panfrost: Implement Midgard shader toolchain
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "compiler/glsl/glsl_to_nir.h"
34 #include "compiler/nir_types.h"
35 #include "main/imports.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/register_allocate.h"
39 #include "util/u_dynarray.h"
40 #include "util/list.h"
41 #include "main/mtypes.h"
42
43 #include "midgard.h"
44 #include "midgard_nir.h"
45 #include "midgard_compile.h"
46 #include "helpers.h"
47
48 #include "disassemble.h"
49
50 /* Instruction arguments represented as block-local SSA indices, rather than
51 * registers. Negative values mean unused. */
52
53 typedef struct {
54 int src0;
55 int src1;
56 int dest;
57
58 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
59 * in. Only valid for ALU ops. */
60 bool inline_constant;
61 } ssa_args;
62
63 /* Forward declare so midgard_branch can reference */
64 struct midgard_block;
65
66 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
67 * the hardware), hence why that must be zero */
68
69 #define TARGET_GOTO 0
70 #define TARGET_BREAK 1
71 #define TARGET_CONTINUE 2
72
73 typedef struct midgard_branch {
74 /* If conditional, the condition is specified in r31.w */
75 bool conditional;
76
77 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
78 bool invert_conditional;
79
80 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
81 unsigned target_type;
82
83 /* The actual target */
84 union {
85 int target_block;
86 int target_break;
87 int target_continue;
88 };
89 } midgard_branch;
90
91 /* Generic in-memory data type repesenting a single logical instruction, rather
92 * than a single instruction group. This is the preferred form for code gen.
93 * Multiple midgard_insturctions will later be combined during scheduling,
94 * though this is not represented in this structure. Its format bridges
95 * the low-level binary representation with the higher level semantic meaning.
96 *
97 * Notably, it allows registers to be specified as block local SSA, for code
98 * emitted before the register allocation pass.
99 */
100
101 typedef struct midgard_instruction {
102 /* Must be first for casting */
103 struct list_head link;
104
105 unsigned type; /* ALU, load/store, texture */
106
107 /* If the register allocator has not run yet... */
108 ssa_args ssa_args;
109
110 /* Special fields for an ALU instruction */
111 midgard_reg_info registers;
112
113 /* I.e. (1 << alu_bit) */
114 int unit;
115
116 bool has_constants;
117 float constants[4];
118 uint16_t inline_constant;
119 bool has_blend_constant;
120
121 bool compact_branch;
122 bool writeout;
123 bool prepacked_branch;
124
125 union {
126 midgard_load_store_word load_store;
127 midgard_vector_alu alu;
128 midgard_texture_word texture;
129 uint16_t br_compact;
130
131 /* General branch, rather than packed br_compact. Higher level
132 * than the other components */
133 midgard_branch branch;
134 };
135 } midgard_instruction;
136
137 typedef struct midgard_block {
138 /* Link to next block. Must be first for mir_get_block */
139 struct list_head link;
140
141 /* List of midgard_instructions emitted for the current block */
142 struct list_head instructions;
143
144 bool is_scheduled;
145
146 /* List of midgard_bundles emitted (after the scheduler has run) */
147 struct util_dynarray bundles;
148
149 /* Number of quadwords _actually_ emitted, as determined after scheduling */
150 unsigned quadword_count;
151
152 struct midgard_block *next_fallthrough;
153 } midgard_block;
154
155 /* Helpers to generate midgard_instruction's using macro magic, since every
156 * driver seems to do it that way */
157
158 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
159
160 #define M_LOAD_STORE(name, rname, uname) \
161 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
162 midgard_instruction i = { \
163 .type = TAG_LOAD_STORE_4, \
164 .ssa_args = { \
165 .rname = ssa, \
166 .uname = -1, \
167 .src1 = -1 \
168 }, \
169 .load_store = { \
170 .op = midgard_op_##name, \
171 .mask = 0xF, \
172 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
173 .address = address \
174 } \
175 }; \
176 \
177 return i; \
178 }
179
180 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
181 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
182
183 const midgard_vector_alu_src blank_alu_src = {
184 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
185 };
186
187 const midgard_scalar_alu_src blank_scalar_alu_src = {
188 .full = true
189 };
190
191 /* Used for encoding the unused source of 1-op instructions */
192 const midgard_vector_alu_src zero_alu_src = { 0 };
193
194 /* Coerce structs to integer */
195
196 static unsigned
197 vector_alu_srco_unsigned(midgard_vector_alu_src src)
198 {
199 unsigned u;
200 memcpy(&u, &src, sizeof(src));
201 return u;
202 }
203
204 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
205 * the corresponding Midgard source */
206
207 static midgard_vector_alu_src
208 vector_alu_modifiers(nir_alu_src *src)
209 {
210 if (!src) return blank_alu_src;
211
212 midgard_vector_alu_src alu_src = {
213 .abs = src->abs,
214 .negate = src->negate,
215 .rep_low = 0,
216 .rep_high = 0,
217 .half = 0, /* TODO */
218 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
219 };
220
221 return alu_src;
222 }
223
224 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
225
226 static midgard_instruction
227 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
228 {
229 midgard_instruction ins = {
230 .type = TAG_ALU_4,
231 .ssa_args = {
232 .src0 = SSA_UNUSED_1,
233 .src1 = src,
234 .dest = dest,
235 },
236 .alu = {
237 .op = midgard_alu_op_fmov,
238 .reg_mode = midgard_reg_mode_full,
239 .dest_override = midgard_dest_override_none,
240 .mask = 0xFF,
241 .src1 = vector_alu_srco_unsigned(zero_alu_src),
242 .src2 = vector_alu_srco_unsigned(mod)
243 },
244 };
245
246 return ins;
247 }
248
249 /* load/store instructions have both 32-bit and 16-bit variants, depending on
250 * whether we are using vectors composed of highp or mediump. At the moment, we
251 * don't support half-floats -- this requires changes in other parts of the
252 * compiler -- therefore the 16-bit versions are commented out. */
253
254 //M_LOAD(load_attr_16);
255 M_LOAD(load_attr_32);
256 //M_LOAD(load_vary_16);
257 M_LOAD(load_vary_32);
258 //M_LOAD(load_uniform_16);
259 M_LOAD(load_uniform_32);
260 M_LOAD(load_color_buffer_8);
261 //M_STORE(store_vary_16);
262 M_STORE(store_vary_32);
263
264 static midgard_instruction
265 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
266 {
267 midgard_branch_cond branch = {
268 .op = op,
269 .dest_tag = tag,
270 .offset = offset,
271 .cond = cond
272 };
273
274 uint16_t compact;
275 memcpy(&compact, &branch, sizeof(branch));
276
277 midgard_instruction ins = {
278 .type = TAG_ALU_4,
279 .unit = ALU_ENAB_BR_COMPACT,
280 .prepacked_branch = true,
281 .compact_branch = true,
282 .br_compact = compact
283 };
284
285 if (op == midgard_jmp_writeout_op_writeout)
286 ins.writeout = true;
287
288 return ins;
289 }
290
291 static midgard_instruction
292 v_branch(bool conditional, bool invert)
293 {
294 midgard_instruction ins = {
295 .type = TAG_ALU_4,
296 .unit = ALU_ENAB_BR_COMPACT,
297 .compact_branch = true,
298 .branch = {
299 .conditional = conditional,
300 .invert_conditional = invert
301 }
302 };
303
304 return ins;
305 }
306
307 typedef struct midgard_bundle {
308 /* Tag for the overall bundle */
309 int tag;
310
311 /* Instructions contained by the bundle */
312 int instruction_count;
313 midgard_instruction instructions[5];
314
315 /* Bundle-wide ALU configuration */
316 int padding;
317 int control;
318 bool has_embedded_constants;
319 float constants[4];
320 bool has_blend_constant;
321
322 uint16_t register_words[8];
323 int register_words_count;
324
325 uint64_t body_words[8];
326 size_t body_size[8];
327 int body_words_count;
328 } midgard_bundle;
329
330 typedef struct compiler_context {
331 nir_shader *nir;
332 gl_shader_stage stage;
333
334 /* Is internally a blend shader? Depends on stage == FRAGMENT */
335 bool is_blend;
336
337 /* Tracking for blend constant patching */
338 int blend_constant_number;
339 int blend_constant_offset;
340
341 /* Current NIR function */
342 nir_function *func;
343
344 /* Unordered list of midgard_blocks */
345 int block_count;
346 struct list_head blocks;
347
348 midgard_block *initial_block;
349 midgard_block *previous_source_block;
350 midgard_block *final_block;
351
352 /* List of midgard_instructions emitted for the current block */
353 midgard_block *current_block;
354
355 /* The index corresponding to the current loop, e.g. for breaks/contineus */
356 int current_loop;
357
358 /* Constants which have been loaded, for later inlining */
359 struct hash_table_u64 *ssa_constants;
360
361 /* SSA indices to be outputted to corresponding varying offset */
362 struct hash_table_u64 *ssa_varyings;
363
364 /* SSA values / registers which have been aliased. Naively, these
365 * demand a fmov output; instead, we alias them in a later pass to
366 * avoid the wasted op.
367 *
368 * A note on encoding: to avoid dynamic memory management here, rather
369 * than ampping to a pointer, we map to the source index; the key
370 * itself is just the destination index. */
371
372 struct hash_table_u64 *ssa_to_alias;
373 struct set *leftover_ssa_to_alias;
374
375 /* Actual SSA-to-register for RA */
376 struct hash_table_u64 *ssa_to_register;
377
378 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
379 struct hash_table_u64 *hash_to_temp;
380 int temp_count;
381 int max_hash;
382
383 /* Uniform IDs for mdg */
384 struct hash_table_u64 *uniform_nir_to_mdg;
385 int uniform_count;
386
387 struct hash_table_u64 *varying_nir_to_mdg;
388 int varying_count;
389
390 /* Just the count of the max register used. Higher count => higher
391 * register pressure */
392 int work_registers;
393
394 /* Used for cont/last hinting. Increase when a tex op is added.
395 * Decrease when a tex op is removed. */
396 int texture_op_count;
397
398 /* Mapping of texture register -> SSA index for unaliasing */
399 int texture_index[2];
400
401 /* Count of special uniforms (viewport, etc) in vec4 units */
402 int special_uniforms;
403
404 /* If any path hits a discard instruction */
405 bool can_discard;
406
407 /* The number of uniforms allowable for the fast path */
408 int uniform_cutoff;
409
410 /* Count of instructions emitted from NIR overall, across all blocks */
411 int instruction_count;
412
413 /* Alpha ref value passed in */
414 float alpha_ref;
415
416 /* The index corresponding to the fragment output */
417 unsigned fragment_output;
418 } compiler_context;
419
420 /* Append instruction to end of current block */
421
422 static midgard_instruction *
423 mir_upload_ins(struct midgard_instruction ins)
424 {
425 midgard_instruction *heap = malloc(sizeof(ins));
426 memcpy(heap, &ins, sizeof(ins));
427 return heap;
428 }
429
430 static void
431 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
432 {
433 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
434 }
435
436 static void
437 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
438 {
439 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
440 }
441
442 static void
443 mir_remove_instruction(struct midgard_instruction *ins)
444 {
445 list_del(&ins->link);
446 }
447
448 static midgard_instruction*
449 mir_prev_op(struct midgard_instruction *ins)
450 {
451 return list_last_entry(&(ins->link), midgard_instruction, link);
452 }
453
454 static midgard_instruction*
455 mir_next_op(struct midgard_instruction *ins)
456 {
457 return list_first_entry(&(ins->link), midgard_instruction, link);
458 }
459
460 static midgard_block *
461 mir_next_block(struct midgard_block *blk)
462 {
463 return list_first_entry(&(blk->link), midgard_block, link);
464 }
465
466
467 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
468 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
469
470 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
471 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
472 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
473 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
474 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
475 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
476
477
478 static midgard_instruction *
479 mir_last_in_block(struct midgard_block *block)
480 {
481 return list_last_entry(&block->instructions, struct midgard_instruction, link);
482 }
483
484 static midgard_block *
485 mir_get_block(compiler_context *ctx, int idx)
486 {
487 struct list_head *lst = &ctx->blocks;
488
489 while ((idx--) + 1)
490 lst = lst->next;
491
492 return (struct midgard_block *) lst;
493 }
494
495 /* Pretty printer for internal Midgard IR */
496
497 static void
498 print_mir_source(int source)
499 {
500 if (source >= SSA_FIXED_MINIMUM) {
501 /* Specific register */
502 int reg = SSA_REG_FROM_FIXED(source);
503
504 /* TODO: Moving threshold */
505 if (reg > 16 && reg < 24)
506 printf("u%d", 23 - reg);
507 else
508 printf("r%d", reg);
509 } else {
510 printf("%d", source);
511 }
512 }
513
514 static void
515 print_mir_instruction(midgard_instruction *ins)
516 {
517 printf("\t");
518
519 switch (ins->type) {
520 case TAG_ALU_4: {
521 midgard_alu_op op = ins->alu.op;
522 const char *name = alu_opcode_names[op];
523
524 if (ins->unit)
525 printf("%d.", ins->unit);
526
527 printf("%s", name ? name : "??");
528 break;
529 }
530
531 case TAG_LOAD_STORE_4: {
532 midgard_load_store_op op = ins->load_store.op;
533 const char *name = load_store_opcode_names[op];
534
535 assert(name);
536 printf("%s", name);
537 break;
538 }
539
540 case TAG_TEXTURE_4: {
541 printf("texture");
542 break;
543 }
544
545 default:
546 assert(0);
547 }
548
549 ssa_args *args = &ins->ssa_args;
550
551 printf(" %d, ", args->dest);
552
553 print_mir_source(args->src0);
554 printf(", ");
555
556 if (args->inline_constant)
557 printf("#%d", ins->inline_constant);
558 else
559 print_mir_source(args->src1);
560
561 if (ins->has_constants)
562 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
563
564 printf("\n");
565 }
566
567 static void
568 print_mir_block(midgard_block *block)
569 {
570 printf("{\n");
571
572 mir_foreach_instr_in_block(block, ins) {
573 print_mir_instruction(ins);
574 }
575
576 printf("}\n");
577 }
578
579
580
581 static void
582 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
583 {
584 ins->has_constants = true;
585 memcpy(&ins->constants, constants, 16);
586
587 /* If this is the special blend constant, mark this instruction */
588
589 if (ctx->is_blend && ctx->blend_constant_number == name)
590 ins->has_blend_constant = true;
591 }
592
593 static int
594 glsl_type_size(const struct glsl_type *type)
595 {
596 return glsl_count_attribute_slots(type, false);
597 }
598
599 /* Lower fdot2 to a vector multiplication followed by channel addition */
600 static void
601 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
602 {
603 if (alu->op != nir_op_fdot2)
604 return;
605
606 b->cursor = nir_before_instr(&alu->instr);
607
608 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
609 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
610
611 nir_ssa_def *product = nir_fmul(b, src0, src1);
612
613 nir_ssa_def *sum = nir_fadd(b,
614 nir_channel(b, product, 0),
615 nir_channel(b, product, 1));
616
617 /* Replace the fdot2 with this sum */
618 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
619 }
620
621 static bool
622 midgard_nir_lower_fdot2(nir_shader *shader)
623 {
624 bool progress = false;
625
626 nir_foreach_function(function, shader) {
627 if (!function->impl) continue;
628
629 nir_builder _b;
630 nir_builder *b = &_b;
631 nir_builder_init(b, function->impl);
632
633 nir_foreach_block(block, function->impl) {
634 nir_foreach_instr_safe(instr, block) {
635 if (instr->type != nir_instr_type_alu) continue;
636
637 nir_alu_instr *alu = nir_instr_as_alu(instr);
638 midgard_nir_lower_fdot2_body(b, alu);
639
640 progress |= true;
641 }
642 }
643
644 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
645
646 }
647
648 return progress;
649 }
650
651 static void
652 optimise_nir(nir_shader *nir)
653 {
654 bool progress;
655
656 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
657 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
658
659 nir_lower_tex_options lower_tex_options = {
660 .lower_rect = true
661 };
662
663 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
664
665 do {
666 progress = false;
667
668 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
669 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
670 NIR_PASS(progress, nir, nir_lower_var_copies);
671 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
672
673 NIR_PASS(progress, nir, nir_copy_prop);
674 NIR_PASS(progress, nir, nir_opt_dce);
675 NIR_PASS(progress, nir, nir_opt_dead_cf);
676 NIR_PASS(progress, nir, nir_opt_cse);
677 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
678 NIR_PASS(progress, nir, nir_opt_algebraic);
679 NIR_PASS(progress, nir, nir_opt_constant_folding);
680 NIR_PASS(progress, nir, nir_opt_undef);
681 NIR_PASS(progress, nir, nir_opt_loop_unroll,
682 nir_var_shader_in |
683 nir_var_shader_out |
684 nir_var_function_temp);
685
686 /* TODO: Enable vectorize when merged upstream */
687 // NIR_PASS(progress, nir, nir_opt_vectorize);
688 } while (progress);
689
690 /* Must be run at the end to prevent creation of fsin/fcos ops */
691 NIR_PASS(progress, nir, midgard_nir_scale_trig);
692
693 do {
694 progress = false;
695
696 NIR_PASS(progress, nir, nir_opt_dce);
697 NIR_PASS(progress, nir, nir_opt_algebraic);
698 NIR_PASS(progress, nir, nir_opt_constant_folding);
699 NIR_PASS(progress, nir, nir_copy_prop);
700 } while (progress);
701
702 NIR_PASS(progress, nir, nir_opt_algebraic_late);
703
704 /* Lower mods */
705 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
706 NIR_PASS(progress, nir, nir_copy_prop);
707 NIR_PASS(progress, nir, nir_opt_dce);
708
709 /* Take us out of SSA */
710 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
711 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
712
713 /* We are a vector architecture; write combine where possible */
714 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
715 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
716
717 NIR_PASS(progress, nir, nir_opt_dce);
718 }
719
720 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
721 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
722 * r0. See the comments in compiler_context */
723
724 static void
725 alias_ssa(compiler_context *ctx, int dest, int src)
726 {
727 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
728 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
729 }
730
731 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
732
733 static void
734 unalias_ssa(compiler_context *ctx, int dest)
735 {
736 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
737 /* TODO: Remove from leftover or no? */
738 }
739
740 static void
741 midgard_pin_output(compiler_context *ctx, int index, int reg)
742 {
743 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
744 }
745
746 static bool
747 midgard_is_pinned(compiler_context *ctx, int index)
748 {
749 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
750 }
751
752 /* Do not actually emit a load; instead, cache the constant for inlining */
753
754 static void
755 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
756 {
757 nir_ssa_def def = instr->def;
758
759 float *v = ralloc_array(NULL, float, 4);
760 memcpy(v, &instr->value.f32, 4 * sizeof(float));
761 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
762 }
763
764 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
765 * do the inverse) */
766
767 static unsigned
768 expand_writemask(unsigned mask)
769 {
770 unsigned o = 0;
771
772 for (int i = 0; i < 4; ++i)
773 if (mask & (1 << i))
774 o |= (3 << (2 * i));
775
776 return o;
777 }
778
779 static unsigned
780 squeeze_writemask(unsigned mask)
781 {
782 unsigned o = 0;
783
784 for (int i = 0; i < 4; ++i)
785 if (mask & (3 << (2 * i)))
786 o |= (1 << i);
787
788 return o;
789
790 }
791
792 /* Determines effective writemask, taking quirks and expansion into account */
793 static unsigned
794 effective_writemask(midgard_vector_alu *alu)
795 {
796 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
797 * sense) */
798
799 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
800
801 /* If there is a fixed channel count, construct the appropriate mask */
802
803 if (channel_count)
804 return (1 << channel_count) - 1;
805
806 /* Otherwise, just squeeze the existing mask */
807 return squeeze_writemask(alu->mask);
808 }
809
810 static unsigned
811 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
812 {
813 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
814 return hash;
815
816 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
817
818 if (temp)
819 return temp - 1;
820
821 /* If no temp is find, allocate one */
822 temp = ctx->temp_count++;
823 ctx->max_hash = MAX2(ctx->max_hash, hash);
824
825 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
826
827 return temp;
828 }
829
830 static unsigned
831 nir_src_index(nir_src *src)
832 {
833 if (src->is_ssa)
834 return src->ssa->index;
835 else
836 return 4096 + src->reg.reg->index;
837 }
838
839 static unsigned
840 nir_dest_index(nir_dest *dst)
841 {
842 if (dst->is_ssa)
843 return dst->ssa.index;
844 else
845 return 4096 + dst->reg.reg->index;
846 }
847
848 static unsigned
849 nir_alu_src_index(nir_alu_src *src)
850 {
851 return nir_src_index(&src->src);
852 }
853
854 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
855 * a conditional test) into that register */
856
857 static void
858 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
859 {
860 /* XXX: Force component correct */
861 int condition = nir_src_index(src);
862
863 const midgard_vector_alu_src alu_src = {
864 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
865 };
866
867 /* There is no boolean move instruction. Instead, we simulate a move by
868 * ANDing the condition with itself to get it into r31.w */
869
870 midgard_instruction ins = {
871 .type = TAG_ALU_4,
872 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
873 .ssa_args = {
874 .src0 = condition,
875 .src1 = condition,
876 .dest = SSA_FIXED_REGISTER(31),
877 },
878 .alu = {
879 .op = midgard_alu_op_iand,
880 .reg_mode = midgard_reg_mode_full,
881 .dest_override = midgard_dest_override_none,
882 .mask = (0x3 << 6), /* w */
883 .src1 = vector_alu_srco_unsigned(alu_src),
884 .src2 = vector_alu_srco_unsigned(alu_src)
885 },
886 };
887
888 emit_mir_instruction(ctx, ins);
889 }
890
891 /* Components: Number/style of arguments:
892 * 3: One-argument op with r24 (i2f, f2i)
893 * 2: Standard two argument op (fadd, fmul)
894 * 1: Flipped one-argument op (fmov, imov)
895 * 0: Standard one-argument op (frcp)
896 * NIR: NIR instruction op.
897 * Op: Midgard instruction op.
898 */
899
900 #define ALU_CASE(_components, nir, _op) \
901 case nir_op_##nir: \
902 components = _components; \
903 op = midgard_alu_op_##_op; \
904 break;
905
906 static void
907 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
908 {
909 bool is_ssa = instr->dest.dest.is_ssa;
910
911 unsigned dest = nir_dest_index(&instr->dest.dest);
912 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
913
914 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
915 * supported. A few do not and are commented for now. Also, there are a
916 * number of NIR ops which Midgard does not support and need to be
917 * lowered, also TODO. This switch block emits the opcode and calling
918 * convention of the Midgard instruction; actual packing is done in
919 * emit_alu below */
920
921 unsigned op, components;
922
923 switch (instr->op) {
924 ALU_CASE(2, fadd, fadd);
925 ALU_CASE(2, fmul, fmul);
926 ALU_CASE(2, fmin, fmin);
927 ALU_CASE(2, fmax, fmax);
928 ALU_CASE(2, imin, imin);
929 ALU_CASE(2, imax, imax);
930 ALU_CASE(1, fmov, fmov);
931 ALU_CASE(0, ffloor, ffloor);
932 ALU_CASE(0, fceil, fceil);
933 ALU_CASE(2, fdot3, fdot3);
934 //ALU_CASE(2, fdot3r);
935 ALU_CASE(2, fdot4, fdot4);
936 //ALU_CASE(2, freduce);
937 ALU_CASE(2, iadd, iadd);
938 ALU_CASE(2, isub, isub);
939 ALU_CASE(2, imul, imul);
940
941 /* XXX: Use fmov, not imov, since imov was causing major
942 * issues with texture precision? XXX research */
943 ALU_CASE(1, imov, fmov);
944
945 ALU_CASE(2, feq, feq);
946 ALU_CASE(2, fne, fne);
947 ALU_CASE(2, flt, flt);
948 ALU_CASE(2, ieq, ieq);
949 ALU_CASE(2, ine, ine);
950 ALU_CASE(2, ilt, ilt);
951 //ALU_CASE(2, icsel, icsel);
952 ALU_CASE(0, frcp, frcp);
953 ALU_CASE(0, frsq, frsqrt);
954 ALU_CASE(0, fsqrt, fsqrt);
955 ALU_CASE(0, fexp2, fexp2);
956 ALU_CASE(0, flog2, flog2);
957
958 ALU_CASE(3, f2i32, f2i);
959 ALU_CASE(3, f2u32, f2u);
960 ALU_CASE(3, i2f32, i2f);
961 ALU_CASE(3, u2f32, u2f);
962
963 ALU_CASE(0, fsin, fsin);
964 ALU_CASE(0, fcos, fcos);
965
966 ALU_CASE(2, iand, iand);
967 ALU_CASE(2, ior, ior);
968 ALU_CASE(2, ixor, ixor);
969 ALU_CASE(0, inot, inot);
970 ALU_CASE(2, ishl, ishl);
971 ALU_CASE(2, ishr, iasr);
972 ALU_CASE(2, ushr, ilsr);
973 //ALU_CASE(2, ilsr, ilsr);
974
975 ALU_CASE(2, ball_fequal4, fball_eq);
976 ALU_CASE(2, bany_fnequal4, fbany_neq);
977 ALU_CASE(2, ball_iequal4, iball_eq);
978 ALU_CASE(2, bany_inequal4, ibany_neq);
979
980 /* For greater-or-equal, we use less-or-equal and flip the
981 * arguments */
982
983 case nir_op_ige: {
984 components = 2;
985 op = midgard_alu_op_ile;
986
987 /* Swap via temporary */
988 nir_alu_src temp = instr->src[1];
989 instr->src[1] = instr->src[0];
990 instr->src[0] = temp;
991
992 break;
993 }
994
995 case nir_op_bcsel: {
996 components = 2;
997 op = midgard_alu_op_fcsel;
998
999 emit_condition(ctx, &instr->src[0].src, false);
1000
1001 /* The condition is the first argument; move the other
1002 * arguments up one to be a binary instruction for
1003 * Midgard */
1004
1005 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1006 break;
1007 }
1008
1009 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1010 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1011 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1012 *
1013 * iand [whatever], #0
1014 *
1015 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1016
1017 case nir_op_b2f32: {
1018 op = midgard_alu_op_iand;
1019 components = 0;
1020 break;
1021 }
1022
1023 default:
1024 printf("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1025 assert(0);
1026 return;
1027 }
1028
1029 int _unit = alu_opcode_props[op];
1030
1031 /* Initialise fields common between scalar/vector instructions */
1032 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1033
1034 /* src0 will always exist afaik, but src1 will not for 1-argument
1035 * instructions. The latter can only be fetched if the instruction
1036 * needs it, or else we may segfault. */
1037
1038 unsigned src0 = nir_alu_src_index(&instr->src[0]);
1039 unsigned src1 = components == 2 ? nir_alu_src_index(&instr->src[1]) : SSA_UNUSED_0;
1040
1041 /* Rather than use the instruction generation helpers, we do it
1042 * ourselves here to avoid the mess */
1043
1044 midgard_instruction ins = {
1045 .type = TAG_ALU_4,
1046 .ssa_args = {
1047 .src0 = components == 3 || components == 2 || components == 0 ? src0 : SSA_UNUSED_1,
1048 .src1 = components == 2 ? src1 : components == 1 ? src0 : components == 0 ? SSA_UNUSED_0 : SSA_UNUSED_1,
1049 .dest = dest,
1050 .inline_constant = components == 0
1051 }
1052 };
1053
1054 nir_alu_src *nirmod0 = NULL;
1055 nir_alu_src *nirmod1 = NULL;
1056
1057 if (components == 2) {
1058 nirmod0 = &instr->src[0];
1059 nirmod1 = &instr->src[1];
1060 } else if (components == 1) {
1061 nirmod1 = &instr->src[0];
1062 } else if (components == 0) {
1063 nirmod0 = &instr->src[0];
1064 }
1065
1066 midgard_vector_alu alu = {
1067 .op = op,
1068 .reg_mode = midgard_reg_mode_full,
1069 .dest_override = midgard_dest_override_none,
1070 .outmod = outmod,
1071
1072 /* Writemask only valid for non-SSA NIR */
1073 .mask = expand_writemask((1 << nr_components) - 1),
1074
1075 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmod0)),
1076 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmod1)),
1077 };
1078
1079 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1080
1081 if (!is_ssa)
1082 alu.mask &= expand_writemask(instr->dest.write_mask);
1083
1084 ins.alu = alu;
1085
1086 /* Late fixup for emulated instructions */
1087
1088 if (instr->op == nir_op_b2f32) {
1089 /* Presently, our second argument is an inline #0 constant.
1090 * Switch over to an embedded 1.0 constant (that can't fit
1091 * inline, since we're 32-bit, not 16-bit like the inline
1092 * constants) */
1093
1094 ins.ssa_args.inline_constant = false;
1095 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1096 ins.has_constants = true;
1097 ins.constants[0] = 1.0;
1098 }
1099
1100 if (_unit == UNIT_VLUT) {
1101 /* To avoid duplicating the LUTs (we think?), LUT instructions can only
1102 * operate as if they were scalars. Lower them here by changing the
1103 * component. */
1104
1105 assert(components == 0);
1106
1107 uint8_t original_swizzle[4];
1108 memcpy(original_swizzle, nirmod0->swizzle, sizeof(nirmod0->swizzle));
1109
1110 for (int i = 0; i < nr_components; ++i) {
1111 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1112
1113 for (int j = 0; j < 4; ++j)
1114 nirmod0->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1115
1116 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmod0));
1117 emit_mir_instruction(ctx, ins);
1118 }
1119 } else {
1120 emit_mir_instruction(ctx, ins);
1121 }
1122 }
1123
1124 static void
1125 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1126 {
1127 nir_const_value *const_offset;
1128 unsigned offset, reg;
1129
1130 switch (instr->intrinsic) {
1131 case nir_intrinsic_discard_if:
1132 emit_condition(ctx, &instr->src[0], true);
1133
1134 /* fallthrough */
1135
1136 case nir_intrinsic_discard: {
1137 midgard_condition cond = instr->intrinsic == nir_intrinsic_discard_if ?
1138 midgard_condition_true : midgard_condition_always;
1139
1140 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_discard, 0, 2, cond);
1141 ctx->can_discard = true;
1142 break;
1143 }
1144
1145 case nir_intrinsic_load_uniform:
1146 case nir_intrinsic_load_input:
1147 const_offset = nir_src_as_const_value(instr->src[0]);
1148 assert (const_offset && "no indirect inputs");
1149
1150 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1151
1152 reg = nir_dest_index(&instr->dest);
1153
1154 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1155 /* TODO: half-floats */
1156
1157 int uniform_offset = 0;
1158
1159 if (offset >= SPECIAL_UNIFORM_BASE) {
1160 /* XXX: Resolve which uniform */
1161 uniform_offset = 0;
1162 } else {
1163 /* Offset away from the special
1164 * uniform block */
1165
1166 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1167
1168 /* XXX */
1169 if (!entry) {
1170 printf("WARNING: Unknown uniform %d\n", offset);
1171 break;
1172 }
1173
1174 uniform_offset = (uintptr_t) (entry) - 1;
1175 uniform_offset += ctx->special_uniforms;
1176 }
1177
1178 if (uniform_offset < ctx->uniform_cutoff) {
1179 /* Fast path: For the first 16 uniform,
1180 * accesses are 0-cycle, since they're
1181 * just a register fetch in the usual
1182 * case. So, we alias the registers
1183 * while we're still in SSA-space */
1184
1185 int reg_slot = 23 - uniform_offset;
1186 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1187 } else {
1188 /* Otherwise, read from the 'special'
1189 * UBO to access higher-indexed
1190 * uniforms, at a performance cost */
1191
1192 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1193
1194 /* TODO: Don't split */
1195 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1196 ins.load_store.address = uniform_offset >> 3;
1197
1198 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1199 emit_mir_instruction(ctx, ins);
1200 }
1201 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1202 /* XXX: Half-floats? */
1203 /* TODO: swizzle, mask */
1204
1205 midgard_instruction ins = m_load_vary_32(reg, offset);
1206
1207 midgard_varying_parameter p = {
1208 .is_varying = 1,
1209 .interpolation = midgard_interp_default,
1210 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1211 };
1212
1213 unsigned u;
1214 memcpy(&u, &p, sizeof(p));
1215 ins.load_store.varying_parameters = u;
1216
1217 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1218 emit_mir_instruction(ctx, ins);
1219 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1220 /* Constant encoded as a pinned constant */
1221
1222 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1223 ins.has_constants = true;
1224 ins.has_blend_constant = true;
1225 emit_mir_instruction(ctx, ins);
1226 } else if (ctx->is_blend) {
1227 /* For blend shaders, a load might be
1228 * translated various ways depending on what
1229 * we're loading. Figure out how this is used */
1230
1231 nir_variable *out = NULL;
1232
1233 nir_foreach_variable(var, &ctx->nir->inputs) {
1234 int drvloc = var->data.driver_location;
1235
1236 if (nir_intrinsic_base(instr) == drvloc) {
1237 out = var;
1238 break;
1239 }
1240 }
1241
1242 assert(out);
1243
1244 if (out->data.location == VARYING_SLOT_COL0) {
1245 /* Source color preloaded to r0 */
1246
1247 midgard_pin_output(ctx, reg, 0);
1248 } else if (out->data.location == VARYING_SLOT_COL1) {
1249 /* Destination color must be read from framebuffer */
1250
1251 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1252 ins.load_store.swizzle = 0; /* xxxx */
1253
1254 /* Read each component sequentially */
1255
1256 for (int c = 0; c < 4; ++c) {
1257 ins.load_store.mask = (1 << c);
1258 ins.load_store.unknown = c;
1259 emit_mir_instruction(ctx, ins);
1260 }
1261
1262 /* vadd.u2f hr2, abs(hr2), #0 */
1263
1264 midgard_vector_alu_src alu_src = blank_alu_src;
1265 alu_src.abs = true;
1266 alu_src.half = true;
1267
1268 midgard_instruction u2f = {
1269 .type = TAG_ALU_4,
1270 .ssa_args = {
1271 .src0 = reg,
1272 .src1 = SSA_UNUSED_0,
1273 .dest = reg,
1274 .inline_constant = true
1275 },
1276 .alu = {
1277 .op = midgard_alu_op_u2f,
1278 .reg_mode = midgard_reg_mode_half,
1279 .dest_override = midgard_dest_override_none,
1280 .mask = 0xF,
1281 .src1 = vector_alu_srco_unsigned(alu_src),
1282 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1283 }
1284 };
1285
1286 emit_mir_instruction(ctx, u2f);
1287
1288 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1289
1290 alu_src.abs = false;
1291
1292 midgard_instruction fmul = {
1293 .type = TAG_ALU_4,
1294 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1295 .ssa_args = {
1296 .src0 = reg,
1297 .dest = reg,
1298 .src1 = SSA_UNUSED_0,
1299 .inline_constant = true
1300 },
1301 .alu = {
1302 .op = midgard_alu_op_fmul,
1303 .reg_mode = midgard_reg_mode_full,
1304 .dest_override = midgard_dest_override_none,
1305 .outmod = midgard_outmod_sat,
1306 .mask = 0xFF,
1307 .src1 = vector_alu_srco_unsigned(alu_src),
1308 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1309 }
1310 };
1311
1312 emit_mir_instruction(ctx, fmul);
1313 } else {
1314 printf("Unknown input in blend shader\n");
1315 assert(0);
1316 }
1317 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1318 midgard_instruction ins = m_load_attr_32(reg, offset);
1319 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1320 ins.load_store.mask = (1 << instr->num_components) - 1;
1321 emit_mir_instruction(ctx, ins);
1322 } else {
1323 printf("Unknown load\n");
1324 assert(0);
1325 }
1326
1327 break;
1328
1329 case nir_intrinsic_store_output:
1330 const_offset = nir_src_as_const_value(instr->src[1]);
1331 assert(const_offset && "no indirect outputs");
1332
1333 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1334
1335 reg = nir_src_index(&instr->src[0]);
1336
1337 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1338 /* gl_FragColor is not emitted with load/store
1339 * instructions. Instead, it gets plonked into
1340 * r0 at the end of the shader and we do the
1341 * framebuffer writeout dance. TODO: Defer
1342 * writes */
1343
1344 midgard_pin_output(ctx, reg, 0);
1345
1346 /* Save the index we're writing to for later reference
1347 * in the epilogue */
1348
1349 ctx->fragment_output = reg;
1350 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1351 /* Varyings are written into one of two special
1352 * varying register, r26 or r27. The register itself is selected as the register
1353 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1354 *
1355 * Normally emitting fmov's is frowned upon,
1356 * but due to unique constraints of
1357 * REGISTER_VARYING, fmov emission + a
1358 * dedicated cleanup pass is the only way to
1359 * guarantee correctness when considering some
1360 * (common) edge cases XXX: FIXME */
1361
1362 /* Look up how it was actually laid out */
1363
1364 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1365
1366 if (!entry) {
1367 printf("WARNING: skipping varying\n");
1368 break;
1369 }
1370
1371 offset = (uintptr_t) (entry) - 1;
1372
1373 /* If this varying corresponds to a constant (why?!),
1374 * emit that now since it won't get picked up by
1375 * hoisting (since there is no corresponding move
1376 * emitted otherwise) */
1377
1378 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1379
1380 if (constant_value) {
1381 /* Special case: emit the varying write
1382 * directly to r26 (looks funny in asm but it's
1383 * fine) and emit the store _now_. Possibly
1384 * slightly slower, but this is a really stupid
1385 * special case anyway (why on earth would you
1386 * have a constant varying? Your own fault for
1387 * slightly worse perf :P) */
1388
1389 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1390 attach_constants(ctx, &ins, constant_value, reg + 1);
1391 emit_mir_instruction(ctx, ins);
1392
1393 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1394 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1395 emit_mir_instruction(ctx, st);
1396 } else {
1397 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1398
1399 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1400 }
1401 } else {
1402 printf("Unknown store\n");
1403 assert(0);
1404 }
1405
1406 break;
1407
1408 case nir_intrinsic_load_alpha_ref_float:
1409 assert(instr->dest.is_ssa);
1410
1411 float ref_value = ctx->alpha_ref;
1412
1413 float *v = ralloc_array(NULL, float, 4);
1414 memcpy(v, &ref_value, sizeof(float));
1415 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1416 break;
1417
1418
1419 default:
1420 printf ("Unhandled intrinsic\n");
1421 assert(0);
1422 break;
1423 }
1424 }
1425
1426 static unsigned
1427 midgard_tex_format(enum glsl_sampler_dim dim)
1428 {
1429 switch (dim) {
1430 case GLSL_SAMPLER_DIM_2D:
1431 case GLSL_SAMPLER_DIM_EXTERNAL:
1432 return TEXTURE_2D;
1433
1434 case GLSL_SAMPLER_DIM_3D:
1435 return TEXTURE_3D;
1436
1437 case GLSL_SAMPLER_DIM_CUBE:
1438 return TEXTURE_CUBE;
1439
1440 default:
1441 printf("Unknown sampler dim type\n");
1442 assert(0);
1443 return 0;
1444 }
1445 }
1446
1447 static void
1448 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1449 {
1450 /* TODO */
1451 //assert (!instr->sampler);
1452 //assert (!instr->texture_array_size);
1453 assert (instr->op == nir_texop_tex);
1454
1455 /* Allocate registers via a round robin scheme to alternate between the two registers */
1456 int reg = ctx->texture_op_count & 1;
1457 int in_reg = reg, out_reg = reg;
1458
1459 /* Make room for the reg */
1460
1461 if (ctx->texture_index[reg] > -1)
1462 unalias_ssa(ctx, ctx->texture_index[reg]);
1463
1464 int texture_index = instr->texture_index;
1465 int sampler_index = texture_index;
1466
1467 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1468 switch (instr->src[i].src_type) {
1469 case nir_tex_src_coord: {
1470 int index = nir_src_index(&instr->src[i].src);
1471
1472 midgard_vector_alu_src alu_src = blank_alu_src;
1473 alu_src.swizzle = (COMPONENT_Y << 2);
1474
1475 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1476 emit_mir_instruction(ctx, ins);
1477
1478 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1479
1480 break;
1481 }
1482
1483 default: {
1484 printf("Unknown source type\n");
1485 //assert(0);
1486 break;
1487 }
1488 }
1489 }
1490
1491 /* No helper to build texture words -- we do it all here */
1492 midgard_instruction ins = {
1493 .type = TAG_TEXTURE_4,
1494 .texture = {
1495 .op = TEXTURE_OP_NORMAL,
1496 .format = midgard_tex_format(instr->sampler_dim),
1497 .texture_handle = texture_index,
1498 .sampler_handle = sampler_index,
1499
1500 /* TODO: Don't force xyzw */
1501 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1502 .mask = 0xF,
1503
1504 /* TODO: half */
1505 //.in_reg_full = 1,
1506 .out_full = 1,
1507
1508 .filter = 1,
1509
1510 /* Always 1 */
1511 .unknown7 = 1,
1512
1513 /* Assume we can continue; hint it out later */
1514 .cont = 1,
1515 }
1516 };
1517
1518 /* Set registers to read and write from the same place */
1519 ins.texture.in_reg_select = in_reg;
1520 ins.texture.out_reg_select = out_reg;
1521
1522 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1523 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1524 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1525 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1526 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1527 } else {
1528 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1529 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1530 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1531 }
1532
1533 emit_mir_instruction(ctx, ins);
1534
1535 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1536
1537 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(&instr->dest);
1538 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1539 ctx->texture_index[reg] = o_index;
1540
1541 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1542 emit_mir_instruction(ctx, ins2);
1543
1544 /* Used for .cont and .last hinting */
1545 ctx->texture_op_count++;
1546 }
1547
1548 static void
1549 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1550 {
1551 switch (instr->type) {
1552 case nir_jump_break: {
1553 /* Emit a branch out of the loop */
1554 struct midgard_instruction br = v_branch(false, false);
1555 br.branch.target_type = TARGET_BREAK;
1556 br.branch.target_break = ctx->current_loop;
1557 emit_mir_instruction(ctx, br);
1558
1559 printf("break..\n");
1560 break;
1561 }
1562
1563 default:
1564 printf("Unknown jump type %d\n", instr->type);
1565 break;
1566 }
1567 }
1568
1569 static void
1570 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1571 {
1572 switch (instr->type) {
1573 case nir_instr_type_load_const:
1574 emit_load_const(ctx, nir_instr_as_load_const(instr));
1575 break;
1576
1577 case nir_instr_type_intrinsic:
1578 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1579 break;
1580
1581 case nir_instr_type_alu:
1582 emit_alu(ctx, nir_instr_as_alu(instr));
1583 break;
1584
1585 case nir_instr_type_tex:
1586 emit_tex(ctx, nir_instr_as_tex(instr));
1587 break;
1588
1589 case nir_instr_type_jump:
1590 emit_jump(ctx, nir_instr_as_jump(instr));
1591 break;
1592
1593 case nir_instr_type_ssa_undef:
1594 /* Spurious */
1595 break;
1596
1597 default:
1598 printf("Unhandled instruction type\n");
1599 break;
1600 }
1601 }
1602
1603 /* Determine the actual hardware from the index based on the RA results or special values */
1604
1605 static int
1606 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1607 {
1608 if (reg >= SSA_FIXED_MINIMUM)
1609 return SSA_REG_FROM_FIXED(reg);
1610
1611 if (reg >= 0) {
1612 assert(reg < maxreg);
1613 int r = ra_get_node_reg(g, reg);
1614 ctx->work_registers = MAX2(ctx->work_registers, r);
1615 return r;
1616 }
1617
1618 switch (reg) {
1619 /* fmov style unused */
1620 case SSA_UNUSED_0:
1621 return REGISTER_UNUSED;
1622
1623 /* lut style unused */
1624 case SSA_UNUSED_1:
1625 return REGISTER_UNUSED;
1626
1627 default:
1628 printf("Unknown SSA register alias %d\n", reg);
1629 assert(0);
1630 return 31;
1631 }
1632 }
1633
1634 static unsigned int
1635 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1636 {
1637 /* Choose the first available register to minimise reported register pressure */
1638
1639 for (int i = 0; i < 16; ++i) {
1640 if (BITSET_TEST(regs, i)) {
1641 return i;
1642 }
1643 }
1644
1645 assert(0);
1646 return 0;
1647 }
1648
1649 static bool
1650 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1651 {
1652 if (ins->ssa_args.src0 == src) return true;
1653 if (ins->ssa_args.src1 == src) return true;
1654
1655 return false;
1656 }
1657
1658 static bool
1659 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1660 {
1661 /* Check the rest of the block for liveness */
1662 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1663 if (midgard_is_live_in_instr(ins, src))
1664 return true;
1665 }
1666
1667 /* Check the rest of the blocks for liveness */
1668 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1669 mir_foreach_instr_in_block(b, ins) {
1670 if (midgard_is_live_in_instr(ins, src))
1671 return true;
1672 }
1673 }
1674
1675 /* TODO: How does control flow interact in complex shaders? */
1676
1677 return false;
1678 }
1679
1680 static void
1681 allocate_registers(compiler_context *ctx)
1682 {
1683 /* First, initialize the RA */
1684 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1685
1686 /* Create a primary (general purpose) class, as well as special purpose
1687 * pipeline register classes */
1688
1689 int primary_class = ra_alloc_reg_class(regs);
1690 int varying_class = ra_alloc_reg_class(regs);
1691
1692 /* Add the full set of work registers */
1693 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1694 for (int i = 0; i < work_count; ++i)
1695 ra_class_add_reg(regs, primary_class, i);
1696
1697 /* Add special registers */
1698 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1699 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1700
1701 /* We're done setting up */
1702 ra_set_finalize(regs, NULL);
1703
1704 /* Transform the MIR into squeezed index form */
1705 mir_foreach_block(ctx, block) {
1706 mir_foreach_instr_in_block(block, ins) {
1707 if (ins->compact_branch) continue;
1708
1709 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1710 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1711 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1712 }
1713
1714 print_mir_block(block);
1715 }
1716
1717 /* Let's actually do register allocation */
1718 int nodes = ctx->temp_count;
1719 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1720
1721 /* Set everything to the work register class, unless it has somewhere
1722 * special to go */
1723
1724 mir_foreach_block(ctx, block) {
1725 mir_foreach_instr_in_block(block, ins) {
1726 if (ins->compact_branch) continue;
1727
1728 if (ins->ssa_args.dest < 0) continue;
1729
1730 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1731
1732 int class = primary_class;
1733
1734 ra_set_node_class(g, ins->ssa_args.dest, class);
1735 }
1736 }
1737
1738 for (int index = 0; index <= ctx->max_hash; ++index) {
1739 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1740
1741 if (temp) {
1742 unsigned reg = temp - 1;
1743 int t = find_or_allocate_temp(ctx, index);
1744 ra_set_node_reg(g, t, reg);
1745 }
1746 }
1747
1748 /* Determine liveness */
1749
1750 int *live_start = malloc(nodes * sizeof(int));
1751 int *live_end = malloc(nodes * sizeof(int));
1752
1753 /* Initialize as non-existent */
1754
1755 for (int i = 0; i < nodes; ++i) {
1756 live_start[i] = live_end[i] = -1;
1757 }
1758
1759 int d = 0;
1760
1761 mir_foreach_block(ctx, block) {
1762 mir_foreach_instr_in_block(block, ins) {
1763 if (ins->compact_branch) continue;
1764
1765 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1766 /* If this destination is not yet live, it is now since we just wrote it */
1767
1768 int dest = ins->ssa_args.dest;
1769
1770 if (live_start[dest] == -1)
1771 live_start[dest] = d;
1772 }
1773
1774 /* Since we just used a source, the source might be
1775 * dead now. Scan the rest of the block for
1776 * invocations, and if there are none, the source dies
1777 * */
1778
1779 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1780
1781 for (int src = 0; src < 2; ++src) {
1782 int s = sources[src];
1783
1784 if (s < 0) continue;
1785
1786 if (s >= SSA_FIXED_MINIMUM) continue;
1787
1788 if (!is_live_after(ctx, block, ins, s)) {
1789 live_end[s] = d;
1790 }
1791 }
1792
1793 ++d;
1794 }
1795 }
1796
1797 /* If a node still hasn't been killed, kill it now */
1798
1799 for (int i = 0; i < nodes; ++i) {
1800 /* live_start == -1 most likely indicates a pinned output */
1801
1802 if (live_end[i] == -1)
1803 live_end[i] = d;
1804 }
1805
1806 /* Setup interference between nodes that are live at the same time */
1807
1808 for (int i = 0; i < nodes; ++i) {
1809 for (int j = i + 1; j < nodes; ++j) {
1810 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1811 ra_add_node_interference(g, i, j);
1812 }
1813 }
1814
1815 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1816
1817 if (!ra_allocate(g)) {
1818 printf("Error allocating registers\n");
1819 assert(0);
1820 }
1821
1822 /* Cleanup */
1823 free(live_start);
1824 free(live_end);
1825
1826 mir_foreach_block(ctx, block) {
1827 mir_foreach_instr_in_block(block, ins) {
1828 if (ins->compact_branch) continue;
1829
1830 ssa_args args = ins->ssa_args;
1831
1832 switch (ins->type) {
1833 case TAG_ALU_4:
1834 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1835
1836 ins->registers.src2_imm = args.inline_constant;
1837
1838 if (args.inline_constant) {
1839 /* Encode inline 16-bit constant as a vector by default */
1840
1841 ins->registers.src2_reg = ins->inline_constant >> 11;
1842
1843 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1844
1845 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1846 ins->alu.src2 = imm << 2;
1847 } else {
1848 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1849 }
1850
1851 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1852
1853 break;
1854
1855 case TAG_LOAD_STORE_4: {
1856 if (OP_IS_STORE(ins->load_store.op)) {
1857 /* TODO: use ssa_args for store_vary */
1858 ins->load_store.reg = 0;
1859 } else {
1860 bool has_dest = args.dest >= 0;
1861 int ssa_arg = has_dest ? args.dest : args.src0;
1862
1863 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1864 }
1865
1866 break;
1867 }
1868
1869 default:
1870 break;
1871 }
1872 }
1873 }
1874 }
1875
1876 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1877 * use scalar ALU instructions, for functional or performance reasons. To do
1878 * this, we just demote vector ALU payloads to scalar. */
1879
1880 static int
1881 component_from_mask(unsigned mask)
1882 {
1883 for (int c = 0; c < 4; ++c) {
1884 if (mask & (3 << (2 * c)))
1885 return c;
1886 }
1887
1888 assert(0);
1889 return 0;
1890 }
1891
1892 static bool
1893 is_single_component_mask(unsigned mask)
1894 {
1895 int components = 0;
1896
1897 for (int c = 0; c < 4; ++c)
1898 if (mask & (3 << (2 * c)))
1899 components++;
1900
1901 return components == 1;
1902 }
1903
1904 /* Create a mask of accessed components from a swizzle to figure out vector
1905 * dependencies */
1906
1907 static unsigned
1908 swizzle_to_access_mask(unsigned swizzle)
1909 {
1910 unsigned component_mask = 0;
1911
1912 for (int i = 0; i < 4; ++i) {
1913 unsigned c = (swizzle >> (2 * i)) & 3;
1914 component_mask |= (1 << c);
1915 }
1916
1917 return component_mask;
1918 }
1919
1920 static unsigned
1921 vector_to_scalar_source(unsigned u)
1922 {
1923 midgard_vector_alu_src v;
1924 memcpy(&v, &u, sizeof(v));
1925
1926 midgard_scalar_alu_src s = {
1927 .abs = v.abs,
1928 .negate = v.negate,
1929 .full = !v.half,
1930 .component = (v.swizzle & 3) << 1
1931 };
1932
1933 unsigned o;
1934 memcpy(&o, &s, sizeof(s));
1935
1936 return o & ((1 << 6) - 1);
1937 }
1938
1939 static midgard_scalar_alu
1940 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1941 {
1942 /* The output component is from the mask */
1943 midgard_scalar_alu s = {
1944 .op = v.op,
1945 .src1 = vector_to_scalar_source(v.src1),
1946 .src2 = vector_to_scalar_source(v.src2),
1947 .unknown = 0,
1948 .outmod = v.outmod,
1949 .output_full = 1, /* TODO: Half */
1950 .output_component = component_from_mask(v.mask) << 1,
1951 };
1952
1953 /* Inline constant is passed along rather than trying to extract it
1954 * from v */
1955
1956 if (ins->ssa_args.inline_constant) {
1957 uint16_t imm = 0;
1958 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1959 imm |= (lower_11 >> 9) & 3;
1960 imm |= (lower_11 >> 6) & 4;
1961 imm |= (lower_11 >> 2) & 0x38;
1962 imm |= (lower_11 & 63) << 6;
1963
1964 s.src2 = imm;
1965 }
1966
1967 return s;
1968 }
1969
1970 /* Midgard prefetches instruction types, so during emission we need to
1971 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1972 * if this is the second to last and the last is an ALU, then it's also 1... */
1973
1974 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1975 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1976
1977 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
1978 bytes_emitted += sizeof(type)
1979
1980 static void
1981 emit_binary_vector_instruction(midgard_instruction *ains,
1982 uint16_t *register_words, int *register_words_count,
1983 uint64_t *body_words, size_t *body_size, int *body_words_count,
1984 size_t *bytes_emitted)
1985 {
1986 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
1987 *bytes_emitted += sizeof(midgard_reg_info);
1988
1989 body_size[*body_words_count] = sizeof(midgard_vector_alu);
1990 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
1991 *bytes_emitted += sizeof(midgard_vector_alu);
1992 }
1993
1994 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
1995 * mind that we are a vector architecture and we can write to different
1996 * components simultaneously */
1997
1998 static bool
1999 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2000 {
2001 /* Each instruction reads some registers and writes to a register. See
2002 * where the first writes */
2003
2004 /* Figure out where exactly we wrote to */
2005 int source = first->ssa_args.dest;
2006 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2007
2008 /* As long as the second doesn't read from the first, we're okay */
2009 if (second->ssa_args.src0 == source) {
2010 if (first->type == TAG_ALU_4) {
2011 /* Figure out which components we just read from */
2012
2013 int q = second->alu.src1;
2014 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2015
2016 /* Check if there are components in common, and fail if so */
2017 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2018 return false;
2019 } else
2020 return false;
2021
2022 }
2023
2024 if (second->ssa_args.src1 == source)
2025 return false;
2026
2027 /* Otherwise, it's safe in that regard. Another data hazard is both
2028 * writing to the same place, of course */
2029
2030 if (second->ssa_args.dest == source) {
2031 /* ...but only if the components overlap */
2032 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2033
2034 if (dest_mask & source_mask)
2035 return false;
2036 }
2037
2038 /* ...That's it */
2039 return true;
2040 }
2041
2042 /* Schedules, but does not emit, a single basic block. After scheduling, the
2043 * final tag and size of the block are known, which are necessary for branching
2044 * */
2045
2046 static midgard_bundle
2047 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2048 {
2049 int instructions_emitted = 0, instructions_consumed = -1;
2050 midgard_bundle bundle = { 0 };
2051
2052 uint8_t tag = ins->type;
2053
2054 /* Default to the instruction's tag */
2055 bundle.tag = tag;
2056
2057 switch (ins->type) {
2058 case TAG_ALU_4: {
2059 uint32_t control = 0;
2060 size_t bytes_emitted = sizeof(control);
2061
2062 /* TODO: Constant combining */
2063 int index = 0, last_unit = 0;
2064
2065 /* Previous instructions, for the purpose of parallelism */
2066 midgard_instruction *segment[4] = {0};
2067 int segment_size = 0;
2068
2069 instructions_emitted = -1;
2070 midgard_instruction *pins = ins;
2071
2072 for (;;) {
2073 midgard_instruction *ains = pins;
2074
2075 /* Advance instruction pointer */
2076 if (index) {
2077 ains = mir_next_op(pins);
2078 pins = ains;
2079 }
2080
2081 /* Out-of-work condition */
2082 if ((struct list_head *) ains == &block->instructions)
2083 break;
2084
2085 /* Ensure that the chain can continue */
2086 if (ains->type != TAG_ALU_4) break;
2087
2088 /* According to the presentation "The ARM
2089 * Mali-T880 Mobile GPU" from HotChips 27,
2090 * there are two pipeline stages. Branching
2091 * position determined experimentally. Lines
2092 * are executed in parallel:
2093 *
2094 * [ VMUL ] [ SADD ]
2095 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2096 *
2097 * Verify that there are no ordering dependencies here.
2098 *
2099 * TODO: Allow for parallelism!!!
2100 */
2101
2102 /* Pick a unit for it if it doesn't force a particular unit */
2103
2104 int unit = ains->unit;
2105
2106 if (!unit) {
2107 int op = ains->alu.op;
2108 int units = alu_opcode_props[op];
2109
2110 /* TODO: Promotion of scalars to vectors */
2111 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2112
2113 if (!vector)
2114 assert(units & UNITS_SCALAR);
2115
2116 if (vector) {
2117 if (last_unit >= UNIT_VADD) {
2118 if (units & UNIT_VLUT)
2119 unit = UNIT_VLUT;
2120 else
2121 break;
2122 } else {
2123 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2124 unit = UNIT_VMUL;
2125 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2126 unit = UNIT_VADD;
2127 else if (units & UNIT_VLUT)
2128 unit = UNIT_VLUT;
2129 else
2130 break;
2131 }
2132 } else {
2133 if (last_unit >= UNIT_VADD) {
2134 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2135 unit = UNIT_SMUL;
2136 else if (units & UNIT_VLUT)
2137 unit = UNIT_VLUT;
2138 else
2139 break;
2140 } else {
2141 if ((units & UNIT_SADD) && !(control & UNIT_SADD))
2142 unit = UNIT_SADD;
2143 else if (units & UNIT_SMUL)
2144 unit = UNIT_SMUL;
2145 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2146 unit = UNIT_VADD;
2147 else
2148 break;
2149 }
2150 }
2151
2152 assert(unit & units);
2153 }
2154
2155 /* Late unit check, this time for encoding (not parallelism) */
2156 if (unit <= last_unit) break;
2157
2158 /* Clear the segment */
2159 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2160 segment_size = 0;
2161
2162 /* Check for data hazards */
2163 int has_hazard = false;
2164
2165 for (int s = 0; s < segment_size; ++s)
2166 if (!can_run_concurrent_ssa(segment[s], ains))
2167 has_hazard = true;
2168
2169 if (has_hazard)
2170 break;
2171
2172 /* We're good to go -- emit the instruction */
2173 ains->unit = unit;
2174
2175 segment[segment_size++] = ains;
2176
2177 /* Only one set of embedded constants per
2178 * bundle possible; if we have more, we must
2179 * break the chain early, unfortunately */
2180
2181 if (ains->has_constants) {
2182 if (bundle.has_embedded_constants) {
2183 /* ...but if there are already
2184 * constants but these are the
2185 * *same* constants, we let it
2186 * through */
2187
2188 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2189 break;
2190 } else {
2191 bundle.has_embedded_constants = true;
2192 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2193
2194 /* If this is a blend shader special constant, track it for patching */
2195 if (ains->has_blend_constant)
2196 bundle.has_blend_constant = true;
2197 }
2198 }
2199
2200 if (ains->unit & UNITS_ANY_VECTOR) {
2201 emit_binary_vector_instruction(ains, bundle.register_words,
2202 &bundle.register_words_count, bundle.body_words,
2203 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2204 } else if (ains->compact_branch) {
2205 /* All of r0 has to be written out
2206 * along with the branch writeout.
2207 * (slow!) */
2208
2209 if (ains->writeout) {
2210 if (index == 0) {
2211 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2212 ins.unit = UNIT_VMUL;
2213
2214 control |= ins.unit;
2215
2216 emit_binary_vector_instruction(&ins, bundle.register_words,
2217 &bundle.register_words_count, bundle.body_words,
2218 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2219 } else {
2220 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2221 bool written_late = false;
2222 bool components[4] = { 0 };
2223 uint16_t register_dep_mask = 0;
2224 uint16_t written_mask = 0;
2225
2226 midgard_instruction *qins = ins;
2227 for (int t = 0; t < index; ++t) {
2228 if (qins->registers.out_reg != 0) {
2229 /* Mark down writes */
2230
2231 written_mask |= (1 << qins->registers.out_reg);
2232 } else {
2233 /* Mark down the register dependencies for errata check */
2234
2235 if (qins->registers.src1_reg < 16)
2236 register_dep_mask |= (1 << qins->registers.src1_reg);
2237
2238 if (qins->registers.src2_reg < 16)
2239 register_dep_mask |= (1 << qins->registers.src2_reg);
2240
2241 int mask = qins->alu.mask;
2242
2243 for (int c = 0; c < 4; ++c)
2244 if (mask & (0x3 << (2 * c)))
2245 components[c] = true;
2246
2247 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2248
2249 if (qins->unit == UNIT_VLUT)
2250 written_late = true;
2251 }
2252
2253 /* Advance instruction pointer */
2254 qins = mir_next_op(qins);
2255 }
2256
2257
2258 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2259 if (register_dep_mask & written_mask) {
2260 printf("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2261 break;
2262 }
2263
2264 if (written_late)
2265 break;
2266
2267 /* If even a single component is not written, break it up (conservative check). */
2268 bool breakup = false;
2269
2270 for (int c = 0; c < 4; ++c)
2271 if (!components[c])
2272 breakup = true;
2273
2274 if (breakup)
2275 break;
2276
2277 /* Otherwise, we're free to proceed */
2278 }
2279 }
2280
2281 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2282 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2283 bytes_emitted += sizeof(ains->br_compact);
2284 } else {
2285 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2286 bytes_emitted += sizeof(midgard_reg_info);
2287
2288 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2289 bundle.body_words_count++;
2290 bytes_emitted += sizeof(midgard_scalar_alu);
2291 }
2292
2293 /* Defer marking until after writing to allow for break */
2294 control |= ains->unit;
2295 last_unit = ains->unit;
2296 ++instructions_emitted;
2297 ++index;
2298 }
2299
2300 /* Bubble up the number of instructions for skipping */
2301 instructions_consumed = index - 1;
2302
2303 int padding = 0;
2304
2305 /* Pad ALU op to nearest word */
2306
2307 if (bytes_emitted & 15) {
2308 padding = 16 - (bytes_emitted & 15);
2309 bytes_emitted += padding;
2310 }
2311
2312 /* Constants must always be quadwords */
2313 if (bundle.has_embedded_constants)
2314 bytes_emitted += 16;
2315
2316 /* Size ALU instruction for tag */
2317 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2318 bundle.padding = padding;
2319 bundle.control = bundle.tag | control;
2320
2321 break;
2322 }
2323
2324 case TAG_LOAD_STORE_4: {
2325 /* Load store instructions have two words at once. If
2326 * we only have one queued up, we need to NOP pad.
2327 * Otherwise, we store both in succession to save space
2328 * and cycles -- letting them go in parallel -- skip
2329 * the next. The usefulness of this optimisation is
2330 * greatly dependent on the quality of the instruction
2331 * scheduler.
2332 */
2333
2334 midgard_instruction *next_op = mir_next_op(ins);
2335
2336 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2337 /* As the two operate concurrently, make sure
2338 * they are not dependent */
2339
2340 if (can_run_concurrent_ssa(ins, next_op) || true) {
2341 /* Skip ahead, since it's redundant with the pair */
2342 instructions_consumed = 1 + (instructions_emitted++);
2343 }
2344 }
2345
2346 break;
2347 }
2348
2349 #if 0
2350
2351 case TAG_TEXTURE_4:
2352 /* TODO: Schedule texture ops */
2353 break;
2354 #endif
2355
2356 default:
2357 /* XXX: What happens with textures? */
2358 break;
2359 }
2360
2361 /* Copy the instructions into the bundle */
2362 bundle.instruction_count = instructions_emitted + 1;
2363
2364 int used_idx = 0;
2365
2366 midgard_instruction *uins = ins;
2367 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2368 bundle.instructions[used_idx++] = *uins;
2369 uins = mir_next_op(uins);
2370 }
2371
2372 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2373
2374 return bundle;
2375 }
2376
2377 static int
2378 quadword_size(int tag)
2379 {
2380 switch (tag) {
2381 case TAG_ALU_4:
2382 return 1;
2383
2384 case TAG_ALU_8:
2385 return 2;
2386
2387 case TAG_ALU_12:
2388 return 3;
2389
2390 case TAG_ALU_16:
2391 return 4;
2392
2393 case TAG_LOAD_STORE_4:
2394 return 1;
2395
2396 case TAG_TEXTURE_4:
2397 return 1;
2398
2399 default:
2400 assert(0);
2401 return 0;
2402 }
2403 }
2404
2405 /* Schedule a single block by iterating its instruction to create bundles.
2406 * While we go, tally about the bundle sizes to compute the block size. */
2407
2408 static void
2409 schedule_block(compiler_context *ctx, midgard_block *block)
2410 {
2411 util_dynarray_init(&block->bundles, NULL);
2412
2413 block->quadword_count = 0;
2414
2415 mir_foreach_instr_in_block(block, ins) {
2416 int skip;
2417 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2418 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2419
2420 if (bundle.has_blend_constant) {
2421 /* TODO: Multiblock? */
2422 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2423 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2424 }
2425
2426 while(skip--)
2427 ins = mir_next_op(ins);
2428
2429 block->quadword_count += quadword_size(bundle.tag);
2430 }
2431
2432 block->is_scheduled = true;
2433 }
2434
2435 static void
2436 schedule_program(compiler_context *ctx)
2437 {
2438 allocate_registers(ctx);
2439
2440 mir_foreach_block(ctx, block) {
2441 schedule_block(ctx, block);
2442 }
2443 }
2444
2445 /* After everything is scheduled, emit whole bundles at a time */
2446
2447 static void
2448 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2449 {
2450 int lookahead = next_tag << 4;
2451
2452 switch (bundle->tag) {
2453 case TAG_ALU_4:
2454 case TAG_ALU_8:
2455 case TAG_ALU_12:
2456 case TAG_ALU_16: {
2457 /* Actually emit each component */
2458 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2459
2460 for (int i = 0; i < bundle->register_words_count; ++i)
2461 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2462
2463 /* Emit body words based on the instructions bundled */
2464 for (int i = 0; i < bundle->instruction_count; ++i) {
2465 midgard_instruction *ins = &bundle->instructions[i];
2466
2467 if (ins->unit & UNITS_ANY_VECTOR) {
2468 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2469 } else if (ins->compact_branch) {
2470 /* Dummy move, XXX DRY */
2471 if ((i == 0) && ins->writeout) {
2472 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2473 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2474 }
2475
2476 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2477 } else {
2478 /* Scalar */
2479 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2480 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2481 }
2482 }
2483
2484 /* Emit padding (all zero) */
2485 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2486
2487 /* Tack on constants */
2488
2489 if (bundle->has_embedded_constants) {
2490 util_dynarray_append(emission, float, bundle->constants[0]);
2491 util_dynarray_append(emission, float, bundle->constants[1]);
2492 util_dynarray_append(emission, float, bundle->constants[2]);
2493 util_dynarray_append(emission, float, bundle->constants[3]);
2494 }
2495
2496 break;
2497 }
2498
2499 case TAG_LOAD_STORE_4: {
2500 /* One or two composing instructions */
2501
2502 uint64_t current64, next64 = LDST_NOP;
2503
2504 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2505
2506 if (bundle->instruction_count == 2)
2507 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2508
2509 midgard_load_store instruction = {
2510 .type = bundle->tag,
2511 .next_type = next_tag,
2512 .word1 = current64,
2513 .word2 = next64
2514 };
2515
2516 util_dynarray_append(emission, midgard_load_store, instruction);
2517
2518 break;
2519 }
2520
2521 case TAG_TEXTURE_4: {
2522 /* Texture instructions are easy, since there is no
2523 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2524
2525 midgard_instruction *ins = &bundle->instructions[0];
2526
2527 ins->texture.type = TAG_TEXTURE_4;
2528 ins->texture.next_type = next_tag;
2529
2530 ctx->texture_op_count--;
2531
2532 if (!ctx->texture_op_count) {
2533 ins->texture.cont = 0;
2534 ins->texture.last = 1;
2535 }
2536
2537 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2538 break;
2539 }
2540
2541 default:
2542 printf("Unknown midgard instruction type\n");
2543 assert(0);
2544 break;
2545 }
2546 }
2547
2548
2549 /* ALU instructions can inline or embed constants, which decreases register
2550 * pressure and saves space. */
2551
2552 #define CONDITIONAL_ATTACH(src) { \
2553 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2554 \
2555 if (entry) { \
2556 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2557 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2558 } \
2559 }
2560
2561 static void
2562 inline_alu_constants(compiler_context *ctx)
2563 {
2564 mir_foreach_instr(ctx, alu) {
2565 /* Other instructions cannot inline constants */
2566 if (alu->type != TAG_ALU_4) continue;
2567
2568 /* If there is already a constant here, we can do nothing */
2569 if (alu->has_constants) continue;
2570
2571 CONDITIONAL_ATTACH(src0);
2572
2573 if (!alu->has_constants) {
2574 CONDITIONAL_ATTACH(src1)
2575 } else if (!alu->inline_constant) {
2576 /* Corner case: _two_ vec4 constants, for instance with a
2577 * csel. For this case, we can only use a constant
2578 * register for one, we'll have to emit a move for the
2579 * other. Note, if both arguments are constants, then
2580 * necessarily neither argument depends on the value of
2581 * any particular register. As the destination register
2582 * will be wiped, that means we can spill the constant
2583 * to the destination register.
2584 */
2585
2586 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2587 unsigned scratch = alu->ssa_args.dest;
2588
2589 if (entry) {
2590 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2591 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2592
2593 /* Force a break XXX Defer r31 writes */
2594 ins.unit = UNIT_VLUT;
2595
2596 /* Set the source */
2597 alu->ssa_args.src1 = scratch;
2598
2599 /* Inject us -before- the last instruction which set r31 */
2600 mir_insert_instruction_before(mir_prev_op(alu), ins);
2601 }
2602 }
2603 }
2604 }
2605
2606 /* Midgard supports two types of constants, embedded constants (128-bit) and
2607 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2608 * constants can be demoted to inline constants, for space savings and
2609 * sometimes a performance boost */
2610
2611 static void
2612 embedded_to_inline_constant(compiler_context *ctx)
2613 {
2614 mir_foreach_instr(ctx, ins) {
2615 if (!ins->has_constants) continue;
2616
2617 if (ins->ssa_args.inline_constant) continue;
2618
2619 /* Blend constants must not be inlined by definition */
2620 if (ins->has_blend_constant) continue;
2621
2622 /* src1 cannot be an inline constant due to encoding
2623 * restrictions. So, if possible we try to flip the arguments
2624 * in that case */
2625
2626 int op = ins->alu.op;
2627
2628 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2629 /* Flip based on op. Fallthrough intentional */
2630
2631 switch (op) {
2632 /* These ops require an operational change to flip their arguments TODO */
2633 case midgard_alu_op_flt:
2634 case midgard_alu_op_fle:
2635 case midgard_alu_op_ilt:
2636 case midgard_alu_op_ile:
2637 case midgard_alu_op_fcsel:
2638 case midgard_alu_op_icsel:
2639 case midgard_alu_op_isub:
2640 printf("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2641 break;
2642
2643 /* These ops are commutative and Just Flip */
2644 case midgard_alu_op_fne:
2645 case midgard_alu_op_fadd:
2646 case midgard_alu_op_fmul:
2647 case midgard_alu_op_fmin:
2648 case midgard_alu_op_fmax:
2649 case midgard_alu_op_iadd:
2650 case midgard_alu_op_imul:
2651 case midgard_alu_op_feq:
2652 case midgard_alu_op_ieq:
2653 case midgard_alu_op_ine:
2654 case midgard_alu_op_iand:
2655 case midgard_alu_op_ior:
2656 case midgard_alu_op_ixor:
2657 /* Flip the SSA numbers */
2658 ins->ssa_args.src0 = ins->ssa_args.src1;
2659 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2660
2661 /* And flip the modifiers */
2662
2663 unsigned src_temp;
2664
2665 src_temp = ins->alu.src2;
2666 ins->alu.src2 = ins->alu.src1;
2667 ins->alu.src1 = src_temp;
2668
2669 default:
2670 break;
2671 }
2672 }
2673
2674 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2675 /* Extract the source information */
2676
2677 midgard_vector_alu_src *src;
2678 int q = ins->alu.src2;
2679 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2680 src = m;
2681
2682 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2683 int component = src->swizzle & 3;
2684
2685 /* Scale constant appropriately, if we can legally */
2686 uint16_t scaled_constant = 0;
2687
2688 /* XXX: Check legality */
2689 if (midgard_is_integer_op(op)) {
2690 /* TODO: Inline integer */
2691 continue;
2692
2693 unsigned int *iconstants = (unsigned int *) ins->constants;
2694 scaled_constant = (uint16_t) iconstants[component];
2695
2696 /* Constant overflow after resize */
2697 if (scaled_constant != iconstants[component])
2698 continue;
2699 } else {
2700 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2701 }
2702
2703 /* We don't know how to handle these with a constant */
2704
2705 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2706 printf("Bailing inline constant...\n");
2707 continue;
2708 }
2709
2710 /* Make sure that the constant is not itself a
2711 * vector by checking if all accessed values
2712 * (by the swizzle) are the same. */
2713
2714 uint32_t *cons = (uint32_t *) ins->constants;
2715 uint32_t value = cons[component];
2716
2717 bool is_vector = false;
2718 unsigned mask = effective_writemask(&ins->alu);
2719
2720 for (int c = 1; c < 4; ++c) {
2721 /* We only care if this component is actually used */
2722 if (!(mask & (1 << c)))
2723 continue;
2724
2725 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2726
2727 if (test != value) {
2728 is_vector = true;
2729 break;
2730 }
2731 }
2732
2733 if (is_vector)
2734 continue;
2735
2736 /* Get rid of the embedded constant */
2737 ins->has_constants = false;
2738 ins->ssa_args.src1 = SSA_UNUSED_0;
2739 ins->ssa_args.inline_constant = true;
2740 ins->inline_constant = scaled_constant;
2741 }
2742 }
2743 }
2744
2745 /* Map normal SSA sources to other SSA sources / fixed registers (like
2746 * uniforms) */
2747
2748 static void
2749 map_ssa_to_alias(compiler_context *ctx, int *ref)
2750 {
2751 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2752
2753 if (alias) {
2754 /* Remove entry in leftovers to avoid a redunant fmov */
2755
2756 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2757
2758 if (leftover)
2759 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2760
2761 /* Assign the alias map */
2762 *ref = alias - 1;
2763 return;
2764 }
2765 }
2766
2767 #define AS_SRC(to, u) \
2768 int q##to = ins->alu.src2; \
2769 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2770
2771 /* Removing unused moves is necessary to clean up the texture pipeline results.
2772 *
2773 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2774
2775 static void
2776 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2777 {
2778 mir_foreach_instr_in_block_safe(block, ins) {
2779 if (ins->type != TAG_ALU_4) continue;
2780
2781 if (ins->alu.op != midgard_alu_op_fmov) continue;
2782
2783 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2784
2785 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2786
2787 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2788
2789 mir_remove_instruction(ins);
2790 }
2791 }
2792
2793 /* The following passes reorder MIR instructions to enable better scheduling */
2794
2795 static void
2796 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2797 {
2798 mir_foreach_instr_in_block_safe(block, ins) {
2799 if (ins->type != TAG_LOAD_STORE_4) continue;
2800
2801 /* We've found a load/store op. Check if next is also load/store. */
2802 midgard_instruction *next_op = mir_next_op(ins);
2803 if (&next_op->link != &block->instructions) {
2804 if (next_op->type == TAG_LOAD_STORE_4) {
2805 /* If so, we're done since we're a pair */
2806 ins = mir_next_op(ins);
2807 continue;
2808 }
2809
2810 /* Maximum search distance to pair, to avoid register pressure disasters */
2811 int search_distance = 8;
2812
2813 /* Otherwise, we have an orphaned load/store -- search for another load */
2814 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2815 /* Terminate search if necessary */
2816 if (!(search_distance--)) break;
2817
2818 if (c->type != TAG_LOAD_STORE_4) continue;
2819
2820 if (OP_IS_STORE(c->load_store.op)) continue;
2821
2822 /* We found one! Move it up to pair and remove it from the old location */
2823
2824 mir_insert_instruction_before(ins, *c);
2825 mir_remove_instruction(c);
2826
2827 break;
2828 }
2829 }
2830 }
2831 }
2832
2833 /* Emit varying stores late */
2834
2835 static void
2836 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2837 /* Iterate in reverse to get the final write, rather than the first */
2838
2839 mir_foreach_instr_in_block_safe_rev(block, ins) {
2840 /* Check if what we just wrote needs a store */
2841 int idx = ins->ssa_args.dest;
2842 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2843
2844 if (!varying) continue;
2845
2846 varying -= 1;
2847
2848 /* We need to store to the appropriate varying, so emit the
2849 * move/store */
2850
2851 /* TODO: Integrate with special purpose RA (and scheduler?) */
2852 bool high_varying_register = false;
2853
2854 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2855
2856 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2857 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2858
2859 mir_insert_instruction_before(mir_next_op(ins), st);
2860 mir_insert_instruction_before(mir_next_op(ins), mov);
2861
2862 /* We no longer need to store this varying */
2863 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2864 }
2865 }
2866
2867 /* If there are leftovers after the below pass, emit actual fmov
2868 * instructions for the slow-but-correct path */
2869
2870 static void
2871 emit_leftover_move(compiler_context *ctx)
2872 {
2873 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2874 int base = ((uintptr_t) leftover->key) - 1;
2875 int mapped = base;
2876
2877 map_ssa_to_alias(ctx, &mapped);
2878 EMIT(fmov, mapped, blank_alu_src, base);
2879 }
2880 }
2881
2882 static void
2883 actualise_ssa_to_alias(compiler_context *ctx)
2884 {
2885 mir_foreach_instr(ctx, ins) {
2886 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2887 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2888 }
2889
2890 emit_leftover_move(ctx);
2891 }
2892
2893 /* Vertex shaders do not write gl_Position as is; instead, they write a
2894 * transformed screen space position as a varying. See section 12.5 "Coordinate
2895 * Transformation" of the ES 3.2 full specification for details.
2896 *
2897 * This transformation occurs early on, as NIR and prior to optimisation, in
2898 * order to take advantage of NIR optimisation passes of the transform itself.
2899 * */
2900
2901 static void
2902 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2903 {
2904 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2905
2906 /* Get viewport from the uniforms */
2907 nir_intrinsic_instr *load;
2908 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2909 load->num_components = 4;
2910 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2911 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2912 nir_builder_instr_insert(b, &load->instr);
2913
2914 /* Formatted as <width, height, centerx, centery> */
2915 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2916 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2917 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2918 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2919
2920 /* XXX: From uniforms? */
2921 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2922 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2923
2924 /* World space to normalised device coordinates */
2925
2926 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2927 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2928
2929 /* Normalised device coordinates to screen space */
2930
2931 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2932 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2933
2934 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2935 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2936 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2937
2938 /* gl_Position will be written out in screenspace xyz, with w set to
2939 * the reciprocal we computed earlier. The transformed w component is
2940 * then used for perspective-correct varying interpolation */
2941
2942 nir_ssa_def *screen_space = nir_vec4(b,
2943 nir_channel(b, viewport_xy, 0),
2944 nir_channel(b, viewport_xy, 1),
2945 screen_depth,
2946 nir_fabs(b, w_recip));
2947
2948 /* Finally, write out the transformed values to the varying */
2949
2950 nir_intrinsic_instr *store;
2951 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2952 store->num_components = 4;
2953 nir_intrinsic_set_base(store, 0);
2954 nir_intrinsic_set_write_mask(store, 0xf);
2955 store->src[0].ssa = screen_space;
2956 store->src[0].is_ssa = true;
2957 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2958 nir_builder_instr_insert(b, &store->instr);
2959 }
2960
2961 static void
2962 transform_position_writes(nir_shader *shader)
2963 {
2964 nir_foreach_function(func, shader) {
2965 nir_foreach_block(block, func->impl) {
2966 nir_foreach_instr_safe(instr, block) {
2967 if (instr->type != nir_instr_type_intrinsic) continue;
2968
2969 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
2970 nir_variable *out = NULL;
2971
2972 switch (intr->intrinsic) {
2973 case nir_intrinsic_store_output:
2974 /* already had i/o lowered.. lookup the matching output var: */
2975 nir_foreach_variable(var, &shader->outputs) {
2976 int drvloc = var->data.driver_location;
2977
2978 if (nir_intrinsic_base(intr) == drvloc) {
2979 out = var;
2980 break;
2981 }
2982 }
2983
2984 break;
2985
2986 default:
2987 break;
2988 }
2989
2990 if (!out) continue;
2991
2992 if (out->data.mode != nir_var_shader_out)
2993 continue;
2994
2995 if (out->data.location != VARYING_SLOT_POS)
2996 continue;
2997
2998 nir_builder b;
2999 nir_builder_init(&b, func->impl);
3000 b.cursor = nir_before_instr(instr);
3001
3002 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3003 nir_instr_remove(instr);
3004 }
3005 }
3006 }
3007 }
3008
3009 static void
3010 emit_fragment_epilogue(compiler_context *ctx)
3011 {
3012 /* Special case: writing out constants requires us to include the move
3013 * explicitly now, so shove it into r0 */
3014
3015 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3016
3017 if (constant_value) {
3018 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3019 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3020 emit_mir_instruction(ctx, ins);
3021 }
3022
3023 /* Perform the actual fragment writeout. We have two writeout/branch
3024 * instructions, forming a loop until writeout is successful as per the
3025 * docs. TODO: gl_FragDepth */
3026
3027 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3028 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3029 }
3030
3031 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3032 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3033 * with the int8 analogue to the fragment epilogue */
3034
3035 static void
3036 emit_blend_epilogue(compiler_context *ctx)
3037 {
3038 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3039
3040 midgard_instruction scale = {
3041 .type = TAG_ALU_4,
3042 .unit = UNIT_VMUL,
3043 .inline_constant = _mesa_float_to_half(255.0),
3044 .ssa_args = {
3045 .src0 = SSA_FIXED_REGISTER(0),
3046 .src1 = SSA_UNUSED_0,
3047 .dest = SSA_FIXED_REGISTER(24),
3048 .inline_constant = true
3049 },
3050 .alu = {
3051 .op = midgard_alu_op_fmul,
3052 .reg_mode = midgard_reg_mode_full,
3053 .dest_override = midgard_dest_override_lower,
3054 .mask = 0xFF,
3055 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3056 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3057 }
3058 };
3059
3060 emit_mir_instruction(ctx, scale);
3061
3062 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3063
3064 midgard_vector_alu_src alu_src = blank_alu_src;
3065 alu_src.half = true;
3066
3067 midgard_instruction f2u8 = {
3068 .type = TAG_ALU_4,
3069 .ssa_args = {
3070 .src0 = SSA_FIXED_REGISTER(24),
3071 .src1 = SSA_UNUSED_0,
3072 .dest = SSA_FIXED_REGISTER(0),
3073 .inline_constant = true
3074 },
3075 .alu = {
3076 .op = midgard_alu_op_f2u8,
3077 .reg_mode = midgard_reg_mode_half,
3078 .dest_override = midgard_dest_override_lower,
3079 .outmod = midgard_outmod_pos,
3080 .mask = 0xF,
3081 .src1 = vector_alu_srco_unsigned(alu_src),
3082 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3083 }
3084 };
3085
3086 emit_mir_instruction(ctx, f2u8);
3087
3088 /* vmul.imov.quarter r0, r0, r0 */
3089
3090 midgard_instruction imov_8 = {
3091 .type = TAG_ALU_4,
3092 .ssa_args = {
3093 .src0 = SSA_UNUSED_1,
3094 .src1 = SSA_FIXED_REGISTER(0),
3095 .dest = SSA_FIXED_REGISTER(0),
3096 },
3097 .alu = {
3098 .op = midgard_alu_op_imov,
3099 .reg_mode = midgard_reg_mode_quarter,
3100 .dest_override = midgard_dest_override_none,
3101 .mask = 0xFF,
3102 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3103 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3104 }
3105 };
3106
3107 /* Emit branch epilogue with the 8-bit move as the source */
3108
3109 emit_mir_instruction(ctx, imov_8);
3110 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3111
3112 emit_mir_instruction(ctx, imov_8);
3113 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3114 }
3115
3116 static midgard_block *
3117 emit_block(compiler_context *ctx, nir_block *block)
3118 {
3119 midgard_block *this_block = malloc(sizeof(midgard_block));
3120 list_addtail(&this_block->link, &ctx->blocks);
3121
3122 this_block->is_scheduled = false;
3123 ++ctx->block_count;
3124
3125 ctx->texture_index[0] = -1;
3126 ctx->texture_index[1] = -1;
3127
3128 /* Set up current block */
3129 list_inithead(&this_block->instructions);
3130 ctx->current_block = this_block;
3131
3132 nir_foreach_instr(instr, block) {
3133 emit_instr(ctx, instr);
3134 ++ctx->instruction_count;
3135 }
3136
3137 inline_alu_constants(ctx);
3138 embedded_to_inline_constant(ctx);
3139
3140 /* Perform heavylifting for aliasing */
3141 actualise_ssa_to_alias(ctx);
3142
3143 midgard_emit_store(ctx, this_block);
3144 midgard_eliminate_orphan_moves(ctx, this_block);
3145 midgard_pair_load_store(ctx, this_block);
3146
3147 /* Append fragment shader epilogue (value writeout) */
3148 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3149 if (block == nir_impl_last_block(ctx->func->impl)) {
3150 if (ctx->is_blend)
3151 emit_blend_epilogue(ctx);
3152 else
3153 emit_fragment_epilogue(ctx);
3154 }
3155 }
3156
3157 /* Fallthrough save */
3158 this_block->next_fallthrough = ctx->previous_source_block;
3159
3160 if (block == nir_start_block(ctx->func->impl))
3161 ctx->initial_block = this_block;
3162
3163 if (block == nir_impl_last_block(ctx->func->impl))
3164 ctx->final_block = this_block;
3165
3166 /* Allow the next control flow to access us retroactively, for
3167 * branching etc */
3168 ctx->current_block = this_block;
3169
3170 /* Document the fallthrough chain */
3171 ctx->previous_source_block = this_block;
3172
3173 return this_block;
3174 }
3175
3176 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3177
3178 static void
3179 emit_if(struct compiler_context *ctx, nir_if *nif)
3180 {
3181 /* Conditional branches expect the condition in r31.w; emit a move for
3182 * that in the _previous_ block (which is the current block). */
3183 emit_condition(ctx, &nif->condition, true);
3184
3185 /* Speculatively emit the branch, but we can't fill it in until later */
3186 EMIT(branch, true, true);
3187 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3188
3189 /* Emit the two subblocks */
3190 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3191
3192 /* Emit a jump from the end of the then block to the end of the else */
3193 EMIT(branch, false, false);
3194 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3195
3196 /* Emit second block, and check if it's empty */
3197
3198 int else_idx = ctx->block_count;
3199 int count_in = ctx->instruction_count;
3200 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3201
3202 /* Now that we have the subblocks emitted, fix up the branches */
3203
3204 assert(then_block);
3205 assert(else_block);
3206
3207
3208 if (ctx->instruction_count == count_in) {
3209 /* The else block is empty, so don't emit an exit jump */
3210 mir_remove_instruction(then_exit);
3211 then_branch->branch.target_block = else_idx + 1;
3212 } else {
3213 then_branch->branch.target_block = else_idx;
3214 then_exit->branch.target_block = else_idx + 1;
3215 }
3216 }
3217
3218 static void
3219 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3220 {
3221 /* Remember where we are */
3222 midgard_block *start_block = ctx->current_block;
3223
3224 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3225 * single current_loop variable, maybe we need a stack */
3226
3227 int loop_idx = ++ctx->current_loop;
3228
3229 /* Get index from before the body so we can loop back later */
3230 int start_idx = ctx->block_count;
3231
3232 /* Emit the body itself */
3233 emit_cf_list(ctx, &nloop->body);
3234
3235 /* Branch back to loop back */
3236 struct midgard_instruction br_back = v_branch(false, false);
3237 br_back.branch.target_block = start_idx;
3238 emit_mir_instruction(ctx, br_back);
3239
3240 /* Find the index of the block about to follow us (note: we don't add
3241 * one; blocks are 0-indexed so we get a fencepost problem) */
3242 int break_block_idx = ctx->block_count;
3243
3244 /* Fix up the break statements we emitted to point to the right place,
3245 * now that we can allocate a block number for them */
3246
3247 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3248 print_mir_block(block);
3249 mir_foreach_instr_in_block(block, ins) {
3250 if (ins->type != TAG_ALU_4) continue;
3251 if (!ins->compact_branch) continue;
3252 if (ins->prepacked_branch) continue;
3253
3254 /* We found a branch -- check the type to see if we need to do anything */
3255 if (ins->branch.target_type != TARGET_BREAK) continue;
3256
3257 /* It's a break! Check if it's our break */
3258 if (ins->branch.target_break != loop_idx) continue;
3259
3260 /* Okay, cool, we're breaking out of this loop.
3261 * Rewrite from a break to a goto */
3262
3263 ins->branch.target_type = TARGET_GOTO;
3264 ins->branch.target_block = break_block_idx;
3265 }
3266 }
3267 }
3268
3269 static midgard_block *
3270 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3271 {
3272 midgard_block *start_block = NULL;
3273
3274 foreach_list_typed(nir_cf_node, node, node, list) {
3275 switch (node->type) {
3276 case nir_cf_node_block: {
3277 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3278
3279 if (!start_block)
3280 start_block = block;
3281
3282 break;
3283 }
3284
3285 case nir_cf_node_if:
3286 emit_if(ctx, nir_cf_node_as_if(node));
3287 break;
3288
3289 case nir_cf_node_loop:
3290 emit_loop(ctx, nir_cf_node_as_loop(node));
3291 break;
3292
3293 case nir_cf_node_function:
3294 assert(0);
3295 break;
3296 }
3297 }
3298
3299 return start_block;
3300 }
3301
3302 int
3303 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3304 {
3305 struct util_dynarray *compiled = &program->compiled;
3306
3307 compiler_context ictx = {
3308 .nir = nir,
3309 .stage = nir->info.stage,
3310
3311 .is_blend = is_blend,
3312 .blend_constant_offset = -1,
3313
3314 .alpha_ref = program->alpha_ref
3315 };
3316
3317 compiler_context *ctx = &ictx;
3318
3319 /* TODO: Decide this at runtime */
3320 ctx->uniform_cutoff = 8;
3321
3322 switch (ctx->stage) {
3323 case MESA_SHADER_VERTEX:
3324 ctx->special_uniforms = 1;
3325 break;
3326
3327 default:
3328 ctx->special_uniforms = 0;
3329 break;
3330 }
3331
3332 /* Append epilogue uniforms if necessary. The cmdstream depends on
3333 * these being at the -end-; see assign_var_locations. */
3334
3335 if (ctx->stage == MESA_SHADER_VERTEX) {
3336 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3337 }
3338
3339 /* Assign var locations early, so the epilogue can use them if necessary */
3340
3341 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3342 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3343 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3344
3345 /* Initialize at a global (not block) level hash tables */
3346
3347 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3348 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3349 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3350 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3351 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3352 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3353
3354 /* Assign actual uniform location, skipping over samplers */
3355
3356 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3357
3358 nir_foreach_variable(var, &nir->uniforms) {
3359 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3360
3361 unsigned length = glsl_get_aoa_size(var->type);
3362
3363 if (!length) {
3364 length = glsl_get_length(var->type);
3365 }
3366
3367 if (!length) {
3368 length = glsl_get_matrix_columns(var->type);
3369 }
3370
3371 for (int col = 0; col < length; ++col) {
3372 int id = ctx->uniform_count++;
3373 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3374 }
3375 }
3376
3377 if (ctx->stage == MESA_SHADER_VERTEX) {
3378 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3379
3380 /* First, collect the special varyings */
3381 nir_foreach_variable(var, &nir->outputs) {
3382 if (var->data.location == VARYING_SLOT_POS) {
3383 /* Set position first, always. It takes up two
3384 * spots, the latter one is de facto unused (at
3385 * least from the shader's perspective), we
3386 * just need to skip over the spot*/
3387
3388 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3389 ctx->varying_count = MAX2(ctx->varying_count, 2);
3390 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3391 /* Set point size second (third, see above) */
3392 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3393 ctx->varying_count = MAX2(ctx->varying_count, 3);
3394
3395 program->writes_point_size = true;
3396 }
3397 }
3398
3399 /* Now, collect normal varyings */
3400
3401 nir_foreach_variable(var, &nir->outputs) {
3402 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3403
3404 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3405 int id = ctx->varying_count++;
3406 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3407 }
3408 }
3409 }
3410
3411
3412
3413 /* Lower vars -- not I/O -- before epilogue */
3414
3415 NIR_PASS_V(nir, nir_lower_var_copies);
3416 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3417 NIR_PASS_V(nir, nir_split_var_copies);
3418 NIR_PASS_V(nir, nir_lower_var_copies);
3419 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3420 NIR_PASS_V(nir, nir_lower_var_copies);
3421 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3422 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3423
3424 /* Append vertex epilogue before optimisation, so the epilogue itself
3425 * is optimised */
3426
3427 if (ctx->stage == MESA_SHADER_VERTEX)
3428 transform_position_writes(nir);
3429
3430 /* Optimisation passes */
3431
3432 optimise_nir(nir);
3433
3434 nir_print_shader(nir, stdout);
3435
3436 /* Assign counts, now that we're sure (post-optimisation) */
3437 program->uniform_count = nir->num_uniforms;
3438
3439 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3440 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3441
3442
3443 nir_foreach_function(func, nir) {
3444 if (!func->impl)
3445 continue;
3446
3447 list_inithead(&ctx->blocks);
3448 ctx->block_count = 0;
3449 ctx->func = func;
3450
3451 emit_cf_list(ctx, &func->impl->body);
3452 emit_block(ctx, func->impl->end_block);
3453
3454 break; /* TODO: Multi-function shaders */
3455 }
3456
3457 util_dynarray_init(compiled, NULL);
3458
3459 /* Schedule! */
3460 schedule_program(ctx);
3461
3462 /* Now that all the bundles are scheduled and we can calculate block
3463 * sizes, emit actual branch instructions rather than placeholders */
3464
3465 int br_block_idx = 0;
3466
3467 mir_foreach_block(ctx, block) {
3468 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3469 for (int c = 0; c < bundle->instruction_count; ++c) {
3470 midgard_instruction *ins = &bundle->instructions[c];
3471
3472 if (ins->unit != ALU_ENAB_BR_COMPACT) continue;
3473
3474 if (ins->prepacked_branch) continue;
3475
3476 uint16_t compact;
3477
3478 /* Determine the block we're jumping to */
3479 int target_number = ins->branch.target_block;
3480
3481 midgard_block *target = mir_get_block(ctx, target_number);
3482 assert(target);
3483
3484 /* Determine the destination tag */
3485 midgard_bundle *first = util_dynarray_element(&target->bundles, midgard_bundle, 0);
3486 assert(first);
3487
3488 int dest_tag = first->tag;
3489
3490 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3491 int quadword_offset = 0;
3492
3493 if (target_number > br_block_idx) {
3494 /* Jump forward */
3495
3496 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3497 midgard_block *blk = mir_get_block(ctx, idx);
3498 assert(blk);
3499
3500 quadword_offset += blk->quadword_count;
3501 }
3502 } else {
3503 /* Jump backwards */
3504
3505 for (int idx = br_block_idx; idx >= target_number; --idx) {
3506 midgard_block *blk = mir_get_block(ctx, idx);
3507 assert(blk);
3508
3509 quadword_offset -= blk->quadword_count;
3510 }
3511 }
3512
3513 if (ins->branch.conditional) {
3514 midgard_branch_cond branch = {
3515 .op = midgard_jmp_writeout_op_branch_cond,
3516 .dest_tag = dest_tag,
3517 .offset = quadword_offset,
3518 .cond = ins->branch.invert_conditional ? midgard_condition_false : midgard_condition_true
3519 };
3520
3521 memcpy(&compact, &branch, sizeof(branch));
3522 } else {
3523 midgard_branch_uncond branch = {
3524 .op = midgard_jmp_writeout_op_branch_uncond,
3525 .dest_tag = dest_tag,
3526 .offset = quadword_offset,
3527 .unknown = 1
3528 };
3529
3530 memcpy(&compact, &branch, sizeof(branch));
3531 }
3532
3533 /* Swap in the generic branch for our actual branch */
3534 ins->unit = ALU_ENAB_BR_COMPACT;
3535 ins->br_compact = compact;
3536 }
3537
3538 }
3539
3540 ++br_block_idx;
3541 }
3542
3543 /* Emit flat binary from the instruction arrays. Iterate each block in
3544 * sequence. Save instruction boundaries such that lookahead tags can
3545 * be assigned easily */
3546
3547 /* Cache _all_ bundles in source order for lookahead across failed branches */
3548
3549 int bundle_count = 0;
3550 mir_foreach_block(ctx, block) {
3551 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3552 }
3553 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3554 int bundle_idx = 0;
3555 mir_foreach_block(ctx, block) {
3556 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3557 source_order_bundles[bundle_idx++] = bundle;
3558 }
3559 }
3560
3561 int current_bundle = 0;
3562
3563 mir_foreach_block(ctx, block) {
3564 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3565 int lookahead = 1;
3566
3567 if (current_bundle + 1 < bundle_count) {
3568 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3569
3570 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3571 lookahead = 1;
3572 } else {
3573 lookahead = next;
3574 }
3575 }
3576
3577 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3578 ++current_bundle;
3579 }
3580
3581 /* TODO: Free deeper */
3582 //util_dynarray_fini(&block->instructions);
3583 }
3584
3585 free(source_order_bundles);
3586
3587 /* Due to lookahead, we need to report in the command stream the first
3588 * tag executed. An initial block might be empty, so iterate until we
3589 * find one that 'works' */
3590
3591 midgard_block *initial_block = list_first_entry(&ctx->blocks, midgard_block, link);
3592
3593 program->first_tag = 0;
3594
3595 do {
3596 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3597
3598 if (initial_bundle) {
3599 program->first_tag = initial_bundle->tag;
3600 break;
3601 }
3602
3603 /* Initial block is empty, try the next block */
3604 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3605 } while(initial_block != NULL);
3606
3607 /* Make sure we actually set the tag */
3608 assert(program->first_tag);
3609
3610 /* Deal with off-by-one related to the fencepost problem */
3611 program->work_register_count = ctx->work_registers + 1;
3612
3613 program->can_discard = ctx->can_discard;
3614 program->uniform_cutoff = ctx->uniform_cutoff;
3615
3616 program->blend_patch_offset = ctx->blend_constant_offset;
3617
3618 disassemble_midgard(program->compiled.data, program->compiled.size);
3619
3620 return 0;
3621 }