nv50: handle TGSI_OPCODE_F2I,F2U,I2F,U2F plus src mods
[mesa.git] / src / gallium / drivers / nv50 / nv50_program.c
1 /*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 #include "pipe/p_context.h"
24 #include "pipe/p_defines.h"
25 #include "pipe/p_state.h"
26 #include "pipe/p_inlines.h"
27
28 #include "pipe/p_shader_tokens.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_util.h"
31
32 #include "nv50_context.h"
33
34 #define NV50_SU_MAX_TEMP 127
35 #define NV50_SU_MAX_ADDR 4
36 //#define NV50_PROGRAM_DUMP
37
38 /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40 /* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * - Fuck it off, introduce a way to negate args for ops that
44 * support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * FP attr/result assignment - how?
61 * attrib
62 * - 0x16bc maps vp output onto fp hpos
63 * - 0x16c0 maps vp output onto fp col0
64 * result
65 * - colr always 0-3
66 * - depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * - 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * - XX == FP high something
78 */
79 struct nv50_reg {
80 enum {
81 P_TEMP,
82 P_ATTR,
83 P_RESULT,
84 P_CONST,
85 P_IMMD,
86 P_ADDR
87 } type;
88 int index;
89
90 int hw;
91 int mod;
92
93 int rhw; /* result hw for FP outputs, or interpolant index */
94 int acc; /* instruction where this reg is last read (first insn == 1) */
95 };
96
97 #define NV50_MOD_NEG 1
98 #define NV50_MOD_ABS 2
99 #define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
100 #define NV50_MOD_SAT 4
101 #define NV50_MOD_I32 8
102
103 /* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
104
105 /* STACK: Conditionals and loops have to use the (per warp) stack.
106 * Stack entries consist of an entry type (divergent path, join at),
107 * a mask indicating the active threads of the warp, and an address.
108 * MPs can store 12 stack entries internally, if we need more (and
109 * we probably do), we have to create a stack buffer in VRAM.
110 */
111 /* impose low limits for now */
112 #define NV50_MAX_COND_NESTING 4
113 #define NV50_MAX_LOOP_NESTING 3
114
115 #define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
116
117 struct nv50_pc {
118 struct nv50_program *p;
119
120 /* hw resources */
121 struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
122 struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
123
124 /* tgsi resources */
125 struct nv50_reg *temp;
126 int temp_nr;
127 struct nv50_reg *attr;
128 int attr_nr;
129 struct nv50_reg *result;
130 int result_nr;
131 struct nv50_reg *param;
132 int param_nr;
133 struct nv50_reg *immd;
134 uint32_t *immd_buf;
135 int immd_nr;
136 struct nv50_reg **addr;
137 int addr_nr;
138 uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
139
140 struct nv50_reg *temp_temp[16];
141 unsigned temp_temp_nr;
142
143 /* broadcast and destination replacement regs */
144 struct nv50_reg *r_brdc;
145 struct nv50_reg *r_dst[4];
146
147 struct nv50_reg reg_instances[16];
148 unsigned reg_instance_nr;
149
150 unsigned interp_mode[32];
151 /* perspective interpolation registers */
152 struct nv50_reg *iv_p;
153 struct nv50_reg *iv_c;
154
155 struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
156 struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
157 struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
158 int if_lvl, loop_lvl;
159 unsigned loop_pos[NV50_MAX_LOOP_NESTING];
160
161 unsigned *insn_pos; /* actual program offset of each TGSI insn */
162 boolean in_subroutine;
163
164 /* current instruction and total number of insns */
165 unsigned insn_cur;
166 unsigned insn_nr;
167
168 boolean allow32;
169
170 uint8_t edgeflag_out;
171 };
172
173 static INLINE void
174 ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
175 {
176 reg->type = type;
177 reg->index = index;
178 reg->hw = hw;
179 reg->mod = 0;
180 reg->rhw = -1;
181 reg->acc = 0;
182 }
183
184 static INLINE unsigned
185 popcnt4(uint32_t val)
186 {
187 static const unsigned cnt[16]
188 = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
189 return cnt[val & 0xf];
190 }
191
192 static void
193 terminate_mbb(struct nv50_pc *pc)
194 {
195 int i;
196
197 /* remove records of temporary address register values */
198 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
199 pc->r_addr[i].rhw = -1;
200 }
201
202 static void
203 alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
204 {
205 int i = 0;
206
207 if (reg->type == P_RESULT) {
208 if (pc->p->cfg.high_result < (reg->hw + 1))
209 pc->p->cfg.high_result = reg->hw + 1;
210 }
211
212 if (reg->type != P_TEMP)
213 return;
214
215 if (reg->hw >= 0) {
216 /*XXX: do this here too to catch FP temp-as-attr usage..
217 * not clean, but works */
218 if (pc->p->cfg.high_temp < (reg->hw + 1))
219 pc->p->cfg.high_temp = reg->hw + 1;
220 return;
221 }
222
223 if (reg->rhw != -1) {
224 /* try to allocate temporary with index rhw first */
225 if (!(pc->r_temp[reg->rhw])) {
226 pc->r_temp[reg->rhw] = reg;
227 reg->hw = reg->rhw;
228 if (pc->p->cfg.high_temp < (reg->rhw + 1))
229 pc->p->cfg.high_temp = reg->rhw + 1;
230 return;
231 }
232 /* make sure we don't get things like $r0 needs to go
233 * in $r1 and $r1 in $r0
234 */
235 i = pc->result_nr * 4;
236 }
237
238 for (; i < NV50_SU_MAX_TEMP; i++) {
239 if (!(pc->r_temp[i])) {
240 pc->r_temp[i] = reg;
241 reg->hw = i;
242 if (pc->p->cfg.high_temp < (i + 1))
243 pc->p->cfg.high_temp = i + 1;
244 return;
245 }
246 }
247
248 assert(0);
249 }
250
251 static INLINE struct nv50_reg *
252 reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
253 {
254 struct nv50_reg *ri;
255
256 assert(pc->reg_instance_nr < 16);
257 ri = &pc->reg_instances[pc->reg_instance_nr++];
258 if (reg) {
259 alloc_reg(pc, reg);
260 *ri = *reg;
261 reg->mod = 0;
262 }
263 return ri;
264 }
265
266 /* XXX: For shaders that aren't executed linearly (e.g. shaders that
267 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
268 * lest we risk temp_temps overwriting regs alloc'd "later".
269 */
270 static struct nv50_reg *
271 alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
272 {
273 struct nv50_reg *r;
274 int i;
275
276 if (dst && dst->type == P_TEMP && dst->hw == -1)
277 return dst;
278
279 for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
280 if (!pc->r_temp[i]) {
281 r = MALLOC_STRUCT(nv50_reg);
282 ctor_reg(r, P_TEMP, -1, i);
283 pc->r_temp[i] = r;
284 return r;
285 }
286 }
287
288 assert(0);
289 return NULL;
290 }
291
292 /* release the hardware resource held by r */
293 static void
294 release_hw(struct nv50_pc *pc, struct nv50_reg *r)
295 {
296 assert(r->type == P_TEMP);
297 if (r->hw == -1)
298 return;
299
300 assert(pc->r_temp[r->hw] == r);
301 pc->r_temp[r->hw] = NULL;
302
303 r->acc = 0;
304 if (r->index == -1)
305 FREE(r);
306 }
307
308 static void
309 free_temp(struct nv50_pc *pc, struct nv50_reg *r)
310 {
311 if (r->index == -1) {
312 unsigned hw = r->hw;
313
314 FREE(pc->r_temp[hw]);
315 pc->r_temp[hw] = NULL;
316 }
317 }
318
319 static int
320 alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
321 {
322 int i;
323
324 if ((idx + 4) >= NV50_SU_MAX_TEMP)
325 return 1;
326
327 if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
328 pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
329 return alloc_temp4(pc, dst, idx + 4);
330
331 for (i = 0; i < 4; i++) {
332 dst[i] = MALLOC_STRUCT(nv50_reg);
333 ctor_reg(dst[i], P_TEMP, -1, idx + i);
334 pc->r_temp[idx + i] = dst[i];
335 }
336
337 return 0;
338 }
339
340 static void
341 free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
342 {
343 int i;
344
345 for (i = 0; i < 4; i++)
346 free_temp(pc, reg[i]);
347 }
348
349 static struct nv50_reg *
350 temp_temp(struct nv50_pc *pc)
351 {
352 if (pc->temp_temp_nr >= 16)
353 assert(0);
354
355 pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
356 return pc->temp_temp[pc->temp_temp_nr++];
357 }
358
359 static void
360 kill_temp_temp(struct nv50_pc *pc)
361 {
362 int i;
363
364 for (i = 0; i < pc->temp_temp_nr; i++)
365 free_temp(pc, pc->temp_temp[i]);
366 pc->temp_temp_nr = 0;
367 }
368
369 static int
370 ctor_immd_4u32(struct nv50_pc *pc,
371 uint32_t x, uint32_t y, uint32_t z, uint32_t w)
372 {
373 unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
374
375 pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
376
377 pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
378 pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
379 pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
380 pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
381
382 return pc->immd_nr++;
383 }
384
385 static INLINE int
386 ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
387 {
388 return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
389 }
390
391 static struct nv50_reg *
392 alloc_immd(struct nv50_pc *pc, float f)
393 {
394 struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
395 unsigned hw;
396
397 for (hw = 0; hw < pc->immd_nr * 4; hw++)
398 if (pc->immd_buf[hw] == fui(f))
399 break;
400
401 if (hw == pc->immd_nr * 4)
402 hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
403
404 ctor_reg(r, P_IMMD, -1, hw);
405 return r;
406 }
407
408 static struct nv50_program_exec *
409 exec(struct nv50_pc *pc)
410 {
411 struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
412
413 e->param.index = -1;
414 return e;
415 }
416
417 static void
418 emit(struct nv50_pc *pc, struct nv50_program_exec *e)
419 {
420 struct nv50_program *p = pc->p;
421
422 if (p->exec_tail)
423 p->exec_tail->next = e;
424 if (!p->exec_head)
425 p->exec_head = e;
426 p->exec_tail = e;
427 p->exec_size += (e->inst[0] & 1) ? 2 : 1;
428 }
429
430 static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
431
432 static boolean
433 is_long(struct nv50_program_exec *e)
434 {
435 if (e->inst[0] & 1)
436 return TRUE;
437 return FALSE;
438 }
439
440 static boolean
441 is_immd(struct nv50_program_exec *e)
442 {
443 if (is_long(e) && (e->inst[1] & 3) == 3)
444 return TRUE;
445 return FALSE;
446 }
447
448 static boolean
449 is_join(struct nv50_program_exec *e)
450 {
451 if (is_long(e) && (e->inst[1] & 3) == 2)
452 return TRUE;
453 return FALSE;
454 }
455
456 static INLINE void
457 set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458 struct nv50_program_exec *e)
459 {
460 assert(!is_immd(e));
461 set_long(pc, e);
462 e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
463 e->inst[1] |= (pred << 7) | (idx << 12);
464 }
465
466 static INLINE void
467 set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
468 struct nv50_program_exec *e)
469 {
470 set_long(pc, e);
471 e->inst[1] &= ~((0x3 << 4) | (1 << 6));
472 e->inst[1] |= (idx << 4) | (on << 6);
473 }
474
475 static INLINE void
476 set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
477 {
478 if (is_long(e))
479 return;
480
481 e->inst[0] |= 1;
482 set_pred(pc, 0xf, 0, e);
483 set_pred_wr(pc, 0, 0, e);
484 }
485
486 static INLINE void
487 set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
488 {
489 if (dst->type == P_RESULT) {
490 set_long(pc, e);
491 e->inst[1] |= 0x00000008;
492 }
493
494 alloc_reg(pc, dst);
495 if (dst->hw > 63)
496 set_long(pc, e);
497 e->inst[0] |= (dst->hw << 2);
498 }
499
500 static INLINE void
501 set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
502 {
503 set_long(pc, e);
504 /* XXX: can't be predicated - bits overlap; cases where both
505 * are required should be avoided by using pc->allow32 */
506 set_pred(pc, 0, 0, e);
507 set_pred_wr(pc, 0, 0, e);
508
509 e->inst[1] |= 0x00000002 | 0x00000001;
510 e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
511 e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
512 }
513
514 static INLINE void
515 set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
516 {
517 assert(!(e->inst[0] & 0x0c000000));
518 assert(!(e->inst[1] & 0x00000004));
519
520 e->inst[0] |= (a->hw & 3) << 26;
521 e->inst[1] |= (a->hw >> 2) << 2;
522 }
523
524 static void
525 emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
526 struct nv50_reg *src0, uint16_t src1_val)
527 {
528 struct nv50_program_exec *e = exec(pc);
529
530 e->inst[0] = 0xd0000000 | (src1_val << 9);
531 e->inst[1] = 0x20000000;
532 set_long(pc, e);
533 e->inst[0] |= dst->hw << 2;
534 if (src0) /* otherwise will add to $a0, which is always 0 */
535 set_addr(e, src0);
536
537 emit(pc, e);
538 }
539
540 static struct nv50_reg *
541 alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
542 {
543 struct nv50_reg *a_tgsi = NULL, *a = NULL;
544 int i;
545 uint8_t avail = ~pc->addr_alloc;
546
547 if (!ref) {
548 /* allocate for TGSI_FILE_ADDRESS */
549 while (avail) {
550 i = ffs(avail) - 1;
551
552 if (pc->r_addr[i].rhw < 0 ||
553 pc->r_addr[i].acc != pc->insn_cur) {
554 pc->addr_alloc |= (1 << i);
555
556 pc->r_addr[i].rhw = -1;
557 pc->r_addr[i].index = i;
558 return &pc->r_addr[i];
559 }
560 avail &= ~(1 << i);
561 }
562 assert(0);
563 return NULL;
564 }
565
566 /* Allocate and set an address reg so we can access 'ref'.
567 *
568 * If and r_addr->index will be -1 or the hw index the value
569 * value in rhw is relative to. If rhw < 0, the reg has not
570 * been initialized or is in use for TGSI_FILE_ADDRESS.
571 */
572 while (avail) { /* only consider regs that are not TGSI */
573 i = ffs(avail) - 1;
574 avail &= ~(1 << i);
575
576 if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
577 /* prefer an usused reg with low hw index */
578 a = &pc->r_addr[i];
579 continue;
580 }
581 if (!a && pc->r_addr[i].acc != pc->insn_cur)
582 a = &pc->r_addr[i];
583
584 if (ref->hw - pc->r_addr[i].rhw >= 128)
585 continue;
586
587 if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
588 (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
589 pc->r_addr[i].acc = pc->insn_cur;
590 return &pc->r_addr[i];
591 }
592 }
593 assert(a);
594
595 if (ref->acc < 0)
596 a_tgsi = pc->addr[ref->index];
597
598 emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
599
600 a->rhw = ref->hw & ~0x7f;
601 a->acc = pc->insn_cur;
602 a->index = a_tgsi ? ref->index : -1;
603 return a;
604 }
605
606 #define INTERP_LINEAR 0
607 #define INTERP_FLAT 1
608 #define INTERP_PERSPECTIVE 2
609 #define INTERP_CENTROID 4
610
611 /* interpolant index has been stored in dst->rhw */
612 static void
613 emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
614 unsigned mode)
615 {
616 assert(dst->rhw != -1);
617 struct nv50_program_exec *e = exec(pc);
618
619 e->inst[0] |= 0x80000000;
620 set_dst(pc, dst, e);
621 e->inst[0] |= (dst->rhw << 16);
622
623 if (mode & INTERP_FLAT) {
624 e->inst[0] |= (1 << 8);
625 } else {
626 if (mode & INTERP_PERSPECTIVE) {
627 e->inst[0] |= (1 << 25);
628 alloc_reg(pc, iv);
629 e->inst[0] |= (iv->hw << 9);
630 }
631
632 if (mode & INTERP_CENTROID)
633 e->inst[0] |= (1 << 24);
634 }
635
636 emit(pc, e);
637 }
638
639 static void
640 set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
641 struct nv50_program_exec *e)
642 {
643 set_long(pc, e);
644
645 e->param.index = src->hw & 127;
646 e->param.shift = s;
647 e->param.mask = m << (s % 32);
648
649 if (src->hw > 127)
650 set_addr(e, alloc_addr(pc, src));
651 else
652 if (src->acc < 0) {
653 assert(src->type == P_CONST);
654 set_addr(e, pc->addr[src->index]);
655 }
656
657 e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
658 }
659
660 /* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
661 static void
662 emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
663 {
664 struct nv50_program_exec *e = exec(pc);
665
666 e->inst[0] = 0x10000000;
667 if (!pc->allow32)
668 set_long(pc, e);
669
670 set_dst(pc, dst, e);
671
672 if (!is_long(e) && src->type == P_IMMD) {
673 set_immd(pc, src, e);
674 /*XXX: 32-bit, but steals part of "half" reg space - need to
675 * catch and handle this case if/when we do half-regs
676 */
677 } else
678 if (src->type == P_IMMD || src->type == P_CONST) {
679 set_long(pc, e);
680 set_data(pc, src, 0x7f, 9, e);
681 e->inst[1] |= 0x20000000; /* mov from c[] */
682 } else {
683 if (src->type == P_ATTR) {
684 set_long(pc, e);
685 e->inst[1] |= 0x00200000;
686 }
687
688 alloc_reg(pc, src);
689 if (src->hw > 63)
690 set_long(pc, e);
691 e->inst[0] |= (src->hw << 9);
692 }
693
694 if (is_long(e) && !is_immd(e)) {
695 e->inst[1] |= 0x04000000; /* 32-bit */
696 e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
697 if (!(e->inst[1] & 0x20000000))
698 e->inst[1] |= 0x00030000; /* lane mask 2:3 */
699 } else
700 e->inst[0] |= 0x00008000;
701
702 emit(pc, e);
703 }
704
705 static INLINE void
706 emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
707 {
708 struct nv50_reg *imm = alloc_immd(pc, f);
709 emit_mov(pc, dst, imm);
710 FREE(imm);
711 }
712
713 /* Assign the hw of the discarded temporary register src
714 * to the tgsi register dst and free src.
715 */
716 static void
717 assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
718 {
719 assert(src->index == -1 && src->hw != -1);
720
721 if (pc->if_lvl || pc->loop_lvl ||
722 (dst->type != P_TEMP) ||
723 (src->hw < pc->result_nr * 4 &&
724 pc->p->type == PIPE_SHADER_FRAGMENT) ||
725 pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
726 pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
727
728 emit_mov(pc, dst, src);
729 free_temp(pc, src);
730 return;
731 }
732
733 if (dst->hw != -1)
734 pc->r_temp[dst->hw] = NULL;
735 pc->r_temp[src->hw] = dst;
736 dst->hw = src->hw;
737
738 FREE(src);
739 }
740
741 static void
742 emit_nop(struct nv50_pc *pc)
743 {
744 struct nv50_program_exec *e = exec(pc);
745
746 e->inst[0] = 0xf0000000;
747 set_long(pc, e);
748 e->inst[1] = 0xe0000000;
749 emit(pc, e);
750 }
751
752 static boolean
753 check_swap_src_0_1(struct nv50_pc *pc,
754 struct nv50_reg **s0, struct nv50_reg **s1)
755 {
756 struct nv50_reg *src0 = *s0, *src1 = *s1;
757
758 if (src0->type == P_CONST) {
759 if (src1->type != P_CONST) {
760 *s0 = src1;
761 *s1 = src0;
762 return TRUE;
763 }
764 } else
765 if (src1->type == P_ATTR) {
766 if (src0->type != P_ATTR) {
767 *s0 = src1;
768 *s1 = src0;
769 return TRUE;
770 }
771 }
772
773 return FALSE;
774 }
775
776 static void
777 set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
778 struct nv50_program_exec *e)
779 {
780 struct nv50_reg *temp;
781
782 if (src->type != P_TEMP) {
783 temp = temp_temp(pc);
784 emit_mov(pc, temp, src);
785 src = temp;
786 }
787
788 alloc_reg(pc, src);
789 if (src->hw > 63)
790 set_long(pc, e);
791 e->inst[0] |= (src->hw << 9);
792 }
793
794 static void
795 set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
796 {
797 if (src->type == P_ATTR) {
798 set_long(pc, e);
799 e->inst[1] |= 0x00200000;
800 } else
801 if (src->type == P_CONST || src->type == P_IMMD) {
802 struct nv50_reg *temp = temp_temp(pc);
803
804 emit_mov(pc, temp, src);
805 src = temp;
806 }
807
808 alloc_reg(pc, src);
809 if (src->hw > 63)
810 set_long(pc, e);
811 e->inst[0] |= (src->hw << 9);
812 }
813
814 static void
815 set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
816 {
817 if (src->type == P_ATTR) {
818 struct nv50_reg *temp = temp_temp(pc);
819
820 emit_mov(pc, temp, src);
821 src = temp;
822 } else
823 if (src->type == P_CONST || src->type == P_IMMD) {
824 assert(!(e->inst[0] & 0x00800000));
825 if (e->inst[0] & 0x01000000) {
826 struct nv50_reg *temp = temp_temp(pc);
827
828 emit_mov(pc, temp, src);
829 src = temp;
830 } else {
831 set_data(pc, src, 0x7f, 16, e);
832 e->inst[0] |= 0x00800000;
833 }
834 }
835
836 alloc_reg(pc, src);
837 if (src->hw > 63)
838 set_long(pc, e);
839 e->inst[0] |= ((src->hw & 127) << 16);
840 }
841
842 static void
843 set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
844 {
845 set_long(pc, e);
846
847 if (src->type == P_ATTR) {
848 struct nv50_reg *temp = temp_temp(pc);
849
850 emit_mov(pc, temp, src);
851 src = temp;
852 } else
853 if (src->type == P_CONST || src->type == P_IMMD) {
854 assert(!(e->inst[0] & 0x01000000));
855 if (e->inst[0] & 0x00800000) {
856 struct nv50_reg *temp = temp_temp(pc);
857
858 emit_mov(pc, temp, src);
859 src = temp;
860 } else {
861 set_data(pc, src, 0x7f, 32+14, e);
862 e->inst[0] |= 0x01000000;
863 }
864 }
865
866 alloc_reg(pc, src);
867 e->inst[1] |= ((src->hw & 127) << 14);
868 }
869
870 static void
871 emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
872 {
873 struct nv50_program_exec *e = exec(pc);
874
875 assert(dst->type == P_TEMP);
876 e->inst[1] = 0x20000000 | (pred << 12);
877 set_long(pc, e);
878 set_dst(pc, dst, e);
879
880 emit(pc, e);
881 }
882
883 static void
884 emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
885 {
886 struct nv50_program_exec *e = exec(pc);
887
888 e->inst[0] = 0x000001fc;
889 e->inst[1] = 0xa0000008;
890 set_long(pc, e);
891 set_pred_wr(pc, 1, pred, e);
892 set_src_0_restricted(pc, src, e);
893
894 emit(pc, e);
895 }
896
897 static void
898 emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
899 struct nv50_reg *src1)
900 {
901 struct nv50_program_exec *e = exec(pc);
902
903 e->inst[0] |= 0xc0000000;
904
905 if (!pc->allow32)
906 set_long(pc, e);
907
908 check_swap_src_0_1(pc, &src0, &src1);
909 set_dst(pc, dst, e);
910 set_src_0(pc, src0, e);
911 if (src1->type == P_IMMD && !is_long(e)) {
912 if (src0->mod ^ src1->mod)
913 e->inst[0] |= 0x00008000;
914 set_immd(pc, src1, e);
915 } else {
916 set_src_1(pc, src1, e);
917 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
918 if (is_long(e))
919 e->inst[1] |= 0x08000000;
920 else
921 e->inst[0] |= 0x00008000;
922 }
923 }
924
925 emit(pc, e);
926 }
927
928 static void
929 emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
930 struct nv50_reg *src0, struct nv50_reg *src1)
931 {
932 struct nv50_program_exec *e = exec(pc);
933
934 e->inst[0] = 0xb0000000;
935
936 alloc_reg(pc, src1);
937 check_swap_src_0_1(pc, &src0, &src1);
938
939 if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
940 set_long(pc, e);
941 e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
942 ((src1->mod & NV50_MOD_NEG) << 27);
943 }
944
945 set_dst(pc, dst, e);
946 set_src_0(pc, src0, e);
947 if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
948 set_src_2(pc, src1, e);
949 else
950 if (src1->type == P_IMMD)
951 set_immd(pc, src1, e);
952 else
953 set_src_1(pc, src1, e);
954
955 emit(pc, e);
956 }
957
958 static void
959 emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
960 uint8_t s)
961 {
962 struct nv50_program_exec *e = exec(pc);
963
964 set_long(pc, e);
965 e->inst[1] |= 0xc0000000;
966
967 e->inst[0] |= dst->hw << 2;
968 e->inst[0] |= s << 16; /* shift left */
969 set_src_0_restricted(pc, src, e);
970
971 emit(pc, e);
972 }
973
974 static void
975 emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
976 struct nv50_reg *src0, struct nv50_reg *src1)
977 {
978 struct nv50_program_exec *e = exec(pc);
979
980 set_long(pc, e);
981 e->inst[0] |= 0xb0000000;
982 e->inst[1] |= (sub << 29);
983
984 check_swap_src_0_1(pc, &src0, &src1);
985 set_dst(pc, dst, e);
986 set_src_0(pc, src0, e);
987 set_src_1(pc, src1, e);
988
989 if (src0->mod & NV50_MOD_ABS)
990 e->inst[1] |= 0x00100000;
991 if (src1->mod & NV50_MOD_ABS)
992 e->inst[1] |= 0x00080000;
993
994 emit(pc, e);
995 }
996
997 static INLINE void
998 emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
999 struct nv50_reg *src1)
1000 {
1001 src1->mod ^= NV50_MOD_NEG;
1002 emit_add(pc, dst, src0, src1);
1003 src1->mod ^= NV50_MOD_NEG;
1004 }
1005
1006 static void
1007 emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1008 struct nv50_reg *src1, unsigned op)
1009 {
1010 struct nv50_program_exec *e = exec(pc);
1011
1012 e->inst[0] = 0xd0000000;
1013 set_long(pc, e);
1014
1015 check_swap_src_0_1(pc, &src0, &src1);
1016 set_dst(pc, dst, e);
1017 set_src_0(pc, src0, e);
1018
1019 if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
1020 op != TGSI_OPCODE_XOR)
1021 assert(!"invalid bit op");
1022
1023 assert(!(src0->mod | src1->mod));
1024
1025 if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
1026 set_immd(pc, src1, e);
1027 if (op == TGSI_OPCODE_OR)
1028 e->inst[0] |= 0x0100;
1029 else
1030 if (op == TGSI_OPCODE_XOR)
1031 e->inst[0] |= 0x8000;
1032 } else {
1033 set_src_1(pc, src1, e);
1034 e->inst[1] |= 0x04000000; /* 32 bit */
1035 if (op == TGSI_OPCODE_OR)
1036 e->inst[1] |= 0x4000;
1037 else
1038 if (op == TGSI_OPCODE_XOR)
1039 e->inst[1] |= 0x8000;
1040 }
1041
1042 emit(pc, e);
1043 }
1044
1045 static void
1046 emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1047 struct nv50_reg *src1, struct nv50_reg *src2)
1048 {
1049 struct nv50_program_exec *e = exec(pc);
1050
1051 e->inst[0] |= 0xe0000000;
1052
1053 check_swap_src_0_1(pc, &src0, &src1);
1054 set_dst(pc, dst, e);
1055 set_src_0(pc, src0, e);
1056 set_src_1(pc, src1, e);
1057 set_src_2(pc, src2, e);
1058
1059 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1060 e->inst[1] |= 0x04000000;
1061 if (src2->mod & NV50_MOD_NEG)
1062 e->inst[1] |= 0x08000000;
1063
1064 emit(pc, e);
1065 }
1066
1067 static INLINE void
1068 emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1069 struct nv50_reg *src1, struct nv50_reg *src2)
1070 {
1071 src2->mod ^= NV50_MOD_NEG;
1072 emit_mad(pc, dst, src0, src1, src2);
1073 src2->mod ^= NV50_MOD_NEG;
1074 }
1075
1076 #define NV50_FLOP_RCP 0
1077 #define NV50_FLOP_RSQ 2
1078 #define NV50_FLOP_LG2 3
1079 #define NV50_FLOP_SIN 4
1080 #define NV50_FLOP_COS 5
1081 #define NV50_FLOP_EX2 6
1082
1083 /* rcp, rsqrt, lg2 support neg and abs */
1084 static void
1085 emit_flop(struct nv50_pc *pc, unsigned sub,
1086 struct nv50_reg *dst, struct nv50_reg *src)
1087 {
1088 struct nv50_program_exec *e = exec(pc);
1089
1090 e->inst[0] |= 0x90000000;
1091 if (sub || src->mod) {
1092 set_long(pc, e);
1093 e->inst[1] |= (sub << 29);
1094 }
1095
1096 set_dst(pc, dst, e);
1097 set_src_0_restricted(pc, src, e);
1098
1099 assert(!src->mod || sub < 4);
1100
1101 if (src->mod & NV50_MOD_NEG)
1102 e->inst[1] |= 0x04000000;
1103 if (src->mod & NV50_MOD_ABS)
1104 e->inst[1] |= 0x00100000;
1105
1106 emit(pc, e);
1107 }
1108
1109 static void
1110 emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1111 {
1112 struct nv50_program_exec *e = exec(pc);
1113
1114 e->inst[0] |= 0xb0000000;
1115
1116 set_dst(pc, dst, e);
1117 set_src_0(pc, src, e);
1118 set_long(pc, e);
1119 e->inst[1] |= (6 << 29) | 0x00004000;
1120
1121 if (src->mod & NV50_MOD_NEG)
1122 e->inst[1] |= 0x04000000;
1123 if (src->mod & NV50_MOD_ABS)
1124 e->inst[1] |= 0x00100000;
1125
1126 emit(pc, e);
1127 }
1128
1129 static void
1130 emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1131 {
1132 struct nv50_program_exec *e = exec(pc);
1133
1134 e->inst[0] |= 0xb0000000;
1135
1136 set_dst(pc, dst, e);
1137 set_src_0(pc, src, e);
1138 set_long(pc, e);
1139 e->inst[1] |= (6 << 29);
1140
1141 if (src->mod & NV50_MOD_NEG)
1142 e->inst[1] |= 0x04000000;
1143 if (src->mod & NV50_MOD_ABS)
1144 e->inst[1] |= 0x00100000;
1145
1146 emit(pc, e);
1147 }
1148
1149 #define CVT_RN (0x00 << 16)
1150 #define CVT_FLOOR (0x02 << 16)
1151 #define CVT_CEIL (0x04 << 16)
1152 #define CVT_TRUNC (0x06 << 16)
1153 #define CVT_SAT (0x08 << 16)
1154 #define CVT_ABS (0x10 << 16)
1155
1156 #define CVT_X32_X32 0x04004000
1157 #define CVT_X32_S32 0x04014000
1158 #define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
1159 #define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
1160 #define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
1161 #define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
1162 #define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
1163 #define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
1164 #define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
1165 #define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
1166
1167 #define CVT_NEG 0x20000000
1168 #define CVT_RI 0x08000000
1169
1170 static void
1171 emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1172 int wp, uint32_t cvn)
1173 {
1174 struct nv50_program_exec *e;
1175
1176 e = exec(pc);
1177
1178 if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
1179 if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
1180
1181 e->inst[0] = 0xa0000000;
1182 e->inst[1] = cvn;
1183 set_long(pc, e);
1184 set_src_0(pc, src, e);
1185
1186 if (wp >= 0)
1187 set_pred_wr(pc, 1, wp, e);
1188
1189 if (dst)
1190 set_dst(pc, dst, e);
1191 else {
1192 e->inst[0] |= 0x000001fc;
1193 e->inst[1] |= 0x00000008;
1194 }
1195
1196 emit(pc, e);
1197 }
1198
1199 /* nv50 Condition codes:
1200 * 0x1 = LT
1201 * 0x2 = EQ
1202 * 0x3 = LE
1203 * 0x4 = GT
1204 * 0x5 = NE
1205 * 0x6 = GE
1206 * 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1207 * 0x8 = unordered bit (allows NaN)
1208 */
1209 static void
1210 emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1211 struct nv50_reg *src0, struct nv50_reg *src1)
1212 {
1213 static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1214
1215 struct nv50_program_exec *e = exec(pc);
1216 struct nv50_reg *rdst;
1217
1218 assert(ccode < 16);
1219 if (check_swap_src_0_1(pc, &src0, &src1))
1220 ccode = cc_swapped[ccode & 7] | (ccode & 8);
1221
1222 rdst = dst;
1223 if (dst && dst->type != P_TEMP)
1224 dst = alloc_temp(pc, NULL);
1225
1226 /* set.u32 */
1227 set_long(pc, e);
1228 e->inst[0] |= 0xb0000000;
1229 e->inst[1] |= 0x60000000 | (ccode << 14);
1230
1231 /* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1232 * that doesn't seem to match what the hw actually does
1233 e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1234 */
1235
1236 if (wp >= 0)
1237 set_pred_wr(pc, 1, wp, e);
1238 if (dst)
1239 set_dst(pc, dst, e);
1240 else {
1241 e->inst[0] |= 0x000001fc;
1242 e->inst[1] |= 0x00000008;
1243 }
1244
1245 set_src_0(pc, src0, e);
1246 set_src_1(pc, src1, e);
1247
1248 emit(pc, e);
1249
1250 /* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1251 if (rdst)
1252 emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
1253 if (rdst && rdst != dst)
1254 free_temp(pc, dst);
1255 }
1256
1257 static INLINE unsigned
1258 map_tgsi_setop_cc(unsigned op)
1259 {
1260 switch (op) {
1261 case TGSI_OPCODE_SLT: return 0x1;
1262 case TGSI_OPCODE_SGE: return 0x6;
1263 case TGSI_OPCODE_SEQ: return 0x2;
1264 case TGSI_OPCODE_SGT: return 0x4;
1265 case TGSI_OPCODE_SLE: return 0x3;
1266 case TGSI_OPCODE_SNE: return 0xd;
1267 default:
1268 assert(0);
1269 return 0;
1270 }
1271 }
1272
1273 static INLINE void
1274 emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1275 {
1276 emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
1277 }
1278
1279 static void
1280 emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1281 struct nv50_reg *v, struct nv50_reg *e)
1282 {
1283 struct nv50_reg *temp = alloc_temp(pc, NULL);
1284
1285 emit_flop(pc, NV50_FLOP_LG2, temp, v);
1286 emit_mul(pc, temp, temp, e);
1287 emit_preex2(pc, temp, temp);
1288 emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1289
1290 free_temp(pc, temp);
1291 }
1292
1293 static INLINE void
1294 emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1295 {
1296 emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
1297 }
1298
1299 static void
1300 emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1301 struct nv50_reg **src)
1302 {
1303 struct nv50_reg *one = alloc_immd(pc, 1.0);
1304 struct nv50_reg *zero = alloc_immd(pc, 0.0);
1305 struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1306 struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
1307 struct nv50_reg *tmp[4];
1308 boolean allow32 = pc->allow32;
1309
1310 pc->allow32 = FALSE;
1311
1312 if (mask & (3 << 1)) {
1313 tmp[0] = alloc_temp(pc, NULL);
1314 emit_minmax(pc, 4, tmp[0], src[0], zero);
1315 }
1316
1317 if (mask & (1 << 2)) {
1318 set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1319
1320 tmp[1] = temp_temp(pc);
1321 emit_minmax(pc, 4, tmp[1], src[1], zero);
1322
1323 tmp[3] = temp_temp(pc);
1324 emit_minmax(pc, 4, tmp[3], src[3], neg128);
1325 emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1326
1327 emit_pow(pc, dst[2], tmp[1], tmp[3]);
1328 emit_mov(pc, dst[2], zero);
1329 set_pred(pc, 3, 0, pc->p->exec_tail);
1330 }
1331
1332 if (mask & (1 << 1))
1333 assimilate_temp(pc, dst[1], tmp[0]);
1334 else
1335 if (mask & (1 << 2))
1336 free_temp(pc, tmp[0]);
1337
1338 pc->allow32 = allow32;
1339
1340 /* do this last, in case src[i,j] == dst[0,3] */
1341 if (mask & (1 << 0))
1342 emit_mov(pc, dst[0], one);
1343
1344 if (mask & (1 << 3))
1345 emit_mov(pc, dst[3], one);
1346
1347 FREE(pos128);
1348 FREE(neg128);
1349 FREE(zero);
1350 FREE(one);
1351 }
1352
1353 static void
1354 emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1355 {
1356 struct nv50_program_exec *e;
1357 const int r_pred = 1;
1358
1359 e = exec(pc);
1360 e->inst[0] = 0x00000002; /* discard */
1361 set_long(pc, e); /* sets cond code to ALWAYS */
1362
1363 if (src) {
1364 set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1365 /* write to predicate reg */
1366 emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
1367 }
1368
1369 emit(pc, e);
1370 }
1371
1372 static struct nv50_program_exec *
1373 emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
1374 {
1375 struct nv50_program_exec *e = exec(pc);
1376
1377 e->inst[0] = (op << 28) | 2;
1378 set_long(pc, e);
1379 if (pred >= 0)
1380 set_pred(pc, cc, pred, e);
1381
1382 emit(pc, e);
1383 return e;
1384 }
1385
1386 static INLINE struct nv50_program_exec *
1387 emit_breakaddr(struct nv50_pc *pc)
1388 {
1389 return emit_control_flow(pc, 0x4, -1, 0);
1390 }
1391
1392 static INLINE void
1393 emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1394 {
1395 emit_control_flow(pc, 0x5, pred, cc);
1396 }
1397
1398 static INLINE struct nv50_program_exec *
1399 emit_joinat(struct nv50_pc *pc)
1400 {
1401 return emit_control_flow(pc, 0xa, -1, 0);
1402 }
1403
1404 static INLINE struct nv50_program_exec *
1405 emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1406 {
1407 return emit_control_flow(pc, 0x1, pred, cc);
1408 }
1409
1410 static INLINE struct nv50_program_exec *
1411 emit_call(struct nv50_pc *pc, int pred, unsigned cc)
1412 {
1413 return emit_control_flow(pc, 0x2, pred, cc);
1414 }
1415
1416 static INLINE void
1417 emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1418 {
1419 emit_control_flow(pc, 0x3, pred, cc);
1420 }
1421
1422 #define QOP_ADD 0
1423 #define QOP_SUBR 1
1424 #define QOP_SUB 2
1425 #define QOP_MOV_SRC1 3
1426
1427 /* For a quad of threads / top left, top right, bottom left, bottom right
1428 * pixels, do a different operation, and take src0 from a specific thread.
1429 */
1430 static void
1431 emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1432 struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1433 {
1434 struct nv50_program_exec *e = exec(pc);
1435
1436 e->inst[0] = 0xc0000000;
1437 e->inst[1] = 0x80000000;
1438 set_long(pc, e);
1439 e->inst[0] |= lane_src0 << 16;
1440 set_src_0(pc, src0, e);
1441 set_src_2(pc, src1, e);
1442
1443 if (wp >= 0)
1444 set_pred_wr(pc, 1, wp, e);
1445
1446 if (dst)
1447 set_dst(pc, dst, e);
1448 else {
1449 e->inst[0] |= 0x000001fc;
1450 e->inst[1] |= 0x00000008;
1451 }
1452
1453 e->inst[0] |= (qop & 3) << 20;
1454 e->inst[1] |= (qop >> 2) << 22;
1455
1456 emit(pc, e);
1457 }
1458
1459 static void
1460 load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1461 struct nv50_reg **src, unsigned arg, boolean proj)
1462 {
1463 int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1464
1465 src[0]->mod |= NV50_MOD_ABS;
1466 src[1]->mod |= NV50_MOD_ABS;
1467 src[2]->mod |= NV50_MOD_ABS;
1468
1469 emit_minmax(pc, 4, t[2], src[0], src[1]);
1470 emit_minmax(pc, 4, t[2], src[2], t[2]);
1471
1472 src[0]->mod = mod[0];
1473 src[1]->mod = mod[1];
1474 src[2]->mod = mod[2];
1475
1476 if (proj && 0 /* looks more correct without this */)
1477 emit_mul(pc, t[2], t[2], src[3]);
1478 else
1479 if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1480 emit_mov(pc, t[3], src[3]);
1481
1482 emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1483
1484 emit_mul(pc, t[0], src[0], t[2]);
1485 emit_mul(pc, t[1], src[1], t[2]);
1486 emit_mul(pc, t[2], src[2], t[2]);
1487 }
1488
1489 static void
1490 load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1491 struct nv50_reg **src, unsigned dim, unsigned arg)
1492 {
1493 unsigned c, mode;
1494
1495 if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1496 mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1497
1498 t[3]->rhw = src[3]->rhw;
1499 emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1500 emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1501
1502 for (c = 0; c < dim; ++c) {
1503 t[c]->rhw = src[c]->rhw;
1504 emit_interp(pc, t[c], t[3], mode);
1505 }
1506 if (arg != dim) { /* depth reference value */
1507 t[dim]->rhw = src[2]->rhw;
1508 emit_interp(pc, t[dim], t[3], mode);
1509 }
1510 } else {
1511 /* XXX: for some reason the blob sometimes uses MAD
1512 * (mad f32 $rX $rY $rZ neg $r63)
1513 */
1514 emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1515 for (c = 0; c < dim; ++c)
1516 emit_mul(pc, t[c], src[c], t[3]);
1517 if (arg != dim) /* depth reference value */
1518 emit_mul(pc, t[dim], src[2], t[3]);
1519 }
1520 }
1521
1522 static INLINE void
1523 get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1524 {
1525 switch (type) {
1526 case TGSI_TEXTURE_1D:
1527 *arg = *dim = 1;
1528 break;
1529 case TGSI_TEXTURE_SHADOW1D:
1530 *dim = 1;
1531 *arg = 2;
1532 break;
1533 case TGSI_TEXTURE_UNKNOWN:
1534 case TGSI_TEXTURE_2D:
1535 case TGSI_TEXTURE_RECT:
1536 *arg = *dim = 2;
1537 break;
1538 case TGSI_TEXTURE_SHADOW2D:
1539 case TGSI_TEXTURE_SHADOWRECT:
1540 *dim = 2;
1541 *arg = 3;
1542 break;
1543 case TGSI_TEXTURE_3D:
1544 case TGSI_TEXTURE_CUBE:
1545 *dim = *arg = 3;
1546 break;
1547 default:
1548 assert(0);
1549 break;
1550 }
1551 }
1552
1553 /* We shouldn't execute TEXLOD if any of the pixels in a quad have
1554 * different LOD values, so branch off groups of equal LOD.
1555 */
1556 static void
1557 emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1558 struct nv50_reg *src, struct nv50_program_exec *tex)
1559 {
1560 struct nv50_program_exec *join_at;
1561 unsigned i, target = pc->p->exec_size + 9 * 2;
1562
1563 if (pc->p->type != PIPE_SHADER_FRAGMENT) {
1564 emit(pc, tex);
1565 return;
1566 }
1567 pc->allow32 = FALSE;
1568
1569 /* Subtract lod of each pixel from lod of top left pixel, jump
1570 * texlod insn if result is 0, then repeat for 2 other pixels.
1571 */
1572 join_at = emit_joinat(pc);
1573 emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1574 emit_branch(pc, 0, 2)->param.index = target;
1575
1576 for (i = 1; i < 4; ++i) {
1577 emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1578 emit_branch(pc, 0, 2)->param.index = target;
1579 }
1580
1581 emit_mov(pc, tlod, src); /* target */
1582 emit(pc, tex); /* texlod */
1583
1584 join_at->param.index = target + 2 * 2;
1585 JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1586 }
1587
1588 static void
1589 emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1590 struct nv50_program_exec *tex)
1591 {
1592 struct nv50_program_exec *e;
1593 struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1594 int r_pred = 0;
1595 unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1596
1597 pc->allow32 = FALSE;
1598 ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1599
1600 /* Subtract bias value of thread i from bias values of each thread,
1601 * store result in r_pred, and set bit i in r_bits if result was 0.
1602 */
1603 assert(arg < 4);
1604 for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1605 emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1606 emit_mov(pc, r_bits, &imm_1248);
1607 set_pred(pc, 2, r_pred, pc->p->exec_tail);
1608 }
1609 emit_mov_to_pred(pc, r_pred, r_bits);
1610
1611 /* The lanes of a quad are now grouped by the bit in r_pred they have
1612 * set. Put the input values for TEX into a new register set for each
1613 * group and execute TEX only for a specific group.
1614 * We cannot use the same register set for each group because we need
1615 * the derivatives, which are implicitly calculated, to be correct.
1616 */
1617 for (i = 1; i < 4; ++i) {
1618 alloc_temp4(pc, t123[i], 0);
1619
1620 for (c = 0; c <= arg; ++c)
1621 emit_mov(pc, t123[i][c], t[c]);
1622
1623 *(e = exec(pc)) = *(tex);
1624 e->inst[0] &= ~0x01fc;
1625 set_dst(pc, t123[i][0], e);
1626 set_pred(pc, cc[i], r_pred, e);
1627 emit(pc, e);
1628 }
1629 /* finally TEX on the original regs (where we kept the input) */
1630 set_pred(pc, cc[0], r_pred, tex);
1631 emit(pc, tex);
1632
1633 /* put the 3 * n other results into regs for lane 0 */
1634 n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1635 for (i = 1; i < 4; ++i) {
1636 for (c = 0; c < n; ++c) {
1637 emit_mov(pc, t[c], t123[i][c]);
1638 set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1639 }
1640 free_temp4(pc, t123[i]);
1641 }
1642
1643 emit_nop(pc);
1644 free_temp(pc, r_bits);
1645 }
1646
1647 static void
1648 emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1649 struct nv50_reg **src, unsigned unit, unsigned type,
1650 boolean proj, int bias_lod)
1651 {
1652 struct nv50_reg *t[4];
1653 struct nv50_program_exec *e;
1654 unsigned c, dim, arg;
1655
1656 /* t[i] must be within a single 128 bit super-reg */
1657 alloc_temp4(pc, t, 0);
1658
1659 e = exec(pc);
1660 e->inst[0] = 0xf0000000;
1661 set_long(pc, e);
1662 set_dst(pc, t[0], e);
1663
1664 /* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1665 e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1666
1667 /* live flag (don't set if TEX results affect input to another TEX): */
1668 /* e->inst[0] |= 0x00000004; */
1669
1670 get_tex_dim(type, &dim, &arg);
1671
1672 if (type == TGSI_TEXTURE_CUBE) {
1673 e->inst[0] |= 0x08000000;
1674 load_cube_tex_coords(pc, t, src, arg, proj);
1675 } else
1676 if (proj)
1677 load_proj_tex_coords(pc, t, src, dim, arg);
1678 else {
1679 for (c = 0; c < dim; c++)
1680 emit_mov(pc, t[c], src[c]);
1681 if (arg != dim) /* depth reference value (always src.z here) */
1682 emit_mov(pc, t[dim], src[2]);
1683 }
1684
1685 e->inst[0] |= (mask & 0x3) << 25;
1686 e->inst[1] |= (mask & 0xc) << 12;
1687
1688 if (!bias_lod) {
1689 e->inst[0] |= (arg - 1) << 22;
1690 emit(pc, e);
1691 } else
1692 if (bias_lod < 0) {
1693 assert(pc->p->type == PIPE_SHADER_FRAGMENT);
1694 e->inst[0] |= arg << 22;
1695 e->inst[1] |= 0x20000000; /* texbias */
1696 emit_mov(pc, t[arg], src[3]);
1697 emit_texbias_sequence(pc, t, arg, e);
1698 } else {
1699 e->inst[0] |= arg << 22;
1700 e->inst[1] |= 0x40000000; /* texlod */
1701 emit_mov(pc, t[arg], src[3]);
1702 emit_texlod_sequence(pc, t[arg], src[3], e);
1703 }
1704
1705 #if 1
1706 c = 0;
1707 if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1708 if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1709 if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1710 if (mask & 8) emit_mov(pc, dst[3], t[c]);
1711
1712 free_temp4(pc, t);
1713 #else
1714 /* XXX: if p.e. MUL is used directly after TEX, it would still use
1715 * the texture coordinates, not the fetched values: latency ? */
1716
1717 for (c = 0; c < 4; c++) {
1718 if (mask & (1 << c))
1719 assimilate_temp(pc, dst[c], t[c]);
1720 else
1721 free_temp(pc, t[c]);
1722 }
1723 #endif
1724 }
1725
1726 static void
1727 emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1728 {
1729 struct nv50_program_exec *e = exec(pc);
1730
1731 assert(src->type == P_TEMP);
1732
1733 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1734 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1735 set_long(pc, e);
1736 set_dst(pc, dst, e);
1737 set_src_0(pc, src, e);
1738 set_src_2(pc, src, e);
1739
1740 emit(pc, e);
1741 }
1742
1743 static void
1744 emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1745 {
1746 struct nv50_program_exec *e = exec(pc);
1747
1748 assert(src->type == P_TEMP);
1749
1750 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1751 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1752 set_long(pc, e);
1753 set_dst(pc, dst, e);
1754 set_src_0(pc, src, e);
1755 set_src_2(pc, src, e);
1756
1757 emit(pc, e);
1758 }
1759
1760 static void
1761 convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1762 {
1763 unsigned q = 0, m = ~0;
1764
1765 assert(!is_long(e));
1766
1767 switch (e->inst[0] >> 28) {
1768 case 0x1:
1769 /* MOV */
1770 q = 0x0403c000;
1771 m = 0xffff7fff;
1772 break;
1773 case 0x8:
1774 /* INTERP (move centroid, perspective and flat bits) */
1775 m = ~0x03000100;
1776 q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1777 q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1778 break;
1779 case 0x9:
1780 /* RCP */
1781 break;
1782 case 0xB:
1783 /* ADD */
1784 m = ~(127 << 16);
1785 q = ((e->inst[0] & (~m)) >> 2);
1786 break;
1787 case 0xC:
1788 /* MUL */
1789 m = ~0x00008000;
1790 q = ((e->inst[0] & (~m)) << 12);
1791 break;
1792 case 0xE:
1793 /* MAD (if src2 == dst) */
1794 q = ((e->inst[0] & 0x1fc) << 12);
1795 break;
1796 default:
1797 assert(0);
1798 break;
1799 }
1800
1801 set_long(pc, e);
1802 pc->p->exec_size++;
1803
1804 e->inst[0] &= m;
1805 e->inst[1] |= q;
1806 }
1807
1808 /* Some operations support an optional negation flag. */
1809 static int
1810 get_supported_mods(const struct tgsi_full_instruction *insn, int i)
1811 {
1812 switch (insn->Instruction.Opcode) {
1813 case TGSI_OPCODE_ADD:
1814 case TGSI_OPCODE_COS:
1815 case TGSI_OPCODE_DDX:
1816 case TGSI_OPCODE_DDY:
1817 case TGSI_OPCODE_DP3:
1818 case TGSI_OPCODE_DP4:
1819 case TGSI_OPCODE_EX2:
1820 case TGSI_OPCODE_KIL:
1821 case TGSI_OPCODE_LG2:
1822 case TGSI_OPCODE_MAD:
1823 case TGSI_OPCODE_MUL:
1824 case TGSI_OPCODE_POW:
1825 case TGSI_OPCODE_RCP:
1826 case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1827 case TGSI_OPCODE_SCS:
1828 case TGSI_OPCODE_SIN:
1829 case TGSI_OPCODE_SUB:
1830 return NV50_MOD_NEG;
1831 case TGSI_OPCODE_MAX:
1832 case TGSI_OPCODE_MIN:
1833 case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
1834 return NV50_MOD_ABS;
1835 case TGSI_OPCODE_CEIL:
1836 case TGSI_OPCODE_FLR:
1837 case TGSI_OPCODE_TRUNC:
1838 return NV50_MOD_NEG | NV50_MOD_ABS;
1839 case TGSI_OPCODE_F2I:
1840 case TGSI_OPCODE_F2U:
1841 case TGSI_OPCODE_I2F:
1842 case TGSI_OPCODE_U2F:
1843 return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
1844 default:
1845 return 0;
1846 }
1847 }
1848
1849 /* Return a read mask for source registers deduced from opcode & write mask. */
1850 static unsigned
1851 nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1852 {
1853 unsigned x, mask = insn->Dst[0].Register.WriteMask;
1854
1855 switch (insn->Instruction.Opcode) {
1856 case TGSI_OPCODE_COS:
1857 case TGSI_OPCODE_SIN:
1858 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1859 case TGSI_OPCODE_DP3:
1860 return 0x7;
1861 case TGSI_OPCODE_DP4:
1862 case TGSI_OPCODE_DPH:
1863 case TGSI_OPCODE_KIL: /* WriteMask ignored */
1864 return 0xf;
1865 case TGSI_OPCODE_DST:
1866 return mask & (c ? 0xa : 0x6);
1867 case TGSI_OPCODE_EX2:
1868 case TGSI_OPCODE_EXP:
1869 case TGSI_OPCODE_LG2:
1870 case TGSI_OPCODE_LOG:
1871 case TGSI_OPCODE_POW:
1872 case TGSI_OPCODE_RCP:
1873 case TGSI_OPCODE_RSQ:
1874 case TGSI_OPCODE_SCS:
1875 return 0x1;
1876 case TGSI_OPCODE_IF:
1877 return 0x1;
1878 case TGSI_OPCODE_LIT:
1879 return 0xb;
1880 case TGSI_OPCODE_TEX:
1881 case TGSI_OPCODE_TXB:
1882 case TGSI_OPCODE_TXL:
1883 case TGSI_OPCODE_TXP:
1884 {
1885 const struct tgsi_instruction_texture *tex;
1886
1887 assert(insn->Instruction.Texture);
1888 tex = &insn->Texture;
1889
1890 mask = 0x7;
1891 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
1892 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
1893 mask |= 0x8; /* bias, lod or proj */
1894
1895 switch (tex->Texture) {
1896 case TGSI_TEXTURE_1D:
1897 mask &= 0x9;
1898 break;
1899 case TGSI_TEXTURE_SHADOW1D:
1900 mask &= 0x5;
1901 break;
1902 case TGSI_TEXTURE_2D:
1903 mask &= 0xb;
1904 break;
1905 default:
1906 break;
1907 }
1908 }
1909 return mask;
1910 case TGSI_OPCODE_XPD:
1911 x = 0;
1912 if (mask & 1) x |= 0x6;
1913 if (mask & 2) x |= 0x5;
1914 if (mask & 4) x |= 0x3;
1915 return x;
1916 default:
1917 break;
1918 }
1919
1920 return mask;
1921 }
1922
1923 static struct nv50_reg *
1924 tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1925 {
1926 switch (dst->Register.File) {
1927 case TGSI_FILE_TEMPORARY:
1928 return &pc->temp[dst->Register.Index * 4 + c];
1929 case TGSI_FILE_OUTPUT:
1930 return &pc->result[dst->Register.Index * 4 + c];
1931 case TGSI_FILE_ADDRESS:
1932 {
1933 struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
1934 if (!r) {
1935 r = alloc_addr(pc, NULL);
1936 pc->addr[dst->Register.Index * 4 + c] = r;
1937 }
1938 assert(r);
1939 return r;
1940 }
1941 case TGSI_FILE_NULL:
1942 return NULL;
1943 default:
1944 break;
1945 }
1946
1947 return NULL;
1948 }
1949
1950 static struct nv50_reg *
1951 tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1952 int mod)
1953 {
1954 struct nv50_reg *r = NULL;
1955 struct nv50_reg *temp = NULL;
1956 unsigned sgn, c, swz, cvn;
1957
1958 if (src->Register.File != TGSI_FILE_CONSTANT)
1959 assert(!src->Register.Indirect);
1960
1961 sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1962
1963 c = tgsi_util_get_full_src_register_swizzle(src, chan);
1964 switch (c) {
1965 case TGSI_SWIZZLE_X:
1966 case TGSI_SWIZZLE_Y:
1967 case TGSI_SWIZZLE_Z:
1968 case TGSI_SWIZZLE_W:
1969 switch (src->Register.File) {
1970 case TGSI_FILE_INPUT:
1971 r = &pc->attr[src->Register.Index * 4 + c];
1972 break;
1973 case TGSI_FILE_TEMPORARY:
1974 r = &pc->temp[src->Register.Index * 4 + c];
1975 break;
1976 case TGSI_FILE_CONSTANT:
1977 if (!src->Register.Indirect) {
1978 r = &pc->param[src->Register.Index * 4 + c];
1979 break;
1980 }
1981 /* Indicate indirection by setting r->acc < 0 and
1982 * use the index field to select the address reg.
1983 */
1984 r = reg_instance(pc, NULL);
1985 swz = tgsi_util_get_src_register_swizzle(
1986 &src->Indirect, 0);
1987 ctor_reg(r, P_CONST,
1988 src->Indirect.Index * 4 + swz,
1989 src->Register.Index * 4 + c);
1990 r->acc = -1;
1991 break;
1992 case TGSI_FILE_IMMEDIATE:
1993 r = &pc->immd[src->Register.Index * 4 + c];
1994 break;
1995 case TGSI_FILE_SAMPLER:
1996 return NULL;
1997 case TGSI_FILE_ADDRESS:
1998 r = pc->addr[src->Register.Index * 4 + c];
1999 assert(r);
2000 break;
2001 default:
2002 assert(0);
2003 break;
2004 }
2005 break;
2006 default:
2007 assert(0);
2008 break;
2009 }
2010
2011 cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
2012
2013 switch (sgn) {
2014 case TGSI_UTIL_SIGN_CLEAR:
2015 r->mod = NV50_MOD_ABS;
2016 break;
2017 case TGSI_UTIL_SIGN_SET:
2018 r->mod = NV50_MOD_NEG_ABS;
2019 break;
2020 case TGSI_UTIL_SIGN_TOGGLE:
2021 r->mod = NV50_MOD_NEG;
2022 break;
2023 default:
2024 assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
2025 break;
2026 }
2027
2028 if ((r->mod & mod) != r->mod) {
2029 temp = temp_temp(pc);
2030 emit_cvt(pc, temp, r, -1, cvn);
2031 r->mod = 0;
2032 r = temp;
2033 } else
2034 r->mod |= mod & NV50_MOD_I32;
2035
2036 assert(r);
2037 if (r->acc >= 0 && r != temp)
2038 return reg_instance(pc, r); /* will clear r->mod */
2039 return r;
2040 }
2041
2042 /* return TRUE for ops that produce only a single result */
2043 static boolean
2044 is_scalar_op(unsigned op)
2045 {
2046 switch (op) {
2047 case TGSI_OPCODE_COS:
2048 case TGSI_OPCODE_DP2:
2049 case TGSI_OPCODE_DP3:
2050 case TGSI_OPCODE_DP4:
2051 case TGSI_OPCODE_DPH:
2052 case TGSI_OPCODE_EX2:
2053 case TGSI_OPCODE_LG2:
2054 case TGSI_OPCODE_POW:
2055 case TGSI_OPCODE_RCP:
2056 case TGSI_OPCODE_RSQ:
2057 case TGSI_OPCODE_SIN:
2058 /*
2059 case TGSI_OPCODE_KIL:
2060 case TGSI_OPCODE_LIT:
2061 case TGSI_OPCODE_SCS:
2062 */
2063 return TRUE;
2064 default:
2065 return FALSE;
2066 }
2067 }
2068
2069 /* Returns a bitmask indicating which dst components depend
2070 * on source s, component c (reverse of nv50_tgsi_src_mask).
2071 */
2072 static unsigned
2073 nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2074 {
2075 if (is_scalar_op(op))
2076 return 0x1;
2077
2078 switch (op) {
2079 case TGSI_OPCODE_DST:
2080 return (1 << c) & (s ? 0xa : 0x6);
2081 case TGSI_OPCODE_XPD:
2082 switch (c) {
2083 case 0: return 0x6;
2084 case 1: return 0x5;
2085 case 2: return 0x3;
2086 case 3: return 0x0;
2087 default:
2088 assert(0);
2089 return 0x0;
2090 }
2091 case TGSI_OPCODE_EXP:
2092 case TGSI_OPCODE_LOG:
2093 case TGSI_OPCODE_LIT:
2094 case TGSI_OPCODE_SCS:
2095 case TGSI_OPCODE_TEX:
2096 case TGSI_OPCODE_TXB:
2097 case TGSI_OPCODE_TXL:
2098 case TGSI_OPCODE_TXP:
2099 /* these take care of dangerous swizzles themselves */
2100 return 0x0;
2101 case TGSI_OPCODE_IF:
2102 case TGSI_OPCODE_KIL:
2103 /* don't call this function for these ops */
2104 assert(0);
2105 return 0;
2106 default:
2107 /* linear vector instruction */
2108 return (1 << c);
2109 }
2110 }
2111
2112 static INLINE boolean
2113 has_pred(struct nv50_program_exec *e, unsigned cc)
2114 {
2115 if (!is_long(e) || is_immd(e))
2116 return FALSE;
2117 return ((e->inst[1] & 0x780) == (cc << 7));
2118 }
2119
2120 /* on ENDIF see if we can do "@p0.neu single_op" instead of:
2121 * join_at ENDIF
2122 * @p0.eq bra ENDIF
2123 * single_op
2124 * ENDIF: nop.join
2125 */
2126 static boolean
2127 nv50_kill_branch(struct nv50_pc *pc)
2128 {
2129 int lvl = pc->if_lvl;
2130
2131 if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2132 return FALSE;
2133 if (is_immd(pc->p->exec_tail))
2134 return FALSE;
2135
2136 /* if ccode == 'true', the BRA is from an ELSE and the predicate
2137 * reg may no longer be valid, since we currently always use $p0
2138 */
2139 if (has_pred(pc->if_insn[lvl], 0xf))
2140 return FALSE;
2141 assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2142
2143 /* We'll use the exec allocated for JOIN_AT (we can't easily
2144 * access nv50_program_exec's prev).
2145 */
2146 pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2147
2148 *pc->if_join[lvl] = *pc->p->exec_tail;
2149
2150 FREE(pc->if_insn[lvl]);
2151 FREE(pc->p->exec_tail);
2152
2153 pc->p->exec_tail = pc->if_join[lvl];
2154 pc->p->exec_tail->next = NULL;
2155 set_pred(pc, 0xd, 0, pc->p->exec_tail);
2156
2157 return TRUE;
2158 }
2159
2160 static void
2161 nv50_fp_move_results(struct nv50_pc *pc)
2162 {
2163 struct nv50_reg reg;
2164 unsigned i;
2165
2166 ctor_reg(&reg, P_TEMP, -1, -1);
2167
2168 for (i = 0; i < pc->result_nr * 4; ++i) {
2169 if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2170 continue;
2171 if (pc->result[i].rhw != pc->result[i].hw) {
2172 reg.hw = pc->result[i].rhw;
2173 emit_mov(pc, &reg, &pc->result[i]);
2174 }
2175 }
2176 }
2177
2178 static boolean
2179 nv50_program_tx_insn(struct nv50_pc *pc,
2180 const struct tgsi_full_instruction *inst)
2181 {
2182 struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2183 unsigned mask, sat, unit;
2184 int i, c;
2185
2186 mask = inst->Dst[0].Register.WriteMask;
2187 sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2188
2189 memset(src, 0, sizeof(src));
2190
2191 for (c = 0; c < 4; c++) {
2192 if ((mask & (1 << c)) && !pc->r_dst[c])
2193 dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2194 else
2195 dst[c] = pc->r_dst[c];
2196 rdst[c] = dst[c];
2197 }
2198
2199 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2200 const struct tgsi_full_src_register *fs = &inst->Src[i];
2201 unsigned src_mask;
2202 int mod_supp;
2203
2204 src_mask = nv50_tgsi_src_mask(inst, i);
2205 mod_supp = get_supported_mods(inst, i);
2206
2207 if (fs->Register.File == TGSI_FILE_SAMPLER)
2208 unit = fs->Register.Index;
2209
2210 for (c = 0; c < 4; c++)
2211 if (src_mask & (1 << c))
2212 src[i][c] = tgsi_src(pc, c, fs, mod_supp);
2213 }
2214
2215 brdc = temp = pc->r_brdc;
2216 if (brdc && brdc->type != P_TEMP) {
2217 temp = temp_temp(pc);
2218 if (sat)
2219 brdc = temp;
2220 } else
2221 if (sat) {
2222 for (c = 0; c < 4; c++) {
2223 if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2224 continue;
2225 /* rdst[c] = dst[c]; */ /* done above */
2226 dst[c] = temp_temp(pc);
2227 }
2228 }
2229
2230 assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2231
2232 switch (inst->Instruction.Opcode) {
2233 case TGSI_OPCODE_ABS:
2234 for (c = 0; c < 4; c++) {
2235 if (!(mask & (1 << c)))
2236 continue;
2237 emit_cvt(pc, dst[c], src[0][c], -1,
2238 CVT_ABS | CVT_F32_F32);
2239 }
2240 break;
2241 case TGSI_OPCODE_ADD:
2242 for (c = 0; c < 4; c++) {
2243 if (!(mask & (1 << c)))
2244 continue;
2245 emit_add(pc, dst[c], src[0][c], src[1][c]);
2246 }
2247 break;
2248 case TGSI_OPCODE_AND:
2249 case TGSI_OPCODE_XOR:
2250 case TGSI_OPCODE_OR:
2251 for (c = 0; c < 4; c++) {
2252 if (!(mask & (1 << c)))
2253 continue;
2254 emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2255 inst->Instruction.Opcode);
2256 }
2257 break;
2258 case TGSI_OPCODE_ARL:
2259 assert(src[0][0]);
2260 temp = temp_temp(pc);
2261 emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
2262 emit_arl(pc, dst[0], temp, 4);
2263 break;
2264 case TGSI_OPCODE_BGNLOOP:
2265 pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2266 pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2267 terminate_mbb(pc);
2268 break;
2269 case TGSI_OPCODE_BGNSUB:
2270 assert(!pc->in_subroutine);
2271 pc->in_subroutine = TRUE;
2272 /* probably not necessary, but align to 8 byte boundary */
2273 if (!is_long(pc->p->exec_tail))
2274 convert_to_long(pc, pc->p->exec_tail);
2275 break;
2276 case TGSI_OPCODE_BRK:
2277 assert(pc->loop_lvl > 0);
2278 emit_break(pc, -1, 0);
2279 break;
2280 case TGSI_OPCODE_CAL:
2281 assert(inst->Label.Label < pc->insn_nr);
2282 emit_call(pc, -1, 0)->param.index = inst->Label.Label;
2283 /* replaced by actual offset in nv50_program_fixup_insns */
2284 break;
2285 case TGSI_OPCODE_CEIL:
2286 for (c = 0; c < 4; c++) {
2287 if (!(mask & (1 << c)))
2288 continue;
2289 emit_cvt(pc, dst[c], src[0][c], -1,
2290 CVT_CEIL | CVT_F32_F32 | CVT_RI);
2291 }
2292 break;
2293 case TGSI_OPCODE_CMP:
2294 pc->allow32 = FALSE;
2295 for (c = 0; c < 4; c++) {
2296 if (!(mask & (1 << c)))
2297 continue;
2298 emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
2299 emit_mov(pc, dst[c], src[1][c]);
2300 set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2301 emit_mov(pc, dst[c], src[2][c]);
2302 set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2303 }
2304 break;
2305 case TGSI_OPCODE_CONT:
2306 assert(pc->loop_lvl > 0);
2307 emit_branch(pc, -1, 0)->param.index =
2308 pc->loop_pos[pc->loop_lvl - 1];
2309 break;
2310 case TGSI_OPCODE_COS:
2311 if (mask & 8) {
2312 emit_precossin(pc, temp, src[0][3]);
2313 emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2314 if (!(mask &= 7))
2315 break;
2316 if (temp == dst[3])
2317 temp = brdc = temp_temp(pc);
2318 }
2319 emit_precossin(pc, temp, src[0][0]);
2320 emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2321 break;
2322 case TGSI_OPCODE_DDX:
2323 for (c = 0; c < 4; c++) {
2324 if (!(mask & (1 << c)))
2325 continue;
2326 emit_ddx(pc, dst[c], src[0][c]);
2327 }
2328 break;
2329 case TGSI_OPCODE_DDY:
2330 for (c = 0; c < 4; c++) {
2331 if (!(mask & (1 << c)))
2332 continue;
2333 emit_ddy(pc, dst[c], src[0][c]);
2334 }
2335 break;
2336 case TGSI_OPCODE_DP3:
2337 emit_mul(pc, temp, src[0][0], src[1][0]);
2338 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2339 emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2340 break;
2341 case TGSI_OPCODE_DP4:
2342 emit_mul(pc, temp, src[0][0], src[1][0]);
2343 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2344 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2345 emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2346 break;
2347 case TGSI_OPCODE_DPH:
2348 emit_mul(pc, temp, src[0][0], src[1][0]);
2349 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2350 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2351 emit_add(pc, brdc, src[1][3], temp);
2352 break;
2353 case TGSI_OPCODE_DST:
2354 if (mask & (1 << 1))
2355 emit_mul(pc, dst[1], src[0][1], src[1][1]);
2356 if (mask & (1 << 2))
2357 emit_mov(pc, dst[2], src[0][2]);
2358 if (mask & (1 << 3))
2359 emit_mov(pc, dst[3], src[1][3]);
2360 if (mask & (1 << 0))
2361 emit_mov_immdval(pc, dst[0], 1.0f);
2362 break;
2363 case TGSI_OPCODE_ELSE:
2364 emit_branch(pc, -1, 0);
2365 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2366 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2367 terminate_mbb(pc);
2368 break;
2369 case TGSI_OPCODE_ENDIF:
2370 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2371
2372 /* try to replace branch over 1 insn with a predicated insn */
2373 if (nv50_kill_branch(pc) == TRUE)
2374 break;
2375
2376 if (pc->if_join[pc->if_lvl]) {
2377 pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2378 pc->if_join[pc->if_lvl] = NULL;
2379 }
2380 terminate_mbb(pc);
2381 /* emit a NOP as join point, we could set it on the next
2382 * one, but would have to make sure it is long and !immd
2383 */
2384 JOIN_ON(emit_nop(pc));
2385 break;
2386 case TGSI_OPCODE_ENDLOOP:
2387 emit_branch(pc, -1, 0)->param.index =
2388 pc->loop_pos[--pc->loop_lvl];
2389 pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2390 terminate_mbb(pc);
2391 break;
2392 case TGSI_OPCODE_ENDSUB:
2393 assert(pc->in_subroutine);
2394 pc->in_subroutine = FALSE;
2395 break;
2396 case TGSI_OPCODE_EX2:
2397 emit_preex2(pc, temp, src[0][0]);
2398 emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2399 break;
2400 case TGSI_OPCODE_EXP:
2401 {
2402 struct nv50_reg *t[2];
2403
2404 assert(!temp);
2405 t[0] = temp_temp(pc);
2406 t[1] = temp_temp(pc);
2407
2408 if (mask & 0x6)
2409 emit_mov(pc, t[0], src[0][0]);
2410 if (mask & 0x3)
2411 emit_flr(pc, t[1], src[0][0]);
2412
2413 if (mask & (1 << 1))
2414 emit_sub(pc, dst[1], t[0], t[1]);
2415 if (mask & (1 << 0)) {
2416 emit_preex2(pc, t[1], t[1]);
2417 emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
2418 }
2419 if (mask & (1 << 2)) {
2420 emit_preex2(pc, t[0], t[0]);
2421 emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
2422 }
2423 if (mask & (1 << 3))
2424 emit_mov_immdval(pc, dst[3], 1.0f);
2425 }
2426 break;
2427 case TGSI_OPCODE_F2I:
2428 for (c = 0; c < 4; c++) {
2429 if (!(mask & (1 << c)))
2430 continue;
2431 emit_cvt(pc, dst[c], src[0][c], -1,
2432 CVT_TRUNC | CVT_S32_F32);
2433 }
2434 break;
2435 case TGSI_OPCODE_F2U:
2436 for (c = 0; c < 4; c++) {
2437 if (!(mask & (1 << c)))
2438 continue;
2439 emit_cvt(pc, dst[c], src[0][c], -1,
2440 CVT_TRUNC | CVT_U32_F32);
2441 }
2442 break;
2443 case TGSI_OPCODE_FLR:
2444 for (c = 0; c < 4; c++) {
2445 if (!(mask & (1 << c)))
2446 continue;
2447 emit_flr(pc, dst[c], src[0][c]);
2448 }
2449 break;
2450 case TGSI_OPCODE_FRC:
2451 temp = temp_temp(pc);
2452 for (c = 0; c < 4; c++) {
2453 if (!(mask & (1 << c)))
2454 continue;
2455 emit_flr(pc, temp, src[0][c]);
2456 emit_sub(pc, dst[c], src[0][c], temp);
2457 }
2458 break;
2459 case TGSI_OPCODE_I2F:
2460 for (c = 0; c < 4; c++) {
2461 if (!(mask & (1 << c)))
2462 continue;
2463 emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
2464 }
2465 break;
2466 case TGSI_OPCODE_IF:
2467 assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2468 emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
2469 pc->if_join[pc->if_lvl] = emit_joinat(pc);
2470 pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2471 terminate_mbb(pc);
2472 break;
2473 case TGSI_OPCODE_INEG:
2474 for (c = 0; c < 4; c++) {
2475 if (!(mask & (1 << c)))
2476 continue;
2477 emit_cvt(pc, dst[c], src[0][c], -1,
2478 CVT_S32_S32 | CVT_NEG);
2479 }
2480 break;
2481 case TGSI_OPCODE_KIL:
2482 assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2483 emit_kil(pc, src[0][0]);
2484 emit_kil(pc, src[0][1]);
2485 emit_kil(pc, src[0][2]);
2486 emit_kil(pc, src[0][3]);
2487 break;
2488 case TGSI_OPCODE_KILP:
2489 emit_kil(pc, NULL);
2490 break;
2491 case TGSI_OPCODE_LIT:
2492 emit_lit(pc, &dst[0], mask, &src[0][0]);
2493 break;
2494 case TGSI_OPCODE_LG2:
2495 emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2496 break;
2497 case TGSI_OPCODE_LOG:
2498 {
2499 struct nv50_reg *t[2];
2500
2501 t[0] = temp_temp(pc);
2502 if (mask & (1 << 1))
2503 t[1] = temp_temp(pc);
2504 else
2505 t[1] = t[0];
2506
2507 emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
2508 emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
2509 if (mask & (1 << 2))
2510 emit_mov(pc, dst[2], t[1]);
2511 emit_flr(pc, t[1], t[1]);
2512 if (mask & (1 << 0))
2513 emit_mov(pc, dst[0], t[1]);
2514 if (mask & (1 << 1)) {
2515 t[1]->mod = NV50_MOD_NEG;
2516 emit_preex2(pc, t[1], t[1]);
2517 t[1]->mod = 0;
2518 emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
2519 emit_mul(pc, dst[1], t[0], t[1]);
2520 }
2521 if (mask & (1 << 3))
2522 emit_mov_immdval(pc, dst[3], 1.0f);
2523 }
2524 break;
2525 case TGSI_OPCODE_LRP:
2526 temp = temp_temp(pc);
2527 for (c = 0; c < 4; c++) {
2528 if (!(mask & (1 << c)))
2529 continue;
2530 emit_sub(pc, temp, src[1][c], src[2][c]);
2531 emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2532 }
2533 break;
2534 case TGSI_OPCODE_MAD:
2535 for (c = 0; c < 4; c++) {
2536 if (!(mask & (1 << c)))
2537 continue;
2538 emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2539 }
2540 break;
2541 case TGSI_OPCODE_MAX:
2542 for (c = 0; c < 4; c++) {
2543 if (!(mask & (1 << c)))
2544 continue;
2545 emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2546 }
2547 break;
2548 case TGSI_OPCODE_MIN:
2549 for (c = 0; c < 4; c++) {
2550 if (!(mask & (1 << c)))
2551 continue;
2552 emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2553 }
2554 break;
2555 case TGSI_OPCODE_MOV:
2556 for (c = 0; c < 4; c++) {
2557 if (!(mask & (1 << c)))
2558 continue;
2559 emit_mov(pc, dst[c], src[0][c]);
2560 }
2561 break;
2562 case TGSI_OPCODE_MUL:
2563 for (c = 0; c < 4; c++) {
2564 if (!(mask & (1 << c)))
2565 continue;
2566 emit_mul(pc, dst[c], src[0][c], src[1][c]);
2567 }
2568 break;
2569 case TGSI_OPCODE_POW:
2570 emit_pow(pc, brdc, src[0][0], src[1][0]);
2571 break;
2572 case TGSI_OPCODE_RCP:
2573 emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2574 break;
2575 case TGSI_OPCODE_RET:
2576 if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
2577 nv50_fp_move_results(pc);
2578 emit_ret(pc, -1, 0);
2579 break;
2580 case TGSI_OPCODE_RSQ:
2581 src[0][0]->mod |= NV50_MOD_ABS;
2582 emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2583 break;
2584 case TGSI_OPCODE_SCS:
2585 temp = temp_temp(pc);
2586 if (mask & 3)
2587 emit_precossin(pc, temp, src[0][0]);
2588 if (mask & (1 << 0))
2589 emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2590 if (mask & (1 << 1))
2591 emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2592 if (mask & (1 << 2))
2593 emit_mov_immdval(pc, dst[2], 0.0);
2594 if (mask & (1 << 3))
2595 emit_mov_immdval(pc, dst[3], 1.0);
2596 break;
2597 case TGSI_OPCODE_SIN:
2598 if (mask & 8) {
2599 emit_precossin(pc, temp, src[0][3]);
2600 emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2601 if (!(mask &= 7))
2602 break;
2603 if (temp == dst[3])
2604 temp = brdc = temp_temp(pc);
2605 }
2606 emit_precossin(pc, temp, src[0][0]);
2607 emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2608 break;
2609 case TGSI_OPCODE_SLT:
2610 case TGSI_OPCODE_SGE:
2611 case TGSI_OPCODE_SEQ:
2612 case TGSI_OPCODE_SGT:
2613 case TGSI_OPCODE_SLE:
2614 case TGSI_OPCODE_SNE:
2615 i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2616 for (c = 0; c < 4; c++) {
2617 if (!(mask & (1 << c)))
2618 continue;
2619 emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2620 }
2621 break;
2622 case TGSI_OPCODE_SUB:
2623 for (c = 0; c < 4; c++) {
2624 if (!(mask & (1 << c)))
2625 continue;
2626 emit_sub(pc, dst[c], src[0][c], src[1][c]);
2627 }
2628 break;
2629 case TGSI_OPCODE_TEX:
2630 emit_tex(pc, dst, mask, src[0], unit,
2631 inst->Texture.Texture, FALSE, 0);
2632 break;
2633 case TGSI_OPCODE_TXB:
2634 emit_tex(pc, dst, mask, src[0], unit,
2635 inst->Texture.Texture, FALSE, -1);
2636 break;
2637 case TGSI_OPCODE_TXL:
2638 emit_tex(pc, dst, mask, src[0], unit,
2639 inst->Texture.Texture, FALSE, 1);
2640 break;
2641 case TGSI_OPCODE_TXP:
2642 emit_tex(pc, dst, mask, src[0], unit,
2643 inst->Texture.Texture, TRUE, 0);
2644 break;
2645 case TGSI_OPCODE_TRUNC:
2646 for (c = 0; c < 4; c++) {
2647 if (!(mask & (1 << c)))
2648 continue;
2649 emit_cvt(pc, dst[c], src[0][c], -1,
2650 CVT_TRUNC | CVT_F32_F32 | CVT_RI);
2651 }
2652 break;
2653 case TGSI_OPCODE_U2F:
2654 for (c = 0; c < 4; c++) {
2655 if (!(mask & (1 << c)))
2656 continue;
2657 emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
2658 }
2659 break;
2660 case TGSI_OPCODE_XPD:
2661 temp = temp_temp(pc);
2662 if (mask & (1 << 0)) {
2663 emit_mul(pc, temp, src[0][2], src[1][1]);
2664 emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2665 }
2666 if (mask & (1 << 1)) {
2667 emit_mul(pc, temp, src[0][0], src[1][2]);
2668 emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2669 }
2670 if (mask & (1 << 2)) {
2671 emit_mul(pc, temp, src[0][1], src[1][0]);
2672 emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2673 }
2674 if (mask & (1 << 3))
2675 emit_mov_immdval(pc, dst[3], 1.0);
2676 break;
2677 case TGSI_OPCODE_END:
2678 if (pc->p->type == PIPE_SHADER_FRAGMENT)
2679 nv50_fp_move_results(pc);
2680
2681 /* last insn must be long so it can have the exit bit set */
2682 if (!is_long(pc->p->exec_tail))
2683 convert_to_long(pc, pc->p->exec_tail);
2684 else
2685 if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
2686 emit_nop(pc);
2687
2688 pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
2689 break;
2690 default:
2691 NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2692 return FALSE;
2693 }
2694
2695 if (brdc) {
2696 if (sat)
2697 emit_sat(pc, brdc, brdc);
2698 for (c = 0; c < 4; c++)
2699 if ((mask & (1 << c)) && dst[c] != brdc)
2700 emit_mov(pc, dst[c], brdc);
2701 } else
2702 if (sat) {
2703 for (c = 0; c < 4; c++) {
2704 if (!(mask & (1 << c)))
2705 continue;
2706 /* In this case we saturate later, and dst[c] won't
2707 * be another temp_temp (and thus lost), since rdst
2708 * already is TEMP (see above). */
2709 if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2710 continue;
2711 emit_sat(pc, rdst[c], dst[c]);
2712 }
2713 }
2714
2715 kill_temp_temp(pc);
2716 pc->reg_instance_nr = 0;
2717
2718 return TRUE;
2719 }
2720
2721 static void
2722 prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2723 {
2724 struct nv50_reg *reg = NULL;
2725 const struct tgsi_full_src_register *src;
2726 const struct tgsi_dst_register *dst;
2727 unsigned i, c, k, mask;
2728
2729 dst = &insn->Dst[0].Register;
2730 mask = dst->WriteMask;
2731
2732 if (dst->File == TGSI_FILE_TEMPORARY)
2733 reg = pc->temp;
2734 else
2735 if (dst->File == TGSI_FILE_OUTPUT) {
2736 reg = pc->result;
2737
2738 if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2739 dst->Index == pc->edgeflag_out &&
2740 insn->Src[0].Register.File == TGSI_FILE_INPUT)
2741 pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2742 }
2743
2744 if (reg) {
2745 for (c = 0; c < 4; c++) {
2746 if (!(mask & (1 << c)))
2747 continue;
2748 reg[dst->Index * 4 + c].acc = pc->insn_nr;
2749 }
2750 }
2751
2752 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2753 src = &insn->Src[i];
2754
2755 if (src->Register.File == TGSI_FILE_TEMPORARY)
2756 reg = pc->temp;
2757 else
2758 if (src->Register.File == TGSI_FILE_INPUT)
2759 reg = pc->attr;
2760 else
2761 continue;
2762
2763 mask = nv50_tgsi_src_mask(insn, i);
2764
2765 for (c = 0; c < 4; c++) {
2766 if (!(mask & (1 << c)))
2767 continue;
2768 k = tgsi_util_get_full_src_register_swizzle(src, c);
2769
2770 reg[src->Register.Index * 4 + k].acc = pc->insn_nr;
2771 }
2772 }
2773 }
2774
2775 /* Returns a bitmask indicating which dst components need to be
2776 * written to temporaries first to avoid 'corrupting' sources.
2777 *
2778 * m[i] (out) indicate component to write in the i-th position
2779 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2780 */
2781 static unsigned
2782 nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2783 {
2784 unsigned i, c, x, unsafe;
2785
2786 for (c = 0; c < 4; c++)
2787 m[c] = c;
2788
2789 /* Swap as long as a dst component written earlier is depended on
2790 * by one written later, but the next one isn't depended on by it.
2791 */
2792 for (c = 0; c < 3; c++) {
2793 if (rdep[m[c + 1]] & (1 << m[c]))
2794 continue; /* if next one is depended on by us */
2795 for (i = c + 1; i < 4; i++)
2796 /* if we are depended on by a later one */
2797 if (rdep[m[c]] & (1 << m[i]))
2798 break;
2799 if (i == 4)
2800 continue;
2801 /* now, swap */
2802 x = m[c];
2803 m[c] = m[c + 1];
2804 m[c + 1] = x;
2805
2806 /* restart */
2807 c = 0;
2808 }
2809
2810 /* mark dependencies that could not be resolved by reordering */
2811 for (i = 0; i < 3; ++i)
2812 for (c = i + 1; c < 4; ++c)
2813 if (rdep[m[i]] & (1 << m[c]))
2814 unsafe |= (1 << i);
2815
2816 /* NOTE: $unsafe is with respect to order, not component */
2817 return unsafe;
2818 }
2819
2820 /* Select a suitable dst register for broadcasting scalar results,
2821 * or return NULL if we have to allocate an extra TEMP.
2822 *
2823 * If e.g. only 1 component is written, we may also emit the final
2824 * result to a write-only register.
2825 */
2826 static struct nv50_reg *
2827 tgsi_broadcast_dst(struct nv50_pc *pc,
2828 const struct tgsi_full_dst_register *fd, unsigned mask)
2829 {
2830 if (fd->Register.File == TGSI_FILE_TEMPORARY) {
2831 int c = ffs(~mask & fd->Register.WriteMask);
2832 if (c)
2833 return tgsi_dst(pc, c - 1, fd);
2834 } else {
2835 int c = ffs(fd->Register.WriteMask) - 1;
2836 if ((1 << c) == fd->Register.WriteMask)
2837 return tgsi_dst(pc, c, fd);
2838 }
2839
2840 return NULL;
2841 }
2842
2843 /* Scan source swizzles and return a bitmask indicating dst regs that
2844 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2845 */
2846 static unsigned
2847 nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2848 unsigned rdep[4])
2849 {
2850 const struct tgsi_full_dst_register *fd = &insn->Dst[0];
2851 const struct tgsi_full_src_register *fs;
2852 unsigned i, deqs = 0;
2853
2854 for (i = 0; i < 4; ++i)
2855 rdep[i] = 0;
2856
2857 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2858 unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2859 int ms = get_supported_mods(insn, i);
2860
2861 fs = &insn->Src[i];
2862 if (fs->Register.File != fd->Register.File ||
2863 fs->Register.Index != fd->Register.Index)
2864 continue;
2865
2866 for (chn = 0; chn < 4; ++chn) {
2867 unsigned s, c;
2868
2869 if (!(mask & (1 << chn))) /* src is not read */
2870 continue;
2871 c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2872 s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2873
2874 if (!(fd->Register.WriteMask & (1 << c)))
2875 continue;
2876
2877 if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
2878 continue;
2879 if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
2880 continue;
2881 if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
2882 continue;
2883
2884 rdep[c] |= nv50_tgsi_dst_revdep(
2885 insn->Instruction.Opcode, i, chn);
2886 deqs |= (1 << c);
2887 }
2888 }
2889
2890 return deqs;
2891 }
2892
2893 static boolean
2894 nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2895 {
2896 struct tgsi_full_instruction insn = tok->FullInstruction;
2897 const struct tgsi_full_dst_register *fd;
2898 unsigned i, deqs, rdep[4], m[4];
2899
2900 fd = &tok->FullInstruction.Dst[0];
2901 deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2902
2903 if (is_scalar_op(insn.Instruction.Opcode)) {
2904 pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2905 if (!pc->r_brdc)
2906 pc->r_brdc = temp_temp(pc);
2907 return nv50_program_tx_insn(pc, &insn);
2908 }
2909 pc->r_brdc = NULL;
2910
2911 if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
2912 return nv50_program_tx_insn(pc, &insn);
2913
2914 deqs = nv50_revdep_reorder(m, rdep);
2915
2916 for (i = 0; i < 4; ++i) {
2917 assert(pc->r_dst[m[i]] == NULL);
2918
2919 insn.Dst[0].Register.WriteMask =
2920 fd->Register.WriteMask & (1 << m[i]);
2921
2922 if (!insn.Dst[0].Register.WriteMask)
2923 continue;
2924
2925 if (deqs & (1 << i))
2926 pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2927
2928 if (!nv50_program_tx_insn(pc, &insn))
2929 return FALSE;
2930 }
2931
2932 for (i = 0; i < 4; i++) {
2933 struct nv50_reg *reg = pc->r_dst[i];
2934 if (!reg)
2935 continue;
2936 pc->r_dst[i] = NULL;
2937
2938 if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2939 emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2940 else
2941 emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2942 free_temp(pc, reg);
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 static void
2949 load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2950 {
2951 struct nv50_reg *iv, **ppiv;
2952 unsigned mode = pc->interp_mode[reg->index];
2953
2954 ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2955 iv = *ppiv;
2956
2957 if ((mode & INTERP_PERSPECTIVE) && !iv) {
2958 iv = *ppiv = alloc_temp(pc, NULL);
2959 iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2960
2961 emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2962 emit_flop(pc, NV50_FLOP_RCP, iv, iv);
2963
2964 /* XXX: when loading interpolants dynamically, move these
2965 * to the program head, or make sure it can't be skipped.
2966 */
2967 }
2968
2969 emit_interp(pc, reg, iv, mode);
2970 }
2971
2972 /* The face input is always at v[255] (varying space), with a
2973 * value of 0 for back-facing, and 0xffffffff for front-facing.
2974 */
2975 static void
2976 load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
2977 {
2978 struct nv50_reg *one = alloc_immd(pc, 1.0f);
2979
2980 assert(a->rhw == -1);
2981 alloc_reg(pc, a); /* do this before rhw is set */
2982 a->rhw = 255;
2983 load_interpolant(pc, a);
2984 emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
2985
2986 FREE(one);
2987 }
2988
2989 static boolean
2990 nv50_program_tx_prep(struct nv50_pc *pc)
2991 {
2992 struct tgsi_parse_context tp;
2993 struct nv50_program *p = pc->p;
2994 boolean ret = FALSE;
2995 unsigned i, c, flat_nr = 0;
2996
2997 tgsi_parse_init(&tp, pc->p->pipe.tokens);
2998 while (!tgsi_parse_end_of_tokens(&tp)) {
2999 const union tgsi_full_token *tok = &tp.FullToken;
3000
3001 tgsi_parse_token(&tp);
3002 switch (tok->Token.Type) {
3003 case TGSI_TOKEN_TYPE_IMMEDIATE:
3004 {
3005 const struct tgsi_full_immediate *imm =
3006 &tp.FullToken.FullImmediate;
3007
3008 ctor_immd_4f32(pc, imm->u[0].Float,
3009 imm->u[1].Float,
3010 imm->u[2].Float,
3011 imm->u[3].Float);
3012 }
3013 break;
3014 case TGSI_TOKEN_TYPE_DECLARATION:
3015 {
3016 const struct tgsi_full_declaration *d;
3017 unsigned si, last, first, mode;
3018
3019 d = &tp.FullToken.FullDeclaration;
3020 first = d->Range.First;
3021 last = d->Range.Last;
3022
3023 switch (d->Declaration.File) {
3024 case TGSI_FILE_TEMPORARY:
3025 break;
3026 case TGSI_FILE_OUTPUT:
3027 if (!d->Declaration.Semantic ||
3028 p->type == PIPE_SHADER_FRAGMENT)
3029 break;
3030
3031 si = d->Semantic.Index;
3032 switch (d->Semantic.Name) {
3033 case TGSI_SEMANTIC_BCOLOR:
3034 p->cfg.two_side[si].hw = first;
3035 if (p->cfg.io_nr > first)
3036 p->cfg.io_nr = first;
3037 break;
3038 case TGSI_SEMANTIC_PSIZE:
3039 p->cfg.psiz = first;
3040 if (p->cfg.io_nr > first)
3041 p->cfg.io_nr = first;
3042 break;
3043 case TGSI_SEMANTIC_EDGEFLAG:
3044 pc->edgeflag_out = first;
3045 break;
3046 /*
3047 case TGSI_SEMANTIC_CLIP_DISTANCE:
3048 p->cfg.clpd = MIN2(p->cfg.clpd, first);
3049 break;
3050 */
3051 default:
3052 break;
3053 }
3054 break;
3055 case TGSI_FILE_INPUT:
3056 {
3057 if (p->type != PIPE_SHADER_FRAGMENT)
3058 break;
3059
3060 switch (d->Declaration.Interpolate) {
3061 case TGSI_INTERPOLATE_CONSTANT:
3062 mode = INTERP_FLAT;
3063 flat_nr++;
3064 break;
3065 case TGSI_INTERPOLATE_PERSPECTIVE:
3066 mode = INTERP_PERSPECTIVE;
3067 p->cfg.regs[1] |= 0x08 << 24;
3068 break;
3069 default:
3070 mode = INTERP_LINEAR;
3071 break;
3072 }
3073 if (d->Declaration.Centroid)
3074 mode |= INTERP_CENTROID;
3075
3076 assert(last < 32);
3077 for (i = first; i <= last; i++)
3078 pc->interp_mode[i] = mode;
3079 }
3080 break;
3081 case TGSI_FILE_ADDRESS:
3082 case TGSI_FILE_CONSTANT:
3083 case TGSI_FILE_SAMPLER:
3084 break;
3085 default:
3086 NOUVEAU_ERR("bad decl file %d\n",
3087 d->Declaration.File);
3088 goto out_err;
3089 }
3090 }
3091 break;
3092 case TGSI_TOKEN_TYPE_INSTRUCTION:
3093 pc->insn_nr++;
3094 prep_inspect_insn(pc, &tok->FullInstruction);
3095 break;
3096 default:
3097 break;
3098 }
3099 }
3100
3101 if (p->type == PIPE_SHADER_VERTEX) {
3102 int rid = 0;
3103
3104 for (i = 0; i < pc->attr_nr * 4; ++i) {
3105 if (pc->attr[i].acc) {
3106 pc->attr[i].hw = rid++;
3107 p->cfg.attr[i / 32] |= 1 << (i % 32);
3108 }
3109 }
3110
3111 for (i = 0, rid = 0; i < pc->result_nr; ++i) {
3112 p->cfg.io[i].hw = rid;
3113 p->cfg.io[i].id = i;
3114
3115 for (c = 0; c < 4; ++c) {
3116 int n = i * 4 + c;
3117 if (!pc->result[n].acc)
3118 continue;
3119 pc->result[n].hw = rid++;
3120 p->cfg.io[i].mask |= 1 << c;
3121 }
3122 }
3123
3124 for (c = 0; c < 2; ++c)
3125 if (p->cfg.two_side[c].hw < 0x40)
3126 p->cfg.two_side[c] = p->cfg.io[
3127 p->cfg.two_side[c].hw];
3128
3129 if (p->cfg.psiz < 0x40)
3130 p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
3131 } else
3132 if (p->type == PIPE_SHADER_FRAGMENT) {
3133 int rid, aid;
3134 unsigned n = 0, m = pc->attr_nr - flat_nr;
3135
3136 pc->allow32 = TRUE;
3137
3138 int base = (TGSI_SEMANTIC_POSITION ==
3139 p->info.input_semantic_name[0]) ? 0 : 1;
3140
3141 /* non-flat interpolants have to be mapped to
3142 * the lower hardware IDs, so sort them:
3143 */
3144 for (i = 0; i < pc->attr_nr; i++) {
3145 if (pc->interp_mode[i] == INTERP_FLAT)
3146 p->cfg.io[m++].id = i;
3147 else {
3148 if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
3149 p->cfg.io[n].linear = TRUE;
3150 p->cfg.io[n++].id = i;
3151 }
3152 }
3153
3154 if (!base) /* set w-coordinate mask from perspective interp */
3155 p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3156
3157 aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3158 base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3159
3160 for (n = 0; n < pc->attr_nr; ++n) {
3161 p->cfg.io[n].hw = rid = aid;
3162 i = p->cfg.io[n].id;
3163
3164 if (p->info.input_semantic_name[n] ==
3165 TGSI_SEMANTIC_FACE) {
3166 load_frontfacing(pc, &pc->attr[i * 4]);
3167 continue;
3168 }
3169
3170 for (c = 0; c < 4; ++c) {
3171 if (!pc->attr[i * 4 + c].acc)
3172 continue;
3173 pc->attr[i * 4 + c].rhw = rid++;
3174 p->cfg.io[n].mask |= 1 << c;
3175
3176 load_interpolant(pc, &pc->attr[i * 4 + c]);
3177 }
3178 aid += popcnt4(p->cfg.io[n].mask);
3179 }
3180
3181 if (!base)
3182 p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3183
3184 m = popcnt4(p->cfg.regs[1] >> 24);
3185
3186 /* set count of non-position inputs and of non-flat
3187 * non-position inputs for FP_INTERPOLANT_CTRL
3188 */
3189 p->cfg.regs[1] |= aid - m;
3190
3191 if (flat_nr) {
3192 i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3193 p->cfg.regs[1] |= (i - m) << 16;
3194 } else
3195 p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3196
3197 /* mark color semantic for light-twoside */
3198 n = 0x40;
3199 for (i = 0; i < pc->attr_nr; i++) {
3200 ubyte si, sn;
3201
3202 sn = p->info.input_semantic_name[p->cfg.io[i].id];
3203 si = p->info.input_semantic_index[p->cfg.io[i].id];
3204
3205 if (sn == TGSI_SEMANTIC_COLOR) {
3206 p->cfg.two_side[si] = p->cfg.io[i];
3207
3208 /* increase colour count */
3209 p->cfg.regs[0] += popcnt4(
3210 p->cfg.two_side[si].mask) << 16;
3211
3212 n = MIN2(n, p->cfg.io[i].hw - m);
3213 }
3214 }
3215 if (n < 0x40)
3216 p->cfg.regs[0] += n;
3217
3218 /* Initialize FP results:
3219 * FragDepth is always first TGSI and last hw output
3220 */
3221 i = p->info.writes_z ? 4 : 0;
3222 for (rid = 0; i < pc->result_nr * 4; i++)
3223 pc->result[i].rhw = rid++;
3224 if (p->info.writes_z)
3225 pc->result[2].rhw = rid;
3226
3227 p->cfg.high_result = rid;
3228
3229 /* separate/different colour results for MRTs ? */
3230 if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3231 p->cfg.regs[2] |= 1;
3232 }
3233
3234 if (pc->immd_nr) {
3235 int rid = 0;
3236
3237 pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3238 if (!pc->immd)
3239 goto out_err;
3240
3241 for (i = 0; i < pc->immd_nr; i++) {
3242 for (c = 0; c < 4; c++, rid++)
3243 ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3244 }
3245 }
3246
3247 ret = TRUE;
3248 out_err:
3249 if (pc->iv_p)
3250 free_temp(pc, pc->iv_p);
3251 if (pc->iv_c)
3252 free_temp(pc, pc->iv_c);
3253
3254 tgsi_parse_free(&tp);
3255 return ret;
3256 }
3257
3258 static void
3259 free_nv50_pc(struct nv50_pc *pc)
3260 {
3261 if (pc->immd)
3262 FREE(pc->immd);
3263 if (pc->param)
3264 FREE(pc->param);
3265 if (pc->result)
3266 FREE(pc->result);
3267 if (pc->attr)
3268 FREE(pc->attr);
3269 if (pc->temp)
3270 FREE(pc->temp);
3271
3272 FREE(pc);
3273 }
3274
3275 static boolean
3276 ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3277 {
3278 int i, c;
3279 unsigned rtype[2] = { P_ATTR, P_RESULT };
3280
3281 pc->p = p;
3282 pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3283 pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3284 pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3285 pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3286 pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3287 assert(pc->addr_nr <= 2);
3288
3289 p->cfg.high_temp = 4;
3290
3291 p->cfg.two_side[0].hw = 0x40;
3292 p->cfg.two_side[1].hw = 0x40;
3293
3294 p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3295
3296 switch (p->type) {
3297 case PIPE_SHADER_VERTEX:
3298 p->cfg.psiz = 0x40;
3299 p->cfg.clpd = 0x40;
3300 p->cfg.io_nr = pc->result_nr;
3301 break;
3302 case PIPE_SHADER_FRAGMENT:
3303 rtype[0] = rtype[1] = P_TEMP;
3304
3305 p->cfg.regs[0] = 0x01000004;
3306 p->cfg.io_nr = pc->attr_nr;
3307
3308 if (p->info.writes_z) {
3309 p->cfg.regs[2] |= 0x00000100;
3310 p->cfg.regs[3] |= 0x00000011;
3311 }
3312 if (p->info.uses_kill)
3313 p->cfg.regs[2] |= 0x00100000;
3314 break;
3315 }
3316
3317 if (pc->temp_nr) {
3318 pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3319 if (!pc->temp)
3320 return FALSE;
3321
3322 for (i = 0; i < pc->temp_nr * 4; ++i)
3323 ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3324 }
3325
3326 if (pc->attr_nr) {
3327 pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3328 if (!pc->attr)
3329 return FALSE;
3330
3331 for (i = 0; i < pc->attr_nr * 4; ++i)
3332 ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3333 }
3334
3335 if (pc->result_nr) {
3336 unsigned nr = pc->result_nr * 4;
3337
3338 pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3339 if (!pc->result)
3340 return FALSE;
3341
3342 for (i = 0; i < nr; ++i)
3343 ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3344 }
3345
3346 if (pc->param_nr) {
3347 int rid = 0;
3348
3349 pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3350 if (!pc->param)
3351 return FALSE;
3352
3353 for (i = 0; i < pc->param_nr; ++i)
3354 for (c = 0; c < 4; ++c, ++rid)
3355 ctor_reg(&pc->param[rid], P_CONST, i, rid);
3356 }
3357
3358 if (pc->addr_nr) {
3359 pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3360 if (!pc->addr)
3361 return FALSE;
3362 }
3363 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3364 ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3365
3366 return TRUE;
3367 }
3368
3369 static void
3370 nv50_program_fixup_insns(struct nv50_pc *pc)
3371 {
3372 struct nv50_program_exec *e, **bra_list;
3373 unsigned i, n, pos;
3374
3375 bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3376
3377 /* Collect branch instructions, we need to adjust their offsets
3378 * when converting 32 bit instructions to 64 bit ones
3379 */
3380 for (n = 0, e = pc->p->exec_head; e; e = e->next)
3381 if (e->param.index >= 0 && !e->param.mask)
3382 bra_list[n++] = e;
3383
3384 /* Make sure we don't have any single 32 bit instructions. */
3385 for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3386 pos += is_long(e) ? 2 : 1;
3387
3388 if ((pos & 1) && (!e->next || is_long(e->next))) {
3389 for (i = 0; i < n; ++i)
3390 if (bra_list[i]->param.index >= pos)
3391 bra_list[i]->param.index += 1;
3392 for (i = 0; i < pc->insn_nr; ++i)
3393 if (pc->insn_pos[i] >= pos)
3394 pc->insn_pos[i] += 1;
3395 convert_to_long(pc, e);
3396 ++pos;
3397 }
3398 }
3399
3400 FREE(bra_list);
3401
3402 if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
3403 return;
3404
3405 /* fill in CALL offsets */
3406 for (e = pc->p->exec_head; e; e = e->next) {
3407 if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
3408 e->param.index = pc->insn_pos[e->param.index];
3409 }
3410 }
3411
3412 static boolean
3413 nv50_program_tx(struct nv50_program *p)
3414 {
3415 struct tgsi_parse_context parse;
3416 struct nv50_pc *pc;
3417 boolean ret;
3418
3419 pc = CALLOC_STRUCT(nv50_pc);
3420 if (!pc)
3421 return FALSE;
3422
3423 ret = ctor_nv50_pc(pc, p);
3424 if (ret == FALSE)
3425 goto out_cleanup;
3426
3427 ret = nv50_program_tx_prep(pc);
3428 if (ret == FALSE)
3429 goto out_cleanup;
3430
3431 pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
3432
3433 tgsi_parse_init(&parse, pc->p->pipe.tokens);
3434 while (!tgsi_parse_end_of_tokens(&parse)) {
3435 const union tgsi_full_token *tok = &parse.FullToken;
3436
3437 /* previously allow32 was FALSE for first & last instruction */
3438 pc->allow32 = TRUE;
3439
3440 tgsi_parse_token(&parse);
3441
3442 switch (tok->Token.Type) {
3443 case TGSI_TOKEN_TYPE_INSTRUCTION:
3444 pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
3445 ++pc->insn_cur;
3446 ret = nv50_tgsi_insn(pc, tok);
3447 if (ret == FALSE)
3448 goto out_err;
3449 break;
3450 default:
3451 break;
3452 }
3453 }
3454
3455 nv50_program_fixup_insns(pc);
3456
3457 p->param_nr = pc->param_nr * 4;
3458 p->immd_nr = pc->immd_nr * 4;
3459 p->immd = pc->immd_buf;
3460
3461 out_err:
3462 tgsi_parse_free(&parse);
3463
3464 out_cleanup:
3465 free_nv50_pc(pc);
3466 return ret;
3467 }
3468
3469 static void
3470 nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3471 {
3472 if (nv50_program_tx(p) == FALSE)
3473 assert(0);
3474 p->translated = TRUE;
3475 }
3476
3477 static void
3478 nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3479 unsigned start, unsigned count, unsigned cbuf)
3480 {
3481 struct nouveau_channel *chan = nv50->screen->base.channel;
3482 struct nouveau_grobj *tesla = nv50->screen->tesla;
3483
3484 while (count) {
3485 unsigned nr = count > 2047 ? 2047 : count;
3486
3487 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3488 OUT_RING (chan, (cbuf << 0) | (start << 8));
3489 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3490 OUT_RINGp (chan, map, nr);
3491
3492 map += nr;
3493 start += nr;
3494 count -= nr;
3495 }
3496 }
3497
3498 static void
3499 nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3500 {
3501 struct pipe_screen *pscreen = nv50->pipe.screen;
3502
3503 if (!p->data[0] && p->immd_nr) {
3504 struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3505
3506 if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3507 while (heap->next && heap->size < p->immd_nr) {
3508 struct nv50_program *evict = heap->next->priv;
3509 nouveau_resource_free(&evict->data[0]);
3510 }
3511
3512 if (nouveau_resource_alloc(heap, p->immd_nr, p,
3513 &p->data[0]))
3514 assert(0);
3515 }
3516
3517 /* immediates only need to be uploaded again when freed */
3518 nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3519 p->immd_nr, NV50_CB_PMISC);
3520 }
3521
3522 assert(p->param_nr <= 512);
3523
3524 if (p->param_nr) {
3525 unsigned cb;
3526 uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3527 PIPE_BUFFER_USAGE_CPU_READ);
3528
3529 if (p->type == PIPE_SHADER_VERTEX)
3530 cb = NV50_CB_PVP;
3531 else
3532 cb = NV50_CB_PFP;
3533
3534 nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3535 pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3536 }
3537 }
3538
3539 static void
3540 nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3541 {
3542 struct nouveau_channel *chan = nv50->screen->base.channel;
3543 struct nv50_program_exec *e;
3544 uint32_t *up, i;
3545 boolean upload = FALSE;
3546
3547 if (!p->bo) {
3548 nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3549 p->exec_size * 4, &p->bo);
3550 upload = TRUE;
3551 }
3552
3553 if (p->data[0] && p->data[0]->start != p->data_start[0])
3554 upload = TRUE;
3555
3556 if (!upload)
3557 return;
3558
3559 up = MALLOC(p->exec_size * 4);
3560
3561 for (i = 0, e = p->exec_head; e; e = e->next) {
3562 unsigned ei, ci, bs;
3563
3564 if (e->param.index >= 0 && e->param.mask) {
3565 bs = (e->inst[1] >> 22) & 0x07;
3566 assert(bs < 2);
3567 ei = e->param.shift >> 5;
3568 ci = e->param.index;
3569 if (bs == 0)
3570 ci += p->data[bs]->start;
3571
3572 e->inst[ei] &= ~e->param.mask;
3573 e->inst[ei] |= (ci << e->param.shift);
3574 } else
3575 if (e->param.index >= 0) {
3576 /* zero mask means param is a jump/branch offset */
3577 assert(!(e->param.index & 1));
3578 /* seem to be 8 byte steps */
3579 ei = (e->param.index >> 1) + 0 /* START_ID */;
3580
3581 e->inst[0] &= 0xf0000fff;
3582 e->inst[0] |= ei << 12;
3583 }
3584
3585 up[i++] = e->inst[0];
3586 if (is_long(e))
3587 up[i++] = e->inst[1];
3588 }
3589 assert(i == p->exec_size);
3590
3591 if (p->data[0])
3592 p->data_start[0] = p->data[0]->start;
3593
3594 #ifdef NV50_PROGRAM_DUMP
3595 NOUVEAU_ERR("-------\n");
3596 for (e = p->exec_head; e; e = e->next) {
3597 NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3598 if (is_long(e))
3599 NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3600 }
3601 #endif
3602 nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3603 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3604 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3605 0, 0, p->exec_size * 4, 1, 1);
3606
3607 FREE(up);
3608 }
3609
3610 void
3611 nv50_vertprog_validate(struct nv50_context *nv50)
3612 {
3613 struct nouveau_grobj *tesla = nv50->screen->tesla;
3614 struct nv50_program *p = nv50->vertprog;
3615 struct nouveau_stateobj *so;
3616
3617 if (!p->translated) {
3618 nv50_program_validate(nv50, p);
3619 if (!p->translated)
3620 assert(0);
3621 }
3622
3623 nv50_program_validate_data(nv50, p);
3624 nv50_program_validate_code(nv50, p);
3625
3626 so = so_new(5, 8, 2);
3627 so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3628 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3629 NOUVEAU_BO_HIGH, 0, 0);
3630 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3631 NOUVEAU_BO_LOW, 0, 0);
3632 so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3633 so_data (so, p->cfg.attr[0]);
3634 so_data (so, p->cfg.attr[1]);
3635 so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3636 so_data (so, p->cfg.high_result);
3637 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3638 so_data (so, p->cfg.high_result); //8);
3639 so_data (so, p->cfg.high_temp);
3640 so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3641 so_data (so, 0); /* program start offset */
3642 so_ref(so, &nv50->state.vertprog);
3643 so_ref(NULL, &so);
3644 }
3645
3646 void
3647 nv50_fragprog_validate(struct nv50_context *nv50)
3648 {
3649 struct nouveau_grobj *tesla = nv50->screen->tesla;
3650 struct nv50_program *p = nv50->fragprog;
3651 struct nouveau_stateobj *so;
3652
3653 if (!p->translated) {
3654 nv50_program_validate(nv50, p);
3655 if (!p->translated)
3656 assert(0);
3657 }
3658
3659 nv50_program_validate_data(nv50, p);
3660 nv50_program_validate_code(nv50, p);
3661
3662 so = so_new(6, 7, 2);
3663 so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3664 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3665 NOUVEAU_BO_HIGH, 0, 0);
3666 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3667 NOUVEAU_BO_LOW, 0, 0);
3668 so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3669 so_data (so, p->cfg.high_temp);
3670 so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3671 so_data (so, p->cfg.high_result);
3672 so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3673 so_data (so, p->cfg.regs[2]);
3674 so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3675 so_data (so, p->cfg.regs[3]);
3676 so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3677 so_data (so, 0); /* program start offset */
3678 so_ref(so, &nv50->state.fragprog);
3679 so_ref(NULL, &so);
3680 }
3681
3682 static void
3683 nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3684 {
3685 struct nv50_program *fp = nv50->fragprog;
3686 struct nv50_program *vp = nv50->vertprog;
3687 unsigned i, c, m = base;
3688
3689 /* XXX: this might not work correctly in all cases yet - we'll
3690 * just assume that an FP generic input that is not written in
3691 * the VP is PointCoord.
3692 */
3693 memset(pntc, 0, 8 * sizeof(uint32_t));
3694
3695 for (i = 0; i < fp->cfg.io_nr; i++) {
3696 uint8_t sn, si;
3697 uint8_t j, k = fp->cfg.io[i].id;
3698 unsigned n = popcnt4(fp->cfg.io[i].mask);
3699
3700 if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3701 m += n;
3702 continue;
3703 }
3704
3705 for (j = 0; j < vp->info.num_outputs; ++j) {
3706 sn = vp->info.output_semantic_name[j];
3707 si = vp->info.output_semantic_index[j];
3708
3709 if (sn == fp->info.input_semantic_name[k] &&
3710 si == fp->info.input_semantic_index[k])
3711 break;
3712 }
3713
3714 if (j < vp->info.num_outputs) {
3715 ubyte mode =
3716 nv50->rasterizer->pipe.sprite_coord_mode[si];
3717
3718 if (mode == PIPE_SPRITE_COORD_NONE) {
3719 m += n;
3720 continue;
3721 }
3722 }
3723
3724 /* this is either PointCoord or replaced by sprite coords */
3725 for (c = 0; c < 4; c++) {
3726 if (!(fp->cfg.io[i].mask & (1 << c)))
3727 continue;
3728 pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3729 ++m;
3730 }
3731 }
3732 }
3733
3734 static int
3735 nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3736 struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3737 {
3738 int c;
3739 uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3740 uint8_t *map = (uint8_t *)p_map;
3741
3742 for (c = 0; c < 4; ++c) {
3743 if (mf & 1) {
3744 if (fpi->linear == TRUE)
3745 lin[mid / 32] |= 1 << (mid % 32);
3746 map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3747 }
3748
3749 oid += mv & 1;
3750 mf >>= 1;
3751 mv >>= 1;
3752 }
3753
3754 return mid;
3755 }
3756
3757 void
3758 nv50_linkage_validate(struct nv50_context *nv50)
3759 {
3760 struct nouveau_grobj *tesla = nv50->screen->tesla;
3761 struct nv50_program *vp = nv50->vertprog;
3762 struct nv50_program *fp = nv50->fragprog;
3763 struct nouveau_stateobj *so;
3764 struct nv50_sreg4 dummy, *vpo;
3765 int i, n, c, m = 0;
3766 uint32_t map[16], lin[4], reg[5], pcrd[8];
3767
3768 memset(map, 0, sizeof(map));
3769 memset(lin, 0, sizeof(lin));
3770
3771 reg[1] = 0x00000004; /* low and high clip distance map ids */
3772 reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3773 reg[3] = 0x00000000; /* point size map id & enable */
3774 reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3775 reg[4] = fp->cfg.regs[1]; /* interpolant info */
3776
3777 dummy.linear = FALSE;
3778 dummy.mask = 0xf; /* map all components of HPOS */
3779 m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3780
3781 dummy.mask = 0x0;
3782
3783 if (vp->cfg.clpd < 0x40) {
3784 for (c = 0; c < vp->cfg.clpd_nr; ++c)
3785 map[m++] = vp->cfg.clpd + c;
3786 reg[1] = (m << 8);
3787 }
3788
3789 reg[0] |= m << 8; /* adjust BFC0 id */
3790
3791 /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3792 if (nv50->rasterizer->pipe.light_twoside) {
3793 vpo = &vp->cfg.two_side[0];
3794
3795 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3796 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3797 }
3798
3799 reg[0] += m - 4; /* adjust FFC0 id */
3800 reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3801
3802 for (i = 0; i < fp->cfg.io_nr; i++) {
3803 ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
3804 ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
3805
3806 /* position must be mapped first */
3807 assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
3808
3809 /* maybe even remove these from cfg.io */
3810 if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
3811 continue;
3812
3813 /* VP outputs and vp->cfg.io are in the same order */
3814 for (n = 0; n < vp->info.num_outputs; ++n) {
3815 if (vp->info.output_semantic_name[n] == sn &&
3816 vp->info.output_semantic_index[n] == si)
3817 break;
3818 }
3819 vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
3820
3821 m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3822 }
3823
3824 if (nv50->rasterizer->pipe.point_size_per_vertex) {
3825 map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3826 reg[3] = (m++ << 4) | 1;
3827 }
3828
3829 /* now fill the stateobj */
3830 so = so_new(6, 58, 0);
3831
3832 n = (m + 3) / 4;
3833 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3834 so_data (so, m);
3835 so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3836 so_datap (so, map, n);
3837
3838 so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3839 so_datap (so, reg, 4);
3840
3841 so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3842 so_data (so, reg[4]);
3843
3844 so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
3845 so_datap (so, lin, 4);
3846
3847 if (nv50->rasterizer->pipe.point_sprite) {
3848 nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3849
3850 so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3851 so_datap (so, pcrd, 8);
3852 }
3853
3854 so_ref(so, &nv50->state.programs);
3855 so_ref(NULL, &so);
3856 }
3857
3858 void
3859 nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3860 {
3861 while (p->exec_head) {
3862 struct nv50_program_exec *e = p->exec_head;
3863
3864 p->exec_head = e->next;
3865 FREE(e);
3866 }
3867 p->exec_tail = NULL;
3868 p->exec_size = 0;
3869
3870 nouveau_bo_ref(NULL, &p->bo);
3871
3872 nouveau_resource_free(&p->data[0]);
3873
3874 p->translated = 0;
3875 }