Merge branch 'mesa_7_7_branch'
[mesa.git] / src / gallium / drivers / nv50 / nv50_program.c
1 /*
2 * Copyright 2008 Ben Skeggs
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
19 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 * SOFTWARE.
21 */
22
23 #include "pipe/p_context.h"
24 #include "pipe/p_defines.h"
25 #include "pipe/p_state.h"
26 #include "pipe/p_inlines.h"
27
28 #include "pipe/p_shader_tokens.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "tgsi/tgsi_util.h"
31
32 #include "nv50_context.h"
33
34 #define NV50_SU_MAX_TEMP 127
35 #define NV50_SU_MAX_ADDR 4
36 //#define NV50_PROGRAM_DUMP
37
38 /* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
39
40 /* ARL - gallium craps itself on progs/vp/arl.txt
41 *
42 * MSB - Like MAD, but MUL+SUB
43 * - Fuck it off, introduce a way to negate args for ops that
44 * support it.
45 *
46 * Look into inlining IMMD for ops other than MOV (make it general?)
47 * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
48 * but can emit to P_TEMP first - then MOV later. NVIDIA does this
49 *
50 * In ops such as ADD it's possible to construct a bad opcode in the !is_long()
51 * case, if the emit_src() causes the inst to suddenly become long.
52 *
53 * Verify half-insns work where expected - and force disable them where they
54 * don't work - MUL has it forcibly disabled atm as it fixes POW..
55 *
56 * FUCK! watch dst==src vectors, can overwrite components that are needed.
57 * ie. SUB R0, R0.yzxw, R0
58 *
59 * Things to check with renouveau:
60 * FP attr/result assignment - how?
61 * attrib
62 * - 0x16bc maps vp output onto fp hpos
63 * - 0x16c0 maps vp output onto fp col0
64 * result
65 * - colr always 0-3
66 * - depr always 4
67 * 0x16bc->0x16e8 --> some binding between vp/fp regs
68 * 0x16b8 --> VP output count
69 *
70 * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
71 * "MOV rcol.x, fcol.y" = 0x00000004
72 * 0x19a8 --> as above but 0x00000100 and 0x00000000
73 * - 0x00100000 used when KIL used
74 * 0x196c --> as above but 0x00000011 and 0x00000000
75 *
76 * 0x1988 --> 0xXXNNNNNN
77 * - XX == FP high something
78 */
79 struct nv50_reg {
80 enum {
81 P_TEMP,
82 P_ATTR,
83 P_RESULT,
84 P_CONST,
85 P_IMMD,
86 P_ADDR
87 } type;
88 int index;
89
90 int hw;
91 int mod;
92
93 int rhw; /* result hw for FP outputs, or interpolant index */
94 int acc; /* instruction where this reg is last read (first insn == 1) */
95 };
96
97 #define NV50_MOD_NEG 1
98 #define NV50_MOD_ABS 2
99 #define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
100 #define NV50_MOD_SAT 4
101 #define NV50_MOD_I32 8
102
103 /* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
104
105 /* STACK: Conditionals and loops have to use the (per warp) stack.
106 * Stack entries consist of an entry type (divergent path, join at),
107 * a mask indicating the active threads of the warp, and an address.
108 * MPs can store 12 stack entries internally, if we need more (and
109 * we probably do), we have to create a stack buffer in VRAM.
110 */
111 /* impose low limits for now */
112 #define NV50_MAX_COND_NESTING 4
113 #define NV50_MAX_LOOP_NESTING 3
114
115 #define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
116
117 struct nv50_pc {
118 struct nv50_program *p;
119
120 /* hw resources */
121 struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
122 struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
123
124 /* tgsi resources */
125 struct nv50_reg *temp;
126 int temp_nr;
127 struct nv50_reg *attr;
128 int attr_nr;
129 struct nv50_reg *result;
130 int result_nr;
131 struct nv50_reg *param;
132 int param_nr;
133 struct nv50_reg *immd;
134 uint32_t *immd_buf;
135 int immd_nr;
136 struct nv50_reg **addr;
137 int addr_nr;
138 uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
139
140 struct nv50_reg *temp_temp[16];
141 unsigned temp_temp_nr;
142
143 /* broadcast and destination replacement regs */
144 struct nv50_reg *r_brdc;
145 struct nv50_reg *r_dst[4];
146
147 struct nv50_reg reg_instances[16];
148 unsigned reg_instance_nr;
149
150 unsigned interp_mode[32];
151 /* perspective interpolation registers */
152 struct nv50_reg *iv_p;
153 struct nv50_reg *iv_c;
154
155 struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
156 struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
157 struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
158 int if_lvl, loop_lvl;
159 unsigned loop_pos[NV50_MAX_LOOP_NESTING];
160
161 unsigned *insn_pos; /* actual program offset of each TGSI insn */
162 boolean in_subroutine;
163
164 /* current instruction and total number of insns */
165 unsigned insn_cur;
166 unsigned insn_nr;
167
168 boolean allow32;
169
170 uint8_t edgeflag_out;
171 };
172
173 static INLINE void
174 ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
175 {
176 reg->type = type;
177 reg->index = index;
178 reg->hw = hw;
179 reg->mod = 0;
180 reg->rhw = -1;
181 reg->acc = 0;
182 }
183
184 static INLINE unsigned
185 popcnt4(uint32_t val)
186 {
187 static const unsigned cnt[16]
188 = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
189 return cnt[val & 0xf];
190 }
191
192 static void
193 terminate_mbb(struct nv50_pc *pc)
194 {
195 int i;
196
197 /* remove records of temporary address register values */
198 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
199 pc->r_addr[i].rhw = -1;
200 }
201
202 static void
203 alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
204 {
205 int i = 0;
206
207 if (reg->type == P_RESULT) {
208 if (pc->p->cfg.high_result < (reg->hw + 1))
209 pc->p->cfg.high_result = reg->hw + 1;
210 }
211
212 if (reg->type != P_TEMP)
213 return;
214
215 if (reg->hw >= 0) {
216 /*XXX: do this here too to catch FP temp-as-attr usage..
217 * not clean, but works */
218 if (pc->p->cfg.high_temp < (reg->hw + 1))
219 pc->p->cfg.high_temp = reg->hw + 1;
220 return;
221 }
222
223 if (reg->rhw != -1) {
224 /* try to allocate temporary with index rhw first */
225 if (!(pc->r_temp[reg->rhw])) {
226 pc->r_temp[reg->rhw] = reg;
227 reg->hw = reg->rhw;
228 if (pc->p->cfg.high_temp < (reg->rhw + 1))
229 pc->p->cfg.high_temp = reg->rhw + 1;
230 return;
231 }
232 /* make sure we don't get things like $r0 needs to go
233 * in $r1 and $r1 in $r0
234 */
235 i = pc->result_nr * 4;
236 }
237
238 for (; i < NV50_SU_MAX_TEMP; i++) {
239 if (!(pc->r_temp[i])) {
240 pc->r_temp[i] = reg;
241 reg->hw = i;
242 if (pc->p->cfg.high_temp < (i + 1))
243 pc->p->cfg.high_temp = i + 1;
244 return;
245 }
246 }
247
248 assert(0);
249 }
250
251 static INLINE struct nv50_reg *
252 reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
253 {
254 struct nv50_reg *ri;
255
256 assert(pc->reg_instance_nr < 16);
257 ri = &pc->reg_instances[pc->reg_instance_nr++];
258 if (reg) {
259 alloc_reg(pc, reg);
260 *ri = *reg;
261 reg->mod = 0;
262 }
263 return ri;
264 }
265
266 /* XXX: For shaders that aren't executed linearly (e.g. shaders that
267 * contain loops), we need to assign all hw regs to TGSI TEMPs early,
268 * lest we risk temp_temps overwriting regs alloc'd "later".
269 */
270 static struct nv50_reg *
271 alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
272 {
273 struct nv50_reg *r;
274 int i;
275
276 if (dst && dst->type == P_TEMP && dst->hw == -1)
277 return dst;
278
279 for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
280 if (!pc->r_temp[i]) {
281 r = MALLOC_STRUCT(nv50_reg);
282 ctor_reg(r, P_TEMP, -1, i);
283 pc->r_temp[i] = r;
284 return r;
285 }
286 }
287
288 assert(0);
289 return NULL;
290 }
291
292 /* release the hardware resource held by r */
293 static void
294 release_hw(struct nv50_pc *pc, struct nv50_reg *r)
295 {
296 assert(r->type == P_TEMP);
297 if (r->hw == -1)
298 return;
299
300 assert(pc->r_temp[r->hw] == r);
301 pc->r_temp[r->hw] = NULL;
302
303 r->acc = 0;
304 if (r->index == -1)
305 FREE(r);
306 }
307
308 static void
309 free_temp(struct nv50_pc *pc, struct nv50_reg *r)
310 {
311 if (r->index == -1) {
312 unsigned hw = r->hw;
313
314 FREE(pc->r_temp[hw]);
315 pc->r_temp[hw] = NULL;
316 }
317 }
318
319 static int
320 alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
321 {
322 int i;
323
324 if ((idx + 4) >= NV50_SU_MAX_TEMP)
325 return 1;
326
327 if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
328 pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
329 return alloc_temp4(pc, dst, idx + 4);
330
331 for (i = 0; i < 4; i++) {
332 dst[i] = MALLOC_STRUCT(nv50_reg);
333 ctor_reg(dst[i], P_TEMP, -1, idx + i);
334 pc->r_temp[idx + i] = dst[i];
335 }
336
337 return 0;
338 }
339
340 static void
341 free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
342 {
343 int i;
344
345 for (i = 0; i < 4; i++)
346 free_temp(pc, reg[i]);
347 }
348
349 static struct nv50_reg *
350 temp_temp(struct nv50_pc *pc)
351 {
352 if (pc->temp_temp_nr >= 16)
353 assert(0);
354
355 pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
356 return pc->temp_temp[pc->temp_temp_nr++];
357 }
358
359 static void
360 kill_temp_temp(struct nv50_pc *pc)
361 {
362 int i;
363
364 for (i = 0; i < pc->temp_temp_nr; i++)
365 free_temp(pc, pc->temp_temp[i]);
366 pc->temp_temp_nr = 0;
367 }
368
369 static int
370 ctor_immd_4u32(struct nv50_pc *pc,
371 uint32_t x, uint32_t y, uint32_t z, uint32_t w)
372 {
373 unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
374
375 pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
376
377 pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
378 pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
379 pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
380 pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
381
382 return pc->immd_nr++;
383 }
384
385 static INLINE int
386 ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
387 {
388 return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
389 }
390
391 static struct nv50_reg *
392 alloc_immd(struct nv50_pc *pc, float f)
393 {
394 struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
395 unsigned hw;
396
397 for (hw = 0; hw < pc->immd_nr * 4; hw++)
398 if (pc->immd_buf[hw] == fui(f))
399 break;
400
401 if (hw == pc->immd_nr * 4)
402 hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
403
404 ctor_reg(r, P_IMMD, -1, hw);
405 return r;
406 }
407
408 static struct nv50_program_exec *
409 exec(struct nv50_pc *pc)
410 {
411 struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
412
413 e->param.index = -1;
414 return e;
415 }
416
417 static void
418 emit(struct nv50_pc *pc, struct nv50_program_exec *e)
419 {
420 struct nv50_program *p = pc->p;
421
422 if (p->exec_tail)
423 p->exec_tail->next = e;
424 if (!p->exec_head)
425 p->exec_head = e;
426 p->exec_tail = e;
427 p->exec_size += (e->inst[0] & 1) ? 2 : 1;
428 }
429
430 static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
431
432 static boolean
433 is_long(struct nv50_program_exec *e)
434 {
435 if (e->inst[0] & 1)
436 return TRUE;
437 return FALSE;
438 }
439
440 static boolean
441 is_immd(struct nv50_program_exec *e)
442 {
443 if (is_long(e) && (e->inst[1] & 3) == 3)
444 return TRUE;
445 return FALSE;
446 }
447
448 static boolean
449 is_join(struct nv50_program_exec *e)
450 {
451 if (is_long(e) && (e->inst[1] & 3) == 2)
452 return TRUE;
453 return FALSE;
454 }
455
456 static INLINE void
457 set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
458 struct nv50_program_exec *e)
459 {
460 assert(!is_immd(e));
461 set_long(pc, e);
462 e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
463 e->inst[1] |= (pred << 7) | (idx << 12);
464 }
465
466 static INLINE void
467 set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
468 struct nv50_program_exec *e)
469 {
470 set_long(pc, e);
471 e->inst[1] &= ~((0x3 << 4) | (1 << 6));
472 e->inst[1] |= (idx << 4) | (on << 6);
473 }
474
475 static INLINE void
476 set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
477 {
478 if (is_long(e))
479 return;
480
481 e->inst[0] |= 1;
482 set_pred(pc, 0xf, 0, e);
483 set_pred_wr(pc, 0, 0, e);
484 }
485
486 static INLINE void
487 set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
488 {
489 if (dst->type == P_RESULT) {
490 set_long(pc, e);
491 e->inst[1] |= 0x00000008;
492 }
493
494 alloc_reg(pc, dst);
495 if (dst->hw > 63)
496 set_long(pc, e);
497 e->inst[0] |= (dst->hw << 2);
498 }
499
500 static INLINE void
501 set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
502 {
503 set_long(pc, e);
504 /* XXX: can't be predicated - bits overlap; cases where both
505 * are required should be avoided by using pc->allow32 */
506 set_pred(pc, 0, 0, e);
507 set_pred_wr(pc, 0, 0, e);
508
509 e->inst[1] |= 0x00000002 | 0x00000001;
510 e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
511 e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
512 }
513
514 static INLINE void
515 set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
516 {
517 assert(!(e->inst[0] & 0x0c000000));
518 assert(!(e->inst[1] & 0x00000004));
519
520 e->inst[0] |= (a->hw & 3) << 26;
521 e->inst[1] |= (a->hw >> 2) << 2;
522 }
523
524 static void
525 emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
526 struct nv50_reg *src0, uint16_t src1_val)
527 {
528 struct nv50_program_exec *e = exec(pc);
529
530 e->inst[0] = 0xd0000000 | (src1_val << 9);
531 e->inst[1] = 0x20000000;
532 set_long(pc, e);
533 e->inst[0] |= dst->hw << 2;
534 if (src0) /* otherwise will add to $a0, which is always 0 */
535 set_addr(e, src0);
536
537 emit(pc, e);
538 }
539
540 static struct nv50_reg *
541 alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
542 {
543 struct nv50_reg *a_tgsi = NULL, *a = NULL;
544 int i;
545 uint8_t avail = ~pc->addr_alloc;
546
547 if (!ref) {
548 /* allocate for TGSI_FILE_ADDRESS */
549 while (avail) {
550 i = ffs(avail) - 1;
551
552 if (pc->r_addr[i].rhw < 0 ||
553 pc->r_addr[i].acc != pc->insn_cur) {
554 pc->addr_alloc |= (1 << i);
555
556 pc->r_addr[i].rhw = -1;
557 pc->r_addr[i].index = i;
558 return &pc->r_addr[i];
559 }
560 avail &= ~(1 << i);
561 }
562 assert(0);
563 return NULL;
564 }
565
566 /* Allocate and set an address reg so we can access 'ref'.
567 *
568 * If and r_addr->index will be -1 or the hw index the value
569 * value in rhw is relative to. If rhw < 0, the reg has not
570 * been initialized or is in use for TGSI_FILE_ADDRESS.
571 */
572 while (avail) { /* only consider regs that are not TGSI */
573 i = ffs(avail) - 1;
574 avail &= ~(1 << i);
575
576 if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
577 /* prefer an usused reg with low hw index */
578 a = &pc->r_addr[i];
579 continue;
580 }
581 if (!a && pc->r_addr[i].acc != pc->insn_cur)
582 a = &pc->r_addr[i];
583
584 if (ref->hw - pc->r_addr[i].rhw >= 128)
585 continue;
586
587 if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
588 (ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
589 pc->r_addr[i].acc = pc->insn_cur;
590 return &pc->r_addr[i];
591 }
592 }
593 assert(a);
594
595 if (ref->acc < 0)
596 a_tgsi = pc->addr[ref->index];
597
598 emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
599
600 a->rhw = ref->hw & ~0x7f;
601 a->acc = pc->insn_cur;
602 a->index = a_tgsi ? ref->index : -1;
603 return a;
604 }
605
606 #define INTERP_LINEAR 0
607 #define INTERP_FLAT 1
608 #define INTERP_PERSPECTIVE 2
609 #define INTERP_CENTROID 4
610
611 /* interpolant index has been stored in dst->rhw */
612 static void
613 emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
614 unsigned mode)
615 {
616 assert(dst->rhw != -1);
617 struct nv50_program_exec *e = exec(pc);
618
619 e->inst[0] |= 0x80000000;
620 set_dst(pc, dst, e);
621 e->inst[0] |= (dst->rhw << 16);
622
623 if (mode & INTERP_FLAT) {
624 e->inst[0] |= (1 << 8);
625 } else {
626 if (mode & INTERP_PERSPECTIVE) {
627 e->inst[0] |= (1 << 25);
628 alloc_reg(pc, iv);
629 e->inst[0] |= (iv->hw << 9);
630 }
631
632 if (mode & INTERP_CENTROID)
633 e->inst[0] |= (1 << 24);
634 }
635
636 emit(pc, e);
637 }
638
639 static void
640 set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
641 struct nv50_program_exec *e)
642 {
643 set_long(pc, e);
644
645 e->param.index = src->hw & 127;
646 e->param.shift = s;
647 e->param.mask = m << (s % 32);
648
649 if (src->hw > 127)
650 set_addr(e, alloc_addr(pc, src));
651 else
652 if (src->acc < 0) {
653 assert(src->type == P_CONST);
654 set_addr(e, pc->addr[src->index]);
655 }
656
657 e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
658 }
659
660 /* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
661 static void
662 emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
663 {
664 struct nv50_program_exec *e = exec(pc);
665
666 e->inst[0] = 0x10000000;
667 if (!pc->allow32)
668 set_long(pc, e);
669
670 set_dst(pc, dst, e);
671
672 if (!is_long(e) && src->type == P_IMMD) {
673 set_immd(pc, src, e);
674 /*XXX: 32-bit, but steals part of "half" reg space - need to
675 * catch and handle this case if/when we do half-regs
676 */
677 } else
678 if (src->type == P_IMMD || src->type == P_CONST) {
679 set_long(pc, e);
680 set_data(pc, src, 0x7f, 9, e);
681 e->inst[1] |= 0x20000000; /* mov from c[] */
682 } else {
683 if (src->type == P_ATTR) {
684 set_long(pc, e);
685 e->inst[1] |= 0x00200000;
686 }
687
688 alloc_reg(pc, src);
689 if (src->hw > 63)
690 set_long(pc, e);
691 e->inst[0] |= (src->hw << 9);
692 }
693
694 if (is_long(e) && !is_immd(e)) {
695 e->inst[1] |= 0x04000000; /* 32-bit */
696 e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
697 if (!(e->inst[1] & 0x20000000))
698 e->inst[1] |= 0x00030000; /* lane mask 2:3 */
699 } else
700 e->inst[0] |= 0x00008000;
701
702 emit(pc, e);
703 }
704
705 static INLINE void
706 emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
707 {
708 struct nv50_reg *imm = alloc_immd(pc, f);
709 emit_mov(pc, dst, imm);
710 FREE(imm);
711 }
712
713 /* Assign the hw of the discarded temporary register src
714 * to the tgsi register dst and free src.
715 */
716 static void
717 assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
718 {
719 assert(src->index == -1 && src->hw != -1);
720
721 if (pc->if_lvl || pc->loop_lvl ||
722 (dst->type != P_TEMP) ||
723 (src->hw < pc->result_nr * 4 &&
724 pc->p->type == PIPE_SHADER_FRAGMENT) ||
725 pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
726 pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
727
728 emit_mov(pc, dst, src);
729 free_temp(pc, src);
730 return;
731 }
732
733 if (dst->hw != -1)
734 pc->r_temp[dst->hw] = NULL;
735 pc->r_temp[src->hw] = dst;
736 dst->hw = src->hw;
737
738 FREE(src);
739 }
740
741 static void
742 emit_nop(struct nv50_pc *pc)
743 {
744 struct nv50_program_exec *e = exec(pc);
745
746 e->inst[0] = 0xf0000000;
747 set_long(pc, e);
748 e->inst[1] = 0xe0000000;
749 emit(pc, e);
750 }
751
752 static boolean
753 check_swap_src_0_1(struct nv50_pc *pc,
754 struct nv50_reg **s0, struct nv50_reg **s1)
755 {
756 struct nv50_reg *src0 = *s0, *src1 = *s1;
757
758 if (src0->type == P_CONST) {
759 if (src1->type != P_CONST) {
760 *s0 = src1;
761 *s1 = src0;
762 return TRUE;
763 }
764 } else
765 if (src1->type == P_ATTR) {
766 if (src0->type != P_ATTR) {
767 *s0 = src1;
768 *s1 = src0;
769 return TRUE;
770 }
771 }
772
773 return FALSE;
774 }
775
776 static void
777 set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
778 struct nv50_program_exec *e)
779 {
780 struct nv50_reg *temp;
781
782 if (src->type != P_TEMP) {
783 temp = temp_temp(pc);
784 emit_mov(pc, temp, src);
785 src = temp;
786 }
787
788 alloc_reg(pc, src);
789 if (src->hw > 63)
790 set_long(pc, e);
791 e->inst[0] |= (src->hw << 9);
792 }
793
794 static void
795 set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
796 {
797 if (src->type == P_ATTR) {
798 set_long(pc, e);
799 e->inst[1] |= 0x00200000;
800 } else
801 if (src->type == P_CONST || src->type == P_IMMD) {
802 struct nv50_reg *temp = temp_temp(pc);
803
804 emit_mov(pc, temp, src);
805 src = temp;
806 }
807
808 alloc_reg(pc, src);
809 if (src->hw > 63)
810 set_long(pc, e);
811 e->inst[0] |= (src->hw << 9);
812 }
813
814 static void
815 set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
816 {
817 if (src->type == P_ATTR) {
818 struct nv50_reg *temp = temp_temp(pc);
819
820 emit_mov(pc, temp, src);
821 src = temp;
822 } else
823 if (src->type == P_CONST || src->type == P_IMMD) {
824 assert(!(e->inst[0] & 0x00800000));
825 if (e->inst[0] & 0x01000000) {
826 struct nv50_reg *temp = temp_temp(pc);
827
828 emit_mov(pc, temp, src);
829 src = temp;
830 } else {
831 set_data(pc, src, 0x7f, 16, e);
832 e->inst[0] |= 0x00800000;
833 }
834 }
835
836 alloc_reg(pc, src);
837 if (src->hw > 63)
838 set_long(pc, e);
839 e->inst[0] |= ((src->hw & 127) << 16);
840 }
841
842 static void
843 set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
844 {
845 set_long(pc, e);
846
847 if (src->type == P_ATTR) {
848 struct nv50_reg *temp = temp_temp(pc);
849
850 emit_mov(pc, temp, src);
851 src = temp;
852 } else
853 if (src->type == P_CONST || src->type == P_IMMD) {
854 assert(!(e->inst[0] & 0x01000000));
855 if (e->inst[0] & 0x00800000) {
856 struct nv50_reg *temp = temp_temp(pc);
857
858 emit_mov(pc, temp, src);
859 src = temp;
860 } else {
861 set_data(pc, src, 0x7f, 32+14, e);
862 e->inst[0] |= 0x01000000;
863 }
864 }
865
866 alloc_reg(pc, src);
867 e->inst[1] |= ((src->hw & 127) << 14);
868 }
869
870 static void
871 emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
872 {
873 struct nv50_program_exec *e = exec(pc);
874
875 assert(dst->type == P_TEMP);
876 e->inst[1] = 0x20000000 | (pred << 12);
877 set_long(pc, e);
878 set_dst(pc, dst, e);
879
880 emit(pc, e);
881 }
882
883 static void
884 emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
885 {
886 struct nv50_program_exec *e = exec(pc);
887
888 e->inst[0] = 0x000001fc;
889 e->inst[1] = 0xa0000008;
890 set_long(pc, e);
891 set_pred_wr(pc, 1, pred, e);
892 set_src_0_restricted(pc, src, e);
893
894 emit(pc, e);
895 }
896
897 static void
898 emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
899 struct nv50_reg *src1)
900 {
901 struct nv50_program_exec *e = exec(pc);
902
903 e->inst[0] |= 0xc0000000;
904
905 if (!pc->allow32)
906 set_long(pc, e);
907
908 check_swap_src_0_1(pc, &src0, &src1);
909 set_dst(pc, dst, e);
910 set_src_0(pc, src0, e);
911 if (src1->type == P_IMMD && !is_long(e)) {
912 if (src0->mod ^ src1->mod)
913 e->inst[0] |= 0x00008000;
914 set_immd(pc, src1, e);
915 } else {
916 set_src_1(pc, src1, e);
917 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
918 if (is_long(e))
919 e->inst[1] |= 0x08000000;
920 else
921 e->inst[0] |= 0x00008000;
922 }
923 }
924
925 emit(pc, e);
926 }
927
928 static void
929 emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
930 struct nv50_reg *src0, struct nv50_reg *src1)
931 {
932 struct nv50_program_exec *e = exec(pc);
933
934 e->inst[0] = 0xb0000000;
935
936 alloc_reg(pc, src1);
937 check_swap_src_0_1(pc, &src0, &src1);
938
939 if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
940 set_long(pc, e);
941 e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
942 ((src1->mod & NV50_MOD_NEG) << 27);
943 }
944
945 set_dst(pc, dst, e);
946 set_src_0(pc, src0, e);
947 if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
948 set_src_2(pc, src1, e);
949 else
950 if (src1->type == P_IMMD)
951 set_immd(pc, src1, e);
952 else
953 set_src_1(pc, src1, e);
954
955 emit(pc, e);
956 }
957
958 static void
959 emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
960 uint8_t s)
961 {
962 struct nv50_program_exec *e = exec(pc);
963
964 set_long(pc, e);
965 e->inst[1] |= 0xc0000000;
966
967 e->inst[0] |= dst->hw << 2;
968 e->inst[0] |= s << 16; /* shift left */
969 set_src_0_restricted(pc, src, e);
970
971 emit(pc, e);
972 }
973
974 #define NV50_MAX_F32 0x880
975 #define NV50_MAX_S32 0x08c
976 #define NV50_MAX_U32 0x084
977 #define NV50_MIN_F32 0x8a0
978 #define NV50_MIN_S32 0x0ac
979 #define NV50_MIN_U32 0x0a4
980
981 static void
982 emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
983 struct nv50_reg *src0, struct nv50_reg *src1)
984 {
985 struct nv50_program_exec *e = exec(pc);
986
987 set_long(pc, e);
988 e->inst[0] |= 0x30000000 | ((sub & 0x800) << 20);
989 e->inst[1] |= (sub << 24);
990
991 check_swap_src_0_1(pc, &src0, &src1);
992 set_dst(pc, dst, e);
993 set_src_0(pc, src0, e);
994 set_src_1(pc, src1, e);
995
996 if (src0->mod & NV50_MOD_ABS)
997 e->inst[1] |= 0x00100000;
998 if (src1->mod & NV50_MOD_ABS)
999 e->inst[1] |= 0x00080000;
1000
1001 emit(pc, e);
1002 }
1003
1004 static INLINE void
1005 emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1006 struct nv50_reg *src1)
1007 {
1008 src1->mod ^= NV50_MOD_NEG;
1009 emit_add(pc, dst, src0, src1);
1010 src1->mod ^= NV50_MOD_NEG;
1011 }
1012
1013 static void
1014 emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1015 struct nv50_reg *src1, unsigned op)
1016 {
1017 struct nv50_program_exec *e = exec(pc);
1018
1019 e->inst[0] = 0xd0000000;
1020 set_long(pc, e);
1021
1022 check_swap_src_0_1(pc, &src0, &src1);
1023 set_dst(pc, dst, e);
1024 set_src_0(pc, src0, e);
1025
1026 if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
1027 op != TGSI_OPCODE_XOR)
1028 assert(!"invalid bit op");
1029
1030 assert(!(src0->mod | src1->mod));
1031
1032 if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
1033 set_immd(pc, src1, e);
1034 if (op == TGSI_OPCODE_OR)
1035 e->inst[0] |= 0x0100;
1036 else
1037 if (op == TGSI_OPCODE_XOR)
1038 e->inst[0] |= 0x8000;
1039 } else {
1040 set_src_1(pc, src1, e);
1041 e->inst[1] |= 0x04000000; /* 32 bit */
1042 if (op == TGSI_OPCODE_OR)
1043 e->inst[1] |= 0x4000;
1044 else
1045 if (op == TGSI_OPCODE_XOR)
1046 e->inst[1] |= 0x8000;
1047 }
1048
1049 emit(pc, e);
1050 }
1051
1052 static void
1053 emit_shift(struct nv50_pc *pc, struct nv50_reg *dst,
1054 struct nv50_reg *src0, struct nv50_reg *src1, unsigned dir)
1055 {
1056 struct nv50_program_exec *e = exec(pc);
1057
1058 e->inst[0] = 0x30000000;
1059 e->inst[1] = 0xc4000000;
1060
1061 set_long(pc, e);
1062 set_dst(pc, dst, e);
1063 set_src_0(pc, src0, e);
1064
1065 if (src1->type == P_IMMD) {
1066 e->inst[1] |= (1 << 20);
1067 e->inst[0] |= (pc->immd_buf[src1->hw] & 0x7f) << 16;
1068 } else
1069 set_src_1(pc, src1, e);
1070
1071 if (dir != TGSI_OPCODE_SHL)
1072 e->inst[1] |= (1 << 29);
1073
1074 if (dir == TGSI_OPCODE_ISHR)
1075 e->inst[1] |= (1 << 27);
1076
1077 emit(pc, e);
1078 }
1079
1080 static void
1081 emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1082 struct nv50_reg *src1, struct nv50_reg *src2)
1083 {
1084 struct nv50_program_exec *e = exec(pc);
1085
1086 e->inst[0] |= 0xe0000000;
1087
1088 check_swap_src_0_1(pc, &src0, &src1);
1089 set_dst(pc, dst, e);
1090 set_src_0(pc, src0, e);
1091 set_src_1(pc, src1, e);
1092 set_src_2(pc, src2, e);
1093
1094 if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
1095 e->inst[1] |= 0x04000000;
1096 if (src2->mod & NV50_MOD_NEG)
1097 e->inst[1] |= 0x08000000;
1098
1099 emit(pc, e);
1100 }
1101
1102 static INLINE void
1103 emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
1104 struct nv50_reg *src1, struct nv50_reg *src2)
1105 {
1106 src2->mod ^= NV50_MOD_NEG;
1107 emit_mad(pc, dst, src0, src1, src2);
1108 src2->mod ^= NV50_MOD_NEG;
1109 }
1110
1111 #define NV50_FLOP_RCP 0
1112 #define NV50_FLOP_RSQ 2
1113 #define NV50_FLOP_LG2 3
1114 #define NV50_FLOP_SIN 4
1115 #define NV50_FLOP_COS 5
1116 #define NV50_FLOP_EX2 6
1117
1118 /* rcp, rsqrt, lg2 support neg and abs */
1119 static void
1120 emit_flop(struct nv50_pc *pc, unsigned sub,
1121 struct nv50_reg *dst, struct nv50_reg *src)
1122 {
1123 struct nv50_program_exec *e = exec(pc);
1124
1125 e->inst[0] |= 0x90000000;
1126 if (sub || src->mod) {
1127 set_long(pc, e);
1128 e->inst[1] |= (sub << 29);
1129 }
1130
1131 set_dst(pc, dst, e);
1132 set_src_0_restricted(pc, src, e);
1133
1134 assert(!src->mod || sub < 4);
1135
1136 if (src->mod & NV50_MOD_NEG)
1137 e->inst[1] |= 0x04000000;
1138 if (src->mod & NV50_MOD_ABS)
1139 e->inst[1] |= 0x00100000;
1140
1141 emit(pc, e);
1142 }
1143
1144 static void
1145 emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1146 {
1147 struct nv50_program_exec *e = exec(pc);
1148
1149 e->inst[0] |= 0xb0000000;
1150
1151 set_dst(pc, dst, e);
1152 set_src_0(pc, src, e);
1153 set_long(pc, e);
1154 e->inst[1] |= (6 << 29) | 0x00004000;
1155
1156 if (src->mod & NV50_MOD_NEG)
1157 e->inst[1] |= 0x04000000;
1158 if (src->mod & NV50_MOD_ABS)
1159 e->inst[1] |= 0x00100000;
1160
1161 emit(pc, e);
1162 }
1163
1164 static void
1165 emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1166 {
1167 struct nv50_program_exec *e = exec(pc);
1168
1169 e->inst[0] |= 0xb0000000;
1170
1171 set_dst(pc, dst, e);
1172 set_src_0(pc, src, e);
1173 set_long(pc, e);
1174 e->inst[1] |= (6 << 29);
1175
1176 if (src->mod & NV50_MOD_NEG)
1177 e->inst[1] |= 0x04000000;
1178 if (src->mod & NV50_MOD_ABS)
1179 e->inst[1] |= 0x00100000;
1180
1181 emit(pc, e);
1182 }
1183
1184 #define CVT_RN (0x00 << 16)
1185 #define CVT_FLOOR (0x02 << 16)
1186 #define CVT_CEIL (0x04 << 16)
1187 #define CVT_TRUNC (0x06 << 16)
1188 #define CVT_SAT (0x08 << 16)
1189 #define CVT_ABS (0x10 << 16)
1190
1191 #define CVT_X32_X32 0x04004000
1192 #define CVT_X32_S32 0x04014000
1193 #define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
1194 #define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
1195 #define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
1196 #define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
1197 #define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
1198 #define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
1199 #define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
1200 #define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
1201
1202 #define CVT_NEG 0x20000000
1203 #define CVT_RI 0x08000000
1204
1205 static void
1206 emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
1207 int wp, uint32_t cvn)
1208 {
1209 struct nv50_program_exec *e;
1210
1211 e = exec(pc);
1212
1213 if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
1214 if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
1215
1216 e->inst[0] = 0xa0000000;
1217 e->inst[1] = cvn;
1218 set_long(pc, e);
1219 set_src_0(pc, src, e);
1220
1221 if (wp >= 0)
1222 set_pred_wr(pc, 1, wp, e);
1223
1224 if (dst)
1225 set_dst(pc, dst, e);
1226 else {
1227 e->inst[0] |= 0x000001fc;
1228 e->inst[1] |= 0x00000008;
1229 }
1230
1231 emit(pc, e);
1232 }
1233
1234 /* nv50 Condition codes:
1235 * 0x1 = LT
1236 * 0x2 = EQ
1237 * 0x3 = LE
1238 * 0x4 = GT
1239 * 0x5 = NE
1240 * 0x6 = GE
1241 * 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
1242 * 0x8 = unordered bit (allows NaN)
1243 *
1244 * mode = 0x04 (u32), 0x0c (s32), 0x80 (f32)
1245 */
1246 static void
1247 emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
1248 struct nv50_reg *src0, struct nv50_reg *src1, uint8_t mode)
1249 {
1250 static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
1251
1252 struct nv50_program_exec *e = exec(pc);
1253 struct nv50_reg *rdst;
1254
1255 assert(ccode < 16);
1256 if (check_swap_src_0_1(pc, &src0, &src1))
1257 ccode = cc_swapped[ccode & 7] | (ccode & 8);
1258
1259 rdst = dst;
1260 if (dst && dst->type != P_TEMP)
1261 dst = alloc_temp(pc, NULL);
1262
1263 set_long(pc, e);
1264 e->inst[0] |= 0x30000000 | (mode << 24);
1265 e->inst[1] |= 0x60000000 | (ccode << 14);
1266
1267 if (wp >= 0)
1268 set_pred_wr(pc, 1, wp, e);
1269 if (dst)
1270 set_dst(pc, dst, e);
1271 else {
1272 e->inst[0] |= 0x000001fc;
1273 e->inst[1] |= 0x00000008;
1274 }
1275
1276 set_src_0(pc, src0, e);
1277 set_src_1(pc, src1, e);
1278
1279 emit(pc, e);
1280
1281 if (rdst && mode == 0x80) /* convert to float ? */
1282 emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
1283 if (rdst && rdst != dst)
1284 free_temp(pc, dst);
1285 }
1286
1287 static INLINE void
1288 map_tgsi_setop_hw(unsigned op, uint8_t *cc, uint8_t *ty)
1289 {
1290 switch (op) {
1291 case TGSI_OPCODE_SLT: *cc = 0x1; *ty = 0x80; break;
1292 case TGSI_OPCODE_SGE: *cc = 0x6; *ty = 0x80; break;
1293 case TGSI_OPCODE_SEQ: *cc = 0x2; *ty = 0x80; break;
1294 case TGSI_OPCODE_SGT: *cc = 0x4; *ty = 0x80; break;
1295 case TGSI_OPCODE_SLE: *cc = 0x3; *ty = 0x80; break;
1296 case TGSI_OPCODE_SNE: *cc = 0xd; *ty = 0x80; break;
1297
1298 case TGSI_OPCODE_ISLT: *cc = 0x1; *ty = 0x0c; break;
1299 case TGSI_OPCODE_ISGE: *cc = 0x6; *ty = 0x0c; break;
1300 case TGSI_OPCODE_USEQ: *cc = 0x2; *ty = 0x04; break;
1301 case TGSI_OPCODE_USGE: *cc = 0x6; *ty = 0x04; break;
1302 case TGSI_OPCODE_USLT: *cc = 0x1; *ty = 0x04; break;
1303 case TGSI_OPCODE_USNE: *cc = 0x5; *ty = 0x04; break;
1304 default:
1305 assert(0);
1306 return;
1307 }
1308 }
1309
1310 static void
1311 emit_add_b32(struct nv50_pc *pc, struct nv50_reg *dst,
1312 struct nv50_reg *src0, struct nv50_reg *rsrc1)
1313 {
1314 struct nv50_program_exec *e = exec(pc);
1315 struct nv50_reg *src1;
1316
1317 e->inst[0] = 0x20000000;
1318
1319 alloc_reg(pc, rsrc1);
1320 check_swap_src_0_1(pc, &src0, &rsrc1);
1321
1322 src1 = rsrc1;
1323 if (src0->mod & rsrc1->mod & NV50_MOD_NEG) {
1324 src1 = alloc_temp(pc, NULL);
1325 emit_cvt(pc, src1, rsrc1, -1, CVT_S32_S32);
1326 }
1327
1328 if (!pc->allow32 || src1->hw > 63 ||
1329 (src1->type != P_TEMP && src1->type != P_IMMD))
1330 set_long(pc, e);
1331
1332 set_dst(pc, dst, e);
1333 set_src_0(pc, src0, e);
1334
1335 if (is_long(e)) {
1336 e->inst[1] |= 1 << 26;
1337 set_src_2(pc, src1, e);
1338 } else {
1339 e->inst[0] |= 0x8000;
1340 if (src1->type == P_IMMD)
1341 set_immd(pc, src1, e);
1342 else
1343 set_src_1(pc, src1, e);
1344 }
1345
1346 if (src0->mod & NV50_MOD_NEG)
1347 e->inst[0] |= 1 << 28;
1348 else
1349 if (src1->mod & NV50_MOD_NEG)
1350 e->inst[0] |= 1 << 22;
1351
1352 emit(pc, e);
1353
1354 if (src1 != rsrc1)
1355 free_temp(pc, src1);
1356 }
1357
1358 static void
1359 emit_sad(struct nv50_pc *pc, struct nv50_reg *dst,
1360 struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2)
1361 {
1362 struct nv50_program_exec *e = exec(pc);
1363
1364 e->inst[0] = 0x50000000;
1365 set_dst(pc, dst, e);
1366 set_src_0(pc, src0, e);
1367 set_src_1(pc, src1, e);
1368 alloc_reg(pc, src2);
1369 if (is_long(e) || (src2->type != dst->type) || (src2->hw != dst->hw))
1370 set_src_2(pc, src2, e);
1371
1372 if (is_long(e))
1373 e->inst[1] |= 0x0c << 24;
1374 else
1375 e->inst[0] |= 0x81 << 8;
1376 }
1377
1378 static INLINE void
1379 emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1380 {
1381 emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
1382 }
1383
1384 static void
1385 emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
1386 struct nv50_reg *v, struct nv50_reg *e)
1387 {
1388 struct nv50_reg *temp = alloc_temp(pc, NULL);
1389
1390 emit_flop(pc, NV50_FLOP_LG2, temp, v);
1391 emit_mul(pc, temp, temp, e);
1392 emit_preex2(pc, temp, temp);
1393 emit_flop(pc, NV50_FLOP_EX2, dst, temp);
1394
1395 free_temp(pc, temp);
1396 }
1397
1398 static INLINE void
1399 emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1400 {
1401 emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
1402 }
1403
1404 static void
1405 emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1406 struct nv50_reg **src)
1407 {
1408 struct nv50_reg *one = alloc_immd(pc, 1.0);
1409 struct nv50_reg *zero = alloc_immd(pc, 0.0);
1410 struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
1411 struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
1412 struct nv50_reg *tmp[4];
1413 boolean allow32 = pc->allow32;
1414
1415 pc->allow32 = FALSE;
1416
1417 if (mask & (3 << 1)) {
1418 tmp[0] = alloc_temp(pc, NULL);
1419 emit_minmax(pc, NV50_MAX_F32, tmp[0], src[0], zero);
1420 }
1421
1422 if (mask & (1 << 2)) {
1423 set_pred_wr(pc, 1, 0, pc->p->exec_tail);
1424
1425 tmp[1] = temp_temp(pc);
1426 emit_minmax(pc, NV50_MAX_F32, tmp[1], src[1], zero);
1427
1428 tmp[3] = temp_temp(pc);
1429 emit_minmax(pc, NV50_MAX_F32, tmp[3], src[3], neg128);
1430 emit_minmax(pc, NV50_MIN_F32, tmp[3], tmp[3], pos128);
1431
1432 emit_pow(pc, dst[2], tmp[1], tmp[3]);
1433 emit_mov(pc, dst[2], zero);
1434 set_pred(pc, 3, 0, pc->p->exec_tail);
1435 }
1436
1437 if (mask & (1 << 1))
1438 assimilate_temp(pc, dst[1], tmp[0]);
1439 else
1440 if (mask & (1 << 2))
1441 free_temp(pc, tmp[0]);
1442
1443 pc->allow32 = allow32;
1444
1445 /* do this last, in case src[i,j] == dst[0,3] */
1446 if (mask & (1 << 0))
1447 emit_mov(pc, dst[0], one);
1448
1449 if (mask & (1 << 3))
1450 emit_mov(pc, dst[3], one);
1451
1452 FREE(pos128);
1453 FREE(neg128);
1454 FREE(zero);
1455 FREE(one);
1456 }
1457
1458 static void
1459 emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
1460 {
1461 struct nv50_program_exec *e;
1462 const int r_pred = 1;
1463
1464 e = exec(pc);
1465 e->inst[0] = 0x00000002; /* discard */
1466 set_long(pc, e); /* sets cond code to ALWAYS */
1467
1468 if (src) {
1469 set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
1470 /* write to predicate reg */
1471 emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
1472 }
1473
1474 emit(pc, e);
1475 }
1476
1477 static struct nv50_program_exec *
1478 emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
1479 {
1480 struct nv50_program_exec *e = exec(pc);
1481
1482 e->inst[0] = (op << 28) | 2;
1483 set_long(pc, e);
1484 if (pred >= 0)
1485 set_pred(pc, cc, pred, e);
1486
1487 emit(pc, e);
1488 return e;
1489 }
1490
1491 static INLINE struct nv50_program_exec *
1492 emit_breakaddr(struct nv50_pc *pc)
1493 {
1494 return emit_control_flow(pc, 0x4, -1, 0);
1495 }
1496
1497 static INLINE void
1498 emit_break(struct nv50_pc *pc, int pred, unsigned cc)
1499 {
1500 emit_control_flow(pc, 0x5, pred, cc);
1501 }
1502
1503 static INLINE struct nv50_program_exec *
1504 emit_joinat(struct nv50_pc *pc)
1505 {
1506 return emit_control_flow(pc, 0xa, -1, 0);
1507 }
1508
1509 static INLINE struct nv50_program_exec *
1510 emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
1511 {
1512 return emit_control_flow(pc, 0x1, pred, cc);
1513 }
1514
1515 static INLINE struct nv50_program_exec *
1516 emit_call(struct nv50_pc *pc, int pred, unsigned cc)
1517 {
1518 return emit_control_flow(pc, 0x2, pred, cc);
1519 }
1520
1521 static INLINE void
1522 emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
1523 {
1524 emit_control_flow(pc, 0x3, pred, cc);
1525 }
1526
1527 #define QOP_ADD 0
1528 #define QOP_SUBR 1
1529 #define QOP_SUB 2
1530 #define QOP_MOV_SRC1 3
1531
1532 /* For a quad of threads / top left, top right, bottom left, bottom right
1533 * pixels, do a different operation, and take src0 from a specific thread.
1534 */
1535 static void
1536 emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
1537 struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
1538 {
1539 struct nv50_program_exec *e = exec(pc);
1540
1541 e->inst[0] = 0xc0000000;
1542 e->inst[1] = 0x80000000;
1543 set_long(pc, e);
1544 e->inst[0] |= lane_src0 << 16;
1545 set_src_0(pc, src0, e);
1546 set_src_2(pc, src1, e);
1547
1548 if (wp >= 0)
1549 set_pred_wr(pc, 1, wp, e);
1550
1551 if (dst)
1552 set_dst(pc, dst, e);
1553 else {
1554 e->inst[0] |= 0x000001fc;
1555 e->inst[1] |= 0x00000008;
1556 }
1557
1558 e->inst[0] |= (qop & 3) << 20;
1559 e->inst[1] |= (qop >> 2) << 22;
1560
1561 emit(pc, e);
1562 }
1563
1564 static void
1565 load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1566 struct nv50_reg **src, unsigned arg, boolean proj)
1567 {
1568 int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
1569
1570 src[0]->mod |= NV50_MOD_ABS;
1571 src[1]->mod |= NV50_MOD_ABS;
1572 src[2]->mod |= NV50_MOD_ABS;
1573
1574 emit_minmax(pc, NV50_MAX_F32, t[2], src[0], src[1]);
1575 emit_minmax(pc, NV50_MAX_F32, t[2], src[2], t[2]);
1576
1577 src[0]->mod = mod[0];
1578 src[1]->mod = mod[1];
1579 src[2]->mod = mod[2];
1580
1581 if (proj && 0 /* looks more correct without this */)
1582 emit_mul(pc, t[2], t[2], src[3]);
1583 else
1584 if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
1585 emit_mov(pc, t[3], src[3]);
1586
1587 emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
1588
1589 emit_mul(pc, t[0], src[0], t[2]);
1590 emit_mul(pc, t[1], src[1], t[2]);
1591 emit_mul(pc, t[2], src[2], t[2]);
1592 }
1593
1594 static void
1595 load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
1596 struct nv50_reg **src, unsigned dim, unsigned arg)
1597 {
1598 unsigned c, mode;
1599
1600 if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
1601 mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
1602
1603 t[3]->rhw = src[3]->rhw;
1604 emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
1605 emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
1606
1607 for (c = 0; c < dim; ++c) {
1608 t[c]->rhw = src[c]->rhw;
1609 emit_interp(pc, t[c], t[3], mode);
1610 }
1611 if (arg != dim) { /* depth reference value */
1612 t[dim]->rhw = src[2]->rhw;
1613 emit_interp(pc, t[dim], t[3], mode);
1614 }
1615 } else {
1616 /* XXX: for some reason the blob sometimes uses MAD
1617 * (mad f32 $rX $rY $rZ neg $r63)
1618 */
1619 emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
1620 for (c = 0; c < dim; ++c)
1621 emit_mul(pc, t[c], src[c], t[3]);
1622 if (arg != dim) /* depth reference value */
1623 emit_mul(pc, t[dim], src[2], t[3]);
1624 }
1625 }
1626
1627 static INLINE void
1628 get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
1629 {
1630 switch (type) {
1631 case TGSI_TEXTURE_1D:
1632 *arg = *dim = 1;
1633 break;
1634 case TGSI_TEXTURE_SHADOW1D:
1635 *dim = 1;
1636 *arg = 2;
1637 break;
1638 case TGSI_TEXTURE_UNKNOWN:
1639 case TGSI_TEXTURE_2D:
1640 case TGSI_TEXTURE_RECT:
1641 *arg = *dim = 2;
1642 break;
1643 case TGSI_TEXTURE_SHADOW2D:
1644 case TGSI_TEXTURE_SHADOWRECT:
1645 *dim = 2;
1646 *arg = 3;
1647 break;
1648 case TGSI_TEXTURE_3D:
1649 case TGSI_TEXTURE_CUBE:
1650 *dim = *arg = 3;
1651 break;
1652 default:
1653 assert(0);
1654 break;
1655 }
1656 }
1657
1658 /* We shouldn't execute TEXLOD if any of the pixels in a quad have
1659 * different LOD values, so branch off groups of equal LOD.
1660 */
1661 static void
1662 emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
1663 struct nv50_reg *src, struct nv50_program_exec *tex)
1664 {
1665 struct nv50_program_exec *join_at;
1666 unsigned i, target = pc->p->exec_size + 9 * 2;
1667
1668 if (pc->p->type != PIPE_SHADER_FRAGMENT) {
1669 emit(pc, tex);
1670 return;
1671 }
1672 pc->allow32 = FALSE;
1673
1674 /* Subtract lod of each pixel from lod of top left pixel, jump
1675 * texlod insn if result is 0, then repeat for 2 other pixels.
1676 */
1677 join_at = emit_joinat(pc);
1678 emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
1679 emit_branch(pc, 0, 2)->param.index = target;
1680
1681 for (i = 1; i < 4; ++i) {
1682 emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
1683 emit_branch(pc, 0, 2)->param.index = target;
1684 }
1685
1686 emit_mov(pc, tlod, src); /* target */
1687 emit(pc, tex); /* texlod */
1688
1689 join_at->param.index = target + 2 * 2;
1690 JOIN_ON(emit_nop(pc)); /* join _after_ tex */
1691 }
1692
1693 static void
1694 emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
1695 struct nv50_program_exec *tex)
1696 {
1697 struct nv50_program_exec *e;
1698 struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
1699 int r_pred = 0;
1700 unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
1701
1702 pc->allow32 = FALSE;
1703 ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
1704
1705 /* Subtract bias value of thread i from bias values of each thread,
1706 * store result in r_pred, and set bit i in r_bits if result was 0.
1707 */
1708 assert(arg < 4);
1709 for (i = 0; i < 4; ++i, ++imm_1248.hw) {
1710 emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
1711 emit_mov(pc, r_bits, &imm_1248);
1712 set_pred(pc, 2, r_pred, pc->p->exec_tail);
1713 }
1714 emit_mov_to_pred(pc, r_pred, r_bits);
1715
1716 /* The lanes of a quad are now grouped by the bit in r_pred they have
1717 * set. Put the input values for TEX into a new register set for each
1718 * group and execute TEX only for a specific group.
1719 * We cannot use the same register set for each group because we need
1720 * the derivatives, which are implicitly calculated, to be correct.
1721 */
1722 for (i = 1; i < 4; ++i) {
1723 alloc_temp4(pc, t123[i], 0);
1724
1725 for (c = 0; c <= arg; ++c)
1726 emit_mov(pc, t123[i][c], t[c]);
1727
1728 *(e = exec(pc)) = *(tex);
1729 e->inst[0] &= ~0x01fc;
1730 set_dst(pc, t123[i][0], e);
1731 set_pred(pc, cc[i], r_pred, e);
1732 emit(pc, e);
1733 }
1734 /* finally TEX on the original regs (where we kept the input) */
1735 set_pred(pc, cc[0], r_pred, tex);
1736 emit(pc, tex);
1737
1738 /* put the 3 * n other results into regs for lane 0 */
1739 n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
1740 for (i = 1; i < 4; ++i) {
1741 for (c = 0; c < n; ++c) {
1742 emit_mov(pc, t[c], t123[i][c]);
1743 set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
1744 }
1745 free_temp4(pc, t123[i]);
1746 }
1747
1748 emit_nop(pc);
1749 free_temp(pc, r_bits);
1750 }
1751
1752 static void
1753 emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
1754 struct nv50_reg **src, unsigned unit, unsigned type,
1755 boolean proj, int bias_lod)
1756 {
1757 struct nv50_reg *t[4];
1758 struct nv50_program_exec *e;
1759 unsigned c, dim, arg;
1760
1761 /* t[i] must be within a single 128 bit super-reg */
1762 alloc_temp4(pc, t, 0);
1763
1764 e = exec(pc);
1765 e->inst[0] = 0xf0000000;
1766 set_long(pc, e);
1767 set_dst(pc, t[0], e);
1768
1769 /* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
1770 e->inst[0] |= (unit << 9) /* | (unit << 17) */;
1771
1772 /* live flag (don't set if TEX results affect input to another TEX): */
1773 /* e->inst[0] |= 0x00000004; */
1774
1775 get_tex_dim(type, &dim, &arg);
1776
1777 if (type == TGSI_TEXTURE_CUBE) {
1778 e->inst[0] |= 0x08000000;
1779 load_cube_tex_coords(pc, t, src, arg, proj);
1780 } else
1781 if (proj)
1782 load_proj_tex_coords(pc, t, src, dim, arg);
1783 else {
1784 for (c = 0; c < dim; c++)
1785 emit_mov(pc, t[c], src[c]);
1786 if (arg != dim) /* depth reference value (always src.z here) */
1787 emit_mov(pc, t[dim], src[2]);
1788 }
1789
1790 e->inst[0] |= (mask & 0x3) << 25;
1791 e->inst[1] |= (mask & 0xc) << 12;
1792
1793 if (!bias_lod) {
1794 e->inst[0] |= (arg - 1) << 22;
1795 emit(pc, e);
1796 } else
1797 if (bias_lod < 0) {
1798 assert(pc->p->type == PIPE_SHADER_FRAGMENT);
1799 e->inst[0] |= arg << 22;
1800 e->inst[1] |= 0x20000000; /* texbias */
1801 emit_mov(pc, t[arg], src[3]);
1802 emit_texbias_sequence(pc, t, arg, e);
1803 } else {
1804 e->inst[0] |= arg << 22;
1805 e->inst[1] |= 0x40000000; /* texlod */
1806 emit_mov(pc, t[arg], src[3]);
1807 emit_texlod_sequence(pc, t[arg], src[3], e);
1808 }
1809
1810 #if 1
1811 c = 0;
1812 if (mask & 1) emit_mov(pc, dst[0], t[c++]);
1813 if (mask & 2) emit_mov(pc, dst[1], t[c++]);
1814 if (mask & 4) emit_mov(pc, dst[2], t[c++]);
1815 if (mask & 8) emit_mov(pc, dst[3], t[c]);
1816
1817 free_temp4(pc, t);
1818 #else
1819 /* XXX: if p.e. MUL is used directly after TEX, it would still use
1820 * the texture coordinates, not the fetched values: latency ? */
1821
1822 for (c = 0; c < 4; c++) {
1823 if (mask & (1 << c))
1824 assimilate_temp(pc, dst[c], t[c]);
1825 else
1826 free_temp(pc, t[c]);
1827 }
1828 #endif
1829 }
1830
1831 static void
1832 emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1833 {
1834 struct nv50_program_exec *e = exec(pc);
1835
1836 assert(src->type == P_TEMP);
1837
1838 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
1839 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
1840 set_long(pc, e);
1841 set_dst(pc, dst, e);
1842 set_src_0(pc, src, e);
1843 set_src_2(pc, src, e);
1844
1845 emit(pc, e);
1846 }
1847
1848 static void
1849 emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
1850 {
1851 struct nv50_program_exec *e = exec(pc);
1852
1853 assert(src->type == P_TEMP);
1854
1855 e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
1856 e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
1857 set_long(pc, e);
1858 set_dst(pc, dst, e);
1859 set_src_0(pc, src, e);
1860 set_src_2(pc, src, e);
1861
1862 emit(pc, e);
1863 }
1864
1865 static void
1866 convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
1867 {
1868 unsigned q = 0, m = ~0;
1869
1870 assert(!is_long(e));
1871
1872 switch (e->inst[0] >> 28) {
1873 case 0x1:
1874 /* MOV */
1875 q = 0x0403c000;
1876 m = 0xffff7fff;
1877 break;
1878 case 0x2:
1879 case 0x3:
1880 /* ADD, SUB, SUBR b32 */
1881 m = ~(0x8000 | (127 << 16));
1882 q = ((e->inst[0] & (~m)) >> 2) | (1 << 26);
1883 break;
1884 case 0x5:
1885 /* SAD */
1886 m = ~(0x81 << 8);
1887 q = 0x0c << 24;
1888 break;
1889 case 0x8:
1890 /* INTERP (move centroid, perspective and flat bits) */
1891 m = ~0x03000100;
1892 q = (e->inst[0] & (3 << 24)) >> (24 - 16);
1893 q |= (e->inst[0] & (1 << 8)) << (18 - 8);
1894 break;
1895 case 0x9:
1896 /* RCP */
1897 break;
1898 case 0xB:
1899 /* ADD */
1900 m = ~(127 << 16);
1901 q = ((e->inst[0] & (~m)) >> 2);
1902 break;
1903 case 0xC:
1904 /* MUL */
1905 m = ~0x00008000;
1906 q = ((e->inst[0] & (~m)) << 12);
1907 break;
1908 case 0xE:
1909 /* MAD (if src2 == dst) */
1910 q = ((e->inst[0] & 0x1fc) << 12);
1911 break;
1912 default:
1913 assert(0);
1914 break;
1915 }
1916
1917 set_long(pc, e);
1918 pc->p->exec_size++;
1919
1920 e->inst[0] &= m;
1921 e->inst[1] |= q;
1922 }
1923
1924 /* Some operations support an optional negation flag. */
1925 static int
1926 get_supported_mods(const struct tgsi_full_instruction *insn, int i)
1927 {
1928 switch (insn->Instruction.Opcode) {
1929 case TGSI_OPCODE_ADD:
1930 case TGSI_OPCODE_COS:
1931 case TGSI_OPCODE_DDX:
1932 case TGSI_OPCODE_DDY:
1933 case TGSI_OPCODE_DP3:
1934 case TGSI_OPCODE_DP4:
1935 case TGSI_OPCODE_EX2:
1936 case TGSI_OPCODE_KIL:
1937 case TGSI_OPCODE_LG2:
1938 case TGSI_OPCODE_MAD:
1939 case TGSI_OPCODE_MUL:
1940 case TGSI_OPCODE_POW:
1941 case TGSI_OPCODE_RCP:
1942 case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
1943 case TGSI_OPCODE_SCS:
1944 case TGSI_OPCODE_SIN:
1945 case TGSI_OPCODE_SUB:
1946 return NV50_MOD_NEG;
1947 case TGSI_OPCODE_MAX:
1948 case TGSI_OPCODE_MIN:
1949 case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
1950 return NV50_MOD_ABS;
1951 case TGSI_OPCODE_CEIL:
1952 case TGSI_OPCODE_FLR:
1953 case TGSI_OPCODE_TRUNC:
1954 return NV50_MOD_NEG | NV50_MOD_ABS;
1955 case TGSI_OPCODE_F2I:
1956 case TGSI_OPCODE_F2U:
1957 case TGSI_OPCODE_I2F:
1958 case TGSI_OPCODE_U2F:
1959 return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
1960 case TGSI_OPCODE_UADD:
1961 return NV50_MOD_NEG | NV50_MOD_I32;
1962 case TGSI_OPCODE_SAD:
1963 case TGSI_OPCODE_SHL:
1964 case TGSI_OPCODE_IMAX:
1965 case TGSI_OPCODE_IMIN:
1966 case TGSI_OPCODE_ISHR:
1967 case TGSI_OPCODE_UMAX:
1968 case TGSI_OPCODE_UMIN:
1969 case TGSI_OPCODE_USHR:
1970 return NV50_MOD_I32;
1971 default:
1972 return 0;
1973 }
1974 }
1975
1976 /* Return a read mask for source registers deduced from opcode & write mask. */
1977 static unsigned
1978 nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
1979 {
1980 unsigned x, mask = insn->Dst[0].Register.WriteMask;
1981
1982 switch (insn->Instruction.Opcode) {
1983 case TGSI_OPCODE_COS:
1984 case TGSI_OPCODE_SIN:
1985 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
1986 case TGSI_OPCODE_DP3:
1987 return 0x7;
1988 case TGSI_OPCODE_DP4:
1989 case TGSI_OPCODE_DPH:
1990 case TGSI_OPCODE_KIL: /* WriteMask ignored */
1991 return 0xf;
1992 case TGSI_OPCODE_DST:
1993 return mask & (c ? 0xa : 0x6);
1994 case TGSI_OPCODE_EX2:
1995 case TGSI_OPCODE_EXP:
1996 case TGSI_OPCODE_LG2:
1997 case TGSI_OPCODE_LOG:
1998 case TGSI_OPCODE_POW:
1999 case TGSI_OPCODE_RCP:
2000 case TGSI_OPCODE_RSQ:
2001 case TGSI_OPCODE_SCS:
2002 return 0x1;
2003 case TGSI_OPCODE_IF:
2004 return 0x1;
2005 case TGSI_OPCODE_LIT:
2006 return 0xb;
2007 case TGSI_OPCODE_TEX:
2008 case TGSI_OPCODE_TXB:
2009 case TGSI_OPCODE_TXL:
2010 case TGSI_OPCODE_TXP:
2011 {
2012 const struct tgsi_instruction_texture *tex;
2013
2014 assert(insn->Instruction.Texture);
2015 tex = &insn->Texture;
2016
2017 mask = 0x7;
2018 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
2019 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
2020 mask |= 0x8; /* bias, lod or proj */
2021
2022 switch (tex->Texture) {
2023 case TGSI_TEXTURE_1D:
2024 mask &= 0x9;
2025 break;
2026 case TGSI_TEXTURE_SHADOW1D:
2027 mask &= 0x5;
2028 break;
2029 case TGSI_TEXTURE_2D:
2030 mask &= 0xb;
2031 break;
2032 default:
2033 break;
2034 }
2035 }
2036 return mask;
2037 case TGSI_OPCODE_XPD:
2038 x = 0;
2039 if (mask & 1) x |= 0x6;
2040 if (mask & 2) x |= 0x5;
2041 if (mask & 4) x |= 0x3;
2042 return x;
2043 default:
2044 break;
2045 }
2046
2047 return mask;
2048 }
2049
2050 static struct nv50_reg *
2051 tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
2052 {
2053 switch (dst->Register.File) {
2054 case TGSI_FILE_TEMPORARY:
2055 return &pc->temp[dst->Register.Index * 4 + c];
2056 case TGSI_FILE_OUTPUT:
2057 return &pc->result[dst->Register.Index * 4 + c];
2058 case TGSI_FILE_ADDRESS:
2059 {
2060 struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
2061 if (!r) {
2062 r = alloc_addr(pc, NULL);
2063 pc->addr[dst->Register.Index * 4 + c] = r;
2064 }
2065 assert(r);
2066 return r;
2067 }
2068 case TGSI_FILE_NULL:
2069 return NULL;
2070 default:
2071 break;
2072 }
2073
2074 return NULL;
2075 }
2076
2077 static struct nv50_reg *
2078 tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
2079 int mod)
2080 {
2081 struct nv50_reg *r = NULL;
2082 struct nv50_reg *temp = NULL;
2083 unsigned sgn, c, swz, cvn;
2084
2085 if (src->Register.File != TGSI_FILE_CONSTANT)
2086 assert(!src->Register.Indirect);
2087
2088 sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
2089
2090 c = tgsi_util_get_full_src_register_swizzle(src, chan);
2091 switch (c) {
2092 case TGSI_SWIZZLE_X:
2093 case TGSI_SWIZZLE_Y:
2094 case TGSI_SWIZZLE_Z:
2095 case TGSI_SWIZZLE_W:
2096 switch (src->Register.File) {
2097 case TGSI_FILE_INPUT:
2098 r = &pc->attr[src->Register.Index * 4 + c];
2099 break;
2100 case TGSI_FILE_TEMPORARY:
2101 r = &pc->temp[src->Register.Index * 4 + c];
2102 break;
2103 case TGSI_FILE_CONSTANT:
2104 if (!src->Register.Indirect) {
2105 r = &pc->param[src->Register.Index * 4 + c];
2106 break;
2107 }
2108 /* Indicate indirection by setting r->acc < 0 and
2109 * use the index field to select the address reg.
2110 */
2111 r = reg_instance(pc, NULL);
2112 swz = tgsi_util_get_src_register_swizzle(
2113 &src->Indirect, 0);
2114 ctor_reg(r, P_CONST,
2115 src->Indirect.Index * 4 + swz,
2116 src->Register.Index * 4 + c);
2117 r->acc = -1;
2118 break;
2119 case TGSI_FILE_IMMEDIATE:
2120 r = &pc->immd[src->Register.Index * 4 + c];
2121 break;
2122 case TGSI_FILE_SAMPLER:
2123 return NULL;
2124 case TGSI_FILE_ADDRESS:
2125 r = pc->addr[src->Register.Index * 4 + c];
2126 assert(r);
2127 break;
2128 default:
2129 assert(0);
2130 break;
2131 }
2132 break;
2133 default:
2134 assert(0);
2135 break;
2136 }
2137
2138 cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
2139
2140 switch (sgn) {
2141 case TGSI_UTIL_SIGN_CLEAR:
2142 r->mod = NV50_MOD_ABS;
2143 break;
2144 case TGSI_UTIL_SIGN_SET:
2145 r->mod = NV50_MOD_NEG_ABS;
2146 break;
2147 case TGSI_UTIL_SIGN_TOGGLE:
2148 r->mod = NV50_MOD_NEG;
2149 break;
2150 default:
2151 assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
2152 break;
2153 }
2154
2155 if ((r->mod & mod) != r->mod) {
2156 temp = temp_temp(pc);
2157 emit_cvt(pc, temp, r, -1, cvn);
2158 r->mod = 0;
2159 r = temp;
2160 } else
2161 r->mod |= mod & NV50_MOD_I32;
2162
2163 assert(r);
2164 if (r->acc >= 0 && r != temp)
2165 return reg_instance(pc, r); /* will clear r->mod */
2166 return r;
2167 }
2168
2169 /* return TRUE for ops that produce only a single result */
2170 static boolean
2171 is_scalar_op(unsigned op)
2172 {
2173 switch (op) {
2174 case TGSI_OPCODE_COS:
2175 case TGSI_OPCODE_DP2:
2176 case TGSI_OPCODE_DP3:
2177 case TGSI_OPCODE_DP4:
2178 case TGSI_OPCODE_DPH:
2179 case TGSI_OPCODE_EX2:
2180 case TGSI_OPCODE_LG2:
2181 case TGSI_OPCODE_POW:
2182 case TGSI_OPCODE_RCP:
2183 case TGSI_OPCODE_RSQ:
2184 case TGSI_OPCODE_SIN:
2185 /*
2186 case TGSI_OPCODE_KIL:
2187 case TGSI_OPCODE_LIT:
2188 case TGSI_OPCODE_SCS:
2189 */
2190 return TRUE;
2191 default:
2192 return FALSE;
2193 }
2194 }
2195
2196 /* Returns a bitmask indicating which dst components depend
2197 * on source s, component c (reverse of nv50_tgsi_src_mask).
2198 */
2199 static unsigned
2200 nv50_tgsi_dst_revdep(unsigned op, int s, int c)
2201 {
2202 if (is_scalar_op(op))
2203 return 0x1;
2204
2205 switch (op) {
2206 case TGSI_OPCODE_DST:
2207 return (1 << c) & (s ? 0xa : 0x6);
2208 case TGSI_OPCODE_XPD:
2209 switch (c) {
2210 case 0: return 0x6;
2211 case 1: return 0x5;
2212 case 2: return 0x3;
2213 case 3: return 0x0;
2214 default:
2215 assert(0);
2216 return 0x0;
2217 }
2218 case TGSI_OPCODE_EXP:
2219 case TGSI_OPCODE_LOG:
2220 case TGSI_OPCODE_LIT:
2221 case TGSI_OPCODE_SCS:
2222 case TGSI_OPCODE_TEX:
2223 case TGSI_OPCODE_TXB:
2224 case TGSI_OPCODE_TXL:
2225 case TGSI_OPCODE_TXP:
2226 /* these take care of dangerous swizzles themselves */
2227 return 0x0;
2228 case TGSI_OPCODE_IF:
2229 case TGSI_OPCODE_KIL:
2230 /* don't call this function for these ops */
2231 assert(0);
2232 return 0;
2233 default:
2234 /* linear vector instruction */
2235 return (1 << c);
2236 }
2237 }
2238
2239 static INLINE boolean
2240 has_pred(struct nv50_program_exec *e, unsigned cc)
2241 {
2242 if (!is_long(e) || is_immd(e))
2243 return FALSE;
2244 return ((e->inst[1] & 0x780) == (cc << 7));
2245 }
2246
2247 /* on ENDIF see if we can do "@p0.neu single_op" instead of:
2248 * join_at ENDIF
2249 * @p0.eq bra ENDIF
2250 * single_op
2251 * ENDIF: nop.join
2252 */
2253 static boolean
2254 nv50_kill_branch(struct nv50_pc *pc)
2255 {
2256 int lvl = pc->if_lvl;
2257
2258 if (pc->if_insn[lvl]->next != pc->p->exec_tail)
2259 return FALSE;
2260 if (is_immd(pc->p->exec_tail))
2261 return FALSE;
2262
2263 /* if ccode == 'true', the BRA is from an ELSE and the predicate
2264 * reg may no longer be valid, since we currently always use $p0
2265 */
2266 if (has_pred(pc->if_insn[lvl], 0xf))
2267 return FALSE;
2268 assert(pc->if_insn[lvl] && pc->if_join[lvl]);
2269
2270 /* We'll use the exec allocated for JOIN_AT (we can't easily
2271 * access nv50_program_exec's prev).
2272 */
2273 pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
2274
2275 *pc->if_join[lvl] = *pc->p->exec_tail;
2276
2277 FREE(pc->if_insn[lvl]);
2278 FREE(pc->p->exec_tail);
2279
2280 pc->p->exec_tail = pc->if_join[lvl];
2281 pc->p->exec_tail->next = NULL;
2282 set_pred(pc, 0xd, 0, pc->p->exec_tail);
2283
2284 return TRUE;
2285 }
2286
2287 static void
2288 nv50_fp_move_results(struct nv50_pc *pc)
2289 {
2290 struct nv50_reg reg;
2291 unsigned i;
2292
2293 ctor_reg(&reg, P_TEMP, -1, -1);
2294
2295 for (i = 0; i < pc->result_nr * 4; ++i) {
2296 if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
2297 continue;
2298 if (pc->result[i].rhw != pc->result[i].hw) {
2299 reg.hw = pc->result[i].rhw;
2300 emit_mov(pc, &reg, &pc->result[i]);
2301 }
2302 }
2303 }
2304
2305 static boolean
2306 nv50_program_tx_insn(struct nv50_pc *pc,
2307 const struct tgsi_full_instruction *inst)
2308 {
2309 struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
2310 unsigned mask, sat, unit;
2311 int i, c;
2312
2313 mask = inst->Dst[0].Register.WriteMask;
2314 sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
2315
2316 memset(src, 0, sizeof(src));
2317
2318 for (c = 0; c < 4; c++) {
2319 if ((mask & (1 << c)) && !pc->r_dst[c])
2320 dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
2321 else
2322 dst[c] = pc->r_dst[c];
2323 rdst[c] = dst[c];
2324 }
2325
2326 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
2327 const struct tgsi_full_src_register *fs = &inst->Src[i];
2328 unsigned src_mask;
2329 int mod_supp;
2330
2331 src_mask = nv50_tgsi_src_mask(inst, i);
2332 mod_supp = get_supported_mods(inst, i);
2333
2334 if (fs->Register.File == TGSI_FILE_SAMPLER)
2335 unit = fs->Register.Index;
2336
2337 for (c = 0; c < 4; c++)
2338 if (src_mask & (1 << c))
2339 src[i][c] = tgsi_src(pc, c, fs, mod_supp);
2340 }
2341
2342 brdc = temp = pc->r_brdc;
2343 if (brdc && brdc->type != P_TEMP) {
2344 temp = temp_temp(pc);
2345 if (sat)
2346 brdc = temp;
2347 } else
2348 if (sat) {
2349 for (c = 0; c < 4; c++) {
2350 if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
2351 continue;
2352 /* rdst[c] = dst[c]; */ /* done above */
2353 dst[c] = temp_temp(pc);
2354 }
2355 }
2356
2357 assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
2358
2359 switch (inst->Instruction.Opcode) {
2360 case TGSI_OPCODE_ABS:
2361 for (c = 0; c < 4; c++) {
2362 if (!(mask & (1 << c)))
2363 continue;
2364 emit_cvt(pc, dst[c], src[0][c], -1,
2365 CVT_ABS | CVT_F32_F32);
2366 }
2367 break;
2368 case TGSI_OPCODE_ADD:
2369 for (c = 0; c < 4; c++) {
2370 if (!(mask & (1 << c)))
2371 continue;
2372 emit_add(pc, dst[c], src[0][c], src[1][c]);
2373 }
2374 break;
2375 case TGSI_OPCODE_AND:
2376 case TGSI_OPCODE_XOR:
2377 case TGSI_OPCODE_OR:
2378 for (c = 0; c < 4; c++) {
2379 if (!(mask & (1 << c)))
2380 continue;
2381 emit_bitop2(pc, dst[c], src[0][c], src[1][c],
2382 inst->Instruction.Opcode);
2383 }
2384 break;
2385 case TGSI_OPCODE_ARL:
2386 assert(src[0][0]);
2387 temp = temp_temp(pc);
2388 emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
2389 emit_arl(pc, dst[0], temp, 4);
2390 break;
2391 case TGSI_OPCODE_BGNLOOP:
2392 pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
2393 pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
2394 terminate_mbb(pc);
2395 break;
2396 case TGSI_OPCODE_BGNSUB:
2397 assert(!pc->in_subroutine);
2398 pc->in_subroutine = TRUE;
2399 /* probably not necessary, but align to 8 byte boundary */
2400 if (!is_long(pc->p->exec_tail))
2401 convert_to_long(pc, pc->p->exec_tail);
2402 break;
2403 case TGSI_OPCODE_BRK:
2404 assert(pc->loop_lvl > 0);
2405 emit_break(pc, -1, 0);
2406 break;
2407 case TGSI_OPCODE_CAL:
2408 assert(inst->Label.Label < pc->insn_nr);
2409 emit_call(pc, -1, 0)->param.index = inst->Label.Label;
2410 /* replaced by actual offset in nv50_program_fixup_insns */
2411 break;
2412 case TGSI_OPCODE_CEIL:
2413 for (c = 0; c < 4; c++) {
2414 if (!(mask & (1 << c)))
2415 continue;
2416 emit_cvt(pc, dst[c], src[0][c], -1,
2417 CVT_CEIL | CVT_F32_F32 | CVT_RI);
2418 }
2419 break;
2420 case TGSI_OPCODE_CMP:
2421 pc->allow32 = FALSE;
2422 for (c = 0; c < 4; c++) {
2423 if (!(mask & (1 << c)))
2424 continue;
2425 emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
2426 emit_mov(pc, dst[c], src[1][c]);
2427 set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
2428 emit_mov(pc, dst[c], src[2][c]);
2429 set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
2430 }
2431 break;
2432 case TGSI_OPCODE_CONT:
2433 assert(pc->loop_lvl > 0);
2434 emit_branch(pc, -1, 0)->param.index =
2435 pc->loop_pos[pc->loop_lvl - 1];
2436 break;
2437 case TGSI_OPCODE_COS:
2438 if (mask & 8) {
2439 emit_precossin(pc, temp, src[0][3]);
2440 emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
2441 if (!(mask &= 7))
2442 break;
2443 if (temp == dst[3])
2444 temp = brdc = temp_temp(pc);
2445 }
2446 emit_precossin(pc, temp, src[0][0]);
2447 emit_flop(pc, NV50_FLOP_COS, brdc, temp);
2448 break;
2449 case TGSI_OPCODE_DDX:
2450 for (c = 0; c < 4; c++) {
2451 if (!(mask & (1 << c)))
2452 continue;
2453 emit_ddx(pc, dst[c], src[0][c]);
2454 }
2455 break;
2456 case TGSI_OPCODE_DDY:
2457 for (c = 0; c < 4; c++) {
2458 if (!(mask & (1 << c)))
2459 continue;
2460 emit_ddy(pc, dst[c], src[0][c]);
2461 }
2462 break;
2463 case TGSI_OPCODE_DP3:
2464 emit_mul(pc, temp, src[0][0], src[1][0]);
2465 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2466 emit_mad(pc, brdc, src[0][2], src[1][2], temp);
2467 break;
2468 case TGSI_OPCODE_DP4:
2469 emit_mul(pc, temp, src[0][0], src[1][0]);
2470 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2471 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2472 emit_mad(pc, brdc, src[0][3], src[1][3], temp);
2473 break;
2474 case TGSI_OPCODE_DPH:
2475 emit_mul(pc, temp, src[0][0], src[1][0]);
2476 emit_mad(pc, temp, src[0][1], src[1][1], temp);
2477 emit_mad(pc, temp, src[0][2], src[1][2], temp);
2478 emit_add(pc, brdc, src[1][3], temp);
2479 break;
2480 case TGSI_OPCODE_DST:
2481 if (mask & (1 << 1))
2482 emit_mul(pc, dst[1], src[0][1], src[1][1]);
2483 if (mask & (1 << 2))
2484 emit_mov(pc, dst[2], src[0][2]);
2485 if (mask & (1 << 3))
2486 emit_mov(pc, dst[3], src[1][3]);
2487 if (mask & (1 << 0))
2488 emit_mov_immdval(pc, dst[0], 1.0f);
2489 break;
2490 case TGSI_OPCODE_ELSE:
2491 emit_branch(pc, -1, 0);
2492 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2493 pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
2494 terminate_mbb(pc);
2495 break;
2496 case TGSI_OPCODE_ENDIF:
2497 pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
2498
2499 /* try to replace branch over 1 insn with a predicated insn */
2500 if (nv50_kill_branch(pc) == TRUE)
2501 break;
2502
2503 if (pc->if_join[pc->if_lvl]) {
2504 pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
2505 pc->if_join[pc->if_lvl] = NULL;
2506 }
2507 terminate_mbb(pc);
2508 /* emit a NOP as join point, we could set it on the next
2509 * one, but would have to make sure it is long and !immd
2510 */
2511 JOIN_ON(emit_nop(pc));
2512 break;
2513 case TGSI_OPCODE_ENDLOOP:
2514 emit_branch(pc, -1, 0)->param.index =
2515 pc->loop_pos[--pc->loop_lvl];
2516 pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
2517 terminate_mbb(pc);
2518 break;
2519 case TGSI_OPCODE_ENDSUB:
2520 assert(pc->in_subroutine);
2521 pc->in_subroutine = FALSE;
2522 break;
2523 case TGSI_OPCODE_EX2:
2524 emit_preex2(pc, temp, src[0][0]);
2525 emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
2526 break;
2527 case TGSI_OPCODE_EXP:
2528 {
2529 struct nv50_reg *t[2];
2530
2531 assert(!temp);
2532 t[0] = temp_temp(pc);
2533 t[1] = temp_temp(pc);
2534
2535 if (mask & 0x6)
2536 emit_mov(pc, t[0], src[0][0]);
2537 if (mask & 0x3)
2538 emit_flr(pc, t[1], src[0][0]);
2539
2540 if (mask & (1 << 1))
2541 emit_sub(pc, dst[1], t[0], t[1]);
2542 if (mask & (1 << 0)) {
2543 emit_preex2(pc, t[1], t[1]);
2544 emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
2545 }
2546 if (mask & (1 << 2)) {
2547 emit_preex2(pc, t[0], t[0]);
2548 emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
2549 }
2550 if (mask & (1 << 3))
2551 emit_mov_immdval(pc, dst[3], 1.0f);
2552 }
2553 break;
2554 case TGSI_OPCODE_F2I:
2555 for (c = 0; c < 4; c++) {
2556 if (!(mask & (1 << c)))
2557 continue;
2558 emit_cvt(pc, dst[c], src[0][c], -1,
2559 CVT_TRUNC | CVT_S32_F32);
2560 }
2561 break;
2562 case TGSI_OPCODE_F2U:
2563 for (c = 0; c < 4; c++) {
2564 if (!(mask & (1 << c)))
2565 continue;
2566 emit_cvt(pc, dst[c], src[0][c], -1,
2567 CVT_TRUNC | CVT_U32_F32);
2568 }
2569 break;
2570 case TGSI_OPCODE_FLR:
2571 for (c = 0; c < 4; c++) {
2572 if (!(mask & (1 << c)))
2573 continue;
2574 emit_flr(pc, dst[c], src[0][c]);
2575 }
2576 break;
2577 case TGSI_OPCODE_FRC:
2578 temp = temp_temp(pc);
2579 for (c = 0; c < 4; c++) {
2580 if (!(mask & (1 << c)))
2581 continue;
2582 emit_flr(pc, temp, src[0][c]);
2583 emit_sub(pc, dst[c], src[0][c], temp);
2584 }
2585 break;
2586 case TGSI_OPCODE_I2F:
2587 for (c = 0; c < 4; c++) {
2588 if (!(mask & (1 << c)))
2589 continue;
2590 emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
2591 }
2592 break;
2593 case TGSI_OPCODE_IF:
2594 assert(pc->if_lvl < NV50_MAX_COND_NESTING);
2595 emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
2596 pc->if_join[pc->if_lvl] = emit_joinat(pc);
2597 pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
2598 terminate_mbb(pc);
2599 break;
2600 case TGSI_OPCODE_IMAX:
2601 for (c = 0; c < 4; c++) {
2602 if (!(mask & (1 << c)))
2603 continue;
2604 emit_minmax(pc, 0x08c, dst[c], src[0][c], src[1][c]);
2605 }
2606 break;
2607 case TGSI_OPCODE_IMIN:
2608 for (c = 0; c < 4; c++) {
2609 if (!(mask & (1 << c)))
2610 continue;
2611 emit_minmax(pc, 0x0ac, dst[c], src[0][c], src[1][c]);
2612 }
2613 break;
2614 case TGSI_OPCODE_INEG:
2615 for (c = 0; c < 4; c++) {
2616 if (!(mask & (1 << c)))
2617 continue;
2618 emit_cvt(pc, dst[c], src[0][c], -1,
2619 CVT_S32_S32 | CVT_NEG);
2620 }
2621 break;
2622 case TGSI_OPCODE_KIL:
2623 assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
2624 emit_kil(pc, src[0][0]);
2625 emit_kil(pc, src[0][1]);
2626 emit_kil(pc, src[0][2]);
2627 emit_kil(pc, src[0][3]);
2628 break;
2629 case TGSI_OPCODE_KILP:
2630 emit_kil(pc, NULL);
2631 break;
2632 case TGSI_OPCODE_LIT:
2633 emit_lit(pc, &dst[0], mask, &src[0][0]);
2634 break;
2635 case TGSI_OPCODE_LG2:
2636 emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
2637 break;
2638 case TGSI_OPCODE_LOG:
2639 {
2640 struct nv50_reg *t[2];
2641
2642 t[0] = temp_temp(pc);
2643 if (mask & (1 << 1))
2644 t[1] = temp_temp(pc);
2645 else
2646 t[1] = t[0];
2647
2648 emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
2649 emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
2650 if (mask & (1 << 2))
2651 emit_mov(pc, dst[2], t[1]);
2652 emit_flr(pc, t[1], t[1]);
2653 if (mask & (1 << 0))
2654 emit_mov(pc, dst[0], t[1]);
2655 if (mask & (1 << 1)) {
2656 t[1]->mod = NV50_MOD_NEG;
2657 emit_preex2(pc, t[1], t[1]);
2658 t[1]->mod = 0;
2659 emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
2660 emit_mul(pc, dst[1], t[0], t[1]);
2661 }
2662 if (mask & (1 << 3))
2663 emit_mov_immdval(pc, dst[3], 1.0f);
2664 }
2665 break;
2666 case TGSI_OPCODE_LRP:
2667 temp = temp_temp(pc);
2668 for (c = 0; c < 4; c++) {
2669 if (!(mask & (1 << c)))
2670 continue;
2671 emit_sub(pc, temp, src[1][c], src[2][c]);
2672 emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
2673 }
2674 break;
2675 case TGSI_OPCODE_MAD:
2676 for (c = 0; c < 4; c++) {
2677 if (!(mask & (1 << c)))
2678 continue;
2679 emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2680 }
2681 break;
2682 case TGSI_OPCODE_MAX:
2683 for (c = 0; c < 4; c++) {
2684 if (!(mask & (1 << c)))
2685 continue;
2686 emit_minmax(pc, 0x880, dst[c], src[0][c], src[1][c]);
2687 }
2688 break;
2689 case TGSI_OPCODE_MIN:
2690 for (c = 0; c < 4; c++) {
2691 if (!(mask & (1 << c)))
2692 continue;
2693 emit_minmax(pc, 0x8a0, dst[c], src[0][c], src[1][c]);
2694 }
2695 break;
2696 case TGSI_OPCODE_MOV:
2697 for (c = 0; c < 4; c++) {
2698 if (!(mask & (1 << c)))
2699 continue;
2700 emit_mov(pc, dst[c], src[0][c]);
2701 }
2702 break;
2703 case TGSI_OPCODE_MUL:
2704 for (c = 0; c < 4; c++) {
2705 if (!(mask & (1 << c)))
2706 continue;
2707 emit_mul(pc, dst[c], src[0][c], src[1][c]);
2708 }
2709 break;
2710 case TGSI_OPCODE_POW:
2711 emit_pow(pc, brdc, src[0][0], src[1][0]);
2712 break;
2713 case TGSI_OPCODE_RCP:
2714 emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
2715 break;
2716 case TGSI_OPCODE_RET:
2717 if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
2718 nv50_fp_move_results(pc);
2719 emit_ret(pc, -1, 0);
2720 break;
2721 case TGSI_OPCODE_RSQ:
2722 src[0][0]->mod |= NV50_MOD_ABS;
2723 emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
2724 break;
2725 case TGSI_OPCODE_SAD:
2726 for (c = 0; c < 4; c++) {
2727 if (!(mask & (1 << c)))
2728 continue;
2729 emit_sad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
2730 }
2731 break;
2732 case TGSI_OPCODE_SCS:
2733 temp = temp_temp(pc);
2734 if (mask & 3)
2735 emit_precossin(pc, temp, src[0][0]);
2736 if (mask & (1 << 0))
2737 emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
2738 if (mask & (1 << 1))
2739 emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
2740 if (mask & (1 << 2))
2741 emit_mov_immdval(pc, dst[2], 0.0);
2742 if (mask & (1 << 3))
2743 emit_mov_immdval(pc, dst[3], 1.0);
2744 break;
2745 case TGSI_OPCODE_SHL:
2746 case TGSI_OPCODE_ISHR:
2747 case TGSI_OPCODE_USHR:
2748 for (c = 0; c < 4; c++) {
2749 if (!(mask & (1 << c)))
2750 continue;
2751 emit_shift(pc, dst[c], src[0][c], src[1][c],
2752 inst->Instruction.Opcode);
2753 }
2754 break;
2755 case TGSI_OPCODE_SIN:
2756 if (mask & 8) {
2757 emit_precossin(pc, temp, src[0][3]);
2758 emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
2759 if (!(mask &= 7))
2760 break;
2761 if (temp == dst[3])
2762 temp = brdc = temp_temp(pc);
2763 }
2764 emit_precossin(pc, temp, src[0][0]);
2765 emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
2766 break;
2767 case TGSI_OPCODE_SLT:
2768 case TGSI_OPCODE_SGE:
2769 case TGSI_OPCODE_SEQ:
2770 case TGSI_OPCODE_SGT:
2771 case TGSI_OPCODE_SLE:
2772 case TGSI_OPCODE_SNE:
2773 case TGSI_OPCODE_ISLT:
2774 case TGSI_OPCODE_ISGE:
2775 case TGSI_OPCODE_USEQ:
2776 case TGSI_OPCODE_USGE:
2777 case TGSI_OPCODE_USLT:
2778 case TGSI_OPCODE_USNE:
2779 {
2780 uint8_t cc, ty;
2781
2782 map_tgsi_setop_hw(inst->Instruction.Opcode, &cc, &ty);
2783
2784 for (c = 0; c < 4; c++) {
2785 if (!(mask & (1 << c)))
2786 continue;
2787 emit_set(pc, cc, dst[c], -1, src[0][c], src[1][c], ty);
2788 }
2789 }
2790 break;
2791 case TGSI_OPCODE_SUB:
2792 for (c = 0; c < 4; c++) {
2793 if (!(mask & (1 << c)))
2794 continue;
2795 emit_sub(pc, dst[c], src[0][c], src[1][c]);
2796 }
2797 break;
2798 case TGSI_OPCODE_TEX:
2799 emit_tex(pc, dst, mask, src[0], unit,
2800 inst->Texture.Texture, FALSE, 0);
2801 break;
2802 case TGSI_OPCODE_TXB:
2803 emit_tex(pc, dst, mask, src[0], unit,
2804 inst->Texture.Texture, FALSE, -1);
2805 break;
2806 case TGSI_OPCODE_TXL:
2807 emit_tex(pc, dst, mask, src[0], unit,
2808 inst->Texture.Texture, FALSE, 1);
2809 break;
2810 case TGSI_OPCODE_TXP:
2811 emit_tex(pc, dst, mask, src[0], unit,
2812 inst->Texture.Texture, TRUE, 0);
2813 break;
2814 case TGSI_OPCODE_TRUNC:
2815 for (c = 0; c < 4; c++) {
2816 if (!(mask & (1 << c)))
2817 continue;
2818 emit_cvt(pc, dst[c], src[0][c], -1,
2819 CVT_TRUNC | CVT_F32_F32 | CVT_RI);
2820 }
2821 break;
2822 case TGSI_OPCODE_U2F:
2823 for (c = 0; c < 4; c++) {
2824 if (!(mask & (1 << c)))
2825 continue;
2826 emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
2827 }
2828 break;
2829 case TGSI_OPCODE_UADD:
2830 for (c = 0; c < 4; c++) {
2831 if (!(mask & (1 << c)))
2832 continue;
2833 emit_add_b32(pc, dst[c], src[0][c], src[1][c]);
2834 }
2835 break;
2836 case TGSI_OPCODE_UMAX:
2837 for (c = 0; c < 4; c++) {
2838 if (!(mask & (1 << c)))
2839 continue;
2840 emit_minmax(pc, 0x084, dst[c], src[0][c], src[1][c]);
2841 }
2842 break;
2843 case TGSI_OPCODE_UMIN:
2844 for (c = 0; c < 4; c++) {
2845 if (!(mask & (1 << c)))
2846 continue;
2847 emit_minmax(pc, 0x0a4, dst[c], src[0][c], src[1][c]);
2848 }
2849 break;
2850 case TGSI_OPCODE_XPD:
2851 temp = temp_temp(pc);
2852 if (mask & (1 << 0)) {
2853 emit_mul(pc, temp, src[0][2], src[1][1]);
2854 emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
2855 }
2856 if (mask & (1 << 1)) {
2857 emit_mul(pc, temp, src[0][0], src[1][2]);
2858 emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
2859 }
2860 if (mask & (1 << 2)) {
2861 emit_mul(pc, temp, src[0][1], src[1][0]);
2862 emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
2863 }
2864 if (mask & (1 << 3))
2865 emit_mov_immdval(pc, dst[3], 1.0);
2866 break;
2867 case TGSI_OPCODE_END:
2868 if (pc->p->type == PIPE_SHADER_FRAGMENT)
2869 nv50_fp_move_results(pc);
2870
2871 /* last insn must be long so it can have the exit bit set */
2872 if (!is_long(pc->p->exec_tail))
2873 convert_to_long(pc, pc->p->exec_tail);
2874 else
2875 if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
2876 emit_nop(pc);
2877
2878 pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
2879 break;
2880 default:
2881 NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
2882 return FALSE;
2883 }
2884
2885 if (brdc) {
2886 if (sat)
2887 emit_sat(pc, brdc, brdc);
2888 for (c = 0; c < 4; c++)
2889 if ((mask & (1 << c)) && dst[c] != brdc)
2890 emit_mov(pc, dst[c], brdc);
2891 } else
2892 if (sat) {
2893 for (c = 0; c < 4; c++) {
2894 if (!(mask & (1 << c)))
2895 continue;
2896 /* In this case we saturate later, and dst[c] won't
2897 * be another temp_temp (and thus lost), since rdst
2898 * already is TEMP (see above). */
2899 if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
2900 continue;
2901 emit_sat(pc, rdst[c], dst[c]);
2902 }
2903 }
2904
2905 kill_temp_temp(pc);
2906 pc->reg_instance_nr = 0;
2907
2908 return TRUE;
2909 }
2910
2911 static void
2912 prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
2913 {
2914 struct nv50_reg *r, *reg = NULL;
2915 const struct tgsi_full_src_register *src;
2916 const struct tgsi_dst_register *dst;
2917 unsigned i, c, k, mask;
2918
2919 dst = &insn->Dst[0].Register;
2920 mask = dst->WriteMask;
2921
2922 if (dst->File == TGSI_FILE_TEMPORARY)
2923 reg = pc->temp;
2924 else
2925 if (dst->File == TGSI_FILE_OUTPUT) {
2926 reg = pc->result;
2927
2928 if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
2929 dst->Index == pc->edgeflag_out &&
2930 insn->Src[0].Register.File == TGSI_FILE_INPUT)
2931 pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
2932 }
2933
2934 if (reg) {
2935 for (c = 0; c < 4; c++) {
2936 if (!(mask & (1 << c)))
2937 continue;
2938 reg[dst->Index * 4 + c].acc = pc->insn_nr;
2939 }
2940 }
2941
2942 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
2943 src = &insn->Src[i];
2944
2945 if (src->Register.File == TGSI_FILE_TEMPORARY)
2946 reg = pc->temp;
2947 else
2948 if (src->Register.File == TGSI_FILE_INPUT)
2949 reg = pc->attr;
2950 else
2951 continue;
2952
2953 mask = nv50_tgsi_src_mask(insn, i);
2954
2955 for (c = 0; c < 4; c++) {
2956 if (!(mask & (1 << c)))
2957 continue;
2958 k = tgsi_util_get_full_src_register_swizzle(src, c);
2959
2960 r = &reg[src->Register.Index * 4 + k];
2961
2962 /* If used before written, pre-allocate the reg,
2963 * lest we overwrite results from a subroutine.
2964 */
2965 if (!r->acc && r->type == P_TEMP)
2966 alloc_reg(pc, r);
2967
2968 r->acc = pc->insn_nr;
2969 }
2970 }
2971 }
2972
2973 /* Returns a bitmask indicating which dst components need to be
2974 * written to temporaries first to avoid 'corrupting' sources.
2975 *
2976 * m[i] (out) indicate component to write in the i-th position
2977 * rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
2978 */
2979 static unsigned
2980 nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
2981 {
2982 unsigned i, c, x, unsafe;
2983
2984 for (c = 0; c < 4; c++)
2985 m[c] = c;
2986
2987 /* Swap as long as a dst component written earlier is depended on
2988 * by one written later, but the next one isn't depended on by it.
2989 */
2990 for (c = 0; c < 3; c++) {
2991 if (rdep[m[c + 1]] & (1 << m[c]))
2992 continue; /* if next one is depended on by us */
2993 for (i = c + 1; i < 4; i++)
2994 /* if we are depended on by a later one */
2995 if (rdep[m[c]] & (1 << m[i]))
2996 break;
2997 if (i == 4)
2998 continue;
2999 /* now, swap */
3000 x = m[c];
3001 m[c] = m[c + 1];
3002 m[c + 1] = x;
3003
3004 /* restart */
3005 c = 0;
3006 }
3007
3008 /* mark dependencies that could not be resolved by reordering */
3009 for (i = 0; i < 3; ++i)
3010 for (c = i + 1; c < 4; ++c)
3011 if (rdep[m[i]] & (1 << m[c]))
3012 unsafe |= (1 << i);
3013
3014 /* NOTE: $unsafe is with respect to order, not component */
3015 return unsafe;
3016 }
3017
3018 /* Select a suitable dst register for broadcasting scalar results,
3019 * or return NULL if we have to allocate an extra TEMP.
3020 *
3021 * If e.g. only 1 component is written, we may also emit the final
3022 * result to a write-only register.
3023 */
3024 static struct nv50_reg *
3025 tgsi_broadcast_dst(struct nv50_pc *pc,
3026 const struct tgsi_full_dst_register *fd, unsigned mask)
3027 {
3028 if (fd->Register.File == TGSI_FILE_TEMPORARY) {
3029 int c = ffs(~mask & fd->Register.WriteMask);
3030 if (c)
3031 return tgsi_dst(pc, c - 1, fd);
3032 } else {
3033 int c = ffs(fd->Register.WriteMask) - 1;
3034 if ((1 << c) == fd->Register.WriteMask)
3035 return tgsi_dst(pc, c, fd);
3036 }
3037
3038 return NULL;
3039 }
3040
3041 /* Scan source swizzles and return a bitmask indicating dst regs that
3042 * also occur among the src regs, and fill rdep for nv50_revdep_reoder.
3043 */
3044 static unsigned
3045 nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
3046 unsigned rdep[4])
3047 {
3048 const struct tgsi_full_dst_register *fd = &insn->Dst[0];
3049 const struct tgsi_full_src_register *fs;
3050 unsigned i, deqs = 0;
3051
3052 for (i = 0; i < 4; ++i)
3053 rdep[i] = 0;
3054
3055 for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
3056 unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
3057 int ms = get_supported_mods(insn, i);
3058
3059 fs = &insn->Src[i];
3060 if (fs->Register.File != fd->Register.File ||
3061 fs->Register.Index != fd->Register.Index)
3062 continue;
3063
3064 for (chn = 0; chn < 4; ++chn) {
3065 unsigned s, c;
3066
3067 if (!(mask & (1 << chn))) /* src is not read */
3068 continue;
3069 c = tgsi_util_get_full_src_register_swizzle(fs, chn);
3070 s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
3071
3072 if (!(fd->Register.WriteMask & (1 << c)))
3073 continue;
3074
3075 if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
3076 continue;
3077 if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
3078 continue;
3079 if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
3080 continue;
3081
3082 rdep[c] |= nv50_tgsi_dst_revdep(
3083 insn->Instruction.Opcode, i, chn);
3084 deqs |= (1 << c);
3085 }
3086 }
3087
3088 return deqs;
3089 }
3090
3091 static boolean
3092 nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
3093 {
3094 struct tgsi_full_instruction insn = tok->FullInstruction;
3095 const struct tgsi_full_dst_register *fd;
3096 unsigned i, deqs, rdep[4], m[4];
3097
3098 fd = &tok->FullInstruction.Dst[0];
3099 deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
3100
3101 if (is_scalar_op(insn.Instruction.Opcode)) {
3102 pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
3103 if (!pc->r_brdc)
3104 pc->r_brdc = temp_temp(pc);
3105 return nv50_program_tx_insn(pc, &insn);
3106 }
3107 pc->r_brdc = NULL;
3108
3109 if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
3110 return nv50_program_tx_insn(pc, &insn);
3111
3112 deqs = nv50_revdep_reorder(m, rdep);
3113
3114 for (i = 0; i < 4; ++i) {
3115 assert(pc->r_dst[m[i]] == NULL);
3116
3117 insn.Dst[0].Register.WriteMask =
3118 fd->Register.WriteMask & (1 << m[i]);
3119
3120 if (!insn.Dst[0].Register.WriteMask)
3121 continue;
3122
3123 if (deqs & (1 << i))
3124 pc->r_dst[m[i]] = alloc_temp(pc, NULL);
3125
3126 if (!nv50_program_tx_insn(pc, &insn))
3127 return FALSE;
3128 }
3129
3130 for (i = 0; i < 4; i++) {
3131 struct nv50_reg *reg = pc->r_dst[i];
3132 if (!reg)
3133 continue;
3134 pc->r_dst[i] = NULL;
3135
3136 if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
3137 emit_sat(pc, tgsi_dst(pc, i, fd), reg);
3138 else
3139 emit_mov(pc, tgsi_dst(pc, i, fd), reg);
3140 free_temp(pc, reg);
3141 }
3142
3143 return TRUE;
3144 }
3145
3146 static void
3147 load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
3148 {
3149 struct nv50_reg *iv, **ppiv;
3150 unsigned mode = pc->interp_mode[reg->index];
3151
3152 ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
3153 iv = *ppiv;
3154
3155 if ((mode & INTERP_PERSPECTIVE) && !iv) {
3156 iv = *ppiv = alloc_temp(pc, NULL);
3157 iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
3158
3159 emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
3160 emit_flop(pc, NV50_FLOP_RCP, iv, iv);
3161
3162 /* XXX: when loading interpolants dynamically, move these
3163 * to the program head, or make sure it can't be skipped.
3164 */
3165 }
3166
3167 emit_interp(pc, reg, iv, mode);
3168 }
3169
3170 /* The face input is always at v[255] (varying space), with a
3171 * value of 0 for back-facing, and 0xffffffff for front-facing.
3172 */
3173 static void
3174 load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
3175 {
3176 struct nv50_reg *one = alloc_immd(pc, 1.0f);
3177
3178 assert(a->rhw == -1);
3179 alloc_reg(pc, a); /* do this before rhw is set */
3180 a->rhw = 255;
3181 load_interpolant(pc, a);
3182 emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
3183
3184 FREE(one);
3185 }
3186
3187 static boolean
3188 nv50_program_tx_prep(struct nv50_pc *pc)
3189 {
3190 struct tgsi_parse_context tp;
3191 struct nv50_program *p = pc->p;
3192 boolean ret = FALSE;
3193 unsigned i, c, flat_nr = 0;
3194
3195 tgsi_parse_init(&tp, pc->p->pipe.tokens);
3196 while (!tgsi_parse_end_of_tokens(&tp)) {
3197 const union tgsi_full_token *tok = &tp.FullToken;
3198
3199 tgsi_parse_token(&tp);
3200 switch (tok->Token.Type) {
3201 case TGSI_TOKEN_TYPE_IMMEDIATE:
3202 {
3203 const struct tgsi_full_immediate *imm =
3204 &tp.FullToken.FullImmediate;
3205
3206 ctor_immd_4f32(pc, imm->u[0].Float,
3207 imm->u[1].Float,
3208 imm->u[2].Float,
3209 imm->u[3].Float);
3210 }
3211 break;
3212 case TGSI_TOKEN_TYPE_DECLARATION:
3213 {
3214 const struct tgsi_full_declaration *d;
3215 unsigned si, last, first, mode;
3216
3217 d = &tp.FullToken.FullDeclaration;
3218 first = d->Range.First;
3219 last = d->Range.Last;
3220
3221 switch (d->Declaration.File) {
3222 case TGSI_FILE_TEMPORARY:
3223 break;
3224 case TGSI_FILE_OUTPUT:
3225 if (!d->Declaration.Semantic ||
3226 p->type == PIPE_SHADER_FRAGMENT)
3227 break;
3228
3229 si = d->Semantic.Index;
3230 switch (d->Semantic.Name) {
3231 case TGSI_SEMANTIC_BCOLOR:
3232 p->cfg.two_side[si].hw = first;
3233 if (p->cfg.io_nr > first)
3234 p->cfg.io_nr = first;
3235 break;
3236 case TGSI_SEMANTIC_PSIZE:
3237 p->cfg.psiz = first;
3238 if (p->cfg.io_nr > first)
3239 p->cfg.io_nr = first;
3240 break;
3241 case TGSI_SEMANTIC_EDGEFLAG:
3242 pc->edgeflag_out = first;
3243 break;
3244 /*
3245 case TGSI_SEMANTIC_CLIP_DISTANCE:
3246 p->cfg.clpd = MIN2(p->cfg.clpd, first);
3247 break;
3248 */
3249 default:
3250 break;
3251 }
3252 break;
3253 case TGSI_FILE_INPUT:
3254 {
3255 if (p->type != PIPE_SHADER_FRAGMENT)
3256 break;
3257
3258 switch (d->Declaration.Interpolate) {
3259 case TGSI_INTERPOLATE_CONSTANT:
3260 mode = INTERP_FLAT;
3261 flat_nr++;
3262 break;
3263 case TGSI_INTERPOLATE_PERSPECTIVE:
3264 mode = INTERP_PERSPECTIVE;
3265 p->cfg.regs[1] |= 0x08 << 24;
3266 break;
3267 default:
3268 mode = INTERP_LINEAR;
3269 break;
3270 }
3271 if (d->Declaration.Centroid)
3272 mode |= INTERP_CENTROID;
3273
3274 assert(last < 32);
3275 for (i = first; i <= last; i++)
3276 pc->interp_mode[i] = mode;
3277 }
3278 break;
3279 case TGSI_FILE_ADDRESS:
3280 case TGSI_FILE_CONSTANT:
3281 case TGSI_FILE_SAMPLER:
3282 break;
3283 default:
3284 NOUVEAU_ERR("bad decl file %d\n",
3285 d->Declaration.File);
3286 goto out_err;
3287 }
3288 }
3289 break;
3290 case TGSI_TOKEN_TYPE_INSTRUCTION:
3291 pc->insn_nr++;
3292 prep_inspect_insn(pc, &tok->FullInstruction);
3293 break;
3294 default:
3295 break;
3296 }
3297 }
3298
3299 if (p->type == PIPE_SHADER_VERTEX) {
3300 int rid = 0;
3301
3302 for (i = 0; i < pc->attr_nr * 4; ++i) {
3303 if (pc->attr[i].acc) {
3304 pc->attr[i].hw = rid++;
3305 p->cfg.attr[i / 32] |= 1 << (i % 32);
3306 }
3307 }
3308
3309 for (i = 0, rid = 0; i < pc->result_nr; ++i) {
3310 p->cfg.io[i].hw = rid;
3311 p->cfg.io[i].id = i;
3312
3313 for (c = 0; c < 4; ++c) {
3314 int n = i * 4 + c;
3315 if (!pc->result[n].acc)
3316 continue;
3317 pc->result[n].hw = rid++;
3318 p->cfg.io[i].mask |= 1 << c;
3319 }
3320 }
3321
3322 for (c = 0; c < 2; ++c)
3323 if (p->cfg.two_side[c].hw < 0x40)
3324 p->cfg.two_side[c] = p->cfg.io[
3325 p->cfg.two_side[c].hw];
3326
3327 if (p->cfg.psiz < 0x40)
3328 p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
3329 } else
3330 if (p->type == PIPE_SHADER_FRAGMENT) {
3331 int rid, aid;
3332 unsigned n = 0, m = pc->attr_nr - flat_nr;
3333
3334 pc->allow32 = TRUE;
3335
3336 int base = (TGSI_SEMANTIC_POSITION ==
3337 p->info.input_semantic_name[0]) ? 0 : 1;
3338
3339 /* non-flat interpolants have to be mapped to
3340 * the lower hardware IDs, so sort them:
3341 */
3342 for (i = 0; i < pc->attr_nr; i++) {
3343 if (pc->interp_mode[i] == INTERP_FLAT)
3344 p->cfg.io[m++].id = i;
3345 else {
3346 if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
3347 p->cfg.io[n].linear = TRUE;
3348 p->cfg.io[n++].id = i;
3349 }
3350 }
3351
3352 if (!base) /* set w-coordinate mask from perspective interp */
3353 p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
3354
3355 aid = popcnt4( /* if fcrd isn't contained in cfg.io */
3356 base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
3357
3358 for (n = 0; n < pc->attr_nr; ++n) {
3359 p->cfg.io[n].hw = rid = aid;
3360 i = p->cfg.io[n].id;
3361
3362 if (p->info.input_semantic_name[n] ==
3363 TGSI_SEMANTIC_FACE) {
3364 load_frontfacing(pc, &pc->attr[i * 4]);
3365 continue;
3366 }
3367
3368 for (c = 0; c < 4; ++c) {
3369 if (!pc->attr[i * 4 + c].acc)
3370 continue;
3371 pc->attr[i * 4 + c].rhw = rid++;
3372 p->cfg.io[n].mask |= 1 << c;
3373
3374 load_interpolant(pc, &pc->attr[i * 4 + c]);
3375 }
3376 aid += popcnt4(p->cfg.io[n].mask);
3377 }
3378
3379 if (!base)
3380 p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
3381
3382 m = popcnt4(p->cfg.regs[1] >> 24);
3383
3384 /* set count of non-position inputs and of non-flat
3385 * non-position inputs for FP_INTERPOLANT_CTRL
3386 */
3387 p->cfg.regs[1] |= aid - m;
3388
3389 if (flat_nr) {
3390 i = p->cfg.io[pc->attr_nr - flat_nr].hw;
3391 p->cfg.regs[1] |= (i - m) << 16;
3392 } else
3393 p->cfg.regs[1] |= p->cfg.regs[1] << 16;
3394
3395 /* mark color semantic for light-twoside */
3396 n = 0x40;
3397 for (i = 0; i < pc->attr_nr; i++) {
3398 ubyte si, sn;
3399
3400 sn = p->info.input_semantic_name[p->cfg.io[i].id];
3401 si = p->info.input_semantic_index[p->cfg.io[i].id];
3402
3403 if (sn == TGSI_SEMANTIC_COLOR) {
3404 p->cfg.two_side[si] = p->cfg.io[i];
3405
3406 /* increase colour count */
3407 p->cfg.regs[0] += popcnt4(
3408 p->cfg.two_side[si].mask) << 16;
3409
3410 n = MIN2(n, p->cfg.io[i].hw - m);
3411 }
3412 }
3413 if (n < 0x40)
3414 p->cfg.regs[0] += n;
3415
3416 /* Initialize FP results:
3417 * FragDepth is always first TGSI and last hw output
3418 */
3419 i = p->info.writes_z ? 4 : 0;
3420 for (rid = 0; i < pc->result_nr * 4; i++)
3421 pc->result[i].rhw = rid++;
3422 if (p->info.writes_z)
3423 pc->result[2].rhw = rid;
3424
3425 p->cfg.high_result = rid;
3426
3427 /* separate/different colour results for MRTs ? */
3428 if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
3429 p->cfg.regs[2] |= 1;
3430 }
3431
3432 if (pc->immd_nr) {
3433 int rid = 0;
3434
3435 pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
3436 if (!pc->immd)
3437 goto out_err;
3438
3439 for (i = 0; i < pc->immd_nr; i++) {
3440 for (c = 0; c < 4; c++, rid++)
3441 ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
3442 }
3443 }
3444
3445 ret = TRUE;
3446 out_err:
3447 if (pc->iv_p)
3448 free_temp(pc, pc->iv_p);
3449 if (pc->iv_c)
3450 free_temp(pc, pc->iv_c);
3451
3452 tgsi_parse_free(&tp);
3453 return ret;
3454 }
3455
3456 static void
3457 free_nv50_pc(struct nv50_pc *pc)
3458 {
3459 if (pc->immd)
3460 FREE(pc->immd);
3461 if (pc->param)
3462 FREE(pc->param);
3463 if (pc->result)
3464 FREE(pc->result);
3465 if (pc->attr)
3466 FREE(pc->attr);
3467 if (pc->temp)
3468 FREE(pc->temp);
3469
3470 FREE(pc);
3471 }
3472
3473 static boolean
3474 ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
3475 {
3476 int i, c;
3477 unsigned rtype[2] = { P_ATTR, P_RESULT };
3478
3479 pc->p = p;
3480 pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
3481 pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
3482 pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
3483 pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
3484 pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
3485 assert(pc->addr_nr <= 2);
3486
3487 p->cfg.high_temp = 4;
3488
3489 p->cfg.two_side[0].hw = 0x40;
3490 p->cfg.two_side[1].hw = 0x40;
3491
3492 p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
3493
3494 switch (p->type) {
3495 case PIPE_SHADER_VERTEX:
3496 p->cfg.psiz = 0x40;
3497 p->cfg.clpd = 0x40;
3498 p->cfg.io_nr = pc->result_nr;
3499 break;
3500 case PIPE_SHADER_FRAGMENT:
3501 rtype[0] = rtype[1] = P_TEMP;
3502
3503 p->cfg.regs[0] = 0x01000004;
3504 p->cfg.io_nr = pc->attr_nr;
3505
3506 if (p->info.writes_z) {
3507 p->cfg.regs[2] |= 0x00000100;
3508 p->cfg.regs[3] |= 0x00000011;
3509 }
3510 if (p->info.uses_kill)
3511 p->cfg.regs[2] |= 0x00100000;
3512 break;
3513 }
3514
3515 if (pc->temp_nr) {
3516 pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
3517 if (!pc->temp)
3518 return FALSE;
3519
3520 for (i = 0; i < pc->temp_nr * 4; ++i)
3521 ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
3522 }
3523
3524 if (pc->attr_nr) {
3525 pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
3526 if (!pc->attr)
3527 return FALSE;
3528
3529 for (i = 0; i < pc->attr_nr * 4; ++i)
3530 ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
3531 }
3532
3533 if (pc->result_nr) {
3534 unsigned nr = pc->result_nr * 4;
3535
3536 pc->result = MALLOC(nr * sizeof(struct nv50_reg));
3537 if (!pc->result)
3538 return FALSE;
3539
3540 for (i = 0; i < nr; ++i)
3541 ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
3542 }
3543
3544 if (pc->param_nr) {
3545 int rid = 0;
3546
3547 pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
3548 if (!pc->param)
3549 return FALSE;
3550
3551 for (i = 0; i < pc->param_nr; ++i)
3552 for (c = 0; c < 4; ++c, ++rid)
3553 ctor_reg(&pc->param[rid], P_CONST, i, rid);
3554 }
3555
3556 if (pc->addr_nr) {
3557 pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
3558 if (!pc->addr)
3559 return FALSE;
3560 }
3561 for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
3562 ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
3563
3564 return TRUE;
3565 }
3566
3567 static void
3568 nv50_program_fixup_insns(struct nv50_pc *pc)
3569 {
3570 struct nv50_program_exec *e, **bra_list;
3571 unsigned i, n, pos;
3572
3573 bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
3574
3575 /* Collect branch instructions, we need to adjust their offsets
3576 * when converting 32 bit instructions to 64 bit ones
3577 */
3578 for (n = 0, e = pc->p->exec_head; e; e = e->next)
3579 if (e->param.index >= 0 && !e->param.mask)
3580 bra_list[n++] = e;
3581
3582 /* Make sure we don't have any single 32 bit instructions. */
3583 for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
3584 pos += is_long(e) ? 2 : 1;
3585
3586 if ((pos & 1) && (!e->next || is_long(e->next))) {
3587 for (i = 0; i < n; ++i)
3588 if (bra_list[i]->param.index >= pos)
3589 bra_list[i]->param.index += 1;
3590 for (i = 0; i < pc->insn_nr; ++i)
3591 if (pc->insn_pos[i] >= pos)
3592 pc->insn_pos[i] += 1;
3593 convert_to_long(pc, e);
3594 ++pos;
3595 }
3596 }
3597
3598 FREE(bra_list);
3599
3600 if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
3601 return;
3602
3603 /* fill in CALL offsets */
3604 for (e = pc->p->exec_head; e; e = e->next) {
3605 if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
3606 e->param.index = pc->insn_pos[e->param.index];
3607 }
3608 }
3609
3610 static boolean
3611 nv50_program_tx(struct nv50_program *p)
3612 {
3613 struct tgsi_parse_context parse;
3614 struct nv50_pc *pc;
3615 boolean ret;
3616
3617 pc = CALLOC_STRUCT(nv50_pc);
3618 if (!pc)
3619 return FALSE;
3620
3621 ret = ctor_nv50_pc(pc, p);
3622 if (ret == FALSE)
3623 goto out_cleanup;
3624
3625 ret = nv50_program_tx_prep(pc);
3626 if (ret == FALSE)
3627 goto out_cleanup;
3628
3629 pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
3630
3631 tgsi_parse_init(&parse, pc->p->pipe.tokens);
3632 while (!tgsi_parse_end_of_tokens(&parse)) {
3633 const union tgsi_full_token *tok = &parse.FullToken;
3634
3635 /* previously allow32 was FALSE for first & last instruction */
3636 pc->allow32 = TRUE;
3637
3638 tgsi_parse_token(&parse);
3639
3640 switch (tok->Token.Type) {
3641 case TGSI_TOKEN_TYPE_INSTRUCTION:
3642 pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
3643 ++pc->insn_cur;
3644 ret = nv50_tgsi_insn(pc, tok);
3645 if (ret == FALSE)
3646 goto out_err;
3647 break;
3648 default:
3649 break;
3650 }
3651 }
3652
3653 nv50_program_fixup_insns(pc);
3654
3655 p->param_nr = pc->param_nr * 4;
3656 p->immd_nr = pc->immd_nr * 4;
3657 p->immd = pc->immd_buf;
3658
3659 out_err:
3660 tgsi_parse_free(&parse);
3661
3662 out_cleanup:
3663 free_nv50_pc(pc);
3664 return ret;
3665 }
3666
3667 static void
3668 nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
3669 {
3670 if (nv50_program_tx(p) == FALSE)
3671 assert(0);
3672 p->translated = TRUE;
3673 }
3674
3675 static void
3676 nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
3677 unsigned start, unsigned count, unsigned cbuf)
3678 {
3679 struct nouveau_channel *chan = nv50->screen->base.channel;
3680 struct nouveau_grobj *tesla = nv50->screen->tesla;
3681
3682 while (count) {
3683 unsigned nr = count > 2047 ? 2047 : count;
3684
3685 BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
3686 OUT_RING (chan, (cbuf << 0) | (start << 8));
3687 BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
3688 OUT_RINGp (chan, map, nr);
3689
3690 map += nr;
3691 start += nr;
3692 count -= nr;
3693 }
3694 }
3695
3696 static void
3697 nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
3698 {
3699 struct pipe_screen *pscreen = nv50->pipe.screen;
3700
3701 if (!p->data[0] && p->immd_nr) {
3702 struct nouveau_resource *heap = nv50->screen->immd_heap[0];
3703
3704 if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
3705 while (heap->next && heap->size < p->immd_nr) {
3706 struct nv50_program *evict = heap->next->priv;
3707 nouveau_resource_free(&evict->data[0]);
3708 }
3709
3710 if (nouveau_resource_alloc(heap, p->immd_nr, p,
3711 &p->data[0]))
3712 assert(0);
3713 }
3714
3715 /* immediates only need to be uploaded again when freed */
3716 nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
3717 p->immd_nr, NV50_CB_PMISC);
3718 }
3719
3720 assert(p->param_nr <= 512);
3721
3722 if (p->param_nr) {
3723 unsigned cb;
3724 uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
3725 PIPE_BUFFER_USAGE_CPU_READ);
3726
3727 if (p->type == PIPE_SHADER_VERTEX)
3728 cb = NV50_CB_PVP;
3729 else
3730 cb = NV50_CB_PFP;
3731
3732 nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
3733 pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
3734 }
3735 }
3736
3737 static void
3738 nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
3739 {
3740 struct nouveau_channel *chan = nv50->screen->base.channel;
3741 struct nv50_program_exec *e;
3742 uint32_t *up, i;
3743 boolean upload = FALSE;
3744
3745 if (!p->bo) {
3746 nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
3747 p->exec_size * 4, &p->bo);
3748 upload = TRUE;
3749 }
3750
3751 if (p->data[0] && p->data[0]->start != p->data_start[0])
3752 upload = TRUE;
3753
3754 if (!upload)
3755 return;
3756
3757 up = MALLOC(p->exec_size * 4);
3758
3759 for (i = 0, e = p->exec_head; e; e = e->next) {
3760 unsigned ei, ci, bs;
3761
3762 if (e->param.index >= 0 && e->param.mask) {
3763 bs = (e->inst[1] >> 22) & 0x07;
3764 assert(bs < 2);
3765 ei = e->param.shift >> 5;
3766 ci = e->param.index;
3767 if (bs == 0)
3768 ci += p->data[bs]->start;
3769
3770 e->inst[ei] &= ~e->param.mask;
3771 e->inst[ei] |= (ci << e->param.shift);
3772 } else
3773 if (e->param.index >= 0) {
3774 /* zero mask means param is a jump/branch offset */
3775 assert(!(e->param.index & 1));
3776 /* seem to be 8 byte steps */
3777 ei = (e->param.index >> 1) + 0 /* START_ID */;
3778
3779 e->inst[0] &= 0xf0000fff;
3780 e->inst[0] |= ei << 12;
3781 }
3782
3783 up[i++] = e->inst[0];
3784 if (is_long(e))
3785 up[i++] = e->inst[1];
3786 }
3787 assert(i == p->exec_size);
3788
3789 if (p->data[0])
3790 p->data_start[0] = p->data[0]->start;
3791
3792 #ifdef NV50_PROGRAM_DUMP
3793 NOUVEAU_ERR("-------\n");
3794 for (e = p->exec_head; e; e = e->next) {
3795 NOUVEAU_ERR("0x%08x\n", e->inst[0]);
3796 if (is_long(e))
3797 NOUVEAU_ERR("0x%08x\n", e->inst[1]);
3798 }
3799 #endif
3800 nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
3801 NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
3802 up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
3803 0, 0, p->exec_size * 4, 1, 1);
3804
3805 FREE(up);
3806 }
3807
3808 void
3809 nv50_vertprog_validate(struct nv50_context *nv50)
3810 {
3811 struct nouveau_grobj *tesla = nv50->screen->tesla;
3812 struct nv50_program *p = nv50->vertprog;
3813 struct nouveau_stateobj *so;
3814
3815 if (!p->translated) {
3816 nv50_program_validate(nv50, p);
3817 if (!p->translated)
3818 assert(0);
3819 }
3820
3821 nv50_program_validate_data(nv50, p);
3822 nv50_program_validate_code(nv50, p);
3823
3824 so = so_new(5, 8, 2);
3825 so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
3826 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3827 NOUVEAU_BO_HIGH, 0, 0);
3828 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3829 NOUVEAU_BO_LOW, 0, 0);
3830 so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
3831 so_data (so, p->cfg.attr[0]);
3832 so_data (so, p->cfg.attr[1]);
3833 so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
3834 so_data (so, p->cfg.high_result);
3835 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
3836 so_data (so, p->cfg.high_result); //8);
3837 so_data (so, p->cfg.high_temp);
3838 so_method(so, tesla, NV50TCL_VP_START_ID, 1);
3839 so_data (so, 0); /* program start offset */
3840 so_ref(so, &nv50->state.vertprog);
3841 so_ref(NULL, &so);
3842 }
3843
3844 void
3845 nv50_fragprog_validate(struct nv50_context *nv50)
3846 {
3847 struct nouveau_grobj *tesla = nv50->screen->tesla;
3848 struct nv50_program *p = nv50->fragprog;
3849 struct nouveau_stateobj *so;
3850
3851 if (!p->translated) {
3852 nv50_program_validate(nv50, p);
3853 if (!p->translated)
3854 assert(0);
3855 }
3856
3857 nv50_program_validate_data(nv50, p);
3858 nv50_program_validate_code(nv50, p);
3859
3860 so = so_new(6, 7, 2);
3861 so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
3862 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3863 NOUVEAU_BO_HIGH, 0, 0);
3864 so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
3865 NOUVEAU_BO_LOW, 0, 0);
3866 so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
3867 so_data (so, p->cfg.high_temp);
3868 so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
3869 so_data (so, p->cfg.high_result);
3870 so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
3871 so_data (so, p->cfg.regs[2]);
3872 so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
3873 so_data (so, p->cfg.regs[3]);
3874 so_method(so, tesla, NV50TCL_FP_START_ID, 1);
3875 so_data (so, 0); /* program start offset */
3876 so_ref(so, &nv50->state.fragprog);
3877 so_ref(NULL, &so);
3878 }
3879
3880 static void
3881 nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
3882 {
3883 struct nv50_program *fp = nv50->fragprog;
3884 struct nv50_program *vp = nv50->vertprog;
3885 unsigned i, c, m = base;
3886
3887 /* XXX: this might not work correctly in all cases yet - we'll
3888 * just assume that an FP generic input that is not written in
3889 * the VP is PointCoord.
3890 */
3891 memset(pntc, 0, 8 * sizeof(uint32_t));
3892
3893 for (i = 0; i < fp->cfg.io_nr; i++) {
3894 uint8_t sn, si;
3895 uint8_t j, k = fp->cfg.io[i].id;
3896 unsigned n = popcnt4(fp->cfg.io[i].mask);
3897
3898 if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
3899 m += n;
3900 continue;
3901 }
3902
3903 for (j = 0; j < vp->info.num_outputs; ++j) {
3904 sn = vp->info.output_semantic_name[j];
3905 si = vp->info.output_semantic_index[j];
3906
3907 if (sn == fp->info.input_semantic_name[k] &&
3908 si == fp->info.input_semantic_index[k])
3909 break;
3910 }
3911
3912 if (j < vp->info.num_outputs) {
3913 ubyte mode =
3914 nv50->rasterizer->pipe.sprite_coord_mode[si];
3915
3916 if (mode == PIPE_SPRITE_COORD_NONE) {
3917 m += n;
3918 continue;
3919 }
3920 }
3921
3922 /* this is either PointCoord or replaced by sprite coords */
3923 for (c = 0; c < 4; c++) {
3924 if (!(fp->cfg.io[i].mask & (1 << c)))
3925 continue;
3926 pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
3927 ++m;
3928 }
3929 }
3930 }
3931
3932 static int
3933 nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
3934 struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
3935 {
3936 int c;
3937 uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
3938 uint8_t *map = (uint8_t *)p_map;
3939
3940 for (c = 0; c < 4; ++c) {
3941 if (mf & 1) {
3942 if (fpi->linear == TRUE)
3943 lin[mid / 32] |= 1 << (mid % 32);
3944 map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
3945 }
3946
3947 oid += mv & 1;
3948 mf >>= 1;
3949 mv >>= 1;
3950 }
3951
3952 return mid;
3953 }
3954
3955 void
3956 nv50_linkage_validate(struct nv50_context *nv50)
3957 {
3958 struct nouveau_grobj *tesla = nv50->screen->tesla;
3959 struct nv50_program *vp = nv50->vertprog;
3960 struct nv50_program *fp = nv50->fragprog;
3961 struct nouveau_stateobj *so;
3962 struct nv50_sreg4 dummy, *vpo;
3963 int i, n, c, m = 0;
3964 uint32_t map[16], lin[4], reg[5], pcrd[8];
3965
3966 memset(map, 0, sizeof(map));
3967 memset(lin, 0, sizeof(lin));
3968
3969 reg[1] = 0x00000004; /* low and high clip distance map ids */
3970 reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
3971 reg[3] = 0x00000000; /* point size map id & enable */
3972 reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
3973 reg[4] = fp->cfg.regs[1]; /* interpolant info */
3974
3975 dummy.linear = FALSE;
3976 dummy.mask = 0xf; /* map all components of HPOS */
3977 m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
3978
3979 dummy.mask = 0x0;
3980
3981 if (vp->cfg.clpd < 0x40) {
3982 for (c = 0; c < vp->cfg.clpd_nr; ++c)
3983 map[m++] = vp->cfg.clpd + c;
3984 reg[1] = (m << 8);
3985 }
3986
3987 reg[0] |= m << 8; /* adjust BFC0 id */
3988
3989 /* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
3990 if (nv50->rasterizer->pipe.light_twoside) {
3991 vpo = &vp->cfg.two_side[0];
3992
3993 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
3994 m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
3995 }
3996
3997 reg[0] += m - 4; /* adjust FFC0 id */
3998 reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
3999
4000 for (i = 0; i < fp->cfg.io_nr; i++) {
4001 ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
4002 ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
4003
4004 /* position must be mapped first */
4005 assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
4006
4007 /* maybe even remove these from cfg.io */
4008 if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
4009 continue;
4010
4011 /* VP outputs and vp->cfg.io are in the same order */
4012 for (n = 0; n < vp->info.num_outputs; ++n) {
4013 if (vp->info.output_semantic_name[n] == sn &&
4014 vp->info.output_semantic_index[n] == si)
4015 break;
4016 }
4017 vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
4018
4019 m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
4020 }
4021
4022 if (nv50->rasterizer->pipe.point_size_per_vertex) {
4023 map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
4024 reg[3] = (m++ << 4) | 1;
4025 }
4026
4027 /* now fill the stateobj */
4028 so = so_new(6, 58, 0);
4029
4030 n = (m + 3) / 4;
4031 so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
4032 so_data (so, m);
4033 so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
4034 so_datap (so, map, n);
4035
4036 so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
4037 so_datap (so, reg, 4);
4038
4039 so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
4040 so_data (so, reg[4]);
4041
4042 so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
4043 so_datap (so, lin, 4);
4044
4045 if (nv50->rasterizer->pipe.point_sprite) {
4046 nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff);
4047
4048 so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
4049 so_datap (so, pcrd, 8);
4050 }
4051
4052 so_ref(so, &nv50->state.programs);
4053 so_ref(NULL, &so);
4054 }
4055
4056 void
4057 nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
4058 {
4059 while (p->exec_head) {
4060 struct nv50_program_exec *e = p->exec_head;
4061
4062 p->exec_head = e->next;
4063 FREE(e);
4064 }
4065 p->exec_tail = NULL;
4066 p->exec_size = 0;
4067
4068 nouveau_bo_ref(NULL, &p->bo);
4069
4070 nouveau_resource_free(&p->data[0]);
4071
4072 p->translated = 0;
4073 }