21197efa499ff844202bcd8e9a365809463d39c5
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
115 bool half, bool sext)
116 {
117 if (!src) return blank_alu_src;
118
119 /* Figure out how many components there are so we can adjust the
120 * swizzle. Specifically we want to broadcast the last channel so
121 * things like ball2/3 work
122 */
123
124 if (broadcast_count) {
125 uint8_t last_component = src->swizzle[broadcast_count - 1];
126
127 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
128 src->swizzle[c] = last_component;
129 }
130 }
131
132 midgard_vector_alu_src alu_src = {
133 .rep_low = 0,
134 .rep_high = 0,
135 .half = half,
136 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
137 };
138
139 if (is_int) {
140 alu_src.mod = midgard_int_normal;
141
142 /* Sign/zero-extend if needed */
143
144 if (half) {
145 alu_src.mod = sext ?
146 midgard_int_sign_extend
147 : midgard_int_zero_extend;
148 }
149
150 /* These should have been lowered away */
151 assert(!(src->abs || src->negate));
152 } else {
153 alu_src.mod = (src->abs << 0) | (src->negate << 1);
154 }
155
156 return alu_src;
157 }
158
159 /* load/store instructions have both 32-bit and 16-bit variants, depending on
160 * whether we are using vectors composed of highp or mediump. At the moment, we
161 * don't support half-floats -- this requires changes in other parts of the
162 * compiler -- therefore the 16-bit versions are commented out. */
163
164 //M_LOAD(ld_attr_16);
165 M_LOAD(ld_attr_32);
166 //M_LOAD(ld_vary_16);
167 M_LOAD(ld_vary_32);
168 //M_LOAD(ld_uniform_16);
169 M_LOAD(ld_uniform_32);
170 M_LOAD(ld_color_buffer_8);
171 //M_STORE(st_vary_16);
172 M_STORE(st_vary_32);
173 M_STORE(st_cubemap_coords);
174
175 static midgard_instruction
176 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
177 {
178 midgard_branch_cond branch = {
179 .op = op,
180 .dest_tag = tag,
181 .offset = offset,
182 .cond = cond
183 };
184
185 uint16_t compact;
186 memcpy(&compact, &branch, sizeof(branch));
187
188 midgard_instruction ins = {
189 .type = TAG_ALU_4,
190 .unit = ALU_ENAB_BR_COMPACT,
191 .prepacked_branch = true,
192 .compact_branch = true,
193 .br_compact = compact
194 };
195
196 if (op == midgard_jmp_writeout_op_writeout)
197 ins.writeout = true;
198
199 return ins;
200 }
201
202 static midgard_instruction
203 v_branch(bool conditional, bool invert)
204 {
205 midgard_instruction ins = {
206 .type = TAG_ALU_4,
207 .unit = ALU_ENAB_BRANCH,
208 .compact_branch = true,
209 .branch = {
210 .conditional = conditional,
211 .invert_conditional = invert
212 }
213 };
214
215 return ins;
216 }
217
218 static midgard_branch_extended
219 midgard_create_branch_extended( midgard_condition cond,
220 midgard_jmp_writeout_op op,
221 unsigned dest_tag,
222 signed quadword_offset)
223 {
224 /* For unclear reasons, the condition code is repeated 8 times */
225 uint16_t duplicated_cond =
226 (cond << 14) |
227 (cond << 12) |
228 (cond << 10) |
229 (cond << 8) |
230 (cond << 6) |
231 (cond << 4) |
232 (cond << 2) |
233 (cond << 0);
234
235 midgard_branch_extended branch = {
236 .op = op,
237 .dest_tag = dest_tag,
238 .offset = quadword_offset,
239 .cond = duplicated_cond
240 };
241
242 return branch;
243 }
244
245 static void
246 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
247 {
248 ins->has_constants = true;
249 memcpy(&ins->constants, constants, 16);
250 }
251
252 static int
253 glsl_type_size(const struct glsl_type *type, bool bindless)
254 {
255 return glsl_count_attribute_slots(type, false);
256 }
257
258 /* Lower fdot2 to a vector multiplication followed by channel addition */
259 static void
260 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
261 {
262 if (alu->op != nir_op_fdot2)
263 return;
264
265 b->cursor = nir_before_instr(&alu->instr);
266
267 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
268 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
269
270 nir_ssa_def *product = nir_fmul(b, src0, src1);
271
272 nir_ssa_def *sum = nir_fadd(b,
273 nir_channel(b, product, 0),
274 nir_channel(b, product, 1));
275
276 /* Replace the fdot2 with this sum */
277 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
278 }
279
280 static int
281 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
282 {
283 switch (instr->intrinsic) {
284 case nir_intrinsic_load_viewport_scale:
285 return PAN_SYSVAL_VIEWPORT_SCALE;
286 case nir_intrinsic_load_viewport_offset:
287 return PAN_SYSVAL_VIEWPORT_OFFSET;
288 default:
289 return -1;
290 }
291 }
292
293 static unsigned
294 nir_dest_index(compiler_context *ctx, nir_dest *dst)
295 {
296 if (dst->is_ssa)
297 return dst->ssa.index;
298 else {
299 assert(!dst->reg.indirect);
300 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
301 }
302 }
303
304 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
305 unsigned *dest)
306 {
307 nir_intrinsic_instr *intr;
308 nir_dest *dst = NULL;
309 nir_tex_instr *tex;
310 int sysval = -1;
311
312 switch (instr->type) {
313 case nir_instr_type_intrinsic:
314 intr = nir_instr_as_intrinsic(instr);
315 sysval = midgard_nir_sysval_for_intrinsic(intr);
316 dst = &intr->dest;
317 break;
318 case nir_instr_type_tex:
319 tex = nir_instr_as_tex(instr);
320 if (tex->op != nir_texop_txs)
321 break;
322
323 sysval = PAN_SYSVAL(TEXTURE_SIZE,
324 PAN_TXS_SYSVAL_ID(tex->texture_index,
325 nir_tex_instr_dest_size(tex) -
326 (tex->is_array ? 1 : 0),
327 tex->is_array));
328 dst = &tex->dest;
329 break;
330 default:
331 break;
332 }
333
334 if (dest && dst)
335 *dest = nir_dest_index(ctx, dst);
336
337 return sysval;
338 }
339
340 static void
341 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
342 {
343 int sysval;
344
345 sysval = sysval_for_instr(ctx, instr, NULL);
346 if (sysval < 0)
347 return;
348
349 /* We have a sysval load; check if it's already been assigned */
350
351 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
352 return;
353
354 /* It hasn't -- so assign it now! */
355
356 unsigned id = ctx->sysval_count++;
357 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
358 ctx->sysvals[id] = sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
363 {
364 ctx->sysval_count = 0;
365
366 nir_foreach_function(function, shader) {
367 if (!function->impl) continue;
368
369 nir_foreach_block(block, function->impl) {
370 nir_foreach_instr_safe(instr, block) {
371 midgard_nir_assign_sysval_body(ctx, instr);
372 }
373 }
374 }
375 }
376
377 static bool
378 midgard_nir_lower_fdot2(nir_shader *shader)
379 {
380 bool progress = false;
381
382 nir_foreach_function(function, shader) {
383 if (!function->impl) continue;
384
385 nir_builder _b;
386 nir_builder *b = &_b;
387 nir_builder_init(b, function->impl);
388
389 nir_foreach_block(block, function->impl) {
390 nir_foreach_instr_safe(instr, block) {
391 if (instr->type != nir_instr_type_alu) continue;
392
393 nir_alu_instr *alu = nir_instr_as_alu(instr);
394 midgard_nir_lower_fdot2_body(b, alu);
395
396 progress |= true;
397 }
398 }
399
400 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
401
402 }
403
404 return progress;
405 }
406
407 static void
408 optimise_nir(nir_shader *nir)
409 {
410 bool progress;
411 unsigned lower_flrp =
412 (nir->options->lower_flrp16 ? 16 : 0) |
413 (nir->options->lower_flrp32 ? 32 : 0) |
414 (nir->options->lower_flrp64 ? 64 : 0);
415
416 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
417 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
418 NIR_PASS(progress, nir, nir_lower_idiv);
419
420 nir_lower_tex_options lower_tex_1st_pass_options = {
421 .lower_rect = true,
422 .lower_txp = ~0
423 };
424
425 nir_lower_tex_options lower_tex_2nd_pass_options = {
426 .lower_txs_lod = true,
427 };
428
429 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
430 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
431
432 do {
433 progress = false;
434
435 NIR_PASS(progress, nir, nir_lower_var_copies);
436 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
437
438 NIR_PASS(progress, nir, nir_copy_prop);
439 NIR_PASS(progress, nir, nir_opt_dce);
440 NIR_PASS(progress, nir, nir_opt_dead_cf);
441 NIR_PASS(progress, nir, nir_opt_cse);
442 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
443 NIR_PASS(progress, nir, nir_opt_algebraic);
444 NIR_PASS(progress, nir, nir_opt_constant_folding);
445
446 if (lower_flrp != 0) {
447 bool lower_flrp_progress = false;
448 NIR_PASS(lower_flrp_progress,
449 nir,
450 nir_lower_flrp,
451 lower_flrp,
452 false /* always_precise */,
453 nir->options->lower_ffma);
454 if (lower_flrp_progress) {
455 NIR_PASS(progress, nir,
456 nir_opt_constant_folding);
457 progress = true;
458 }
459
460 /* Nothing should rematerialize any flrps, so we only
461 * need to do this lowering once.
462 */
463 lower_flrp = 0;
464 }
465
466 NIR_PASS(progress, nir, nir_opt_undef);
467 NIR_PASS(progress, nir, nir_opt_loop_unroll,
468 nir_var_shader_in |
469 nir_var_shader_out |
470 nir_var_function_temp);
471
472 NIR_PASS(progress, nir, nir_opt_vectorize);
473 } while (progress);
474
475 /* Must be run at the end to prevent creation of fsin/fcos ops */
476 NIR_PASS(progress, nir, midgard_nir_scale_trig);
477
478 do {
479 progress = false;
480
481 NIR_PASS(progress, nir, nir_opt_dce);
482 NIR_PASS(progress, nir, nir_opt_algebraic);
483 NIR_PASS(progress, nir, nir_opt_constant_folding);
484 NIR_PASS(progress, nir, nir_copy_prop);
485 } while (progress);
486
487 NIR_PASS(progress, nir, nir_opt_algebraic_late);
488
489 /* We implement booleans as 32-bit 0/~0 */
490 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
491
492 /* Now that booleans are lowered, we can run out late opts */
493 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
494
495 /* Lower mods for float ops only. Integer ops don't support modifiers
496 * (saturate doesn't make sense on integers, neg/abs require dedicated
497 * instructions) */
498
499 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502
503 /* Take us out of SSA */
504 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
505 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
506
507 /* We are a vector architecture; write combine where possible */
508 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
509 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
510
511 NIR_PASS(progress, nir, nir_opt_dce);
512 }
513
514 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
515 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
516 * r0. See the comments in compiler_context */
517
518 static void
519 alias_ssa(compiler_context *ctx, int dest, int src)
520 {
521 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
522 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
523 }
524
525 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
526
527 static void
528 unalias_ssa(compiler_context *ctx, int dest)
529 {
530 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
531 /* TODO: Remove from leftover or no? */
532 }
533
534 /* Do not actually emit a load; instead, cache the constant for inlining */
535
536 static void
537 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
538 {
539 nir_ssa_def def = instr->def;
540
541 float *v = rzalloc_array(NULL, float, 4);
542 nir_const_load_to_arr(v, instr, f32);
543 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
544 }
545
546 static unsigned
547 nir_src_index(compiler_context *ctx, nir_src *src)
548 {
549 if (src->is_ssa)
550 return src->ssa->index;
551 else {
552 assert(!src->reg.indirect);
553 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
554 }
555 }
556
557 static unsigned
558 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
559 {
560 return nir_src_index(ctx, &src->src);
561 }
562
563 static bool
564 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
565 {
566 unsigned comp = src->swizzle[0];
567
568 for (unsigned c = 1; c < nr_components; ++c) {
569 if (src->swizzle[c] != comp)
570 return true;
571 }
572
573 return false;
574 }
575
576 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
577 * output of a conditional test) into that register */
578
579 static void
580 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
581 {
582 int condition = nir_src_index(ctx, src);
583
584 /* Source to swizzle the desired component into w */
585
586 const midgard_vector_alu_src alu_src = {
587 .swizzle = SWIZZLE(component, component, component, component),
588 };
589
590 /* There is no boolean move instruction. Instead, we simulate a move by
591 * ANDing the condition with itself to get it into r31.w */
592
593 midgard_instruction ins = {
594 .type = TAG_ALU_4,
595
596 /* We need to set the conditional as close as possible */
597 .precede_break = true,
598 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
599
600 .ssa_args = {
601 .src0 = condition,
602 .src1 = condition,
603 .dest = SSA_FIXED_REGISTER(31),
604 },
605
606 .alu = {
607 .op = midgard_alu_op_iand,
608 .outmod = midgard_outmod_int_wrap,
609 .reg_mode = midgard_reg_mode_32,
610 .dest_override = midgard_dest_override_none,
611 .mask = (0x3 << 6), /* w */
612 .src1 = vector_alu_srco_unsigned(alu_src),
613 .src2 = vector_alu_srco_unsigned(alu_src)
614 },
615 };
616
617 emit_mir_instruction(ctx, ins);
618 }
619
620 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
621 * r31 instead */
622
623 static void
624 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
625 {
626 int condition = nir_src_index(ctx, &src->src);
627
628 /* Source to swizzle the desired component into w */
629
630 const midgard_vector_alu_src alu_src = {
631 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
632 };
633
634 /* There is no boolean move instruction. Instead, we simulate a move by
635 * ANDing the condition with itself to get it into r31.w */
636
637 midgard_instruction ins = {
638 .type = TAG_ALU_4,
639 .precede_break = true,
640 .ssa_args = {
641 .src0 = condition,
642 .src1 = condition,
643 .dest = SSA_FIXED_REGISTER(31),
644 },
645 .alu = {
646 .op = midgard_alu_op_iand,
647 .outmod = midgard_outmod_int_wrap,
648 .reg_mode = midgard_reg_mode_32,
649 .dest_override = midgard_dest_override_none,
650 .mask = expand_writemask(mask_of(nr_comp)),
651 .src1 = vector_alu_srco_unsigned(alu_src),
652 .src2 = vector_alu_srco_unsigned(alu_src)
653 },
654 };
655
656 emit_mir_instruction(ctx, ins);
657 }
658
659
660
661 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
662 * pinning to eliminate this move in all known cases */
663
664 static void
665 emit_indirect_offset(compiler_context *ctx, nir_src *src)
666 {
667 int offset = nir_src_index(ctx, src);
668
669 midgard_instruction ins = {
670 .type = TAG_ALU_4,
671 .ssa_args = {
672 .src0 = SSA_UNUSED_1,
673 .src1 = offset,
674 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
675 },
676 .alu = {
677 .op = midgard_alu_op_imov,
678 .outmod = midgard_outmod_int_wrap,
679 .reg_mode = midgard_reg_mode_32,
680 .dest_override = midgard_dest_override_none,
681 .mask = (0x3 << 6), /* w */
682 .src1 = vector_alu_srco_unsigned(zero_alu_src),
683 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
684 },
685 };
686
687 emit_mir_instruction(ctx, ins);
688 }
689
690 #define ALU_CASE(nir, _op) \
691 case nir_op_##nir: \
692 op = midgard_alu_op_##_op; \
693 assert(src_bitsize == dst_bitsize); \
694 break;
695
696 #define ALU_CASE_BCAST(nir, _op, count) \
697 case nir_op_##nir: \
698 op = midgard_alu_op_##_op; \
699 broadcast_swizzle = count; \
700 assert(src_bitsize == dst_bitsize); \
701 break;
702 static bool
703 nir_is_fzero_constant(nir_src src)
704 {
705 if (!nir_src_is_const(src))
706 return false;
707
708 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
709 if (nir_src_comp_as_float(src, c) != 0.0)
710 return false;
711 }
712
713 return true;
714 }
715
716 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
717 * special treatment override this anyway. */
718
719 static midgard_reg_mode
720 reg_mode_for_nir(nir_alu_instr *instr)
721 {
722 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
723
724 switch (src_bitsize) {
725 case 8:
726 return midgard_reg_mode_8;
727 case 16:
728 return midgard_reg_mode_16;
729 case 32:
730 return midgard_reg_mode_32;
731 case 64:
732 return midgard_reg_mode_64;
733 default:
734 unreachable("Invalid bit size");
735 }
736 }
737
738 static void
739 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
740 {
741 bool is_ssa = instr->dest.dest.is_ssa;
742
743 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
744 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
745 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
746
747 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
748 * supported. A few do not and are commented for now. Also, there are a
749 * number of NIR ops which Midgard does not support and need to be
750 * lowered, also TODO. This switch block emits the opcode and calling
751 * convention of the Midgard instruction; actual packing is done in
752 * emit_alu below */
753
754 unsigned op;
755
756 /* Number of components valid to check for the instruction (the rest
757 * will be forced to the last), or 0 to use as-is. Relevant as
758 * ball-type instructions have a channel count in NIR but are all vec4
759 * in Midgard */
760
761 unsigned broadcast_swizzle = 0;
762
763 /* What register mode should we operate in? */
764 midgard_reg_mode reg_mode =
765 reg_mode_for_nir(instr);
766
767 /* Do we need a destination override? Used for inline
768 * type conversion */
769
770 midgard_dest_override dest_override =
771 midgard_dest_override_none;
772
773 /* Should we use a smaller respective source and sign-extend? */
774
775 bool half_1 = false, sext_1 = false;
776 bool half_2 = false, sext_2 = false;
777
778 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
779 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
780
781 switch (instr->op) {
782 ALU_CASE(fadd, fadd);
783 ALU_CASE(fmul, fmul);
784 ALU_CASE(fmin, fmin);
785 ALU_CASE(fmax, fmax);
786 ALU_CASE(imin, imin);
787 ALU_CASE(imax, imax);
788 ALU_CASE(umin, umin);
789 ALU_CASE(umax, umax);
790 ALU_CASE(ffloor, ffloor);
791 ALU_CASE(fround_even, froundeven);
792 ALU_CASE(ftrunc, ftrunc);
793 ALU_CASE(fceil, fceil);
794 ALU_CASE(fdot3, fdot3);
795 ALU_CASE(fdot4, fdot4);
796 ALU_CASE(iadd, iadd);
797 ALU_CASE(isub, isub);
798 ALU_CASE(imul, imul);
799
800 /* Zero shoved as second-arg */
801 ALU_CASE(iabs, iabsdiff);
802
803 ALU_CASE(mov, imov);
804
805 ALU_CASE(feq32, feq);
806 ALU_CASE(fne32, fne);
807 ALU_CASE(flt32, flt);
808 ALU_CASE(ieq32, ieq);
809 ALU_CASE(ine32, ine);
810 ALU_CASE(ilt32, ilt);
811 ALU_CASE(ult32, ult);
812
813 /* We don't have a native b2f32 instruction. Instead, like many
814 * GPUs, we exploit booleans as 0/~0 for false/true, and
815 * correspondingly AND
816 * by 1.0 to do the type conversion. For the moment, prime us
817 * to emit:
818 *
819 * iand [whatever], #0
820 *
821 * At the end of emit_alu (as MIR), we'll fix-up the constant
822 */
823
824 ALU_CASE(b2f32, iand);
825 ALU_CASE(b2i32, iand);
826
827 /* Likewise, we don't have a dedicated f2b32 instruction, but
828 * we can do a "not equal to 0.0" test. */
829
830 ALU_CASE(f2b32, fne);
831 ALU_CASE(i2b32, ine);
832
833 ALU_CASE(frcp, frcp);
834 ALU_CASE(frsq, frsqrt);
835 ALU_CASE(fsqrt, fsqrt);
836 ALU_CASE(fexp2, fexp2);
837 ALU_CASE(flog2, flog2);
838
839 ALU_CASE(f2i32, f2i_rtz);
840 ALU_CASE(f2u32, f2u_rtz);
841 ALU_CASE(i2f32, i2f_rtz);
842 ALU_CASE(u2f32, u2f_rtz);
843
844 ALU_CASE(f2i16, f2i_rtz);
845 ALU_CASE(f2u16, f2u_rtz);
846 ALU_CASE(i2f16, i2f_rtz);
847 ALU_CASE(u2f16, u2f_rtz);
848
849 ALU_CASE(fsin, fsin);
850 ALU_CASE(fcos, fcos);
851
852 /* Second op implicit #0 */
853 ALU_CASE(inot, inor);
854 ALU_CASE(iand, iand);
855 ALU_CASE(ior, ior);
856 ALU_CASE(ixor, ixor);
857 ALU_CASE(ishl, ishl);
858 ALU_CASE(ishr, iasr);
859 ALU_CASE(ushr, ilsr);
860
861 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
862 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
863 ALU_CASE(b32all_fequal4, fball_eq);
864
865 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
866 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
867 ALU_CASE(b32any_fnequal4, fbany_neq);
868
869 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
870 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
871 ALU_CASE(b32all_iequal4, iball_eq);
872
873 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
874 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
875 ALU_CASE(b32any_inequal4, ibany_neq);
876
877 /* Source mods will be shoved in later */
878 ALU_CASE(fabs, fmov);
879 ALU_CASE(fneg, fmov);
880 ALU_CASE(fsat, fmov);
881
882 /* For size conversion, we use a move. Ideally though we would squash
883 * these ops together; maybe that has to happen after in NIR as part of
884 * propagation...? An earlier algebraic pass ensured we step down by
885 * only / exactly one size. If stepping down, we use a dest override to
886 * reduce the size; if stepping up, we use a larger-sized move with a
887 * half source and a sign/zero-extension modifier */
888
889 case nir_op_i2i8:
890 case nir_op_i2i16:
891 case nir_op_i2i32:
892 /* If we end up upscale, we'll need a sign-extend on the
893 * operand (the second argument) */
894
895 sext_2 = true;
896 case nir_op_u2u8:
897 case nir_op_u2u16:
898 case nir_op_u2u32: {
899 op = midgard_alu_op_imov;
900
901 if (dst_bitsize == (src_bitsize * 2)) {
902 /* Converting up */
903 half_2 = true;
904
905 /* Use a greater register mode */
906 reg_mode++;
907 } else if (src_bitsize == (dst_bitsize * 2)) {
908 /* Converting down */
909 dest_override = midgard_dest_override_lower;
910 }
911
912 break;
913 }
914
915 case nir_op_f2f16: {
916 assert(src_bitsize == 32);
917
918 op = midgard_alu_op_fmov;
919 dest_override = midgard_dest_override_lower;
920 break;
921 }
922
923 case nir_op_f2f32: {
924 assert(src_bitsize == 16);
925
926 op = midgard_alu_op_fmov;
927 half_2 = true;
928 reg_mode++;
929 break;
930 }
931
932
933 /* For greater-or-equal, we lower to less-or-equal and flip the
934 * arguments */
935
936 case nir_op_fge:
937 case nir_op_fge32:
938 case nir_op_ige32:
939 case nir_op_uge32: {
940 op =
941 instr->op == nir_op_fge ? midgard_alu_op_fle :
942 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
943 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
944 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
945 0;
946
947 /* Swap via temporary */
948 nir_alu_src temp = instr->src[1];
949 instr->src[1] = instr->src[0];
950 instr->src[0] = temp;
951
952 break;
953 }
954
955 case nir_op_b32csel: {
956 /* Midgard features both fcsel and icsel, depending on
957 * the type of the arguments/output. However, as long
958 * as we're careful we can _always_ use icsel and
959 * _never_ need fcsel, since the latter does additional
960 * floating-point-specific processing whereas the
961 * former just moves bits on the wire. It's not obvious
962 * why these are separate opcodes, save for the ability
963 * to do things like sat/pos/abs/neg for free */
964
965 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
966 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
967
968 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
969 nr_inputs = 2;
970
971 /* Emit the condition into r31 */
972
973 if (mixed)
974 emit_condition_mixed(ctx, &instr->src[0], nr_components);
975 else
976 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
977
978 /* The condition is the first argument; move the other
979 * arguments up one to be a binary instruction for
980 * Midgard */
981
982 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
983 break;
984 }
985
986 default:
987 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
988 assert(0);
989 return;
990 }
991
992 /* Midgard can perform certain modifiers on output of an ALU op */
993 unsigned outmod;
994
995 if (midgard_is_integer_out_op(op)) {
996 outmod = midgard_outmod_int_wrap;
997 } else {
998 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
999 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1000 }
1001
1002 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1003
1004 if (instr->op == nir_op_fmax) {
1005 if (nir_is_fzero_constant(instr->src[0].src)) {
1006 op = midgard_alu_op_fmov;
1007 nr_inputs = 1;
1008 outmod = midgard_outmod_pos;
1009 instr->src[0] = instr->src[1];
1010 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1011 op = midgard_alu_op_fmov;
1012 nr_inputs = 1;
1013 outmod = midgard_outmod_pos;
1014 }
1015 }
1016
1017 /* Fetch unit, quirks, etc information */
1018 unsigned opcode_props = alu_opcode_props[op].props;
1019 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1020
1021 /* src0 will always exist afaik, but src1 will not for 1-argument
1022 * instructions. The latter can only be fetched if the instruction
1023 * needs it, or else we may segfault. */
1024
1025 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1026 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1027
1028 /* Rather than use the instruction generation helpers, we do it
1029 * ourselves here to avoid the mess */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .ssa_args = {
1034 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1035 .src1 = quirk_flipped_r24 ? src0 : src1,
1036 .dest = dest,
1037 }
1038 };
1039
1040 nir_alu_src *nirmods[2] = { NULL };
1041
1042 if (nr_inputs == 2) {
1043 nirmods[0] = &instr->src[0];
1044 nirmods[1] = &instr->src[1];
1045 } else if (nr_inputs == 1) {
1046 nirmods[quirk_flipped_r24] = &instr->src[0];
1047 } else {
1048 assert(0);
1049 }
1050
1051 /* These were lowered to a move, so apply the corresponding mod */
1052
1053 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1054 nir_alu_src *s = nirmods[quirk_flipped_r24];
1055
1056 if (instr->op == nir_op_fneg)
1057 s->negate = !s->negate;
1058
1059 if (instr->op == nir_op_fabs)
1060 s->abs = !s->abs;
1061 }
1062
1063 bool is_int = midgard_is_integer_op(op);
1064
1065 midgard_vector_alu alu = {
1066 .op = op,
1067 .reg_mode = reg_mode,
1068 .dest_override = dest_override,
1069 .outmod = outmod,
1070
1071 /* Writemask only valid for non-SSA NIR */
1072 .mask = expand_writemask(mask_of(nr_components)),
1073
1074 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1075 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1076 };
1077
1078 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1079
1080 if (!is_ssa)
1081 alu.mask &= expand_writemask(instr->dest.write_mask);
1082
1083 ins.alu = alu;
1084
1085 /* Late fixup for emulated instructions */
1086
1087 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1088 /* Presently, our second argument is an inline #0 constant.
1089 * Switch over to an embedded 1.0 constant (that can't fit
1090 * inline, since we're 32-bit, not 16-bit like the inline
1091 * constants) */
1092
1093 ins.ssa_args.inline_constant = false;
1094 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1095 ins.has_constants = true;
1096
1097 if (instr->op == nir_op_b2f32) {
1098 ins.constants[0] = 1.0f;
1099 } else {
1100 /* Type pun it into place */
1101 uint32_t one = 0x1;
1102 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1103 }
1104
1105 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1106 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1107 /* Lots of instructions need a 0 plonked in */
1108 ins.ssa_args.inline_constant = false;
1109 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1110 ins.has_constants = true;
1111 ins.constants[0] = 0.0f;
1112 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1113 } else if (instr->op == nir_op_inot) {
1114 /* ~b = ~(b & b), so duplicate the source */
1115 ins.ssa_args.src1 = ins.ssa_args.src0;
1116 ins.alu.src2 = ins.alu.src1;
1117 }
1118
1119 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1120 /* To avoid duplicating the lookup tables (probably), true LUT
1121 * instructions can only operate as if they were scalars. Lower
1122 * them here by changing the component. */
1123
1124 uint8_t original_swizzle[4];
1125 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1126
1127 for (int i = 0; i < nr_components; ++i) {
1128 /* Mask the associated component, dropping the
1129 * instruction if needed */
1130
1131 ins.alu.mask = (0x3) << (2 * i);
1132 ins.alu.mask &= alu.mask;
1133
1134 if (!ins.alu.mask)
1135 continue;
1136
1137 for (int j = 0; j < 4; ++j)
1138 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1139
1140 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1141 emit_mir_instruction(ctx, ins);
1142 }
1143 } else {
1144 emit_mir_instruction(ctx, ins);
1145 }
1146 }
1147
1148 #undef ALU_CASE
1149
1150 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1151 * optimized) versions of UBO #0 */
1152
1153 static void
1154 emit_ubo_read(
1155 compiler_context *ctx,
1156 unsigned dest,
1157 unsigned offset,
1158 nir_src *indirect_offset,
1159 unsigned index)
1160 {
1161 /* TODO: half-floats */
1162
1163 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1164 /* Fast path: For the first 16 uniforms, direct accesses are
1165 * 0-cycle, since they're just a register fetch in the usual
1166 * case. So, we alias the registers while we're still in
1167 * SSA-space */
1168
1169 int reg_slot = 23 - offset;
1170 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1171 } else {
1172 /* Otherwise, read from the 'special' UBO to access
1173 * higher-indexed uniforms, at a performance cost. More
1174 * generally, we're emitting a UBO read instruction. */
1175
1176 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1177
1178 /* TODO: Don't split */
1179 ins.load_store.varying_parameters = (offset & 7) << 7;
1180 ins.load_store.address = offset >> 3;
1181
1182 if (indirect_offset) {
1183 emit_indirect_offset(ctx, indirect_offset);
1184 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1185 } else {
1186 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1187 }
1188
1189 /* TODO respect index */
1190
1191 emit_mir_instruction(ctx, ins);
1192 }
1193 }
1194
1195 static void
1196 emit_varying_read(
1197 compiler_context *ctx,
1198 unsigned dest, unsigned offset,
1199 unsigned nr_comp, unsigned component,
1200 nir_src *indirect_offset, nir_alu_type type)
1201 {
1202 /* XXX: Half-floats? */
1203 /* TODO: swizzle, mask */
1204
1205 midgard_instruction ins = m_ld_vary_32(dest, offset);
1206 ins.load_store.mask = mask_of(nr_comp);
1207 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1208
1209 midgard_varying_parameter p = {
1210 .is_varying = 1,
1211 .interpolation = midgard_interp_default,
1212 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1213 };
1214
1215 unsigned u;
1216 memcpy(&u, &p, sizeof(p));
1217 ins.load_store.varying_parameters = u;
1218
1219 if (indirect_offset) {
1220 /* We need to add in the dynamic index, moved to r27.w */
1221 emit_indirect_offset(ctx, indirect_offset);
1222 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1223 } else {
1224 /* Just a direct load */
1225 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1226 }
1227
1228 /* Use the type appropriate load */
1229 switch (type) {
1230 case nir_type_uint:
1231 case nir_type_bool:
1232 ins.load_store.op = midgard_op_ld_vary_32u;
1233 break;
1234 case nir_type_int:
1235 ins.load_store.op = midgard_op_ld_vary_32i;
1236 break;
1237 case nir_type_float:
1238 ins.load_store.op = midgard_op_ld_vary_32;
1239 break;
1240 default:
1241 unreachable("Attempted to load unknown type");
1242 break;
1243 }
1244
1245 emit_mir_instruction(ctx, ins);
1246 }
1247
1248 static void
1249 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1250 {
1251 unsigned dest;
1252 /* Figure out which uniform this is */
1253 int sysval = sysval_for_instr(ctx, instr, &dest);
1254 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1255
1256 /* Sysvals are prefix uniforms */
1257 unsigned uniform = ((uintptr_t) val) - 1;
1258
1259 /* Emit the read itself -- this is never indirect */
1260 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1261 }
1262
1263 static void
1264 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1265 {
1266 unsigned offset = 0, reg;
1267
1268 switch (instr->intrinsic) {
1269 case nir_intrinsic_discard_if:
1270 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1271
1272 /* fallthrough */
1273
1274 case nir_intrinsic_discard: {
1275 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1276 struct midgard_instruction discard = v_branch(conditional, false);
1277 discard.branch.target_type = TARGET_DISCARD;
1278 emit_mir_instruction(ctx, discard);
1279
1280 ctx->can_discard = true;
1281 break;
1282 }
1283
1284 case nir_intrinsic_load_uniform:
1285 case nir_intrinsic_load_ubo:
1286 case nir_intrinsic_load_input: {
1287 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1288 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1289
1290 /* Get the base type of the intrinsic */
1291 /* TODO: Infer type? Does it matter? */
1292 nir_alu_type t =
1293 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1294 t = nir_alu_type_get_base_type(t);
1295
1296 if (!is_ubo) {
1297 offset = nir_intrinsic_base(instr);
1298 }
1299
1300 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1301
1302 nir_src *src_offset = nir_get_io_offset_src(instr);
1303
1304 bool direct = nir_src_is_const(*src_offset);
1305
1306 if (direct)
1307 offset += nir_src_as_uint(*src_offset);
1308
1309 /* We may need to apply a fractional offset */
1310 int component = instr->intrinsic == nir_intrinsic_load_input ?
1311 nir_intrinsic_component(instr) : 0;
1312 reg = nir_dest_index(ctx, &instr->dest);
1313
1314 if (is_uniform && !ctx->is_blend) {
1315 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1316 } else if (is_ubo) {
1317 nir_src index = instr->src[0];
1318
1319 /* We don't yet support indirect UBOs. For indirect
1320 * block numbers (if that's possible), we don't know
1321 * enough about the hardware yet. For indirect sources,
1322 * we know what we need but we need to add some NIR
1323 * support for lowering correctly with respect to
1324 * 128-bit reads */
1325
1326 assert(nir_src_is_const(index));
1327 assert(nir_src_is_const(*src_offset));
1328
1329 /* TODO: Alignment */
1330 assert((offset & 0xF) == 0);
1331
1332 uint32_t uindex = nir_src_as_uint(index) + 1;
1333 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1334 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1335 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1336 } else if (ctx->is_blend) {
1337 /* For blend shaders, load the input color, which is
1338 * preloaded to r0 */
1339
1340 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1341 emit_mir_instruction(ctx, move);
1342 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1343 midgard_instruction ins = m_ld_attr_32(reg, offset);
1344 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1345 ins.load_store.mask = mask_of(nr_comp);
1346
1347 /* Use the type appropriate load */
1348 switch (t) {
1349 case nir_type_uint:
1350 case nir_type_bool:
1351 ins.load_store.op = midgard_op_ld_attr_32u;
1352 break;
1353 case nir_type_int:
1354 ins.load_store.op = midgard_op_ld_attr_32i;
1355 break;
1356 case nir_type_float:
1357 ins.load_store.op = midgard_op_ld_attr_32;
1358 break;
1359 default:
1360 unreachable("Attempted to load unknown type");
1361 break;
1362 }
1363
1364 emit_mir_instruction(ctx, ins);
1365 } else {
1366 DBG("Unknown load\n");
1367 assert(0);
1368 }
1369
1370 break;
1371 }
1372
1373 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1374
1375 case nir_intrinsic_load_raw_output_pan:
1376 reg = nir_dest_index(ctx, &instr->dest);
1377 assert(ctx->is_blend);
1378
1379 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1380 emit_mir_instruction(ctx, ins);
1381 break;
1382
1383 case nir_intrinsic_load_blend_const_color_rgba: {
1384 assert(ctx->is_blend);
1385 reg = nir_dest_index(ctx, &instr->dest);
1386
1387 /* Blend constants are embedded directly in the shader and
1388 * patched in, so we use some magic routing */
1389
1390 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1391 ins.has_constants = true;
1392 ins.has_blend_constant = true;
1393 emit_mir_instruction(ctx, ins);
1394 break;
1395 }
1396
1397 case nir_intrinsic_store_output:
1398 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1399
1400 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1401
1402 reg = nir_src_index(ctx, &instr->src[0]);
1403
1404 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1405 /* gl_FragColor is not emitted with load/store
1406 * instructions. Instead, it gets plonked into
1407 * r0 at the end of the shader and we do the
1408 * framebuffer writeout dance. TODO: Defer
1409 * writes */
1410
1411 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1412 emit_mir_instruction(ctx, move);
1413
1414 /* Save the index we're writing to for later reference
1415 * in the epilogue */
1416
1417 ctx->fragment_output = reg;
1418 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1419 /* Varyings are written into one of two special
1420 * varying register, r26 or r27. The register itself is
1421 * selected as the register in the st_vary instruction,
1422 * minus the base of 26. E.g. write into r27 and then
1423 * call st_vary(1) */
1424
1425 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1426 emit_mir_instruction(ctx, ins);
1427
1428 /* We should have been vectorized, though we don't
1429 * currently check that st_vary is emitted only once
1430 * per slot (this is relevant, since there's not a mask
1431 * parameter available on the store [set to 0 by the
1432 * blob]). We do respect the component by adjusting the
1433 * swizzle. */
1434
1435 unsigned component = nir_intrinsic_component(instr);
1436
1437 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1438 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1439 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1440 emit_mir_instruction(ctx, st);
1441 } else {
1442 DBG("Unknown store\n");
1443 assert(0);
1444 }
1445
1446 break;
1447
1448 /* Special case of store_output for lowered blend shaders */
1449 case nir_intrinsic_store_raw_output_pan:
1450 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1451 reg = nir_src_index(ctx, &instr->src[0]);
1452
1453 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1454 emit_mir_instruction(ctx, move);
1455 ctx->fragment_output = reg;
1456
1457 break;
1458
1459 case nir_intrinsic_load_alpha_ref_float:
1460 assert(instr->dest.is_ssa);
1461
1462 float ref_value = ctx->alpha_ref;
1463
1464 float *v = ralloc_array(NULL, float, 4);
1465 memcpy(v, &ref_value, sizeof(float));
1466 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1467 break;
1468
1469 case nir_intrinsic_load_viewport_scale:
1470 case nir_intrinsic_load_viewport_offset:
1471 emit_sysval_read(ctx, &instr->instr);
1472 break;
1473
1474 default:
1475 printf ("Unhandled intrinsic\n");
1476 assert(0);
1477 break;
1478 }
1479 }
1480
1481 static unsigned
1482 midgard_tex_format(enum glsl_sampler_dim dim)
1483 {
1484 switch (dim) {
1485 case GLSL_SAMPLER_DIM_1D:
1486 case GLSL_SAMPLER_DIM_BUF:
1487 return MALI_TEX_1D;
1488
1489 case GLSL_SAMPLER_DIM_2D:
1490 case GLSL_SAMPLER_DIM_EXTERNAL:
1491 return MALI_TEX_2D;
1492
1493 case GLSL_SAMPLER_DIM_3D:
1494 return MALI_TEX_3D;
1495
1496 case GLSL_SAMPLER_DIM_CUBE:
1497 return MALI_TEX_CUBE;
1498
1499 default:
1500 DBG("Unknown sampler dim type\n");
1501 assert(0);
1502 return 0;
1503 }
1504 }
1505
1506 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1507 * was successful */
1508
1509 static bool
1510 pan_attach_constant_bias(
1511 compiler_context *ctx,
1512 nir_src lod,
1513 midgard_texture_word *word)
1514 {
1515 /* To attach as constant, it has to *be* constant */
1516
1517 if (!nir_src_is_const(lod))
1518 return false;
1519
1520 float f = nir_src_as_float(lod);
1521
1522 /* Break into fixed-point */
1523 signed lod_int = f;
1524 float lod_frac = f - lod_int;
1525
1526 /* Carry over negative fractions */
1527 if (lod_frac < 0.0) {
1528 lod_int--;
1529 lod_frac += 1.0;
1530 }
1531
1532 /* Encode */
1533 word->bias = float_to_ubyte(lod_frac);
1534 word->bias_int = lod_int;
1535
1536 return true;
1537 }
1538
1539 static enum mali_sampler_type
1540 midgard_sampler_type(nir_alu_type t)
1541 {
1542 switch (nir_alu_type_get_base_type(t)) {
1543 case nir_type_float:
1544 return MALI_SAMPLER_FLOAT;
1545 case nir_type_int:
1546 return MALI_SAMPLER_SIGNED;
1547 case nir_type_uint:
1548 return MALI_SAMPLER_UNSIGNED;
1549 default:
1550 unreachable("Unknown sampler type");
1551 }
1552 }
1553
1554 static void
1555 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1556 unsigned midgard_texop)
1557 {
1558 /* TODO */
1559 //assert (!instr->sampler);
1560 //assert (!instr->texture_array_size);
1561
1562 /* Allocate registers via a round robin scheme to alternate between the two registers */
1563 int reg = ctx->texture_op_count & 1;
1564 int in_reg = reg, out_reg = reg;
1565
1566 /* Make room for the reg */
1567
1568 if (ctx->texture_index[reg] > -1)
1569 unalias_ssa(ctx, ctx->texture_index[reg]);
1570
1571 int texture_index = instr->texture_index;
1572 int sampler_index = texture_index;
1573
1574 /* No helper to build texture words -- we do it all here */
1575 midgard_instruction ins = {
1576 .type = TAG_TEXTURE_4,
1577 .texture = {
1578 .op = midgard_texop,
1579 .format = midgard_tex_format(instr->sampler_dim),
1580 .texture_handle = texture_index,
1581 .sampler_handle = sampler_index,
1582
1583 /* TODO: Regalloc it in */
1584 .swizzle = SWIZZLE_XYZW,
1585 .mask = 0xF,
1586
1587 /* TODO: half */
1588 .in_reg_full = 1,
1589 .out_full = 1,
1590
1591 .sampler_type = midgard_sampler_type(instr->dest_type),
1592 }
1593 };
1594
1595 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1596 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1597 int index = nir_src_index(ctx, &instr->src[i].src);
1598 int nr_comp = nir_src_num_components(instr->src[i].src);
1599 midgard_vector_alu_src alu_src = blank_alu_src;
1600
1601 switch (instr->src[i].src_type) {
1602 case nir_tex_src_coord: {
1603 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1604 /* texelFetch is undefined on samplerCube */
1605 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1606
1607 /* For cubemaps, we need to load coords into
1608 * special r27, and then use a special ld/st op
1609 * to select the face and copy the xy into the
1610 * texture register */
1611
1612 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1613
1614 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1615 emit_mir_instruction(ctx, move);
1616
1617 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1618 st.load_store.unknown = 0x24; /* XXX: What is this? */
1619 st.load_store.mask = 0x3; /* xy */
1620 st.load_store.swizzle = alu_src.swizzle;
1621 emit_mir_instruction(ctx, st);
1622
1623 ins.texture.in_reg_swizzle = swizzle_of(2);
1624 } else {
1625 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1626
1627 midgard_instruction mov = v_mov(index, alu_src, reg);
1628 mov.alu.mask = expand_writemask(mask_of(nr_comp));
1629 emit_mir_instruction(ctx, mov);
1630
1631 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1632 /* Texel fetch opcodes care about the
1633 * values of z and w, so we actually
1634 * need to spill into a second register
1635 * for a texel fetch with register bias
1636 * (for non-2D). TODO: Implement that
1637 */
1638
1639 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1640
1641 midgard_instruction zero = v_mov(index, alu_src, reg);
1642 zero.ssa_args.inline_constant = true;
1643 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1644 zero.has_constants = true;
1645 zero.alu.mask = ~mov.alu.mask;
1646 emit_mir_instruction(ctx, zero);
1647
1648 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1649 } else {
1650 /* Non-texel fetch doesn't need that
1651 * nonsense. However we do use the Z
1652 * for array indexing */
1653 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1654 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1655 }
1656 }
1657
1658 break;
1659 }
1660
1661 case nir_tex_src_bias:
1662 case nir_tex_src_lod: {
1663 /* Try as a constant if we can */
1664
1665 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1666 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1667 break;
1668
1669 /* Otherwise we use a register. To keep RA simple, we
1670 * put the bias/LOD into the w component of the input
1671 * source, which is otherwise in xy */
1672
1673 alu_src.swizzle = SWIZZLE_XXXX;
1674
1675 midgard_instruction mov = v_mov(index, alu_src, reg);
1676 mov.alu.mask = expand_writemask(1 << COMPONENT_W);
1677 emit_mir_instruction(ctx, mov);
1678
1679 ins.texture.lod_register = true;
1680
1681 midgard_tex_register_select sel = {
1682 .select = in_reg,
1683 .full = 1,
1684
1685 /* w */
1686 .component_lo = 1,
1687 .component_hi = 1
1688 };
1689
1690 uint8_t packed;
1691 memcpy(&packed, &sel, sizeof(packed));
1692 ins.texture.bias = packed;
1693
1694 break;
1695 };
1696
1697 default:
1698 unreachable("Unknown texture source type\n");
1699 }
1700 }
1701
1702 /* Set registers to read and write from the same place */
1703 ins.texture.in_reg_select = in_reg;
1704 ins.texture.out_reg_select = out_reg;
1705
1706 emit_mir_instruction(ctx, ins);
1707
1708 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1709
1710 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1711 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1712 ctx->texture_index[reg] = o_index;
1713
1714 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1715 emit_mir_instruction(ctx, ins2);
1716
1717 /* Used for .cont and .last hinting */
1718 ctx->texture_op_count++;
1719 }
1720
1721 static void
1722 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1723 {
1724 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1725 * generic tex in some cases (which confuses the hardware) */
1726
1727 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1728
1729 if (is_vertex && instr->op == nir_texop_tex)
1730 instr->op = nir_texop_txl;
1731
1732 switch (instr->op) {
1733 case nir_texop_tex:
1734 case nir_texop_txb:
1735 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1736 break;
1737 case nir_texop_txl:
1738 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1739 break;
1740 case nir_texop_txf:
1741 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1742 break;
1743 case nir_texop_txs:
1744 emit_sysval_read(ctx, &instr->instr);
1745 break;
1746 default:
1747 unreachable("Unhanlded texture op");
1748 }
1749 }
1750
1751 static void
1752 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1753 {
1754 switch (instr->type) {
1755 case nir_jump_break: {
1756 /* Emit a branch out of the loop */
1757 struct midgard_instruction br = v_branch(false, false);
1758 br.branch.target_type = TARGET_BREAK;
1759 br.branch.target_break = ctx->current_loop_depth;
1760 emit_mir_instruction(ctx, br);
1761
1762 DBG("break..\n");
1763 break;
1764 }
1765
1766 default:
1767 DBG("Unknown jump type %d\n", instr->type);
1768 break;
1769 }
1770 }
1771
1772 static void
1773 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1774 {
1775 switch (instr->type) {
1776 case nir_instr_type_load_const:
1777 emit_load_const(ctx, nir_instr_as_load_const(instr));
1778 break;
1779
1780 case nir_instr_type_intrinsic:
1781 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1782 break;
1783
1784 case nir_instr_type_alu:
1785 emit_alu(ctx, nir_instr_as_alu(instr));
1786 break;
1787
1788 case nir_instr_type_tex:
1789 emit_tex(ctx, nir_instr_as_tex(instr));
1790 break;
1791
1792 case nir_instr_type_jump:
1793 emit_jump(ctx, nir_instr_as_jump(instr));
1794 break;
1795
1796 case nir_instr_type_ssa_undef:
1797 /* Spurious */
1798 break;
1799
1800 default:
1801 DBG("Unhandled instruction type\n");
1802 break;
1803 }
1804 }
1805
1806
1807 /* ALU instructions can inline or embed constants, which decreases register
1808 * pressure and saves space. */
1809
1810 #define CONDITIONAL_ATTACH(src) { \
1811 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1812 \
1813 if (entry) { \
1814 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1815 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1816 } \
1817 }
1818
1819 static void
1820 inline_alu_constants(compiler_context *ctx)
1821 {
1822 mir_foreach_instr(ctx, alu) {
1823 /* Other instructions cannot inline constants */
1824 if (alu->type != TAG_ALU_4) continue;
1825
1826 /* If there is already a constant here, we can do nothing */
1827 if (alu->has_constants) continue;
1828
1829 /* It makes no sense to inline constants on a branch */
1830 if (alu->compact_branch || alu->prepacked_branch) continue;
1831
1832 CONDITIONAL_ATTACH(src0);
1833
1834 if (!alu->has_constants) {
1835 CONDITIONAL_ATTACH(src1)
1836 } else if (!alu->inline_constant) {
1837 /* Corner case: _two_ vec4 constants, for instance with a
1838 * csel. For this case, we can only use a constant
1839 * register for one, we'll have to emit a move for the
1840 * other. Note, if both arguments are constants, then
1841 * necessarily neither argument depends on the value of
1842 * any particular register. As the destination register
1843 * will be wiped, that means we can spill the constant
1844 * to the destination register.
1845 */
1846
1847 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1848 unsigned scratch = alu->ssa_args.dest;
1849
1850 if (entry) {
1851 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1852 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1853
1854 /* Force a break XXX Defer r31 writes */
1855 ins.unit = UNIT_VLUT;
1856
1857 /* Set the source */
1858 alu->ssa_args.src1 = scratch;
1859
1860 /* Inject us -before- the last instruction which set r31 */
1861 mir_insert_instruction_before(mir_prev_op(alu), ins);
1862 }
1863 }
1864 }
1865 }
1866
1867 /* Midgard supports two types of constants, embedded constants (128-bit) and
1868 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1869 * constants can be demoted to inline constants, for space savings and
1870 * sometimes a performance boost */
1871
1872 static void
1873 embedded_to_inline_constant(compiler_context *ctx)
1874 {
1875 mir_foreach_instr(ctx, ins) {
1876 if (!ins->has_constants) continue;
1877
1878 if (ins->ssa_args.inline_constant) continue;
1879
1880 /* Blend constants must not be inlined by definition */
1881 if (ins->has_blend_constant) continue;
1882
1883 /* src1 cannot be an inline constant due to encoding
1884 * restrictions. So, if possible we try to flip the arguments
1885 * in that case */
1886
1887 int op = ins->alu.op;
1888
1889 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1890 switch (op) {
1891 /* These ops require an operational change to flip
1892 * their arguments TODO */
1893 case midgard_alu_op_flt:
1894 case midgard_alu_op_fle:
1895 case midgard_alu_op_ilt:
1896 case midgard_alu_op_ile:
1897 case midgard_alu_op_fcsel:
1898 case midgard_alu_op_icsel:
1899 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1900 default:
1901 break;
1902 }
1903
1904 if (alu_opcode_props[op].props & OP_COMMUTES) {
1905 /* Flip the SSA numbers */
1906 ins->ssa_args.src0 = ins->ssa_args.src1;
1907 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1908
1909 /* And flip the modifiers */
1910
1911 unsigned src_temp;
1912
1913 src_temp = ins->alu.src2;
1914 ins->alu.src2 = ins->alu.src1;
1915 ins->alu.src1 = src_temp;
1916 }
1917 }
1918
1919 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1920 /* Extract the source information */
1921
1922 midgard_vector_alu_src *src;
1923 int q = ins->alu.src2;
1924 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1925 src = m;
1926
1927 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1928 int component = src->swizzle & 3;
1929
1930 /* Scale constant appropriately, if we can legally */
1931 uint16_t scaled_constant = 0;
1932
1933 if (midgard_is_integer_op(op)) {
1934 unsigned int *iconstants = (unsigned int *) ins->constants;
1935 scaled_constant = (uint16_t) iconstants[component];
1936
1937 /* Constant overflow after resize */
1938 if (scaled_constant != iconstants[component])
1939 continue;
1940 } else {
1941 float original = (float) ins->constants[component];
1942 scaled_constant = _mesa_float_to_half(original);
1943
1944 /* Check for loss of precision. If this is
1945 * mediump, we don't care, but for a highp
1946 * shader, we need to pay attention. NIR
1947 * doesn't yet tell us which mode we're in!
1948 * Practically this prevents most constants
1949 * from being inlined, sadly. */
1950
1951 float fp32 = _mesa_half_to_float(scaled_constant);
1952
1953 if (fp32 != original)
1954 continue;
1955 }
1956
1957 /* We don't know how to handle these with a constant */
1958
1959 if (src->mod || src->half || src->rep_low || src->rep_high) {
1960 DBG("Bailing inline constant...\n");
1961 continue;
1962 }
1963
1964 /* Make sure that the constant is not itself a
1965 * vector by checking if all accessed values
1966 * (by the swizzle) are the same. */
1967
1968 uint32_t *cons = (uint32_t *) ins->constants;
1969 uint32_t value = cons[component];
1970
1971 bool is_vector = false;
1972 unsigned mask = effective_writemask(&ins->alu);
1973
1974 for (int c = 1; c < 4; ++c) {
1975 /* We only care if this component is actually used */
1976 if (!(mask & (1 << c)))
1977 continue;
1978
1979 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1980
1981 if (test != value) {
1982 is_vector = true;
1983 break;
1984 }
1985 }
1986
1987 if (is_vector)
1988 continue;
1989
1990 /* Get rid of the embedded constant */
1991 ins->has_constants = false;
1992 ins->ssa_args.src1 = SSA_UNUSED_0;
1993 ins->ssa_args.inline_constant = true;
1994 ins->inline_constant = scaled_constant;
1995 }
1996 }
1997 }
1998
1999 /* Map normal SSA sources to other SSA sources / fixed registers (like
2000 * uniforms) */
2001
2002 static void
2003 map_ssa_to_alias(compiler_context *ctx, int *ref)
2004 {
2005 /* Sign is used quite deliberately for unused */
2006 if (*ref < 0)
2007 return;
2008
2009 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2010
2011 if (alias) {
2012 /* Remove entry in leftovers to avoid a redunant fmov */
2013
2014 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2015
2016 if (leftover)
2017 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2018
2019 /* Assign the alias map */
2020 *ref = alias - 1;
2021 return;
2022 }
2023 }
2024
2025 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2026 * texture pipeline */
2027
2028 static bool
2029 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2030 {
2031 bool progress = false;
2032
2033 mir_foreach_instr_in_block_safe(block, ins) {
2034 if (ins->type != TAG_ALU_4) continue;
2035 if (ins->compact_branch) continue;
2036
2037 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2038 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2039
2040 mir_remove_instruction(ins);
2041 progress = true;
2042 }
2043
2044 return progress;
2045 }
2046
2047 /* Dead code elimination for branches at the end of a block - only one branch
2048 * per block is legal semantically */
2049
2050 static void
2051 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2052 {
2053 bool branched = false;
2054
2055 mir_foreach_instr_in_block_safe(block, ins) {
2056 if (!midgard_is_branch_unit(ins->unit)) continue;
2057
2058 /* We ignore prepacked branches since the fragment epilogue is
2059 * just generally special */
2060 if (ins->prepacked_branch) continue;
2061
2062 /* Discards are similarly special and may not correspond to the
2063 * end of a block */
2064
2065 if (ins->branch.target_type == TARGET_DISCARD) continue;
2066
2067 if (branched) {
2068 /* We already branched, so this is dead */
2069 mir_remove_instruction(ins);
2070 }
2071
2072 branched = true;
2073 }
2074 }
2075
2076 static bool
2077 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2078 {
2079 /* abs or neg */
2080 if (!is_int && src.mod) return true;
2081
2082 /* Other int mods don't matter in isolation */
2083 if (is_int && src.mod == midgard_int_shift) return true;
2084
2085 /* size-conversion */
2086 if (src.half) return true;
2087
2088 /* swizzle */
2089 for (unsigned c = 0; c < 4; ++c) {
2090 if (!(mask & (1 << c))) continue;
2091 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2092 }
2093
2094 return false;
2095 }
2096
2097 static bool
2098 mir_nontrivial_source2_mod(midgard_instruction *ins)
2099 {
2100 unsigned mask = squeeze_writemask(ins->alu.mask);
2101 bool is_int = midgard_is_integer_op(ins->alu.op);
2102
2103 midgard_vector_alu_src src2 =
2104 vector_alu_from_unsigned(ins->alu.src2);
2105
2106 return mir_nontrivial_mod(src2, is_int, mask);
2107 }
2108
2109 static bool
2110 mir_nontrivial_outmod(midgard_instruction *ins)
2111 {
2112 bool is_int = midgard_is_integer_op(ins->alu.op);
2113 unsigned mod = ins->alu.outmod;
2114
2115 /* Type conversion is a sort of outmod */
2116 if (ins->alu.dest_override != midgard_dest_override_none)
2117 return true;
2118
2119 if (is_int)
2120 return mod != midgard_outmod_int_wrap;
2121 else
2122 return mod != midgard_outmod_none;
2123 }
2124
2125 static bool
2126 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2127 {
2128 bool progress = false;
2129
2130 mir_foreach_instr_in_block_safe(block, ins) {
2131 if (ins->type != TAG_ALU_4) continue;
2132 if (!OP_IS_MOVE(ins->alu.op)) continue;
2133
2134 unsigned from = ins->ssa_args.src1;
2135 unsigned to = ins->ssa_args.dest;
2136
2137 /* We only work on pure SSA */
2138
2139 if (to >= SSA_FIXED_MINIMUM) continue;
2140 if (from >= SSA_FIXED_MINIMUM) continue;
2141 if (to >= ctx->func->impl->ssa_alloc) continue;
2142 if (from >= ctx->func->impl->ssa_alloc) continue;
2143
2144 /* Constant propagation is not handled here, either */
2145 if (ins->ssa_args.inline_constant) continue;
2146 if (ins->has_constants) continue;
2147
2148 if (mir_nontrivial_source2_mod(ins)) continue;
2149 if (mir_nontrivial_outmod(ins)) continue;
2150
2151 /* We're clear -- rewrite */
2152 mir_rewrite_index_src(ctx, to, from);
2153 mir_remove_instruction(ins);
2154 progress |= true;
2155 }
2156
2157 return progress;
2158 }
2159
2160 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2161 * the move can be propagated away entirely */
2162
2163 static bool
2164 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2165 {
2166 /* Nothing to do */
2167 if (comp == midgard_outmod_none)
2168 return true;
2169
2170 if (*outmod == midgard_outmod_none) {
2171 *outmod = comp;
2172 return true;
2173 }
2174
2175 /* TODO: Compose rules */
2176 return false;
2177 }
2178
2179 static bool
2180 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2181 {
2182 bool progress = false;
2183
2184 mir_foreach_instr_in_block_safe(block, ins) {
2185 if (ins->type != TAG_ALU_4) continue;
2186 if (ins->alu.op != midgard_alu_op_fmov) continue;
2187 if (ins->alu.outmod != midgard_outmod_pos) continue;
2188
2189 /* TODO: Registers? */
2190 unsigned src = ins->ssa_args.src1;
2191 if (src >= ctx->func->impl->ssa_alloc) continue;
2192 assert(!mir_has_multiple_writes(ctx, src));
2193
2194 /* There might be a source modifier, too */
2195 if (mir_nontrivial_source2_mod(ins)) continue;
2196
2197 /* Backpropagate the modifier */
2198 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2199 if (v->type != TAG_ALU_4) continue;
2200 if (v->ssa_args.dest != src) continue;
2201
2202 /* Can we even take a float outmod? */
2203 if (midgard_is_integer_out_op(v->alu.op)) continue;
2204
2205 midgard_outmod_float temp = v->alu.outmod;
2206 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2207
2208 /* Throw in the towel.. */
2209 if (!progress) break;
2210
2211 /* Otherwise, transfer the modifier */
2212 v->alu.outmod = temp;
2213 ins->alu.outmod = midgard_outmod_none;
2214
2215 break;
2216 }
2217 }
2218
2219 return progress;
2220 }
2221
2222 static bool
2223 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2224 {
2225 bool progress = false;
2226
2227 mir_foreach_instr_in_block_safe(block, ins) {
2228 if (ins->type != TAG_ALU_4) continue;
2229 if (!OP_IS_MOVE(ins->alu.op)) continue;
2230
2231 unsigned from = ins->ssa_args.src1;
2232 unsigned to = ins->ssa_args.dest;
2233
2234 /* Make sure it's simple enough for us to handle */
2235
2236 if (from >= SSA_FIXED_MINIMUM) continue;
2237 if (from >= ctx->func->impl->ssa_alloc) continue;
2238 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2239 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2240
2241 bool eliminated = false;
2242
2243 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2244 /* The texture registers are not SSA so be careful.
2245 * Conservatively, just stop if we hit a texture op
2246 * (even if it may not write) to where we are */
2247
2248 if (v->type != TAG_ALU_4)
2249 break;
2250
2251 if (v->ssa_args.dest == from) {
2252 /* We don't want to track partial writes ... */
2253 if (v->alu.mask == 0xF) {
2254 v->ssa_args.dest = to;
2255 eliminated = true;
2256 }
2257
2258 break;
2259 }
2260 }
2261
2262 if (eliminated)
2263 mir_remove_instruction(ins);
2264
2265 progress |= eliminated;
2266 }
2267
2268 return progress;
2269 }
2270
2271 /* The following passes reorder MIR instructions to enable better scheduling */
2272
2273 static void
2274 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2275 {
2276 mir_foreach_instr_in_block_safe(block, ins) {
2277 if (ins->type != TAG_LOAD_STORE_4) continue;
2278
2279 /* We've found a load/store op. Check if next is also load/store. */
2280 midgard_instruction *next_op = mir_next_op(ins);
2281 if (&next_op->link != &block->instructions) {
2282 if (next_op->type == TAG_LOAD_STORE_4) {
2283 /* If so, we're done since we're a pair */
2284 ins = mir_next_op(ins);
2285 continue;
2286 }
2287
2288 /* Maximum search distance to pair, to avoid register pressure disasters */
2289 int search_distance = 8;
2290
2291 /* Otherwise, we have an orphaned load/store -- search for another load */
2292 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2293 /* Terminate search if necessary */
2294 if (!(search_distance--)) break;
2295
2296 if (c->type != TAG_LOAD_STORE_4) continue;
2297
2298 /* Stores cannot be reordered, since they have
2299 * dependencies. For the same reason, indirect
2300 * loads cannot be reordered as their index is
2301 * loaded in r27.w */
2302
2303 if (OP_IS_STORE(c->load_store.op)) continue;
2304
2305 /* It appears the 0x800 bit is set whenever a
2306 * load is direct, unset when it is indirect.
2307 * Skip indirect loads. */
2308
2309 if (!(c->load_store.unknown & 0x800)) continue;
2310
2311 /* We found one! Move it up to pair and remove it from the old location */
2312
2313 mir_insert_instruction_before(ins, *c);
2314 mir_remove_instruction(c);
2315
2316 break;
2317 }
2318 }
2319 }
2320 }
2321
2322 /* If there are leftovers after the below pass, emit actual fmov
2323 * instructions for the slow-but-correct path */
2324
2325 static void
2326 emit_leftover_move(compiler_context *ctx)
2327 {
2328 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2329 int base = ((uintptr_t) leftover->key) - 1;
2330 int mapped = base;
2331
2332 map_ssa_to_alias(ctx, &mapped);
2333 EMIT(mov, mapped, blank_alu_src, base);
2334 }
2335 }
2336
2337 static void
2338 actualise_ssa_to_alias(compiler_context *ctx)
2339 {
2340 mir_foreach_instr(ctx, ins) {
2341 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2342 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2343 }
2344
2345 emit_leftover_move(ctx);
2346 }
2347
2348 static void
2349 emit_fragment_epilogue(compiler_context *ctx)
2350 {
2351 /* Special case: writing out constants requires us to include the move
2352 * explicitly now, so shove it into r0 */
2353
2354 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2355
2356 if (constant_value) {
2357 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2358 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2359 emit_mir_instruction(ctx, ins);
2360 }
2361
2362 /* Perform the actual fragment writeout. We have two writeout/branch
2363 * instructions, forming a loop until writeout is successful as per the
2364 * docs. TODO: gl_FragDepth */
2365
2366 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2367 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2368 }
2369
2370 static midgard_block *
2371 emit_block(compiler_context *ctx, nir_block *block)
2372 {
2373 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2374 list_addtail(&this_block->link, &ctx->blocks);
2375
2376 this_block->is_scheduled = false;
2377 ++ctx->block_count;
2378
2379 ctx->texture_index[0] = -1;
2380 ctx->texture_index[1] = -1;
2381
2382 /* Add us as a successor to the block we are following */
2383 if (ctx->current_block)
2384 midgard_block_add_successor(ctx->current_block, this_block);
2385
2386 /* Set up current block */
2387 list_inithead(&this_block->instructions);
2388 ctx->current_block = this_block;
2389
2390 nir_foreach_instr(instr, block) {
2391 emit_instr(ctx, instr);
2392 ++ctx->instruction_count;
2393 }
2394
2395 inline_alu_constants(ctx);
2396 embedded_to_inline_constant(ctx);
2397
2398 /* Perform heavylifting for aliasing */
2399 actualise_ssa_to_alias(ctx);
2400
2401 midgard_pair_load_store(ctx, this_block);
2402
2403 /* Append fragment shader epilogue (value writeout) */
2404 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2405 if (block == nir_impl_last_block(ctx->func->impl)) {
2406 emit_fragment_epilogue(ctx);
2407 }
2408 }
2409
2410 if (block == nir_start_block(ctx->func->impl))
2411 ctx->initial_block = this_block;
2412
2413 if (block == nir_impl_last_block(ctx->func->impl))
2414 ctx->final_block = this_block;
2415
2416 /* Allow the next control flow to access us retroactively, for
2417 * branching etc */
2418 ctx->current_block = this_block;
2419
2420 /* Document the fallthrough chain */
2421 ctx->previous_source_block = this_block;
2422
2423 return this_block;
2424 }
2425
2426 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2427
2428 static void
2429 emit_if(struct compiler_context *ctx, nir_if *nif)
2430 {
2431 /* Conditional branches expect the condition in r31.w; emit a move for
2432 * that in the _previous_ block (which is the current block). */
2433 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2434
2435 /* Speculatively emit the branch, but we can't fill it in until later */
2436 EMIT(branch, true, true);
2437 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2438
2439 /* Emit the two subblocks */
2440 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2441
2442 /* Emit a jump from the end of the then block to the end of the else */
2443 EMIT(branch, false, false);
2444 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2445
2446 /* Emit second block, and check if it's empty */
2447
2448 int else_idx = ctx->block_count;
2449 int count_in = ctx->instruction_count;
2450 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2451 int after_else_idx = ctx->block_count;
2452
2453 /* Now that we have the subblocks emitted, fix up the branches */
2454
2455 assert(then_block);
2456 assert(else_block);
2457
2458 if (ctx->instruction_count == count_in) {
2459 /* The else block is empty, so don't emit an exit jump */
2460 mir_remove_instruction(then_exit);
2461 then_branch->branch.target_block = after_else_idx;
2462 } else {
2463 then_branch->branch.target_block = else_idx;
2464 then_exit->branch.target_block = after_else_idx;
2465 }
2466 }
2467
2468 static void
2469 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2470 {
2471 /* Remember where we are */
2472 midgard_block *start_block = ctx->current_block;
2473
2474 /* Allocate a loop number, growing the current inner loop depth */
2475 int loop_idx = ++ctx->current_loop_depth;
2476
2477 /* Get index from before the body so we can loop back later */
2478 int start_idx = ctx->block_count;
2479
2480 /* Emit the body itself */
2481 emit_cf_list(ctx, &nloop->body);
2482
2483 /* Branch back to loop back */
2484 struct midgard_instruction br_back = v_branch(false, false);
2485 br_back.branch.target_block = start_idx;
2486 emit_mir_instruction(ctx, br_back);
2487
2488 /* Mark down that branch in the graph. Note that we're really branching
2489 * to the block *after* we started in. TODO: Why doesn't the branch
2490 * itself have an off-by-one then...? */
2491 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2492
2493 /* Find the index of the block about to follow us (note: we don't add
2494 * one; blocks are 0-indexed so we get a fencepost problem) */
2495 int break_block_idx = ctx->block_count;
2496
2497 /* Fix up the break statements we emitted to point to the right place,
2498 * now that we can allocate a block number for them */
2499
2500 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2501 mir_foreach_instr_in_block(block, ins) {
2502 if (ins->type != TAG_ALU_4) continue;
2503 if (!ins->compact_branch) continue;
2504 if (ins->prepacked_branch) continue;
2505
2506 /* We found a branch -- check the type to see if we need to do anything */
2507 if (ins->branch.target_type != TARGET_BREAK) continue;
2508
2509 /* It's a break! Check if it's our break */
2510 if (ins->branch.target_break != loop_idx) continue;
2511
2512 /* Okay, cool, we're breaking out of this loop.
2513 * Rewrite from a break to a goto */
2514
2515 ins->branch.target_type = TARGET_GOTO;
2516 ins->branch.target_block = break_block_idx;
2517 }
2518 }
2519
2520 /* Now that we've finished emitting the loop, free up the depth again
2521 * so we play nice with recursion amid nested loops */
2522 --ctx->current_loop_depth;
2523 }
2524
2525 static midgard_block *
2526 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2527 {
2528 midgard_block *start_block = NULL;
2529
2530 foreach_list_typed(nir_cf_node, node, node, list) {
2531 switch (node->type) {
2532 case nir_cf_node_block: {
2533 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2534
2535 if (!start_block)
2536 start_block = block;
2537
2538 break;
2539 }
2540
2541 case nir_cf_node_if:
2542 emit_if(ctx, nir_cf_node_as_if(node));
2543 break;
2544
2545 case nir_cf_node_loop:
2546 emit_loop(ctx, nir_cf_node_as_loop(node));
2547 break;
2548
2549 case nir_cf_node_function:
2550 assert(0);
2551 break;
2552 }
2553 }
2554
2555 return start_block;
2556 }
2557
2558 /* Due to lookahead, we need to report the first tag executed in the command
2559 * stream and in branch targets. An initial block might be empty, so iterate
2560 * until we find one that 'works' */
2561
2562 static unsigned
2563 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2564 {
2565 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2566
2567 unsigned first_tag = 0;
2568
2569 do {
2570 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2571
2572 if (initial_bundle) {
2573 first_tag = initial_bundle->tag;
2574 break;
2575 }
2576
2577 /* Initial block is empty, try the next block */
2578 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2579 } while(initial_block != NULL);
2580
2581 assert(first_tag);
2582 return first_tag;
2583 }
2584
2585 int
2586 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2587 {
2588 struct util_dynarray *compiled = &program->compiled;
2589
2590 midgard_debug = debug_get_option_midgard_debug();
2591
2592 compiler_context ictx = {
2593 .nir = nir,
2594 .stage = nir->info.stage,
2595
2596 .is_blend = is_blend,
2597 .blend_constant_offset = -1,
2598
2599 .alpha_ref = program->alpha_ref
2600 };
2601
2602 compiler_context *ctx = &ictx;
2603
2604 /* TODO: Decide this at runtime */
2605 ctx->uniform_cutoff = 8;
2606
2607 /* Initialize at a global (not block) level hash tables */
2608
2609 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2610 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2611 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2612 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2613 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2614
2615 /* Record the varying mapping for the command stream's bookkeeping */
2616
2617 struct exec_list *varyings =
2618 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2619
2620 unsigned max_varying = 0;
2621 nir_foreach_variable(var, varyings) {
2622 unsigned loc = var->data.driver_location;
2623 unsigned sz = glsl_type_size(var->type, FALSE);
2624
2625 for (int c = 0; c < sz; ++c) {
2626 program->varyings[loc + c] = var->data.location + c;
2627 max_varying = MAX2(max_varying, loc + c);
2628 }
2629 }
2630
2631 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2632 * (so we don't accidentally duplicate the epilogue since mesa/st has
2633 * messed with our I/O quite a bit already) */
2634
2635 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2636
2637 if (ctx->stage == MESA_SHADER_VERTEX)
2638 NIR_PASS_V(nir, nir_lower_viewport_transform);
2639
2640 NIR_PASS_V(nir, nir_lower_var_copies);
2641 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2642 NIR_PASS_V(nir, nir_split_var_copies);
2643 NIR_PASS_V(nir, nir_lower_var_copies);
2644 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2645 NIR_PASS_V(nir, nir_lower_var_copies);
2646 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2647
2648 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2649
2650 /* Optimisation passes */
2651
2652 optimise_nir(nir);
2653
2654 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2655 nir_print_shader(nir, stdout);
2656 }
2657
2658 /* Assign sysvals and counts, now that we're sure
2659 * (post-optimisation) */
2660
2661 midgard_nir_assign_sysvals(ctx, nir);
2662
2663 program->uniform_count = nir->num_uniforms;
2664 program->sysval_count = ctx->sysval_count;
2665 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2666
2667 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2668 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2669
2670 nir_foreach_function(func, nir) {
2671 if (!func->impl)
2672 continue;
2673
2674 list_inithead(&ctx->blocks);
2675 ctx->block_count = 0;
2676 ctx->func = func;
2677
2678 emit_cf_list(ctx, &func->impl->body);
2679 emit_block(ctx, func->impl->end_block);
2680
2681 break; /* TODO: Multi-function shaders */
2682 }
2683
2684 util_dynarray_init(compiled, NULL);
2685
2686 /* MIR-level optimizations */
2687
2688 bool progress = false;
2689
2690 do {
2691 progress = false;
2692
2693 mir_foreach_block(ctx, block) {
2694 progress |= midgard_opt_pos_propagate(ctx, block);
2695 progress |= midgard_opt_copy_prop(ctx, block);
2696 progress |= midgard_opt_copy_prop_tex(ctx, block);
2697 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2698 }
2699 } while (progress);
2700
2701 /* Nested control-flow can result in dead branches at the end of the
2702 * block. This messes with our analysis and is just dead code, so cull
2703 * them */
2704 mir_foreach_block(ctx, block) {
2705 midgard_opt_cull_dead_branch(ctx, block);
2706 }
2707
2708 /* Schedule! */
2709 schedule_program(ctx);
2710
2711 /* Now that all the bundles are scheduled and we can calculate block
2712 * sizes, emit actual branch instructions rather than placeholders */
2713
2714 int br_block_idx = 0;
2715
2716 mir_foreach_block(ctx, block) {
2717 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2718 for (int c = 0; c < bundle->instruction_count; ++c) {
2719 midgard_instruction *ins = bundle->instructions[c];
2720
2721 if (!midgard_is_branch_unit(ins->unit)) continue;
2722
2723 if (ins->prepacked_branch) continue;
2724
2725 /* Parse some basic branch info */
2726 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2727 bool is_conditional = ins->branch.conditional;
2728 bool is_inverted = ins->branch.invert_conditional;
2729 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2730
2731 /* Determine the block we're jumping to */
2732 int target_number = ins->branch.target_block;
2733
2734 /* Report the destination tag */
2735 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2736
2737 /* Count up the number of quadwords we're
2738 * jumping over = number of quadwords until
2739 * (br_block_idx, target_number) */
2740
2741 int quadword_offset = 0;
2742
2743 if (is_discard) {
2744 /* Jump to the end of the shader. We
2745 * need to include not only the
2746 * following blocks, but also the
2747 * contents of our current block (since
2748 * discard can come in the middle of
2749 * the block) */
2750
2751 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2752
2753 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2754 quadword_offset += quadword_size(bun->tag);
2755 }
2756
2757 mir_foreach_block_from(ctx, blk, b) {
2758 quadword_offset += b->quadword_count;
2759 }
2760
2761 } else if (target_number > br_block_idx) {
2762 /* Jump forward */
2763
2764 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2765 midgard_block *blk = mir_get_block(ctx, idx);
2766 assert(blk);
2767
2768 quadword_offset += blk->quadword_count;
2769 }
2770 } else {
2771 /* Jump backwards */
2772
2773 for (int idx = br_block_idx; idx >= target_number; --idx) {
2774 midgard_block *blk = mir_get_block(ctx, idx);
2775 assert(blk);
2776
2777 quadword_offset -= blk->quadword_count;
2778 }
2779 }
2780
2781 /* Unconditional extended branches (far jumps)
2782 * have issues, so we always use a conditional
2783 * branch, setting the condition to always for
2784 * unconditional. For compact unconditional
2785 * branches, cond isn't used so it doesn't
2786 * matter what we pick. */
2787
2788 midgard_condition cond =
2789 !is_conditional ? midgard_condition_always :
2790 is_inverted ? midgard_condition_false :
2791 midgard_condition_true;
2792
2793 midgard_jmp_writeout_op op =
2794 is_discard ? midgard_jmp_writeout_op_discard :
2795 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2796 midgard_jmp_writeout_op_branch_cond;
2797
2798 if (!is_compact) {
2799 midgard_branch_extended branch =
2800 midgard_create_branch_extended(
2801 cond, op,
2802 dest_tag,
2803 quadword_offset);
2804
2805 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2806 } else if (is_conditional || is_discard) {
2807 midgard_branch_cond branch = {
2808 .op = op,
2809 .dest_tag = dest_tag,
2810 .offset = quadword_offset,
2811 .cond = cond
2812 };
2813
2814 assert(branch.offset == quadword_offset);
2815
2816 memcpy(&ins->br_compact, &branch, sizeof(branch));
2817 } else {
2818 assert(op == midgard_jmp_writeout_op_branch_uncond);
2819
2820 midgard_branch_uncond branch = {
2821 .op = op,
2822 .dest_tag = dest_tag,
2823 .offset = quadword_offset,
2824 .unknown = 1
2825 };
2826
2827 assert(branch.offset == quadword_offset);
2828
2829 memcpy(&ins->br_compact, &branch, sizeof(branch));
2830 }
2831 }
2832 }
2833
2834 ++br_block_idx;
2835 }
2836
2837 /* Emit flat binary from the instruction arrays. Iterate each block in
2838 * sequence. Save instruction boundaries such that lookahead tags can
2839 * be assigned easily */
2840
2841 /* Cache _all_ bundles in source order for lookahead across failed branches */
2842
2843 int bundle_count = 0;
2844 mir_foreach_block(ctx, block) {
2845 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2846 }
2847 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2848 int bundle_idx = 0;
2849 mir_foreach_block(ctx, block) {
2850 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2851 source_order_bundles[bundle_idx++] = bundle;
2852 }
2853 }
2854
2855 int current_bundle = 0;
2856
2857 /* Midgard prefetches instruction types, so during emission we
2858 * need to lookahead. Unless this is the last instruction, in
2859 * which we return 1. Or if this is the second to last and the
2860 * last is an ALU, then it's also 1... */
2861
2862 mir_foreach_block(ctx, block) {
2863 mir_foreach_bundle_in_block(block, bundle) {
2864 int lookahead = 1;
2865
2866 if (current_bundle + 1 < bundle_count) {
2867 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2868
2869 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2870 lookahead = 1;
2871 } else {
2872 lookahead = next;
2873 }
2874 }
2875
2876 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2877 ++current_bundle;
2878 }
2879
2880 /* TODO: Free deeper */
2881 //util_dynarray_fini(&block->instructions);
2882 }
2883
2884 free(source_order_bundles);
2885
2886 /* Report the very first tag executed */
2887 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2888
2889 /* Deal with off-by-one related to the fencepost problem */
2890 program->work_register_count = ctx->work_registers + 1;
2891
2892 program->can_discard = ctx->can_discard;
2893 program->uniform_cutoff = ctx->uniform_cutoff;
2894
2895 program->blend_patch_offset = ctx->blend_constant_offset;
2896
2897 if (midgard_debug & MIDGARD_DBG_SHADERS)
2898 disassemble_midgard(program->compiled.data, program->compiled.size);
2899
2900 return 0;
2901 }