nv50: add craziness for non-constant TXB and TXL
[mesa.git] / src / gallium / drivers / nv50 / nv50_program.c
1 /*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 #include "pipe/p_context.h"
24 #include "pipe/p_defines.h"
25 #include "pipe/p_state.h"
26 #include "pipe/p_inlines.h"
27
28 #include "pipe/p_shader_tokens.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_util.h"
31
32 #include "nv50_context.h"
33
34 #define NV50_SU_MAX_TEMP 127
35 #define NV50_SU_MAX_ADDR 4
36 //#define NV50_PROGRAM_DUMP
37
38 /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40 /* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * - Fuck it off, introduce a way to negate args for ops that
44 * support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * FP attr/result assignment - how?
61 * attrib
62 * - 0x16bc maps vp output onto fp hpos
63 * - 0x16c0 maps vp output onto fp col0
64 * result
65 * - colr always 0-3
66 * - depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * - 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * - XX == FP high something
78 */
79 struct nv50_reg {
80 enum {
81 P_TEMP,
82 P_ATTR,
83 P_RESULT,
84 P_CONST,
85 P_IMMD,
86 P_ADDR
87 } type;
88 int index;
89
90 int hw;
91 int mod;
92
93 int rhw; /* result hw for FP outputs, or interpolant index */
94 int acc; /* instruction where this reg is last read (first insn == 1) */
95 };
96
97 #define NV50_MOD_NEG 1
98 #define NV50_MOD_ABS 2
99 #define NV50_MOD_SAT 4
100
101 /* arbitrary limits */
102 #define MAX_IF_DEPTH 4
103 #define MAX_LOOP_DEPTH 4
104
105 struct nv50_pc {
106 struct nv50_program *p;
107
108 /* hw resources */
109 struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
110 struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
111
112 /* tgsi resources */
113 struct nv50_reg *temp;
114 int temp_nr;
115 struct nv50_reg *attr;
116 int attr_nr;
117 struct nv50_reg *result;
118 int result_nr;
119 struct nv50_reg *param;
120 int param_nr;
121 struct nv50_reg *immd;
122 float *immd_buf;
123 int immd_nr;
124 struct nv50_reg **addr;
125 int addr_nr;
126
127 struct nv50_reg *temp_temp[16];
128 unsigned temp_temp_nr;
129
130 /* broadcast and destination replacement regs */
131 struct nv50_reg *r_brdc;
132 struct nv50_reg *r_dst[4];
133
134 struct nv50_reg reg_instances[16];
135 unsigned reg_instance_nr;
136
137 unsigned interp_mode[32];
138 /* perspective interpolation registers */
139 struct nv50_reg *iv_p;
140 struct nv50_reg *iv_c;
141
142 struct nv50_program_exec *if_cond;
143 struct nv50_program_exec *if_insn[MAX_IF_DEPTH];
144 struct nv50_program_exec *br_join[MAX_IF_DEPTH];
145 struct nv50_program_exec *br_loop[MAX_LOOP_DEPTH]; /* for BRK branch */
146 int if_lvl, loop_lvl;
147 unsigned loop_pos[MAX_LOOP_DEPTH];
148
149 /* current instruction and total number of insns */
150 unsigned insn_cur;
151 unsigned insn_nr;
152
153 boolean allow32;
154 };
155
156 static INLINE struct nv50_reg *
157 reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
158 {
159 struct nv50_reg *dup = NULL;
160 if (reg) {
161 assert(pc->reg_instance_nr < 16);
162 dup = &pc->reg_instances[pc->reg_instance_nr++];
163 *dup = *reg;
164 reg->mod = 0;
165 }
166 return dup;
167 }
168
169 static INLINE void
170 ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
171 {
172 reg->type = type;
173 reg->index = index;
174 reg->hw = hw;
175 reg->mod = 0;
176 reg->rhw = -1;
177 reg->acc = 0;
178 }
179
180 static INLINE unsigned
181 popcnt4(uint32_t val)
182 {
183 static const unsigned cnt[16]
184 = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
185 return cnt[val & 0xf];
186 }
187
188 static void
189 terminate_mbb(struct nv50_pc *pc)
190 {
191 int i;
192
193 /* remove records of temporary address register values */
194 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
195 if (pc->r_addr[i].index < 0)
196 pc->r_addr[i].rhw = -1;
197 }
198
199 static void
200 alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
201 {
202 int i = 0;
203
204 if (reg->type == P_RESULT) {
205 if (pc->p->cfg.high_result < (reg->hw + 1))
206 pc->p->cfg.high_result = reg->hw + 1;
207 }
208
209 if (reg->type != P_TEMP)
210 return;
211
212 if (reg->hw >= 0) {
213 /*XXX: do this here too to catch FP temp-as-attr usage..
214 * not clean, but works */
215 if (pc->p->cfg.high_temp < (reg->hw + 1))
216 pc->p->cfg.high_temp = reg->hw + 1;
217 return;
218 }
219
220 if (reg->rhw != -1) {
221 /* try to allocate temporary with index rhw first */
222 if (!(pc->r_temp[reg->rhw])) {
223 pc->r_temp[reg->rhw] = reg;
224 reg->hw = reg->rhw;
225 if (pc->p->cfg.high_temp < (reg->rhw + 1))
226 pc->p->cfg.high_temp = reg->rhw + 1;
227 return;
228 }
229 /* make sure we don't get things like $r0 needs to go
230 * in $r1 and $r1 in $r0
231 */
232 i = pc->result_nr * 4;
233 }
234
235 for (; i < NV50_SU_MAX_TEMP; i++) {
236 if (!(pc->r_temp[i])) {
237 pc->r_temp[i] = reg;
238 reg->hw = i;
239 if (pc->p->cfg.high_temp < (i + 1))
240 pc->p->cfg.high_temp = i + 1;
241 return;
242 }
243 }
244
245 assert(0);
246 }
247
248 /* XXX: For shaders that aren't executed linearly (e.g. shaders that
249 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
250 * lest we risk temp_temps overwriting regs alloc'd "later".
251 */
252 static struct nv50_reg *
253 alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
254 {
255 struct nv50_reg *r;
256 int i;
257
258 if (dst && dst->type == P_TEMP && dst->hw == -1)
259 return dst;
260
261 for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
262 if (!pc->r_temp[i]) {
263 r = MALLOC_STRUCT(nv50_reg);
264 ctor_reg(r, P_TEMP, -1, i);
265 pc->r_temp[i] = r;
266 return r;
267 }
268 }
269
270 assert(0);
271 return NULL;
272 }
273
274 /* Assign the hw of the discarded temporary register src
275 * to the tgsi register dst and free src.
276 */
277 static void
278 assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
279 {
280 assert(src->index == -1 && src->hw != -1);
281
282 if (dst->hw != -1)
283 pc->r_temp[dst->hw] = NULL;
284 pc->r_temp[src->hw] = dst;
285 dst->hw = src->hw;
286
287 FREE(src);
288 }
289
290 /* release the hardware resource held by r */
291 static void
292 release_hw(struct nv50_pc *pc, struct nv50_reg *r)
293 {
294 assert(r->type == P_TEMP);
295 if (r->hw == -1)
296 return;
297
298 assert(pc->r_temp[r->hw] == r);
299 pc->r_temp[r->hw] = NULL;
300
301 r->acc = 0;
302 if (r->index == -1)
303 FREE(r);
304 }
305
306 static void
307 free_temp(struct nv50_pc *pc, struct nv50_reg *r)
308 {
309 if (r->index == -1) {
310 unsigned hw = r->hw;
311
312 FREE(pc->r_temp[hw]);
313 pc->r_temp[hw] = NULL;
314 }
315 }
316
317 static int
318 alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
319 {
320 int i;
321
322 if ((idx + 4) >= NV50_SU_MAX_TEMP)
323 return 1;
324
325 if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
326 pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
327 return alloc_temp4(pc, dst, idx + 4);
328
329 for (i = 0; i < 4; i++) {
330 dst[i] = MALLOC_STRUCT(nv50_reg);
331 ctor_reg(dst[i], P_TEMP, -1, idx + i);
332 pc->r_temp[idx + i] = dst[i];
333 }
334
335 return 0;
336 }
337
338 static void
339 free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
340 {
341 int i;
342
343 for (i = 0; i < 4; i++)
344 free_temp(pc, reg[i]);
345 }
346
347 static struct nv50_reg *
348 temp_temp(struct nv50_pc *pc)
349 {
350 if (pc->temp_temp_nr >= 16)
351 assert(0);
352
353 pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
354 return pc->temp_temp[pc->temp_temp_nr++];
355 }
356
357 static void
358 kill_temp_temp(struct nv50_pc *pc)
359 {
360 int i;
361
362 for (i = 0; i < pc->temp_temp_nr; i++)
363 free_temp(pc, pc->temp_temp[i]);
364 pc->temp_temp_nr = 0;
365 }
366
367 static int
368 ctor_immd(struct nv50_pc *pc, float x, float y, float z, float w)
369 {
370 pc->immd_buf = REALLOC(pc->immd_buf, (pc->immd_nr * 4 * sizeof(float)),
371 (pc->immd_nr + 1) * 4 * sizeof(float));
372 pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
373 pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
374 pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
375 pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
376
377 return pc->immd_nr++;
378 }
379
380 static struct nv50_reg *
381 alloc_immd(struct nv50_pc *pc, float f)
382 {
383 struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
384 unsigned hw;
385
386 for (hw = 0; hw < pc->immd_nr * 4; hw++)
387 if (pc->immd_buf[hw] == f)
388 break;
389
390 if (hw == pc->immd_nr * 4)
391 hw = ctor_immd(pc, f, -f, 0.5 * f, 0) * 4;
392
393 ctor_reg(r, P_IMMD, -1, hw);
394 return r;
395 }
396
397 static struct nv50_program_exec *
398 exec(struct nv50_pc *pc)
399 {
400 struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
401
402 e->param.index = -1;
403 return e;
404 }
405
406 static void
407 emit(struct nv50_pc *pc, struct nv50_program_exec *e)
408 {
409 struct nv50_program *p = pc->p;
410
411 if (p->exec_tail)
412 p->exec_tail->next = e;
413 if (!p->exec_head)
414 p->exec_head = e;
415 p->exec_tail = e;
416 p->exec_size += (e->inst[0] & 1) ? 2 : 1;
417 }
418
419 static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
420
421 static boolean
422 is_long(struct nv50_program_exec *e)
423 {
424 if (e->inst[0] & 1)
425 return TRUE;
426 return FALSE;
427 }
428
429 static boolean
430 is_immd(struct nv50_program_exec *e)
431 {
432 if (is_long(e) && (e->inst[1] & 3) == 3)
433 return TRUE;
434 return FALSE;
435 }
436
437 static INLINE void
438 set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
439 struct nv50_program_exec *e)
440 {
441 set_long(pc, e);
442 e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
443 e->inst[1] |= (pred << 7) | (idx << 12);
444 }
445
446 static INLINE void
447 set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
448 struct nv50_program_exec *e)
449 {
450 set_long(pc, e);
451 e->inst[1] &= ~((0x3 << 4) | (1 << 6));
452 e->inst[1] |= (idx << 4) | (on << 6);
453 }
454
455 static INLINE void
456 set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
457 {
458 if (is_long(e))
459 return;
460
461 e->inst[0] |= 1;
462 set_pred(pc, 0xf, 0, e);
463 set_pred_wr(pc, 0, 0, e);
464 }
465
466 static INLINE void
467 set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
468 {
469 if (dst->type == P_RESULT) {
470 set_long(pc, e);
471 e->inst[1] |= 0x00000008;
472 }
473
474 alloc_reg(pc, dst);
475 if (dst->hw > 63)
476 set_long(pc, e);
477 e->inst[0] |= (dst->hw << 2);
478 }
479
480 static INLINE void
481 set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
482 {
483 unsigned val;
484 float f = pc->immd_buf[imm->hw];
485
486 if (imm->mod & NV50_MOD_ABS)
487 f = fabsf(f);
488 val = fui((imm->mod & NV50_MOD_NEG) ? -f : f);
489
490 set_long(pc, e);
491 /*XXX: can't be predicated - bits overlap.. catch cases where both
492 * are required and avoid them. */
493 set_pred(pc, 0, 0, e);
494 set_pred_wr(pc, 0, 0, e);
495
496 e->inst[1] |= 0x00000002 | 0x00000001;
497 e->inst[0] |= (val & 0x3f) << 16;
498 e->inst[1] |= (val >> 6) << 2;
499 }
500
501 static INLINE void
502 set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
503 {
504 assert(!(e->inst[0] & 0x0c000000));
505 assert(!(e->inst[1] & 0x00000004));
506
507 e->inst[0] |= (a->hw & 3) << 26;
508 e->inst[1] |= (a->hw >> 2) << 2;
509 }
510
511 static void
512 emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
513 struct nv50_reg *src0, uint16_t src1_val)
514 {
515 struct nv50_program_exec *e = exec(pc);
516
517 e->inst[0] = 0xd0000000 | (src1_val << 9);
518 e->inst[1] = 0x20000000;
519 set_long(pc, e);
520 e->inst[0] |= dst->hw << 2;
521 if (src0) /* otherwise will add to $a0, which is always 0 */
522 set_addr(e, src0);
523
524 emit(pc, e);
525 }
526
527 static struct nv50_reg *
528 alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
529 {
530 int i;
531 struct nv50_reg *a_tgsi = NULL, *a = NULL;
532
533 if (!ref) {
534 /* allocate for TGSI address reg */
535 for (i = 0; i < NV50_SU_MAX_ADDR; ++i) {
536 if (pc->r_addr[i].index >= 0)
537 continue;
538 if (pc->r_addr[i].rhw >= 0 &&
539 pc->r_addr[i].acc == pc->insn_cur)
540 continue;
541
542 pc->r_addr[i].rhw = -1;
543 pc->r_addr[i].index = i;
544 return &pc->r_addr[i];
545 }
546 assert(0);
547 return NULL;
548 }
549
550 /* Allocate and set an address reg so we can access 'ref'.
551 *
552 * If and r_addr has index < 0, it is not reserved for TGSI,
553 * and index will be the negative of the TGSI addr index the
554 * value in rhw is relative to, or -256 if rhw is an offset
555 * from 0. If rhw < 0, the reg has not been initialized.
556 */
557 for (i = NV50_SU_MAX_ADDR - 1; i >= 0; --i) {
558 if (pc->r_addr[i].index >= 0) /* occupied for TGSI */
559 continue;
560 if (pc->r_addr[i].rhw < 0) { /* unused */
561 a = &pc->r_addr[i];
562 continue;
563 }
564 if (!a && pc->r_addr[i].acc != pc->insn_cur)
565 a = &pc->r_addr[i];
566
567 if (ref->hw - pc->r_addr[i].rhw >= 128)
568 continue;
569
570 if ((ref->acc >= 0 && pc->r_addr[i].index == -256) ||
571 (ref->acc < 0 && -pc->r_addr[i].index == ref->index)) {
572 pc->r_addr[i].acc = pc->insn_cur;
573 return &pc->r_addr[i];
574 }
575 }
576 assert(a);
577
578 if (ref->acc < 0)
579 a_tgsi = pc->addr[ref->index];
580
581 emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
582
583 a->rhw = ref->hw & ~0x7f;
584 a->acc = pc->insn_cur;
585 a->index = a_tgsi ? -ref->index : -256;
586 return a;
587 }
588
589 #define INTERP_LINEAR 0
590 #define INTERP_FLAT 1
591 #define INTERP_PERSPECTIVE 2
592 #define INTERP_CENTROID 4
593
594 /* interpolant index has been stored in dst->rhw */
595 static void
596 emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
597 unsigned mode)
598 {
599 assert(dst->rhw != -1);
600 struct nv50_program_exec *e = exec(pc);
601
602 e->inst[0] |= 0x80000000;
603 set_dst(pc, dst, e);
604 e->inst[0] |= (dst->rhw << 16);
605
606 if (mode & INTERP_FLAT) {
607 e->inst[0] |= (1 << 8);
608 } else {
609 if (mode & INTERP_PERSPECTIVE) {
610 e->inst[0] |= (1 << 25);
611 alloc_reg(pc, iv);
612 e->inst[0] |= (iv->hw << 9);
613 }
614
615 if (mode & INTERP_CENTROID)
616 e->inst[0] |= (1 << 24);
617 }
618
619 emit(pc, e);
620 }
621
622 static void
623 set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
624 struct nv50_program_exec *e)
625 {
626 set_long(pc, e);
627
628 e->param.index = src->hw & 127;
629 e->param.shift = s;
630 e->param.mask = m << (s % 32);
631
632 if (src->hw > 127)
633 set_addr(e, alloc_addr(pc, src));
634 else
635 if (src->acc < 0) {
636 assert(src->type == P_CONST);
637 set_addr(e, pc->addr[src->index]);
638 }
639
640 e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
641 }
642
643 static void
644 emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
645 {
646 struct nv50_program_exec *e = exec(pc);
647
648 e->inst[0] = 0x10000000;
649 if (!pc->allow32)
650 set_long(pc, e);
651
652 set_dst(pc, dst, e);
653
654 if (!is_long(e) && src->type == P_IMMD) {
655 set_immd(pc, src, e);
656 /*XXX: 32-bit, but steals part of "half" reg space - need to
657 * catch and handle this case if/when we do half-regs
658 */
659 } else
660 if (src->type == P_IMMD || src->type == P_CONST) {
661 set_long(pc, e);
662 set_data(pc, src, 0x7f, 9, e);
663 e->inst[1] |= 0x20000000; /* mov from c[] */
664 } else {
665 if (src->type == P_ATTR) {
666 set_long(pc, e);
667 e->inst[1] |= 0x00200000;
668 }
669
670 alloc_reg(pc, src);
671 if (src->hw > 63)
672 set_long(pc, e);
673 e->inst[0] |= (src->hw << 9);
674 }
675
676 if (is_long(e) && !is_immd(e)) {
677 e->inst[1] |= 0x04000000; /* 32-bit */
678 e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
679 if (!(e->inst[1] & 0x20000000))
680 e->inst[1] |= 0x00030000; /* lane mask 2:3 */
681 } else
682 e->inst[0] |= 0x00008000;
683
684 emit(pc, e);
685 }
686
687 static INLINE void
688 emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
689 {
690 struct nv50_reg *imm = alloc_immd(pc, f);
691 emit_mov(pc, dst, imm);
692 FREE(imm);
693 }
694
695 static void
696 emit_nop(struct nv50_pc *pc)
697 {
698 struct nv50_program_exec *e = exec(pc);
699
700 e->inst[0] = 0xf0000000;
701 set_long(pc, e);
702 e->inst[1] = 0xe0000000;
703 emit(pc, e);
704 }
705
706 static boolean
707 check_swap_src_0_1(struct nv50_pc *pc,
708 struct nv50_reg **s0, struct nv50_reg **s1)
709 {
710 struct nv50_reg *src0 = *s0, *src1 = *s1;
711
712 if (src0->type == P_CONST) {
713 if (src1->type != P_CONST) {
714 *s0 = src1;
715 *s1 = src0;
716 return TRUE;
717 }
718 } else
719 if (src1->type == P_ATTR) {
720 if (src0->type != P_ATTR) {
721 *s0 = src1;
722 *s1 = src0;
723 return TRUE;
724 }
725 }
726
727 return FALSE;
728 }
729
730 static void
731 set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
732 struct nv50_program_exec *e)
733 {
734 struct nv50_reg *temp;
735
736 if (src->type != P_TEMP) {
737 temp = temp_temp(pc);
738 emit_mov(pc, temp, src);
739 src = temp;
740 }
741
742 alloc_reg(pc, src);
743 if (src->hw > 63)
744 set_long(pc, e);
745 e->inst[0] |= (src->hw << 9);
746 }
747
748 static void
749 set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
750 {
751 if (src->type == P_ATTR) {
752 set_long(pc, e);
753 e->inst[1] |= 0x00200000;
754 } else
755 if (src->type == P_CONST || src->type == P_IMMD) {
756 struct nv50_reg *temp = temp_temp(pc);
757
758 emit_mov(pc, temp, src);
759 src = temp;
760 }
761
762 alloc_reg(pc, src);
763 if (src->hw > 63)
764 set_long(pc, e);
765 e->inst[0] |= (src->hw << 9);
766 }
767
768 static void
769 set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
770 {
771 if (src->type == P_ATTR) {
772 struct nv50_reg *temp = temp_temp(pc);
773
774 emit_mov(pc, temp, src);
775 src = temp;
776 } else
777 if (src->type == P_CONST || src->type == P_IMMD) {
778 assert(!(e->inst[0] & 0x00800000));
779 if (e->inst[0] & 0x01000000) {
780 struct nv50_reg *temp = temp_temp(pc);
781
782 emit_mov(pc, temp, src);
783 src = temp;
784 } else {
785 set_data(pc, src, 0x7f, 16, e);
786 e->inst[0] |= 0x00800000;
787 }
788 }
789
790 alloc_reg(pc, src);
791 if (src->hw > 63)
792 set_long(pc, e);
793 e->inst[0] |= ((src->hw & 127) << 16);
794 }
795
796 static void
797 set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
798 {
799 set_long(pc, e);
800
801 if (src->type == P_ATTR) {
802 struct nv50_reg *temp = temp_temp(pc);
803
804 emit_mov(pc, temp, src);
805 src = temp;
806 } else
807 if (src->type == P_CONST || src->type == P_IMMD) {
808 assert(!(e->inst[0] & 0x01000000));
809 if (e->inst[0] & 0x00800000) {
810 struct nv50_reg *temp = temp_temp(pc);
811
812 emit_mov(pc, temp, src);
813 src = temp;
814 } else {
815 set_data(pc, src, 0x7f, 32+14, e);
816 e->inst[0] |= 0x01000000;
817 }
818 }
819
820 alloc_reg(pc, src);
821 e->inst[1] |= ((src->hw & 127) << 14);
822 }
823
824 static void
825 emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
826 {
827 struct nv50_program_exec *e = exec(pc);
828
829 assert(dst->type == P_TEMP);
830 e->inst[1] = 0x20000000 | (pred << 12);
831 set_long(pc, e);
832 set_dst(pc, dst, e);
833
834 emit(pc, e);
835 }
836
837 static void
838 emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
839 {
840 struct nv50_program_exec *e = exec(pc);
841
842 e->inst[0] = 0x000001fc;
843 e->inst[1] = 0xa0000008;
844 set_long(pc, e);
845 set_pred_wr(pc, 1, pred, e);
846 set_src_0_restricted(pc, src, e);
847
848 emit(pc, e);
849 }
850
851 static void
852 emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
853 struct nv50_reg *src1)
854 {
855 struct nv50_program_exec *e = exec(pc);
856
857 e->inst[0] |= 0xc0000000;
858
859 if (!pc->allow32)
860 set_long(pc, e);
861
862 check_swap_src_0_1(pc, &src0, &src1);
863 set_dst(pc, dst, e);
864 set_src_0(pc, src0, e);
865 if (src1->type == P_IMMD && !is_long(e)) {
866 if (src0->mod & NV50_MOD_NEG)
867 e->inst[0] |= 0x00008000;
868 set_immd(pc, src1, e);
869 } else {
870 set_src_1(pc, src1, e);
871 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
872 if (is_long(e))
873 e->inst[1] |= 0x08000000;
874 else
875 e->inst[0] |= 0x00008000;
876 }
877 }
878
879 emit(pc, e);
880 }
881
882 static void
883 emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
884 struct nv50_reg *src0, struct nv50_reg *src1)
885 {
886 struct nv50_program_exec *e = exec(pc);
887
888 e->inst[0] = 0xb0000000;
889
890 alloc_reg(pc, src1);
891 check_swap_src_0_1(pc, &src0, &src1);
892
893 if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
894 set_long(pc, e);
895 e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
896 ((src1->mod & NV50_MOD_NEG) << 27);
897 }
898
899 set_dst(pc, dst, e);
900 set_src_0(pc, src0, e);
901 if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
902 set_src_2(pc, src1, e);
903 else
904 if (src1->type == P_IMMD)
905 set_immd(pc, src1, e);
906 else
907 set_src_1(pc, src1, e);
908
909 emit(pc, e);
910 }
911
912 static void
913 emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
914 uint8_t s)
915 {
916 struct nv50_program_exec *e = exec(pc);
917
918 set_long(pc, e);
919 e->inst[1] |= 0xc0000000;
920
921 e->inst[0] |= dst->hw << 2;
922 e->inst[0] |= s << 16; /* shift left */
923 set_src_0_restricted(pc, src, e);
924
925 emit(pc, e);
926 }
927
928 static void
929 emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
930 struct nv50_reg *src0, struct nv50_reg *src1)
931 {
932 struct nv50_program_exec *e = exec(pc);
933
934 set_long(pc, e);
935 e->inst[0] |= 0xb0000000;
936 e->inst[1] |= (sub << 29);
937
938 check_swap_src_0_1(pc, &src0, &src1);
939 set_dst(pc, dst, e);
940 set_src_0(pc, src0, e);
941 set_src_1(pc, src1, e);
942
943 if (src0->mod & NV50_MOD_ABS)
944 e->inst[1] |= 0x00100000;
945 if (src1->mod & NV50_MOD_ABS)
946 e->inst[1] |= 0x00080000;
947
948 emit(pc, e);
949 }
950
951 static INLINE void
952 emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
953 struct nv50_reg *src1)
954 {
955 src1->mod ^= NV50_MOD_NEG;
956 emit_add(pc, dst, src0, src1);
957 src1->mod ^= NV50_MOD_NEG;
958 }
959
960 static void
961 emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
962 struct nv50_reg *src1, unsigned op)
963 {
964 struct nv50_program_exec *e = exec(pc);
965
966 e->inst[0] = 0xd0000000;
967 set_long(pc, e);
968
969 check_swap_src_0_1(pc, &src0, &src1);
970 set_dst(pc, dst, e);
971 set_src_0(pc, src0, e);
972
973 if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
974 op != TGSI_OPCODE_XOR)
975 assert(!"invalid bit op");
976
977 if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
978 set_immd(pc, src1, e);
979 if (op == TGSI_OPCODE_OR)
980 e->inst[0] |= 0x0100;
981 else
982 if (op == TGSI_OPCODE_XOR)
983 e->inst[0] |= 0x8000;
984 } else {
985 set_src_1(pc, src1, e);
986 e->inst[1] |= 0x04000000; /* 32 bit */
987 if (op == TGSI_OPCODE_OR)
988 e->inst[1] |= 0x4000;
989 else
990 if (op == TGSI_OPCODE_XOR)
991 e->inst[1] |= 0x8000;
992 }
993
994 emit(pc, e);
995 }
996
997 static void
998 emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
999 struct nv50_reg *src1, struct nv50_reg *src2)
1000 {
1001 struct nv50_program_exec *e = exec(pc);
1002
1003 e->inst[0] |= 0xe0000000;
1004
1005 check_swap_src_0_1(pc, &src0, &src1);
1006 set_dst(pc, dst, e);
1007 set_src_0(pc, src0, e);
1008 set_src_1(pc, src1, e);
1009 set_src_2(pc, src2, e);
1010
1011 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1012 e->inst[1] |= 0x04000000;
1013 if (src2->mod & NV50_MOD_NEG)
1014 e->inst[1] |= 0x08000000;
1015
1016 emit(pc, e);
1017 }
1018
1019 static INLINE void
1020 emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1021 struct nv50_reg *src1, struct nv50_reg *src2)
1022 {
1023 src2->mod ^= NV50_MOD_NEG;
1024 emit_mad(pc, dst, src0, src1, src2);
1025 src2->mod ^= NV50_MOD_NEG;
1026 }
1027
1028 static void
1029 emit_flop(struct nv50_pc *pc, unsigned sub,
1030 struct nv50_reg *dst, struct nv50_reg *src)
1031 {
1032 struct nv50_program_exec *e = exec(pc);
1033
1034 e->inst[0] |= 0x90000000;
1035 if (sub) {
1036 set_long(pc, e);
1037 e->inst[1] |= (sub << 29);
1038 }
1039
1040 set_dst(pc, dst, e);
1041
1042 if (sub == 0 || sub == 2)
1043 set_src_0_restricted(pc, src, e);
1044 else
1045 set_src_0(pc, src, e);
1046
1047 emit(pc, e);
1048 }
1049
1050 static void
1051 emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1052 {
1053 struct nv50_program_exec *e = exec(pc);
1054
1055 e->inst[0] |= 0xb0000000;
1056
1057 set_dst(pc, dst, e);
1058 set_src_0(pc, src, e);
1059 set_long(pc, e);
1060 e->inst[1] |= (6 << 29) | 0x00004000;
1061
1062 emit(pc, e);
1063 }
1064
1065 static void
1066 emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1067 {
1068 struct nv50_program_exec *e = exec(pc);
1069
1070 e->inst[0] |= 0xb0000000;
1071
1072 set_dst(pc, dst, e);
1073 set_src_0(pc, src, e);
1074 set_long(pc, e);
1075 e->inst[1] |= (6 << 29);
1076
1077 emit(pc, e);
1078 }
1079
1080 #define CVTOP_RN 0x01
1081 #define CVTOP_FLOOR 0x03
1082 #define CVTOP_CEIL 0x05
1083 #define CVTOP_TRUNC 0x07
1084 #define CVTOP_SAT 0x08
1085 #define CVTOP_ABS 0x10
1086
1087 /* 0x04 == 32 bit dst */
1088 /* 0x40 == dst is float */
1089 /* 0x80 == src is float */
1090 #define CVT_F32_F32 0xc4
1091 #define CVT_F32_S32 0x44
1092 #define CVT_S32_F32 0x8c
1093 #define CVT_S32_S32 0x0c
1094 #define CVT_NEG 0x20
1095 #define CVT_RI 0x08
1096
1097 static void
1098 emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1099 int wp, unsigned cvn, unsigned fmt)
1100 {
1101 struct nv50_program_exec *e;
1102
1103 e = exec(pc);
1104 set_long(pc, e);
1105
1106 e->inst[0] |= 0xa0000000;
1107 e->inst[1] |= 0x00004000; /* 32 bit src */
1108 e->inst[1] |= (cvn << 16);
1109 e->inst[1] |= (fmt << 24);
1110 set_src_0(pc, src, e);
1111
1112 if (wp >= 0)
1113 set_pred_wr(pc, 1, wp, e);
1114
1115 if (dst)
1116 set_dst(pc, dst, e);
1117 else {
1118 e->inst[0] |= 0x000001fc;
1119 e->inst[1] |= 0x00000008;
1120 }
1121
1122 emit(pc, e);
1123 }
1124
1125 /* nv50 Condition codes:
1126 * 0x1 = LT
1127 * 0x2 = EQ
1128 * 0x3 = LE
1129 * 0x4 = GT
1130 * 0x5 = NE
1131 * 0x6 = GE
1132 * 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1133 * 0x8 = unordered bit (allows NaN)
1134 */
1135 static void
1136 emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1137 struct nv50_reg *src0, struct nv50_reg *src1)
1138 {
1139 static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1140
1141 struct nv50_program_exec *e = exec(pc);
1142 struct nv50_reg *rdst;
1143
1144 assert(ccode < 16);
1145 if (check_swap_src_0_1(pc, &src0, &src1))
1146 ccode = cc_swapped[ccode & 7] | (ccode & 8);
1147
1148 rdst = dst;
1149 if (dst && dst->type != P_TEMP)
1150 dst = alloc_temp(pc, NULL);
1151
1152 /* set.u32 */
1153 set_long(pc, e);
1154 e->inst[0] |= 0xb0000000;
1155 e->inst[1] |= 0x60000000 | (ccode << 14);
1156
1157 /* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1158 * that doesn't seem to match what the hw actually does
1159 e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1160 */
1161
1162 if (wp >= 0)
1163 set_pred_wr(pc, 1, wp, e);
1164 if (dst)
1165 set_dst(pc, dst, e);
1166 else {
1167 e->inst[0] |= 0x000001fc;
1168 e->inst[1] |= 0x00000008;
1169 }
1170
1171 set_src_0(pc, src0, e);
1172 set_src_1(pc, src1, e);
1173
1174 emit(pc, e);
1175 pc->if_cond = pc->p->exec_tail; /* record for OPCODE_IF */
1176
1177 /* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1178 if (rdst)
1179 emit_cvt(pc, rdst, dst, -1, CVTOP_ABS | CVTOP_RN, CVT_F32_S32);
1180 if (rdst && rdst != dst)
1181 free_temp(pc, dst);
1182 }
1183
1184 static INLINE unsigned
1185 map_tgsi_setop_cc(unsigned op)
1186 {
1187 switch (op) {
1188 case TGSI_OPCODE_SLT: return 0x1;
1189 case TGSI_OPCODE_SGE: return 0x6;
1190 case TGSI_OPCODE_SEQ: return 0x2;
1191 case TGSI_OPCODE_SGT: return 0x4;
1192 case TGSI_OPCODE_SLE: return 0x3;
1193 case TGSI_OPCODE_SNE: return 0xd;
1194 default:
1195 assert(0);
1196 return 0;
1197 }
1198 }
1199
1200 static INLINE void
1201 emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1202 {
1203 emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32 | CVT_RI);
1204 }
1205
1206 static void
1207 emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1208 struct nv50_reg *v, struct nv50_reg *e)
1209 {
1210 struct nv50_reg *temp = alloc_temp(pc, NULL);
1211
1212 emit_flop(pc, 3, temp, v);
1213 emit_mul(pc, temp, temp, e);
1214 emit_preex2(pc, temp, temp);
1215 emit_flop(pc, 6, dst, temp);
1216
1217 free_temp(pc, temp);
1218 }
1219
1220 static INLINE void
1221 emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1222 {
1223 emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32);
1224 }
1225
1226 static INLINE void
1227 emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1228 {
1229 emit_cvt(pc, dst, src, -1, CVTOP_SAT, CVT_F32_F32);
1230 }
1231
1232 static void
1233 emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1234 struct nv50_reg **src)
1235 {
1236 struct nv50_reg *one = alloc_immd(pc, 1.0);
1237 struct nv50_reg *zero = alloc_immd(pc, 0.0);
1238 struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1239 struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
1240 struct nv50_reg *tmp[4];
1241 boolean allow32 = pc->allow32;
1242
1243 pc->allow32 = FALSE;
1244
1245 if (mask & (3 << 1)) {
1246 tmp[0] = alloc_temp(pc, NULL);
1247 emit_minmax(pc, 4, tmp[0], src[0], zero);
1248 }
1249
1250 if (mask & (1 << 2)) {
1251 set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1252
1253 tmp[1] = temp_temp(pc);
1254 emit_minmax(pc, 4, tmp[1], src[1], zero);
1255
1256 tmp[3] = temp_temp(pc);
1257 emit_minmax(pc, 4, tmp[3], src[3], neg128);
1258 emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1259
1260 emit_pow(pc, dst[2], tmp[1], tmp[3]);
1261 emit_mov(pc, dst[2], zero);
1262 set_pred(pc, 3, 0, pc->p->exec_tail);
1263 }
1264
1265 if (mask & (1 << 1))
1266 assimilate_temp(pc, dst[1], tmp[0]);
1267 else
1268 if (mask & (1 << 2))
1269 free_temp(pc, tmp[0]);
1270
1271 pc->allow32 = allow32;
1272
1273 /* do this last, in case src[i,j] == dst[0,3] */
1274 if (mask & (1 << 0))
1275 emit_mov(pc, dst[0], one);
1276
1277 if (mask & (1 << 3))
1278 emit_mov(pc, dst[3], one);
1279
1280 FREE(pos128);
1281 FREE(neg128);
1282 FREE(zero);
1283 FREE(one);
1284 }
1285
1286 static INLINE void
1287 emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1288 {
1289 emit_cvt(pc, dst, src, -1, CVTOP_RN, CVT_F32_F32 | CVT_NEG);
1290 }
1291
1292 static void
1293 emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1294 {
1295 struct nv50_program_exec *e;
1296 const int r_pred = 1;
1297 unsigned cvn = CVT_F32_F32;
1298
1299 if (src->mod & NV50_MOD_NEG)
1300 cvn |= CVT_NEG;
1301 /* write predicate reg */
1302 emit_cvt(pc, NULL, src, r_pred, CVTOP_RN, cvn);
1303
1304 /* conditional discard */
1305 e = exec(pc);
1306 e->inst[0] = 0x00000002;
1307 set_long(pc, e);
1308 set_pred(pc, 0x1 /* LT */, r_pred, e);
1309 emit(pc, e);
1310 }
1311
1312 static struct nv50_program_exec *
1313 emit_branch(struct nv50_pc *pc, int pred, unsigned cc,
1314 struct nv50_program_exec **join)
1315 {
1316 struct nv50_program_exec *e = exec(pc);
1317
1318 if (join) {
1319 set_long(pc, e);
1320 e->inst[0] |= 0xa0000002;
1321 emit(pc, e);
1322 *join = e;
1323 e = exec(pc);
1324 }
1325
1326 set_long(pc, e);
1327 e->inst[0] |= 0x10000002;
1328 if (pred >= 0)
1329 set_pred(pc, cc, pred, e);
1330 emit(pc, e);
1331 return pc->p->exec_tail;
1332 }
1333
1334 #define QOP_ADD 0
1335 #define QOP_SUBR 1
1336 #define QOP_SUB 2
1337 #define QOP_MOV_SRC1 3
1338
1339 /* For a quad of threads / top left, top right, bottom left, bottom right
1340 * pixels, do a different operation, and take src0 from a specific thread.
1341 */
1342 static void
1343 emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1344 struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1345 {
1346 struct nv50_program_exec *e = exec(pc);
1347
1348 e->inst[0] = 0xc0000000;
1349 e->inst[1] = 0x80000000;
1350 set_long(pc, e);
1351 e->inst[0] |= lane_src0 << 16;
1352 set_src_0(pc, src0, e);
1353 set_src_2(pc, src1, e);
1354
1355 if (wp >= 0)
1356 set_pred_wr(pc, 1, wp, e);
1357
1358 if (dst)
1359 set_dst(pc, dst, e);
1360 else {
1361 e->inst[0] |= 0x000001fc;
1362 e->inst[1] |= 0x00000008;
1363 }
1364
1365 e->inst[0] |= (qop & 3) << 20;
1366 e->inst[1] |= (qop >> 2) << 22;
1367
1368 emit(pc, e);
1369 }
1370
1371 static void
1372 load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1373 struct nv50_reg **src, unsigned arg, boolean proj)
1374 {
1375 int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1376
1377 src[0]->mod |= NV50_MOD_ABS;
1378 src[1]->mod |= NV50_MOD_ABS;
1379 src[2]->mod |= NV50_MOD_ABS;
1380
1381 emit_minmax(pc, 4, t[2], src[0], src[1]);
1382 emit_minmax(pc, 4, t[2], src[2], t[2]);
1383
1384 src[0]->mod = mod[0];
1385 src[1]->mod = mod[1];
1386 src[2]->mod = mod[2];
1387
1388 if (proj && 0 /* looks more correct without this */)
1389 emit_mul(pc, t[2], t[2], src[3]);
1390 else
1391 if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1392 emit_mov(pc, t[3], src[3]);
1393
1394 emit_flop(pc, 0, t[2], t[2]);
1395
1396 emit_mul(pc, t[0], src[0], t[2]);
1397 emit_mul(pc, t[1], src[1], t[2]);
1398 emit_mul(pc, t[2], src[2], t[2]);
1399 }
1400
1401 static void
1402 load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1403 struct nv50_reg **src, unsigned dim, unsigned arg)
1404 {
1405 unsigned c, mode;
1406
1407 if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1408 mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1409
1410 t[3]->rhw = src[3]->rhw;
1411 emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1412 emit_flop(pc, 0, t[3], t[3]);
1413
1414 for (c = 0; c < dim; ++c) {
1415 t[c]->rhw = src[c]->rhw;
1416 emit_interp(pc, t[c], t[3], mode);
1417 }
1418 if (arg != dim) { /* depth reference value */
1419 t[dim]->rhw = src[2]->rhw;
1420 emit_interp(pc, t[dim], t[3], mode);
1421 }
1422 } else {
1423 /* XXX: for some reason the blob sometimes uses MAD
1424 * (mad f32 $rX $rY $rZ neg $r63)
1425 */
1426 emit_flop(pc, 0, t[3], src[3]);
1427 for (c = 0; c < dim; ++c)
1428 emit_mul(pc, t[c], src[c], t[3]);
1429 if (arg != dim) /* depth reference value */
1430 emit_mul(pc, t[dim], src[2], t[3]);
1431 }
1432 }
1433
1434 static INLINE void
1435 get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1436 {
1437 switch (type) {
1438 case TGSI_TEXTURE_1D:
1439 *arg = *dim = 1;
1440 break;
1441 case TGSI_TEXTURE_SHADOW1D:
1442 *dim = 1;
1443 *arg = 2;
1444 break;
1445 case TGSI_TEXTURE_UNKNOWN:
1446 case TGSI_TEXTURE_2D:
1447 case TGSI_TEXTURE_RECT:
1448 *arg = *dim = 2;
1449 break;
1450 case TGSI_TEXTURE_SHADOW2D:
1451 case TGSI_TEXTURE_SHADOWRECT:
1452 *dim = 2;
1453 *arg = 3;
1454 break;
1455 case TGSI_TEXTURE_3D:
1456 case TGSI_TEXTURE_CUBE:
1457 *dim = *arg = 3;
1458 break;
1459 default:
1460 assert(0);
1461 break;
1462 }
1463 }
1464
1465 /* We shouldn't execute TEXLOD if any of the pixels in a quad have
1466 * different LOD values, so branch off groups of equal LOD.
1467 */
1468 static void
1469 emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1470 struct nv50_reg *src, struct nv50_program_exec *tex)
1471 {
1472 struct nv50_program_exec *join_at;
1473 unsigned i, target = pc->p->exec_size + 7 * 2;
1474
1475 /* Subtract lod of each pixel from lod of top left pixel, jump
1476 * texlod insn if result is 0, then repeat for 2 other pixels.
1477 */
1478 emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1479 emit_branch(pc, 0, 2, &join_at)->param.index = target;
1480
1481 for (i = 1; i < 4; ++i) {
1482 emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1483 emit_branch(pc, 0, 2, NULL)->param.index = target;
1484 }
1485
1486 emit_mov(pc, tlod, src); /* target */
1487 emit(pc, tex); /* texlod */
1488
1489 join_at->param.index = target + 2 * 2;
1490 emit_nop(pc);
1491 pc->p->exec_tail->inst[1] |= 2; /* join _after_ tex */
1492 }
1493
1494 static void
1495 emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1496 struct nv50_program_exec *tex)
1497 {
1498 struct nv50_program_exec *e;
1499 struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1500 int r_pred = 0;
1501 unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1502
1503 pc->allow32 = FALSE;
1504 ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1505
1506 /* Subtract bias value of thread i from bias values of each thread,
1507 * store result in r_pred, and set bit i in r_bits if result was 0.
1508 */
1509 assert(arg < 4);
1510 for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1511 emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1512 emit_mov(pc, r_bits, &imm_1248);
1513 set_pred(pc, 2, r_pred, pc->p->exec_tail);
1514 }
1515 emit_mov_to_pred(pc, r_pred, r_bits);
1516
1517 /* The lanes of a quad are now grouped by the bit in r_pred they have
1518 * set. Put the input values for TEX into a new register set for each
1519 * group and execute TEX only for a specific group.
1520 * We cannot use the same register set for each group because we need
1521 * the derivatives, which are implicitly calculated, to be correct.
1522 */
1523 for (i = 1; i < 4; ++i) {
1524 alloc_temp4(pc, t123[i], 0);
1525
1526 for (c = 0; c <= arg; ++c)
1527 emit_mov(pc, t123[i][c], t[c]);
1528
1529 *(e = exec(pc)) = *(tex);
1530 e->inst[0] &= ~0x01fc;
1531 set_dst(pc, t123[i][0], e);
1532 set_pred(pc, cc[i], r_pred, e);
1533 emit(pc, e);
1534 }
1535 /* finally TEX on the original regs (where we kept the input) */
1536 set_pred(pc, cc[0], r_pred, tex);
1537 emit(pc, tex);
1538
1539 /* put the 3 * n other results into regs for lane 0 */
1540 n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1541 for (i = 1; i < 4; ++i) {
1542 for (c = 0; c < n; ++c) {
1543 emit_mov(pc, t[c], t123[i][c]);
1544 set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1545 }
1546 free_temp4(pc, t123[i]);
1547 }
1548
1549 emit_nop(pc);
1550 free_temp(pc, r_bits);
1551 }
1552
1553 static void
1554 emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1555 struct nv50_reg **src, unsigned unit, unsigned type,
1556 boolean proj, int bias_lod)
1557 {
1558 struct nv50_reg *t[4];
1559 struct nv50_program_exec *e;
1560 unsigned c, dim, arg;
1561
1562 /* t[i] must be within a single 128 bit super-reg */
1563 alloc_temp4(pc, t, 0);
1564
1565 e = exec(pc);
1566 e->inst[0] = 0xf0000000;
1567 set_long(pc, e);
1568 set_dst(pc, t[0], e);
1569
1570 /* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1571 e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1572
1573 /* live flag (don't set if TEX results affect input to another TEX): */
1574 /* e->inst[0] |= 0x00000004; */
1575
1576 get_tex_dim(type, &dim, &arg);
1577
1578 if (type == TGSI_TEXTURE_CUBE) {
1579 e->inst[0] |= 0x08000000;
1580 load_cube_tex_coords(pc, t, src, arg, proj);
1581 } else
1582 if (proj)
1583 load_proj_tex_coords(pc, t, src, dim, arg);
1584 else {
1585 for (c = 0; c < dim; c++)
1586 emit_mov(pc, t[c], src[c]);
1587 if (arg != dim) /* depth reference value (always src.z here) */
1588 emit_mov(pc, t[dim], src[2]);
1589 }
1590
1591 e->inst[0] |= (mask & 0x3) << 25;
1592 e->inst[1] |= (mask & 0xc) << 12;
1593
1594 if (!bias_lod) {
1595 e->inst[0] |= (arg - 1) << 22;
1596 emit(pc, e);
1597 } else
1598 if (bias_lod < 0) {
1599 e->inst[0] |= arg << 22;
1600 e->inst[1] |= 0x20000000; /* texbias */
1601 emit_mov(pc, t[arg], src[3]);
1602 emit_texbias_sequence(pc, t, arg, e);
1603 } else {
1604 e->inst[0] |= arg << 22;
1605 e->inst[1] |= 0x40000000; /* texlod */
1606 emit_mov(pc, t[arg], src[3]);
1607 emit_texlod_sequence(pc, t[arg], src[3], e);
1608 }
1609
1610 #if 1
1611 c = 0;
1612 if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1613 if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1614 if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1615 if (mask & 8) emit_mov(pc, dst[3], t[c]);
1616
1617 free_temp4(pc, t);
1618 #else
1619 /* XXX: if p.e. MUL is used directly after TEX, it would still use
1620 * the texture coordinates, not the fetched values: latency ? */
1621
1622 for (c = 0; c < 4; c++) {
1623 if (mask & (1 << c))
1624 assimilate_temp(pc, dst[c], t[c]);
1625 else
1626 free_temp(pc, t[c]);
1627 }
1628 #endif
1629 }
1630
1631 static void
1632 emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1633 {
1634 struct nv50_program_exec *e = exec(pc);
1635
1636 assert(src->type == P_TEMP);
1637
1638 e->inst[0] = 0xc0140000;
1639 e->inst[1] = 0x89800000;
1640 set_long(pc, e);
1641 set_dst(pc, dst, e);
1642 set_src_0(pc, src, e);
1643 set_src_2(pc, src, e);
1644
1645 emit(pc, e);
1646 }
1647
1648 static void
1649 emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1650 {
1651 struct nv50_reg *r = src;
1652 struct nv50_program_exec *e = exec(pc);
1653
1654 assert(src->type == P_TEMP);
1655
1656 if (!(src->mod & NV50_MOD_NEG)) { /* ! double negation */
1657 r = alloc_temp(pc, NULL);
1658 emit_neg(pc, r, src);
1659 }
1660
1661 e->inst[0] = 0xc0150000;
1662 e->inst[1] = 0x8a400000;
1663 set_long(pc, e);
1664 set_dst(pc, dst, e);
1665 set_src_0(pc, r, e);
1666 set_src_2(pc, r, e);
1667
1668 if (r != src)
1669 free_temp(pc, r);
1670
1671 emit(pc, e);
1672 }
1673
1674 static void
1675 convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1676 {
1677 unsigned q = 0, m = ~0;
1678
1679 assert(!is_long(e));
1680
1681 switch (e->inst[0] >> 28) {
1682 case 0x1:
1683 /* MOV */
1684 q = 0x0403c000;
1685 m = 0xffff7fff;
1686 break;
1687 case 0x8:
1688 /* INTERP (move centroid, perspective and flat bits) */
1689 m = ~0x03000100;
1690 q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1691 q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1692 break;
1693 case 0x9:
1694 /* RCP */
1695 break;
1696 case 0xB:
1697 /* ADD */
1698 m = ~(127 << 16);
1699 q = ((e->inst[0] & (~m)) >> 2);
1700 break;
1701 case 0xC:
1702 /* MUL */
1703 m = ~0x00008000;
1704 q = ((e->inst[0] & (~m)) << 12);
1705 break;
1706 case 0xE:
1707 /* MAD (if src2 == dst) */
1708 q = ((e->inst[0] & 0x1fc) << 12);
1709 break;
1710 default:
1711 assert(0);
1712 break;
1713 }
1714
1715 set_long(pc, e);
1716 pc->p->exec_size++;
1717
1718 e->inst[0] &= m;
1719 e->inst[1] |= q;
1720 }
1721
1722 /* Some operations support an optional negation flag. */
1723 static boolean
1724 negate_supported(const struct tgsi_full_instruction *insn, int i)
1725 {
1726 switch (insn->Instruction.Opcode) {
1727 case TGSI_OPCODE_DDY:
1728 case TGSI_OPCODE_DP3:
1729 case TGSI_OPCODE_DP4:
1730 case TGSI_OPCODE_MUL:
1731 case TGSI_OPCODE_KIL:
1732 case TGSI_OPCODE_ADD:
1733 case TGSI_OPCODE_SUB:
1734 case TGSI_OPCODE_MAD:
1735 return TRUE;
1736 case TGSI_OPCODE_POW:
1737 if (i == 1)
1738 return TRUE;
1739 return FALSE;
1740 default:
1741 return FALSE;
1742 }
1743 }
1744
1745 /* Return a read mask for source registers deduced from opcode & write mask. */
1746 static unsigned
1747 nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1748 {
1749 unsigned x, mask = insn->Dst[0].Register.WriteMask;
1750
1751 switch (insn->Instruction.Opcode) {
1752 case TGSI_OPCODE_COS:
1753 case TGSI_OPCODE_SIN:
1754 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1755 case TGSI_OPCODE_DP3:
1756 return 0x7;
1757 case TGSI_OPCODE_DP4:
1758 case TGSI_OPCODE_DPH:
1759 case TGSI_OPCODE_KIL: /* WriteMask ignored */
1760 return 0xf;
1761 case TGSI_OPCODE_DST:
1762 return mask & (c ? 0xa : 0x6);
1763 case TGSI_OPCODE_EX2:
1764 case TGSI_OPCODE_LG2:
1765 case TGSI_OPCODE_POW:
1766 case TGSI_OPCODE_RCP:
1767 case TGSI_OPCODE_RSQ:
1768 case TGSI_OPCODE_SCS:
1769 return 0x1;
1770 case TGSI_OPCODE_IF:
1771 return 0x1;
1772 case TGSI_OPCODE_LIT:
1773 return 0xb;
1774 case TGSI_OPCODE_TEX:
1775 case TGSI_OPCODE_TXB:
1776 case TGSI_OPCODE_TXL:
1777 case TGSI_OPCODE_TXP:
1778 {
1779 const struct tgsi_instruction_texture *tex;
1780
1781 assert(insn->Instruction.Texture);
1782 tex = &insn->Texture;
1783
1784 mask = 0x7;
1785 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
1786 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
1787 mask |= 0x8; /* bias, lod or proj */
1788
1789 switch (tex->Texture) {
1790 case TGSI_TEXTURE_1D:
1791 mask &= 0x9;
1792 break;
1793 case TGSI_TEXTURE_SHADOW1D:
1794 mask &= 0x5;
1795 break;
1796 case TGSI_TEXTURE_2D:
1797 mask &= 0xb;
1798 break;
1799 default:
1800 break;
1801 }
1802 }
1803 return mask;
1804 case TGSI_OPCODE_XPD:
1805 x = 0;
1806 if (mask & 1) x |= 0x6;
1807 if (mask & 2) x |= 0x5;
1808 if (mask & 4) x |= 0x3;
1809 return x;
1810 default:
1811 break;
1812 }
1813
1814 return mask;
1815 }
1816
1817 static struct nv50_reg *
1818 tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1819 {
1820 switch (dst->Register.File) {
1821 case TGSI_FILE_TEMPORARY:
1822 return &pc->temp[dst->Register.Index * 4 + c];
1823 case TGSI_FILE_OUTPUT:
1824 return &pc->result[dst->Register.Index * 4 + c];
1825 case TGSI_FILE_ADDRESS:
1826 {
1827 struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
1828 if (!r) {
1829 r = alloc_addr(pc, NULL);
1830 pc->addr[dst->Register.Index * 4 + c] = r;
1831 }
1832 assert(r);
1833 return r;
1834 }
1835 case TGSI_FILE_NULL:
1836 return NULL;
1837 default:
1838 break;
1839 }
1840
1841 return NULL;
1842 }
1843
1844 static struct nv50_reg *
1845 tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1846 boolean neg)
1847 {
1848 struct nv50_reg *r = NULL;
1849 struct nv50_reg *temp;
1850 unsigned sgn, c, swz;
1851
1852 if (src->Register.File != TGSI_FILE_CONSTANT)
1853 assert(!src->Register.Indirect);
1854
1855 sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1856
1857 c = tgsi_util_get_full_src_register_swizzle(src, chan);
1858 switch (c) {
1859 case TGSI_SWIZZLE_X:
1860 case TGSI_SWIZZLE_Y:
1861 case TGSI_SWIZZLE_Z:
1862 case TGSI_SWIZZLE_W:
1863 switch (src->Register.File) {
1864 case TGSI_FILE_INPUT:
1865 r = &pc->attr[src->Register.Index * 4 + c];
1866 break;
1867 case TGSI_FILE_TEMPORARY:
1868 r = &pc->temp[src->Register.Index * 4 + c];
1869 break;
1870 case TGSI_FILE_CONSTANT:
1871 if (!src->Register.Indirect) {
1872 r = &pc->param[src->Register.Index * 4 + c];
1873 break;
1874 }
1875 /* Indicate indirection by setting r->acc < 0 and
1876 * use the index field to select the address reg.
1877 */
1878 r = MALLOC_STRUCT(nv50_reg);
1879 swz = tgsi_util_get_src_register_swizzle(
1880 &src->Indirect, 0);
1881 ctor_reg(r, P_CONST,
1882 src->Indirect.Index * 4 + swz,
1883 src->Register.Index * 4 + c);
1884 r->acc = -1;
1885 break;
1886 case TGSI_FILE_IMMEDIATE:
1887 r = &pc->immd[src->Register.Index * 4 + c];
1888 break;
1889 case TGSI_FILE_SAMPLER:
1890 break;
1891 case TGSI_FILE_ADDRESS:
1892 r = pc->addr[src->Register.Index * 4 + c];
1893 assert(r);
1894 break;
1895 default:
1896 assert(0);
1897 break;
1898 }
1899 break;
1900 default:
1901 assert(0);
1902 break;
1903 }
1904
1905 switch (sgn) {
1906 case TGSI_UTIL_SIGN_KEEP:
1907 break;
1908 case TGSI_UTIL_SIGN_CLEAR:
1909 temp = temp_temp(pc);
1910 emit_abs(pc, temp, r);
1911 r = temp;
1912 break;
1913 case TGSI_UTIL_SIGN_TOGGLE:
1914 if (neg)
1915 r->mod = NV50_MOD_NEG;
1916 else {
1917 temp = temp_temp(pc);
1918 emit_neg(pc, temp, r);
1919 r = temp;
1920 }
1921 break;
1922 case TGSI_UTIL_SIGN_SET:
1923 temp = temp_temp(pc);
1924 emit_cvt(pc, temp, r, -1, CVTOP_ABS, CVT_F32_F32 | CVT_NEG);
1925 r = temp;
1926 break;
1927 default:
1928 assert(0);
1929 break;
1930 }
1931
1932 return r;
1933 }
1934
1935 /* return TRUE for ops that produce only a single result */
1936 static boolean
1937 is_scalar_op(unsigned op)
1938 {
1939 switch (op) {
1940 case TGSI_OPCODE_COS:
1941 case TGSI_OPCODE_DP2:
1942 case TGSI_OPCODE_DP3:
1943 case TGSI_OPCODE_DP4:
1944 case TGSI_OPCODE_DPH:
1945 case TGSI_OPCODE_EX2:
1946 case TGSI_OPCODE_LG2:
1947 case TGSI_OPCODE_POW:
1948 case TGSI_OPCODE_RCP:
1949 case TGSI_OPCODE_RSQ:
1950 case TGSI_OPCODE_SIN:
1951 /*
1952 case TGSI_OPCODE_KIL:
1953 case TGSI_OPCODE_LIT:
1954 case TGSI_OPCODE_SCS:
1955 */
1956 return TRUE;
1957 default:
1958 return FALSE;
1959 }
1960 }
1961
1962 /* Returns a bitmask indicating which dst components depend
1963 * on source s, component c (reverse of nv50_tgsi_src_mask).
1964 */
1965 static unsigned
1966 nv50_tgsi_dst_revdep(unsigned op, int s, int c)
1967 {
1968 if (is_scalar_op(op))
1969 return 0x1;
1970
1971 switch (op) {
1972 case TGSI_OPCODE_DST:
1973 return (1 << c) & (s ? 0xa : 0x6);
1974 case TGSI_OPCODE_XPD:
1975 switch (c) {
1976 case 0: return 0x6;
1977 case 1: return 0x5;
1978 case 2: return 0x3;
1979 case 3: return 0x0;
1980 default:
1981 assert(0);
1982 return 0x0;
1983 }
1984 case TGSI_OPCODE_LIT:
1985 case TGSI_OPCODE_SCS:
1986 case TGSI_OPCODE_TEX:
1987 case TGSI_OPCODE_TXB:
1988 case TGSI_OPCODE_TXL:
1989 case TGSI_OPCODE_TXP:
1990 /* these take care of dangerous swizzles themselves */
1991 return 0x0;
1992 case TGSI_OPCODE_IF:
1993 case TGSI_OPCODE_KIL:
1994 /* don't call this function for these ops */
1995 assert(0);
1996 return 0;
1997 default:
1998 /* linear vector instruction */
1999 return (1 << c);
2000 }
2001 }
2002
2003 static INLINE boolean
2004 has_pred(struct nv50_program_exec *e, unsigned cc)
2005 {
2006 if (!is_long(e) || is_immd(e))
2007 return FALSE;
2008 return ((e->inst[1] & 0x780) == (cc << 7));
2009 }
2010
2011 /* on ENDIF see if we can do "@p0.neu single_op" instead of:
2012 * join_at ENDIF
2013 * @p0.eq bra ENDIF
2014 * single_op
2015 * ENDIF: nop.join
2016 */
2017 static boolean
2018 nv50_kill_branch(struct nv50_pc *pc)
2019 {
2020 int lvl = pc->if_lvl;
2021
2022 if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2023 return FALSE;
2024
2025 /* if ccode == 'true', the BRA is from an ELSE and the predicate
2026 * reg may no longer be valid, since we currently always use $p0
2027 */
2028 if (has_pred(pc->if_insn[lvl], 0xf))
2029 return FALSE;
2030 assert(pc->if_insn[lvl] && pc->br_join[lvl]);
2031
2032 /* We'll use the exec allocated for JOIN_AT (as we can't easily
2033 * update prev's next); if exec_tail is BRK, update the pointer.
2034 */
2035 if (pc->loop_lvl && pc->br_loop[pc->loop_lvl - 1] == pc->p->exec_tail)
2036 pc->br_loop[pc->loop_lvl - 1] = pc->br_join[lvl];
2037
2038 pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2039
2040 *pc->br_join[lvl] = *pc->p->exec_tail;
2041
2042 FREE(pc->if_insn[lvl]);
2043 FREE(pc->p->exec_tail);
2044
2045 pc->p->exec_tail = pc->br_join[lvl];
2046 pc->p->exec_tail->next = NULL;
2047 set_pred(pc, 0xd, 0, pc->p->exec_tail);
2048
2049 return TRUE;
2050 }
2051
2052 static boolean
2053 nv50_program_tx_insn(struct nv50_pc *pc,
2054 const struct tgsi_full_instruction *inst)
2055 {
2056 struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2057 unsigned mask, sat, unit;
2058 int i, c;
2059
2060 mask = inst->Dst[0].Register.WriteMask;
2061 sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2062
2063 memset(src, 0, sizeof(src));
2064
2065 for (c = 0; c < 4; c++) {
2066 if ((mask & (1 << c)) && !pc->r_dst[c])
2067 dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2068 else
2069 dst[c] = pc->r_dst[c];
2070 rdst[c] = dst[c];
2071 }
2072
2073 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2074 const struct tgsi_full_src_register *fs = &inst->Src[i];
2075 unsigned src_mask;
2076 boolean neg_supp;
2077
2078 src_mask = nv50_tgsi_src_mask(inst, i);
2079 neg_supp = negate_supported(inst, i);
2080
2081 if (fs->Register.File == TGSI_FILE_SAMPLER)
2082 unit = fs->Register.Index;
2083
2084 for (c = 0; c < 4; c++)
2085 if (src_mask & (1 << c))
2086 src[i][c] = reg_instance(pc,
2087 tgsi_src(pc, c, fs, neg_supp));
2088 }
2089
2090 brdc = temp = pc->r_brdc;
2091 if (brdc && brdc->type != P_TEMP) {
2092 temp = temp_temp(pc);
2093 if (sat)
2094 brdc = temp;
2095 } else
2096 if (sat) {
2097 for (c = 0; c < 4; c++) {
2098 if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2099 continue;
2100 /* rdst[c] = dst[c]; */ /* done above */
2101 dst[c] = temp_temp(pc);
2102 }
2103 }
2104
2105 assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2106
2107 switch (inst->Instruction.Opcode) {
2108 case TGSI_OPCODE_ABS:
2109 for (c = 0; c < 4; c++) {
2110 if (!(mask & (1 << c)))
2111 continue;
2112 emit_abs(pc, dst[c], src[0][c]);
2113 }
2114 break;
2115 case TGSI_OPCODE_ADD:
2116 for (c = 0; c < 4; c++) {
2117 if (!(mask & (1 << c)))
2118 continue;
2119 emit_add(pc, dst[c], src[0][c], src[1][c]);
2120 }
2121 break;
2122 case TGSI_OPCODE_AND:
2123 case TGSI_OPCODE_XOR:
2124 case TGSI_OPCODE_OR:
2125 for (c = 0; c < 4; c++) {
2126 if (!(mask & (1 << c)))
2127 continue;
2128 emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2129 inst->Instruction.Opcode);
2130 }
2131 break;
2132 case TGSI_OPCODE_ARL:
2133 assert(src[0][0]);
2134 temp = temp_temp(pc);
2135 emit_cvt(pc, temp, src[0][0], -1, CVTOP_FLOOR, CVT_S32_F32);
2136 emit_arl(pc, dst[0], temp, 4);
2137 break;
2138 case TGSI_OPCODE_BGNLOOP:
2139 pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2140 terminate_mbb(pc);
2141 break;
2142 case TGSI_OPCODE_BRK:
2143 emit_branch(pc, -1, 0, NULL);
2144 assert(pc->loop_lvl > 0);
2145 pc->br_loop[pc->loop_lvl - 1] = pc->p->exec_tail;
2146 break;
2147 case TGSI_OPCODE_CEIL:
2148 for (c = 0; c < 4; c++) {
2149 if (!(mask & (1 << c)))
2150 continue;
2151 emit_cvt(pc, dst[c], src[0][c], -1,
2152 CVTOP_CEIL, CVT_F32_F32 | CVT_RI);
2153 }
2154 break;
2155 case TGSI_OPCODE_CMP:
2156 pc->allow32 = FALSE;
2157 for (c = 0; c < 4; c++) {
2158 if (!(mask & (1 << c)))
2159 continue;
2160 emit_cvt(pc, NULL, src[0][c], 1, CVTOP_RN, CVT_F32_F32);
2161 emit_mov(pc, dst[c], src[1][c]);
2162 set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2163 emit_mov(pc, dst[c], src[2][c]);
2164 set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2165 }
2166 break;
2167 case TGSI_OPCODE_COS:
2168 if (mask & 8) {
2169 emit_precossin(pc, temp, src[0][3]);
2170 emit_flop(pc, 5, dst[3], temp);
2171 if (!(mask &= 7))
2172 break;
2173 if (temp == dst[3])
2174 temp = brdc = temp_temp(pc);
2175 }
2176 emit_precossin(pc, temp, src[0][0]);
2177 emit_flop(pc, 5, brdc, temp);
2178 break;
2179 case TGSI_OPCODE_DDX:
2180 for (c = 0; c < 4; c++) {
2181 if (!(mask & (1 << c)))
2182 continue;
2183 emit_ddx(pc, dst[c], src[0][c]);
2184 }
2185 break;
2186 case TGSI_OPCODE_DDY:
2187 for (c = 0; c < 4; c++) {
2188 if (!(mask & (1 << c)))
2189 continue;
2190 emit_ddy(pc, dst[c], src[0][c]);
2191 }
2192 break;
2193 case TGSI_OPCODE_DP3:
2194 emit_mul(pc, temp, src[0][0], src[1][0]);
2195 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2196 emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2197 break;
2198 case TGSI_OPCODE_DP4:
2199 emit_mul(pc, temp, src[0][0], src[1][0]);
2200 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2201 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2202 emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2203 break;
2204 case TGSI_OPCODE_DPH:
2205 emit_mul(pc, temp, src[0][0], src[1][0]);
2206 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2207 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2208 emit_add(pc, brdc, src[1][3], temp);
2209 break;
2210 case TGSI_OPCODE_DST:
2211 if (mask & (1 << 1))
2212 emit_mul(pc, dst[1], src[0][1], src[1][1]);
2213 if (mask & (1 << 2))
2214 emit_mov(pc, dst[2], src[0][2]);
2215 if (mask & (1 << 3))
2216 emit_mov(pc, dst[3], src[1][3]);
2217 if (mask & (1 << 0))
2218 emit_mov_immdval(pc, dst[0], 1.0f);
2219 break;
2220 case TGSI_OPCODE_ELSE:
2221 emit_branch(pc, -1, 0, NULL);
2222 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2223 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2224 terminate_mbb(pc);
2225 break;
2226 case TGSI_OPCODE_ENDIF:
2227 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2228
2229 /* try to replace branch over 1 insn with a predicated insn */
2230 if (nv50_kill_branch(pc) == TRUE)
2231 break;
2232
2233 if (pc->br_join[pc->if_lvl]) {
2234 pc->br_join[pc->if_lvl]->param.index = pc->p->exec_size;
2235 pc->br_join[pc->if_lvl] = NULL;
2236 }
2237 terminate_mbb(pc);
2238 /* emit a NOP as join point, we could set it on the next
2239 * one, but would have to make sure it is long and !immd
2240 */
2241 emit_nop(pc);
2242 pc->p->exec_tail->inst[1] |= 2;
2243 break;
2244 case TGSI_OPCODE_ENDLOOP:
2245 emit_branch(pc, -1, 0, NULL);
2246 pc->p->exec_tail->param.index = pc->loop_pos[--pc->loop_lvl];
2247 pc->br_loop[pc->loop_lvl]->param.index = pc->p->exec_size;
2248 terminate_mbb(pc);
2249 break;
2250 case TGSI_OPCODE_EX2:
2251 emit_preex2(pc, temp, src[0][0]);
2252 emit_flop(pc, 6, brdc, temp);
2253 break;
2254 case TGSI_OPCODE_FLR:
2255 for (c = 0; c < 4; c++) {
2256 if (!(mask & (1 << c)))
2257 continue;
2258 emit_flr(pc, dst[c], src[0][c]);
2259 }
2260 break;
2261 case TGSI_OPCODE_FRC:
2262 temp = temp_temp(pc);
2263 for (c = 0; c < 4; c++) {
2264 if (!(mask & (1 << c)))
2265 continue;
2266 emit_flr(pc, temp, src[0][c]);
2267 emit_sub(pc, dst[c], src[0][c], temp);
2268 }
2269 break;
2270 case TGSI_OPCODE_IF:
2271 /* emitting a join_at may not be necessary */
2272 assert(pc->if_lvl < MAX_IF_DEPTH);
2273 /* set_pred_wr(pc, 1, 0, pc->if_cond); */
2274 emit_cvt(pc, NULL, src[0][0], 0, CVTOP_ABS | CVTOP_RN,
2275 CVT_F32_F32);
2276 emit_branch(pc, 0, 2, &pc->br_join[pc->if_lvl]);
2277 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2278 terminate_mbb(pc);
2279 break;
2280 case TGSI_OPCODE_KIL:
2281 emit_kil(pc, src[0][0]);
2282 emit_kil(pc, src[0][1]);
2283 emit_kil(pc, src[0][2]);
2284 emit_kil(pc, src[0][3]);
2285 break;
2286 case TGSI_OPCODE_LIT:
2287 emit_lit(pc, &dst[0], mask, &src[0][0]);
2288 break;
2289 case TGSI_OPCODE_LG2:
2290 emit_flop(pc, 3, brdc, src[0][0]);
2291 break;
2292 case TGSI_OPCODE_LRP:
2293 temp = temp_temp(pc);
2294 for (c = 0; c < 4; c++) {
2295 if (!(mask & (1 << c)))
2296 continue;
2297 emit_sub(pc, temp, src[1][c], src[2][c]);
2298 emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2299 }
2300 break;
2301 case TGSI_OPCODE_MAD:
2302 for (c = 0; c < 4; c++) {
2303 if (!(mask & (1 << c)))
2304 continue;
2305 emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2306 }
2307 break;
2308 case TGSI_OPCODE_MAX:
2309 for (c = 0; c < 4; c++) {
2310 if (!(mask & (1 << c)))
2311 continue;
2312 emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2313 }
2314 break;
2315 case TGSI_OPCODE_MIN:
2316 for (c = 0; c < 4; c++) {
2317 if (!(mask & (1 << c)))
2318 continue;
2319 emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2320 }
2321 break;
2322 case TGSI_OPCODE_MOV:
2323 for (c = 0; c < 4; c++) {
2324 if (!(mask & (1 << c)))
2325 continue;
2326 emit_mov(pc, dst[c], src[0][c]);
2327 }
2328 break;
2329 case TGSI_OPCODE_MUL:
2330 for (c = 0; c < 4; c++) {
2331 if (!(mask & (1 << c)))
2332 continue;
2333 emit_mul(pc, dst[c], src[0][c], src[1][c]);
2334 }
2335 break;
2336 case TGSI_OPCODE_POW:
2337 emit_pow(pc, brdc, src[0][0], src[1][0]);
2338 break;
2339 case TGSI_OPCODE_RCP:
2340 emit_flop(pc, 0, brdc, src[0][0]);
2341 break;
2342 case TGSI_OPCODE_RSQ:
2343 emit_flop(pc, 2, brdc, src[0][0]);
2344 break;
2345 case TGSI_OPCODE_SCS:
2346 temp = temp_temp(pc);
2347 if (mask & 3)
2348 emit_precossin(pc, temp, src[0][0]);
2349 if (mask & (1 << 0))
2350 emit_flop(pc, 5, dst[0], temp);
2351 if (mask & (1 << 1))
2352 emit_flop(pc, 4, dst[1], temp);
2353 if (mask & (1 << 2))
2354 emit_mov_immdval(pc, dst[2], 0.0);
2355 if (mask & (1 << 3))
2356 emit_mov_immdval(pc, dst[3], 1.0);
2357 break;
2358 case TGSI_OPCODE_SIN:
2359 if (mask & 8) {
2360 emit_precossin(pc, temp, src[0][3]);
2361 emit_flop(pc, 4, dst[3], temp);
2362 if (!(mask &= 7))
2363 break;
2364 if (temp == dst[3])
2365 temp = brdc = temp_temp(pc);
2366 }
2367 emit_precossin(pc, temp, src[0][0]);
2368 emit_flop(pc, 4, brdc, temp);
2369 break;
2370 case TGSI_OPCODE_SLT:
2371 case TGSI_OPCODE_SGE:
2372 case TGSI_OPCODE_SEQ:
2373 case TGSI_OPCODE_SGT:
2374 case TGSI_OPCODE_SLE:
2375 case TGSI_OPCODE_SNE:
2376 i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2377 for (c = 0; c < 4; c++) {
2378 if (!(mask & (1 << c)))
2379 continue;
2380 emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2381 }
2382 break;
2383 case TGSI_OPCODE_SUB:
2384 for (c = 0; c < 4; c++) {
2385 if (!(mask & (1 << c)))
2386 continue;
2387 emit_sub(pc, dst[c], src[0][c], src[1][c]);
2388 }
2389 break;
2390 case TGSI_OPCODE_TEX:
2391 emit_tex(pc, dst, mask, src[0], unit,
2392 inst->Texture.Texture, FALSE, 0);
2393 break;
2394 case TGSI_OPCODE_TXB:
2395 emit_tex(pc, dst, mask, src[0], unit,
2396 inst->Texture.Texture, FALSE, -1);
2397 break;
2398 case TGSI_OPCODE_TXL:
2399 emit_tex(pc, dst, mask, src[0], unit,
2400 inst->Texture.Texture, FALSE, 1);
2401 break;
2402 case TGSI_OPCODE_TXP:
2403 emit_tex(pc, dst, mask, src[0], unit,
2404 inst->Texture.Texture, TRUE, 0);
2405 break;
2406 case TGSI_OPCODE_TRUNC:
2407 for (c = 0; c < 4; c++) {
2408 if (!(mask & (1 << c)))
2409 continue;
2410 emit_cvt(pc, dst[c], src[0][c], -1,
2411 CVTOP_TRUNC, CVT_F32_F32 | CVT_RI);
2412 }
2413 break;
2414 case TGSI_OPCODE_XPD:
2415 temp = temp_temp(pc);
2416 if (mask & (1 << 0)) {
2417 emit_mul(pc, temp, src[0][2], src[1][1]);
2418 emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2419 }
2420 if (mask & (1 << 1)) {
2421 emit_mul(pc, temp, src[0][0], src[1][2]);
2422 emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2423 }
2424 if (mask & (1 << 2)) {
2425 emit_mul(pc, temp, src[0][1], src[1][0]);
2426 emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2427 }
2428 if (mask & (1 << 3))
2429 emit_mov_immdval(pc, dst[3], 1.0);
2430 break;
2431 case TGSI_OPCODE_END:
2432 break;
2433 default:
2434 NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2435 return FALSE;
2436 }
2437
2438 if (brdc) {
2439 if (sat)
2440 emit_sat(pc, brdc, brdc);
2441 for (c = 0; c < 4; c++)
2442 if ((mask & (1 << c)) && dst[c] != brdc)
2443 emit_mov(pc, dst[c], brdc);
2444 } else
2445 if (sat) {
2446 for (c = 0; c < 4; c++) {
2447 if (!(mask & (1 << c)))
2448 continue;
2449 /* In this case we saturate later, and dst[c] won't
2450 * be another temp_temp (and thus lost), since rdst
2451 * already is TEMP (see above). */
2452 if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2453 continue;
2454 emit_sat(pc, rdst[c], dst[c]);
2455 }
2456 }
2457
2458 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2459 for (c = 0; c < 4; c++) {
2460 if (!src[i][c])
2461 continue;
2462 if (src[i][c]->acc < 0 && src[i][c]->type == P_CONST)
2463 FREE(src[i][c]); /* indirect constant */
2464 }
2465 }
2466
2467 kill_temp_temp(pc);
2468 pc->reg_instance_nr = 0;
2469
2470 return TRUE;
2471 }
2472
2473 static void
2474 prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2475 {
2476 struct nv50_reg *reg = NULL;
2477 const struct tgsi_full_src_register *src;
2478 const struct tgsi_dst_register *dst;
2479 unsigned i, c, k, mask;
2480
2481 dst = &insn->Dst[0].Register;
2482 mask = dst->WriteMask;
2483
2484 if (dst->File == TGSI_FILE_TEMPORARY)
2485 reg = pc->temp;
2486 else
2487 if (dst->File == TGSI_FILE_OUTPUT)
2488 reg = pc->result;
2489
2490 if (reg) {
2491 for (c = 0; c < 4; c++) {
2492 if (!(mask & (1 << c)))
2493 continue;
2494 reg[dst->Index * 4 + c].acc = pc->insn_nr;
2495 }
2496 }
2497
2498 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2499 src = &insn->Src[i];
2500
2501 if (src->Register.File == TGSI_FILE_TEMPORARY)
2502 reg = pc->temp;
2503 else
2504 if (src->Register.File == TGSI_FILE_INPUT)
2505 reg = pc->attr;
2506 else
2507 continue;
2508
2509 mask = nv50_tgsi_src_mask(insn, i);
2510
2511 for (c = 0; c < 4; c++) {
2512 if (!(mask & (1 << c)))
2513 continue;
2514 k = tgsi_util_get_full_src_register_swizzle(src, c);
2515
2516 reg[src->Register.Index * 4 + k].acc = pc->insn_nr;
2517 }
2518 }
2519 }
2520
2521 /* Returns a bitmask indicating which dst components need to be
2522 * written to temporaries first to avoid 'corrupting' sources.
2523 *
2524 * m[i] (out) indicate component to write in the i-th position
2525 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2526 */
2527 static unsigned
2528 nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2529 {
2530 unsigned i, c, x, unsafe;
2531
2532 for (c = 0; c < 4; c++)
2533 m[c] = c;
2534
2535 /* Swap as long as a dst component written earlier is depended on
2536 * by one written later, but the next one isn't depended on by it.
2537 */
2538 for (c = 0; c < 3; c++) {
2539 if (rdep[m[c + 1]] & (1 << m[c]))
2540 continue; /* if next one is depended on by us */
2541 for (i = c + 1; i < 4; i++)
2542 /* if we are depended on by a later one */
2543 if (rdep[m[c]] & (1 << m[i]))
2544 break;
2545 if (i == 4)
2546 continue;
2547 /* now, swap */
2548 x = m[c];
2549 m[c] = m[c + 1];
2550 m[c + 1] = x;
2551
2552 /* restart */
2553 c = 0;
2554 }
2555
2556 /* mark dependencies that could not be resolved by reordering */
2557 for (i = 0; i < 3; ++i)
2558 for (c = i + 1; c < 4; ++c)
2559 if (rdep[m[i]] & (1 << m[c]))
2560 unsafe |= (1 << i);
2561
2562 /* NOTE: $unsafe is with respect to order, not component */
2563 return unsafe;
2564 }
2565
2566 /* Select a suitable dst register for broadcasting scalar results,
2567 * or return NULL if we have to allocate an extra TEMP.
2568 *
2569 * If e.g. only 1 component is written, we may also emit the final
2570 * result to a write-only register.
2571 */
2572 static struct nv50_reg *
2573 tgsi_broadcast_dst(struct nv50_pc *pc,
2574 const struct tgsi_full_dst_register *fd, unsigned mask)
2575 {
2576 if (fd->Register.File == TGSI_FILE_TEMPORARY) {
2577 int c = ffs(~mask & fd->Register.WriteMask);
2578 if (c)
2579 return tgsi_dst(pc, c - 1, fd);
2580 } else {
2581 int c = ffs(fd->Register.WriteMask) - 1;
2582 if ((1 << c) == fd->Register.WriteMask)
2583 return tgsi_dst(pc, c, fd);
2584 }
2585
2586 return NULL;
2587 }
2588
2589 /* Scan source swizzles and return a bitmask indicating dst regs that
2590 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2591 */
2592 static unsigned
2593 nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2594 unsigned rdep[4])
2595 {
2596 const struct tgsi_full_dst_register *fd = &insn->Dst[0];
2597 const struct tgsi_full_src_register *fs;
2598 unsigned i, deqs = 0;
2599
2600 for (i = 0; i < 4; ++i)
2601 rdep[i] = 0;
2602
2603 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2604 unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2605 boolean neg_supp = negate_supported(insn, i);
2606
2607 fs = &insn->Src[i];
2608 if (fs->Register.File != fd->Register.File ||
2609 fs->Register.Index != fd->Register.Index)
2610 continue;
2611
2612 for (chn = 0; chn < 4; ++chn) {
2613 unsigned s, c;
2614
2615 if (!(mask & (1 << chn))) /* src is not read */
2616 continue;
2617 c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2618 s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2619
2620 if (!(fd->Register.WriteMask & (1 << c)))
2621 continue;
2622
2623 /* no danger if src is copied to TEMP first */
2624 if ((s != TGSI_UTIL_SIGN_KEEP) &&
2625 (s != TGSI_UTIL_SIGN_TOGGLE || !neg_supp))
2626 continue;
2627
2628 rdep[c] |= nv50_tgsi_dst_revdep(
2629 insn->Instruction.Opcode, i, chn);
2630 deqs |= (1 << c);
2631 }
2632 }
2633
2634 return deqs;
2635 }
2636
2637 static boolean
2638 nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2639 {
2640 struct tgsi_full_instruction insn = tok->FullInstruction;
2641 const struct tgsi_full_dst_register *fd;
2642 unsigned i, deqs, rdep[4], m[4];
2643
2644 fd = &tok->FullInstruction.Dst[0];
2645 deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2646
2647 if (is_scalar_op(insn.Instruction.Opcode)) {
2648 pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2649 if (!pc->r_brdc)
2650 pc->r_brdc = temp_temp(pc);
2651 return nv50_program_tx_insn(pc, &insn);
2652 }
2653 pc->r_brdc = NULL;
2654
2655 if (!deqs)
2656 return nv50_program_tx_insn(pc, &insn);
2657
2658 deqs = nv50_revdep_reorder(m, rdep);
2659
2660 for (i = 0; i < 4; ++i) {
2661 assert(pc->r_dst[m[i]] == NULL);
2662
2663 insn.Dst[0].Register.WriteMask =
2664 fd->Register.WriteMask & (1 << m[i]);
2665
2666 if (!insn.Dst[0].Register.WriteMask)
2667 continue;
2668
2669 if (deqs & (1 << i))
2670 pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2671
2672 if (!nv50_program_tx_insn(pc, &insn))
2673 return FALSE;
2674 }
2675
2676 for (i = 0; i < 4; i++) {
2677 struct nv50_reg *reg = pc->r_dst[i];
2678 if (!reg)
2679 continue;
2680 pc->r_dst[i] = NULL;
2681
2682 if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2683 emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2684 else
2685 emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2686 free_temp(pc, reg);
2687 }
2688
2689 return TRUE;
2690 }
2691
2692 static void
2693 load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2694 {
2695 struct nv50_reg *iv, **ppiv;
2696 unsigned mode = pc->interp_mode[reg->index];
2697
2698 ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2699 iv = *ppiv;
2700
2701 if ((mode & INTERP_PERSPECTIVE) && !iv) {
2702 iv = *ppiv = alloc_temp(pc, NULL);
2703 iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2704
2705 emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2706 emit_flop(pc, 0, iv, iv);
2707
2708 /* XXX: when loading interpolants dynamically, move these
2709 * to the program head, or make sure it can't be skipped.
2710 */
2711 }
2712
2713 emit_interp(pc, reg, iv, mode);
2714 }
2715
2716 /* The face input is always at v[255] (varying space), with a
2717 * value of 0 for back-facing, and 0xffffffff for front-facing.
2718 */
2719 static void
2720 load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
2721 {
2722 struct nv50_reg *one = alloc_immd(pc, 1.0f);
2723
2724 assert(a->rhw == -1);
2725 alloc_reg(pc, a); /* do this before rhw is set */
2726 a->rhw = 255;
2727 load_interpolant(pc, a);
2728 emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
2729
2730 FREE(one);
2731 }
2732
2733 static boolean
2734 nv50_program_tx_prep(struct nv50_pc *pc)
2735 {
2736 struct tgsi_parse_context tp;
2737 struct nv50_program *p = pc->p;
2738 boolean ret = FALSE;
2739 unsigned i, c, flat_nr = 0;
2740
2741 tgsi_parse_init(&tp, pc->p->pipe.tokens);
2742 while (!tgsi_parse_end_of_tokens(&tp)) {
2743 const union tgsi_full_token *tok = &tp.FullToken;
2744
2745 tgsi_parse_token(&tp);
2746 switch (tok->Token.Type) {
2747 case TGSI_TOKEN_TYPE_IMMEDIATE:
2748 {
2749 const struct tgsi_full_immediate *imm =
2750 &tp.FullToken.FullImmediate;
2751
2752 ctor_immd(pc, imm->u[0].Float,
2753 imm->u[1].Float,
2754 imm->u[2].Float,
2755 imm->u[3].Float);
2756 }
2757 break;
2758 case TGSI_TOKEN_TYPE_DECLARATION:
2759 {
2760 const struct tgsi_full_declaration *d;
2761 unsigned si, last, first, mode;
2762
2763 d = &tp.FullToken.FullDeclaration;
2764 first = d->Range.First;
2765 last = d->Range.Last;
2766
2767 switch (d->Declaration.File) {
2768 case TGSI_FILE_TEMPORARY:
2769 break;
2770 case TGSI_FILE_OUTPUT:
2771 if (!d->Declaration.Semantic ||
2772 p->type == PIPE_SHADER_FRAGMENT)
2773 break;
2774
2775 si = d->Semantic.Index;
2776 switch (d->Semantic.Name) {
2777 case TGSI_SEMANTIC_BCOLOR:
2778 p->cfg.two_side[si].hw = first;
2779 if (p->cfg.io_nr > first)
2780 p->cfg.io_nr = first;
2781 break;
2782 case TGSI_SEMANTIC_PSIZE:
2783 p->cfg.psiz = first;
2784 if (p->cfg.io_nr > first)
2785 p->cfg.io_nr = first;
2786 break;
2787 /*
2788 case TGSI_SEMANTIC_CLIP_DISTANCE:
2789 p->cfg.clpd = MIN2(p->cfg.clpd, first);
2790 break;
2791 */
2792 default:
2793 break;
2794 }
2795 break;
2796 case TGSI_FILE_INPUT:
2797 {
2798 if (p->type != PIPE_SHADER_FRAGMENT)
2799 break;
2800
2801 switch (d->Declaration.Interpolate) {
2802 case TGSI_INTERPOLATE_CONSTANT:
2803 mode = INTERP_FLAT;
2804 flat_nr++;
2805 break;
2806 case TGSI_INTERPOLATE_PERSPECTIVE:
2807 mode = INTERP_PERSPECTIVE;
2808 p->cfg.regs[1] |= 0x08 << 24;
2809 break;
2810 default:
2811 mode = INTERP_LINEAR;
2812 break;
2813 }
2814 if (d->Declaration.Centroid)
2815 mode |= INTERP_CENTROID;
2816
2817 assert(last < 32);
2818 for (i = first; i <= last; i++)
2819 pc->interp_mode[i] = mode;
2820 }
2821 break;
2822 case TGSI_FILE_ADDRESS:
2823 case TGSI_FILE_CONSTANT:
2824 case TGSI_FILE_SAMPLER:
2825 break;
2826 default:
2827 NOUVEAU_ERR("bad decl file %d\n",
2828 d->Declaration.File);
2829 goto out_err;
2830 }
2831 }
2832 break;
2833 case TGSI_TOKEN_TYPE_INSTRUCTION:
2834 pc->insn_nr++;
2835 prep_inspect_insn(pc, &tok->FullInstruction);
2836 break;
2837 default:
2838 break;
2839 }
2840 }
2841
2842 if (p->type == PIPE_SHADER_VERTEX) {
2843 int rid = 0;
2844
2845 for (i = 0; i < pc->attr_nr * 4; ++i) {
2846 if (pc->attr[i].acc) {
2847 pc->attr[i].hw = rid++;
2848 p->cfg.attr[i / 32] |= 1 << (i % 32);
2849 }
2850 }
2851
2852 for (i = 0, rid = 0; i < pc->result_nr; ++i) {
2853 p->cfg.io[i].hw = rid;
2854 p->cfg.io[i].id = i;
2855
2856 for (c = 0; c < 4; ++c) {
2857 int n = i * 4 + c;
2858 if (!pc->result[n].acc)
2859 continue;
2860 pc->result[n].hw = rid++;
2861 p->cfg.io[i].mask |= 1 << c;
2862 }
2863 }
2864
2865 for (c = 0; c < 2; ++c)
2866 if (p->cfg.two_side[c].hw < 0x40)
2867 p->cfg.two_side[c] = p->cfg.io[
2868 p->cfg.two_side[c].hw];
2869
2870 if (p->cfg.psiz < 0x40)
2871 p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
2872 } else
2873 if (p->type == PIPE_SHADER_FRAGMENT) {
2874 int rid, aid;
2875 unsigned n = 0, m = pc->attr_nr - flat_nr;
2876
2877 pc->allow32 = TRUE;
2878
2879 int base = (TGSI_SEMANTIC_POSITION ==
2880 p->info.input_semantic_name[0]) ? 0 : 1;
2881
2882 /* non-flat interpolants have to be mapped to
2883 * the lower hardware IDs, so sort them:
2884 */
2885 for (i = 0; i < pc->attr_nr; i++) {
2886 if (pc->interp_mode[i] == INTERP_FLAT)
2887 p->cfg.io[m++].id = i;
2888 else {
2889 if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
2890 p->cfg.io[n].linear = TRUE;
2891 p->cfg.io[n++].id = i;
2892 }
2893 }
2894
2895 if (!base) /* set w-coordinate mask from perspective interp */
2896 p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
2897
2898 aid = popcnt4( /* if fcrd isn't contained in cfg.io */
2899 base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
2900
2901 for (n = 0; n < pc->attr_nr; ++n) {
2902 p->cfg.io[n].hw = rid = aid;
2903 i = p->cfg.io[n].id;
2904
2905 if (p->info.input_semantic_name[n] ==
2906 TGSI_SEMANTIC_FACE) {
2907 load_frontfacing(pc, &pc->attr[i * 4]);
2908 continue;
2909 }
2910
2911 for (c = 0; c < 4; ++c) {
2912 if (!pc->attr[i * 4 + c].acc)
2913 continue;
2914 pc->attr[i * 4 + c].rhw = rid++;
2915 p->cfg.io[n].mask |= 1 << c;
2916
2917 load_interpolant(pc, &pc->attr[i * 4 + c]);
2918 }
2919 aid += popcnt4(p->cfg.io[n].mask);
2920 }
2921
2922 if (!base)
2923 p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
2924
2925 m = popcnt4(p->cfg.regs[1] >> 24);
2926
2927 /* set count of non-position inputs and of non-flat
2928 * non-position inputs for FP_INTERPOLANT_CTRL
2929 */
2930 p->cfg.regs[1] |= aid - m;
2931
2932 if (flat_nr) {
2933 i = p->cfg.io[pc->attr_nr - flat_nr].hw;
2934 p->cfg.regs[1] |= (i - m) << 16;
2935 } else
2936 p->cfg.regs[1] |= p->cfg.regs[1] << 16;
2937
2938 /* mark color semantic for light-twoside */
2939 n = 0x40;
2940 for (i = 0; i < pc->attr_nr; i++) {
2941 ubyte si, sn;
2942
2943 sn = p->info.input_semantic_name[p->cfg.io[i].id];
2944 si = p->info.input_semantic_index[p->cfg.io[i].id];
2945
2946 if (sn == TGSI_SEMANTIC_COLOR) {
2947 p->cfg.two_side[si] = p->cfg.io[i];
2948
2949 /* increase colour count */
2950 p->cfg.regs[0] += popcnt4(
2951 p->cfg.two_side[si].mask) << 16;
2952
2953 n = MIN2(n, p->cfg.io[i].hw - m);
2954 }
2955 }
2956 if (n < 0x40)
2957 p->cfg.regs[0] += n;
2958
2959 /* Initialize FP results:
2960 * FragDepth is always first TGSI and last hw output
2961 */
2962 i = p->info.writes_z ? 4 : 0;
2963 for (rid = 0; i < pc->result_nr * 4; i++)
2964 pc->result[i].rhw = rid++;
2965 if (p->info.writes_z)
2966 pc->result[2].rhw = rid;
2967
2968 p->cfg.high_result = rid;
2969
2970 /* separate/different colour results for MRTs ? */
2971 if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
2972 p->cfg.regs[2] |= 1;
2973 }
2974
2975 if (pc->immd_nr) {
2976 int rid = 0;
2977
2978 pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
2979 if (!pc->immd)
2980 goto out_err;
2981
2982 for (i = 0; i < pc->immd_nr; i++) {
2983 for (c = 0; c < 4; c++, rid++)
2984 ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
2985 }
2986 }
2987
2988 ret = TRUE;
2989 out_err:
2990 if (pc->iv_p)
2991 free_temp(pc, pc->iv_p);
2992 if (pc->iv_c)
2993 free_temp(pc, pc->iv_c);
2994
2995 tgsi_parse_free(&tp);
2996 return ret;
2997 }
2998
2999 static void
3000 free_nv50_pc(struct nv50_pc *pc)
3001 {
3002 if (pc->immd)
3003 FREE(pc->immd);
3004 if (pc->param)
3005 FREE(pc->param);
3006 if (pc->result)
3007 FREE(pc->result);
3008 if (pc->attr)
3009 FREE(pc->attr);
3010 if (pc->temp)
3011 FREE(pc->temp);
3012
3013 FREE(pc);
3014 }
3015
3016 static boolean
3017 ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3018 {
3019 int i, c;
3020 unsigned rtype[2] = { P_ATTR, P_RESULT };
3021
3022 pc->p = p;
3023 pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3024 pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3025 pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3026 pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3027 pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3028 assert(pc->addr_nr <= 2);
3029
3030 p->cfg.high_temp = 4;
3031
3032 p->cfg.two_side[0].hw = 0x40;
3033 p->cfg.two_side[1].hw = 0x40;
3034
3035 switch (p->type) {
3036 case PIPE_SHADER_VERTEX:
3037 p->cfg.psiz = 0x40;
3038 p->cfg.clpd = 0x40;
3039 p->cfg.io_nr = pc->result_nr;
3040 break;
3041 case PIPE_SHADER_FRAGMENT:
3042 rtype[0] = rtype[1] = P_TEMP;
3043
3044 p->cfg.regs[0] = 0x01000004;
3045 p->cfg.io_nr = pc->attr_nr;
3046
3047 if (p->info.writes_z) {
3048 p->cfg.regs[2] |= 0x00000100;
3049 p->cfg.regs[3] |= 0x00000011;
3050 }
3051 if (p->info.uses_kill)
3052 p->cfg.regs[2] |= 0x00100000;
3053 break;
3054 }
3055
3056 if (pc->temp_nr) {
3057 pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3058 if (!pc->temp)
3059 return FALSE;
3060
3061 for (i = 0; i < pc->temp_nr * 4; ++i)
3062 ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3063 }
3064
3065 if (pc->attr_nr) {
3066 pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3067 if (!pc->attr)
3068 return FALSE;
3069
3070 for (i = 0; i < pc->attr_nr * 4; ++i)
3071 ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3072 }
3073
3074 if (pc->result_nr) {
3075 unsigned nr = pc->result_nr * 4;
3076
3077 pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3078 if (!pc->result)
3079 return FALSE;
3080
3081 for (i = 0; i < nr; ++i)
3082 ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3083 }
3084
3085 if (pc->param_nr) {
3086 int rid = 0;
3087
3088 pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3089 if (!pc->param)
3090 return FALSE;
3091
3092 for (i = 0; i < pc->param_nr; ++i)
3093 for (c = 0; c < 4; ++c, ++rid)
3094 ctor_reg(&pc->param[rid], P_CONST, i, rid);
3095 }
3096
3097 if (pc->addr_nr) {
3098 pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3099 if (!pc->addr)
3100 return FALSE;
3101 }
3102 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3103 ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3104
3105 return TRUE;
3106 }
3107
3108 static void
3109 nv50_fp_move_results(struct nv50_pc *pc)
3110 {
3111 struct nv50_reg reg;
3112 unsigned i;
3113
3114 ctor_reg(&reg, P_TEMP, -1, -1);
3115
3116 for (i = 0; i < pc->result_nr * 4; ++i) {
3117 if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
3118 continue;
3119 if (pc->result[i].rhw != pc->result[i].hw) {
3120 reg.hw = pc->result[i].rhw;
3121 emit_mov(pc, &reg, &pc->result[i]);
3122 }
3123 }
3124 }
3125
3126 static void
3127 nv50_program_fixup_insns(struct nv50_pc *pc)
3128 {
3129 struct nv50_program_exec *e, **bra_list;
3130 unsigned i, n, pos;
3131
3132 bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3133
3134 /* Collect branch instructions, we need to adjust their offsets
3135 * when converting 32 bit instructions to 64 bit ones
3136 */
3137 for (n = 0, e = pc->p->exec_head; e; e = e->next)
3138 if (e->param.index >= 0 && !e->param.mask)
3139 bra_list[n++] = e;
3140
3141 /* last instruction must be long so it can have the exit bit set */
3142 if (!is_long(pc->p->exec_tail))
3143 convert_to_long(pc, pc->p->exec_tail);
3144 /* set exit bit */
3145 pc->p->exec_tail->inst[1] |= 1;
3146
3147 /* !immd on exit insn simultaneously means !join */
3148 assert(!is_immd(pc->p->exec_head));
3149 assert(!is_immd(pc->p->exec_tail));
3150
3151 /* Make sure we don't have any single 32 bit instructions. */
3152 for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3153 pos += is_long(e) ? 2 : 1;
3154
3155 if ((pos & 1) && (!e->next || is_long(e->next))) {
3156 for (i = 0; i < n; ++i)
3157 if (bra_list[i]->param.index >= pos)
3158 bra_list[i]->param.index += 1;
3159 convert_to_long(pc, e);
3160 ++pos;
3161 }
3162 }
3163
3164 FREE(bra_list);
3165 }
3166
3167 static boolean
3168 nv50_program_tx(struct nv50_program *p)
3169 {
3170 struct tgsi_parse_context parse;
3171 struct nv50_pc *pc;
3172 boolean ret;
3173
3174 pc = CALLOC_STRUCT(nv50_pc);
3175 if (!pc)
3176 return FALSE;
3177
3178 ret = ctor_nv50_pc(pc, p);
3179 if (ret == FALSE)
3180 goto out_cleanup;
3181
3182 ret = nv50_program_tx_prep(pc);
3183 if (ret == FALSE)
3184 goto out_cleanup;
3185
3186 tgsi_parse_init(&parse, pc->p->pipe.tokens);
3187 while (!tgsi_parse_end_of_tokens(&parse)) {
3188 const union tgsi_full_token *tok = &parse.FullToken;
3189
3190 /* don't allow half insn/immd on first and last instruction */
3191 pc->allow32 = TRUE;
3192 if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr)
3193 pc->allow32 = FALSE;
3194
3195 tgsi_parse_token(&parse);
3196
3197 switch (tok->Token.Type) {
3198 case TGSI_TOKEN_TYPE_INSTRUCTION:
3199 ++pc->insn_cur;
3200 ret = nv50_tgsi_insn(pc, tok);
3201 if (ret == FALSE)
3202 goto out_err;
3203 break;
3204 default:
3205 break;
3206 }
3207 }
3208
3209 if (pc->p->type == PIPE_SHADER_FRAGMENT)
3210 nv50_fp_move_results(pc);
3211
3212 nv50_program_fixup_insns(pc);
3213
3214 p->param_nr = pc->param_nr * 4;
3215 p->immd_nr = pc->immd_nr * 4;
3216 p->immd = pc->immd_buf;
3217
3218 out_err:
3219 tgsi_parse_free(&parse);
3220
3221 out_cleanup:
3222 free_nv50_pc(pc);
3223 return ret;
3224 }
3225
3226 static void
3227 nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3228 {
3229 if (nv50_program_tx(p) == FALSE)
3230 assert(0);
3231 p->translated = TRUE;
3232 }
3233
3234 static void
3235 nv50_program_upload_data(struct nv50_context *nv50, float *map,
3236 unsigned start, unsigned count, unsigned cbuf)
3237 {
3238 struct nouveau_channel *chan = nv50->screen->base.channel;
3239 struct nouveau_grobj *tesla = nv50->screen->tesla;
3240
3241 while (count) {
3242 unsigned nr = count > 2047 ? 2047 : count;
3243
3244 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3245 OUT_RING (chan, (cbuf << 0) | (start << 8));
3246 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3247 OUT_RINGp (chan, map, nr);
3248
3249 map += nr;
3250 start += nr;
3251 count -= nr;
3252 }
3253 }
3254
3255 static void
3256 nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3257 {
3258 struct pipe_screen *pscreen = nv50->pipe.screen;
3259
3260 if (!p->data[0] && p->immd_nr) {
3261 struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3262
3263 if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3264 while (heap->next && heap->size < p->immd_nr) {
3265 struct nv50_program *evict = heap->next->priv;
3266 nouveau_resource_free(&evict->data[0]);
3267 }
3268
3269 if (nouveau_resource_alloc(heap, p->immd_nr, p,
3270 &p->data[0]))
3271 assert(0);
3272 }
3273
3274 /* immediates only need to be uploaded again when freed */
3275 nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3276 p->immd_nr, NV50_CB_PMISC);
3277 }
3278
3279 assert(p->param_nr <= 512);
3280
3281 if (p->param_nr) {
3282 unsigned cb;
3283 float *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3284 PIPE_BUFFER_USAGE_CPU_READ);
3285
3286 if (p->type == PIPE_SHADER_VERTEX)
3287 cb = NV50_CB_PVP;
3288 else
3289 cb = NV50_CB_PFP;
3290
3291 nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3292 pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3293 }
3294 }
3295
3296 static void
3297 nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3298 {
3299 struct nouveau_channel *chan = nv50->screen->base.channel;
3300 struct nv50_program_exec *e;
3301 uint32_t *up, i;
3302 boolean upload = FALSE;
3303
3304 if (!p->bo) {
3305 nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3306 p->exec_size * 4, &p->bo);
3307 upload = TRUE;
3308 }
3309
3310 if (p->data[0] && p->data[0]->start != p->data_start[0])
3311 upload = TRUE;
3312
3313 if (!upload)
3314 return;
3315
3316 up = MALLOC(p->exec_size * 4);
3317
3318 for (i = 0, e = p->exec_head; e; e = e->next) {
3319 unsigned ei, ci, bs;
3320
3321 if (e->param.index >= 0 && e->param.mask) {
3322 bs = (e->inst[1] >> 22) & 0x07;
3323 assert(bs < 2);
3324 ei = e->param.shift >> 5;
3325 ci = e->param.index;
3326 if (bs == 0)
3327 ci += p->data[bs]->start;
3328
3329 e->inst[ei] &= ~e->param.mask;
3330 e->inst[ei] |= (ci << e->param.shift);
3331 } else
3332 if (e->param.index >= 0) {
3333 /* zero mask means param is a jump/branch offset */
3334 assert(!(e->param.index & 1));
3335 /* seem to be 8 byte steps */
3336 ei = (e->param.index >> 1) + 0 /* START_ID */;
3337
3338 e->inst[0] &= 0xf0000fff;
3339 e->inst[0] |= ei << 12;
3340 }
3341
3342 up[i++] = e->inst[0];
3343 if (is_long(e))
3344 up[i++] = e->inst[1];
3345 }
3346 assert(i == p->exec_size);
3347
3348 if (p->data[0])
3349 p->data_start[0] = p->data[0]->start;
3350
3351 #ifdef NV50_PROGRAM_DUMP
3352 NOUVEAU_ERR("-------\n");
3353 for (e = p->exec_head; e; e = e->next) {
3354 NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3355 if (is_long(e))
3356 NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3357 }
3358 #endif
3359 nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3360 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3361 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3362 0, 0, p->exec_size * 4, 1, 1);
3363
3364 FREE(up);
3365 }
3366
3367 void
3368 nv50_vertprog_validate(struct nv50_context *nv50)
3369 {
3370 struct nouveau_grobj *tesla = nv50->screen->tesla;
3371 struct nv50_program *p = nv50->vertprog;
3372 struct nouveau_stateobj *so;
3373
3374 if (!p->translated) {
3375 nv50_program_validate(nv50, p);
3376 if (!p->translated)
3377 assert(0);
3378 }
3379
3380 nv50_program_validate_data(nv50, p);
3381 nv50_program_validate_code(nv50, p);
3382
3383 so = so_new(13, 2);
3384 so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3385 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3386 NOUVEAU_BO_HIGH, 0, 0);
3387 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3388 NOUVEAU_BO_LOW, 0, 0);
3389 so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3390 so_data (so, p->cfg.attr[0]);
3391 so_data (so, p->cfg.attr[1]);
3392 so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3393 so_data (so, p->cfg.high_result);
3394 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3395 so_data (so, p->cfg.high_result); //8);
3396 so_data (so, p->cfg.high_temp);
3397 so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3398 so_data (so, 0); /* program start offset */
3399 so_ref(so, &nv50->state.vertprog);
3400 so_ref(NULL, &so);
3401 }
3402
3403 void
3404 nv50_fragprog_validate(struct nv50_context *nv50)
3405 {
3406 struct nouveau_grobj *tesla = nv50->screen->tesla;
3407 struct nv50_program *p = nv50->fragprog;
3408 struct nouveau_stateobj *so;
3409
3410 if (!p->translated) {
3411 nv50_program_validate(nv50, p);
3412 if (!p->translated)
3413 assert(0);
3414 }
3415
3416 nv50_program_validate_data(nv50, p);
3417 nv50_program_validate_code(nv50, p);
3418
3419 so = so_new(64, 2);
3420 so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3421 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3422 NOUVEAU_BO_HIGH, 0, 0);
3423 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3424 NOUVEAU_BO_LOW, 0, 0);
3425 so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3426 so_data (so, p->cfg.high_temp);
3427 so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3428 so_data (so, p->cfg.high_result);
3429 so_method(so, tesla, NV50TCL_FP_CTRL_UNK19A8, 1);
3430 so_data (so, p->cfg.regs[2]);
3431 so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3432 so_data (so, p->cfg.regs[3]);
3433 so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3434 so_data (so, 0); /* program start offset */
3435 so_ref(so, &nv50->state.fragprog);
3436 so_ref(NULL, &so);
3437 }
3438
3439 static void
3440 nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3441 {
3442 struct nv50_program *fp = nv50->fragprog;
3443 struct nv50_program *vp = nv50->vertprog;
3444 unsigned i, c, m = base;
3445
3446 /* XXX: this might not work correctly in all cases yet - we'll
3447 * just assume that an FP generic input that is not written in
3448 * the VP is PointCoord.
3449 */
3450 memset(pntc, 0, 8 * sizeof(uint32_t));
3451
3452 for (i = 0; i < fp->cfg.io_nr; i++) {
3453 uint8_t sn, si;
3454 uint8_t j, k = fp->cfg.io[i].id;
3455 unsigned n = popcnt4(fp->cfg.io[i].mask);
3456
3457 if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3458 m += n;
3459 continue;
3460 }
3461
3462 for (j = 0; j < vp->info.num_outputs; ++j) {
3463 sn = vp->info.output_semantic_name[j];
3464 si = vp->info.output_semantic_index[j];
3465
3466 if (sn == fp->info.input_semantic_name[k] &&
3467 si == fp->info.input_semantic_index[k])
3468 break;
3469 }
3470
3471 if (j < vp->info.num_outputs) {
3472 ubyte mode =
3473 nv50->rasterizer->pipe.sprite_coord_mode[si];
3474
3475 if (mode == PIPE_SPRITE_COORD_NONE) {
3476 m += n;
3477 continue;
3478 }
3479 }
3480
3481 /* this is either PointCoord or replaced by sprite coords */
3482 for (c = 0; c < 4; c++) {
3483 if (!(fp->cfg.io[i].mask & (1 << c)))
3484 continue;
3485 pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3486 ++m;
3487 }
3488 }
3489 }
3490
3491 static int
3492 nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3493 struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3494 {
3495 int c;
3496 uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3497 uint8_t *map = (uint8_t *)p_map;
3498
3499 for (c = 0; c < 4; ++c) {
3500 if (mf & 1) {
3501 if (fpi->linear == TRUE)
3502 lin[mid / 32] |= 1 << (mid % 32);
3503 map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3504 }
3505
3506 oid += mv & 1;
3507 mf >>= 1;
3508 mv >>= 1;
3509 }
3510
3511 return mid;
3512 }
3513
3514 void
3515 nv50_linkage_validate(struct nv50_context *nv50)
3516 {
3517 struct nouveau_grobj *tesla = nv50->screen->tesla;
3518 struct nv50_program *vp = nv50->vertprog;
3519 struct nv50_program *fp = nv50->fragprog;
3520 struct nouveau_stateobj *so;
3521 struct nv50_sreg4 dummy, *vpo;
3522 int i, n, c, m = 0;
3523 uint32_t map[16], lin[4], reg[5], pcrd[8];
3524
3525 memset(map, 0, sizeof(map));
3526 memset(lin, 0, sizeof(lin));
3527
3528 reg[1] = 0x00000004; /* low and high clip distance map ids */
3529 reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3530 reg[3] = 0x00000000; /* point size map id & enable */
3531 reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3532 reg[4] = fp->cfg.regs[1]; /* interpolant info */
3533
3534 dummy.linear = FALSE;
3535 dummy.mask = 0xf; /* map all components of HPOS */
3536 m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3537
3538 dummy.mask = 0x0;
3539
3540 if (vp->cfg.clpd < 0x40) {
3541 for (c = 0; c < vp->cfg.clpd_nr; ++c)
3542 map[m++] = vp->cfg.clpd + c;
3543 reg[1] = (m << 8);
3544 }
3545
3546 reg[0] |= m << 8; /* adjust BFC0 id */
3547
3548 /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3549 if (nv50->rasterizer->pipe.light_twoside) {
3550 vpo = &vp->cfg.two_side[0];
3551
3552 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3553 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3554 }
3555
3556 reg[0] += m - 4; /* adjust FFC0 id */
3557 reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3558
3559 for (i = 0; i < fp->cfg.io_nr; i++) {
3560 ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
3561 ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
3562
3563 /* position must be mapped first */
3564 assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
3565
3566 /* maybe even remove these from cfg.io */
3567 if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
3568 continue;
3569
3570 /* VP outputs and vp->cfg.io are in the same order */
3571 for (n = 0; n < vp->info.num_outputs; ++n) {
3572 if (vp->info.output_semantic_name[n] == sn &&
3573 vp->info.output_semantic_index[n] == si)
3574 break;
3575 }
3576 vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
3577
3578 m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3579 }
3580
3581 if (nv50->rasterizer->pipe.point_size_per_vertex) {
3582 map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3583 reg[3] = (m++ << 4) | 1;
3584 }
3585
3586 /* now fill the stateobj */
3587 so = so_new(64, 0);
3588
3589 n = (m + 3) / 4;
3590 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3591 so_data (so, m);
3592 so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3593 so_datap (so, map, n);
3594
3595 so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3596 so_datap (so, reg, 4);
3597
3598 so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3599 so_data (so, reg[4]);
3600
3601 so_method(so, tesla, 0x1540, 4);
3602 so_datap (so, lin, 4);
3603
3604 if (nv50->rasterizer->pipe.point_sprite) {
3605 nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3606
3607 so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3608 so_datap (so, pcrd, 8);
3609 }
3610
3611 so_ref(so, &nv50->state.programs);
3612 so_ref(NULL, &so);
3613 }
3614
3615 void
3616 nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3617 {
3618 while (p->exec_head) {
3619 struct nv50_program_exec *e = p->exec_head;
3620
3621 p->exec_head = e->next;
3622 FREE(e);
3623 }
3624 p->exec_tail = NULL;
3625 p->exec_size = 0;
3626
3627 nouveau_bo_ref(NULL, &p->bo);
3628
3629 nouveau_resource_free(&p->data[0]);
3630
3631 p->translated = 0;
3632 }