
2205 if (dst0[2])
2206 loadImm(dst0[2], 0.0f);
2207 if (dst0[3])
2208 loadImm(dst0[3], 1.0f);
2209 break;
2210 case TGSI_OPCODE_EXP:
2211 src0 = fetchSrc(0, 0);
2212 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2213 if (dst0[1])
2214 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2215 if (dst0[0])
2216 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2217 if (dst0[2])
2218 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2219 if (dst0[3])
2220 loadImm(dst0[3], 1.0f);
2221 break;
2222 case TGSI_OPCODE_LOG:
2223 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2224 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2225 if (dst0[0] || dst0[1])
2226 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2227 if (dst0[1]) {
2228 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2229 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2230 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2231 }
2232 if (dst0[3])
2233 loadImm(dst0[3], 1.0f);
2234 break;
2235 case TGSI_OPCODE_DP2:
2236 val0 = buildDot(2);
2237 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2238 mkMov(dst0[c], val0);
2239 break;
2240 case TGSI_OPCODE_DP3:
2241 val0 = buildDot(3);
2242 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2243 mkMov(dst0[c], val0);
2244 break;
2245 case TGSI_OPCODE_DP4:
2246 val0 = buildDot(4);
2247 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2248 mkMov(dst0[c], val0);
2249 break;
2250 case TGSI_OPCODE_DPH:
2251 val0 = buildDot(3);
2252 src1 = fetchSrc(1, 3);
2253 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2254 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2255 mkMov(dst0[c], val0);
2256 break;
2257 case TGSI_OPCODE_DST:
2258 if (dst0[0])
2259 loadImm(dst0[0], 1.0f);
2260 if (dst0[1]) {
2261 src0 = fetchSrc(0, 1);
2262 src1 = fetchSrc(1, 1);
2263 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2264 }
2265 if (dst0[2])
2266 mkMov(dst0[2], fetchSrc(0, 2));
2267 if (dst0[3])
2268 mkMov(dst0[3], fetchSrc(1, 3));
2269 break;
2270 case TGSI_OPCODE_LRP:
2271 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2272 src0 = fetchSrc(0, c);
2273 src1 = fetchSrc(1, c);
2274 src2 = fetchSrc(2, c);
2275 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2276 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2277 }
2278 break;
2279 case TGSI_OPCODE_LIT:
2280 handleLIT(dst0);
2281 break;
2282 case TGSI_OPCODE_XPD:
2283 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2284 if (c < 3) {
2285 val0 = getSSA();
2286 src0 = fetchSrc(1, (c + 1) % 3);
2287 src1 = fetchSrc(0, (c + 2) % 3);
2288 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2289 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2290
2291 src0 = fetchSrc(0, (c + 1) % 3);
2292 src1 = fetchSrc(1, (c + 2) % 3);
2293 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2294 } else {
2295 loadImm(dst0[c], 1.0f);
2296 }
2297 }
2298 break;
2299 case TGSI_OPCODE_ISSG:
2300 case TGSI_OPCODE_SSG:
2301 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2302 src0 = fetchSrc(0, c);
2303 val0 = getScratch();
2304 val1 = getScratch();
2305 mkCmp(OP_SET, CC_GT, srcTy, val0, src0, zero);
2306 mkCmp(OP_SET, CC_LT, srcTy, val1, src0, zero);
2307 if (srcTy == TYPE_F32)
2308 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2309 else
2310 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2311 }
2312 break;
2313 case TGSI_OPCODE_UCMP:
2314 case TGSI_OPCODE_CMP:
2315 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2316 src0 = fetchSrc(0, c);
2317 src1 = fetchSrc(1, c);
2318 src2 = fetchSrc(2, c);
2319 if (src1 == src2)
2320 mkMov(dst0[c], src1);
2321 else
2322 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2323 srcTy, dst0[c], src1, src2, src0);
2324 }
2325 break;
2326 case TGSI_OPCODE_FRC:
2327 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2328 src0 = fetchSrc(0, c);
2329 val0 = getScratch();
2330 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2331 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2332 }
2333 break;
2334 case TGSI_OPCODE_ROUND:
2335 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2336 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2337 ->rnd = ROUND_NI;
2338 break;
2339 case TGSI_OPCODE_CLAMP:
2340 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2341 src0 = fetchSrc(0, c);
2342 src1 = fetchSrc(1, c);
2343 src2 = fetchSrc(2, c);
2344 val0 = getScratch();
2345 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2346 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2347 }
2348 break;
2349 case TGSI_OPCODE_SLT:
2350 case TGSI_OPCODE_SGE:
2351 case TGSI_OPCODE_SEQ:
2352 case TGSI_OPCODE_SFL:
2353 case TGSI_OPCODE_SGT:
2354 case TGSI_OPCODE_SLE:
2355 case TGSI_OPCODE_SNE:
2356 case TGSI_OPCODE_STR:
2357 case TGSI_OPCODE_ISGE:
2358 case TGSI_OPCODE_ISLT:
2359 case TGSI_OPCODE_USEQ:
2360 case TGSI_OPCODE_USGE:
2361 case TGSI_OPCODE_USLT:
2362 case TGSI_OPCODE_USNE:
2363 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2364 src0 = fetchSrc(0, c);
2365 src1 = fetchSrc(1, c);
2366 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], src0, src1);
2367 }
2368 break;
2369 case TGSI_OPCODE_KIL:
2370 val0 = new_LValue(func, FILE_PREDICATE);
2371 for (c = 0; c < 4; ++c) {
2372 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, fetchSrc(0, c), zero);
2373 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2374 }
2375 break;
2376 case TGSI_OPCODE_KILP:
2377 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2378 break;
2379 case TGSI_OPCODE_TEX:
2380 case TGSI_OPCODE_TXB:
2381 case TGSI_OPCODE_TXL:
2382 case TGSI_OPCODE_TXP:
2383 // R S L C Dx Dy
2384 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2385 break;
2386 case TGSI_OPCODE_TXD:
2387 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2388 break;
2389 case TGSI_OPCODE_TEX2:
2390 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2391 break;
2392 case TGSI_OPCODE_TXB2:
2393 case TGSI_OPCODE_TXL2:
2394 handleTEX(dst0, 2, 2, 0x10, 0x11, 0x00, 0x00);
2395 break;
2396 case TGSI_OPCODE_SAMPLE:
2397 case TGSI_OPCODE_SAMPLE_B:
2398 case TGSI_OPCODE_SAMPLE_D:
2399 case TGSI_OPCODE_SAMPLE_L:
2400 case TGSI_OPCODE_SAMPLE_C:
2401 case TGSI_OPCODE_SAMPLE_C_LZ:
2402 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2403 break;
2404 case TGSI_OPCODE_TXF:
2405 handleTXF(dst0, 1, 0x03);
2406 break;
2407 case TGSI_OPCODE_SAMPLE_I:
2408 handleTXF(dst0, 1, 0x03);
2409 break;
2410 case TGSI_OPCODE_SAMPLE_I_MS:
2411 handleTXF(dst0, 1, 0x20);
2412 break;
2413 case TGSI_OPCODE_TXQ:
2414 case TGSI_OPCODE_SVIEWINFO:
2415 handleTXQ(dst0, TXQ_DIMS);
2416 break;
2417 case TGSI_OPCODE_F2I:
2418 case TGSI_OPCODE_F2U:
2419 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2420 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2421 break;
2422 case TGSI_OPCODE_I2F:
2423 case TGSI_OPCODE_U2F:
2424 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2425 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2426 break;
2427 case TGSI_OPCODE_EMIT:
2428 case TGSI_OPCODE_ENDPRIM:
2429 // get vertex stream if specified (must be immediate)
2430 src0 = tgsi.srcCount() ?
2431 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2432 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2433 break;
2434 case TGSI_OPCODE_IF:
2435 case TGSI_OPCODE_UIF:
2436 {
2437 BasicBlock *ifBB = new BasicBlock(func);
2438
2439 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2440 condBBs.push(bb);
2441 joinBBs.push(bb);
2442
2443 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2444
2445 setPosition(ifBB, true);
2446 }
2447 break;
2448 case TGSI_OPCODE_ELSE:
2449 {
2450 BasicBlock *elseBB = new BasicBlock(func);
2451 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2452
2453 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2454 condBBs.push(bb);
2455
2456 forkBB->getExit()->asFlow()->target.bb = elseBB;
2457 if (!bb->isTerminated())
2458 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2459
2460 setPosition(elseBB, true);
2461 }
2462 break;
2463 case TGSI_OPCODE_ENDIF:
2464 {
2465 BasicBlock *convBB = new BasicBlock(func);
2466 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2467 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2468
2469 if (!bb->isTerminated()) {
2470 // we only want join if none of the clauses ended with CONT/BREAK/RET
2471 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2472 insertConvergenceOps(convBB, forkBB);
2473 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2474 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2475 }
2476
2477 if (prevBB->getExit()->op == OP_BRA) {
2478 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2479 prevBB->getExit()->asFlow()->target.bb = convBB;
2480 }
2481 setPosition(convBB, true);
2482 }
2483 break;
2484 case TGSI_OPCODE_BGNLOOP:
2485 {
2486 BasicBlock *lbgnBB = new BasicBlock(func);
2487 BasicBlock *lbrkBB = new BasicBlock(func);
2488
2489 loopBBs.push(lbgnBB);
2490 breakBBs.push(lbrkBB);
2491 if (loopBBs.getSize() > func->loopNestingBound)
2492 func->loopNestingBound++;
2493
2494 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2495
2496 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2497 setPosition(lbgnBB, true);
2498 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2499 }
2500 break;
2501 case TGSI_OPCODE_ENDLOOP:
2502 {
2503 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2504
2505 if (!bb->isTerminated()) {
2506 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2507 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2508 }
2509 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2510 }
2511 break;
2512 case TGSI_OPCODE_BRK:
2513 {
2514 if (bb->isTerminated())
2515 break;
2516 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2517 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2518 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2519 }
2520 break;
2521 case TGSI_OPCODE_CONT:
2522 {
2523 if (bb->isTerminated())
2524 break;
2525 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2526 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2527 contBB->explicitCont = true;
2528 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2529 }
2530 break;
2531 case TGSI_OPCODE_BGNSUB:
2532 {
2533 Subroutine *s = getSubroutine(ip);
2534 BasicBlock *entry = new BasicBlock(s->f);
2535 BasicBlock *leave = new BasicBlock(s->f);
2536
2537 // multiple entrypoints possible, keep the graph connected
2538 if (prog->getType() == Program::TYPE_COMPUTE)
2539 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2540
2541 sub.cur = s;
2542 s->f->setEntry(entry);
2543 s->f->setExit(leave);
2544 setPosition(entry, true);
2545 return true;
2546 }
2547 case TGSI_OPCODE_ENDSUB:
2548 {
2549 sub.cur = getSubroutine(prog->main);
2550 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2551 return true;
2552 }
2553 case TGSI_OPCODE_CAL:
2554 {
2555 Subroutine *s = getSubroutine(tgsi.getLabel());
2556 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2557 func->call.attach(&s->f->call, Graph::Edge::TREE);
2558 return true;
2559 }
2560 case TGSI_OPCODE_RET:
2561 {
2562 if (bb->isTerminated())
2563 return true;
2564 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2565
2566 if (!isEndOfSubroutine(ip + 1)) {
2567 // insert a PRERET at the entry if this is an early return
2568 // (only needed for sharing code in the epilogue)
2569 BasicBlock *pos = getBB();
2570 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2571 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2572 setPosition(pos, true);
2573 }
2574 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2575 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2576 }
2577 break;
2578 case TGSI_OPCODE_END:
2579 {
2580 // attach and generate epilogue code
2581 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2582 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2583 setPosition(epilogue, true);
2584 if (prog->getType() == Program::TYPE_FRAGMENT)
2585 exportOutputs();
2586 if (info->io.genUserClip > 0)
2587 handleUserClipPlanes();
2588 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2589 }
2590 break;
2591 case TGSI_OPCODE_SWITCH:
2592 case TGSI_OPCODE_CASE:
2593 ERROR("switch/case opcode encountered, should have been lowered\n");
2594 abort();
2595 break;
2596 case TGSI_OPCODE_LOAD:
2597 handleLOAD(dst0);
2598 break;
2599 case TGSI_OPCODE_STORE:
2600 handleSTORE();
2601 break;
2602 case TGSI_OPCODE_BARRIER:
2603 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2604 geni->fixed = 1;
2605 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2606 break;
2607 case TGSI_OPCODE_MFENCE:
2608 case TGSI_OPCODE_LFENCE:
2609 case TGSI_OPCODE_SFENCE:
2610 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2611 geni->fixed = 1;
2612 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2613 break;
2614 case TGSI_OPCODE_ATOMUADD:
2615 case TGSI_OPCODE_ATOMXCHG:
2616 case TGSI_OPCODE_ATOMCAS:
2617 case TGSI_OPCODE_ATOMAND:
2618 case TGSI_OPCODE_ATOMOR:
2619 case TGSI_OPCODE_ATOMXOR:
2620 case TGSI_OPCODE_ATOMUMIN:
2621 case TGSI_OPCODE_ATOMIMIN:
2622 case TGSI_OPCODE_ATOMUMAX:
2623 case TGSI_OPCODE_ATOMIMAX:
2624 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2625 break;
2626 default:
2627 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2628 assert(0);
2629 break;
2630 }
2631
2632 if (tgsi.dstCount()) {
2633 for (c = 0; c < 4; ++c) {
2634 if (!dst0[c])
2635 continue;
2636 if (dst0[c] != rDst0[c])
2637 mkMov(rDst0[c], dst0[c]);
2638 storeDst(0, c, rDst0[c]);
2639 }
2640 }
2641 vtxBaseValid = 0;
2642
2643 return true;
2644 }
2645
2646 void
2647 Converter::handleUserClipPlanes()
2648 {
2649 Value *res[8];
2650 int n, i, c;
2651
2652 for (c = 0; c < 4; ++c) {
2653 for (i = 0; i < info->io.genUserClip; ++i) {
2654 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2655 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2656 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2657 if (c == 0)
2658 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2659 else
2660 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2661 }
2662 }
2663
2664 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2665
2666 for (i = 0; i < info->io.genUserClip; ++i) {
2667 n = i / 4 + first;
2668 c = i % 4;
2669 Symbol *sym =
2670 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2671 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2672 }
2673 }
2674
2675 void
2676 Converter::exportOutputs()
2677 {
2678 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2679 for (unsigned int c = 0; c < 4; ++c) {
2680 if (!oData.exists(sub.cur->values, i, c))
2681 continue;
2682 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2683 info->out[i].slot[c] * 4);
2684 Value *val = oData.load(sub.cur->values, i, c, NULL);
2685 if (val)
2686 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2687 }
2688 }
2689 }
2690
2691 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2692 code(code),
2693 tgsi(NULL),
2694 tData(this), aData(this), pData(this), oData(this)
2695 {
2696 info = code->info;
2697
2698 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2699
2700 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2701 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2702 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2703 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2704
2705 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2706 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2707 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_ADDRESS, 0);
2708 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2709
2710 zero = mkImm((uint32_t)0);
2711
2712 vtxBaseValid = 0;
2713 }
2714
2715 Converter::~Converter()
2716 {
2717 }
2718
2719 inline const Converter::Location *
2720 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2721 {
2722 ValueMap::l_iterator it = s->values.l.find(v);
2723 return it == s->values.l.end() ? NULL : &it->second;
2724 }
2725
2726 template<typename T> inline void
2727 Converter::BindArgumentsPass::updateCallArgs(
2728 Instruction *i, void (Instruction::*setArg)(int, Value *),
2729 T (Function::*proto))
2730 {
2731 Function *g = i->asFlow()->target.fn;
2732 Subroutine *subg = conv.getSubroutine(g);
2733
2734 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2735 Value *v = (g->*proto)[a].get();
2736 const Converter::Location &l = *getValueLocation(subg, v);
2737 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2738
2739 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2740 }
2741 }
2742
2743 template<typename T> inline void
2744 Converter::BindArgumentsPass::updatePrototype(
2745 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2746 {
2747 (func->*updateSet)();
2748
2749 for (unsigned i = 0; i < set->getSize(); ++i) {
2750 Value *v = func->getLValue(i);
2751 const Converter::Location *l = getValueLocation(sub, v);
2752
2753 // only include values with a matching TGSI register
2754 if (set->test(i) && l && !conv.code->locals.count(*l))
2755 (func->*proto).push_back(v);
2756 }
2757 }
2758
2759 bool
2760 Converter::BindArgumentsPass::visit(Function *f)
2761 {
2762 sub = conv.getSubroutine(f);
2763
2764 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2765 !bi.end(); bi.next()) {
2766 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2767 i; i = i->next) {
2768 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2769 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2770 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2771 }
2772 }
2773 }
2774
2775 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2776 return true;
2777 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2778 &Function::buildLiveSets, &Function::ins);
2779 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2780 &Function::buildDefSets, &Function::outs);
2781
2782 return true;
2783 }
2784
2785 bool
2786 Converter::run()
2787 {
2788 BasicBlock *entry = new BasicBlock(prog->main);
2789 BasicBlock *leave = new BasicBlock(prog->main);
2790
2791 prog->main->setEntry(entry);
2792 prog->main->setExit(leave);
2793
2794 setPosition(entry, true);
2795 sub.cur = getSubroutine(prog->main);
2796
2797 if (info->io.genUserClip > 0) {
2798 for (int c = 0; c < 4; ++c)
2799 clipVtx[c] = getScratch();
2800 }
2801
2802 if (prog->getType() == Program::TYPE_FRAGMENT) {
2803 Symbol *sv = mkSysVal(SV_POSITION, 3);
2804 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2805 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2806 }
2807
2808 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2809 if (!handleInstruction(&code->insns[ip]))
2810 return false;
2811 }
2812
2813 if (!BindArgumentsPass(*this).run(prog))
2814 return false;
2815
2816 return true;
2817 }
2818
2819 } // unnamed namespace
2820
2821 namespace nv50_ir {
2822
2823 bool
2824 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2825 {
2826 tgsi::Source src(info);
2827 if (!src.scanSource())
2828 return false;
2829 tlsSize = info->bin.tlsSpace;
2830
2831 Converter builder(this, &src);
2832 return builder.run();
2833 }
2834
2835 } // namespace nv50_ir