8a4a7644070c2462e3fa9dfe07fad558be2835df
[mesa.git] / src / gallium / drivers / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 */
26
27 #ifndef __PANFROST_JOB_H__
28 #define __PANFROST_JOB_H__
29
30 #include <stdint.h>
31 #include <panfrost-misc.h>
32
33 #define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8)
34
35 #define MALI_FBD_HIERARCHY_WEIGHTS 8
36
37 #define MALI_PAYLOAD_SIZE 256
38
39 typedef u32 mali_jd_core_req;
40
41 enum mali_job_type {
42 JOB_NOT_STARTED = 0,
43 JOB_TYPE_NULL = 1,
44 JOB_TYPE_SET_VALUE = 2,
45 JOB_TYPE_CACHE_FLUSH = 3,
46 JOB_TYPE_COMPUTE = 4,
47 JOB_TYPE_VERTEX = 5,
48 JOB_TYPE_GEOMETRY = 6,
49 JOB_TYPE_TILER = 7,
50 JOB_TYPE_FUSED = 8,
51 JOB_TYPE_FRAGMENT = 9,
52 };
53
54 enum mali_draw_mode {
55 MALI_DRAW_NONE = 0x0,
56 MALI_POINTS = 0x1,
57 MALI_LINES = 0x2,
58 MALI_LINE_STRIP = 0x4,
59 MALI_LINE_LOOP = 0x6,
60 MALI_TRIANGLES = 0x8,
61 MALI_TRIANGLE_STRIP = 0xA,
62 MALI_TRIANGLE_FAN = 0xC,
63 MALI_POLYGON = 0xD,
64 MALI_QUADS = 0xE,
65 MALI_QUAD_STRIP = 0xF,
66
67 /* All other modes invalid */
68 };
69
70 /* Applies to tiler_gl_enables */
71
72
73 #define MALI_OCCLUSION_QUERY (1 << 3)
74 #define MALI_OCCLUSION_PRECISE (1 << 4)
75
76 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
77 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
78 * disagree about how to do viewport flipping, so the blob actually sets this
79 * for GL_CW but then has a negative viewport stride */
80 #define MALI_FRONT_CCW_TOP (1 << 5)
81
82 #define MALI_CULL_FACE_FRONT (1 << 6)
83 #define MALI_CULL_FACE_BACK (1 << 7)
84
85 /* TODO: Might this actually be a finer bitfield? */
86 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
87
88 #define DS_ENABLE(field) \
89 (field == MALI_DEPTH_STENCIL_ENABLE) \
90 ? "MALI_DEPTH_STENCIL_ENABLE" \
91 : (field == 0) ? "0" \
92 : "0 /* XXX: Unknown, check hexdump */"
93
94 /* Used in stencil and depth tests */
95
96 enum mali_func {
97 MALI_FUNC_NEVER = 0,
98 MALI_FUNC_LESS = 1,
99 MALI_FUNC_EQUAL = 2,
100 MALI_FUNC_LEQUAL = 3,
101 MALI_FUNC_GREATER = 4,
102 MALI_FUNC_NOTEQUAL = 5,
103 MALI_FUNC_GEQUAL = 6,
104 MALI_FUNC_ALWAYS = 7
105 };
106
107 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
108
109 enum mali_alt_func {
110 MALI_ALT_FUNC_NEVER = 0,
111 MALI_ALT_FUNC_GREATER = 1,
112 MALI_ALT_FUNC_EQUAL = 2,
113 MALI_ALT_FUNC_GEQUAL = 3,
114 MALI_ALT_FUNC_LESS = 4,
115 MALI_ALT_FUNC_NOTEQUAL = 5,
116 MALI_ALT_FUNC_LEQUAL = 6,
117 MALI_ALT_FUNC_ALWAYS = 7
118 };
119
120 /* Flags apply to unknown2_3? */
121
122 #define MALI_HAS_MSAA (1 << 0)
123 #define MALI_CAN_DISCARD (1 << 5)
124
125 /* Applies on SFBD systems, specifying that programmable blending is in use */
126 #define MALI_HAS_BLEND_SHADER (1 << 6)
127
128 /* func is mali_func */
129 #define MALI_DEPTH_FUNC(func) (func << 8)
130 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
131 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
132
133 #define MALI_DEPTH_TEST (1 << 11)
134
135 /* Next flags to unknown2_4 */
136 #define MALI_STENCIL_TEST (1 << 0)
137
138 /* What?! */
139 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
140
141 #define MALI_NO_DITHER (1 << 9)
142 #define MALI_DEPTH_RANGE_A (1 << 12)
143 #define MALI_DEPTH_RANGE_B (1 << 13)
144 #define MALI_NO_MSAA (1 << 14)
145
146 /* Stencil test state is all encoded in a single u32, just with a lot of
147 * enums... */
148
149 enum mali_stencil_op {
150 MALI_STENCIL_KEEP = 0,
151 MALI_STENCIL_REPLACE = 1,
152 MALI_STENCIL_ZERO = 2,
153 MALI_STENCIL_INVERT = 3,
154 MALI_STENCIL_INCR_WRAP = 4,
155 MALI_STENCIL_DECR_WRAP = 5,
156 MALI_STENCIL_INCR = 6,
157 MALI_STENCIL_DECR = 7
158 };
159
160 struct mali_stencil_test {
161 unsigned ref : 8;
162 unsigned mask : 8;
163 enum mali_func func : 3;
164 enum mali_stencil_op sfail : 3;
165 enum mali_stencil_op dpfail : 3;
166 enum mali_stencil_op dppass : 3;
167 unsigned zero : 4;
168 } __attribute__((packed));
169
170 /* Blending is a mess, since anything fancy triggers a blend shader, and
171 * -those- are not understood whatsover yet */
172
173 #define MALI_MASK_R (1 << 0)
174 #define MALI_MASK_G (1 << 1)
175 #define MALI_MASK_B (1 << 2)
176 #define MALI_MASK_A (1 << 3)
177
178 enum mali_nondominant_mode {
179 MALI_BLEND_NON_MIRROR = 0,
180 MALI_BLEND_NON_ZERO = 1
181 };
182
183 enum mali_dominant_blend {
184 MALI_BLEND_DOM_SOURCE = 0,
185 MALI_BLEND_DOM_DESTINATION = 1
186 };
187
188 enum mali_dominant_factor {
189 MALI_DOMINANT_UNK0 = 0,
190 MALI_DOMINANT_ZERO = 1,
191 MALI_DOMINANT_SRC_COLOR = 2,
192 MALI_DOMINANT_DST_COLOR = 3,
193 MALI_DOMINANT_UNK4 = 4,
194 MALI_DOMINANT_SRC_ALPHA = 5,
195 MALI_DOMINANT_DST_ALPHA = 6,
196 MALI_DOMINANT_CONSTANT = 7,
197 };
198
199 enum mali_blend_modifier {
200 MALI_BLEND_MOD_UNK0 = 0,
201 MALI_BLEND_MOD_NORMAL = 1,
202 MALI_BLEND_MOD_SOURCE_ONE = 2,
203 MALI_BLEND_MOD_DEST_ONE = 3,
204 };
205
206 struct mali_blend_mode {
207 enum mali_blend_modifier clip_modifier : 2;
208 unsigned unused_0 : 1;
209 unsigned negate_source : 1;
210
211 enum mali_dominant_blend dominant : 1;
212
213 enum mali_nondominant_mode nondominant_mode : 1;
214
215 unsigned unused_1 : 1;
216
217 unsigned negate_dest : 1;
218
219 enum mali_dominant_factor dominant_factor : 3;
220 unsigned complement_dominant : 1;
221 } __attribute__((packed));
222
223 struct mali_blend_equation {
224 /* Of type mali_blend_mode */
225 unsigned rgb_mode : 12;
226 unsigned alpha_mode : 12;
227
228 unsigned zero1 : 4;
229
230 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
231
232 unsigned color_mask : 4;
233 } __attribute__((packed));
234
235 /* Used with channel swizzling */
236 enum mali_channel {
237 MALI_CHANNEL_RED = 0,
238 MALI_CHANNEL_GREEN = 1,
239 MALI_CHANNEL_BLUE = 2,
240 MALI_CHANNEL_ALPHA = 3,
241 MALI_CHANNEL_ZERO = 4,
242 MALI_CHANNEL_ONE = 5,
243 MALI_CHANNEL_RESERVED_0 = 6,
244 MALI_CHANNEL_RESERVED_1 = 7,
245 };
246
247 struct mali_channel_swizzle {
248 enum mali_channel r : 3;
249 enum mali_channel g : 3;
250 enum mali_channel b : 3;
251 enum mali_channel a : 3;
252 } __attribute__((packed));
253
254 /* Compressed per-pixel formats. Each of these formats expands to one to four
255 * floating-point or integer numbers, as defined by the OpenGL specification.
256 * There are various places in OpenGL where the user can specify a compressed
257 * format in memory, which all use the same 8-bit enum in the various
258 * descriptors, although different hardware units support different formats.
259 */
260
261 /* The top 3 bits specify how the bits of each component are interpreted. */
262
263 /* e.g. R11F_G11F_B10F */
264 #define MALI_FORMAT_SPECIAL (2 << 5)
265
266 /* signed normalized, e.g. RGBA8_SNORM */
267 #define MALI_FORMAT_SNORM (3 << 5)
268
269 /* e.g. RGBA8UI */
270 #define MALI_FORMAT_UINT (4 << 5)
271
272 /* e.g. RGBA8 and RGBA32F */
273 #define MALI_FORMAT_UNORM (5 << 5)
274
275 /* e.g. RGBA8I and RGBA16F */
276 #define MALI_FORMAT_SINT (6 << 5)
277
278 /* These formats seem to largely duplicate the others. They're used at least
279 * for Bifrost framebuffer output.
280 */
281 #define MALI_FORMAT_SPECIAL2 (7 << 5)
282
283 /* If the high 3 bits are 3 to 6 these two bits say how many components
284 * there are.
285 */
286 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
287
288 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
289 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
290 * bits mean.
291 */
292
293 #define MALI_CHANNEL_4 2
294
295 #define MALI_CHANNEL_8 3
296
297 #define MALI_CHANNEL_16 4
298
299 #define MALI_CHANNEL_32 5
300
301 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
302 * MALI_FORMAT_UNORM, it means a 32-bit float.
303 */
304 #define MALI_CHANNEL_FLOAT 7
305
306 enum mali_format {
307 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
308 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
309 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
310 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
311 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
312 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
313
314 /* YUV formats */
315 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
316
317 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
318 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
319 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
320 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
321 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
322 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
323 /* Only used for varyings, to indicate the transformed gl_Position */
324 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
325 /* Only used for varyings, to indicate that the write should be
326 * discarded.
327 */
328 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
329
330 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
331 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
332 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
333 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
334 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
335 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
336 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
337 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
338 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
339 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
340 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
341 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
342
343 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
344 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
345 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
346 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
347 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
348 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
349 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
350 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
351 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
352 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
353 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
354 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
355
356 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
357 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
358 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
359 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
360 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
361 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
362 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
363 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
364 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
365 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
366 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
367 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
368 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
369 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
370 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
371 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
372 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
373
374 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
375 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
376 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
377 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
378 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
379 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
380 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
381 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
382 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
383 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
384 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
385 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
386 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
387 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
388 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
389 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
390
391 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
392 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
393 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
394 };
395
396
397 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
398 * literally performing a bitwise invert. This function produces slightly wrong
399 * results and I'm not sure why; some rounding issue I suppose... */
400
401 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
402 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
403
404 /* Applies to unknown1 */
405 #define MALI_NO_ALPHA_TO_COVERAGE (1 << 10)
406
407 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
408 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
409 * it might read depth/stencil in particular, also set MALI_READS_ZS */
410
411 #define MALI_READS_ZS (1 << 12)
412 #define MALI_READS_TILEBUFFER (1 << 16)
413
414 /* The raw Midgard blend payload can either be an equation or a shader
415 * address, depending on the context */
416
417 union midgard_blend {
418 mali_ptr shader;
419
420 struct {
421 struct mali_blend_equation equation;
422 float constant;
423 };
424 };
425
426 /* On MRT Midgard systems (using an MFBD), each render target gets its own
427 * blend descriptor */
428
429 struct midgard_blend_rt {
430 /* Flags base value of 0x200 to enable the render target.
431 * OR with 0x1 for blending (anything other than REPLACE).
432 * OR with 0x2 for programmable blending with 0-2 registers
433 * OR with 0x3 for programmable blending with 2+ registers
434 */
435
436 u64 flags;
437 union midgard_blend blend;
438 } __attribute__((packed));
439
440 /* On Bifrost systems (all MRT), each render target gets one of these
441 * descriptors */
442
443 struct bifrost_blend_rt {
444 /* This is likely an analogue of the flags on
445 * midgard_blend_rt */
446
447 u16 flags; // = 0x200
448
449 /* Single-channel blend constants are encoded in a sort of
450 * fixed-point. Basically, the float is mapped to a byte, becoming
451 * a high byte, and then the lower-byte is added for precision.
452 * For the original float f:
453 *
454 * f = (constant_hi / 255) + (constant_lo / 65535)
455 *
456 * constant_hi = int(f / 255)
457 * constant_lo = 65535*f - (65535/255) * constant_hi
458 */
459
460 u16 constant;
461
462 struct mali_blend_equation equation;
463 /*
464 * - 0x19 normally
465 * - 0x3 when this slot is unused (everything else is 0 except the index)
466 * - 0x11 when this is the fourth slot (and it's used)
467 + * - 0 when there is a blend shader
468 */
469 u16 unk2;
470 /* increments from 0 to 3 */
471 u16 index;
472
473 union {
474 struct {
475 /* So far, I've only seen:
476 * - R001 for 1-component formats
477 * - RG01 for 2-component formats
478 * - RGB1 for 3-component formats
479 * - RGBA for 4-component formats
480 */
481 u32 swizzle : 12;
482 enum mali_format format : 8;
483
484 /* Type of the shader output variable. Note, this can
485 * be different from the format.
486 *
487 * 0: f16 (mediump float)
488 * 1: f32 (highp float)
489 * 2: i32 (highp int)
490 * 3: u32 (highp uint)
491 * 4: i16 (mediump int)
492 * 5: u16 (mediump uint)
493 */
494 u32 shader_type : 3;
495 u32 zero : 9;
496 };
497
498 /* Only the low 32 bits of the blend shader are stored, the
499 * high 32 bits are implicitly the same as the original shader.
500 * According to the kernel driver, the program counter for
501 * shaders is actually only 24 bits, so shaders cannot cross
502 * the 2^24-byte boundary, and neither can the blend shader.
503 * The blob handles this by allocating a 2^24 byte pool for
504 * shaders, and making sure that any blend shaders are stored
505 * in the same pool as the original shader. The kernel will
506 * make sure this allocation is aligned to 2^24 bytes.
507 */
508 u32 shader;
509 };
510 } __attribute__((packed));
511
512 /* Descriptor for the shader. Following this is at least one, up to four blend
513 * descriptors for each active render target */
514
515 struct mali_shader_meta {
516 mali_ptr shader;
517 u16 texture_count;
518 u16 sampler_count;
519 u16 attribute_count;
520 u16 varying_count;
521
522 union {
523 struct {
524 u32 uniform_buffer_count : 4;
525 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
526 } bifrost1;
527 struct {
528 /* 0x200 except MALI_NO_ALPHA_TO_COVERAGE. Mysterious 1
529 * other times. Who knows really? */
530 u16 unknown1;
531
532 /* Whole number of uniform registers used, times two;
533 * whole number of work registers used (no scale).
534 */
535 unsigned work_count : 5;
536 unsigned uniform_count : 5;
537 unsigned unknown2 : 6;
538 } midgard1;
539 };
540
541 /* On bifrost: Exactly the same as glPolygonOffset() for both.
542 * On midgard: Depth factor is exactly as passed to glPolygonOffset.
543 * Depth units is equal to the value passed to glDeptOhffset + 1.0f
544 * (use MALI_NEGATIVE)
545 */
546 float depth_units;
547 float depth_factor;
548
549 u32 unknown2_2;
550
551 u16 alpha_coverage;
552 u16 unknown2_3;
553
554 u8 stencil_mask_front;
555 u8 stencil_mask_back;
556 u16 unknown2_4;
557
558 struct mali_stencil_test stencil_front;
559 struct mali_stencil_test stencil_back;
560
561 union {
562 struct {
563 u32 unk3 : 7;
564 /* On Bifrost, some system values are preloaded in
565 * registers R55-R62 by the thread dispatcher prior to
566 * the start of shader execution. This is a bitfield
567 * with one entry for each register saying which
568 * registers need to be preloaded. Right now, the known
569 * values are:
570 *
571 * Vertex/compute:
572 * - R55 : gl_LocalInvocationID.xy
573 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
574 * - R57 : gl_WorkGroupID.x
575 * - R58 : gl_WorkGroupID.y
576 * - R59 : gl_WorkGroupID.z
577 * - R60 : gl_GlobalInvocationID.x
578 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
579 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
580 *
581 * Fragment:
582 * - R55 : unknown, never seen (but the bit for this is
583 * always set?)
584 * - R56 : unknown (bit always unset)
585 * - R57 : gl_PrimitiveID
586 * - R58 : gl_FrontFacing in low bit, potentially other stuff
587 * - R59 : u16 fragment coordinates (used to compute
588 * gl_FragCoord.xy, together with sample positions)
589 * - R60 : gl_SampleMask (used in epilog, so pretty
590 * much always used, but the bit is always 0 -- is
591 * this just always pushed?)
592 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
593 * varying interpolation.
594 * - R62 : unknown (bit always unset).
595 */
596 u32 preload_regs : 8;
597 /* In units of 8 bytes or 64 bits, since the
598 * uniform/const port loads 64 bits at a time.
599 */
600 u32 uniform_count : 7;
601 u32 unk4 : 10; // = 2
602 } bifrost2;
603 struct {
604 u32 unknown2_7;
605 } midgard2;
606 };
607
608 /* zero on bifrost */
609 u32 unknown2_8;
610
611 /* Blending information for the older non-MRT Midgard HW. Check for
612 * MALI_HAS_BLEND_SHADER to decide how to interpret.
613 */
614
615 union midgard_blend blend;
616 } __attribute__((packed));
617
618 /* This only concerns hardware jobs */
619
620 /* Possible values for job_descriptor_size */
621
622 #define MALI_JOB_32 0
623 #define MALI_JOB_64 1
624
625 struct mali_job_descriptor_header {
626 u32 exception_status;
627 u32 first_incomplete_task;
628 u64 fault_pointer;
629 u8 job_descriptor_size : 1;
630 enum mali_job_type job_type : 7;
631 u8 job_barrier : 1;
632 u8 unknown_flags : 7;
633 u16 job_index;
634 u16 job_dependency_index_1;
635 u16 job_dependency_index_2;
636
637 union {
638 u64 next_job_64;
639 u32 next_job_32;
640 };
641 } __attribute__((packed));
642
643 struct mali_payload_set_value {
644 u64 out;
645 u64 unknown;
646 } __attribute__((packed));
647
648 /* Special attributes have a fixed index */
649 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
650 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
651 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
652
653 /*
654 * Mali Attributes
655 *
656 * This structure lets the attribute unit compute the address of an attribute
657 * given the vertex and instance ID. Unfortunately, the way this works is
658 * rather complicated when instancing is enabled.
659 *
660 * To explain this, first we need to explain how compute and vertex threads are
661 * dispatched. This is a guess (although a pretty firm guess!) since the
662 * details are mostly hidden from the driver, except for attribute instancing.
663 * When a quad is dispatched, it receives a single, linear index. However, we
664 * need to translate that index into a (vertex id, instance id) pair, or a
665 * (local id x, local id y, local id z) triple for compute shaders (although
666 * vertex shaders and compute shaders are handled almost identically).
667 * Focusing on vertex shaders, one option would be to do:
668 *
669 * vertex_id = linear_id % num_vertices
670 * instance_id = linear_id / num_vertices
671 *
672 * but this involves a costly division and modulus by an arbitrary number.
673 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
674 * num_instances threads instead of num_vertices * num_instances, which results
675 * in some "extra" threads with vertex_id >= num_vertices, which we have to
676 * discard. The more we pad num_vertices, the more "wasted" threads we
677 * dispatch, but the division is potentially easier.
678 *
679 * One straightforward choice is to pad num_vertices to the next power of two,
680 * which means that the division and modulus are just simple bit shifts and
681 * masking. But the actual algorithm is a bit more complicated. The thread
682 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
683 * to dividing by a power of two. This is possibly using the technique
684 * described in patent US20170010862A1. As a result, padded_num_vertices can be
685 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
686 * since we need less padding.
687 *
688 * padded_num_vertices is picked by the hardware. The driver just specifies the
689 * actual number of vertices. At least for Mali G71, the first few cases are
690 * given by:
691 *
692 * num_vertices | padded_num_vertices
693 * 3 | 4
694 * 4-7 | 8
695 * 8-11 | 12 (3 * 4)
696 * 12-15 | 16
697 * 16-19 | 20 (5 * 4)
698 *
699 * Note that padded_num_vertices is a multiple of four (presumably because
700 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
701 * at least one more than num_vertices, which seems like a quirk of the
702 * hardware. For larger num_vertices, the hardware uses the following
703 * algorithm: using the binary representation of num_vertices, we look at the
704 * most significant set bit as well as the following 3 bits. Let n be the
705 * number of bits after those 4 bits. Then we set padded_num_vertices according
706 * to the following table:
707 *
708 * high bits | padded_num_vertices
709 * 1000 | 9 * 2^n
710 * 1001 | 5 * 2^(n+1)
711 * 101x | 3 * 2^(n+2)
712 * 110x | 7 * 2^(n+1)
713 * 111x | 2^(n+4)
714 *
715 * For example, if num_vertices = 70 is passed to glDraw(), its binary
716 * representation is 1000110, so n = 3 and the high bits are 1000, and
717 * therefore padded_num_vertices = 9 * 2^3 = 72.
718 *
719 * The attribute unit works in terms of the original linear_id. if
720 * num_instances = 1, then they are the same, and everything is simple.
721 * However, with instancing things get more complicated. There are four
722 * possible modes, two of them we can group together:
723 *
724 * 1. Use the linear_id directly. Only used when there is no instancing.
725 *
726 * 2. Use the linear_id modulo a constant. This is used for per-vertex
727 * attributes with instancing enabled by making the constant equal
728 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
729 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
730 * The shift field specifies the power of two, while the extra_flags field
731 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
732 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
733 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
734 * shift = 3. Note that we must exactly follow the hardware algorithm used to
735 * get padded_num_vertices in order to correctly implement per-vertex
736 * attributes.
737 *
738 * 3. Divide the linear_id by a constant. In order to correctly implement
739 * instance divisors, we have to divide linear_id by padded_num_vertices times
740 * to user-specified divisor. So first we compute padded_num_vertices, again
741 * following the exact same algorithm that the hardware uses, then multiply it
742 * by the GL-level divisor to get the hardware-level divisor. This case is
743 * further divided into two more cases. If the hardware-level divisor is a
744 * power of two, then we just need to shift. The shift amount is specified by
745 * the shift field, so that the hardware-level divisor is just 2^shift.
746 *
747 * If it isn't a power of two, then we have to divide by an arbitrary integer.
748 * For that, we use the well-known technique of multiplying by an approximation
749 * of the inverse. The driver must compute the magic multiplier and shift
750 * amount, and then the hardware does the multiplication and shift. The
751 * hardware and driver also use the "round-down" optimization as described in
752 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
753 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
754 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
755 * presumably this simplifies the hardware multiplier a little. The hardware
756 * first multiplies linear_id by the multiplier and takes the high 32 bits,
757 * then applies the round-down correction if extra_flags = 1, then finally
758 * shifts right by the shift field.
759 *
760 * There are some differences between ridiculousfish's algorithm and the Mali
761 * hardware algorithm, which means that the reference code from ridiculousfish
762 * doesn't always produce the right constants. Mali does not use the pre-shift
763 * optimization, since that would make a hardware implementation slower (it
764 * would have to always do the pre-shift, multiply, and post-shift operations).
765 * It also forces the multplier to be at least 2^31, which means that the
766 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
767 * given the divisor d, the algorithm the driver must follow is:
768 *
769 * 1. Set shift = floor(log2(d)).
770 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
771 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
772 * magic_divisor = m - 1 and extra_flags = 1.
773 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
774 */
775
776 enum mali_attr_mode {
777 MALI_ATTR_UNUSED = 0,
778 MALI_ATTR_LINEAR = 1,
779 MALI_ATTR_POT_DIVIDE = 2,
780 MALI_ATTR_MODULO = 3,
781 MALI_ATTR_NPOT_DIVIDE = 4,
782 };
783
784 /* This magic "pseudo-address" is used as `elements` to implement
785 * gl_PointCoord. When read from a fragment shader, it generates a point
786 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
787 * require an affine transformation in the shader. */
788
789 #define MALI_VARYING_POINT_COORD (0x60)
790
791 union mali_attr {
792 /* This is used for actual attributes. */
793 struct {
794 /* The bottom 3 bits are the mode */
795 mali_ptr elements : 64 - 8;
796 u32 shift : 5;
797 u32 extra_flags : 3;
798 u32 stride;
799 u32 size;
800 };
801 /* The entry after an NPOT_DIVIDE entry has this format. It stores
802 * extra information that wouldn't fit in a normal entry.
803 */
804 struct {
805 u32 unk; /* = 0x20 */
806 u32 magic_divisor;
807 u32 zero;
808 /* This is the original, GL-level divisor. */
809 u32 divisor;
810 };
811 } __attribute__((packed));
812
813 struct mali_attr_meta {
814 /* Vertex buffer index */
815 u8 index;
816
817 unsigned unknown1 : 2;
818 unsigned swizzle : 12;
819 enum mali_format format : 8;
820
821 /* Always observed to be zero at the moment */
822 unsigned unknown3 : 2;
823
824 /* When packing multiple attributes in a buffer, offset addresses by this value */
825 uint32_t src_offset;
826 } __attribute__((packed));
827
828 enum mali_fbd_type {
829 MALI_SFBD = 0,
830 MALI_MFBD = 1,
831 };
832
833 #define FBD_TYPE (1)
834 #define FBD_MASK (~0x3f)
835
836 struct mali_uniform_buffer_meta {
837 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
838 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
839 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
840 */
841 u64 size : 10;
842
843 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
844 * should be 0 for userspace pointers, according to
845 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
846 * each entry in the table only 64 bits.
847 */
848 mali_ptr ptr : 64 - 10;
849 };
850
851 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
852 * They also seem to be the same between Bifrost and Midgard. They're shared in
853 * fused payloads.
854 */
855
856 /* Applies to unknown_draw */
857
858 #define MALI_DRAW_INDEXED_UINT8 (0x10)
859 #define MALI_DRAW_INDEXED_UINT16 (0x20)
860 #define MALI_DRAW_INDEXED_UINT32 (0x30)
861 #define MALI_DRAW_VARYING_SIZE (0x100)
862 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
863
864 struct mali_vertex_tiler_prefix {
865 /* This is a dynamic bitfield containing the following things in this order:
866 *
867 * - gl_WorkGroupSize.x
868 * - gl_WorkGroupSize.y
869 * - gl_WorkGroupSize.z
870 * - gl_NumWorkGroups.x
871 * - gl_NumWorkGroups.y
872 * - gl_NumWorkGroups.z
873 *
874 * The number of bits allocated for each number is based on the *_shift
875 * fields below. For example, workgroups_y_shift gives the bit that
876 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
877 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
878 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
879 * value is one more than the stored value, since if any of the values
880 * are zero, then there would be no invocations (and hence no job). If
881 * there were 0 bits allocated to a given field, then it must be zero,
882 * and hence the real value is one.
883 *
884 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
885 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
886 * where vertex count is the number of vertices.
887 */
888 u32 invocation_count;
889
890 u32 size_y_shift : 5;
891 u32 size_z_shift : 5;
892 u32 workgroups_x_shift : 6;
893 u32 workgroups_y_shift : 6;
894 u32 workgroups_z_shift : 6;
895 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
896 u32 workgroups_x_shift_2 : 4;
897
898 u32 draw_mode : 4;
899 u32 unknown_draw : 22;
900
901 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
902 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
903 * something to do with how many quads get put in the same execution
904 * engine, which is a balance (you don't want to starve the engine, but
905 * you also want to distribute work evenly).
906 */
907 u32 workgroups_x_shift_3 : 6;
908
909
910 /* Negative of draw_start for TILER jobs from what I've seen */
911 int32_t negative_start;
912 u32 zero1;
913
914 /* Like many other strictly nonzero quantities, index_count is
915 * subtracted by one. For an indexed cube, this is equal to 35 = 6
916 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
917 * for an indexed draw, index_count is the number of actual vertices
918 * rendered whereas invocation_count is the number of unique vertices
919 * rendered (the number of times the vertex shader must be invoked).
920 * For non-indexed draws, this is just equal to invocation_count. */
921
922 u32 index_count;
923
924 /* No hidden structure; literally just a pointer to an array of uint
925 * indices (width depends on flags). Thanks, guys, for not making my
926 * life insane for once! NULL for non-indexed draws. */
927
928 uintptr_t indices;
929 } __attribute__((packed));
930
931 /* Point size / line width can either be specified as a 32-bit float (for
932 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
933 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
934 * payload, the contents of varying_pointer will be intepreted as an array of
935 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
936 * creating a special MALI_R16F varying writing to varying_pointer. */
937
938 union midgard_primitive_size {
939 float constant;
940 uintptr_t pointer;
941 };
942
943 struct bifrost_vertex_only {
944 u32 unk2; /* =0x2 */
945
946 u32 zero0;
947
948 u64 zero1;
949 } __attribute__((packed));
950
951 struct bifrost_tiler_heap_meta {
952 u32 zero;
953 u32 heap_size;
954 /* note: these are just guesses! */
955 mali_ptr tiler_heap_start;
956 mali_ptr tiler_heap_free;
957 mali_ptr tiler_heap_end;
958
959 /* hierarchy weights? but they're still 0 after the job has run... */
960 u32 zeros[12];
961 } __attribute__((packed));
962
963 struct bifrost_tiler_meta {
964 u64 zero0;
965 u32 unk; // = 0xf0
966 u16 width;
967 u16 height;
968 u64 zero1;
969 mali_ptr tiler_heap_meta;
970 /* TODO what is this used for? */
971 u64 zeros[20];
972 } __attribute__((packed));
973
974 struct bifrost_tiler_only {
975 /* 0x20 */
976 union midgard_primitive_size primitive_size;
977
978 mali_ptr tiler_meta;
979
980 u64 zero1, zero2, zero3, zero4, zero5, zero6;
981
982 u32 gl_enables;
983 u32 zero7;
984 u64 zero8;
985 } __attribute__((packed));
986
987 struct bifrost_scratchpad {
988 u32 zero;
989 u32 flags; // = 0x1f
990 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
991 * during startup. It seems to serve the same purpose as the
992 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
993 * larger.
994 */
995 mali_ptr gpu_scratchpad;
996 } __attribute__((packed));
997
998 struct mali_vertex_tiler_postfix {
999 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1000 * output from the vertex shader for tiler jobs.
1001 */
1002
1003 uintptr_t position_varying;
1004
1005 /* An array of mali_uniform_buffer_meta's. The size is given by the
1006 * shader_meta.
1007 */
1008 uintptr_t uniform_buffers;
1009
1010 /* This is a pointer to an array of pointers to the texture
1011 * descriptors, number of pointers bounded by number of textures. The
1012 * indirection is needed to accomodate varying numbers and sizes of
1013 * texture descriptors */
1014 uintptr_t texture_trampoline;
1015
1016 /* For OpenGL, from what I've seen, this is intimately connected to
1017 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1018 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1019 * array of sampler descriptors (which are uniform in size) */
1020 uintptr_t sampler_descriptor;
1021
1022 uintptr_t uniforms;
1023 u8 flags : 4;
1024 uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
1025 uintptr_t attributes; /* struct attribute_buffer[] */
1026 uintptr_t attribute_meta; /* attribute_meta[] */
1027 uintptr_t varyings; /* struct attr */
1028 uintptr_t varying_meta; /* pointer */
1029 uintptr_t viewport;
1030 uintptr_t occlusion_counter; /* A single bit as far as I can tell */
1031
1032 /* Note: on Bifrost, this isn't actually the FBD. It points to
1033 * bifrost_scratchpad instead. However, it does point to the same thing
1034 * in vertex and tiler jobs.
1035 */
1036 mali_ptr framebuffer;
1037 } __attribute__((packed));
1038
1039 struct midgard_payload_vertex_tiler {
1040 #ifndef __LP64__
1041 union midgard_primitive_size primitive_size;
1042 #endif
1043
1044 struct mali_vertex_tiler_prefix prefix;
1045
1046 #ifndef __LP64__
1047 u32 zero3;
1048 #endif
1049
1050 u32 gl_enables; // 0x5
1051
1052 /* Offset for first vertex in buffer */
1053 u32 draw_start;
1054
1055 uintptr_t zero5;
1056
1057 struct mali_vertex_tiler_postfix postfix;
1058
1059 #ifdef __LP64__
1060 union midgard_primitive_size primitive_size;
1061 #endif
1062 } __attribute__((packed));
1063
1064 struct bifrost_payload_vertex {
1065 struct mali_vertex_tiler_prefix prefix;
1066 struct bifrost_vertex_only vertex;
1067 struct mali_vertex_tiler_postfix postfix;
1068 } __attribute__((packed));
1069
1070 struct bifrost_payload_tiler {
1071 struct mali_vertex_tiler_prefix prefix;
1072 struct bifrost_tiler_only tiler;
1073 struct mali_vertex_tiler_postfix postfix;
1074 } __attribute__((packed));
1075
1076 struct bifrost_payload_fused {
1077 struct mali_vertex_tiler_prefix prefix;
1078 struct bifrost_tiler_only tiler;
1079 struct mali_vertex_tiler_postfix tiler_postfix;
1080 u64 padding; /* zero */
1081 struct bifrost_vertex_only vertex;
1082 struct mali_vertex_tiler_postfix vertex_postfix;
1083 } __attribute__((packed));
1084
1085 /* Pointed to from texture_trampoline, mostly unknown still, haven't
1086 * managed to replay successfully */
1087
1088 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1089 * texture is stored as (63, 63) in these fields. This adjusts for that.
1090 * There's an identical pattern in the framebuffer descriptor. Even vertex
1091 * count fields work this way, hence the generic name -- integral fields that
1092 * are strictly positive generally need this adjustment. */
1093
1094 #define MALI_POSITIVE(dim) (dim - 1)
1095
1096 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1097
1098 #define MALI_NEGATIVE(dim) (dim + 1)
1099
1100 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1101
1102 enum mali_wrap_mode {
1103 MALI_WRAP_REPEAT = 0x8,
1104 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1105 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1106 MALI_WRAP_MIRRORED_REPEAT = 0xC
1107 };
1108
1109 /* 8192x8192 */
1110 #define MAX_MIP_LEVELS (13)
1111
1112 /* Cubemap bloats everything up */
1113 #define MAX_FACES (6)
1114
1115 /* Corresponds to the type passed to glTexImage2D and so forth */
1116
1117 /* Flags for usage2 */
1118 #define MALI_TEX_MANUAL_STRIDE (0x20)
1119
1120 struct mali_texture_format {
1121 unsigned swizzle : 12;
1122 enum mali_format format : 8;
1123
1124 unsigned usage1 : 3;
1125 unsigned is_not_cubemap : 1;
1126 unsigned usage2 : 8;
1127 } __attribute__((packed));
1128
1129 struct mali_texture_descriptor {
1130 uint16_t width;
1131 uint16_t height;
1132 uint16_t depth;
1133
1134 uint16_t unknown1;
1135
1136 struct mali_texture_format format;
1137
1138 uint16_t unknown3;
1139
1140 /* One for non-mipmapped, zero for mipmapped */
1141 uint8_t unknown3A;
1142
1143 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1144 uint8_t nr_mipmap_levels;
1145
1146 /* Swizzling is a single 32-bit word, broken up here for convenience.
1147 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1148 * level swizzling, not the internal pixel-level swizzling which is
1149 * below OpenGL's reach */
1150
1151 unsigned swizzle : 12;
1152 unsigned swizzle_zero : 20;
1153
1154 uint32_t unknown5;
1155 uint32_t unknown6;
1156 uint32_t unknown7;
1157
1158 mali_ptr swizzled_bitmaps[MAX_MIP_LEVELS * MAX_FACES];
1159 } __attribute__((packed));
1160
1161 /* Used as part of filter_mode */
1162
1163 #define MALI_LINEAR 0
1164 #define MALI_NEAREST 1
1165 #define MALI_MIP_LINEAR (0x18)
1166
1167 /* Used to construct low bits of filter_mode */
1168
1169 #define MALI_TEX_MAG(mode) (((mode) & 1) << 0)
1170 #define MALI_TEX_MIN(mode) (((mode) & 1) << 1)
1171
1172 #define MALI_TEX_MAG_MASK (1)
1173 #define MALI_TEX_MIN_MASK (2)
1174
1175 #define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR")
1176
1177 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1178 * be cleaned up a lot. */
1179
1180 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1181
1182 static inline uint16_t
1183 FIXED_16(float x)
1184 {
1185 /* Clamp inputs, accounting for float error */
1186 float max_lod = (32.0 - (1.0 / 512.0));
1187
1188 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1189
1190 return (int) (x * 256.0);
1191 }
1192
1193 struct mali_sampler_descriptor {
1194 uint32_t filter_mode;
1195
1196 /* Fixed point. Upper 8-bits is before the decimal point, although it
1197 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1198 * 256)) */
1199
1200 uint16_t min_lod;
1201 uint16_t max_lod;
1202
1203 /* All one word in reality, but packed a bit */
1204
1205 enum mali_wrap_mode wrap_s : 4;
1206 enum mali_wrap_mode wrap_t : 4;
1207 enum mali_wrap_mode wrap_r : 4;
1208 enum mali_alt_func compare_func : 3;
1209
1210 /* A single set bit of unknown, ha! */
1211 unsigned unknown2 : 1;
1212
1213 unsigned zero : 16;
1214
1215 uint32_t zero2;
1216 float border_color[4];
1217 } __attribute__((packed));
1218
1219 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1220 * modified by MALI_POSITIVE; viewport0 is as-is.
1221 */
1222
1223 struct mali_viewport {
1224 /* XY clipping planes */
1225 float clip_minx;
1226 float clip_miny;
1227 float clip_maxx;
1228 float clip_maxy;
1229
1230 /* Depth clipping planes */
1231 float clip_minz;
1232 float clip_maxz;
1233
1234 u16 viewport0[2];
1235 u16 viewport1[2];
1236 } __attribute__((packed));
1237
1238 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1239 * of tile numbers. */
1240
1241 #define MALI_TILE_SHIFT 4
1242 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1243
1244 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1245 * each component. Notice that this provides a theoretical upper bound of (1 <<
1246 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1247 * 65536x65536. Multiplying that together, times another four given that Mali
1248 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1249 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1250 * alone rendering in real-time to such a buffer.
1251 *
1252 * Nice job, guys.*/
1253
1254 /* From mali_kbase_10969_workaround.c */
1255 #define MALI_X_COORD_MASK 0x00000FFF
1256 #define MALI_Y_COORD_MASK 0x0FFF0000
1257
1258 /* Extract parts of a tile coordinate */
1259
1260 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1261 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1262 #define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK))
1263
1264 /* No known flags yet, but just in case...? */
1265
1266 #define MALI_TILE_NO_FLAG (0)
1267
1268 /* Helpers to generate tile coordinates based on the boundary coordinates in
1269 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1270 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1271 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1272 * problem. */
1273
1274 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1275 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1276 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1277 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1278 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1279
1280 struct mali_payload_fragment {
1281 u32 min_tile_coord;
1282 u32 max_tile_coord;
1283 mali_ptr framebuffer;
1284 } __attribute__((packed));
1285
1286 /* Single Framebuffer Descriptor */
1287
1288 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1289 * configured for 4x. With MSAA_8, it is configured for 8x. */
1290
1291 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1292 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1293 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1294
1295 /* Fast/slow based on whether all three buffers are cleared at once */
1296
1297 #define MALI_CLEAR_FAST (1 << 18)
1298 #define MALI_CLEAR_SLOW (1 << 28)
1299 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1300
1301 struct mali_single_framebuffer {
1302 u32 unknown1;
1303 u32 unknown2;
1304 u64 unknown_address_0;
1305 u64 zero1;
1306 u64 zero0;
1307
1308 /* Exact format is ironically not known, since EGL is finnicky with the
1309 * blob. MSAA, colourspace, etc are configured here. */
1310
1311 u32 format;
1312
1313 u32 clear_flags;
1314 u32 zero2;
1315
1316 /* Purposeful off-by-one in these fields should be accounted for by the
1317 * MALI_DIMENSION macro */
1318
1319 u16 width;
1320 u16 height;
1321
1322 u32 zero3[8];
1323
1324 /* By default, the framebuffer is upside down from OpenGL's
1325 * perspective. Set framebuffer to the end and negate the stride to
1326 * flip in the Y direction */
1327
1328 mali_ptr framebuffer;
1329 int32_t stride;
1330
1331 u32 zero4;
1332
1333 /* Depth and stencil buffers are interleaved, it appears, as they are
1334 * set to the same address in captures. Both fields set to zero if the
1335 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1336 * get a zero enable despite the buffer being present; that still is
1337 * disabled. */
1338
1339 mali_ptr depth_buffer; // not SAME_VA
1340 u64 depth_buffer_enable;
1341
1342 mali_ptr stencil_buffer; // not SAME_VA
1343 u64 stencil_buffer_enable;
1344
1345 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1346 u32 clear_color_2; // always equal, but unclear function?
1347 u32 clear_color_3; // always equal, but unclear function?
1348 u32 clear_color_4; // always equal, but unclear function?
1349
1350 /* Set to zero if not cleared */
1351
1352 float clear_depth_1; // float32, ditto
1353 float clear_depth_2; // float32, ditto
1354 float clear_depth_3; // float32, ditto
1355 float clear_depth_4; // float32, ditto
1356
1357 u32 clear_stencil; // Exactly as it appears in OpenGL
1358
1359 u32 zero6[7];
1360
1361 /* Very weird format, see generation code in trans_builder.c */
1362 u32 resolution_check;
1363
1364 u32 tiler_flags;
1365
1366 u64 unknown_address_1; /* Pointing towards... a zero buffer? */
1367 u64 unknown_address_2;
1368
1369 /* See mali_kbase_replay.c */
1370 u64 tiler_heap_free;
1371 u64 tiler_heap_end;
1372
1373 /* More below this, maybe */
1374 } __attribute__((packed));
1375
1376 /* Format bits for the render target flags */
1377
1378 #define MALI_MFBD_FORMAT_AFBC (1 << 5)
1379 #define MALI_MFBD_FORMAT_MSAA (1 << 7)
1380
1381 struct mali_rt_format {
1382 unsigned unk1 : 32;
1383 unsigned unk2 : 3;
1384
1385 unsigned nr_channels : 2; /* MALI_POSITIVE */
1386
1387 unsigned flags : 11;
1388
1389 unsigned swizzle : 12;
1390
1391 unsigned unk4 : 4;
1392 } __attribute__((packed));
1393
1394 struct bifrost_render_target {
1395 struct mali_rt_format format;
1396
1397 u64 zero1;
1398
1399 union {
1400 struct {
1401 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1402 * there is an extra metadata buffer that contains 16 bytes per tile.
1403 * The framebuffer needs to be the same size as before, since we don't
1404 * know ahead of time how much space it will take up. The
1405 * framebuffer_stride is set to 0, since the data isn't stored linearly
1406 * anymore.
1407 */
1408
1409 mali_ptr metadata;
1410 u32 stride; // stride in units of tiles
1411 u32 unk; // = 0x20000
1412 } afbc;
1413
1414 struct {
1415 /* Heck if I know */
1416 u64 unk;
1417 mali_ptr pointer;
1418 } chunknown;
1419 };
1420
1421 mali_ptr framebuffer;
1422
1423 u32 zero2 : 4;
1424 u32 framebuffer_stride : 28; // in units of bytes
1425 u32 zero3;
1426
1427 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1428 u32 clear_color_2; // always equal, but unclear function?
1429 u32 clear_color_3; // always equal, but unclear function?
1430 u32 clear_color_4; // always equal, but unclear function?
1431 } __attribute__((packed));
1432
1433 /* An optional part of bifrost_framebuffer. It comes between the main structure
1434 * and the array of render targets. It must be included if any of these are
1435 * enabled:
1436 *
1437 * - Transaction Elimination
1438 * - Depth/stencil
1439 * - TODO: Anything else?
1440 */
1441
1442 /* Flags field: note, these are guesses */
1443
1444 #define MALI_EXTRA_PRESENT (0x400)
1445 #define MALI_EXTRA_AFBC (0x20)
1446 #define MALI_EXTRA_AFBC_ZS (0x10)
1447 #define MALI_EXTRA_ZS (0x4)
1448
1449 struct bifrost_fb_extra {
1450 mali_ptr checksum;
1451 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1452 u32 checksum_stride;
1453
1454 u32 flags;
1455
1456 union {
1457 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1458 struct {
1459 mali_ptr depth_stencil_afbc_metadata;
1460 u32 depth_stencil_afbc_stride; // in units of tiles
1461 u32 zero1;
1462
1463 mali_ptr depth_stencil;
1464
1465 u64 padding;
1466 } ds_afbc;
1467
1468 struct {
1469 /* Depth becomes depth/stencil in case of combined D/S */
1470 mali_ptr depth;
1471 u32 depth_stride_zero : 4;
1472 u32 depth_stride : 28;
1473 u32 zero1;
1474
1475 mali_ptr stencil;
1476 u32 stencil_stride_zero : 4;
1477 u32 stencil_stride : 28;
1478 u32 zero2;
1479 } ds_linear;
1480 };
1481
1482
1483 u64 zero3, zero4;
1484 } __attribute__((packed));
1485
1486 /* flags for unk3 */
1487
1488 /* Enables writing depth results back to main memory (rather than keeping them
1489 * on-chip in the tile buffer and then discarding) */
1490
1491 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1492
1493 /* The MFBD contains the extra bifrost_fb_extra section */
1494
1495 #define MALI_MFBD_EXTRA (1 << 13)
1496
1497 struct bifrost_framebuffer {
1498 u32 unk0; // = 0x10
1499
1500 u32 unknown2; // = 0x1f, same as SFBD
1501 mali_ptr scratchpad;
1502
1503 /* 0x10 */
1504 mali_ptr sample_locations;
1505 mali_ptr unknown1;
1506 /* 0x20 */
1507 u16 width1, height1;
1508 u32 zero3;
1509 u16 width2, height2;
1510 u32 unk1 : 19; // = 0x01000
1511 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1512 u32 unk2 : 3; // = 0
1513 u32 rt_count_2 : 3; // no off-by-one
1514 u32 zero4 : 5;
1515 /* 0x30 */
1516 u32 clear_stencil : 8;
1517 u32 unk3 : 24; // = 0x100
1518 float clear_depth;
1519 mali_ptr tiler_meta;
1520 /* 0x40 */
1521
1522 /* Note: these are guesses! */
1523 mali_ptr tiler_scratch_start;
1524 mali_ptr tiler_scratch_middle;
1525
1526 /* These are not, since we see symmetry with replay jobs which name these explicitly */
1527 mali_ptr tiler_heap_start;
1528 mali_ptr tiler_heap_end;
1529
1530 u64 zero9, zero10, zero11, zero12;
1531
1532 /* optional: struct bifrost_fb_extra extra */
1533 /* struct bifrost_render_target rts[] */
1534 } __attribute__((packed));
1535
1536 #endif /* __PANFROST_JOB_H__ */