panfrost: Backport driver to Mali T600/T700
[mesa.git] / src / gallium / drivers / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 */
26
27 #ifndef __PANFROST_JOB_H__
28 #define __PANFROST_JOB_H__
29
30 #include <stdint.h>
31 #include <panfrost-misc.h>
32
33 #define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8)
34
35 #define MALI_FBD_HIERARCHY_WEIGHTS 8
36
37 #define MALI_PAYLOAD_SIZE 256
38
39 typedef u32 mali_jd_core_req;
40
41 enum mali_job_type {
42 JOB_NOT_STARTED = 0,
43 JOB_TYPE_NULL = 1,
44 JOB_TYPE_SET_VALUE = 2,
45 JOB_TYPE_CACHE_FLUSH = 3,
46 JOB_TYPE_COMPUTE = 4,
47 JOB_TYPE_VERTEX = 5,
48 JOB_TYPE_GEOMETRY = 6,
49 JOB_TYPE_TILER = 7,
50 JOB_TYPE_FUSED = 8,
51 JOB_TYPE_FRAGMENT = 9,
52 };
53
54 enum mali_draw_mode {
55 MALI_DRAW_NONE = 0x0,
56 MALI_POINTS = 0x1,
57 MALI_LINES = 0x2,
58 MALI_LINE_STRIP = 0x4,
59 MALI_LINE_LOOP = 0x6,
60 MALI_TRIANGLES = 0x8,
61 MALI_TRIANGLE_STRIP = 0xA,
62 MALI_TRIANGLE_FAN = 0xC,
63 MALI_POLYGON = 0xD,
64 MALI_QUADS = 0xE,
65 MALI_QUAD_STRIP = 0xF,
66
67 /* All other modes invalid */
68 };
69
70 /* Applies to tiler_gl_enables */
71
72 #define MALI_CULL_FACE_BACK 0x80
73 #define MALI_CULL_FACE_FRONT 0x40
74
75 #define MALI_FRONT_FACE(v) (v << 5)
76 #define MALI_CCW (0)
77 #define MALI_CW (1)
78
79 #define MALI_OCCLUSION_BOOLEAN 0x8
80
81 /* TODO: Might this actually be a finer bitfield? */
82 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
83
84 #define DS_ENABLE(field) \
85 (field == MALI_DEPTH_STENCIL_ENABLE) \
86 ? "MALI_DEPTH_STENCIL_ENABLE" \
87 : (field == 0) ? "0" \
88 : "0 /* XXX: Unknown, check hexdump */"
89
90 /* Used in stencil and depth tests */
91
92 enum mali_func {
93 MALI_FUNC_NEVER = 0,
94 MALI_FUNC_LESS = 1,
95 MALI_FUNC_EQUAL = 2,
96 MALI_FUNC_LEQUAL = 3,
97 MALI_FUNC_GREATER = 4,
98 MALI_FUNC_NOTEQUAL = 5,
99 MALI_FUNC_GEQUAL = 6,
100 MALI_FUNC_ALWAYS = 7
101 };
102
103 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
104
105 enum mali_alt_func {
106 MALI_ALT_FUNC_NEVER = 0,
107 MALI_ALT_FUNC_GREATER = 1,
108 MALI_ALT_FUNC_EQUAL = 2,
109 MALI_ALT_FUNC_GEQUAL = 3,
110 MALI_ALT_FUNC_LESS = 4,
111 MALI_ALT_FUNC_NOTEQUAL = 5,
112 MALI_ALT_FUNC_LEQUAL = 6,
113 MALI_ALT_FUNC_ALWAYS = 7
114 };
115
116 /* Flags apply to unknown2_3? */
117
118 #define MALI_HAS_MSAA (1 << 0)
119 #define MALI_CAN_DISCARD (1 << 5)
120
121 /* Applies on SFBD systems, specifying that programmable blending is in use */
122 #define MALI_HAS_BLEND_SHADER (1 << 6)
123
124 /* func is mali_func */
125 #define MALI_DEPTH_FUNC(func) (func << 8)
126 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
127 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
128
129 #define MALI_DEPTH_TEST (1 << 11)
130
131 /* Next flags to unknown2_4 */
132 #define MALI_STENCIL_TEST (1 << 0)
133
134 /* What?! */
135 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
136
137 #define MALI_NO_DITHER (1 << 9)
138 #define MALI_DEPTH_RANGE_A (1 << 12)
139 #define MALI_DEPTH_RANGE_B (1 << 13)
140 #define MALI_NO_MSAA (1 << 14)
141
142 /* Stencil test state is all encoded in a single u32, just with a lot of
143 * enums... */
144
145 enum mali_stencil_op {
146 MALI_STENCIL_KEEP = 0,
147 MALI_STENCIL_REPLACE = 1,
148 MALI_STENCIL_ZERO = 2,
149 MALI_STENCIL_INVERT = 3,
150 MALI_STENCIL_INCR_WRAP = 4,
151 MALI_STENCIL_DECR_WRAP = 5,
152 MALI_STENCIL_INCR = 6,
153 MALI_STENCIL_DECR = 7
154 };
155
156 struct mali_stencil_test {
157 unsigned ref : 8;
158 unsigned mask : 8;
159 enum mali_func func : 3;
160 enum mali_stencil_op sfail : 3;
161 enum mali_stencil_op dpfail : 3;
162 enum mali_stencil_op dppass : 3;
163 unsigned zero : 4;
164 } __attribute__((packed));
165
166 /* Blending is a mess, since anything fancy triggers a blend shader, and
167 * -those- are not understood whatsover yet */
168
169 #define MALI_MASK_R (1 << 0)
170 #define MALI_MASK_G (1 << 1)
171 #define MALI_MASK_B (1 << 2)
172 #define MALI_MASK_A (1 << 3)
173
174 enum mali_nondominant_mode {
175 MALI_BLEND_NON_MIRROR = 0,
176 MALI_BLEND_NON_ZERO = 1
177 };
178
179 enum mali_dominant_blend {
180 MALI_BLEND_DOM_SOURCE = 0,
181 MALI_BLEND_DOM_DESTINATION = 1
182 };
183
184 enum mali_dominant_factor {
185 MALI_DOMINANT_UNK0 = 0,
186 MALI_DOMINANT_ZERO = 1,
187 MALI_DOMINANT_SRC_COLOR = 2,
188 MALI_DOMINANT_DST_COLOR = 3,
189 MALI_DOMINANT_UNK4 = 4,
190 MALI_DOMINANT_SRC_ALPHA = 5,
191 MALI_DOMINANT_DST_ALPHA = 6,
192 MALI_DOMINANT_CONSTANT = 7,
193 };
194
195 enum mali_blend_modifier {
196 MALI_BLEND_MOD_UNK0 = 0,
197 MALI_BLEND_MOD_NORMAL = 1,
198 MALI_BLEND_MOD_SOURCE_ONE = 2,
199 MALI_BLEND_MOD_DEST_ONE = 3,
200 };
201
202 struct mali_blend_mode {
203 enum mali_blend_modifier clip_modifier : 2;
204 unsigned unused_0 : 1;
205 unsigned negate_source : 1;
206
207 enum mali_dominant_blend dominant : 1;
208
209 enum mali_nondominant_mode nondominant_mode : 1;
210
211 unsigned unused_1 : 1;
212
213 unsigned negate_dest : 1;
214
215 enum mali_dominant_factor dominant_factor : 3;
216 unsigned complement_dominant : 1;
217 } __attribute__((packed));
218
219 struct mali_blend_equation {
220 /* Of type mali_blend_mode */
221 unsigned rgb_mode : 12;
222 unsigned alpha_mode : 12;
223
224 unsigned zero1 : 4;
225
226 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
227
228 unsigned color_mask : 4;
229
230 /* Attached constant for CONSTANT_ALPHA, etc */
231
232 #ifndef BIFROST
233 float constant;
234 #endif
235 } __attribute__((packed));
236
237 /* Used with channel swizzling */
238 enum mali_channel {
239 MALI_CHANNEL_RED = 0,
240 MALI_CHANNEL_GREEN = 1,
241 MALI_CHANNEL_BLUE = 2,
242 MALI_CHANNEL_ALPHA = 3,
243 MALI_CHANNEL_ZERO = 4,
244 MALI_CHANNEL_ONE = 5,
245 MALI_CHANNEL_RESERVED_0 = 6,
246 MALI_CHANNEL_RESERVED_1 = 7,
247 };
248
249 struct mali_channel_swizzle {
250 enum mali_channel r : 3;
251 enum mali_channel g : 3;
252 enum mali_channel b : 3;
253 enum mali_channel a : 3;
254 } __attribute__((packed));
255
256 /* Compressed per-pixel formats. Each of these formats expands to one to four
257 * floating-point or integer numbers, as defined by the OpenGL specification.
258 * There are various places in OpenGL where the user can specify a compressed
259 * format in memory, which all use the same 8-bit enum in the various
260 * descriptors, although different hardware units support different formats.
261 */
262
263 /* The top 3 bits specify how the bits of each component are interpreted. */
264
265 /* e.g. R11F_G11F_B10F */
266 #define MALI_FORMAT_SPECIAL (2 << 5)
267
268 /* signed normalized, e.g. RGBA8_SNORM */
269 #define MALI_FORMAT_SNORM (3 << 5)
270
271 /* e.g. RGBA8UI */
272 #define MALI_FORMAT_UINT (4 << 5)
273
274 /* e.g. RGBA8 and RGBA32F */
275 #define MALI_FORMAT_UNORM (5 << 5)
276
277 /* e.g. RGBA8I and RGBA16F */
278 #define MALI_FORMAT_SINT (6 << 5)
279
280 /* These formats seem to largely duplicate the others. They're used at least
281 * for Bifrost framebuffer output.
282 */
283 #define MALI_FORMAT_SPECIAL2 (7 << 5)
284
285 /* If the high 3 bits are 3 to 6 these two bits say how many components
286 * there are.
287 */
288 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
289
290 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
291 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
292 * bits mean.
293 */
294
295 #define MALI_CHANNEL_8 3
296
297 #define MALI_CHANNEL_16 4
298
299 #define MALI_CHANNEL_32 5
300
301 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
302 * MALI_FORMAT_UNORM, it means a 32-bit float.
303 */
304 #define MALI_CHANNEL_FLOAT 7
305
306 enum mali_format {
307 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
308 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
309 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
310 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
311
312 /* YUV formats */
313 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
314
315 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
316 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
317 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
318 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
319 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
320 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
321 /* Only used for varyings, to indicate the transformed gl_Position */
322 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
323 /* Only used for varyings, to indicate that the write should be
324 * discarded.
325 */
326 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
327
328 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
329 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
330 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
331 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
332 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
333 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
334 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
335 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
336 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
337 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
338 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
339 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
340
341 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
342 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
343 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
344 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
345 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
346 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
347 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
348 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
349 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
350 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
351 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
352 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
353
354 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
355 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
356 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
357 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
358 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
359 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
360 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
361 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
362 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
363 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
364 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
365 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
366 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
367 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
368 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
369 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
370
371 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
372 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
373 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
374 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
375 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
376 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
377 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
378 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
379 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
380 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
381 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
382 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
383 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
384 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
385 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
386 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
387
388 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
389 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
390 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
391 };
392
393
394 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
395 * literally performing a bitwise invert. This function produces slightly wrong
396 * results and I'm not sure why; some rounding issue I suppose... */
397
398 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
399 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
400
401 /* Applies to unknown1 */
402 #define MALI_NO_ALPHA_TO_COVERAGE (1 << 10)
403
404 struct mali_blend_meta {
405 #ifndef BIFROST
406 /* Base value of 0x200.
407 * OR with 0x1 for blending (anything other than REPLACE).
408 * OR with 0x2 for programmable blending
409 */
410
411 u64 unk1;
412
413 /* For programmable blending, these turn into the blend_shader address */
414 struct mali_blend_equation blend_equation_1;
415
416 u64 zero2;
417 struct mali_blend_equation blend_equation_2;
418 #else
419 u32 unk1; // = 0x200
420 struct mali_blend_equation blend_equation;
421 /*
422 * - 0x19 normally
423 * - 0x3 when this slot is unused (everything else is 0 except the index)
424 * - 0x11 when this is the fourth slot (and it's used)
425 + * - 0 when there is a blend shader
426 */
427 u16 unk2;
428 /* increments from 0 to 3 */
429 u16 index;
430
431 union {
432 struct {
433 /* So far, I've only seen:
434 * - R001 for 1-component formats
435 * - RG01 for 2-component formats
436 * - RGB1 for 3-component formats
437 * - RGBA for 4-component formats
438 */
439 u32 swizzle : 12;
440 enum mali_format format : 8;
441
442 /* Type of the shader output variable. Note, this can
443 * be different from the format.
444 *
445 * 0: f16 (mediump float)
446 * 1: f32 (highp float)
447 * 2: i32 (highp int)
448 * 3: u32 (highp uint)
449 * 4: i16 (mediump int)
450 * 5: u16 (mediump uint)
451 */
452 u32 shader_type : 3;
453 u32 zero : 9;
454 };
455
456 /* Only the low 32 bits of the blend shader are stored, the
457 * high 32 bits are implicitly the same as the original shader.
458 * According to the kernel driver, the program counter for
459 * shaders is actually only 24 bits, so shaders cannot cross
460 * the 2^24-byte boundary, and neither can the blend shader.
461 * The blob handles this by allocating a 2^24 byte pool for
462 * shaders, and making sure that any blend shaders are stored
463 * in the same pool as the original shader. The kernel will
464 * make sure this allocation is aligned to 2^24 bytes.
465 */
466 u32 blend_shader;
467 };
468 #endif
469 } __attribute__((packed));
470
471 struct mali_shader_meta {
472 mali_ptr shader;
473 u16 texture_count;
474 u16 sampler_count;
475 u16 attribute_count;
476 u16 varying_count;
477
478 union {
479 struct {
480 u32 uniform_buffer_count : 4;
481 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
482 } bifrost1;
483 struct {
484 /* 0x200 except MALI_NO_ALPHA_TO_COVERAGE. Mysterious 1
485 * other times. Who knows really? */
486 u16 unknown1;
487
488 /* Whole number of uniform registers used, times two;
489 * whole number of work registers used (no scale).
490 */
491 unsigned work_count : 5;
492 unsigned uniform_count : 5;
493 unsigned unknown2 : 6;
494 } midgard1;
495 };
496
497 /* On bifrost: Exactly the same as glPolygonOffset() for both.
498 * On midgard: Depth factor is exactly as passed to glPolygonOffset.
499 * Depth units is equal to the value passed to glDeptOhffset + 1.0f
500 * (use MALI_NEGATIVE)
501 */
502 float depth_units;
503 float depth_factor;
504
505 u32 unknown2_2;
506
507 u16 alpha_coverage;
508 u16 unknown2_3;
509
510 u8 stencil_mask_front;
511 u8 stencil_mask_back;
512 u16 unknown2_4;
513
514 struct mali_stencil_test stencil_front;
515 struct mali_stencil_test stencil_back;
516
517 union {
518 struct {
519 u32 unk3 : 7;
520 /* On Bifrost, some system values are preloaded in
521 * registers R55-R62 by the thread dispatcher prior to
522 * the start of shader execution. This is a bitfield
523 * with one entry for each register saying which
524 * registers need to be preloaded. Right now, the known
525 * values are:
526 *
527 * Vertex/compute:
528 * - R55 : gl_LocalInvocationID.xy
529 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
530 * - R57 : gl_WorkGroupID.x
531 * - R58 : gl_WorkGroupID.y
532 * - R59 : gl_WorkGroupID.z
533 * - R60 : gl_GlobalInvocationID.x
534 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
535 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
536 *
537 * Fragment:
538 * - R55 : unknown, never seen (but the bit for this is
539 * always set?)
540 * - R56 : unknown (bit always unset)
541 * - R57 : gl_PrimitiveID
542 * - R58 : gl_FrontFacing in low bit, potentially other stuff
543 * - R59 : u16 fragment coordinates (used to compute
544 * gl_FragCoord.xy, together with sample positions)
545 * - R60 : gl_SampleMask (used in epilog, so pretty
546 * much always used, but the bit is always 0 -- is
547 * this just always pushed?)
548 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
549 * varying interpolation.
550 * - R62 : unknown (bit always unset).
551 */
552 u32 preload_regs : 8;
553 /* In units of 8 bytes or 64 bits, since the
554 * uniform/const port loads 64 bits at a time.
555 */
556 u32 uniform_count : 7;
557 u32 unk4 : 10; // = 2
558 } bifrost2;
559 struct {
560 u32 unknown2_7;
561 } midgard2;
562 };
563
564 /* zero on bifrost */
565 u32 unknown2_8;
566
567 /* Blending information for the older non-MRT Midgard HW. Check for
568 * MALI_HAS_BLEND_SHADER to decide how to interpret.
569 */
570
571 union {
572 mali_ptr blend_shader;
573 struct mali_blend_equation blend_equation;
574 };
575
576 /* There can be up to 4 blend_meta's. None of them are required for
577 * vertex shaders or the non-MRT case for Midgard (so the blob doesn't
578 * allocate any space).
579 */
580 struct mali_blend_meta blend_meta[];
581
582 } __attribute__((packed));
583
584 /* This only concerns hardware jobs */
585
586 /* Possible values for job_descriptor_size */
587
588 #define MALI_JOB_32 0
589 #define MALI_JOB_64 1
590
591 struct mali_job_descriptor_header {
592 u32 exception_status;
593 u32 first_incomplete_task;
594 u64 fault_pointer;
595 u8 job_descriptor_size : 1;
596 enum mali_job_type job_type : 7;
597 u8 job_barrier : 1;
598 u8 unknown_flags : 7;
599 u16 job_index;
600 u16 job_dependency_index_1;
601 u16 job_dependency_index_2;
602
603 union {
604 u64 next_job_64;
605 u32 next_job_32;
606 };
607 } __attribute__((packed));
608
609 struct mali_payload_set_value {
610 u64 out;
611 u64 unknown;
612 } __attribute__((packed));
613
614 /* Special attributes have a fixed index */
615 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
616 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
617 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
618
619 /*
620 * Mali Attributes
621 *
622 * This structure lets the attribute unit compute the address of an attribute
623 * given the vertex and instance ID. Unfortunately, the way this works is
624 * rather complicated when instancing is enabled.
625 *
626 * To explain this, first we need to explain how compute and vertex threads are
627 * dispatched. This is a guess (although a pretty firm guess!) since the
628 * details are mostly hidden from the driver, except for attribute instancing.
629 * When a quad is dispatched, it receives a single, linear index. However, we
630 * need to translate that index into a (vertex id, instance id) pair, or a
631 * (local id x, local id y, local id z) triple for compute shaders (although
632 * vertex shaders and compute shaders are handled almost identically).
633 * Focusing on vertex shaders, one option would be to do:
634 *
635 * vertex_id = linear_id % num_vertices
636 * instance_id = linear_id / num_vertices
637 *
638 * but this involves a costly division and modulus by an arbitrary number.
639 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
640 * num_instances threads instead of num_vertices * num_instances, which results
641 * in some "extra" threads with vertex_id >= num_vertices, which we have to
642 * discard. The more we pad num_vertices, the more "wasted" threads we
643 * dispatch, but the division is potentially easier.
644 *
645 * One straightforward choice is to pad num_vertices to the next power of two,
646 * which means that the division and modulus are just simple bit shifts and
647 * masking. But the actual algorithm is a bit more complicated. The thread
648 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
649 * to dividing by a power of two. This is possibly using the technique
650 * described in patent US20170010862A1. As a result, padded_num_vertices can be
651 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
652 * since we need less padding.
653 *
654 * padded_num_vertices is picked by the hardware. The driver just specifies the
655 * actual number of vertices. At least for Mali G71, the first few cases are
656 * given by:
657 *
658 * num_vertices | padded_num_vertices
659 * 3 | 4
660 * 4-7 | 8
661 * 8-11 | 12 (3 * 4)
662 * 12-15 | 16
663 * 16-19 | 20 (5 * 4)
664 *
665 * Note that padded_num_vertices is a multiple of four (presumably because
666 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
667 * at least one more than num_vertices, which seems like a quirk of the
668 * hardware. For larger num_vertices, the hardware uses the following
669 * algorithm: using the binary representation of num_vertices, we look at the
670 * most significant set bit as well as the following 3 bits. Let n be the
671 * number of bits after those 4 bits. Then we set padded_num_vertices according
672 * to the following table:
673 *
674 * high bits | padded_num_vertices
675 * 1000 | 9 * 2^n
676 * 1001 | 5 * 2^(n+1)
677 * 101x | 3 * 2^(n+2)
678 * 110x | 7 * 2^(n+1)
679 * 111x | 2^(n+4)
680 *
681 * For example, if num_vertices = 70 is passed to glDraw(), its binary
682 * representation is 1000110, so n = 3 and the high bits are 1000, and
683 * therefore padded_num_vertices = 9 * 2^3 = 72.
684 *
685 * The attribute unit works in terms of the original linear_id. if
686 * num_instances = 1, then they are the same, and everything is simple.
687 * However, with instancing things get more complicated. There are four
688 * possible modes, two of them we can group together:
689 *
690 * 1. Use the linear_id directly. Only used when there is no instancing.
691 *
692 * 2. Use the linear_id modulo a constant. This is used for per-vertex
693 * attributes with instancing enabled by making the constant equal
694 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
695 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
696 * The shift field specifies the power of two, while the extra_flags field
697 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
698 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
699 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
700 * shift = 3. Note that we must exactly follow the hardware algorithm used to
701 * get padded_num_vertices in order to correctly implement per-vertex
702 * attributes.
703 *
704 * 3. Divide the linear_id by a constant. In order to correctly implement
705 * instance divisors, we have to divide linear_id by padded_num_vertices times
706 * to user-specified divisor. So first we compute padded_num_vertices, again
707 * following the exact same algorithm that the hardware uses, then multiply it
708 * by the GL-level divisor to get the hardware-level divisor. This case is
709 * further divided into two more cases. If the hardware-level divisor is a
710 * power of two, then we just need to shift. The shift amount is specified by
711 * the shift field, so that the hardware-level divisor is just 2^shift.
712 *
713 * If it isn't a power of two, then we have to divide by an arbitrary integer.
714 * For that, we use the well-known technique of multiplying by an approximation
715 * of the inverse. The driver must compute the magic multiplier and shift
716 * amount, and then the hardware does the multiplication and shift. The
717 * hardware and driver also use the "round-down" optimization as described in
718 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
719 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
720 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
721 * presumably this simplifies the hardware multiplier a little. The hardware
722 * first multiplies linear_id by the multiplier and takes the high 32 bits,
723 * then applies the round-down correction if extra_flags = 1, then finally
724 * shifts right by the shift field.
725 *
726 * There are some differences between ridiculousfish's algorithm and the Mali
727 * hardware algorithm, which means that the reference code from ridiculousfish
728 * doesn't always produce the right constants. Mali does not use the pre-shift
729 * optimization, since that would make a hardware implementation slower (it
730 * would have to always do the pre-shift, multiply, and post-shift operations).
731 * It also forces the multplier to be at least 2^31, which means that the
732 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
733 * given the divisor d, the algorithm the driver must follow is:
734 *
735 * 1. Set shift = floor(log2(d)).
736 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
737 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
738 * magic_divisor = m - 1 and extra_flags = 1.
739 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
740 */
741
742 enum mali_attr_mode {
743 MALI_ATTR_UNUSED = 0,
744 MALI_ATTR_LINEAR = 1,
745 MALI_ATTR_POT_DIVIDE = 2,
746 MALI_ATTR_MODULO = 3,
747 MALI_ATTR_NPOT_DIVIDE = 4,
748 };
749
750 union mali_attr {
751 /* This is used for actual attributes. */
752 struct {
753 /* The bottom 3 bits are the mode */
754 mali_ptr elements : 64 - 8;
755 u32 shift : 5;
756 u32 extra_flags : 3;
757 u32 stride;
758 u32 size;
759 };
760 /* The entry after an NPOT_DIVIDE entry has this format. It stores
761 * extra information that wouldn't fit in a normal entry.
762 */
763 struct {
764 u32 unk; /* = 0x20 */
765 u32 magic_divisor;
766 u32 zero;
767 /* This is the original, GL-level divisor. */
768 u32 divisor;
769 };
770 } __attribute__((packed));
771
772 struct mali_attr_meta {
773 /* Vertex buffer index */
774 u8 index;
775
776 unsigned unknown1 : 2;
777 unsigned swizzle : 12;
778 enum mali_format format : 8;
779
780 /* Always observed to be zero at the moment */
781 unsigned unknown3 : 2;
782
783 /* When packing multiple attributes in a buffer, offset addresses by this value */
784 uint32_t src_offset;
785 } __attribute__((packed));
786
787 enum mali_fbd_type {
788 MALI_SFBD = 0,
789 MALI_MFBD = 1,
790 };
791
792 #define FBD_TYPE (1)
793 #define FBD_MASK (~0x3f)
794
795 struct mali_uniform_buffer_meta {
796 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
797 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
798 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
799 */
800 u64 size : 10;
801
802 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
803 * should be 0 for userspace pointers, according to
804 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
805 * each entry in the table only 64 bits.
806 */
807 mali_ptr ptr : 64 - 10;
808 };
809
810 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
811 * They also seem to be the same between Bifrost and Midgard. They're shared in
812 * fused payloads.
813 */
814
815 /* Applies to unknown_draw */
816 #define MALI_DRAW_INDEXED_UINT8 (0x10)
817 #define MALI_DRAW_INDEXED_UINT16 (0x20)
818 #define MALI_DRAW_INDEXED_UINT32 (0x30)
819 #define MALI_DRAW_VARYING_SIZE (0x100)
820
821 struct mali_vertex_tiler_prefix {
822 /* This is a dynamic bitfield containing the following things in this order:
823 *
824 * - gl_WorkGroupSize.x
825 * - gl_WorkGroupSize.y
826 * - gl_WorkGroupSize.z
827 * - gl_NumWorkGroups.x
828 * - gl_NumWorkGroups.y
829 * - gl_NumWorkGroups.z
830 *
831 * The number of bits allocated for each number is based on the *_shift
832 * fields below. For example, workgroups_y_shift gives the bit that
833 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
834 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
835 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
836 * value is one more than the stored value, since if any of the values
837 * are zero, then there would be no invocations (and hence no job). If
838 * there were 0 bits allocated to a given field, then it must be zero,
839 * and hence the real value is one.
840 *
841 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
842 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
843 * where vertex count is the number of vertices.
844 */
845 u32 invocation_count;
846
847 u32 size_y_shift : 5;
848 u32 size_z_shift : 5;
849 u32 workgroups_x_shift : 6;
850 u32 workgroups_y_shift : 6;
851 u32 workgroups_z_shift : 6;
852 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
853 u32 workgroups_x_shift_2 : 4;
854
855 u32 draw_mode : 4;
856 u32 unknown_draw : 22;
857
858 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
859 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
860 * something to do with how many quads get put in the same execution
861 * engine, which is a balance (you don't want to starve the engine, but
862 * you also want to distribute work evenly).
863 */
864 u32 workgroups_x_shift_3 : 6;
865
866
867 /* Negative of draw_start for TILER jobs from what I've seen */
868 int32_t negative_start;
869 u32 zero1;
870
871 /* Like many other strictly nonzero quantities, index_count is
872 * subtracted by one. For an indexed cube, this is equal to 35 = 6
873 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
874 * for an indexed draw, index_count is the number of actual vertices
875 * rendered whereas invocation_count is the number of unique vertices
876 * rendered (the number of times the vertex shader must be invoked).
877 * For non-indexed draws, this is just equal to invocation_count. */
878
879 u32 index_count;
880
881 /* No hidden structure; literally just a pointer to an array of uint
882 * indices (width depends on flags). Thanks, guys, for not making my
883 * life insane for once! NULL for non-indexed draws. */
884
885 uintptr_t indices;
886 } __attribute__((packed));
887
888 /* Point size / line width can either be specified as a 32-bit float (for
889 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
890 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
891 * payload, the contents of varying_pointer will be intepreted as an array of
892 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
893 * creating a special MALI_R16F varying writing to varying_pointer. */
894
895 union midgard_primitive_size {
896 float constant;
897 uintptr_t pointer;
898 };
899
900 struct bifrost_vertex_only {
901 u32 unk2; /* =0x2 */
902
903 u32 zero0;
904
905 u64 zero1;
906 } __attribute__((packed));
907
908 struct bifrost_tiler_heap_meta {
909 u32 zero;
910 u32 heap_size;
911 /* note: these are just guesses! */
912 mali_ptr tiler_heap_start;
913 mali_ptr tiler_heap_free;
914 mali_ptr tiler_heap_end;
915
916 /* hierarchy weights? but they're still 0 after the job has run... */
917 u32 zeros[12];
918 } __attribute__((packed));
919
920 struct bifrost_tiler_meta {
921 u64 zero0;
922 u32 unk; // = 0xf0
923 u16 width;
924 u16 height;
925 u64 zero1;
926 mali_ptr tiler_heap_meta;
927 /* TODO what is this used for? */
928 u64 zeros[20];
929 } __attribute__((packed));
930
931 struct bifrost_tiler_only {
932 /* 0x20 */
933 union midgard_primitive_size primitive_size;
934
935 mali_ptr tiler_meta;
936
937 u64 zero1, zero2, zero3, zero4, zero5, zero6;
938
939 u32 gl_enables;
940 u32 zero7;
941 u64 zero8;
942 } __attribute__((packed));
943
944 struct bifrost_scratchpad {
945 u32 zero;
946 u32 flags; // = 0x1f
947 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
948 * during startup. It seems to serve the same purpose as the
949 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
950 * larger.
951 */
952 mali_ptr gpu_scratchpad;
953 } __attribute__((packed));
954
955 struct mali_vertex_tiler_postfix {
956 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
957 * output from the vertex shader for tiler jobs.
958 */
959
960 uintptr_t position_varying;
961
962 /* An array of mali_uniform_buffer_meta's. The size is given by the
963 * shader_meta.
964 */
965 uintptr_t uniform_buffers;
966
967 /* This is a pointer to an array of pointers to the texture
968 * descriptors, number of pointers bounded by number of textures. The
969 * indirection is needed to accomodate varying numbers and sizes of
970 * texture descriptors */
971 uintptr_t texture_trampoline;
972
973 /* For OpenGL, from what I've seen, this is intimately connected to
974 * texture_meta. cwabbott says this is not the case under Vulkan, hence
975 * why this field is seperate (Midgard is Vulkan capable). Pointer to
976 * array of sampler descriptors (which are uniform in size) */
977 uintptr_t sampler_descriptor;
978
979 uintptr_t uniforms;
980 u8 flags : 4;
981 uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
982 uintptr_t attributes; /* struct attribute_buffer[] */
983 uintptr_t attribute_meta; /* attribute_meta[] */
984 uintptr_t varyings; /* struct attr */
985 uintptr_t varying_meta; /* pointer */
986 uintptr_t viewport;
987 uintptr_t occlusion_counter; /* A single bit as far as I can tell */
988
989 /* Note: on Bifrost, this isn't actually the FBD. It points to
990 * bifrost_scratchpad instead. However, it does point to the same thing
991 * in vertex and tiler jobs.
992 */
993 mali_ptr framebuffer;
994
995 #ifdef __LP64__
996 #ifdef BIFROST
997 /* most likely padding to make this a multiple of 64 bytes */
998 u64 zero7;
999 #endif
1000 #endif
1001 } __attribute__((packed));
1002
1003 struct midgard_payload_vertex_tiler {
1004 #ifndef __LP64__
1005 union midgard_primitive_size primitive_size;
1006 #endif
1007
1008 struct mali_vertex_tiler_prefix prefix;
1009
1010 #ifndef __LP64__
1011 u32 zero3;
1012 #endif
1013
1014 u32 gl_enables; // 0x5
1015
1016 /* Offset for first vertex in buffer */
1017 u32 draw_start;
1018
1019 uintptr_t zero5;
1020
1021 struct mali_vertex_tiler_postfix postfix;
1022
1023 #ifdef __LP64__
1024 union midgard_primitive_size primitive_size;
1025 #endif
1026 } __attribute__((packed));
1027
1028 struct bifrost_payload_vertex {
1029 struct mali_vertex_tiler_prefix prefix;
1030 struct bifrost_vertex_only vertex;
1031 struct mali_vertex_tiler_postfix postfix;
1032 } __attribute__((packed));
1033
1034 struct bifrost_payload_tiler {
1035 struct mali_vertex_tiler_prefix prefix;
1036 struct bifrost_tiler_only tiler;
1037 struct mali_vertex_tiler_postfix postfix;
1038 } __attribute__((packed));
1039
1040 struct bifrost_payload_fused {
1041 struct mali_vertex_tiler_prefix prefix;
1042 struct bifrost_tiler_only tiler;
1043 struct mali_vertex_tiler_postfix tiler_postfix;
1044 struct bifrost_vertex_only vertex;
1045 struct mali_vertex_tiler_postfix vertex_postfix;
1046 } __attribute__((packed));
1047
1048 /* Pointed to from texture_trampoline, mostly unknown still, haven't
1049 * managed to replay successfully */
1050
1051 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1052 * texture is stored as (63, 63) in these fields. This adjusts for that.
1053 * There's an identical pattern in the framebuffer descriptor. Even vertex
1054 * count fields work this way, hence the generic name -- integral fields that
1055 * are strictly positive generally need this adjustment. */
1056
1057 #define MALI_POSITIVE(dim) (dim - 1)
1058
1059 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1060
1061 #define MALI_NEGATIVE(dim) (dim + 1)
1062
1063 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1064
1065 enum mali_wrap_mode {
1066 MALI_WRAP_REPEAT = 0x8,
1067 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1068 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1069 MALI_WRAP_MIRRORED_REPEAT = 0xC
1070 };
1071
1072 /* 8192x8192 */
1073 #define MAX_MIP_LEVELS (13)
1074
1075 /* Cubemap bloats everything up */
1076 #define MAX_FACES (6)
1077
1078 /* Corresponds to the type passed to glTexImage2D and so forth */
1079
1080 struct mali_texture_format {
1081 unsigned swizzle : 12;
1082 enum mali_format format : 8;
1083
1084 unsigned usage1 : 3;
1085 unsigned is_not_cubemap : 1;
1086 unsigned usage2 : 8;
1087 } __attribute__((packed));
1088
1089 struct mali_texture_descriptor {
1090 uint16_t width;
1091 uint16_t height;
1092 uint16_t depth;
1093
1094 uint16_t unknown1;
1095
1096 struct mali_texture_format format;
1097
1098 uint16_t unknown3;
1099
1100 /* One for non-mipmapped, zero for mipmapped */
1101 uint8_t unknown3A;
1102
1103 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1104 uint8_t nr_mipmap_levels;
1105
1106 /* Swizzling is a single 32-bit word, broken up here for convenience.
1107 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1108 * level swizzling, not the internal pixel-level swizzling which is
1109 * below OpenGL's reach */
1110
1111 unsigned swizzle : 12;
1112 unsigned swizzle_zero : 20;
1113
1114 uint32_t unknown5;
1115 uint32_t unknown6;
1116 uint32_t unknown7;
1117
1118 mali_ptr swizzled_bitmaps[MAX_MIP_LEVELS * MAX_FACES];
1119 } __attribute__((packed));
1120
1121 /* Used as part of filter_mode */
1122
1123 #define MALI_LINEAR 0
1124 #define MALI_NEAREST 1
1125 #define MALI_MIP_LINEAR (0x18)
1126
1127 /* Used to construct low bits of filter_mode */
1128
1129 #define MALI_TEX_MAG(mode) (((mode) & 1) << 0)
1130 #define MALI_TEX_MIN(mode) (((mode) & 1) << 1)
1131
1132 #define MALI_TEX_MAG_MASK (1)
1133 #define MALI_TEX_MIN_MASK (2)
1134
1135 #define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR")
1136
1137 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1138 * be cleaned up a lot. */
1139
1140 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1141
1142 static inline uint16_t
1143 FIXED_16(float x)
1144 {
1145 /* Clamp inputs, accounting for float error */
1146 float max_lod = (32.0 - (1.0 / 512.0));
1147
1148 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1149
1150 return (int) (x * 256.0);
1151 }
1152
1153 struct mali_sampler_descriptor {
1154 uint32_t filter_mode;
1155
1156 /* Fixed point. Upper 8-bits is before the decimal point, although it
1157 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1158 * 256)) */
1159
1160 uint16_t min_lod;
1161 uint16_t max_lod;
1162
1163 /* All one word in reality, but packed a bit */
1164
1165 enum mali_wrap_mode wrap_s : 4;
1166 enum mali_wrap_mode wrap_t : 4;
1167 enum mali_wrap_mode wrap_r : 4;
1168 enum mali_alt_func compare_func : 3;
1169
1170 /* A single set bit of unknown, ha! */
1171 unsigned unknown2 : 1;
1172
1173 unsigned zero : 16;
1174
1175 uint32_t zero2;
1176 float border_color[4];
1177 } __attribute__((packed));
1178
1179 /* TODO: What are the floats? Apparently always { -inf, -inf, inf, inf },
1180 * unless the scissor test is enabled.
1181 *
1182 * viewport0/viewport1 form the arguments to glViewport. viewport1 is modified
1183 * by MALI_POSITIVE; viewport0 is as-is.
1184 */
1185
1186 struct mali_viewport {
1187 float floats[4];
1188
1189 float depth_range_n;
1190 float depth_range_f;
1191
1192 u16 viewport0[2];
1193 u16 viewport1[2];
1194 } __attribute__((packed));
1195
1196 /* TODO: Varying meta is symmetrical with attr_meta, but there is some
1197 * weirdness associated. Figure it out. */
1198
1199 struct mali_unknown6 {
1200 u64 unknown0;
1201 u64 unknown1;
1202 };
1203
1204 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1205 * of tile numbers. */
1206
1207 #define MALI_TILE_SHIFT 4
1208 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1209
1210 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1211 * each component. Notice that this provides a theoretical upper bound of (1 <<
1212 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1213 * 65536x65536. Multiplying that together, times another four given that Mali
1214 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1215 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1216 * alone rendering in real-time to such a buffer.
1217 *
1218 * Nice job, guys.*/
1219
1220 /* From mali_kbase_10969_workaround.c */
1221 #define MALI_X_COORD_MASK 0x00000FFF
1222 #define MALI_Y_COORD_MASK 0x0FFF0000
1223
1224 /* Extract parts of a tile coordinate */
1225
1226 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1227 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1228 #define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK))
1229
1230 /* No known flags yet, but just in case...? */
1231
1232 #define MALI_TILE_NO_FLAG (0)
1233
1234 /* Helpers to generate tile coordinates based on the boundary coordinates in
1235 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1236 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1237 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1238 * problem. */
1239
1240 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1241 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1242 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1243 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1244 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1245
1246 struct mali_payload_fragment {
1247 u32 min_tile_coord;
1248 u32 max_tile_coord;
1249 mali_ptr framebuffer;
1250 } __attribute__((packed));
1251
1252 /* (Single?) Framebuffer Descriptor */
1253
1254 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1255 * configured for 4x. With MSAA_8, it is configured for 8x. */
1256
1257 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1258 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1259 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1260
1261 /* Fast/slow based on whether all three buffers are cleared at once */
1262
1263 #define MALI_CLEAR_FAST (1 << 18)
1264 #define MALI_CLEAR_SLOW (1 << 28)
1265 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1266
1267 struct mali_single_framebuffer {
1268 u32 unknown1;
1269 u32 unknown2;
1270 u64 unknown_address_0;
1271 u64 zero1;
1272 u64 zero0;
1273
1274 /* Exact format is ironically not known, since EGL is finnicky with the
1275 * blob. MSAA, colourspace, etc are configured here. */
1276
1277 u32 format;
1278
1279 u32 clear_flags;
1280 u32 zero2;
1281
1282 /* Purposeful off-by-one in these fields should be accounted for by the
1283 * MALI_DIMENSION macro */
1284
1285 u16 width;
1286 u16 height;
1287
1288 u32 zero3[8];
1289
1290 /* By default, the framebuffer is upside down from OpenGL's
1291 * perspective. Set framebuffer to the end and negate the stride to
1292 * flip in the Y direction */
1293
1294 mali_ptr framebuffer;
1295 int32_t stride;
1296
1297 u32 zero4;
1298
1299 /* Depth and stencil buffers are interleaved, it appears, as they are
1300 * set to the same address in captures. Both fields set to zero if the
1301 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1302 * get a zero enable despite the buffer being present; that still is
1303 * disabled. */
1304
1305 mali_ptr depth_buffer; // not SAME_VA
1306 u64 depth_buffer_enable;
1307
1308 mali_ptr stencil_buffer; // not SAME_VA
1309 u64 stencil_buffer_enable;
1310
1311 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1312 u32 clear_color_2; // always equal, but unclear function?
1313 u32 clear_color_3; // always equal, but unclear function?
1314 u32 clear_color_4; // always equal, but unclear function?
1315
1316 /* Set to zero if not cleared */
1317
1318 float clear_depth_1; // float32, ditto
1319 float clear_depth_2; // float32, ditto
1320 float clear_depth_3; // float32, ditto
1321 float clear_depth_4; // float32, ditto
1322
1323 u32 clear_stencil; // Exactly as it appears in OpenGL
1324
1325 u32 zero6[7];
1326
1327 /* Very weird format, see generation code in trans_builder.c */
1328 u32 resolution_check;
1329
1330 u32 tiler_flags;
1331
1332 u64 unknown_address_1; /* Pointing towards... a zero buffer? */
1333 u64 unknown_address_2;
1334
1335 /* See mali_kbase_replay.c */
1336 u64 tiler_heap_free;
1337 u64 tiler_heap_end;
1338
1339 /* More below this, maybe */
1340 } __attribute__((packed));
1341
1342 /* Format bits for the render target */
1343
1344 #define MALI_MFBD_FORMAT_AFBC (1 << 10)
1345 #define MALI_MFBD_FORMAT_MSAA (1 << 12)
1346 #define MALI_MFBD_FORMAT_NO_ALPHA (1 << 25)
1347
1348 struct bifrost_render_target {
1349 u32 unk1; // = 0x4000000
1350 u32 format;
1351
1352 u64 zero1;
1353
1354 union {
1355 struct {
1356 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1357 * there is an extra metadata buffer that contains 16 bytes per tile.
1358 * The framebuffer needs to be the same size as before, since we don't
1359 * know ahead of time how much space it will take up. The
1360 * framebuffer_stride is set to 0, since the data isn't stored linearly
1361 * anymore.
1362 */
1363
1364 mali_ptr metadata;
1365 u32 stride; // stride in units of tiles
1366 u32 unk; // = 0x20000
1367 } afbc;
1368
1369 struct {
1370 /* Heck if I know */
1371 u64 unk;
1372 mali_ptr pointer;
1373 } chunknown;
1374 };
1375
1376 mali_ptr framebuffer;
1377
1378 u32 zero2 : 4;
1379 u32 framebuffer_stride : 28; // in units of bytes
1380 u32 zero3;
1381
1382 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1383 u32 clear_color_2; // always equal, but unclear function?
1384 u32 clear_color_3; // always equal, but unclear function?
1385 u32 clear_color_4; // always equal, but unclear function?
1386 } __attribute__((packed));
1387
1388 /* An optional part of bifrost_framebuffer. It comes between the main structure
1389 * and the array of render targets. It must be included if any of these are
1390 * enabled:
1391 *
1392 * - Transaction Elimination
1393 * - Depth/stencil
1394 * - TODO: Anything else?
1395 */
1396
1397 struct bifrost_fb_extra {
1398 mali_ptr checksum;
1399 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1400 u32 checksum_stride;
1401
1402 u32 unk;
1403
1404 union {
1405 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1406 struct {
1407 mali_ptr depth_stencil_afbc_metadata;
1408 u32 depth_stencil_afbc_stride; // in units of tiles
1409 u32 zero1;
1410
1411 mali_ptr depth_stencil;
1412
1413 u64 padding;
1414 } ds_afbc;
1415
1416 struct {
1417 /* Depth becomes depth/stencil in case of combined D/S */
1418 mali_ptr depth;
1419 u32 depth_stride_zero : 4;
1420 u32 depth_stride : 28;
1421 u32 zero1;
1422
1423 mali_ptr stencil;
1424 u32 stencil_stride_zero : 4;
1425 u32 stencil_stride : 28;
1426 u32 zero2;
1427 } ds_linear;
1428 };
1429
1430
1431 u64 zero3, zero4;
1432 } __attribute__((packed));
1433
1434 /* flags for unk3 */
1435 #define MALI_MFBD_EXTRA (1 << 13)
1436
1437 struct bifrost_framebuffer {
1438 u32 unk0; // = 0x10
1439
1440 u32 unknown2; // = 0x1f, same as SFBD
1441 mali_ptr scratchpad;
1442
1443 /* 0x10 */
1444 mali_ptr sample_locations;
1445 mali_ptr unknown1;
1446 /* 0x20 */
1447 u16 width1, height1;
1448 u32 zero3;
1449 u16 width2, height2;
1450 u32 unk1 : 19; // = 0x01000
1451 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1452 u32 unk2 : 3; // = 0
1453 u32 rt_count_2 : 3; // no off-by-one
1454 u32 zero4 : 5;
1455 /* 0x30 */
1456 u32 clear_stencil : 8;
1457 u32 unk3 : 24; // = 0x100
1458 float clear_depth;
1459 mali_ptr tiler_meta;
1460 /* 0x40 */
1461
1462 /* Note: these are guesses! */
1463 mali_ptr tiler_scratch_start;
1464 mali_ptr tiler_scratch_middle;
1465
1466 /* These are not, since we see symmetry with replay jobs which name these explicitly */
1467 mali_ptr tiler_heap_start;
1468 mali_ptr tiler_heap_end;
1469
1470 u64 zero9, zero10, zero11, zero12;
1471
1472 /* optional: struct bifrost_fb_extra extra */
1473 /* struct bifrost_render_target rts[] */
1474 } __attribute__((packed));
1475
1476 #endif /* __PANFROST_JOB_H__ */