Merge remote branch 'origin/mesa_7_6_branch'
[mesa.git] / src / gallium / drivers / nv50 / nv50_program.c
1 /*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 #include "pipe/p_context.h"
24 #include "pipe/p_defines.h"
25 #include "pipe/p_state.h"
26 #include "pipe/p_inlines.h"
27
28 #include "pipe/p_shader_tokens.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_util.h"
31
32 #include "nv50_context.h"
33
34 #define NV50_SU_MAX_TEMP 127
35 #define NV50_SU_MAX_ADDR 4
36 //#define NV50_PROGRAM_DUMP
37
38 /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40 /* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * - Fuck it off, introduce a way to negate args for ops that
44 * support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * FP attr/result assignment - how?
61 * attrib
62 * - 0x16bc maps vp output onto fp hpos
63 * - 0x16c0 maps vp output onto fp col0
64 * result
65 * - colr always 0-3
66 * - depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * - 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * - XX == FP high something
78 */
79 struct nv50_reg {
80 enum {
81 P_TEMP,
82 P_ATTR,
83 P_RESULT,
84 P_CONST,
85 P_IMMD,
86 P_ADDR
87 } type;
88 int index;
89
90 int hw;
91 int neg;
92
93 int rhw; /* result hw for FP outputs, or interpolant index */
94 int acc; /* instruction where this reg is last read (first insn == 1) */
95 };
96
97 /* arbitrary limits */
98 #define MAX_IF_DEPTH 4
99 #define MAX_LOOP_DEPTH 4
100
101 struct nv50_pc {
102 struct nv50_program *p;
103
104 /* hw resources */
105 struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
106 struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
107
108 /* tgsi resources */
109 struct nv50_reg *temp;
110 int temp_nr;
111 struct nv50_reg *attr;
112 int attr_nr;
113 struct nv50_reg *result;
114 int result_nr;
115 struct nv50_reg *param;
116 int param_nr;
117 struct nv50_reg *immd;
118 float *immd_buf;
119 int immd_nr;
120 struct nv50_reg **addr;
121 int addr_nr;
122
123 struct nv50_reg *temp_temp[16];
124 unsigned temp_temp_nr;
125
126 /* broadcast and destination replacement regs */
127 struct nv50_reg *r_brdc;
128 struct nv50_reg *r_dst[4];
129
130 unsigned interp_mode[32];
131 /* perspective interpolation registers */
132 struct nv50_reg *iv_p;
133 struct nv50_reg *iv_c;
134
135 struct nv50_program_exec *if_cond;
136 struct nv50_program_exec *if_insn[MAX_IF_DEPTH];
137 struct nv50_program_exec *br_join[MAX_IF_DEPTH];
138 struct nv50_program_exec *br_loop[MAX_LOOP_DEPTH]; /* for BRK branch */
139 int if_lvl, loop_lvl;
140 unsigned loop_pos[MAX_LOOP_DEPTH];
141
142 /* current instruction and total number of insns */
143 unsigned insn_cur;
144 unsigned insn_nr;
145
146 boolean allow32;
147 };
148
149 static INLINE void
150 ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
151 {
152 reg->type = type;
153 reg->index = index;
154 reg->hw = hw;
155 reg->neg = 0;
156 reg->rhw = -1;
157 reg->acc = 0;
158 }
159
160 static INLINE unsigned
161 popcnt4(uint32_t val)
162 {
163 static const unsigned cnt[16]
164 = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
165 return cnt[val & 0xf];
166 }
167
168 static void
169 terminate_mbb(struct nv50_pc *pc)
170 {
171 int i;
172
173 /* remove records of temporary address register values */
174 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
175 if (pc->r_addr[i].index < 0)
176 pc->r_addr[i].rhw = -1;
177 }
178
179 static void
180 alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
181 {
182 int i = 0;
183
184 if (reg->type == P_RESULT) {
185 if (pc->p->cfg.high_result < (reg->hw + 1))
186 pc->p->cfg.high_result = reg->hw + 1;
187 }
188
189 if (reg->type != P_TEMP)
190 return;
191
192 if (reg->hw >= 0) {
193 /*XXX: do this here too to catch FP temp-as-attr usage..
194 * not clean, but works */
195 if (pc->p->cfg.high_temp < (reg->hw + 1))
196 pc->p->cfg.high_temp = reg->hw + 1;
197 return;
198 }
199
200 if (reg->rhw != -1) {
201 /* try to allocate temporary with index rhw first */
202 if (!(pc->r_temp[reg->rhw])) {
203 pc->r_temp[reg->rhw] = reg;
204 reg->hw = reg->rhw;
205 if (pc->p->cfg.high_temp < (reg->rhw + 1))
206 pc->p->cfg.high_temp = reg->rhw + 1;
207 return;
208 }
209 /* make sure we don't get things like $r0 needs to go
210 * in $r1 and $r1 in $r0
211 */
212 i = pc->result_nr * 4;
213 }
214
215 for (; i < NV50_SU_MAX_TEMP; i++) {
216 if (!(pc->r_temp[i])) {
217 pc->r_temp[i] = reg;
218 reg->hw = i;
219 if (pc->p->cfg.high_temp < (i + 1))
220 pc->p->cfg.high_temp = i + 1;
221 return;
222 }
223 }
224
225 assert(0);
226 }
227
228 /* XXX: For shaders that aren't executed linearly (e.g. shaders that
229 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
230 * lest we risk temp_temps overwriting regs alloc'd "later".
231 */
232 static struct nv50_reg *
233 alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
234 {
235 struct nv50_reg *r;
236 int i;
237
238 if (dst && dst->type == P_TEMP && dst->hw == -1)
239 return dst;
240
241 for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
242 if (!pc->r_temp[i]) {
243 r = MALLOC_STRUCT(nv50_reg);
244 ctor_reg(r, P_TEMP, -1, i);
245 pc->r_temp[i] = r;
246 return r;
247 }
248 }
249
250 assert(0);
251 return NULL;
252 }
253
254 /* Assign the hw of the discarded temporary register src
255 * to the tgsi register dst and free src.
256 */
257 static void
258 assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
259 {
260 assert(src->index == -1 && src->hw != -1);
261
262 if (dst->hw != -1)
263 pc->r_temp[dst->hw] = NULL;
264 pc->r_temp[src->hw] = dst;
265 dst->hw = src->hw;
266
267 FREE(src);
268 }
269
270 /* release the hardware resource held by r */
271 static void
272 release_hw(struct nv50_pc *pc, struct nv50_reg *r)
273 {
274 assert(r->type == P_TEMP);
275 if (r->hw == -1)
276 return;
277
278 assert(pc->r_temp[r->hw] == r);
279 pc->r_temp[r->hw] = NULL;
280
281 r->acc = 0;
282 if (r->index == -1)
283 FREE(r);
284 }
285
286 static void
287 free_temp(struct nv50_pc *pc, struct nv50_reg *r)
288 {
289 if (r->index == -1) {
290 unsigned hw = r->hw;
291
292 FREE(pc->r_temp[hw]);
293 pc->r_temp[hw] = NULL;
294 }
295 }
296
297 static int
298 alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
299 {
300 int i;
301
302 if ((idx + 4) >= NV50_SU_MAX_TEMP)
303 return 1;
304
305 if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
306 pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
307 return alloc_temp4(pc, dst, idx + 4);
308
309 for (i = 0; i < 4; i++) {
310 dst[i] = MALLOC_STRUCT(nv50_reg);
311 ctor_reg(dst[i], P_TEMP, -1, idx + i);
312 pc->r_temp[idx + i] = dst[i];
313 }
314
315 return 0;
316 }
317
318 static void
319 free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
320 {
321 int i;
322
323 for (i = 0; i < 4; i++)
324 free_temp(pc, reg[i]);
325 }
326
327 static struct nv50_reg *
328 temp_temp(struct nv50_pc *pc)
329 {
330 if (pc->temp_temp_nr >= 16)
331 assert(0);
332
333 pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
334 return pc->temp_temp[pc->temp_temp_nr++];
335 }
336
337 static void
338 kill_temp_temp(struct nv50_pc *pc)
339 {
340 int i;
341
342 for (i = 0; i < pc->temp_temp_nr; i++)
343 free_temp(pc, pc->temp_temp[i]);
344 pc->temp_temp_nr = 0;
345 }
346
347 static int
348 ctor_immd(struct nv50_pc *pc, float x, float y, float z, float w)
349 {
350 pc->immd_buf = REALLOC(pc->immd_buf, (pc->immd_nr * 4 * sizeof(float)),
351 (pc->immd_nr + 1) * 4 * sizeof(float));
352 pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
353 pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
354 pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
355 pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
356
357 return pc->immd_nr++;
358 }
359
360 static struct nv50_reg *
361 alloc_immd(struct nv50_pc *pc, float f)
362 {
363 struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
364 unsigned hw;
365
366 for (hw = 0; hw < pc->immd_nr * 4; hw++)
367 if (pc->immd_buf[hw] == f)
368 break;
369
370 if (hw == pc->immd_nr * 4)
371 hw = ctor_immd(pc, f, -f, 0.5 * f, 0) * 4;
372
373 ctor_reg(r, P_IMMD, -1, hw);
374 return r;
375 }
376
377 static struct nv50_program_exec *
378 exec(struct nv50_pc *pc)
379 {
380 struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
381
382 e->param.index = -1;
383 return e;
384 }
385
386 static void
387 emit(struct nv50_pc *pc, struct nv50_program_exec *e)
388 {
389 struct nv50_program *p = pc->p;
390
391 if (p->exec_tail)
392 p->exec_tail->next = e;
393 if (!p->exec_head)
394 p->exec_head = e;
395 p->exec_tail = e;
396 p->exec_size += (e->inst[0] & 1) ? 2 : 1;
397 }
398
399 static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
400
401 static boolean
402 is_long(struct nv50_program_exec *e)
403 {
404 if (e->inst[0] & 1)
405 return TRUE;
406 return FALSE;
407 }
408
409 static boolean
410 is_immd(struct nv50_program_exec *e)
411 {
412 if (is_long(e) && (e->inst[1] & 3) == 3)
413 return TRUE;
414 return FALSE;
415 }
416
417 static INLINE void
418 set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
419 struct nv50_program_exec *e)
420 {
421 set_long(pc, e);
422 e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
423 e->inst[1] |= (pred << 7) | (idx << 12);
424 }
425
426 static INLINE void
427 set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
428 struct nv50_program_exec *e)
429 {
430 set_long(pc, e);
431 e->inst[1] &= ~((0x3 << 4) | (1 << 6));
432 e->inst[1] |= (idx << 4) | (on << 6);
433 }
434
435 static INLINE void
436 set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
437 {
438 if (is_long(e))
439 return;
440
441 e->inst[0] |= 1;
442 set_pred(pc, 0xf, 0, e);
443 set_pred_wr(pc, 0, 0, e);
444 }
445
446 static INLINE void
447 set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
448 {
449 if (dst->type == P_RESULT) {
450 set_long(pc, e);
451 e->inst[1] |= 0x00000008;
452 }
453
454 alloc_reg(pc, dst);
455 if (dst->hw > 63)
456 set_long(pc, e);
457 e->inst[0] |= (dst->hw << 2);
458 }
459
460 static INLINE void
461 set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
462 {
463 float f = pc->immd_buf[imm->hw];
464 unsigned val = fui(imm->neg ? -f : f);
465
466 set_long(pc, e);
467 /*XXX: can't be predicated - bits overlap.. catch cases where both
468 * are required and avoid them. */
469 set_pred(pc, 0, 0, e);
470 set_pred_wr(pc, 0, 0, e);
471
472 e->inst[1] |= 0x00000002 | 0x00000001;
473 e->inst[0] |= (val & 0x3f) << 16;
474 e->inst[1] |= (val >> 6) << 2;
475 }
476
477 static INLINE void
478 set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
479 {
480 assert(!(e->inst[0] & 0x0c000000));
481 assert(!(e->inst[1] & 0x00000004));
482
483 e->inst[0] |= (a->hw & 3) << 26;
484 e->inst[1] |= (a->hw >> 2) << 2;
485 }
486
487 static void
488 emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
489 struct nv50_reg *src0, uint16_t src1_val)
490 {
491 struct nv50_program_exec *e = exec(pc);
492
493 e->inst[0] = 0xd0000000 | (src1_val << 9);
494 e->inst[1] = 0x20000000;
495 set_long(pc, e);
496 e->inst[0] |= dst->hw << 2;
497 if (src0) /* otherwise will add to $a0, which is always 0 */
498 set_addr(e, src0);
499
500 emit(pc, e);
501 }
502
503 static struct nv50_reg *
504 alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
505 {
506 int i;
507 struct nv50_reg *a_tgsi = NULL, *a = NULL;
508
509 if (!ref) {
510 /* allocate for TGSI address reg */
511 for (i = 0; i < NV50_SU_MAX_ADDR; ++i) {
512 if (pc->r_addr[i].index >= 0)
513 continue;
514 if (pc->r_addr[i].rhw >= 0 &&
515 pc->r_addr[i].acc == pc->insn_cur)
516 continue;
517
518 pc->r_addr[i].rhw = -1;
519 pc->r_addr[i].index = i;
520 return &pc->r_addr[i];
521 }
522 assert(0);
523 return NULL;
524 }
525
526 /* Allocate and set an address reg so we can access 'ref'.
527 *
528 * If and r_addr has index < 0, it is not reserved for TGSI,
529 * and index will be the negative of the TGSI addr index the
530 * value in rhw is relative to, or -256 if rhw is an offset
531 * from 0. If rhw < 0, the reg has not been initialized.
532 */
533 for (i = NV50_SU_MAX_ADDR - 1; i >= 0; --i) {
534 if (pc->r_addr[i].index >= 0) /* occupied for TGSI */
535 continue;
536 if (pc->r_addr[i].rhw < 0) { /* unused */
537 a = &pc->r_addr[i];
538 continue;
539 }
540 if (!a && pc->r_addr[i].acc != pc->insn_cur)
541 a = &pc->r_addr[i];
542
543 if (ref->hw - pc->r_addr[i].rhw >= 128)
544 continue;
545
546 if ((ref->acc >= 0 && pc->r_addr[i].index == -256) ||
547 (ref->acc < 0 && -pc->r_addr[i].index == ref->index)) {
548 pc->r_addr[i].acc = pc->insn_cur;
549 return &pc->r_addr[i];
550 }
551 }
552 assert(a);
553
554 if (ref->acc < 0)
555 a_tgsi = pc->addr[ref->index];
556
557 emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
558
559 a->rhw = ref->hw & ~0x7f;
560 a->acc = pc->insn_cur;
561 a->index = a_tgsi ? -ref->index : -256;
562 return a;
563 }
564
565 #define INTERP_LINEAR 0
566 #define INTERP_FLAT 1
567 #define INTERP_PERSPECTIVE 2
568 #define INTERP_CENTROID 4
569
570 /* interpolant index has been stored in dst->rhw */
571 static void
572 emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
573 unsigned mode)
574 {
575 assert(dst->rhw != -1);
576 struct nv50_program_exec *e = exec(pc);
577
578 e->inst[0] |= 0x80000000;
579 set_dst(pc, dst, e);
580 e->inst[0] |= (dst->rhw << 16);
581
582 if (mode & INTERP_FLAT) {
583 e->inst[0] |= (1 << 8);
584 } else {
585 if (mode & INTERP_PERSPECTIVE) {
586 e->inst[0] |= (1 << 25);
587 alloc_reg(pc, iv);
588 e->inst[0] |= (iv->hw << 9);
589 }
590
591 if (mode & INTERP_CENTROID)
592 e->inst[0] |= (1 << 24);
593 }
594
595 emit(pc, e);
596 }
597
598 static void
599 set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
600 struct nv50_program_exec *e)
601 {
602 set_long(pc, e);
603
604 e->param.index = src->hw & 127;
605 e->param.shift = s;
606 e->param.mask = m << (s % 32);
607
608 if (src->hw > 127)
609 set_addr(e, alloc_addr(pc, src));
610 else
611 if (src->acc < 0) {
612 assert(src->type == P_CONST);
613 set_addr(e, pc->addr[src->index]);
614 }
615
616 e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
617 }
618
619 static void
620 emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
621 {
622 struct nv50_program_exec *e = exec(pc);
623
624 e->inst[0] = 0x10000000;
625 if (!pc->allow32)
626 set_long(pc, e);
627
628 set_dst(pc, dst, e);
629
630 if (!is_long(e) && src->type == P_IMMD) {
631 set_immd(pc, src, e);
632 /*XXX: 32-bit, but steals part of "half" reg space - need to
633 * catch and handle this case if/when we do half-regs
634 */
635 } else
636 if (src->type == P_IMMD || src->type == P_CONST) {
637 set_long(pc, e);
638 set_data(pc, src, 0x7f, 9, e);
639 e->inst[1] |= 0x20000000; /* src0 const? */
640 } else {
641 if (src->type == P_ATTR) {
642 set_long(pc, e);
643 e->inst[1] |= 0x00200000;
644 }
645
646 alloc_reg(pc, src);
647 if (src->hw > 63)
648 set_long(pc, e);
649 e->inst[0] |= (src->hw << 9);
650 }
651
652 if (is_long(e) && !is_immd(e)) {
653 e->inst[1] |= 0x04000000; /* 32-bit */
654 e->inst[1] |= 0x0000c000; /* "subsubop" 0x3 */
655 if (!(e->inst[1] & 0x20000000))
656 e->inst[1] |= 0x00030000; /* "subsubop" 0xf */
657 } else
658 e->inst[0] |= 0x00008000;
659
660 emit(pc, e);
661 }
662
663 static INLINE void
664 emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
665 {
666 struct nv50_reg *imm = alloc_immd(pc, f);
667 emit_mov(pc, dst, imm);
668 FREE(imm);
669 }
670
671 static boolean
672 check_swap_src_0_1(struct nv50_pc *pc,
673 struct nv50_reg **s0, struct nv50_reg **s1)
674 {
675 struct nv50_reg *src0 = *s0, *src1 = *s1;
676
677 if (src0->type == P_CONST) {
678 if (src1->type != P_CONST) {
679 *s0 = src1;
680 *s1 = src0;
681 return TRUE;
682 }
683 } else
684 if (src1->type == P_ATTR) {
685 if (src0->type != P_ATTR) {
686 *s0 = src1;
687 *s1 = src0;
688 return TRUE;
689 }
690 }
691
692 return FALSE;
693 }
694
695 static void
696 set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
697 struct nv50_program_exec *e)
698 {
699 struct nv50_reg *temp;
700
701 if (src->type != P_TEMP) {
702 temp = temp_temp(pc);
703 emit_mov(pc, temp, src);
704 src = temp;
705 }
706
707 alloc_reg(pc, src);
708 if (src->hw > 63)
709 set_long(pc, e);
710 e->inst[0] |= (src->hw << 9);
711 }
712
713 static void
714 set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
715 {
716 if (src->type == P_ATTR) {
717 set_long(pc, e);
718 e->inst[1] |= 0x00200000;
719 } else
720 if (src->type == P_CONST || src->type == P_IMMD) {
721 struct nv50_reg *temp = temp_temp(pc);
722
723 emit_mov(pc, temp, src);
724 src = temp;
725 }
726
727 alloc_reg(pc, src);
728 if (src->hw > 63)
729 set_long(pc, e);
730 e->inst[0] |= (src->hw << 9);
731 }
732
733 static void
734 set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
735 {
736 if (src->type == P_ATTR) {
737 struct nv50_reg *temp = temp_temp(pc);
738
739 emit_mov(pc, temp, src);
740 src = temp;
741 } else
742 if (src->type == P_CONST || src->type == P_IMMD) {
743 assert(!(e->inst[0] & 0x00800000));
744 if (e->inst[0] & 0x01000000) {
745 struct nv50_reg *temp = temp_temp(pc);
746
747 emit_mov(pc, temp, src);
748 src = temp;
749 } else {
750 set_data(pc, src, 0x7f, 16, e);
751 e->inst[0] |= 0x00800000;
752 }
753 }
754
755 alloc_reg(pc, src);
756 if (src->hw > 63)
757 set_long(pc, e);
758 e->inst[0] |= ((src->hw & 127) << 16);
759 }
760
761 static void
762 set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
763 {
764 set_long(pc, e);
765
766 if (src->type == P_ATTR) {
767 struct nv50_reg *temp = temp_temp(pc);
768
769 emit_mov(pc, temp, src);
770 src = temp;
771 } else
772 if (src->type == P_CONST || src->type == P_IMMD) {
773 assert(!(e->inst[0] & 0x01000000));
774 if (e->inst[0] & 0x00800000) {
775 struct nv50_reg *temp = temp_temp(pc);
776
777 emit_mov(pc, temp, src);
778 src = temp;
779 } else {
780 set_data(pc, src, 0x7f, 32+14, e);
781 e->inst[0] |= 0x01000000;
782 }
783 }
784
785 alloc_reg(pc, src);
786 e->inst[1] |= ((src->hw & 127) << 14);
787 }
788
789 static void
790 emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
791 struct nv50_reg *src1)
792 {
793 struct nv50_program_exec *e = exec(pc);
794
795 e->inst[0] |= 0xc0000000;
796
797 if (!pc->allow32)
798 set_long(pc, e);
799
800 check_swap_src_0_1(pc, &src0, &src1);
801 set_dst(pc, dst, e);
802 set_src_0(pc, src0, e);
803 if (src1->type == P_IMMD && !is_long(e)) {
804 if (src0->neg)
805 e->inst[0] |= 0x00008000;
806 set_immd(pc, src1, e);
807 } else {
808 set_src_1(pc, src1, e);
809 if (src0->neg ^ src1->neg) {
810 if (is_long(e))
811 e->inst[1] |= 0x08000000;
812 else
813 e->inst[0] |= 0x00008000;
814 }
815 }
816
817 emit(pc, e);
818 }
819
820 static void
821 emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
822 struct nv50_reg *src0, struct nv50_reg *src1)
823 {
824 struct nv50_program_exec *e = exec(pc);
825
826 e->inst[0] = 0xb0000000;
827
828 alloc_reg(pc, src1);
829 check_swap_src_0_1(pc, &src0, &src1);
830
831 if (!pc->allow32 || (src0->neg | src1->neg) || src1->hw > 63) {
832 set_long(pc, e);
833 e->inst[1] |= (src0->neg << 26) | (src1->neg << 27);
834 }
835
836 set_dst(pc, dst, e);
837 set_src_0(pc, src0, e);
838 if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
839 set_src_2(pc, src1, e);
840 else
841 if (src1->type == P_IMMD)
842 set_immd(pc, src1, e);
843 else
844 set_src_1(pc, src1, e);
845
846 emit(pc, e);
847 }
848
849 static void
850 emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
851 uint8_t s)
852 {
853 struct nv50_program_exec *e = exec(pc);
854
855 set_long(pc, e);
856 e->inst[1] |= 0xc0000000;
857
858 e->inst[0] |= dst->hw << 2;
859 e->inst[0] |= s << 16; /* shift left */
860 set_src_0_restricted(pc, src, e);
861
862 emit(pc, e);
863 }
864
865 static void
866 emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
867 struct nv50_reg *src0, struct nv50_reg *src1)
868 {
869 struct nv50_program_exec *e = exec(pc);
870
871 set_long(pc, e);
872 e->inst[0] |= 0xb0000000;
873 e->inst[1] |= (sub << 29);
874
875 check_swap_src_0_1(pc, &src0, &src1);
876 set_dst(pc, dst, e);
877 set_src_0(pc, src0, e);
878 set_src_1(pc, src1, e);
879
880 emit(pc, e);
881 }
882
883 static INLINE void
884 emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
885 struct nv50_reg *src1)
886 {
887 assert(src0 != src1);
888 src1->neg ^= 1;
889 emit_add(pc, dst, src0, src1);
890 src1->neg ^= 1;
891 }
892
893 static void
894 emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
895 struct nv50_reg *src1, struct nv50_reg *src2)
896 {
897 struct nv50_program_exec *e = exec(pc);
898
899 e->inst[0] |= 0xe0000000;
900
901 check_swap_src_0_1(pc, &src0, &src1);
902 set_dst(pc, dst, e);
903 set_src_0(pc, src0, e);
904 set_src_1(pc, src1, e);
905 set_src_2(pc, src2, e);
906
907 if (src0->neg ^ src1->neg)
908 e->inst[1] |= 0x04000000;
909 if (src2->neg)
910 e->inst[1] |= 0x08000000;
911
912 emit(pc, e);
913 }
914
915 static INLINE void
916 emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
917 struct nv50_reg *src1, struct nv50_reg *src2)
918 {
919 assert(src2 != src0 && src2 != src1);
920 src2->neg ^= 1;
921 emit_mad(pc, dst, src0, src1, src2);
922 src2->neg ^= 1;
923 }
924
925 static void
926 emit_flop(struct nv50_pc *pc, unsigned sub,
927 struct nv50_reg *dst, struct nv50_reg *src)
928 {
929 struct nv50_program_exec *e = exec(pc);
930
931 e->inst[0] |= 0x90000000;
932 if (sub) {
933 set_long(pc, e);
934 e->inst[1] |= (sub << 29);
935 }
936
937 set_dst(pc, dst, e);
938
939 if (sub == 0 || sub == 2)
940 set_src_0_restricted(pc, src, e);
941 else
942 set_src_0(pc, src, e);
943
944 emit(pc, e);
945 }
946
947 static void
948 emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
949 {
950 struct nv50_program_exec *e = exec(pc);
951
952 e->inst[0] |= 0xb0000000;
953
954 set_dst(pc, dst, e);
955 set_src_0(pc, src, e);
956 set_long(pc, e);
957 e->inst[1] |= (6 << 29) | 0x00004000;
958
959 emit(pc, e);
960 }
961
962 static void
963 emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
964 {
965 struct nv50_program_exec *e = exec(pc);
966
967 e->inst[0] |= 0xb0000000;
968
969 set_dst(pc, dst, e);
970 set_src_0(pc, src, e);
971 set_long(pc, e);
972 e->inst[1] |= (6 << 29);
973
974 emit(pc, e);
975 }
976
977 #define CVTOP_RN 0x01
978 #define CVTOP_FLOOR 0x03
979 #define CVTOP_CEIL 0x05
980 #define CVTOP_TRUNC 0x07
981 #define CVTOP_SAT 0x08
982 #define CVTOP_ABS 0x10
983
984 /* 0x04 == 32 bit dst */
985 /* 0x40 == dst is float */
986 /* 0x80 == src is float */
987 #define CVT_F32_F32 0xc4
988 #define CVT_F32_S32 0x44
989 #define CVT_S32_F32 0x8c
990 #define CVT_S32_S32 0x0c
991 #define CVT_NEG 0x20
992 #define CVT_RI 0x08
993
994 static void
995 emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
996 int wp, unsigned cvn, unsigned fmt)
997 {
998 struct nv50_program_exec *e;
999
1000 e = exec(pc);
1001 set_long(pc, e);
1002
1003 e->inst[0] |= 0xa0000000;
1004 e->inst[1] |= 0x00004000; /* 32 bit src */
1005 e->inst[1] |= (cvn << 16);
1006 e->inst[1] |= (fmt << 24);
1007 set_src_0(pc, src, e);
1008
1009 if (wp >= 0)
1010 set_pred_wr(pc, 1, wp, e);
1011
1012 if (dst)
1013 set_dst(pc, dst, e);
1014 else {
1015 e->inst[0] |= 0x000001fc;
1016 e->inst[1] |= 0x00000008;
1017 }
1018
1019 emit(pc, e);
1020 }
1021
1022 /* nv50 Condition codes:
1023 * 0x1 = LT
1024 * 0x2 = EQ
1025 * 0x3 = LE
1026 * 0x4 = GT
1027 * 0x5 = NE
1028 * 0x6 = GE
1029 * 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1030 * 0x8 = unordered bit (allows NaN)
1031 */
1032 static void
1033 emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1034 struct nv50_reg *src0, struct nv50_reg *src1)
1035 {
1036 static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1037
1038 struct nv50_program_exec *e = exec(pc);
1039 struct nv50_reg *rdst;
1040
1041 assert(ccode < 16);
1042 if (check_swap_src_0_1(pc, &src0, &src1))
1043 ccode = cc_swapped[ccode & 7] | (ccode & 8);
1044
1045 rdst = dst;
1046 if (dst && dst->type != P_TEMP)
1047 dst = alloc_temp(pc, NULL);
1048
1049 /* set.u32 */
1050 set_long(pc, e);
1051 e->inst[0] |= 0xb0000000;
1052 e->inst[1] |= 0x60000000 | (ccode << 14);
1053
1054 /* XXX: decuda will disasm as .u16 and use .lo/.hi regs, but
1055 * that doesn't seem to match what the hw actually does
1056 e->inst[1] |= 0x04000000; << breaks things, u32 by default ?
1057 */
1058
1059 if (wp >= 0)
1060 set_pred_wr(pc, 1, wp, e);
1061 if (dst)
1062 set_dst(pc, dst, e);
1063 else {
1064 e->inst[0] |= 0x000001fc;
1065 e->inst[1] |= 0x00000008;
1066 }
1067
1068 set_src_0(pc, src0, e);
1069 set_src_1(pc, src1, e);
1070
1071 emit(pc, e);
1072 pc->if_cond = pc->p->exec_tail; /* record for OPCODE_IF */
1073
1074 /* cvt.f32.u32/s32 (?) if we didn't only write the predicate */
1075 if (rdst)
1076 emit_cvt(pc, rdst, dst, -1, CVTOP_ABS | CVTOP_RN, CVT_F32_S32);
1077 if (rdst && rdst != dst)
1078 free_temp(pc, dst);
1079 }
1080
1081 static INLINE unsigned
1082 map_tgsi_setop_cc(unsigned op)
1083 {
1084 switch (op) {
1085 case TGSI_OPCODE_SLT: return 0x1;
1086 case TGSI_OPCODE_SGE: return 0x6;
1087 case TGSI_OPCODE_SEQ: return 0x2;
1088 case TGSI_OPCODE_SGT: return 0x4;
1089 case TGSI_OPCODE_SLE: return 0x3;
1090 case TGSI_OPCODE_SNE: return 0xd;
1091 default:
1092 assert(0);
1093 return 0;
1094 }
1095 }
1096
1097 static INLINE void
1098 emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1099 {
1100 emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32 | CVT_RI);
1101 }
1102
1103 static void
1104 emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1105 struct nv50_reg *v, struct nv50_reg *e)
1106 {
1107 struct nv50_reg *temp = alloc_temp(pc, NULL);
1108
1109 emit_flop(pc, 3, temp, v);
1110 emit_mul(pc, temp, temp, e);
1111 emit_preex2(pc, temp, temp);
1112 emit_flop(pc, 6, dst, temp);
1113
1114 free_temp(pc, temp);
1115 }
1116
1117 static INLINE void
1118 emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1119 {
1120 emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32);
1121 }
1122
1123 static INLINE void
1124 emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1125 {
1126 emit_cvt(pc, dst, src, -1, CVTOP_SAT, CVT_F32_F32);
1127 }
1128
1129 static void
1130 emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1131 struct nv50_reg **src)
1132 {
1133 struct nv50_reg *one = alloc_immd(pc, 1.0);
1134 struct nv50_reg *zero = alloc_immd(pc, 0.0);
1135 struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1136 struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
1137 struct nv50_reg *tmp[4];
1138 boolean allow32 = pc->allow32;
1139
1140 pc->allow32 = FALSE;
1141
1142 if (mask & (3 << 1)) {
1143 tmp[0] = alloc_temp(pc, NULL);
1144 emit_minmax(pc, 4, tmp[0], src[0], zero);
1145 }
1146
1147 if (mask & (1 << 2)) {
1148 set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1149
1150 tmp[1] = temp_temp(pc);
1151 emit_minmax(pc, 4, tmp[1], src[1], zero);
1152
1153 tmp[3] = temp_temp(pc);
1154 emit_minmax(pc, 4, tmp[3], src[3], neg128);
1155 emit_minmax(pc, 5, tmp[3], tmp[3], pos128);
1156
1157 emit_pow(pc, dst[2], tmp[1], tmp[3]);
1158 emit_mov(pc, dst[2], zero);
1159 set_pred(pc, 3, 0, pc->p->exec_tail);
1160 }
1161
1162 if (mask & (1 << 1))
1163 assimilate_temp(pc, dst[1], tmp[0]);
1164 else
1165 if (mask & (1 << 2))
1166 free_temp(pc, tmp[0]);
1167
1168 pc->allow32 = allow32;
1169
1170 /* do this last, in case src[i,j] == dst[0,3] */
1171 if (mask & (1 << 0))
1172 emit_mov(pc, dst[0], one);
1173
1174 if (mask & (1 << 3))
1175 emit_mov(pc, dst[3], one);
1176
1177 FREE(pos128);
1178 FREE(neg128);
1179 FREE(zero);
1180 FREE(one);
1181 }
1182
1183 static INLINE void
1184 emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1185 {
1186 emit_cvt(pc, dst, src, -1, CVTOP_RN, CVT_F32_F32 | CVT_NEG);
1187 }
1188
1189 static void
1190 emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1191 {
1192 struct nv50_program_exec *e;
1193 const int r_pred = 1;
1194 unsigned cvn = CVT_F32_F32;
1195
1196 if (src->neg)
1197 cvn |= CVT_NEG;
1198 /* write predicate reg */
1199 emit_cvt(pc, NULL, src, r_pred, CVTOP_RN, cvn);
1200
1201 /* conditional discard */
1202 e = exec(pc);
1203 e->inst[0] = 0x00000002;
1204 set_long(pc, e);
1205 set_pred(pc, 0x1 /* LT */, r_pred, e);
1206 emit(pc, e);
1207 }
1208
1209 static void
1210 emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1211 struct nv50_reg **src, unsigned unit, unsigned type, boolean proj)
1212 {
1213 struct nv50_reg *temp, *t[4];
1214 struct nv50_program_exec *e;
1215
1216 unsigned c, mode, dim;
1217
1218 switch (type) {
1219 case TGSI_TEXTURE_1D:
1220 dim = 1;
1221 break;
1222 case TGSI_TEXTURE_UNKNOWN:
1223 case TGSI_TEXTURE_2D:
1224 case TGSI_TEXTURE_SHADOW1D: /* XXX: x, z */
1225 case TGSI_TEXTURE_RECT:
1226 dim = 2;
1227 break;
1228 case TGSI_TEXTURE_3D:
1229 case TGSI_TEXTURE_CUBE:
1230 case TGSI_TEXTURE_SHADOW2D:
1231 case TGSI_TEXTURE_SHADOWRECT: /* XXX */
1232 dim = 3;
1233 break;
1234 default:
1235 assert(0);
1236 break;
1237 }
1238
1239 /* some cards need t[0]'s hw index to be a multiple of 4 */
1240 alloc_temp4(pc, t, 0);
1241
1242 if (proj) {
1243 if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1244 mode = pc->interp_mode[src[0]->index];
1245
1246 t[3]->rhw = src[3]->rhw;
1247 emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1248 emit_flop(pc, 0, t[3], t[3]);
1249
1250 for (c = 0; c < dim; c++) {
1251 t[c]->rhw = src[c]->rhw;
1252 emit_interp(pc, t[c], t[3],
1253 (mode | INTERP_PERSPECTIVE));
1254 }
1255 } else {
1256 emit_flop(pc, 0, t[3], src[3]);
1257 for (c = 0; c < dim; c++)
1258 emit_mul(pc, t[c], src[c], t[3]);
1259
1260 /* XXX: for some reason the blob sometimes uses MAD:
1261 * emit_mad(pc, t[c], src[0][c], t[3], t[3])
1262 * pc->p->exec_tail->inst[1] |= 0x080fc000;
1263 */
1264 }
1265 } else {
1266 if (type == TGSI_TEXTURE_CUBE) {
1267 temp = temp_temp(pc);
1268 emit_minmax(pc, 4, temp, src[0], src[1]);
1269 emit_minmax(pc, 4, temp, temp, src[2]);
1270 emit_flop(pc, 0, temp, temp);
1271 for (c = 0; c < 3; c++)
1272 emit_mul(pc, t[c], src[c], temp);
1273 } else {
1274 for (c = 0; c < dim; c++)
1275 emit_mov(pc, t[c], src[c]);
1276 }
1277 }
1278
1279 e = exec(pc);
1280 set_long(pc, e);
1281 e->inst[0] |= 0xf0000000;
1282 e->inst[1] |= 0x00000004;
1283 set_dst(pc, t[0], e);
1284 e->inst[0] |= (unit << 9);
1285
1286 if (dim == 2)
1287 e->inst[0] |= 0x00400000;
1288 else
1289 if (dim == 3)
1290 e->inst[0] |= 0x00800000;
1291
1292 e->inst[0] |= (mask & 0x3) << 25;
1293 e->inst[1] |= (mask & 0xc) << 12;
1294
1295 emit(pc, e);
1296
1297 #if 1
1298 c = 0;
1299 if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1300 if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1301 if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1302 if (mask & 8) emit_mov(pc, dst[3], t[c]);
1303
1304 free_temp4(pc, t);
1305 #else
1306 /* XXX: if p.e. MUL is used directly after TEX, it would still use
1307 * the texture coordinates, not the fetched values: latency ? */
1308
1309 for (c = 0; c < 4; c++) {
1310 if (mask & (1 << c))
1311 assimilate_temp(pc, dst[c], t[c]);
1312 else
1313 free_temp(pc, t[c]);
1314 }
1315 #endif
1316 }
1317
1318 static void
1319 emit_branch(struct nv50_pc *pc, int pred, unsigned cc,
1320 struct nv50_program_exec **join)
1321 {
1322 struct nv50_program_exec *e = exec(pc);
1323
1324 if (join) {
1325 set_long(pc, e);
1326 e->inst[0] |= 0xa0000002;
1327 emit(pc, e);
1328 *join = e;
1329 e = exec(pc);
1330 }
1331
1332 set_long(pc, e);
1333 e->inst[0] |= 0x10000002;
1334 if (pred >= 0)
1335 set_pred(pc, cc, pred, e);
1336 emit(pc, e);
1337 }
1338
1339 static void
1340 emit_nop(struct nv50_pc *pc)
1341 {
1342 struct nv50_program_exec *e = exec(pc);
1343
1344 e->inst[0] = 0xf0000000;
1345 set_long(pc, e);
1346 e->inst[1] = 0xe0000000;
1347 emit(pc, e);
1348 }
1349
1350 static void
1351 emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1352 {
1353 struct nv50_program_exec *e = exec(pc);
1354
1355 assert(src->type == P_TEMP);
1356
1357 e->inst[0] = 0xc0140000;
1358 e->inst[1] = 0x89800000;
1359 set_long(pc, e);
1360 set_dst(pc, dst, e);
1361 set_src_0(pc, src, e);
1362 set_src_2(pc, src, e);
1363
1364 emit(pc, e);
1365 }
1366
1367 static void
1368 emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1369 {
1370 struct nv50_program_exec *e = exec(pc);
1371
1372 assert(src->type == P_TEMP);
1373
1374 if (!src->neg) /* ! double negation */
1375 emit_neg(pc, src, src);
1376
1377 e->inst[0] = 0xc0150000;
1378 e->inst[1] = 0x8a400000;
1379 set_long(pc, e);
1380 set_dst(pc, dst, e);
1381 set_src_0(pc, src, e);
1382 set_src_2(pc, src, e);
1383
1384 emit(pc, e);
1385 }
1386
1387 static void
1388 convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1389 {
1390 unsigned q = 0, m = ~0;
1391
1392 assert(!is_long(e));
1393
1394 switch (e->inst[0] >> 28) {
1395 case 0x1:
1396 /* MOV */
1397 q = 0x0403c000;
1398 m = 0xffff7fff;
1399 break;
1400 case 0x8:
1401 /* INTERP (move centroid, perspective and flat bits) */
1402 m = ~0x03000100;
1403 q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1404 q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1405 break;
1406 case 0x9:
1407 /* RCP */
1408 break;
1409 case 0xB:
1410 /* ADD */
1411 m = ~(127 << 16);
1412 q = ((e->inst[0] & (~m)) >> 2);
1413 break;
1414 case 0xC:
1415 /* MUL */
1416 m = ~0x00008000;
1417 q = ((e->inst[0] & (~m)) << 12);
1418 break;
1419 case 0xE:
1420 /* MAD (if src2 == dst) */
1421 q = ((e->inst[0] & 0x1fc) << 12);
1422 break;
1423 default:
1424 assert(0);
1425 break;
1426 }
1427
1428 set_long(pc, e);
1429 pc->p->exec_size++;
1430
1431 e->inst[0] &= m;
1432 e->inst[1] |= q;
1433 }
1434
1435 /* Some operations support an optional negation flag. */
1436 static boolean
1437 negate_supported(const struct tgsi_full_instruction *insn, int i)
1438 {
1439 int s;
1440
1441 switch (insn->Instruction.Opcode) {
1442 case TGSI_OPCODE_DDY:
1443 case TGSI_OPCODE_DP3:
1444 case TGSI_OPCODE_DP4:
1445 case TGSI_OPCODE_MUL:
1446 case TGSI_OPCODE_KIL:
1447 case TGSI_OPCODE_ADD:
1448 case TGSI_OPCODE_SUB:
1449 case TGSI_OPCODE_MAD:
1450 break;
1451 case TGSI_OPCODE_POW:
1452 if (i == 1)
1453 break;
1454 return FALSE;
1455 default:
1456 return FALSE;
1457 }
1458
1459 /* Watch out for possible multiple uses of an nv50_reg, we
1460 * can't use nv50_reg::neg in these cases.
1461 */
1462 for (s = 0; s < insn->Instruction.NumSrcRegs; ++s) {
1463 if (s == i)
1464 continue;
1465 if ((insn->FullSrcRegisters[s].SrcRegister.Index ==
1466 insn->FullSrcRegisters[i].SrcRegister.Index) &&
1467 (insn->FullSrcRegisters[s].SrcRegister.File ==
1468 insn->FullSrcRegisters[i].SrcRegister.File))
1469 return FALSE;
1470 }
1471
1472 return TRUE;
1473 }
1474
1475 /* Return a read mask for source registers deduced from opcode & write mask. */
1476 static unsigned
1477 nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1478 {
1479 unsigned x, mask = insn->FullDstRegisters[0].DstRegister.WriteMask;
1480
1481 switch (insn->Instruction.Opcode) {
1482 case TGSI_OPCODE_COS:
1483 case TGSI_OPCODE_SIN:
1484 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1485 case TGSI_OPCODE_DP3:
1486 return 0x7;
1487 case TGSI_OPCODE_DP4:
1488 case TGSI_OPCODE_DPH:
1489 case TGSI_OPCODE_KIL: /* WriteMask ignored */
1490 return 0xf;
1491 case TGSI_OPCODE_DST:
1492 return mask & (c ? 0xa : 0x6);
1493 case TGSI_OPCODE_EX2:
1494 case TGSI_OPCODE_LG2:
1495 case TGSI_OPCODE_POW:
1496 case TGSI_OPCODE_RCP:
1497 case TGSI_OPCODE_RSQ:
1498 case TGSI_OPCODE_SCS:
1499 return 0x1;
1500 case TGSI_OPCODE_LIT:
1501 return 0xb;
1502 case TGSI_OPCODE_TEX:
1503 case TGSI_OPCODE_TXP:
1504 {
1505 const struct tgsi_instruction_ext_texture *tex;
1506
1507 assert(insn->Instruction.Extended);
1508 tex = &insn->InstructionExtTexture;
1509
1510 mask = 0x7;
1511 if (insn->Instruction.Opcode == TGSI_OPCODE_TXP)
1512 mask |= 0x8;
1513
1514 switch (tex->Texture) {
1515 case TGSI_TEXTURE_1D:
1516 mask &= 0x9;
1517 break;
1518 case TGSI_TEXTURE_2D:
1519 mask &= 0xb;
1520 break;
1521 default:
1522 break;
1523 }
1524 }
1525 return mask;
1526 case TGSI_OPCODE_XPD:
1527 x = 0;
1528 if (mask & 1) x |= 0x6;
1529 if (mask & 2) x |= 0x5;
1530 if (mask & 4) x |= 0x3;
1531 return x;
1532 default:
1533 break;
1534 }
1535
1536 return mask;
1537 }
1538
1539 static struct nv50_reg *
1540 tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
1541 {
1542 switch (dst->DstRegister.File) {
1543 case TGSI_FILE_TEMPORARY:
1544 return &pc->temp[dst->DstRegister.Index * 4 + c];
1545 case TGSI_FILE_OUTPUT:
1546 return &pc->result[dst->DstRegister.Index * 4 + c];
1547 case TGSI_FILE_ADDRESS:
1548 {
1549 struct nv50_reg *r = pc->addr[dst->DstRegister.Index * 4 + c];
1550 if (!r) {
1551 r = alloc_addr(pc, NULL);
1552 pc->addr[dst->DstRegister.Index * 4 + c] = r;
1553 }
1554 assert(r);
1555 return r;
1556 }
1557 case TGSI_FILE_NULL:
1558 return NULL;
1559 default:
1560 break;
1561 }
1562
1563 return NULL;
1564 }
1565
1566 static struct nv50_reg *
1567 tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
1568 boolean neg)
1569 {
1570 struct nv50_reg *r = NULL;
1571 struct nv50_reg *temp;
1572 unsigned sgn, c, swz;
1573
1574 if (src->SrcRegister.File != TGSI_FILE_CONSTANT)
1575 assert(!src->SrcRegister.Indirect);
1576
1577 sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
1578
1579 c = tgsi_util_get_full_src_register_swizzle(src, chan);
1580 switch (c) {
1581 case TGSI_SWIZZLE_X:
1582 case TGSI_SWIZZLE_Y:
1583 case TGSI_SWIZZLE_Z:
1584 case TGSI_SWIZZLE_W:
1585 switch (src->SrcRegister.File) {
1586 case TGSI_FILE_INPUT:
1587 r = &pc->attr[src->SrcRegister.Index * 4 + c];
1588 break;
1589 case TGSI_FILE_TEMPORARY:
1590 r = &pc->temp[src->SrcRegister.Index * 4 + c];
1591 break;
1592 case TGSI_FILE_CONSTANT:
1593 if (!src->SrcRegister.Indirect) {
1594 r = &pc->param[src->SrcRegister.Index * 4 + c];
1595 break;
1596 }
1597 /* Indicate indirection by setting r->acc < 0 and
1598 * use the index field to select the address reg.
1599 */
1600 r = MALLOC_STRUCT(nv50_reg);
1601 swz = tgsi_util_get_src_register_swizzle(
1602 &src->SrcRegisterInd, 0);
1603 ctor_reg(r, P_CONST,
1604 src->SrcRegisterInd.Index * 4 + swz,
1605 src->SrcRegister.Index * 4 + c);
1606 r->acc = -1;
1607 break;
1608 case TGSI_FILE_IMMEDIATE:
1609 r = &pc->immd[src->SrcRegister.Index * 4 + c];
1610 break;
1611 case TGSI_FILE_SAMPLER:
1612 break;
1613 case TGSI_FILE_ADDRESS:
1614 r = pc->addr[src->SrcRegister.Index * 4 + c];
1615 assert(r);
1616 break;
1617 default:
1618 assert(0);
1619 break;
1620 }
1621 break;
1622 default:
1623 assert(0);
1624 break;
1625 }
1626
1627 switch (sgn) {
1628 case TGSI_UTIL_SIGN_KEEP:
1629 break;
1630 case TGSI_UTIL_SIGN_CLEAR:
1631 temp = temp_temp(pc);
1632 emit_abs(pc, temp, r);
1633 r = temp;
1634 break;
1635 case TGSI_UTIL_SIGN_TOGGLE:
1636 if (neg)
1637 r->neg = 1;
1638 else {
1639 temp = temp_temp(pc);
1640 emit_neg(pc, temp, r);
1641 r = temp;
1642 }
1643 break;
1644 case TGSI_UTIL_SIGN_SET:
1645 temp = temp_temp(pc);
1646 emit_cvt(pc, temp, r, -1, CVTOP_ABS, CVT_F32_F32 | CVT_NEG);
1647 r = temp;
1648 break;
1649 default:
1650 assert(0);
1651 break;
1652 }
1653
1654 return r;
1655 }
1656
1657 /* return TRUE for ops that produce only a single result */
1658 static boolean
1659 is_scalar_op(unsigned op)
1660 {
1661 switch (op) {
1662 case TGSI_OPCODE_COS:
1663 case TGSI_OPCODE_DP2:
1664 case TGSI_OPCODE_DP3:
1665 case TGSI_OPCODE_DP4:
1666 case TGSI_OPCODE_DPH:
1667 case TGSI_OPCODE_EX2:
1668 case TGSI_OPCODE_LG2:
1669 case TGSI_OPCODE_POW:
1670 case TGSI_OPCODE_RCP:
1671 case TGSI_OPCODE_RSQ:
1672 case TGSI_OPCODE_SIN:
1673 /*
1674 case TGSI_OPCODE_KIL:
1675 case TGSI_OPCODE_LIT:
1676 case TGSI_OPCODE_SCS:
1677 */
1678 return TRUE;
1679 default:
1680 return FALSE;
1681 }
1682 }
1683
1684 /* Returns a bitmask indicating which dst components depend
1685 * on source s, component c (reverse of nv50_tgsi_src_mask).
1686 */
1687 static unsigned
1688 nv50_tgsi_dst_revdep(unsigned op, int s, int c)
1689 {
1690 if (is_scalar_op(op))
1691 return 0x1;
1692
1693 switch (op) {
1694 case TGSI_OPCODE_DST:
1695 return (1 << c) & (s ? 0xa : 0x6);
1696 case TGSI_OPCODE_XPD:
1697 switch (c) {
1698 case 0: return 0x6;
1699 case 1: return 0x5;
1700 case 2: return 0x3;
1701 case 3: return 0x0;
1702 default:
1703 assert(0);
1704 return 0x0;
1705 }
1706 case TGSI_OPCODE_LIT:
1707 case TGSI_OPCODE_SCS:
1708 case TGSI_OPCODE_TEX:
1709 case TGSI_OPCODE_TXP:
1710 /* these take care of dangerous swizzles themselves */
1711 return 0x0;
1712 case TGSI_OPCODE_IF:
1713 case TGSI_OPCODE_KIL:
1714 /* don't call this function for these ops */
1715 assert(0);
1716 return 0;
1717 default:
1718 /* linear vector instruction */
1719 return (1 << c);
1720 }
1721 }
1722
1723 static INLINE boolean
1724 has_pred(struct nv50_program_exec *e, unsigned cc)
1725 {
1726 if (!is_long(e) || is_immd(e))
1727 return FALSE;
1728 return ((e->inst[1] & 0x780) == (cc << 7));
1729 }
1730
1731 /* on ENDIF see if we can do "@p0.neu single_op" instead of:
1732 * join_at ENDIF
1733 * @p0.eq bra ENDIF
1734 * single_op
1735 * ENDIF: nop.join
1736 */
1737 static boolean
1738 nv50_kill_branch(struct nv50_pc *pc)
1739 {
1740 int lvl = pc->if_lvl;
1741
1742 if (pc->if_insn[lvl]->next != pc->p->exec_tail)
1743 return FALSE;
1744
1745 /* if ccode == 'true', the BRA is from an ELSE and the predicate
1746 * reg may no longer be valid, since we currently always use $p0
1747 */
1748 if (has_pred(pc->if_insn[lvl], 0xf))
1749 return FALSE;
1750 assert(pc->if_insn[lvl] && pc->br_join[lvl]);
1751
1752 /* We'll use the exec allocated for JOIN_AT (as we can't easily
1753 * update prev's next); if exec_tail is BRK, update the pointer.
1754 */
1755 if (pc->loop_lvl && pc->br_loop[pc->loop_lvl - 1] == pc->p->exec_tail)
1756 pc->br_loop[pc->loop_lvl - 1] = pc->br_join[lvl];
1757
1758 pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
1759
1760 *pc->br_join[lvl] = *pc->p->exec_tail;
1761
1762 FREE(pc->if_insn[lvl]);
1763 FREE(pc->p->exec_tail);
1764
1765 pc->p->exec_tail = pc->br_join[lvl];
1766 pc->p->exec_tail->next = NULL;
1767 set_pred(pc, 0xd, 0, pc->p->exec_tail);
1768
1769 return TRUE;
1770 }
1771
1772 static boolean
1773 nv50_program_tx_insn(struct nv50_pc *pc,
1774 const struct tgsi_full_instruction *inst)
1775 {
1776 struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
1777 unsigned mask, sat, unit;
1778 int i, c;
1779
1780 mask = inst->FullDstRegisters[0].DstRegister.WriteMask;
1781 sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
1782
1783 memset(src, 0, sizeof(src));
1784
1785 for (c = 0; c < 4; c++) {
1786 if ((mask & (1 << c)) && !pc->r_dst[c])
1787 dst[c] = tgsi_dst(pc, c, &inst->FullDstRegisters[0]);
1788 else
1789 dst[c] = pc->r_dst[c];
1790 rdst[c] = dst[c];
1791 }
1792
1793 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1794 const struct tgsi_full_src_register *fs = &inst->FullSrcRegisters[i];
1795 unsigned src_mask;
1796 boolean neg_supp;
1797
1798 src_mask = nv50_tgsi_src_mask(inst, i);
1799 neg_supp = negate_supported(inst, i);
1800
1801 if (fs->SrcRegister.File == TGSI_FILE_SAMPLER)
1802 unit = fs->SrcRegister.Index;
1803
1804 for (c = 0; c < 4; c++)
1805 if (src_mask & (1 << c))
1806 src[i][c] = tgsi_src(pc, c, fs, neg_supp);
1807 }
1808
1809 brdc = temp = pc->r_brdc;
1810 if (brdc && brdc->type != P_TEMP) {
1811 temp = temp_temp(pc);
1812 if (sat)
1813 brdc = temp;
1814 } else
1815 if (sat) {
1816 for (c = 0; c < 4; c++) {
1817 if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
1818 continue;
1819 /* rdst[c] = dst[c]; */ /* done above */
1820 dst[c] = temp_temp(pc);
1821 }
1822 }
1823
1824 assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
1825
1826 switch (inst->Instruction.Opcode) {
1827 case TGSI_OPCODE_ABS:
1828 for (c = 0; c < 4; c++) {
1829 if (!(mask & (1 << c)))
1830 continue;
1831 emit_abs(pc, dst[c], src[0][c]);
1832 }
1833 break;
1834 case TGSI_OPCODE_ADD:
1835 for (c = 0; c < 4; c++) {
1836 if (!(mask & (1 << c)))
1837 continue;
1838 emit_add(pc, dst[c], src[0][c], src[1][c]);
1839 }
1840 break;
1841 case TGSI_OPCODE_ARL:
1842 assert(src[0][0]);
1843 temp = temp_temp(pc);
1844 emit_cvt(pc, temp, src[0][0], -1, CVTOP_FLOOR, CVT_S32_F32);
1845 emit_arl(pc, dst[0], temp, 4);
1846 break;
1847 case TGSI_OPCODE_BGNLOOP:
1848 pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
1849 terminate_mbb(pc);
1850 break;
1851 case TGSI_OPCODE_BRK:
1852 emit_branch(pc, -1, 0, NULL);
1853 assert(pc->loop_lvl > 0);
1854 pc->br_loop[pc->loop_lvl - 1] = pc->p->exec_tail;
1855 break;
1856 case TGSI_OPCODE_CEIL:
1857 for (c = 0; c < 4; c++) {
1858 if (!(mask & (1 << c)))
1859 continue;
1860 emit_cvt(pc, dst[c], src[0][c], -1,
1861 CVTOP_CEIL, CVT_F32_F32 | CVT_RI);
1862 }
1863 break;
1864 case TGSI_OPCODE_CMP:
1865 pc->allow32 = FALSE;
1866 for (c = 0; c < 4; c++) {
1867 if (!(mask & (1 << c)))
1868 continue;
1869 emit_cvt(pc, NULL, src[0][c], 1, CVTOP_RN, CVT_F32_F32);
1870 emit_mov(pc, dst[c], src[1][c]);
1871 set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
1872 emit_mov(pc, dst[c], src[2][c]);
1873 set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
1874 }
1875 break;
1876 case TGSI_OPCODE_COS:
1877 if (mask & 8) {
1878 emit_precossin(pc, temp, src[0][3]);
1879 emit_flop(pc, 5, dst[3], temp);
1880 if (!(mask &= 7))
1881 break;
1882 if (temp == dst[3])
1883 temp = brdc = temp_temp(pc);
1884 }
1885 emit_precossin(pc, temp, src[0][0]);
1886 emit_flop(pc, 5, brdc, temp);
1887 break;
1888 case TGSI_OPCODE_DDX:
1889 for (c = 0; c < 4; c++) {
1890 if (!(mask & (1 << c)))
1891 continue;
1892 emit_ddx(pc, dst[c], src[0][c]);
1893 }
1894 break;
1895 case TGSI_OPCODE_DDY:
1896 for (c = 0; c < 4; c++) {
1897 if (!(mask & (1 << c)))
1898 continue;
1899 emit_ddy(pc, dst[c], src[0][c]);
1900 }
1901 break;
1902 case TGSI_OPCODE_DP3:
1903 emit_mul(pc, temp, src[0][0], src[1][0]);
1904 emit_mad(pc, temp, src[0][1], src[1][1], temp);
1905 emit_mad(pc, brdc, src[0][2], src[1][2], temp);
1906 break;
1907 case TGSI_OPCODE_DP4:
1908 emit_mul(pc, temp, src[0][0], src[1][0]);
1909 emit_mad(pc, temp, src[0][1], src[1][1], temp);
1910 emit_mad(pc, temp, src[0][2], src[1][2], temp);
1911 emit_mad(pc, brdc, src[0][3], src[1][3], temp);
1912 break;
1913 case TGSI_OPCODE_DPH:
1914 emit_mul(pc, temp, src[0][0], src[1][0]);
1915 emit_mad(pc, temp, src[0][1], src[1][1], temp);
1916 emit_mad(pc, temp, src[0][2], src[1][2], temp);
1917 emit_add(pc, brdc, src[1][3], temp);
1918 break;
1919 case TGSI_OPCODE_DST:
1920 if (mask & (1 << 1))
1921 emit_mul(pc, dst[1], src[0][1], src[1][1]);
1922 if (mask & (1 << 2))
1923 emit_mov(pc, dst[2], src[0][2]);
1924 if (mask & (1 << 3))
1925 emit_mov(pc, dst[3], src[1][3]);
1926 if (mask & (1 << 0))
1927 emit_mov_immdval(pc, dst[0], 1.0f);
1928 break;
1929 case TGSI_OPCODE_ELSE:
1930 emit_branch(pc, -1, 0, NULL);
1931 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1932 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1933 terminate_mbb(pc);
1934 break;
1935 case TGSI_OPCODE_ENDIF:
1936 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
1937
1938 /* try to replace branch over 1 insn with a predicated insn */
1939 if (nv50_kill_branch(pc) == TRUE)
1940 break;
1941
1942 if (pc->br_join[pc->if_lvl]) {
1943 pc->br_join[pc->if_lvl]->param.index = pc->p->exec_size;
1944 pc->br_join[pc->if_lvl] = NULL;
1945 }
1946 terminate_mbb(pc);
1947 /* emit a NOP as join point, we could set it on the next
1948 * one, but would have to make sure it is long and !immd
1949 */
1950 emit_nop(pc);
1951 pc->p->exec_tail->inst[1] |= 2;
1952 break;
1953 case TGSI_OPCODE_ENDLOOP:
1954 emit_branch(pc, -1, 0, NULL);
1955 pc->p->exec_tail->param.index = pc->loop_pos[--pc->loop_lvl];
1956 pc->br_loop[pc->loop_lvl]->param.index = pc->p->exec_size;
1957 terminate_mbb(pc);
1958 break;
1959 case TGSI_OPCODE_EX2:
1960 emit_preex2(pc, temp, src[0][0]);
1961 emit_flop(pc, 6, brdc, temp);
1962 break;
1963 case TGSI_OPCODE_FLR:
1964 for (c = 0; c < 4; c++) {
1965 if (!(mask & (1 << c)))
1966 continue;
1967 emit_flr(pc, dst[c], src[0][c]);
1968 }
1969 break;
1970 case TGSI_OPCODE_FRC:
1971 temp = temp_temp(pc);
1972 for (c = 0; c < 4; c++) {
1973 if (!(mask & (1 << c)))
1974 continue;
1975 emit_flr(pc, temp, src[0][c]);
1976 emit_sub(pc, dst[c], src[0][c], temp);
1977 }
1978 break;
1979 case TGSI_OPCODE_IF:
1980 /* emitting a join_at may not be necessary */
1981 assert(pc->if_lvl < MAX_IF_DEPTH);
1982 set_pred_wr(pc, 1, 0, pc->if_cond);
1983 emit_branch(pc, 0, 2, &pc->br_join[pc->if_lvl]);
1984 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
1985 terminate_mbb(pc);
1986 break;
1987 case TGSI_OPCODE_KIL:
1988 emit_kil(pc, src[0][0]);
1989 emit_kil(pc, src[0][1]);
1990 emit_kil(pc, src[0][2]);
1991 emit_kil(pc, src[0][3]);
1992 break;
1993 case TGSI_OPCODE_LIT:
1994 emit_lit(pc, &dst[0], mask, &src[0][0]);
1995 break;
1996 case TGSI_OPCODE_LG2:
1997 emit_flop(pc, 3, brdc, src[0][0]);
1998 break;
1999 case TGSI_OPCODE_LRP:
2000 temp = temp_temp(pc);
2001 for (c = 0; c < 4; c++) {
2002 if (!(mask & (1 << c)))
2003 continue;
2004 emit_sub(pc, temp, src[1][c], src[2][c]);
2005 emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2006 }
2007 break;
2008 case TGSI_OPCODE_MAD:
2009 for (c = 0; c < 4; c++) {
2010 if (!(mask & (1 << c)))
2011 continue;
2012 emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2013 }
2014 break;
2015 case TGSI_OPCODE_MAX:
2016 for (c = 0; c < 4; c++) {
2017 if (!(mask & (1 << c)))
2018 continue;
2019 emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]);
2020 }
2021 break;
2022 case TGSI_OPCODE_MIN:
2023 for (c = 0; c < 4; c++) {
2024 if (!(mask & (1 << c)))
2025 continue;
2026 emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]);
2027 }
2028 break;
2029 case TGSI_OPCODE_MOV:
2030 for (c = 0; c < 4; c++) {
2031 if (!(mask & (1 << c)))
2032 continue;
2033 emit_mov(pc, dst[c], src[0][c]);
2034 }
2035 break;
2036 case TGSI_OPCODE_MUL:
2037 for (c = 0; c < 4; c++) {
2038 if (!(mask & (1 << c)))
2039 continue;
2040 emit_mul(pc, dst[c], src[0][c], src[1][c]);
2041 }
2042 break;
2043 case TGSI_OPCODE_POW:
2044 emit_pow(pc, brdc, src[0][0], src[1][0]);
2045 break;
2046 case TGSI_OPCODE_RCP:
2047 emit_flop(pc, 0, brdc, src[0][0]);
2048 break;
2049 case TGSI_OPCODE_RSQ:
2050 emit_flop(pc, 2, brdc, src[0][0]);
2051 break;
2052 case TGSI_OPCODE_SCS:
2053 temp = temp_temp(pc);
2054 if (mask & 3)
2055 emit_precossin(pc, temp, src[0][0]);
2056 if (mask & (1 << 0))
2057 emit_flop(pc, 5, dst[0], temp);
2058 if (mask & (1 << 1))
2059 emit_flop(pc, 4, dst[1], temp);
2060 if (mask & (1 << 2))
2061 emit_mov_immdval(pc, dst[2], 0.0);
2062 if (mask & (1 << 3))
2063 emit_mov_immdval(pc, dst[3], 1.0);
2064 break;
2065 case TGSI_OPCODE_SIN:
2066 if (mask & 8) {
2067 emit_precossin(pc, temp, src[0][3]);
2068 emit_flop(pc, 4, dst[3], temp);
2069 if (!(mask &= 7))
2070 break;
2071 if (temp == dst[3])
2072 temp = brdc = temp_temp(pc);
2073 }
2074 emit_precossin(pc, temp, src[0][0]);
2075 emit_flop(pc, 4, brdc, temp);
2076 break;
2077 case TGSI_OPCODE_SLT:
2078 case TGSI_OPCODE_SGE:
2079 case TGSI_OPCODE_SEQ:
2080 case TGSI_OPCODE_SGT:
2081 case TGSI_OPCODE_SLE:
2082 case TGSI_OPCODE_SNE:
2083 i = map_tgsi_setop_cc(inst->Instruction.Opcode);
2084 for (c = 0; c < 4; c++) {
2085 if (!(mask & (1 << c)))
2086 continue;
2087 emit_set(pc, i, dst[c], -1, src[0][c], src[1][c]);
2088 }
2089 break;
2090 case TGSI_OPCODE_SUB:
2091 for (c = 0; c < 4; c++) {
2092 if (!(mask & (1 << c)))
2093 continue;
2094 emit_sub(pc, dst[c], src[0][c], src[1][c]);
2095 }
2096 break;
2097 case TGSI_OPCODE_TEX:
2098 emit_tex(pc, dst, mask, src[0], unit,
2099 inst->InstructionExtTexture.Texture, FALSE);
2100 break;
2101 case TGSI_OPCODE_TXP:
2102 emit_tex(pc, dst, mask, src[0], unit,
2103 inst->InstructionExtTexture.Texture, TRUE);
2104 break;
2105 case TGSI_OPCODE_TRUNC:
2106 for (c = 0; c < 4; c++) {
2107 if (!(mask & (1 << c)))
2108 continue;
2109 emit_cvt(pc, dst[c], src[0][c], -1,
2110 CVTOP_TRUNC, CVT_F32_F32 | CVT_RI);
2111 }
2112 break;
2113 case TGSI_OPCODE_XPD:
2114 temp = temp_temp(pc);
2115 if (mask & (1 << 0)) {
2116 emit_mul(pc, temp, src[0][2], src[1][1]);
2117 emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2118 }
2119 if (mask & (1 << 1)) {
2120 emit_mul(pc, temp, src[0][0], src[1][2]);
2121 emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2122 }
2123 if (mask & (1 << 2)) {
2124 emit_mul(pc, temp, src[0][1], src[1][0]);
2125 emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2126 }
2127 if (mask & (1 << 3))
2128 emit_mov_immdval(pc, dst[3], 1.0);
2129 break;
2130 case TGSI_OPCODE_END:
2131 break;
2132 default:
2133 NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2134 return FALSE;
2135 }
2136
2137 if (brdc) {
2138 if (sat)
2139 emit_sat(pc, brdc, brdc);
2140 for (c = 0; c < 4; c++)
2141 if ((mask & (1 << c)) && dst[c] != brdc)
2142 emit_mov(pc, dst[c], brdc);
2143 } else
2144 if (sat) {
2145 for (c = 0; c < 4; c++) {
2146 if (!(mask & (1 << c)))
2147 continue;
2148 /* In this case we saturate later, and dst[c] won't
2149 * be another temp_temp (and thus lost), since rdst
2150 * already is TEMP (see above). */
2151 if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2152 continue;
2153 emit_sat(pc, rdst[c], dst[c]);
2154 }
2155 }
2156
2157 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2158 for (c = 0; c < 4; c++) {
2159 if (!src[i][c])
2160 continue;
2161 src[i][c]->neg = 0;
2162 if (src[i][c]->index == -1 && src[i][c]->type == P_IMMD)
2163 FREE(src[i][c]);
2164 else
2165 if (src[i][c]->acc < 0 && src[i][c]->type == P_CONST)
2166 FREE(src[i][c]); /* indirect constant */
2167 }
2168 }
2169
2170 kill_temp_temp(pc);
2171 return TRUE;
2172 }
2173
2174 static void
2175 prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2176 {
2177 struct nv50_reg *reg = NULL;
2178 const struct tgsi_full_src_register *src;
2179 const struct tgsi_dst_register *dst;
2180 unsigned i, c, k, mask;
2181
2182 dst = &insn->FullDstRegisters[0].DstRegister;
2183 mask = dst->WriteMask;
2184
2185 if (dst->File == TGSI_FILE_TEMPORARY)
2186 reg = pc->temp;
2187 else
2188 if (dst->File == TGSI_FILE_OUTPUT)
2189 reg = pc->result;
2190
2191 if (reg) {
2192 for (c = 0; c < 4; c++) {
2193 if (!(mask & (1 << c)))
2194 continue;
2195 reg[dst->Index * 4 + c].acc = pc->insn_nr;
2196 }
2197 }
2198
2199 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2200 src = &insn->FullSrcRegisters[i];
2201
2202 if (src->SrcRegister.File == TGSI_FILE_TEMPORARY)
2203 reg = pc->temp;
2204 else
2205 if (src->SrcRegister.File == TGSI_FILE_INPUT)
2206 reg = pc->attr;
2207 else
2208 continue;
2209
2210 mask = nv50_tgsi_src_mask(insn, i);
2211
2212 for (c = 0; c < 4; c++) {
2213 if (!(mask & (1 << c)))
2214 continue;
2215 k = tgsi_util_get_full_src_register_swizzle(src, c);
2216
2217 reg[src->SrcRegister.Index * 4 + k].acc = pc->insn_nr;
2218 }
2219 }
2220 }
2221
2222 /* Returns a bitmask indicating which dst components need to be
2223 * written to temporaries first to avoid 'corrupting' sources.
2224 *
2225 * m[i] (out) indicate component to write in the i-th position
2226 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2227 */
2228 static unsigned
2229 nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2230 {
2231 unsigned i, c, x, unsafe;
2232
2233 for (c = 0; c < 4; c++)
2234 m[c] = c;
2235
2236 /* Swap as long as a dst component written earlier is depended on
2237 * by one written later, but the next one isn't depended on by it.
2238 */
2239 for (c = 0; c < 3; c++) {
2240 if (rdep[m[c + 1]] & (1 << m[c]))
2241 continue; /* if next one is depended on by us */
2242 for (i = c + 1; i < 4; i++)
2243 /* if we are depended on by a later one */
2244 if (rdep[m[c]] & (1 << m[i]))
2245 break;
2246 if (i == 4)
2247 continue;
2248 /* now, swap */
2249 x = m[c];
2250 m[c] = m[c + 1];
2251 m[c + 1] = x;
2252
2253 /* restart */
2254 c = 0;
2255 }
2256
2257 /* mark dependencies that could not be resolved by reordering */
2258 for (i = 0; i < 3; ++i)
2259 for (c = i + 1; c < 4; ++c)
2260 if (rdep[m[i]] & (1 << m[c]))
2261 unsafe |= (1 << i);
2262
2263 /* NOTE: $unsafe is with respect to order, not component */
2264 return unsafe;
2265 }
2266
2267 /* Select a suitable dst register for broadcasting scalar results,
2268 * or return NULL if we have to allocate an extra TEMP.
2269 *
2270 * If e.g. only 1 component is written, we may also emit the final
2271 * result to a write-only register.
2272 */
2273 static struct nv50_reg *
2274 tgsi_broadcast_dst(struct nv50_pc *pc,
2275 const struct tgsi_full_dst_register *fd, unsigned mask)
2276 {
2277 if (fd->DstRegister.File == TGSI_FILE_TEMPORARY) {
2278 int c = ffs(~mask & fd->DstRegister.WriteMask);
2279 if (c)
2280 return tgsi_dst(pc, c - 1, fd);
2281 } else {
2282 int c = ffs(fd->DstRegister.WriteMask) - 1;
2283 if ((1 << c) == fd->DstRegister.WriteMask)
2284 return tgsi_dst(pc, c, fd);
2285 }
2286
2287 return NULL;
2288 }
2289
2290 /* Scan source swizzles and return a bitmask indicating dst regs that
2291 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
2292 */
2293 static unsigned
2294 nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
2295 unsigned rdep[4])
2296 {
2297 const struct tgsi_full_dst_register *fd = &insn->FullDstRegisters[0];
2298 const struct tgsi_full_src_register *fs;
2299 unsigned i, deqs = 0;
2300
2301 for (i = 0; i < 4; ++i)
2302 rdep[i] = 0;
2303
2304 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2305 unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
2306 boolean neg_supp = negate_supported(insn, i);
2307
2308 fs = &insn->FullSrcRegisters[i];
2309 if (fs->SrcRegister.File != fd->DstRegister.File ||
2310 fs->SrcRegister.Index != fd->DstRegister.Index)
2311 continue;
2312
2313 for (chn = 0; chn < 4; ++chn) {
2314 unsigned s, c;
2315
2316 if (!(mask & (1 << chn))) /* src is not read */
2317 continue;
2318 c = tgsi_util_get_full_src_register_swizzle(fs, chn);
2319 s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
2320
2321 if (!(fd->DstRegister.WriteMask & (1 << c)))
2322 continue;
2323
2324 /* no danger if src is copied to TEMP first */
2325 if ((s != TGSI_UTIL_SIGN_KEEP) &&
2326 (s != TGSI_UTIL_SIGN_TOGGLE || !neg_supp))
2327 continue;
2328
2329 rdep[c] |= nv50_tgsi_dst_revdep(
2330 insn->Instruction.Opcode, i, chn);
2331 deqs |= (1 << c);
2332 }
2333 }
2334
2335 return deqs;
2336 }
2337
2338 static boolean
2339 nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
2340 {
2341 struct tgsi_full_instruction insn = tok->FullInstruction;
2342 const struct tgsi_full_dst_register *fd;
2343 unsigned i, deqs, rdep[4], m[4];
2344
2345 fd = &tok->FullInstruction.FullDstRegisters[0];
2346 deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
2347
2348 if (is_scalar_op(insn.Instruction.Opcode)) {
2349 pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
2350 if (!pc->r_brdc)
2351 pc->r_brdc = temp_temp(pc);
2352 return nv50_program_tx_insn(pc, &insn);
2353 }
2354 pc->r_brdc = NULL;
2355
2356 if (!deqs)
2357 return nv50_program_tx_insn(pc, &insn);
2358
2359 deqs = nv50_revdep_reorder(m, rdep);
2360
2361 for (i = 0; i < 4; ++i) {
2362 assert(pc->r_dst[m[i]] == NULL);
2363
2364 insn.FullDstRegisters[0].DstRegister.WriteMask =
2365 fd->DstRegister.WriteMask & (1 << m[i]);
2366
2367 if (!insn.FullDstRegisters[0].DstRegister.WriteMask)
2368 continue;
2369
2370 if (deqs & (1 << i))
2371 pc->r_dst[m[i]] = alloc_temp(pc, NULL);
2372
2373 if (!nv50_program_tx_insn(pc, &insn))
2374 return FALSE;
2375 }
2376
2377 for (i = 0; i < 4; i++) {
2378 struct nv50_reg *reg = pc->r_dst[i];
2379 if (!reg)
2380 continue;
2381 pc->r_dst[i] = NULL;
2382
2383 if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
2384 emit_sat(pc, tgsi_dst(pc, i, fd), reg);
2385 else
2386 emit_mov(pc, tgsi_dst(pc, i, fd), reg);
2387 free_temp(pc, reg);
2388 }
2389
2390 return TRUE;
2391 }
2392
2393 static void
2394 load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
2395 {
2396 struct nv50_reg *iv, **ppiv;
2397 unsigned mode = pc->interp_mode[reg->index];
2398
2399 ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
2400 iv = *ppiv;
2401
2402 if ((mode & INTERP_PERSPECTIVE) && !iv) {
2403 iv = *ppiv = alloc_temp(pc, NULL);
2404 iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
2405
2406 emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
2407 emit_flop(pc, 0, iv, iv);
2408
2409 /* XXX: when loading interpolants dynamically, move these
2410 * to the program head, or make sure it can't be skipped.
2411 */
2412 }
2413
2414 emit_interp(pc, reg, iv, mode);
2415 }
2416
2417 static boolean
2418 nv50_program_tx_prep(struct nv50_pc *pc)
2419 {
2420 struct tgsi_parse_context tp;
2421 struct nv50_program *p = pc->p;
2422 boolean ret = FALSE;
2423 unsigned i, c, flat_nr = 0;
2424
2425 tgsi_parse_init(&tp, pc->p->pipe.tokens);
2426 while (!tgsi_parse_end_of_tokens(&tp)) {
2427 const union tgsi_full_token *tok = &tp.FullToken;
2428
2429 tgsi_parse_token(&tp);
2430 switch (tok->Token.Type) {
2431 case TGSI_TOKEN_TYPE_IMMEDIATE:
2432 {
2433 const struct tgsi_full_immediate *imm =
2434 &tp.FullToken.FullImmediate;
2435
2436 ctor_immd(pc, imm->u[0].Float,
2437 imm->u[1].Float,
2438 imm->u[2].Float,
2439 imm->u[3].Float);
2440 }
2441 break;
2442 case TGSI_TOKEN_TYPE_DECLARATION:
2443 {
2444 const struct tgsi_full_declaration *d;
2445 unsigned si, last, first, mode;
2446
2447 d = &tp.FullToken.FullDeclaration;
2448 first = d->DeclarationRange.First;
2449 last = d->DeclarationRange.Last;
2450
2451 switch (d->Declaration.File) {
2452 case TGSI_FILE_TEMPORARY:
2453 break;
2454 case TGSI_FILE_OUTPUT:
2455 if (!d->Declaration.Semantic ||
2456 p->type == PIPE_SHADER_FRAGMENT)
2457 break;
2458
2459 si = d->Semantic.SemanticIndex;
2460 switch (d->Semantic.SemanticName) {
2461 case TGSI_SEMANTIC_BCOLOR:
2462 p->cfg.two_side[si].hw = first;
2463 if (p->cfg.io_nr > first)
2464 p->cfg.io_nr = first;
2465 break;
2466 case TGSI_SEMANTIC_PSIZE:
2467 p->cfg.psiz = first;
2468 if (p->cfg.io_nr > first)
2469 p->cfg.io_nr = first;
2470 break;
2471 /*
2472 case TGSI_SEMANTIC_CLIP_DISTANCE:
2473 p->cfg.clpd = MIN2(p->cfg.clpd, first);
2474 break;
2475 */
2476 default:
2477 break;
2478 }
2479 break;
2480 case TGSI_FILE_INPUT:
2481 {
2482 if (p->type != PIPE_SHADER_FRAGMENT)
2483 break;
2484
2485 switch (d->Declaration.Interpolate) {
2486 case TGSI_INTERPOLATE_CONSTANT:
2487 mode = INTERP_FLAT;
2488 flat_nr++;
2489 break;
2490 case TGSI_INTERPOLATE_PERSPECTIVE:
2491 mode = INTERP_PERSPECTIVE;
2492 p->cfg.regs[1] |= 0x08 << 24;
2493 break;
2494 default:
2495 mode = INTERP_LINEAR;
2496 break;
2497 }
2498 if (d->Declaration.Centroid)
2499 mode |= INTERP_CENTROID;
2500
2501 assert(last < 32);
2502 for (i = first; i <= last; i++)
2503 pc->interp_mode[i] = mode;
2504 }
2505 break;
2506 case TGSI_FILE_ADDRESS:
2507 case TGSI_FILE_CONSTANT:
2508 case TGSI_FILE_SAMPLER:
2509 break;
2510 default:
2511 NOUVEAU_ERR("bad decl file %d\n",
2512 d->Declaration.File);
2513 goto out_err;
2514 }
2515 }
2516 break;
2517 case TGSI_TOKEN_TYPE_INSTRUCTION:
2518 pc->insn_nr++;
2519 prep_inspect_insn(pc, &tok->FullInstruction);
2520 break;
2521 default:
2522 break;
2523 }
2524 }
2525
2526 if (p->type == PIPE_SHADER_VERTEX) {
2527 int rid = 0;
2528
2529 for (i = 0; i < pc->attr_nr * 4; ++i) {
2530 if (pc->attr[i].acc) {
2531 pc->attr[i].hw = rid++;
2532 p->cfg.attr[i / 32] |= 1 << (i % 32);
2533 }
2534 }
2535
2536 for (i = 0, rid = 0; i < pc->result_nr; ++i) {
2537 p->cfg.io[i].hw = rid;
2538 p->cfg.io[i].id_vp = i;
2539
2540 for (c = 0; c < 4; ++c) {
2541 int n = i * 4 + c;
2542 if (!pc->result[n].acc)
2543 continue;
2544 pc->result[n].hw = rid++;
2545 p->cfg.io[i].mask |= 1 << c;
2546 }
2547 }
2548
2549 for (c = 0; c < 2; ++c)
2550 if (p->cfg.two_side[c].hw < 0x40)
2551 p->cfg.two_side[c] = p->cfg.io[
2552 p->cfg.two_side[c].hw];
2553
2554 if (p->cfg.psiz < 0x40)
2555 p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
2556 } else
2557 if (p->type == PIPE_SHADER_FRAGMENT) {
2558 int rid, aid;
2559 unsigned n = 0, m = pc->attr_nr - flat_nr;
2560
2561 int base = (TGSI_SEMANTIC_POSITION ==
2562 p->info.input_semantic_name[0]) ? 0 : 1;
2563
2564 /* non-flat interpolants have to be mapped to
2565 * the lower hardware IDs, so sort them:
2566 */
2567 for (i = 0; i < pc->attr_nr; i++) {
2568 if (pc->interp_mode[i] == INTERP_FLAT) {
2569 p->cfg.io[m].id_vp = i + base;
2570 p->cfg.io[m++].id_fp = i;
2571 } else {
2572 if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
2573 p->cfg.io[n].linear = TRUE;
2574 p->cfg.io[n].id_vp = i + base;
2575 p->cfg.io[n++].id_fp = i;
2576 }
2577 }
2578
2579 if (!base) /* set w-coordinate mask from perspective interp */
2580 p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
2581
2582 aid = popcnt4( /* if fcrd isn't contained in cfg.io */
2583 base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
2584
2585 for (n = 0; n < pc->attr_nr; ++n) {
2586 p->cfg.io[n].hw = rid = aid;
2587 i = p->cfg.io[n].id_fp;
2588
2589 for (c = 0; c < 4; ++c) {
2590 if (!pc->attr[i * 4 + c].acc)
2591 continue;
2592 pc->attr[i * 4 + c].rhw = rid++;
2593 p->cfg.io[n].mask |= 1 << c;
2594
2595 load_interpolant(pc, &pc->attr[i * 4 + c]);
2596 }
2597 aid += popcnt4(p->cfg.io[n].mask);
2598 }
2599
2600 if (!base)
2601 p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
2602
2603 m = popcnt4(p->cfg.regs[1] >> 24);
2604
2605 /* set count of non-position inputs and of non-flat
2606 * non-position inputs for FP_INTERPOLANT_CTRL
2607 */
2608 p->cfg.regs[1] |= aid - m;
2609
2610 if (flat_nr) {
2611 i = p->cfg.io[pc->attr_nr - flat_nr].hw;
2612 p->cfg.regs[1] |= (i - m) << 16;
2613 } else
2614 p->cfg.regs[1] |= p->cfg.regs[1] << 16;
2615
2616 /* mark color semantic for light-twoside */
2617 n = 0x40;
2618 for (i = 0; i < pc->attr_nr; i++) {
2619 ubyte si, sn;
2620
2621 sn = p->info.input_semantic_name[p->cfg.io[i].id_fp];
2622 si = p->info.input_semantic_index[p->cfg.io[i].id_fp];
2623
2624 if (sn == TGSI_SEMANTIC_COLOR) {
2625 p->cfg.two_side[si] = p->cfg.io[i];
2626
2627 /* increase colour count */
2628 p->cfg.regs[0] += popcnt4(
2629 p->cfg.two_side[si].mask) << 16;
2630
2631 n = MIN2(n, p->cfg.io[i].hw - m);
2632 }
2633 }
2634 if (n < 0x40)
2635 p->cfg.regs[0] += n;
2636
2637 /* Initialize FP results:
2638 * FragDepth is always first TGSI and last hw output
2639 */
2640 i = p->info.writes_z ? 4 : 0;
2641 for (rid = 0; i < pc->result_nr * 4; i++)
2642 pc->result[i].rhw = rid++;
2643 if (p->info.writes_z)
2644 pc->result[2].rhw = rid;
2645
2646 p->cfg.high_result = rid;
2647 }
2648
2649 if (pc->immd_nr) {
2650 int rid = 0;
2651
2652 pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
2653 if (!pc->immd)
2654 goto out_err;
2655
2656 for (i = 0; i < pc->immd_nr; i++) {
2657 for (c = 0; c < 4; c++, rid++)
2658 ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
2659 }
2660 }
2661
2662 ret = TRUE;
2663 out_err:
2664 if (pc->iv_p)
2665 free_temp(pc, pc->iv_p);
2666 if (pc->iv_c)
2667 free_temp(pc, pc->iv_c);
2668
2669 tgsi_parse_free(&tp);
2670 return ret;
2671 }
2672
2673 static void
2674 free_nv50_pc(struct nv50_pc *pc)
2675 {
2676 if (pc->immd)
2677 FREE(pc->immd);
2678 if (pc->param)
2679 FREE(pc->param);
2680 if (pc->result)
2681 FREE(pc->result);
2682 if (pc->attr)
2683 FREE(pc->attr);
2684 if (pc->temp)
2685 FREE(pc->temp);
2686
2687 FREE(pc);
2688 }
2689
2690 static boolean
2691 ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
2692 {
2693 int i, c;
2694 unsigned rtype[2] = { P_ATTR, P_RESULT };
2695
2696 pc->p = p;
2697 pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
2698 pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
2699 pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
2700 pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
2701 pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
2702 assert(pc->addr_nr <= 2);
2703
2704 p->cfg.high_temp = 4;
2705
2706 p->cfg.two_side[0].hw = 0x40;
2707 p->cfg.two_side[1].hw = 0x40;
2708
2709 switch (p->type) {
2710 case PIPE_SHADER_VERTEX:
2711 p->cfg.psiz = 0x40;
2712 p->cfg.clpd = 0x40;
2713 p->cfg.io_nr = pc->result_nr;
2714 break;
2715 case PIPE_SHADER_FRAGMENT:
2716 rtype[0] = rtype[1] = P_TEMP;
2717
2718 p->cfg.regs[0] = 0x01000004;
2719 p->cfg.io_nr = pc->attr_nr;
2720
2721 if (p->info.writes_z) {
2722 p->cfg.regs[2] |= 0x00000100;
2723 p->cfg.regs[3] |= 0x00000011;
2724 }
2725 if (p->info.uses_kill)
2726 p->cfg.regs[2] |= 0x00100000;
2727 break;
2728 }
2729
2730 if (pc->temp_nr) {
2731 pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
2732 if (!pc->temp)
2733 return FALSE;
2734
2735 for (i = 0; i < pc->temp_nr * 4; ++i)
2736 ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
2737 }
2738
2739 if (pc->attr_nr) {
2740 pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
2741 if (!pc->attr)
2742 return FALSE;
2743
2744 for (i = 0; i < pc->attr_nr * 4; ++i)
2745 ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
2746 }
2747
2748 if (pc->result_nr) {
2749 unsigned nr = pc->result_nr * 4;
2750
2751 pc->result = MALLOC(nr * sizeof(struct nv50_reg));
2752 if (!pc->result)
2753 return FALSE;
2754
2755 for (i = 0; i < nr; ++i)
2756 ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
2757 }
2758
2759 if (pc->param_nr) {
2760 int rid = 0;
2761
2762 pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
2763 if (!pc->param)
2764 return FALSE;
2765
2766 for (i = 0; i < pc->param_nr; ++i)
2767 for (c = 0; c < 4; ++c, ++rid)
2768 ctor_reg(&pc->param[rid], P_CONST, i, rid);
2769 }
2770
2771 if (pc->addr_nr) {
2772 pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
2773 if (!pc->addr)
2774 return FALSE;
2775 }
2776 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
2777 ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
2778
2779 return TRUE;
2780 }
2781
2782 static void
2783 nv50_fp_move_results(struct nv50_pc *pc)
2784 {
2785 struct nv50_reg reg;
2786 unsigned i;
2787
2788 ctor_reg(&reg, P_TEMP, -1, -1);
2789
2790 for (i = 0; i < pc->result_nr * 4; ++i) {
2791 if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2792 continue;
2793 if (pc->result[i].rhw != pc->result[i].hw) {
2794 reg.hw = pc->result[i].rhw;
2795 emit_mov(pc, &reg, &pc->result[i]);
2796 }
2797 }
2798 }
2799
2800 static void
2801 nv50_program_fixup_insns(struct nv50_pc *pc)
2802 {
2803 struct nv50_program_exec *e, *prev = NULL, **bra_list;
2804 unsigned i, n, pos;
2805
2806 bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
2807
2808 /* Collect branch instructions, we need to adjust their offsets
2809 * when converting 32 bit instructions to 64 bit ones
2810 */
2811 for (n = 0, e = pc->p->exec_head; e; e = e->next)
2812 if (e->param.index >= 0 && !e->param.mask)
2813 bra_list[n++] = e;
2814
2815 /* Make sure we don't have any single 32 bit instructions. */
2816 for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
2817 pos += is_long(e) ? 2 : 1;
2818
2819 if ((pos & 1) && (!e->next || is_long(e->next))) {
2820 for (i = 0; i < n; ++i)
2821 if (bra_list[i]->param.index >= pos)
2822 bra_list[i]->param.index += 1;
2823 convert_to_long(pc, e);
2824 ++pos;
2825 }
2826 if (e->next)
2827 prev = e;
2828 }
2829
2830 assert(!is_immd(pc->p->exec_head));
2831 assert(!is_immd(pc->p->exec_tail));
2832
2833 /* last instruction must be long so it can have the end bit set */
2834 if (!is_long(pc->p->exec_tail)) {
2835 convert_to_long(pc, pc->p->exec_tail);
2836 if (prev)
2837 convert_to_long(pc, prev);
2838 }
2839 assert(!(pc->p->exec_tail->inst[1] & 2));
2840 /* set the end-bit */
2841 pc->p->exec_tail->inst[1] |= 1;
2842
2843 FREE(bra_list);
2844 }
2845
2846 static boolean
2847 nv50_program_tx(struct nv50_program *p)
2848 {
2849 struct tgsi_parse_context parse;
2850 struct nv50_pc *pc;
2851 boolean ret;
2852
2853 pc = CALLOC_STRUCT(nv50_pc);
2854 if (!pc)
2855 return FALSE;
2856
2857 ret = ctor_nv50_pc(pc, p);
2858 if (ret == FALSE)
2859 goto out_cleanup;
2860
2861 ret = nv50_program_tx_prep(pc);
2862 if (ret == FALSE)
2863 goto out_cleanup;
2864
2865 tgsi_parse_init(&parse, pc->p->pipe.tokens);
2866 while (!tgsi_parse_end_of_tokens(&parse)) {
2867 const union tgsi_full_token *tok = &parse.FullToken;
2868
2869 /* don't allow half insn/immd on first and last instruction */
2870 pc->allow32 = TRUE;
2871 if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr)
2872 pc->allow32 = FALSE;
2873
2874 tgsi_parse_token(&parse);
2875
2876 switch (tok->Token.Type) {
2877 case TGSI_TOKEN_TYPE_INSTRUCTION:
2878 ++pc->insn_cur;
2879 ret = nv50_tgsi_insn(pc, tok);
2880 if (ret == FALSE)
2881 goto out_err;
2882 break;
2883 default:
2884 break;
2885 }
2886 }
2887
2888 if (pc->p->type == PIPE_SHADER_FRAGMENT)
2889 nv50_fp_move_results(pc);
2890
2891 nv50_program_fixup_insns(pc);
2892
2893 p->param_nr = pc->param_nr * 4;
2894 p->immd_nr = pc->immd_nr * 4;
2895 p->immd = pc->immd_buf;
2896
2897 out_err:
2898 tgsi_parse_free(&parse);
2899
2900 out_cleanup:
2901 free_nv50_pc(pc);
2902 return ret;
2903 }
2904
2905 static void
2906 nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
2907 {
2908 if (nv50_program_tx(p) == FALSE)
2909 assert(0);
2910 p->translated = TRUE;
2911 }
2912
2913 static void
2914 nv50_program_upload_data(struct nv50_context *nv50, float *map,
2915 unsigned start, unsigned count, unsigned cbuf)
2916 {
2917 struct nouveau_channel *chan = nv50->screen->base.channel;
2918 struct nouveau_grobj *tesla = nv50->screen->tesla;
2919
2920 while (count) {
2921 unsigned nr = count > 2047 ? 2047 : count;
2922
2923 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
2924 OUT_RING (chan, (cbuf << 0) | (start << 8));
2925 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
2926 OUT_RINGp (chan, map, nr);
2927
2928 map += nr;
2929 start += nr;
2930 count -= nr;
2931 }
2932 }
2933
2934 static void
2935 nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
2936 {
2937 struct pipe_screen *pscreen = nv50->pipe.screen;
2938
2939 if (!p->data[0] && p->immd_nr) {
2940 struct nouveau_resource *heap = nv50->screen->immd_heap[0];
2941
2942 if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
2943 while (heap->next && heap->size < p->immd_nr) {
2944 struct nv50_program *evict = heap->next->priv;
2945 nouveau_resource_free(&evict->data[0]);
2946 }
2947
2948 if (nouveau_resource_alloc(heap, p->immd_nr, p,
2949 &p->data[0]))
2950 assert(0);
2951 }
2952
2953 /* immediates only need to be uploaded again when freed */
2954 nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
2955 p->immd_nr, NV50_CB_PMISC);
2956 }
2957
2958 assert(p->param_nr <= 512);
2959
2960 if (p->param_nr) {
2961 unsigned cb;
2962 float *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
2963 PIPE_BUFFER_USAGE_CPU_READ);
2964
2965 if (p->type == PIPE_SHADER_VERTEX)
2966 cb = NV50_CB_PVP;
2967 else
2968 cb = NV50_CB_PFP;
2969
2970 nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
2971 pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
2972 }
2973 }
2974
2975 static void
2976 nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
2977 {
2978 struct nouveau_channel *chan = nv50->screen->base.channel;
2979 struct nouveau_grobj *tesla = nv50->screen->tesla;
2980 struct nv50_program_exec *e;
2981 struct nouveau_stateobj *so;
2982 const unsigned flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_WR;
2983 unsigned start, count, *up, *ptr;
2984 boolean upload = FALSE;
2985
2986 if (!p->bo) {
2987 nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
2988 p->exec_size * 4, &p->bo);
2989 upload = TRUE;
2990 }
2991
2992 if (p->data[0] && p->data[0]->start != p->data_start[0])
2993 upload = TRUE;
2994
2995 if (!upload)
2996 return;
2997
2998 for (e = p->exec_head; e; e = e->next) {
2999 unsigned ei, ci, bs;
3000
3001 if (e->param.index < 0)
3002 continue;
3003
3004 if (e->param.mask == 0) {
3005 assert(!(e->param.index & 1));
3006 /* seem to be 8 byte steps */
3007 ei = (e->param.index >> 1) + 0 /* START_ID */;
3008
3009 e->inst[0] &= 0xf0000fff;
3010 e->inst[0] |= ei << 12;
3011 continue;
3012 }
3013
3014 bs = (e->inst[1] >> 22) & 0x07;
3015 assert(bs < 2);
3016 ei = e->param.shift >> 5;
3017 ci = e->param.index;
3018 if (bs == 0)
3019 ci += p->data[bs]->start;
3020
3021 e->inst[ei] &= ~e->param.mask;
3022 e->inst[ei] |= (ci << e->param.shift);
3023 }
3024
3025 if (p->data[0])
3026 p->data_start[0] = p->data[0]->start;
3027
3028 #ifdef NV50_PROGRAM_DUMP
3029 NOUVEAU_ERR("-------\n");
3030 for (e = p->exec_head; e; e = e->next) {
3031 NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3032 if (is_long(e))
3033 NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3034 }
3035 #endif
3036
3037 up = ptr = MALLOC(p->exec_size * 4);
3038 for (e = p->exec_head; e; e = e->next) {
3039 *(ptr++) = e->inst[0];
3040 if (is_long(e))
3041 *(ptr++) = e->inst[1];
3042 }
3043
3044 so = so_new(4,2);
3045 so_method(so, nv50->screen->tesla, NV50TCL_CB_DEF_ADDRESS_HIGH, 3);
3046 so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_HIGH, 0, 0);
3047 so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_LOW, 0, 0);
3048 so_data (so, (NV50_CB_PUPLOAD << 16) | 0x0800); //(p->exec_size * 4));
3049
3050 start = 0; count = p->exec_size;
3051 while (count) {
3052 struct nouveau_channel *chan = nv50->screen->base.channel;
3053 unsigned nr;
3054
3055 so_emit(chan, so);
3056
3057 nr = MIN2(count, 2047);
3058 nr = MIN2(chan->pushbuf->remaining, nr);
3059 if (chan->pushbuf->remaining < (nr + 3)) {
3060 FIRE_RING(chan);
3061 continue;
3062 }
3063
3064 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3065 OUT_RING (chan, (start << 8) | NV50_CB_PUPLOAD);
3066 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3067 OUT_RINGp (chan, up + start, nr);
3068
3069 start += nr;
3070 count -= nr;
3071 }
3072
3073 FREE(up);
3074 so_ref(NULL, &so);
3075 }
3076
3077 void
3078 nv50_vertprog_validate(struct nv50_context *nv50)
3079 {
3080 struct nouveau_grobj *tesla = nv50->screen->tesla;
3081 struct nv50_program *p = nv50->vertprog;
3082 struct nouveau_stateobj *so;
3083
3084 if (!p->translated) {
3085 nv50_program_validate(nv50, p);
3086 if (!p->translated)
3087 assert(0);
3088 }
3089
3090 nv50_program_validate_data(nv50, p);
3091 nv50_program_validate_code(nv50, p);
3092
3093 so = so_new(13, 2);
3094 so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3095 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3096 NOUVEAU_BO_HIGH, 0, 0);
3097 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3098 NOUVEAU_BO_LOW, 0, 0);
3099 so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3100 so_data (so, p->cfg.attr[0]);
3101 so_data (so, p->cfg.attr[1]);
3102 so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3103 so_data (so, p->cfg.high_result);
3104 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3105 so_data (so, p->cfg.high_result); //8);
3106 so_data (so, p->cfg.high_temp);
3107 so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3108 so_data (so, 0); /* program start offset */
3109 so_ref(so, &nv50->state.vertprog);
3110 so_ref(NULL, &so);
3111 }
3112
3113 void
3114 nv50_fragprog_validate(struct nv50_context *nv50)
3115 {
3116 struct nouveau_grobj *tesla = nv50->screen->tesla;
3117 struct nv50_program *p = nv50->fragprog;
3118 struct nouveau_stateobj *so;
3119
3120 if (!p->translated) {
3121 nv50_program_validate(nv50, p);
3122 if (!p->translated)
3123 assert(0);
3124 }
3125
3126 nv50_program_validate_data(nv50, p);
3127 nv50_program_validate_code(nv50, p);
3128
3129 so = so_new(64, 2);
3130 so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3131 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3132 NOUVEAU_BO_HIGH, 0, 0);
3133 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3134 NOUVEAU_BO_LOW, 0, 0);
3135 so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3136 so_data (so, p->cfg.high_temp);
3137 so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3138 so_data (so, p->cfg.high_result);
3139 so_method(so, tesla, NV50TCL_FP_CTRL_UNK19A8, 1);
3140 so_data (so, p->cfg.regs[2]);
3141 so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3142 so_data (so, p->cfg.regs[3]);
3143 so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3144 so_data (so, 0); /* program start offset */
3145 so_ref(so, &nv50->state.fragprog);
3146 so_ref(NULL, &so);
3147 }
3148
3149 static void
3150 nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3151 {
3152 struct nv50_program *fp = nv50->fragprog;
3153 struct nv50_program *vp = nv50->vertprog;
3154 unsigned i, c, m = base;
3155
3156 /* XXX: This can't work correctly in all cases yet, we either
3157 * have to create TGSI_SEMANTIC_PNTC or sprite_coord_mode has
3158 * to be per FP input instead of per VP output
3159 */
3160 memset(pntc, 0, 8 * sizeof(uint32_t));
3161
3162 for (i = 0; i < fp->cfg.io_nr; i++) {
3163 uint8_t sn, si;
3164 uint8_t j = fp->cfg.io[i].id_vp, k = fp->cfg.io[i].id_fp;
3165 unsigned n = popcnt4(fp->cfg.io[i].mask);
3166
3167 if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3168 m += n;
3169 continue;
3170 }
3171
3172 sn = vp->info.input_semantic_name[j];
3173 si = vp->info.input_semantic_index[j];
3174
3175 if (j < fp->cfg.io_nr && sn == TGSI_SEMANTIC_GENERIC) {
3176 ubyte mode =
3177 nv50->rasterizer->pipe.sprite_coord_mode[si];
3178
3179 if (mode == PIPE_SPRITE_COORD_NONE) {
3180 m += n;
3181 continue;
3182 }
3183 }
3184
3185 /* this is either PointCoord or replaced by sprite coords */
3186 for (c = 0; c < 4; c++) {
3187 if (!(fp->cfg.io[i].mask & (1 << c)))
3188 continue;
3189 pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3190 ++m;
3191 }
3192 }
3193 }
3194
3195 static int
3196 nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3197 struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3198 {
3199 int c;
3200 uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3201 uint8_t *map = (uint8_t *)p_map;
3202
3203 for (c = 0; c < 4; ++c) {
3204 if (mf & 1) {
3205 if (fpi->linear == TRUE)
3206 lin[mid / 32] |= 1 << (mid % 32);
3207 map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3208 }
3209
3210 oid += mv & 1;
3211 mf >>= 1;
3212 mv >>= 1;
3213 }
3214
3215 return mid;
3216 }
3217
3218 void
3219 nv50_linkage_validate(struct nv50_context *nv50)
3220 {
3221 struct nouveau_grobj *tesla = nv50->screen->tesla;
3222 struct nv50_program *vp = nv50->vertprog;
3223 struct nv50_program *fp = nv50->fragprog;
3224 struct nouveau_stateobj *so;
3225 struct nv50_sreg4 dummy, *vpo;
3226 int i, n, c, m = 0;
3227 uint32_t map[16], lin[4], reg[5], pcrd[8];
3228
3229 memset(map, 0, sizeof(map));
3230 memset(lin, 0, sizeof(lin));
3231
3232 reg[1] = 0x00000004; /* low and high clip distance map ids */
3233 reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3234 reg[3] = 0x00000000; /* point size map id & enable */
3235 reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3236 reg[4] = fp->cfg.regs[1]; /* interpolant info */
3237
3238 dummy.linear = FALSE;
3239 dummy.mask = 0xf; /* map all components of HPOS */
3240 m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3241
3242 dummy.mask = 0x0;
3243
3244 if (vp->cfg.clpd < 0x40) {
3245 for (c = 0; c < vp->cfg.clpd_nr; ++c)
3246 map[m++] = vp->cfg.clpd + c;
3247 reg[1] = (m << 8);
3248 }
3249
3250 reg[0] |= m << 8; /* adjust BFC0 id */
3251
3252 /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3253 if (nv50->rasterizer->pipe.light_twoside) {
3254 vpo = &vp->cfg.two_side[0];
3255
3256 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3257 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3258 }
3259
3260 reg[0] += m - 4; /* adjust FFC0 id */
3261 reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3262
3263 i = 0;
3264 if (fp->info.input_semantic_name[0] == TGSI_SEMANTIC_POSITION)
3265 i = 1;
3266 for (; i < fp->cfg.io_nr; i++) {
3267 ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id_fp];
3268 ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id_fp];
3269
3270 n = fp->cfg.io[i].id_vp;
3271 if (n >= vp->cfg.io_nr ||
3272 vp->info.output_semantic_name[n] != sn ||
3273 vp->info.output_semantic_index[n] != si)
3274 vpo = &dummy;
3275 else
3276 vpo = &vp->cfg.io[n];
3277
3278 m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
3279 }
3280
3281 if (nv50->rasterizer->pipe.point_size_per_vertex) {
3282 map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
3283 reg[3] = (m++ << 4) | 1;
3284 }
3285
3286 /* now fill the stateobj */
3287 so = so_new(64, 0);
3288
3289 n = (m + 3) / 4;
3290 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
3291 so_data (so, m);
3292 so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
3293 so_datap (so, map, n);
3294
3295 so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
3296 so_datap (so, reg, 4);
3297
3298 so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
3299 so_data (so, reg[4]);
3300
3301 so_method(so, tesla, 0x1540, 4);
3302 so_datap (so, lin, 4);
3303
3304 if (nv50->rasterizer->pipe.point_sprite) {
3305 nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
3306
3307 so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
3308 so_datap (so, pcrd, 8);
3309 }
3310
3311 so_ref(so, &nv50->state.programs);
3312 so_ref(NULL, &so);
3313 }
3314
3315 void
3316 nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
3317 {
3318 while (p->exec_head) {
3319 struct nv50_program_exec *e = p->exec_head;
3320
3321 p->exec_head = e->next;
3322 FREE(e);
3323 }
3324 p->exec_tail = NULL;
3325 p->exec_size = 0;
3326
3327 nouveau_bo_ref(NULL, &p->bo);
3328
3329 nouveau_resource_free(&p->data[0]);
3330
3331 p->translated = 0;
3332 }