739621a5b32ce6d550720317dea34fec919bb9f2
[mesa.git] / src / gallium / drivers / nv50 / nv50_program.c
1 /*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 #include "pipe/p_context.h"
24 #include "pipe/p_defines.h"
25 #include "pipe/p_state.h"
26 #include "pipe/p_inlines.h"
27
28 #include "pipe/p_shader_tokens.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_util.h"
31
32 #include "nv50_context.h"
33
34 #define NV50_SU_MAX_TEMP 127
35 #define NV50_SU_MAX_ADDR 4
36 //#define NV50_PROGRAM_DUMP
37
38 /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40 /* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * - Fuck it off, introduce a way to negate args for ops that
44 * support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * FP attr/result assignment - how?
61 * attrib
62 * - 0x16bc maps vp output onto fp hpos
63 * - 0x16c0 maps vp output onto fp col0
64 * result
65 * - colr always 0-3
66 * - depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * - 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * - XX == FP high something
78 */
79 struct nv50_reg {
80 enum {
81 P_TEMP,
82 P_ATTR,
83 P_RESULT,
84 P_CONST,
85 P_IMMD,
86 P_ADDR
87 } type;
88 int index;
89
90 int hw;
91 int mod;
92
93 int rhw; /* result hw for FP outputs, or interpolant index */
94 int acc; /* instruction where this reg is last read (first insn == 1) */
95 };
96
97 #define NV50_MOD_NEG 1
98 #define NV50_MOD_ABS 2
99 #define NV50_MOD_SAT 4
100
101 /* STACK: Conditionals and loops have to use the (per warp) stack.
102 * Stack entries consist of an entry type (divergent path, join at),
103 * a mask indicating the active threads of the warp, and an address.
104 * MPs can store 12 stack entries internally, if we need more (and
105 * we probably do), we have to create a stack buffer in VRAM.
106 */
107 /* impose low limits for now */
108 #define NV50_MAX_COND_NESTING 4
109 #define NV50_MAX_LOOP_NESTING 3
110
111 #define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
112
113 struct nv50_pc {
114 struct nv50_program *p;
115
116 /* hw resources */
117 struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
118 struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
119
120 /* tgsi resources */
121 struct nv50_reg *temp;
122 int temp_nr;
123 struct nv50_reg *attr;
124 int attr_nr;
125 struct nv50_reg *result;
126 int result_nr;
127 struct nv50_reg *param;
128 int param_nr;
129 struct nv50_reg *immd;
130 uint32_t *immd_buf;
131 int immd_nr;
132 struct nv50_reg **addr;
133 int addr_nr;
134 uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
135
136 struct nv50_reg *temp_temp[16];
137 unsigned temp_temp_nr;
138
139 /* broadcast and destination replacement regs */
140 struct nv50_reg *r_brdc;
141 struct nv50_reg *r_dst[4];
142
143 struct nv50_reg reg_instances[16];
144 unsigned reg_instance_nr;
145
146 unsigned interp_mode[32];
147 /* perspective interpolation registers */
148 struct nv50_reg *iv_p;
149 struct nv50_reg *iv_c;
150
151 struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
152 struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
153 struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
154 int if_lvl, loop_lvl;
155 unsigned loop_pos[NV50_MAX_LOOP_NESTING];
156
157 /* current instruction and total number of insns */
158 unsigned insn_cur;
159 unsigned insn_nr;
160
161 boolean allow32;
162
163 uint8_t edgeflag_out;
164 };
165
166 static INLINE struct nv50_reg *
167 reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
168 {
169 struct nv50_reg *ri;
170
171 assert(pc->reg_instance_nr < 16);
172 ri = &pc->reg_instances[pc->reg_instance_nr++];
173 if (reg) {
174 *ri = *reg;
175 reg->mod = 0;
176 }
177 return ri;
178 }
179
180 static INLINE void
181 ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
182 {
183 reg->type = type;
184 reg->index = index;
185 reg->hw = hw;
186 reg->mod = 0;
187 reg->rhw = -1;
188 reg->acc = 0;
189 }
190
191 static INLINE unsigned
192 popcnt4(uint32_t val)
193 {
194 static const unsigned cnt[16]
195 = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
196 return cnt[val & 0xf];
197 }
198
199 static void
200 terminate_mbb(struct nv50_pc *pc)
201 {
202 int i;
203
204 /* remove records of temporary address register values */
205 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
206 pc->r_addr[i].rhw = -1;
207 }
208
209 static void
210 alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
211 {
212 int i = 0;
213
214 if (reg->type == P_RESULT) {
215 if (pc->p->cfg.high_result < (reg->hw + 1))
216 pc->p->cfg.high_result = reg->hw + 1;
217 }
218
219 if (reg->type != P_TEMP)
220 return;
221
222 if (reg->hw >= 0) {
223 /*XXX: do this here too to catch FP temp-as-attr usage..
224 * not clean, but works */
225 if (pc->p->cfg.high_temp < (reg->hw + 1))
226 pc->p->cfg.high_temp = reg->hw + 1;
227 return;
228 }
229
230 if (reg->rhw != -1) {
231 /* try to allocate temporary with index rhw first */
232 if (!(pc->r_temp[reg->rhw])) {
233 pc->r_temp[reg->rhw] = reg;
234 reg->hw = reg->rhw;
235 if (pc->p->cfg.high_temp < (reg->rhw + 1))
236 pc->p->cfg.high_temp = reg->rhw + 1;
237 return;
238 }
239 /* make sure we don't get things like $r0 needs to go
240 * in $r1 and $r1 in $r0
241 */
242 i = pc->result_nr * 4;
243 }
244
245 for (; i < NV50_SU_MAX_TEMP; i++) {
246 if (!(pc->r_temp[i])) {
247 pc->r_temp[i] = reg;
248 reg->hw = i;
249 if (pc->p->cfg.high_temp < (i + 1))
250 pc->p->cfg.high_temp = i + 1;
251 return;
252 }
253 }
254
255 assert(0);
256 }
257
258 /* XXX: For shaders that aren't executed linearly (e.g. shaders that
259 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
260 * lest we risk temp_temps overwriting regs alloc'd "later".
261 */
262 static struct nv50_reg *
263 alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
264 {
265 struct nv50_reg *r;
266 int i;
267
268 if (dst && dst->type == P_TEMP && dst->hw == -1)
269 return dst;
270
271 for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
272 if (!pc->r_temp[i]) {
273 r = MALLOC_STRUCT(nv50_reg);
274 ctor_reg(r, P_TEMP, -1, i);
275 pc->r_temp[i] = r;
276 return r;
277 }
278 }
279
280 assert(0);
281 return NULL;
282 }
283
284 /* Assign the hw of the discarded temporary register src
285 * to the tgsi register dst and free src.
286 */
287 static void
288 assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
289 {
290 assert(src->index == -1 && src->hw != -1);
291
292 if (dst->hw != -1)
293 pc->r_temp[dst->hw] = NULL;
294 pc->r_temp[src->hw] = dst;
295 dst->hw = src->hw;
296
297 FREE(src);
298 }
299
300 /* release the hardware resource held by r */
301 static void
302 release_hw(struct nv50_pc *pc, struct nv50_reg *r)
303 {
304 assert(r->type == P_TEMP);
305 if (r->hw == -1)
306 return;
307
308 assert(pc->r_temp[r->hw] == r);
309 pc->r_temp[r->hw] = NULL;
310
311 r->acc = 0;
312 if (r->index == -1)
313 FREE(r);
314 }
315
316 static void
317 free_temp(struct nv50_pc *pc, struct nv50_reg *r)
318 {
319 if (r->index == -1) {
320 unsigned hw = r->hw;
321
322 FREE(pc->r_temp[hw]);
323 pc->r_temp[hw] = NULL;
324 }
325 }
326
327 static int
328 alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
329 {
330 int i;
331
332 if ((idx + 4) >= NV50_SU_MAX_TEMP)
333 return 1;
334
335 if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
336 pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
337 return alloc_temp4(pc, dst, idx + 4);
338
339 for (i = 0; i < 4; i++) {
340 dst[i] = MALLOC_STRUCT(nv50_reg);
341 ctor_reg(dst[i], P_TEMP, -1, idx + i);
342 pc->r_temp[idx + i] = dst[i];
343 }
344
345 return 0;
346 }
347
348 static void
349 free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
350 {
351 int i;
352
353 for (i = 0; i < 4; i++)
354 free_temp(pc, reg[i]);
355 }
356
357 static struct nv50_reg *
358 temp_temp(struct nv50_pc *pc)
359 {
360 if (pc->temp_temp_nr >= 16)
361 assert(0);
362
363 pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
364 return pc->temp_temp[pc->temp_temp_nr++];
365 }
366
367 static void
368 kill_temp_temp(struct nv50_pc *pc)
369 {
370 int i;
371
372 for (i = 0; i < pc->temp_temp_nr; i++)
373 free_temp(pc, pc->temp_temp[i]);
374 pc->temp_temp_nr = 0;
375 }
376
377 static int
378 ctor_immd_4u32(struct nv50_pc *pc,
379 uint32_t x, uint32_t y, uint32_t z, uint32_t w)
380 {
381 unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
382
383 pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
384
385 pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
386 pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
387 pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
388 pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
389
390 return pc->immd_nr++;
391 }
392
393 static INLINE int
394 ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
395 {
396 return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
397 }
398
399 static struct nv50_reg *
400 alloc_immd(struct nv50_pc *pc, float f)
401 {
402 struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
403 unsigned hw;
404
405 for (hw = 0; hw < pc->immd_nr * 4; hw++)
406 if (pc->immd_buf[hw] == fui(f))
407 break;
408
409 if (hw == pc->immd_nr * 4)
410 hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
411
412 ctor_reg(r, P_IMMD, -1, hw);
413 return r;
414 }
415
416 static struct nv50_program_exec *
417 exec(struct nv50_pc *pc)
418 {
419 struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
420
421 e->param.index = -1;
422 return e;
423 }
424
425 static void
426 emit(struct nv50_pc *pc, struct nv50_program_exec *e)
427 {
428 struct nv50_program *p = pc->p;
429
430 if (p->exec_tail)
431 p->exec_tail->next = e;
432 if (!p->exec_head)
433 p->exec_head = e;
434 p->exec_tail = e;
435 p->exec_size += (e->inst[0] & 1) ? 2 : 1;
436 }
437
438 static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
439
440 static boolean
441 is_long(struct nv50_program_exec *e)
442 {
443 if (e->inst[0] & 1)
444 return TRUE;
445 return FALSE;
446 }
447
448 static boolean
449 is_immd(struct nv50_program_exec *e)
450 {
451 if (is_long(e) && (e->inst[1] & 3) == 3)
452 return TRUE;
453 return FALSE;
454 }
455
456 static INLINE void
457 set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458 struct nv50_program_exec *e)
459 {
460 set_long(pc, e);
461 e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
462 e->inst[1] |= (pred << 7) | (idx << 12);
463 }
464
465 static INLINE void
466 set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
467 struct nv50_program_exec *e)
468 {
469 set_long(pc, e);
470 e->inst[1] &= ~((0x3 << 4) | (1 << 6));
471 e->inst[1] |= (idx << 4) | (on << 6);
472 }
473
474 static INLINE void
475 set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
476 {
477 if (is_long(e))
478 return;
479
480 e->inst[0] |= 1;
481 set_pred(pc, 0xf, 0, e);
482 set_pred_wr(pc, 0, 0, e);
483 }
484
485 static INLINE void
486 set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
487 {
488 if (dst->type == P_RESULT) {
489 set_long(pc, e);
490 e->inst[1] |= 0x00000008;
491 }
492
493 alloc_reg(pc, dst);
494 if (dst->hw > 63)
495 set_long(pc, e);
496 e->inst[0] |= (dst->hw << 2);
497 }
498
499 static INLINE void
500 set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
501 {
502 set_long(pc, e);
503 /* XXX: can't be predicated - bits overlap; cases where both
504 * are required should be avoided by using pc->allow32 */
505 set_pred(pc, 0, 0, e);
506 set_pred_wr(pc, 0, 0, e);
507
508 e->inst[1] |= 0x00000002 | 0x00000001;
509 e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
510 e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
511 }
512
513 static INLINE void
514 set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
515 {
516 assert(!(e->inst[0] & 0x0c000000));
517 assert(!(e->inst[1] & 0x00000004));
518
519 e->inst[0] |= (a->hw & 3) << 26;
520 e->inst[1] |= (a->hw >> 2) << 2;
521 }
522
523 static void
524 emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
525 struct nv50_reg *src0, uint16_t src1_val)
526 {
527 struct nv50_program_exec *e = exec(pc);
528
529 e->inst[0] = 0xd0000000 | (src1_val << 9);
530 e->inst[1] = 0x20000000;
531 set_long(pc, e);
532 e->inst[0] |= dst->hw << 2;
533 if (src0) /* otherwise will add to $a0, which is always 0 */
534 set_addr(e, src0);
535
536 emit(pc, e);
537 }
538
539 static struct nv50_reg *
540 alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
541 {
542 struct nv50_reg *a_tgsi = NULL, *a = NULL;
543 int i;
544 uint8_t avail = ~pc->addr_alloc;
545
546 if (!ref) {
547 /* allocate for TGSI_FILE_ADDRESS */
548 while (avail) {
549 i = ffs(avail) - 1;
550
551 if (pc->r_addr[i].rhw < 0 ||
552 pc->r_addr[i].acc != pc->insn_cur) {
553 pc->addr_alloc |= (1 << i);
554
555 pc->r_addr[i].rhw = -1;
556 pc->r_addr[i].index = i;
557 return &pc->r_addr[i];
558 }
559 avail &= ~(1 << i);
560 }
561 assert(0);
562 return NULL;
563 }
564
565 /* Allocate and set an address reg so we can access 'ref'.
566 *
567 * If and r_addr->index will be -1 or the hw index the value
568 * value in rhw is relative to. If rhw < 0, the reg has not
569 * been initialized or is in use for TGSI_FILE_ADDRESS.
570 */
571 while (avail) { /* only consider regs that are not TGSI */
572 i = ffs(avail) - 1;
573 avail &= ~(1 << i);
574
575 if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
576 /* prefer an usused reg with low hw index */
577 a = &pc->r_addr[i];
578 continue;
579 }
580 if (!a && pc->r_addr[i].acc != pc->insn_cur)
581 a = &pc->r_addr[i];
582
583 if (ref->hw - pc->r_addr[i].rhw >= 128)
584 continue;
585
586 if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
587 (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
588 pc->r_addr[i].acc = pc->insn_cur;
589 return &pc->r_addr[i];
590 }
591 }
592 assert(a);
593
594 if (ref->acc < 0)
595 a_tgsi = pc->addr[ref->index];
596
597 emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
598
599 a->rhw = ref->hw & ~0x7f;
600 a->acc = pc->insn_cur;
601 a->index = a_tgsi ? ref->index : -1;
602 return a;
603 }
604
605 #define INTERP_LINEAR 0
606 #define INTERP_FLAT 1
607 #define INTERP_PERSPECTIVE 2
608 #define INTERP_CENTROID 4
609
610 /* interpolant index has been stored in dst->rhw */
611 static void
612 emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
613 unsigned mode)
614 {
615 assert(dst->rhw != -1);
616 struct nv50_program_exec *e = exec(pc);
617
618 e->inst[0] |= 0x80000000;
619 set_dst(pc, dst, e);
620 e->inst[0] |= (dst->rhw << 16);
621
622 if (mode & INTERP_FLAT) {
623 e->inst[0] |= (1 << 8);
624 } else {
625 if (mode & INTERP_PERSPECTIVE) {
626 e->inst[0] |= (1 << 25);
627 alloc_reg(pc, iv);
628 e->inst[0] |= (iv->hw << 9);
629 }
630
631 if (mode & INTERP_CENTROID)
632 e->inst[0] |= (1 << 24);
633 }
634
635 emit(pc, e);
636 }
637
638 static void
639 set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
640 struct nv50_program_exec *e)
641 {
642 set_long(pc, e);
643
644 e->param.index = src->hw & 127;
645 e->param.shift = s;
646 e->param.mask = m << (s % 32);
647
648 if (src->hw > 127)
649 set_addr(e, alloc_addr(pc, src));
650 else
651 if (src->acc < 0) {
652 assert(src->type == P_CONST);
653 set_addr(e, pc->addr[src->index]);
654 }
655
656 e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
657 }
658
659 /* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
660 static void
661 emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
662 {
663 struct nv50_program_exec *e = exec(pc);
664
665 e->inst[0] = 0x10000000;
666 if (!pc->allow32)
667 set_long(pc, e);
668
669 set_dst(pc, dst, e);
670
671 if (!is_long(e) && src->type == P_IMMD) {
672 set_immd(pc, src, e);
673 /*XXX: 32-bit, but steals part of "half" reg space - need to
674 * catch and handle this case if/when we do half-regs
675 */
676 } else
677 if (src->type == P_IMMD || src->type == P_CONST) {
678 set_long(pc, e);
679 set_data(pc, src, 0x7f, 9, e);
680 e->inst[1] |= 0x20000000; /* mov from c[] */
681 } else {
682 if (src->type == P_ATTR) {
683 set_long(pc, e);
684 e->inst[1] |= 0x00200000;
685 }
686
687 alloc_reg(pc, src);
688 if (src->hw > 63)
689 set_long(pc, e);
690 e->inst[0] |= (src->hw << 9);
691 }
692
693 if (is_long(e) && !is_immd(e)) {
694 e->inst[1] |= 0x04000000; /* 32-bit */
695 e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
696 if (!(e->inst[1] & 0x20000000))
697 e->inst[1] |= 0x00030000; /* lane mask 2:3 */
698 } else
699 e->inst[0] |= 0x00008000;
700
701 emit(pc, e);
702 }
703
704 static INLINE void
705 emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
706 {
707 struct nv50_reg *imm = alloc_immd(pc, f);
708 emit_mov(pc, dst, imm);
709 FREE(imm);
710 }
711
712 static void
713 emit_nop(struct nv50_pc *pc)
714 {
715 struct nv50_program_exec *e = exec(pc);
716
717 e->inst[0] = 0xf0000000;
718 set_long(pc, e);
719 e->inst[1] = 0xe0000000;
720 emit(pc, e);
721 }
722
723 static boolean
724 check_swap_src_0_1(struct nv50_pc *pc,
725 struct nv50_reg **s0, struct nv50_reg **s1)
726 {
727 struct nv50_reg *src0 = *s0, *src1 = *s1;
728
729 if (src0->type == P_CONST) {
730 if (src1->type != P_CONST) {
731 *s0 = src1;
732 *s1 = src0;
733 return TRUE;
734 }
735 } else
736 if (src1->type == P_ATTR) {
737 if (src0->type != P_ATTR) {
738 *s0 = src1;
739 *s1 = src0;
740 return TRUE;
741 }
742 }
743
744 return FALSE;
745 }
746
747 static void
748 set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
749 struct nv50_program_exec *e)
750 {
751 struct nv50_reg *temp;
752
753 if (src->type != P_TEMP) {
754 temp = temp_temp(pc);
755 emit_mov(pc, temp, src);
756 src = temp;
757 }
758
759 alloc_reg(pc, src);
760 if (src->hw > 63)
761 set_long(pc, e);
762 e->inst[0] |= (src->hw << 9);
763 }
764
765 static void
766 set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
767 {
768 if (src->type == P_ATTR) {
769 set_long(pc, e);
770 e->inst[1] |= 0x00200000;
771 } else
772 if (src->type == P_CONST || src->type == P_IMMD) {
773 struct nv50_reg *temp = temp_temp(pc);
774
775 emit_mov(pc, temp, src);
776 src = temp;
777 }
778
779 alloc_reg(pc, src);
780 if (src->hw > 63)
781 set_long(pc, e);
782 e->inst[0] |= (src->hw << 9);
783 }
784
785 static void
786 set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
787 {
788 if (src->type == P_ATTR) {
789 struct nv50_reg *temp = temp_temp(pc);
790
791 emit_mov(pc, temp, src);
792 src = temp;
793 } else
794 if (src->type == P_CONST || src->type == P_IMMD) {
795 assert(!(e->inst[0] & 0x00800000));
796 if (e->inst[0] & 0x01000000) {
797 struct nv50_reg *temp = temp_temp(pc);
798
799 emit_mov(pc, temp, src);
800 src = temp;
801 } else {
802 set_data(pc, src, 0x7f, 16, e);
803 e->inst[0] |= 0x00800000;
804 }
805 }
806
807 alloc_reg(pc, src);
808 if (src->hw > 63)
809 set_long(pc, e);
810 e->inst[0] |= ((src->hw & 127) << 16);
811 }
812
813 static void
814 set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
815 {
816 set_long(pc, e);
817
818 if (src->type == P_ATTR) {
819 struct nv50_reg *temp = temp_temp(pc);
820
821 emit_mov(pc, temp, src);
822 src = temp;
823 } else
824 if (src->type == P_CONST || src->type == P_IMMD) {
825 assert(!(e->inst[0] & 0x01000000));
826 if (e->inst[0] & 0x00800000) {
827 struct nv50_reg *temp = temp_temp(pc);
828
829 emit_mov(pc, temp, src);
830 src = temp;
831 } else {
832 set_data(pc, src, 0x7f, 32+14, e);
833 e->inst[0] |= 0x01000000;
834 }
835 }
836
837 alloc_reg(pc, src);
838 e->inst[1] |= ((src->hw & 127) << 14);
839 }
840
841 static void
842 emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
843 {
844 struct nv50_program_exec *e = exec(pc);
845
846 assert(dst->type == P_TEMP);
847 e->inst[1] = 0x20000000 | (pred << 12);
848 set_long(pc, e);
849 set_dst(pc, dst, e);
850
851 emit(pc, e);
852 }
853
854 static void
855 emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
856 {
857 struct nv50_program_exec *e = exec(pc);
858
859 e->inst[0] = 0x000001fc;
860 e->inst[1] = 0xa0000008;
861 set_long(pc, e);
862 set_pred_wr(pc, 1, pred, e);
863 set_src_0_restricted(pc, src, e);
864
865 emit(pc, e);
866 }
867
868 static void
869 emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
870 struct nv50_reg *src1)
871 {
872 struct nv50_program_exec *e = exec(pc);
873
874 e->inst[0] |= 0xc0000000;
875
876 if (!pc->allow32)
877 set_long(pc, e);
878
879 check_swap_src_0_1(pc, &src0, &src1);
880 set_dst(pc, dst, e);
881 set_src_0(pc, src0, e);
882 if (src1->type == P_IMMD && !is_long(e)) {
883 if (src0->mod ^ src1->mod)
884 e->inst[0] |= 0x00008000;
885 set_immd(pc, src1, e);
886 } else {
887 set_src_1(pc, src1, e);
888 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
889 if (is_long(e))
890 e->inst[1] |= 0x08000000;
891 else
892 e->inst[0] |= 0x00008000;
893 }
894 }
895
896 emit(pc, e);
897 }
898
899 static void
900 emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
901 struct nv50_reg *src0, struct nv50_reg *src1)
902 {
903 struct nv50_program_exec *e = exec(pc);
904
905 e->inst[0] = 0xb0000000;
906
907 alloc_reg(pc, src1);
908 check_swap_src_0_1(pc, &src0, &src1);
909
910 if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
911 set_long(pc, e);
912 e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
913 ((src1->mod & NV50_MOD_NEG) << 27);
914 }
915
916 set_dst(pc, dst, e);
917 set_src_0(pc, src0, e);
918 if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
919 set_src_2(pc, src1, e);
920 else
921 if (src1->type == P_IMMD)
922 set_immd(pc, src1, e);
923 else
924 set_src_1(pc, src1, e);
925
926 emit(pc, e);
927 }
928
929 static void
930 emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
931 uint8_t s)
932 {
933 struct nv50_program_exec *e = exec(pc);
934
935 set_long(pc, e);
936 e->inst[1] |= 0xc0000000;
937
938 e->inst[0] |= dst->hw << 2;
939 e->inst[0] |= s << 16; /* shift left */
940 set_src_0_restricted(pc, src, e);
941
942 emit(pc, e);
943 }
944
945 static void
946 emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
947 struct nv50_reg *src0, struct nv50_reg *src1)
948 {
949 struct nv50_program_exec *e = exec(pc);
950
951 set_long(pc, e);
952 e->inst[0] |= 0xb0000000;
953 e->inst[1] |= (sub << 29);
954
955 check_swap_src_0_1(pc, &src0, &src1);
956 set_dst(pc, dst, e);
957 set_src_0(pc, src0, e);
958 set_src_1(pc, src1, e);
959
960 if (src0->mod & NV50_MOD_ABS)
961 e->inst[1] |= 0x00100000;
962 if (src1->mod & NV50_MOD_ABS)
963 e->inst[1] |= 0x00080000;
964
965 emit(pc, e);
966 }
967
968 static INLINE void
969 emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
970 struct nv50_reg *src1)
971 {
972 src1->mod ^= NV50_MOD_NEG;
973 emit_add(pc, dst, src0, src1);
974 src1->mod ^= NV50_MOD_NEG;
975 }
976
977 static void
978 emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
979 struct nv50_reg *src1, unsigned op)
980 {
981 struct nv50_program_exec *e = exec(pc);
982
983 e->inst[0] = 0xd0000000;
984 set_long(pc, e);
985
986 check_swap_src_0_1(pc, &src0, &src1);
987 set_dst(pc, dst, e);
988 set_src_0(pc, src0, e);
989
990 if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
991 op != TGSI_OPCODE_XOR)
992 assert(!"invalid bit op");
993
994 assert(!(src0->mod | src1->mod));
995
996 if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
997 set_immd(pc, src1, e);
998 if (op == TGSI_OPCODE_OR)
999 e->inst[0] |= 0x0100;
1000 else
1001 if (op == TGSI_OPCODE_XOR)
1002 e->inst[0] |= 0x8000;
1003 } else {
1004 set_src_1(pc, src1, e);
1005 e->inst[1] |= 0x04000000; /* 32 bit */
1006 if (op == TGSI_OPCODE_OR)
1007 e->inst[1] |= 0x4000;
1008 else
1009 if (op == TGSI_OPCODE_XOR)
1010 e->inst[1] |= 0x8000;
1011 }
1012
1013 emit(pc, e);
1014 }
1015
1016 static void
1017 emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1018 struct nv50_reg *src1, struct nv50_reg *src2)
1019 {
1020 struct nv50_program_exec *e = exec(pc);
1021
1022 e->inst[0] |= 0xe0000000;
1023
1024 check_swap_src_0_1(pc, &src0, &src1);
1025 set_dst(pc, dst, e);
1026 set_src_0(pc, src0, e);
1027 set_src_1(pc, src1, e);
1028 set_src_2(pc, src2, e);
1029
1030 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1031 e->inst[1] |= 0x04000000;
1032 if (src2->mod & NV50_MOD_NEG)
1033 e->inst[1] |= 0x08000000;
1034
1035 emit(pc, e);
1036 }
1037
1038 static INLINE void
1039 emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1040 struct nv50_reg *src1, struct nv50_reg *src2)
1041 {
1042 src2->mod ^= NV50_MOD_NEG;
1043 emit_mad(pc, dst, src0, src1, src2);
1044 src2->mod ^= NV50_MOD_NEG;
1045 }
1046
1047 #define NV50_FLOP_RCP 0
1048 #define NV50_FLOP_RSQ 2
1049 #define NV50_FLOP_LG2 3
1050 #define NV50_FLOP_SIN 4
1051 #define NV50_FLOP_COS 5
1052 #define NV50_FLOP_EX2 6
1053
1054 /* rcp, rsqrt, lg2 support neg and abs */
1055 static void
1056 emit_flop(struct nv50_pc *pc, unsigned sub,
1057 struct nv50_reg *dst, struct nv50_reg *src)
1058 {
1059 struct nv50_program_exec *e = exec(pc);
1060
1061 e->inst[0] |= 0x90000000;
1062 if (sub || src->mod) {
1063 set_long(pc, e);
1064 e->inst[1] |= (sub << 29);
1065 }
1066
1067 set_dst(pc, dst, e);
1068 set_src_0_restricted(pc, src, e);
1069
1070 assert(!src->mod || sub < 4);
1071
1072 if (src->mod & NV50_MOD_NEG)
1073 e->inst[1] |= 0x04000000;
1074 if (src->mod & NV50_MOD_ABS)
1075 e->inst[1] |= 0x00100000;
1076
1077 emit(pc, e);
1078 }
1079
1080 static void
1081 emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1082 {
1083 struct nv50_program_exec *e = exec(pc);
1084
1085 e->inst[0] |= 0xb0000000;
1086
1087 set_dst(pc, dst, e);
1088 set_src_0(pc, src, e);
1089 set_long(pc, e);
1090 e->inst[1] |= (6 << 29) | 0x00004000;
1091
1092 if (src->mod & NV50_MOD_NEG)
1093 e->inst[1] |= 0x04000000;
1094 if (src->mod & NV50_MOD_ABS)
1095 e->inst[1] |= 0x00100000;
1096
1097 emit(pc, e);
1098 }
1099
1100 static void
1101 emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1102 {
1103 struct nv50_program_exec *e = exec(pc);
1104
1105 e->inst[0] |= 0xb0000000;
1106
1107 set_dst(pc, dst, e);
1108 set_src_0(pc, src, e);
1109 set_long(pc, e);
1110 e->inst[1] |= (6 << 29);
1111
1112 if (src->mod & NV50_MOD_NEG)
1113 e->inst[1] |= 0x04000000;
1114 if (src->mod & NV50_MOD_ABS)
1115 e->inst[1] |= 0x00100000;
1116
1117 emit(pc, e);
1118 }
1119
1120 #define CVTOP_RN 0x01
1121 #define CVTOP_FLOOR 0x03
1122 #define CVTOP_CEIL 0x05
1123 #define CVTOP_TRUNC 0x07
1124 #define CVTOP_SAT 0x08
1125 #define CVTOP_ABS 0x10
1126
1127 /* 0x04 == 32 bit dst */
1128 /* 0x40 == dst is float */
1129 /* 0x80 == src is float */
1130 #define CVT_F32_F32 0xc4
1131 #define CVT_F32_S32 0x44
1132 #define CVT_S32_F32 0x8c
1133 #define CVT_S32_S32 0x0c
1134 #define CVT_NEG 0x20
1135 #define CVT_RI 0x08
1136
1137 static void
1138 emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1139 int wp, unsigned cvn, unsigned fmt)
1140 {
1141 struct nv50_program_exec *e;
1142
1143 e = exec(pc);
1144 set_long(pc, e);
1145
1146 e->inst[0] |= 0xa0000000;
1147 e->inst[1] |= 0x00004000; /* 32 bit src */
1148 e->inst[1] |= (cvn << 16);
1149 e->inst[1] |= (fmt << 24);
1150 set_src_0(pc, src, e);
1151
1152 if (wp >= 0)
1153 set_pred_wr(pc, 1, wp, e);
1154
1155 if (dst)
1156 set_dst(pc, dst, e);
1157 else {
1158 e->inst[0] |= 0x000001fc;
1159 e->inst[1] |= 0x00000008;
1160 }
1161
1162 emit(pc, e);
1163 }
1164
1165 /* nv50 Condition codes:
1166 * 0x1 = LT
1167 * 0x2 = EQ
1168 * 0x3 = LE
1169 * 0x4 = GT
1170 * 0x5 = NE
1171 * 0x6 = GE
1172 * 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1173 * 0x8 = unordered bit (allows NaN)
1174 */
1175 static void
1176 emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1177 struct nv50_reg *src0, struct nv50_reg *src1)
1178 {
1179 static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1180
1181 struct nv50_program_exec *e = exec(pc);
1182 struct nv50_reg *rdst;
1183
1184 assert(ccode < 16);
1185 if (check_swap_src_0_1(pc, &src0, &src1))
1186 ccode = cc_swapped[ccode & 7] | (ccode & 8);
1187
1188 rdst = dst;
1189 if (dst && dst->type != P_TEMP)
1190 dst = alloc_temp(pc, NULL);
1191
1192 /* set.u32 */
1193 set_long(pc, e);
1194 e->inst[0] |= 0xb0000000;
1195 e->inst[1] |= 0x60000000 | (ccode << 14);
1196
1197 /* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1198 * that doesn't seem to match what the hw actually does
1199 e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1200 */
1201
1202 if (wp >= 0)
1203 set_pred_wr(pc, 1, wp, e);
1204 if (dst)
1205 set_dst(pc, dst, e);
1206 else {
1207 e->inst[0] |= 0x000001fc;
1208 e->inst[1] |= 0x00000008;
1209 }
1210
1211 set_src_0(pc, src0, e);
1212 set_src_1(pc, src1, e);
1213
1214 emit(pc, e);
1215
1216 /* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1217 if (rdst)
1218 emit_cvt(pc, rdst, dst, -1, CVTOP_ABS | CVTOP_RN, CVT_F32_S32);
1219 if (rdst && rdst != dst)
1220 free_temp(pc, dst);
1221 }
1222
1223 static INLINE unsigned
1224 map_tgsi_setop_cc(unsigned op)
1225 {
1226 switch (op) {
1227 case TGSI_OPCODE_SLT: return 0x1;
1228 case TGSI_OPCODE_SGE: return 0x6;
1229 case TGSI_OPCODE_SEQ: return 0x2;
1230 case TGSI_OPCODE_SGT: return 0x4;
1231 case TGSI_OPCODE_SLE: return 0x3;
1232 case TGSI_OPCODE_SNE: return 0xd;
1233 default:
1234 assert(0);
1235 return 0;
1236 }
1237 }
1238
1239 static INLINE void
1240 emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1241 {
1242 emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32 | CVT_RI);
1243 }
1244
1245 static void
1246 emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1247 struct nv50_reg *v, struct nv50_reg *e)
1248 {
1249 struct nv50_reg *temp = alloc_temp(pc, NULL);
1250
1251 emit_flop(pc, NV50_FLOP_LG2, temp, v);
1252 emit_mul(pc, temp, temp, e);
1253 emit_preex2(pc, temp, temp);
1254 emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1255
1256 free_temp(pc, temp);
1257 }
1258
1259 static INLINE void
1260 emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1261 {
1262 emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32);
1263 }
1264
1265 static INLINE void
1266 emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1267 {
1268 emit_cvt(pc, dst, src, -1, CVTOP_SAT, CVT_F32_F32);
1269 }
1270
1271 static void
1272 emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1273 struct nv50_reg **src)
1274 {
1275 struct nv50_reg *one = alloc_immd(pc, 1.0);
1276 struct nv50_reg *zero = alloc_immd(pc, 0.0);
1277 struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1278 struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
1279 struct nv50_reg *tmp[4];
1280 boolean allow32 = pc->allow32;
1281
1282 pc->allow32 = FALSE;
1283
1284 if (mask & (3 << 1)) {
1285 tmp[0] = alloc_temp(pc, NULL);
1286 emit_minmax(pc, 4, tmp[0], src[0], zero);
1287 }
1288
1289 if (mask & (1 << 2)) {
1290 set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1291
1292 tmp[1] = temp_temp(pc);
1293 emit_minmax(pc, 4, tmp[1], src[1], zero);
1294
1295 tmp[3] = temp_temp(pc);
1296 emit_minmax(pc, 4, tmp[3], src[3], neg128);
1297 emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1298
1299 emit_pow(pc, dst[2], tmp[1], tmp[3]);
1300 emit_mov(pc, dst[2], zero);
1301 set_pred(pc, 3, 0, pc->p->exec_tail);
1302 }
1303
1304 if (mask & (1 << 1))
1305 assimilate_temp(pc, dst[1], tmp[0]);
1306 else
1307 if (mask & (1 << 2))
1308 free_temp(pc, tmp[0]);
1309
1310 pc->allow32 = allow32;
1311
1312 /* do this last, in case src[i,j] == dst[0,3] */
1313 if (mask & (1 << 0))
1314 emit_mov(pc, dst[0], one);
1315
1316 if (mask & (1 << 3))
1317 emit_mov(pc, dst[3], one);
1318
1319 FREE(pos128);
1320 FREE(neg128);
1321 FREE(zero);
1322 FREE(one);
1323 }
1324
1325 static INLINE void
1326 emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1327 {
1328 emit_cvt(pc, dst, src, -1, CVTOP_RN, CVT_F32_F32 | CVT_NEG);
1329 }
1330
1331 static void
1332 emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1333 {
1334 struct nv50_program_exec *e;
1335 const int r_pred = 1;
1336
1337 e = exec(pc);
1338 e->inst[0] = 0x00000002; /* discard */
1339 set_long(pc, e); /* sets cond code to ALWAYS */
1340
1341 if (src) {
1342 unsigned cvn = CVT_F32_F32;
1343
1344 set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1345
1346 if (src->mod & NV50_MOD_NEG)
1347 cvn |= CVT_NEG;
1348 /* write predicate reg */
1349 emit_cvt(pc, NULL, src, r_pred, CVTOP_RN, cvn);
1350 }
1351
1352 emit(pc, e);
1353 }
1354
1355 static struct nv50_program_exec *
1356 emit_breakaddr(struct nv50_pc *pc)
1357 {
1358 struct nv50_program_exec *e = exec(pc);
1359
1360 e->inst[0] = 0x40000002;
1361 set_long(pc, e);
1362
1363 emit(pc, e);
1364 return e;
1365 }
1366
1367 static void
1368 emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1369 {
1370 struct nv50_program_exec *e = exec(pc);
1371
1372 e->inst[0] = 0x50000002;
1373 set_long(pc, e);
1374 if (pred >= 0)
1375 set_pred(pc, cc, pred, e);
1376
1377 emit(pc, e);
1378 }
1379
1380 static struct nv50_program_exec *
1381 emit_joinat(struct nv50_pc *pc)
1382 {
1383 struct nv50_program_exec *e = exec(pc);
1384
1385 e->inst[0] = 0xa0000002;
1386 set_long(pc, e);
1387
1388 emit(pc, e);
1389 return e;
1390 }
1391
1392 static struct nv50_program_exec *
1393 emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1394 {
1395 struct nv50_program_exec *e = exec(pc);
1396
1397 e->inst[0] = 0x10000002;
1398 set_long(pc, e);
1399 if (pred >= 0)
1400 set_pred(pc, cc, pred, e);
1401 emit(pc, e);
1402 return pc->p->exec_tail;
1403 }
1404
1405 static void
1406 emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1407 {
1408 struct nv50_program_exec *e = exec(pc);
1409
1410 e->inst[0] = 0x30000002;
1411 set_long(pc, e);
1412 if (pred >= 0)
1413 set_pred(pc, cc, pred, e);
1414
1415 emit(pc, e);
1416 }
1417
1418 #define QOP_ADD 0
1419 #define QOP_SUBR 1
1420 #define QOP_SUB 2
1421 #define QOP_MOV_SRC1 3
1422
1423 /* For a quad of threads / top left, top right, bottom left, bottom right
1424 * pixels, do a different operation, and take src0 from a specific thread.
1425 */
1426 static void
1427 emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1428 struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1429 {
1430 struct nv50_program_exec *e = exec(pc);
1431
1432 e->inst[0] = 0xc0000000;
1433 e->inst[1] = 0x80000000;
1434 set_long(pc, e);
1435 e->inst[0] |= lane_src0 << 16;
1436 set_src_0(pc, src0, e);
1437 set_src_2(pc, src1, e);
1438
1439 if (wp >= 0)
1440 set_pred_wr(pc, 1, wp, e);
1441
1442 if (dst)
1443 set_dst(pc, dst, e);
1444 else {
1445 e->inst[0] |= 0x000001fc;
1446 e->inst[1] |= 0x00000008;
1447 }
1448
1449 e->inst[0] |= (qop & 3) << 20;
1450 e->inst[1] |= (qop >> 2) << 22;
1451
1452 emit(pc, e);
1453 }
1454
1455 static void
1456 load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1457 struct nv50_reg **src, unsigned arg, boolean proj)
1458 {
1459 int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1460
1461 src[0]->mod |= NV50_MOD_ABS;
1462 src[1]->mod |= NV50_MOD_ABS;
1463 src[2]->mod |= NV50_MOD_ABS;
1464
1465 emit_minmax(pc, 4, t[2], src[0], src[1]);
1466 emit_minmax(pc, 4, t[2], src[2], t[2]);
1467
1468 src[0]->mod = mod[0];
1469 src[1]->mod = mod[1];
1470 src[2]->mod = mod[2];
1471
1472 if (proj && 0 /* looks more correct without this */)
1473 emit_mul(pc, t[2], t[2], src[3]);
1474 else
1475 if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1476 emit_mov(pc, t[3], src[3]);
1477
1478 emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1479
1480 emit_mul(pc, t[0], src[0], t[2]);
1481 emit_mul(pc, t[1], src[1], t[2]);
1482 emit_mul(pc, t[2], src[2], t[2]);
1483 }
1484
1485 static void
1486 load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1487 struct nv50_reg **src, unsigned dim, unsigned arg)
1488 {
1489 unsigned c, mode;
1490
1491 if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1492 mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1493
1494 t[3]->rhw = src[3]->rhw;
1495 emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1496 emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1497
1498 for (c = 0; c < dim; ++c) {
1499 t[c]->rhw = src[c]->rhw;
1500 emit_interp(pc, t[c], t[3], mode);
1501 }
1502 if (arg != dim) { /* depth reference value */
1503 t[dim]->rhw = src[2]->rhw;
1504 emit_interp(pc, t[dim], t[3], mode);
1505 }
1506 } else {
1507 /* XXX: for some reason the blob sometimes uses MAD
1508 * (mad f32 $rX $rY $rZ neg $r63)
1509 */
1510 emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1511 for (c = 0; c < dim; ++c)
1512 emit_mul(pc, t[c], src[c], t[3]);
1513 if (arg != dim) /* depth reference value */
1514 emit_mul(pc, t[dim], src[2], t[3]);
1515 }
1516 }
1517
1518 static INLINE void
1519 get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1520 {
1521 switch (type) {
1522 case TGSI_TEXTURE_1D:
1523 *arg = *dim = 1;
1524 break;
1525 case TGSI_TEXTURE_SHADOW1D:
1526 *dim = 1;
1527 *arg = 2;
1528 break;
1529 case TGSI_TEXTURE_UNKNOWN:
1530 case TGSI_TEXTURE_2D:
1531 case TGSI_TEXTURE_RECT:
1532 *arg = *dim = 2;
1533 break;
1534 case TGSI_TEXTURE_SHADOW2D:
1535 case TGSI_TEXTURE_SHADOWRECT:
1536 *dim = 2;
1537 *arg = 3;
1538 break;
1539 case TGSI_TEXTURE_3D:
1540 case TGSI_TEXTURE_CUBE:
1541 *dim = *arg = 3;
1542 break;
1543 default:
1544 assert(0);
1545 break;
1546 }
1547 }
1548
1549 /* We shouldn't execute TEXLOD if any of the pixels in a quad have
1550 * different LOD values, so branch off groups of equal LOD.
1551 */
1552 static void
1553 emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1554 struct nv50_reg *src, struct nv50_program_exec *tex)
1555 {
1556 struct nv50_program_exec *join_at;
1557 unsigned i, target = pc->p->exec_size + 7 * 2;
1558
1559 /* Subtract lod of each pixel from lod of top left pixel, jump
1560 * texlod insn if result is 0, then repeat for 2 other pixels.
1561 */
1562 join_at = emit_joinat(pc);
1563 emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1564 emit_branch(pc, 0, 2)->param.index = target;
1565
1566 for (i = 1; i < 4; ++i) {
1567 emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1568 emit_branch(pc, 0, 2)->param.index = target;
1569 }
1570
1571 emit_mov(pc, tlod, src); /* target */
1572 emit(pc, tex); /* texlod */
1573
1574 join_at->param.index = target + 2 * 2;
1575 JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1576 }
1577
1578 static void
1579 emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1580 struct nv50_program_exec *tex)
1581 {
1582 struct nv50_program_exec *e;
1583 struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1584 int r_pred = 0;
1585 unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1586
1587 pc->allow32 = FALSE;
1588 ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1589
1590 /* Subtract bias value of thread i from bias values of each thread,
1591 * store result in r_pred, and set bit i in r_bits if result was 0.
1592 */
1593 assert(arg < 4);
1594 for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1595 emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1596 emit_mov(pc, r_bits, &imm_1248);
1597 set_pred(pc, 2, r_pred, pc->p->exec_tail);
1598 }
1599 emit_mov_to_pred(pc, r_pred, r_bits);
1600
1601 /* The lanes of a quad are now grouped by the bit in r_pred they have
1602 * set. Put the input values for TEX into a new register set for each
1603 * group and execute TEX only for a specific group.
1604 * We cannot use the same register set for each group because we need
1605 * the derivatives, which are implicitly calculated, to be correct.
1606 */
1607 for (i = 1; i < 4; ++i) {
1608 alloc_temp4(pc, t123[i], 0);
1609
1610 for (c = 0; c <= arg; ++c)
1611 emit_mov(pc, t123[i][c], t[c]);
1612
1613 *(e = exec(pc)) = *(tex);
1614 e->inst[0] &= ~0x01fc;
1615 set_dst(pc, t123[i][0], e);
1616 set_pred(pc, cc[i], r_pred, e);
1617 emit(pc, e);
1618 }
1619 /* finally TEX on the original regs (where we kept the input) */
1620 set_pred(pc, cc[0], r_pred, tex);
1621 emit(pc, tex);
1622
1623 /* put the 3 * n other results into regs for lane 0 */
1624 n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1625 for (i = 1; i < 4; ++i) {
1626 for (c = 0; c < n; ++c) {
1627 emit_mov(pc, t[c], t123[i][c]);
1628 set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1629 }
1630 free_temp4(pc, t123[i]);
1631 }
1632
1633 emit_nop(pc);
1634 free_temp(pc, r_bits);
1635 }
1636
1637 static void
1638 emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1639 struct nv50_reg **src, unsigned unit, unsigned type,
1640 boolean proj, int bias_lod)
1641 {
1642 struct nv50_reg *t[4];
1643 struct nv50_program_exec *e;
1644 unsigned c, dim, arg;
1645
1646 /* t[i] must be within a single 128 bit super-reg */
1647 alloc_temp4(pc, t, 0);
1648
1649 e = exec(pc);
1650 e->inst[0] = 0xf0000000;
1651 set_long(pc, e);
1652 set_dst(pc, t[0], e);
1653
1654 /* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1655 e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1656
1657 /* live flag (don't set if TEX results affect input to another TEX): */
1658 /* e->inst[0] |= 0x00000004; */
1659
1660 get_tex_dim(type, &dim, &arg);
1661
1662 if (type == TGSI_TEXTURE_CUBE) {
1663 e->inst[0] |= 0x08000000;
1664 load_cube_tex_coords(pc, t, src, arg, proj);
1665 } else
1666 if (proj)
1667 load_proj_tex_coords(pc, t, src, dim, arg);
1668 else {
1669 for (c = 0; c < dim; c++)
1670 emit_mov(pc, t[c], src[c]);
1671 if (arg != dim) /* depth reference value (always src.z here) */
1672 emit_mov(pc, t[dim], src[2]);
1673 }
1674
1675 e->inst[0] |= (mask & 0x3) << 25;
1676 e->inst[1] |= (mask & 0xc) << 12;
1677
1678 if (!bias_lod) {
1679 e->inst[0] |= (arg - 1) << 22;
1680 emit(pc, e);
1681 } else
1682 if (bias_lod < 0) {
1683 e->inst[0] |= arg << 22;
1684 e->inst[1] |= 0x20000000; /* texbias */
1685 emit_mov(pc, t[arg], src[3]);
1686 emit_texbias_sequence(pc, t, arg, e);
1687 } else {
1688 e->inst[0] |= arg << 22;
1689 e->inst[1] |= 0x40000000; /* texlod */
1690 emit_mov(pc, t[arg], src[3]);
1691 emit_texlod_sequence(pc, t[arg], src[3], e);
1692 }
1693
1694 #if 1
1695 c = 0;
1696 if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1697 if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1698 if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1699 if (mask & 8) emit_mov(pc, dst[3], t[c]);
1700
1701 free_temp4(pc, t);
1702 #else
1703 /* XXX: if p.e. MUL is used directly after TEX, it would still use
1704 * the texture coordinates, not the fetched values: latency ? */
1705
1706 for (c = 0; c < 4; c++) {
1707 if (mask & (1 << c))
1708 assimilate_temp(pc, dst[c], t[c]);
1709 else
1710 free_temp(pc, t[c]);
1711 }
1712 #endif
1713 }
1714
1715 static void
1716 emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1717 {
1718 struct nv50_program_exec *e = exec(pc);
1719
1720 assert(src->type == P_TEMP);
1721
1722 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1723 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1724 set_long(pc, e);
1725 set_dst(pc, dst, e);
1726 set_src_0(pc, src, e);
1727 set_src_2(pc, src, e);
1728
1729 emit(pc, e);
1730 }
1731
1732 static void
1733 emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1734 {
1735 struct nv50_program_exec *e = exec(pc);
1736
1737 assert(src->type == P_TEMP);
1738
1739 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1740 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1741 set_long(pc, e);
1742 set_dst(pc, dst, e);
1743 set_src_0(pc, src, e);
1744 set_src_2(pc, src, e);
1745
1746 emit(pc, e);
1747 }
1748
1749 static void
1750 convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1751 {
1752 unsigned q = 0, m = ~0;
1753
1754 assert(!is_long(e));
1755
1756 switch (e->inst[0] >> 28) {
1757 case 0x1:
1758 /* MOV */
1759 q = 0x0403c000;
1760 m = 0xffff7fff;
1761 break;
1762 case 0x8:
1763 /* INTERP (move centroid, perspective and flat bits) */
1764 m = ~0x03000100;
1765 q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1766 q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1767 break;
1768 case 0x9:
1769 /* RCP */
1770 break;
1771 case 0xB:
1772 /* ADD */
1773 m = ~(127 << 16);
1774 q = ((e->inst[0] & (~m)) >> 2);
1775 break;
1776 case 0xC:
1777 /* MUL */
1778 m = ~0x00008000;
1779 q = ((e->inst[0] & (~m)) << 12);
1780 break;
1781 case 0xE:
1782 /* MAD (if src2 == dst) */
1783 q = ((e->inst[0] & 0x1fc) << 12);
1784 break;
1785 default:
1786 assert(0);
1787 break;
1788 }
1789
1790 set_long(pc, e);
1791 pc->p->exec_size++;
1792
1793 e->inst[0] &= m;
1794 e->inst[1] |= q;
1795 }
1796
1797 /* Some operations support an optional negation flag. */
1798 static boolean
1799 negate_supported(const struct tgsi_full_instruction *insn, int i)
1800 {
1801 switch (insn->Instruction.Opcode) {
1802 case TGSI_OPCODE_ADD:
1803 case TGSI_OPCODE_COS:
1804 case TGSI_OPCODE_DDX:
1805 case TGSI_OPCODE_DDY:
1806 case TGSI_OPCODE_DP3:
1807 case TGSI_OPCODE_DP4:
1808 case TGSI_OPCODE_EX2:
1809 case TGSI_OPCODE_KIL:
1810 case TGSI_OPCODE_LG2:
1811 case TGSI_OPCODE_MAD:
1812 case TGSI_OPCODE_MUL:
1813 case TGSI_OPCODE_POW:
1814 case TGSI_OPCODE_RCP:
1815 case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1816 case TGSI_OPCODE_SCS:
1817 case TGSI_OPCODE_SIN:
1818 case TGSI_OPCODE_SUB:
1819 return TRUE;
1820 default:
1821 return FALSE;
1822 }
1823 }
1824
1825 /* Return a read mask for source registers deduced from opcode & write mask. */
1826 static unsigned
1827 nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1828 {
1829 unsigned x, mask = insn->Dst[0].Register.WriteMask;
1830
1831 switch (insn->Instruction.Opcode) {
1832 case TGSI_OPCODE_COS:
1833 case TGSI_OPCODE_SIN:
1834 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1835 case TGSI_OPCODE_DP3:
1836 return 0x7;
1837 case TGSI_OPCODE_DP4:
1838 case TGSI_OPCODE_DPH:
1839 case TGSI_OPCODE_KIL: /* WriteMask ignored */
1840 return 0xf;
1841 case TGSI_OPCODE_DST:
1842 return mask & (c ? 0xa : 0x6);
1843 case TGSI_OPCODE_EX2:
1844 case TGSI_OPCODE_LG2:
1845 case TGSI_OPCODE_POW:
1846 case TGSI_OPCODE_RCP:
1847 case TGSI_OPCODE_RSQ:
1848 case TGSI_OPCODE_SCS:
1849 return 0x1;
1850 case TGSI_OPCODE_IF:
1851 return 0x1;
1852 case TGSI_OPCODE_LIT:
1853 return 0xb;
1854 case TGSI_OPCODE_TEX:
1855 case TGSI_OPCODE_TXB:
1856 case TGSI_OPCODE_TXL:
1857 case TGSI_OPCODE_TXP:
1858 {
1859 const struct tgsi_instruction_texture *tex;
1860
1861 assert(insn->Instruction.Texture);
1862 tex = &insn->Texture;
1863
1864 mask = 0x7;
1865 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
1866 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
1867 mask |= 0x8; /* bias, lod or proj */
1868
1869 switch (tex->Texture) {
1870 case TGSI_TEXTURE_1D:
1871 mask &= 0x9;
1872 break;
1873 case TGSI_TEXTURE_SHADOW1D:
1874 mask &= 0x5;
1875 break;
1876 case TGSI_TEXTURE_2D:
1877 mask &= 0xb;
1878 break;
1879 default:
1880 break;
1881 }
1882 }
1883 return mask;
1884 case TGSI_OPCODE_XPD:
1885 x = 0;
1886 if (mask & 1) x |= 0x6;
1887 if (mask & 2) x |= 0x5;
1888 if (mask & 4) x |= 0x3;
1889 return x;
1890 default:
1891 break;
1892 }
1893
1894 return mask;
1895 }
1896
1897 static struct nv50_reg *
1898 tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1899 {
1900 switch (dst->Register.File) {
1901 case TGSI_FILE_TEMPORARY:
1902 return &pc->temp[dst->Register.Index * 4 + c];
1903 case TGSI_FILE_OUTPUT:
1904 return &pc->result[dst->Register.Index * 4 + c];
1905 case TGSI_FILE_ADDRESS:
1906 {
1907 struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
1908 if (!r) {
1909 r = alloc_addr(pc, NULL);
1910 pc->addr[dst->Register.Index * 4 + c] = r;
1911 }
1912 assert(r);
1913 return r;
1914 }
1915 case TGSI_FILE_NULL:
1916 return NULL;
1917 default:
1918 break;
1919 }
1920
1921 return NULL;
1922 }
1923
1924 static struct nv50_reg *
1925 tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1926 boolean neg)
1927 {
1928 struct nv50_reg *r = NULL;
1929 struct nv50_reg *temp;
1930 unsigned sgn, c, swz;
1931
1932 if (src->Register.File != TGSI_FILE_CONSTANT)
1933 assert(!src->Register.Indirect);
1934
1935 sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1936
1937 c = tgsi_util_get_full_src_register_swizzle(src, chan);
1938 switch (c) {
1939 case TGSI_SWIZZLE_X:
1940 case TGSI_SWIZZLE_Y:
1941 case TGSI_SWIZZLE_Z:
1942 case TGSI_SWIZZLE_W:
1943 switch (src->Register.File) {
1944 case TGSI_FILE_INPUT:
1945 r = &pc->attr[src->Register.Index * 4 + c];
1946 break;
1947 case TGSI_FILE_TEMPORARY:
1948 r = &pc->temp[src->Register.Index * 4 + c];
1949 break;
1950 case TGSI_FILE_CONSTANT:
1951 if (!src->Register.Indirect) {
1952 r = &pc->param[src->Register.Index * 4 + c];
1953 break;
1954 }
1955 /* Indicate indirection by setting r->acc < 0 and
1956 * use the index field to select the address reg.
1957 */
1958 r = reg_instance(pc, NULL);
1959 swz = tgsi_util_get_src_register_swizzle(
1960 &src->Indirect, 0);
1961 ctor_reg(r, P_CONST,
1962 src->Indirect.Index * 4 + swz,
1963 src->Register.Index * 4 + c);
1964 r->acc = -1;
1965 break;
1966 case TGSI_FILE_IMMEDIATE:
1967 r = &pc->immd[src->Register.Index * 4 + c];
1968 break;
1969 case TGSI_FILE_SAMPLER:
1970 break;
1971 case TGSI_FILE_ADDRESS:
1972 r = pc->addr[src->Register.Index * 4 + c];
1973 assert(r);
1974 break;
1975 default:
1976 assert(0);
1977 break;
1978 }
1979 break;
1980 default:
1981 assert(0);
1982 break;
1983 }
1984
1985 switch (sgn) {
1986 case TGSI_UTIL_SIGN_KEEP:
1987 break;
1988 case TGSI_UTIL_SIGN_CLEAR:
1989 temp = temp_temp(pc);
1990 emit_abs(pc, temp, r);
1991 r = temp;
1992 break;
1993 case TGSI_UTIL_SIGN_TOGGLE:
1994 if (neg)
1995 r->mod = NV50_MOD_NEG;
1996 else {
1997 temp = temp_temp(pc);
1998 emit_neg(pc, temp, r);
1999 r = temp;
2000 }
2001 break;
2002 case TGSI_UTIL_SIGN_SET:
2003 temp = temp_temp(pc);
2004 emit_cvt(pc, temp, r, -1, CVTOP_ABS, CVT_F32_F32 | CVT_NEG);
2005 r = temp;
2006 break;
2007 default:
2008 assert(0);
2009 break;
2010 }
2011
2012 if (r && r->acc >= 0 && r != temp)
2013 return reg_instance(pc, r);
2014 return r;
2015 }
2016
2017 /* return TRUE for ops that produce only a single result */
2018 static boolean
2019 is_scalar_op(unsigned op)
2020 {
2021 switch (op) {
2022 case TGSI_OPCODE_COS:
2023 case TGSI_OPCODE_DP2:
2024 case TGSI_OPCODE_DP3:
2025 case TGSI_OPCODE_DP4:
2026 case TGSI_OPCODE_DPH:
2027 case TGSI_OPCODE_EX2:
2028 case TGSI_OPCODE_LG2:
2029 case TGSI_OPCODE_POW:
2030 case TGSI_OPCODE_RCP:
2031 case TGSI_OPCODE_RSQ:
2032 case TGSI_OPCODE_SIN:
2033 /*
2034 case TGSI_OPCODE_KIL:
2035 case TGSI_OPCODE_LIT:
2036 case TGSI_OPCODE_SCS:
2037 */
2038 return TRUE;
2039 default:
2040 return FALSE;
2041 }
2042 }
2043
2044 /* Returns a bitmask indicating which dst components depend
2045 * on source s, component c (reverse of nv50_tgsi_src_mask).
2046 */
2047 static unsigned
2048 nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2049 {
2050 if (is_scalar_op(op))
2051 return 0x1;
2052
2053 switch (op) {
2054 case TGSI_OPCODE_DST:
2055 return (1 << c) & (s ? 0xa : 0x6);
2056 case TGSI_OPCODE_XPD:
2057 switch (c) {
2058 case 0: return 0x6;
2059 case 1: return 0x5;
2060 case 2: return 0x3;
2061 case 3: return 0x0;
2062 default:
2063 assert(0);
2064 return 0x0;
2065 }
2066 case TGSI_OPCODE_LIT:
2067 case TGSI_OPCODE_SCS:
2068 case TGSI_OPCODE_TEX:
2069 case TGSI_OPCODE_TXB:
2070 case TGSI_OPCODE_TXL:
2071 case TGSI_OPCODE_TXP:
2072 /* these take care of dangerous swizzles themselves */
2073 return 0x0;
2074 case TGSI_OPCODE_IF:
2075 case TGSI_OPCODE_KIL:
2076 /* don't call this function for these ops */
2077 assert(0);
2078 return 0;
2079 default:
2080 /* linear vector instruction */
2081 return (1 << c);
2082 }
2083 }
2084
2085 static INLINE boolean
2086 has_pred(struct nv50_program_exec *e, unsigned cc)
2087 {
2088 if (!is_long(e) || is_immd(e))
2089 return FALSE;
2090 return ((e->inst[1] & 0x780) == (cc << 7));
2091 }
2092
2093 /* on ENDIF see if we can do "@p0.neu single_op" instead of:
2094 * join_at ENDIF
2095 * @p0.eq bra ENDIF
2096 * single_op
2097 * ENDIF: nop.join
2098 */
2099 static boolean
2100 nv50_kill_branch(struct nv50_pc *pc)
2101 {
2102 int lvl = pc->if_lvl;
2103
2104 if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2105 return FALSE;
2106
2107 /* if ccode == 'true', the BRA is from an ELSE and the predicate
2108 * reg may no longer be valid, since we currently always use $p0
2109 */
2110 if (has_pred(pc->if_insn[lvl], 0xf))
2111 return FALSE;
2112 assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2113
2114 /* We'll use the exec allocated for JOIN_AT (we can't easily
2115 * access nv50_program_exec's prev).
2116 */
2117 pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2118
2119 *pc->if_join[lvl] = *pc->p->exec_tail;
2120
2121 FREE(pc->if_insn[lvl]);
2122 FREE(pc->p->exec_tail);
2123
2124 pc->p->exec_tail = pc->if_join[lvl];
2125 pc->p->exec_tail->next = NULL;
2126 set_pred(pc, 0xd, 0, pc->p->exec_tail);
2127
2128 return TRUE;
2129 }
2130
2131 static void
2132 nv50_fp_move_results(struct nv50_pc *pc)
2133 {
2134 struct nv50_reg reg;
2135 unsigned i;
2136
2137 ctor_reg(&reg, P_TEMP, -1, -1);
2138
2139 for (i = 0; i < pc->result_nr * 4; ++i) {
2140 if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2141 continue;
2142 if (pc->result[i].rhw != pc->result[i].hw) {
2143 reg.hw = pc->result[i].rhw;
2144 emit_mov(pc, &reg, &pc->result[i]);
2145 }
2146 }
2147 }
2148
2149 static boolean
2150 nv50_program_tx_insn(struct nv50_pc *pc,
2151 const struct tgsi_full_instruction *inst)
2152 {
2153 struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2154 unsigned mask, sat, unit;
2155 int i, c;
2156
2157 mask = inst->Dst[0].Register.WriteMask;
2158 sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2159
2160 memset(src, 0, sizeof(src));
2161
2162 for (c = 0; c < 4; c++) {
2163 if ((mask & (1 << c)) && !pc->r_dst[c])
2164 dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2165 else
2166 dst[c] = pc->r_dst[c];
2167 rdst[c] = dst[c];
2168 }
2169
2170 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2171 const struct tgsi_full_src_register *fs = &inst->Src[i];
2172 unsigned src_mask;
2173 boolean neg_supp;
2174
2175 src_mask = nv50_tgsi_src_mask(inst, i);
2176 neg_supp = negate_supported(inst, i);
2177
2178 if (fs->Register.File == TGSI_FILE_SAMPLER)
2179 unit = fs->Register.Index;
2180
2181 for (c = 0; c < 4; c++)
2182 if (src_mask & (1 << c))
2183 src[i][c] = tgsi_src(pc, c, fs, neg_supp);
2184 }
2185
2186 brdc = temp = pc->r_brdc;
2187 if (brdc && brdc->type != P_TEMP) {
2188 temp = temp_temp(pc);
2189 if (sat)
2190 brdc = temp;
2191 } else
2192 if (sat) {
2193 for (c = 0; c < 4; c++) {
2194 if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2195 continue;
2196 /* rdst[c] = dst[c]; */ /* done above */
2197 dst[c] = temp_temp(pc);
2198 }
2199 }
2200
2201 assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2202
2203 switch (inst->Instruction.Opcode) {
2204 case TGSI_OPCODE_ABS:
2205 for (c = 0; c < 4; c++) {
2206 if (!(mask & (1 << c)))
2207 continue;
2208 emit_abs(pc, dst[c], src[0][c]);
2209 }
2210 break;
2211 case TGSI_OPCODE_ADD:
2212 for (c = 0; c < 4; c++) {
2213 if (!(mask & (1 << c)))
2214 continue;
2215 emit_add(pc, dst[c], src[0][c], src[1][c]);
2216 }
2217 break;
2218 case TGSI_OPCODE_AND:
2219 case TGSI_OPCODE_XOR:
2220 case TGSI_OPCODE_OR:
2221 for (c = 0; c < 4; c++) {
2222 if (!(mask & (1 << c)))
2223 continue;
2224 emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2225 inst->Instruction.Opcode);
2226 }
2227 break;
2228 case TGSI_OPCODE_ARL:
2229 assert(src[0][0]);
2230 temp = temp_temp(pc);
2231 emit_cvt(pc, temp, src[0][0], -1, CVTOP_FLOOR, CVT_S32_F32);
2232 emit_arl(pc, dst[0], temp, 4);
2233 break;
2234 case TGSI_OPCODE_BGNLOOP:
2235 pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2236 pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2237 terminate_mbb(pc);
2238 break;
2239 case TGSI_OPCODE_BRK:
2240 assert(pc->loop_lvl > 0);
2241 emit_break(pc, -1, 0);
2242 break;
2243 case TGSI_OPCODE_CEIL:
2244 for (c = 0; c < 4; c++) {
2245 if (!(mask & (1 << c)))
2246 continue;
2247 emit_cvt(pc, dst[c], src[0][c], -1,
2248 CVTOP_CEIL, CVT_F32_F32 | CVT_RI);
2249 }
2250 break;
2251 case TGSI_OPCODE_CMP:
2252 pc->allow32 = FALSE;
2253 for (c = 0; c < 4; c++) {
2254 if (!(mask & (1 << c)))
2255 continue;
2256 emit_cvt(pc, NULL, src[0][c], 1, CVTOP_RN, CVT_F32_F32);
2257 emit_mov(pc, dst[c], src[1][c]);
2258 set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2259 emit_mov(pc, dst[c], src[2][c]);
2260 set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2261 }
2262 break;
2263 case TGSI_OPCODE_CONT:
2264 assert(pc->loop_lvl > 0);
2265 emit_branch(pc, -1, 0)->param.index =
2266 pc->loop_pos[pc->loop_lvl - 1];
2267 break;
2268 case TGSI_OPCODE_COS:
2269 if (mask & 8) {
2270 emit_precossin(pc, temp, src[0][3]);
2271 emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2272 if (!(mask &= 7))
2273 break;
2274 if (temp == dst[3])
2275 temp = brdc = temp_temp(pc);
2276 }
2277 emit_precossin(pc, temp, src[0][0]);
2278 emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2279 break;
2280 case TGSI_OPCODE_DDX:
2281 for (c = 0; c < 4; c++) {
2282 if (!(mask & (1 << c)))
2283 continue;
2284 emit_ddx(pc, dst[c], src[0][c]);
2285 }
2286 break;
2287 case TGSI_OPCODE_DDY:
2288 for (c = 0; c < 4; c++) {
2289 if (!(mask & (1 << c)))
2290 continue;
2291 emit_ddy(pc, dst[c], src[0][c]);
2292 }
2293 break;
2294 case TGSI_OPCODE_DP3:
2295 emit_mul(pc, temp, src[0][0], src[1][0]);
2296 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2297 emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2298 break;
2299 case TGSI_OPCODE_DP4:
2300 emit_mul(pc, temp, src[0][0], src[1][0]);
2301 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2302 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2303 emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2304 break;
2305 case TGSI_OPCODE_DPH:
2306 emit_mul(pc, temp, src[0][0], src[1][0]);
2307 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2308 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2309 emit_add(pc, brdc, src[1][3], temp);
2310 break;
2311 case TGSI_OPCODE_DST:
2312 if (mask & (1 << 1))
2313 emit_mul(pc, dst[1], src[0][1], src[1][1]);
2314 if (mask & (1 << 2))
2315 emit_mov(pc, dst[2], src[0][2]);
2316 if (mask & (1 << 3))
2317 emit_mov(pc, dst[3], src[1][3]);
2318 if (mask & (1 << 0))
2319 emit_mov_immdval(pc, dst[0], 1.0f);
2320 break;
2321 case TGSI_OPCODE_ELSE:
2322 emit_branch(pc, -1, 0);
2323 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2324 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2325 terminate_mbb(pc);
2326 break;
2327 case TGSI_OPCODE_ENDIF:
2328 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2329
2330 /* try to replace branch over 1 insn with a predicated insn */
2331 if (nv50_kill_branch(pc) == TRUE)
2332 break;
2333
2334 if (pc->if_join[pc->if_lvl]) {
2335 pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2336 pc->if_join[pc->if_lvl] = NULL;
2337 }
2338 terminate_mbb(pc);
2339 /* emit a NOP as join point, we could set it on the next
2340 * one, but would have to make sure it is long and !immd
2341 */
2342 JOIN_ON(emit_nop(pc));
2343 break;
2344 case TGSI_OPCODE_ENDLOOP:
2345 emit_branch(pc, -1, 0)->param.index =
2346 pc->loop_pos[--pc->loop_lvl];
2347 pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2348 terminate_mbb(pc);
2349 break;
2350 case TGSI_OPCODE_EX2:
2351 emit_preex2(pc, temp, src[0][0]);
2352 emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2353 break;
2354 case TGSI_OPCODE_FLR:
2355 for (c = 0; c < 4; c++) {
2356 if (!(mask & (1 << c)))
2357 continue;
2358 emit_flr(pc, dst[c], src[0][c]);
2359 }
2360 break;
2361 case TGSI_OPCODE_FRC:
2362 temp = temp_temp(pc);
2363 for (c = 0; c < 4; c++) {
2364 if (!(mask & (1 << c)))
2365 continue;
2366 emit_flr(pc, temp, src[0][c]);
2367 emit_sub(pc, dst[c], src[0][c], temp);
2368 }
2369 break;
2370 case TGSI_OPCODE_IF:
2371 assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2372 emit_cvt(pc, NULL, src[0][0], 0, CVTOP_ABS | CVTOP_RN,
2373 CVT_F32_F32);
2374 pc->if_join[pc->if_lvl] = emit_joinat(pc);
2375 pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2376 terminate_mbb(pc);
2377 break;
2378 case TGSI_OPCODE_KIL:
2379 assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2380 emit_kil(pc, src[0][0]);
2381 emit_kil(pc, src[0][1]);
2382 emit_kil(pc, src[0][2]);
2383 emit_kil(pc, src[0][3]);
2384 break;
2385 case TGSI_OPCODE_KILP:
2386 emit_kil(pc, NULL);
2387 break;
2388 case TGSI_OPCODE_LIT:
2389 emit_lit(pc, &dst[0], mask, &src[0][0]);
2390 break;
2391 case TGSI_OPCODE_LG2:
2392 emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2393 break;
2394 case TGSI_OPCODE_LRP:
2395 temp = temp_temp(pc);
2396 for (c = 0; c < 4; c++) {
2397 if (!(mask & (1 << c)))
2398 continue;
2399 emit_sub(pc, temp, src[1][c], src[2][c]);
2400 emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2401 }
2402 break;
2403 case TGSI_OPCODE_MAD:
2404 for (c = 0; c < 4; c++) {
2405 if (!(mask & (1 << c)))
2406 continue;
2407 emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2408 }
2409 break;
2410 case TGSI_OPCODE_MAX:
2411 for (c = 0; c < 4; c++) {
2412 if (!(mask & (1 << c)))
2413 continue;
2414 emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2415 }
2416 break;
2417 case TGSI_OPCODE_MIN:
2418 for (c = 0; c < 4; c++) {
2419 if (!(mask & (1 << c)))
2420 continue;
2421 emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2422 }
2423 break;
2424 case TGSI_OPCODE_MOV:
2425 for (c = 0; c < 4; c++) {
2426 if (!(mask & (1 << c)))
2427 continue;
2428 emit_mov(pc, dst[c], src[0][c]);
2429 }
2430 break;
2431 case TGSI_OPCODE_MUL:
2432 for (c = 0; c < 4; c++) {
2433 if (!(mask & (1 << c)))
2434 continue;
2435 emit_mul(pc, dst[c], src[0][c], src[1][c]);
2436 }
2437 break;
2438 case TGSI_OPCODE_POW:
2439 emit_pow(pc, brdc, src[0][0], src[1][0]);
2440 break;
2441 case TGSI_OPCODE_RCP:
2442 emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2443 break;
2444 case TGSI_OPCODE_RET:
2445 if (pc->p->type == PIPE_SHADER_FRAGMENT)
2446 nv50_fp_move_results(pc);
2447 emit_ret(pc, -1, 0);
2448 break;
2449 case TGSI_OPCODE_RSQ:
2450 src[0][0]->mod |= NV50_MOD_ABS;
2451 emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2452 break;
2453 case TGSI_OPCODE_SCS:
2454 temp = temp_temp(pc);
2455 if (mask & 3)
2456 emit_precossin(pc, temp, src[0][0]);
2457 if (mask & (1 << 0))
2458 emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2459 if (mask & (1 << 1))
2460 emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2461 if (mask & (1 << 2))
2462 emit_mov_immdval(pc, dst[2], 0.0);
2463 if (mask & (1 << 3))
2464 emit_mov_immdval(pc, dst[3], 1.0);
2465 break;
2466 case TGSI_OPCODE_SIN:
2467 if (mask & 8) {
2468 emit_precossin(pc, temp, src[0][3]);
2469 emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2470 if (!(mask &= 7))
2471 break;
2472 if (temp == dst[3])
2473 temp = brdc = temp_temp(pc);
2474 }
2475 emit_precossin(pc, temp, src[0][0]);
2476 emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2477 break;
2478 case TGSI_OPCODE_SLT:
2479 case TGSI_OPCODE_SGE:
2480 case TGSI_OPCODE_SEQ:
2481 case TGSI_OPCODE_SGT:
2482 case TGSI_OPCODE_SLE:
2483 case TGSI_OPCODE_SNE:
2484 i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2485 for (c = 0; c < 4; c++) {
2486 if (!(mask & (1 << c)))
2487 continue;
2488 emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2489 }
2490 break;
2491 case TGSI_OPCODE_SUB:
2492 for (c = 0; c < 4; c++) {
2493 if (!(mask & (1 << c)))
2494 continue;
2495 emit_sub(pc, dst[c], src[0][c], src[1][c]);
2496 }
2497 break;
2498 case TGSI_OPCODE_TEX:
2499 emit_tex(pc, dst, mask, src[0], unit,
2500 inst->Texture.Texture, FALSE, 0);
2501 break;
2502 case TGSI_OPCODE_TXB:
2503 emit_tex(pc, dst, mask, src[0], unit,
2504 inst->Texture.Texture, FALSE, -1);
2505 break;
2506 case TGSI_OPCODE_TXL:
2507 emit_tex(pc, dst, mask, src[0], unit,
2508 inst->Texture.Texture, FALSE, 1);
2509 break;
2510 case TGSI_OPCODE_TXP:
2511 emit_tex(pc, dst, mask, src[0], unit,
2512 inst->Texture.Texture, TRUE, 0);
2513 break;
2514 case TGSI_OPCODE_TRUNC:
2515 for (c = 0; c < 4; c++) {
2516 if (!(mask & (1 << c)))
2517 continue;
2518 emit_cvt(pc, dst[c], src[0][c], -1,
2519 CVTOP_TRUNC, CVT_F32_F32 | CVT_RI);
2520 }
2521 break;
2522 case TGSI_OPCODE_XPD:
2523 temp = temp_temp(pc);
2524 if (mask & (1 << 0)) {
2525 emit_mul(pc, temp, src[0][2], src[1][1]);
2526 emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2527 }
2528 if (mask & (1 << 1)) {
2529 emit_mul(pc, temp, src[0][0], src[1][2]);
2530 emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2531 }
2532 if (mask & (1 << 2)) {
2533 emit_mul(pc, temp, src[0][1], src[1][0]);
2534 emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2535 }
2536 if (mask & (1 << 3))
2537 emit_mov_immdval(pc, dst[3], 1.0);
2538 break;
2539 case TGSI_OPCODE_END:
2540 break;
2541 default:
2542 NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2543 return FALSE;
2544 }
2545
2546 if (brdc) {
2547 if (sat)
2548 emit_sat(pc, brdc, brdc);
2549 for (c = 0; c < 4; c++)
2550 if ((mask & (1 << c)) && dst[c] != brdc)
2551 emit_mov(pc, dst[c], brdc);
2552 } else
2553 if (sat) {
2554 for (c = 0; c < 4; c++) {
2555 if (!(mask & (1 << c)))
2556 continue;
2557 /* In this case we saturate later, and dst[c] won't
2558 * be another temp_temp (and thus lost), since rdst
2559 * already is TEMP (see above). */
2560 if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2561 continue;
2562 emit_sat(pc, rdst[c], dst[c]);
2563 }
2564 }
2565
2566 kill_temp_temp(pc);
2567 pc->reg_instance_nr = 0;
2568
2569 return TRUE;
2570 }
2571
2572 static void
2573 prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2574 {
2575 struct nv50_reg *reg = NULL;
2576 const struct tgsi_full_src_register *src;
2577 const struct tgsi_dst_register *dst;
2578 unsigned i, c, k, mask;
2579
2580 dst = &insn->Dst[0].Register;
2581 mask = dst->WriteMask;
2582
2583 if (dst->File == TGSI_FILE_TEMPORARY)
2584 reg = pc->temp;
2585 else
2586 if (dst->File == TGSI_FILE_OUTPUT) {
2587 reg = pc->result;
2588
2589 if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2590 dst->Index == pc->edgeflag_out &&
2591 insn->Src[0].Register.File == TGSI_FILE_INPUT)
2592 pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2593 }
2594
2595 if (reg) {
2596 for (c = 0; c < 4; c++) {
2597 if (!(mask & (1 << c)))
2598 continue;
2599 reg[dst->Index * 4 + c].acc = pc->insn_nr;
2600 }
2601 }
2602
2603 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2604 src = &insn->Src[i];
2605
2606 if (src->Register.File == TGSI_FILE_TEMPORARY)
2607 reg = pc->temp;
2608 else
2609 if (src->Register.File == TGSI_FILE_INPUT)
2610 reg = pc->attr;
2611 else
2612 continue;
2613
2614 mask = nv50_tgsi_src_mask(insn, i);
2615
2616 for (c = 0; c < 4; c++) {
2617 if (!(mask & (1 << c)))
2618 continue;
2619 k = tgsi_util_get_full_src_register_swizzle(src, c);
2620
2621 reg[src->Register.Index * 4 + k].acc = pc->insn_nr;
2622 }
2623 }
2624 }
2625
2626 /* Returns a bitmask indicating which dst components need to be
2627 * written to temporaries first to avoid 'corrupting' sources.
2628 *
2629 * m[i] (out) indicate component to write in the i-th position
2630 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2631 */
2632 static unsigned
2633 nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2634 {
2635 unsigned i, c, x, unsafe;
2636
2637 for (c = 0; c < 4; c++)
2638 m[c] = c;
2639
2640 /* Swap as long as a dst component written earlier is depended on
2641 * by one written later, but the next one isn't depended on by it.
2642 */
2643 for (c = 0; c < 3; c++) {
2644 if (rdep[m[c + 1]] & (1 << m[c]))
2645 continue; /* if next one is depended on by us */
2646 for (i = c + 1; i < 4; i++)
2647 /* if we are depended on by a later one */
2648 if (rdep[m[c]] & (1 << m[i]))
2649 break;
2650 if (i == 4)
2651 continue;
2652 /* now, swap */
2653 x = m[c];
2654 m[c] = m[c + 1];
2655 m[c + 1] = x;
2656
2657 /* restart */
2658 c = 0;
2659 }
2660
2661 /* mark dependencies that could not be resolved by reordering */
2662 for (i = 0; i < 3; ++i)
2663 for (c = i + 1; c < 4; ++c)
2664 if (rdep[m[i]] & (1 << m[c]))
2665 unsafe |= (1 << i);
2666
2667 /* NOTE: $unsafe is with respect to order, not component */
2668 return unsafe;
2669 }
2670
2671 /* Select a suitable dst register for broadcasting scalar results,
2672 * or return NULL if we have to allocate an extra TEMP.
2673 *
2674 * If e.g. only 1 component is written, we may also emit the final
2675 * result to a write-only register.
2676 */
2677 static struct nv50_reg *
2678 tgsi_broadcast_dst(struct nv50_pc *pc,
2679 const struct tgsi_full_dst_register *fd, unsigned mask)
2680 {
2681 if (fd->Register.File == TGSI_FILE_TEMPORARY) {
2682 int c = ffs(~mask & fd->Register.WriteMask);
2683 if (c)
2684 return tgsi_dst(pc, c - 1, fd);
2685 } else {
2686 int c = ffs(fd->Register.WriteMask) - 1;
2687 if ((1 << c) == fd->Register.WriteMask)
2688 return tgsi_dst(pc, c, fd);
2689 }
2690
2691 return NULL;
2692 }
2693
2694 /* Scan source swizzles and return a bitmask indicating dst regs that
2695 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2696 */
2697 static unsigned
2698 nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2699 unsigned rdep[4])
2700 {
2701 const struct tgsi_full_dst_register *fd = &insn->Dst[0];
2702 const struct tgsi_full_src_register *fs;
2703 unsigned i, deqs = 0;
2704
2705 for (i = 0; i < 4; ++i)
2706 rdep[i] = 0;
2707
2708 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2709 unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2710 boolean neg_supp = negate_supported(insn, i);
2711
2712 fs = &insn->Src[i];
2713 if (fs->Register.File != fd->Register.File ||
2714 fs->Register.Index != fd->Register.Index)
2715 continue;
2716
2717 for (chn = 0; chn < 4; ++chn) {
2718 unsigned s, c;
2719
2720 if (!(mask & (1 << chn))) /* src is not read */
2721 continue;
2722 c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2723 s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2724
2725 if (!(fd->Register.WriteMask & (1 << c)))
2726 continue;
2727
2728 /* no danger if src is copied to TEMP first */
2729 if ((s != TGSI_UTIL_SIGN_KEEP) &&
2730 (s != TGSI_UTIL_SIGN_TOGGLE || !neg_supp))
2731 continue;
2732
2733 rdep[c] |= nv50_tgsi_dst_revdep(
2734 insn->Instruction.Opcode, i, chn);
2735 deqs |= (1 << c);
2736 }
2737 }
2738
2739 return deqs;
2740 }
2741
2742 static boolean
2743 nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2744 {
2745 struct tgsi_full_instruction insn = tok->FullInstruction;
2746 const struct tgsi_full_dst_register *fd;
2747 unsigned i, deqs, rdep[4], m[4];
2748
2749 fd = &tok->FullInstruction.Dst[0];
2750 deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2751
2752 if (is_scalar_op(insn.Instruction.Opcode)) {
2753 pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2754 if (!pc->r_brdc)
2755 pc->r_brdc = temp_temp(pc);
2756 return nv50_program_tx_insn(pc, &insn);
2757 }
2758 pc->r_brdc = NULL;
2759
2760 if (!deqs)
2761 return nv50_program_tx_insn(pc, &insn);
2762
2763 deqs = nv50_revdep_reorder(m, rdep);
2764
2765 for (i = 0; i < 4; ++i) {
2766 assert(pc->r_dst[m[i]] == NULL);
2767
2768 insn.Dst[0].Register.WriteMask =
2769 fd->Register.WriteMask & (1 << m[i]);
2770
2771 if (!insn.Dst[0].Register.WriteMask)
2772 continue;
2773
2774 if (deqs & (1 << i))
2775 pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2776
2777 if (!nv50_program_tx_insn(pc, &insn))
2778 return FALSE;
2779 }
2780
2781 for (i = 0; i < 4; i++) {
2782 struct nv50_reg *reg = pc->r_dst[i];
2783 if (!reg)
2784 continue;
2785 pc->r_dst[i] = NULL;
2786
2787 if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2788 emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2789 else
2790 emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2791 free_temp(pc, reg);
2792 }
2793
2794 return TRUE;
2795 }
2796
2797 static void
2798 load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2799 {
2800 struct nv50_reg *iv, **ppiv;
2801 unsigned mode = pc->interp_mode[reg->index];
2802
2803 ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2804 iv = *ppiv;
2805
2806 if ((mode & INTERP_PERSPECTIVE) && !iv) {
2807 iv = *ppiv = alloc_temp(pc, NULL);
2808 iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2809
2810 emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2811 emit_flop(pc, NV50_FLOP_RCP, iv, iv);
2812
2813 /* XXX: when loading interpolants dynamically, move these
2814 * to the program head, or make sure it can't be skipped.
2815 */
2816 }
2817
2818 emit_interp(pc, reg, iv, mode);
2819 }
2820
2821 /* The face input is always at v[255] (varying space), with a
2822 * value of 0 for back-facing, and 0xffffffff for front-facing.
2823 */
2824 static void
2825 load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
2826 {
2827 struct nv50_reg *one = alloc_immd(pc, 1.0f);
2828
2829 assert(a->rhw == -1);
2830 alloc_reg(pc, a); /* do this before rhw is set */
2831 a->rhw = 255;
2832 load_interpolant(pc, a);
2833 emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
2834
2835 FREE(one);
2836 }
2837
2838 static boolean
2839 nv50_program_tx_prep(struct nv50_pc *pc)
2840 {
2841 struct tgsi_parse_context tp;
2842 struct nv50_program *p = pc->p;
2843 boolean ret = FALSE;
2844 unsigned i, c, flat_nr = 0;
2845
2846 tgsi_parse_init(&tp, pc->p->pipe.tokens);
2847 while (!tgsi_parse_end_of_tokens(&tp)) {
2848 const union tgsi_full_token *tok = &tp.FullToken;
2849
2850 tgsi_parse_token(&tp);
2851 switch (tok->Token.Type) {
2852 case TGSI_TOKEN_TYPE_IMMEDIATE:
2853 {
2854 const struct tgsi_full_immediate *imm =
2855 &tp.FullToken.FullImmediate;
2856
2857 ctor_immd_4f32(pc, imm->u[0].Float,
2858 imm->u[1].Float,
2859 imm->u[2].Float,
2860 imm->u[3].Float);
2861 }
2862 break;
2863 case TGSI_TOKEN_TYPE_DECLARATION:
2864 {
2865 const struct tgsi_full_declaration *d;
2866 unsigned si, last, first, mode;
2867
2868 d = &tp.FullToken.FullDeclaration;
2869 first = d->Range.First;
2870 last = d->Range.Last;
2871
2872 switch (d->Declaration.File) {
2873 case TGSI_FILE_TEMPORARY:
2874 break;
2875 case TGSI_FILE_OUTPUT:
2876 if (!d->Declaration.Semantic ||
2877 p->type == PIPE_SHADER_FRAGMENT)
2878 break;
2879
2880 si = d->Semantic.Index;
2881 switch (d->Semantic.Name) {
2882 case TGSI_SEMANTIC_BCOLOR:
2883 p->cfg.two_side[si].hw = first;
2884 if (p->cfg.io_nr > first)
2885 p->cfg.io_nr = first;
2886 break;
2887 case TGSI_SEMANTIC_PSIZE:
2888 p->cfg.psiz = first;
2889 if (p->cfg.io_nr > first)
2890 p->cfg.io_nr = first;
2891 break;
2892 case TGSI_SEMANTIC_EDGEFLAG:
2893 pc->edgeflag_out = first;
2894 break;
2895 /*
2896 case TGSI_SEMANTIC_CLIP_DISTANCE:
2897 p->cfg.clpd = MIN2(p->cfg.clpd, first);
2898 break;
2899 */
2900 default:
2901 break;
2902 }
2903 break;
2904 case TGSI_FILE_INPUT:
2905 {
2906 if (p->type != PIPE_SHADER_FRAGMENT)
2907 break;
2908
2909 switch (d->Declaration.Interpolate) {
2910 case TGSI_INTERPOLATE_CONSTANT:
2911 mode = INTERP_FLAT;
2912 flat_nr++;
2913 break;
2914 case TGSI_INTERPOLATE_PERSPECTIVE:
2915 mode = INTERP_PERSPECTIVE;
2916 p->cfg.regs[1] |= 0x08 << 24;
2917 break;
2918 default:
2919 mode = INTERP_LINEAR;
2920 break;
2921 }
2922 if (d->Declaration.Centroid)
2923 mode |= INTERP_CENTROID;
2924
2925 assert(last < 32);
2926 for (i = first; i <= last; i++)
2927 pc->interp_mode[i] = mode;
2928 }
2929 break;
2930 case TGSI_FILE_ADDRESS:
2931 case TGSI_FILE_CONSTANT:
2932 case TGSI_FILE_SAMPLER:
2933 break;
2934 default:
2935 NOUVEAU_ERR("bad decl file %d\n",
2936 d->Declaration.File);
2937 goto out_err;
2938 }
2939 }
2940 break;
2941 case TGSI_TOKEN_TYPE_INSTRUCTION:
2942 pc->insn_nr++;
2943 prep_inspect_insn(pc, &tok->FullInstruction);
2944 break;
2945 default:
2946 break;
2947 }
2948 }
2949
2950 if (p->type == PIPE_SHADER_VERTEX) {
2951 int rid = 0;
2952
2953 for (i = 0; i < pc->attr_nr * 4; ++i) {
2954 if (pc->attr[i].acc) {
2955 pc->attr[i].hw = rid++;
2956 p->cfg.attr[i / 32] |= 1 << (i % 32);
2957 }
2958 }
2959
2960 for (i = 0, rid = 0; i < pc->result_nr; ++i) {
2961 p->cfg.io[i].hw = rid;
2962 p->cfg.io[i].id = i;
2963
2964 for (c = 0; c < 4; ++c) {
2965 int n = i * 4 + c;
2966 if (!pc->result[n].acc)
2967 continue;
2968 pc->result[n].hw = rid++;
2969 p->cfg.io[i].mask |= 1 << c;
2970 }
2971 }
2972
2973 for (c = 0; c < 2; ++c)
2974 if (p->cfg.two_side[c].hw < 0x40)
2975 p->cfg.two_side[c] = p->cfg.io[
2976 p->cfg.two_side[c].hw];
2977
2978 if (p->cfg.psiz < 0x40)
2979 p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
2980 } else
2981 if (p->type == PIPE_SHADER_FRAGMENT) {
2982 int rid, aid;
2983 unsigned n = 0, m = pc->attr_nr - flat_nr;
2984
2985 pc->allow32 = TRUE;
2986
2987 int base = (TGSI_SEMANTIC_POSITION ==
2988 p->info.input_semantic_name[0]) ? 0 : 1;
2989
2990 /* non-flat interpolants have to be mapped to
2991 * the lower hardware IDs, so sort them:
2992 */
2993 for (i = 0; i < pc->attr_nr; i++) {
2994 if (pc->interp_mode[i] == INTERP_FLAT)
2995 p->cfg.io[m++].id = i;
2996 else {
2997 if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
2998 p->cfg.io[n].linear = TRUE;
2999 p->cfg.io[n++].id = i;
3000 }
3001 }
3002
3003 if (!base) /* set w-coordinate mask from perspective interp */
3004 p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3005
3006 aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3007 base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3008
3009 for (n = 0; n < pc->attr_nr; ++n) {
3010 p->cfg.io[n].hw = rid = aid;
3011 i = p->cfg.io[n].id;
3012
3013 if (p->info.input_semantic_name[n] ==
3014 TGSI_SEMANTIC_FACE) {
3015 load_frontfacing(pc, &pc->attr[i * 4]);
3016 continue;
3017 }
3018
3019 for (c = 0; c < 4; ++c) {
3020 if (!pc->attr[i * 4 + c].acc)
3021 continue;
3022 pc->attr[i * 4 + c].rhw = rid++;
3023 p->cfg.io[n].mask |= 1 << c;
3024
3025 load_interpolant(pc, &pc->attr[i * 4 + c]);
3026 }
3027 aid += popcnt4(p->cfg.io[n].mask);
3028 }
3029
3030 if (!base)
3031 p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3032
3033 m = popcnt4(p->cfg.regs[1] >> 24);
3034
3035 /* set count of non-position inputs and of non-flat
3036 * non-position inputs for FP_INTERPOLANT_CTRL
3037 */
3038 p->cfg.regs[1] |= aid - m;
3039
3040 if (flat_nr) {
3041 i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3042 p->cfg.regs[1] |= (i - m) << 16;
3043 } else
3044 p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3045
3046 /* mark color semantic for light-twoside */
3047 n = 0x40;
3048 for (i = 0; i < pc->attr_nr; i++) {
3049 ubyte si, sn;
3050
3051 sn = p->info.input_semantic_name[p->cfg.io[i].id];
3052 si = p->info.input_semantic_index[p->cfg.io[i].id];
3053
3054 if (sn == TGSI_SEMANTIC_COLOR) {
3055 p->cfg.two_side[si] = p->cfg.io[i];
3056
3057 /* increase colour count */
3058 p->cfg.regs[0] += popcnt4(
3059 p->cfg.two_side[si].mask) << 16;
3060
3061 n = MIN2(n, p->cfg.io[i].hw - m);
3062 }
3063 }
3064 if (n < 0x40)
3065 p->cfg.regs[0] += n;
3066
3067 /* Initialize FP results:
3068 * FragDepth is always first TGSI and last hw output
3069 */
3070 i = p->info.writes_z ? 4 : 0;
3071 for (rid = 0; i < pc->result_nr * 4; i++)
3072 pc->result[i].rhw = rid++;
3073 if (p->info.writes_z)
3074 pc->result[2].rhw = rid;
3075
3076 p->cfg.high_result = rid;
3077
3078 /* separate/different colour results for MRTs ? */
3079 if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3080 p->cfg.regs[2] |= 1;
3081 }
3082
3083 if (pc->immd_nr) {
3084 int rid = 0;
3085
3086 pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3087 if (!pc->immd)
3088 goto out_err;
3089
3090 for (i = 0; i < pc->immd_nr; i++) {
3091 for (c = 0; c < 4; c++, rid++)
3092 ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3093 }
3094 }
3095
3096 ret = TRUE;
3097 out_err:
3098 if (pc->iv_p)
3099 free_temp(pc, pc->iv_p);
3100 if (pc->iv_c)
3101 free_temp(pc, pc->iv_c);
3102
3103 tgsi_parse_free(&tp);
3104 return ret;
3105 }
3106
3107 static void
3108 free_nv50_pc(struct nv50_pc *pc)
3109 {
3110 if (pc->immd)
3111 FREE(pc->immd);
3112 if (pc->param)
3113 FREE(pc->param);
3114 if (pc->result)
3115 FREE(pc->result);
3116 if (pc->attr)
3117 FREE(pc->attr);
3118 if (pc->temp)
3119 FREE(pc->temp);
3120
3121 FREE(pc);
3122 }
3123
3124 static boolean
3125 ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3126 {
3127 int i, c;
3128 unsigned rtype[2] = { P_ATTR, P_RESULT };
3129
3130 pc->p = p;
3131 pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3132 pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3133 pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3134 pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3135 pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3136 assert(pc->addr_nr <= 2);
3137
3138 p->cfg.high_temp = 4;
3139
3140 p->cfg.two_side[0].hw = 0x40;
3141 p->cfg.two_side[1].hw = 0x40;
3142
3143 p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3144
3145 switch (p->type) {
3146 case PIPE_SHADER_VERTEX:
3147 p->cfg.psiz = 0x40;
3148 p->cfg.clpd = 0x40;
3149 p->cfg.io_nr = pc->result_nr;
3150 break;
3151 case PIPE_SHADER_FRAGMENT:
3152 rtype[0] = rtype[1] = P_TEMP;
3153
3154 p->cfg.regs[0] = 0x01000004;
3155 p->cfg.io_nr = pc->attr_nr;
3156
3157 if (p->info.writes_z) {
3158 p->cfg.regs[2] |= 0x00000100;
3159 p->cfg.regs[3] |= 0x00000011;
3160 }
3161 if (p->info.uses_kill)
3162 p->cfg.regs[2] |= 0x00100000;
3163 break;
3164 }
3165
3166 if (pc->temp_nr) {
3167 pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3168 if (!pc->temp)
3169 return FALSE;
3170
3171 for (i = 0; i < pc->temp_nr * 4; ++i)
3172 ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3173 }
3174
3175 if (pc->attr_nr) {
3176 pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3177 if (!pc->attr)
3178 return FALSE;
3179
3180 for (i = 0; i < pc->attr_nr * 4; ++i)
3181 ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3182 }
3183
3184 if (pc->result_nr) {
3185 unsigned nr = pc->result_nr * 4;
3186
3187 pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3188 if (!pc->result)
3189 return FALSE;
3190
3191 for (i = 0; i < nr; ++i)
3192 ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3193 }
3194
3195 if (pc->param_nr) {
3196 int rid = 0;
3197
3198 pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3199 if (!pc->param)
3200 return FALSE;
3201
3202 for (i = 0; i < pc->param_nr; ++i)
3203 for (c = 0; c < 4; ++c, ++rid)
3204 ctor_reg(&pc->param[rid], P_CONST, i, rid);
3205 }
3206
3207 if (pc->addr_nr) {
3208 pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3209 if (!pc->addr)
3210 return FALSE;
3211 }
3212 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3213 ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3214
3215 return TRUE;
3216 }
3217
3218 static void
3219 nv50_program_fixup_insns(struct nv50_pc *pc)
3220 {
3221 struct nv50_program_exec *e, **bra_list;
3222 unsigned i, n, pos;
3223
3224 bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3225
3226 /* Collect branch instructions, we need to adjust their offsets
3227 * when converting 32 bit instructions to 64 bit ones
3228 */
3229 for (n = 0, e = pc->p->exec_head; e; e = e->next)
3230 if (e->param.index >= 0 && !e->param.mask)
3231 bra_list[n++] = e;
3232
3233 /* last instruction must be long so it can have the exit bit set */
3234 if (!is_long(pc->p->exec_tail))
3235 convert_to_long(pc, pc->p->exec_tail);
3236 /* set exit bit */
3237 pc->p->exec_tail->inst[1] |= 1;
3238
3239 /* !immd on exit insn simultaneously means !join */
3240 assert(!is_immd(pc->p->exec_head));
3241 assert(!is_immd(pc->p->exec_tail));
3242
3243 /* Make sure we don't have any single 32 bit instructions. */
3244 for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3245 pos += is_long(e) ? 2 : 1;
3246
3247 if ((pos & 1) && (!e->next || is_long(e->next))) {
3248 for (i = 0; i < n; ++i)
3249 if (bra_list[i]->param.index >= pos)
3250 bra_list[i]->param.index += 1;
3251 convert_to_long(pc, e);
3252 ++pos;
3253 }
3254 }
3255
3256 FREE(bra_list);
3257 }
3258
3259 static boolean
3260 nv50_program_tx(struct nv50_program *p)
3261 {
3262 struct tgsi_parse_context parse;
3263 struct nv50_pc *pc;
3264 boolean ret;
3265
3266 pc = CALLOC_STRUCT(nv50_pc);
3267 if (!pc)
3268 return FALSE;
3269
3270 ret = ctor_nv50_pc(pc, p);
3271 if (ret == FALSE)
3272 goto out_cleanup;
3273
3274 ret = nv50_program_tx_prep(pc);
3275 if (ret == FALSE)
3276 goto out_cleanup;
3277
3278 tgsi_parse_init(&parse, pc->p->pipe.tokens);
3279 while (!tgsi_parse_end_of_tokens(&parse)) {
3280 const union tgsi_full_token *tok = &parse.FullToken;
3281
3282 /* don't allow half insn/immd on first and last instruction */
3283 pc->allow32 = TRUE;
3284 if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr)
3285 pc->allow32 = FALSE;
3286
3287 tgsi_parse_token(&parse);
3288
3289 switch (tok->Token.Type) {
3290 case TGSI_TOKEN_TYPE_INSTRUCTION:
3291 ++pc->insn_cur;
3292 ret = nv50_tgsi_insn(pc, tok);
3293 if (ret == FALSE)
3294 goto out_err;
3295 break;
3296 default:
3297 break;
3298 }
3299 }
3300
3301 if (pc->p->type == PIPE_SHADER_FRAGMENT)
3302 nv50_fp_move_results(pc);
3303
3304 nv50_program_fixup_insns(pc);
3305
3306 p->param_nr = pc->param_nr * 4;
3307 p->immd_nr = pc->immd_nr * 4;
3308 p->immd = pc->immd_buf;
3309
3310 out_err:
3311 tgsi_parse_free(&parse);
3312
3313 out_cleanup:
3314 free_nv50_pc(pc);
3315 return ret;
3316 }
3317
3318 static void
3319 nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3320 {
3321 if (nv50_program_tx(p) == FALSE)
3322 assert(0);
3323 p->translated = TRUE;
3324 }
3325
3326 static void
3327 nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3328 unsigned start, unsigned count, unsigned cbuf)
3329 {
3330 struct nouveau_channel *chan = nv50->screen->base.channel;
3331 struct nouveau_grobj *tesla = nv50->screen->tesla;
3332
3333 while (count) {
3334 unsigned nr = count > 2047 ? 2047 : count;
3335
3336 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3337 OUT_RING (chan, (cbuf << 0) | (start << 8));
3338 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3339 OUT_RINGp (chan, map, nr);
3340
3341 map += nr;
3342 start += nr;
3343 count -= nr;
3344 }
3345 }
3346
3347 static void
3348 nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3349 {
3350 struct pipe_screen *pscreen = nv50->pipe.screen;
3351
3352 if (!p->data[0] && p->immd_nr) {
3353 struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3354
3355 if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3356 while (heap->next && heap->size < p->immd_nr) {
3357 struct nv50_program *evict = heap->next->priv;
3358 nouveau_resource_free(&evict->data[0]);
3359 }
3360
3361 if (nouveau_resource_alloc(heap, p->immd_nr, p,
3362 &p->data[0]))
3363 assert(0);
3364 }
3365
3366 /* immediates only need to be uploaded again when freed */
3367 nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3368 p->immd_nr, NV50_CB_PMISC);
3369 }
3370
3371 assert(p->param_nr <= 512);
3372
3373 if (p->param_nr) {
3374 unsigned cb;
3375 uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3376 PIPE_BUFFER_USAGE_CPU_READ);
3377
3378 if (p->type == PIPE_SHADER_VERTEX)
3379 cb = NV50_CB_PVP;
3380 else
3381 cb = NV50_CB_PFP;
3382
3383 nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3384 pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3385 }
3386 }
3387
3388 static void
3389 nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3390 {
3391 struct nouveau_channel *chan = nv50->screen->base.channel;
3392 struct nv50_program_exec *e;
3393 uint32_t *up, i;
3394 boolean upload = FALSE;
3395
3396 if (!p->bo) {
3397 nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3398 p->exec_size * 4, &p->bo);
3399 upload = TRUE;
3400 }
3401
3402 if (p->data[0] && p->data[0]->start != p->data_start[0])
3403 upload = TRUE;
3404
3405 if (!upload)
3406 return;
3407
3408 up = MALLOC(p->exec_size * 4);
3409
3410 for (i = 0, e = p->exec_head; e; e = e->next) {
3411 unsigned ei, ci, bs;
3412
3413 if (e->param.index >= 0 && e->param.mask) {
3414 bs = (e->inst[1] >> 22) & 0x07;
3415 assert(bs < 2);
3416 ei = e->param.shift >> 5;
3417 ci = e->param.index;
3418 if (bs == 0)
3419 ci += p->data[bs]->start;
3420
3421 e->inst[ei] &= ~e->param.mask;
3422 e->inst[ei] |= (ci << e->param.shift);
3423 } else
3424 if (e->param.index >= 0) {
3425 /* zero mask means param is a jump/branch offset */
3426 assert(!(e->param.index & 1));
3427 /* seem to be 8 byte steps */
3428 ei = (e->param.index >> 1) + 0 /* START_ID */;
3429
3430 e->inst[0] &= 0xf0000fff;
3431 e->inst[0] |= ei << 12;
3432 }
3433
3434 up[i++] = e->inst[0];
3435 if (is_long(e))
3436 up[i++] = e->inst[1];
3437 }
3438 assert(i == p->exec_size);
3439
3440 if (p->data[0])
3441 p->data_start[0] = p->data[0]->start;
3442
3443 #ifdef NV50_PROGRAM_DUMP
3444 NOUVEAU_ERR("-------\n");
3445 for (e = p->exec_head; e; e = e->next) {
3446 NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3447 if (is_long(e))
3448 NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3449 }
3450 #endif
3451 nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3452 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3453 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3454 0, 0, p->exec_size * 4, 1, 1);
3455
3456 FREE(up);
3457 }
3458
3459 void
3460 nv50_vertprog_validate(struct nv50_context *nv50)
3461 {
3462 struct nouveau_grobj *tesla = nv50->screen->tesla;
3463 struct nv50_program *p = nv50->vertprog;
3464 struct nouveau_stateobj *so;
3465
3466 if (!p->translated) {
3467 nv50_program_validate(nv50, p);
3468 if (!p->translated)
3469 assert(0);
3470 }
3471
3472 nv50_program_validate_data(nv50, p);
3473 nv50_program_validate_code(nv50, p);
3474
3475 so = so_new(13, 2);
3476 so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3477 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3478 NOUVEAU_BO_HIGH, 0, 0);
3479 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3480 NOUVEAU_BO_LOW, 0, 0);
3481 so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3482 so_data (so, p->cfg.attr[0]);
3483 so_data (so, p->cfg.attr[1]);
3484 so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3485 so_data (so, p->cfg.high_result);
3486 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3487 so_data (so, p->cfg.high_result); //8);
3488 so_data (so, p->cfg.high_temp);
3489 so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3490 so_data (so, 0); /* program start offset */
3491 so_ref(so, &nv50->state.vertprog);
3492 so_ref(NULL, &so);
3493 }
3494
3495 void
3496 nv50_fragprog_validate(struct nv50_context *nv50)
3497 {
3498 struct nouveau_grobj *tesla = nv50->screen->tesla;
3499 struct nv50_program *p = nv50->fragprog;
3500 struct nouveau_stateobj *so;
3501
3502 if (!p->translated) {
3503 nv50_program_validate(nv50, p);
3504 if (!p->translated)
3505 assert(0);
3506 }
3507
3508 nv50_program_validate_data(nv50, p);
3509 nv50_program_validate_code(nv50, p);
3510
3511 so = so_new(64, 2);
3512 so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3513 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3514 NOUVEAU_BO_HIGH, 0, 0);
3515 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3516 NOUVEAU_BO_LOW, 0, 0);
3517 so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3518 so_data (so, p->cfg.high_temp);
3519 so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3520 so_data (so, p->cfg.high_result);
3521 so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3522 so_data (so, p->cfg.regs[2]);
3523 so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3524 so_data (so, p->cfg.regs[3]);
3525 so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3526 so_data (so, 0); /* program start offset */
3527 so_ref(so, &nv50->state.fragprog);
3528 so_ref(NULL, &so);
3529 }
3530
3531 static void
3532 nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3533 {
3534 struct nv50_program *fp = nv50->fragprog;
3535 struct nv50_program *vp = nv50->vertprog;
3536 unsigned i, c, m = base;
3537
3538 /* XXX: this might not work correctly in all cases yet - we'll
3539 * just assume that an FP generic input that is not written in
3540 * the VP is PointCoord.
3541 */
3542 memset(pntc, 0, 8 * sizeof(uint32_t));
3543
3544 for (i = 0; i < fp->cfg.io_nr; i++) {
3545 uint8_t sn, si;
3546 uint8_t j, k = fp->cfg.io[i].id;
3547 unsigned n = popcnt4(fp->cfg.io[i].mask);
3548
3549 if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3550 m += n;
3551 continue;
3552 }
3553
3554 for (j = 0; j < vp->info.num_outputs; ++j) {
3555 sn = vp->info.output_semantic_name[j];
3556 si = vp->info.output_semantic_index[j];
3557
3558 if (sn == fp->info.input_semantic_name[k] &&
3559 si == fp->info.input_semantic_index[k])
3560 break;
3561 }
3562
3563 if (j < vp->info.num_outputs) {
3564 ubyte mode =
3565 nv50->rasterizer->pipe.sprite_coord_mode[si];
3566
3567 if (mode == PIPE_SPRITE_COORD_NONE) {
3568 m += n;
3569 continue;
3570 }
3571 }
3572
3573 /* this is either PointCoord or replaced by sprite coords */
3574 for (c = 0; c < 4; c++) {
3575 if (!(fp->cfg.io[i].mask & (1 << c)))
3576 continue;
3577 pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3578 ++m;
3579 }
3580 }
3581 }
3582
3583 static int
3584 nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3585 struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3586 {
3587 int c;
3588 uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3589 uint8_t *map = (uint8_t *)p_map;
3590
3591 for (c = 0; c < 4; ++c) {
3592 if (mf & 1) {
3593 if (fpi->linear == TRUE)
3594 lin[mid / 32] |= 1 << (mid % 32);
3595 map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3596 }
3597
3598 oid += mv & 1;
3599 mf >>= 1;
3600 mv >>= 1;
3601 }
3602
3603 return mid;
3604 }
3605
3606 void
3607 nv50_linkage_validate(struct nv50_context *nv50)
3608 {
3609 struct nouveau_grobj *tesla = nv50->screen->tesla;
3610 struct nv50_program *vp = nv50->vertprog;
3611 struct nv50_program *fp = nv50->fragprog;
3612 struct nouveau_stateobj *so;
3613 struct nv50_sreg4 dummy, *vpo;
3614 int i, n, c, m = 0;
3615 uint32_t map[16], lin[4], reg[5], pcrd[8];
3616
3617 memset(map, 0, sizeof(map));
3618 memset(lin, 0, sizeof(lin));
3619
3620 reg[1] = 0x00000004; /* low and high clip distance map ids */
3621 reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3622 reg[3] = 0x00000000; /* point size map id & enable */
3623 reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3624 reg[4] = fp->cfg.regs[1]; /* interpolant info */
3625
3626 dummy.linear = FALSE;
3627 dummy.mask = 0xf; /* map all components of HPOS */
3628 m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3629
3630 dummy.mask = 0x0;
3631
3632 if (vp->cfg.clpd < 0x40) {
3633 for (c = 0; c < vp->cfg.clpd_nr; ++c)
3634 map[m++] = vp->cfg.clpd + c;
3635 reg[1] = (m << 8);
3636 }
3637
3638 reg[0] |= m << 8; /* adjust BFC0 id */
3639
3640 /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3641 if (nv50->rasterizer->pipe.light_twoside) {
3642 vpo = &vp->cfg.two_side[0];
3643
3644 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3645 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3646 }
3647
3648 reg[0] += m - 4; /* adjust FFC0 id */
3649 reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3650
3651 for (i = 0; i < fp->cfg.io_nr; i++) {
3652 ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
3653 ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
3654
3655 /* position must be mapped first */
3656 assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
3657
3658 /* maybe even remove these from cfg.io */
3659 if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
3660 continue;
3661
3662 /* VP outputs and vp->cfg.io are in the same order */
3663 for (n = 0; n < vp->info.num_outputs; ++n) {
3664 if (vp->info.output_semantic_name[n] == sn &&
3665 vp->info.output_semantic_index[n] == si)
3666 break;
3667 }
3668 vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
3669
3670 m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3671 }
3672
3673 if (nv50->rasterizer->pipe.point_size_per_vertex) {
3674 map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3675 reg[3] = (m++ << 4) | 1;
3676 }
3677
3678 /* now fill the stateobj */
3679 so = so_new(64, 0);
3680
3681 n = (m + 3) / 4;
3682 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3683 so_data (so, m);
3684 so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3685 so_datap (so, map, n);
3686
3687 so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3688 so_datap (so, reg, 4);
3689
3690 so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3691 so_data (so, reg[4]);
3692
3693 so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
3694 so_datap (so, lin, 4);
3695
3696 if (nv50->rasterizer->pipe.point_sprite) {
3697 nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3698
3699 so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3700 so_datap (so, pcrd, 8);
3701 }
3702
3703 so_ref(so, &nv50->state.programs);
3704 so_ref(NULL, &so);
3705 }
3706
3707 void
3708 nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3709 {
3710 while (p->exec_head) {
3711 struct nv50_program_exec *e = p->exec_head;
3712
3713 p->exec_head = e->next;
3714 FREE(e);
3715 }
3716 p->exec_tail = NULL;
3717 p->exec_size = 0;
3718
3719 nouveau_bo_ref(NULL, &p->bo);
3720
3721 nouveau_resource_free(&p->data[0]);
3722
3723 p->translated = 0;
3724 }