353875d173fefc28af1c96b693f0de9e4ce30713
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
115 bool half, bool sext)
116 {
117 if (!src) return blank_alu_src;
118
119 /* Figure out how many components there are so we can adjust the
120 * swizzle. Specifically we want to broadcast the last channel so
121 * things like ball2/3 work
122 */
123
124 if (broadcast_count) {
125 uint8_t last_component = src->swizzle[broadcast_count - 1];
126
127 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
128 src->swizzle[c] = last_component;
129 }
130 }
131
132 midgard_vector_alu_src alu_src = {
133 .rep_low = 0,
134 .rep_high = 0,
135 .half = half,
136 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
137 };
138
139 if (is_int) {
140 alu_src.mod = midgard_int_normal;
141
142 /* Sign/zero-extend if needed */
143
144 if (half) {
145 alu_src.mod = sext ?
146 midgard_int_sign_extend
147 : midgard_int_zero_extend;
148 }
149
150 /* These should have been lowered away */
151 assert(!(src->abs || src->negate));
152 } else {
153 alu_src.mod = (src->abs << 0) | (src->negate << 1);
154 }
155
156 return alu_src;
157 }
158
159 /* load/store instructions have both 32-bit and 16-bit variants, depending on
160 * whether we are using vectors composed of highp or mediump. At the moment, we
161 * don't support half-floats -- this requires changes in other parts of the
162 * compiler -- therefore the 16-bit versions are commented out. */
163
164 //M_LOAD(ld_attr_16);
165 M_LOAD(ld_attr_32);
166 //M_LOAD(ld_vary_16);
167 M_LOAD(ld_vary_32);
168 //M_LOAD(ld_uniform_16);
169 M_LOAD(ld_uniform_32);
170 M_LOAD(ld_color_buffer_8);
171 //M_STORE(st_vary_16);
172 M_STORE(st_vary_32);
173 M_STORE(st_cubemap_coords);
174
175 static midgard_instruction
176 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
177 {
178 midgard_branch_cond branch = {
179 .op = op,
180 .dest_tag = tag,
181 .offset = offset,
182 .cond = cond
183 };
184
185 uint16_t compact;
186 memcpy(&compact, &branch, sizeof(branch));
187
188 midgard_instruction ins = {
189 .type = TAG_ALU_4,
190 .unit = ALU_ENAB_BR_COMPACT,
191 .prepacked_branch = true,
192 .compact_branch = true,
193 .br_compact = compact
194 };
195
196 if (op == midgard_jmp_writeout_op_writeout)
197 ins.writeout = true;
198
199 return ins;
200 }
201
202 static midgard_instruction
203 v_branch(bool conditional, bool invert)
204 {
205 midgard_instruction ins = {
206 .type = TAG_ALU_4,
207 .unit = ALU_ENAB_BRANCH,
208 .compact_branch = true,
209 .branch = {
210 .conditional = conditional,
211 .invert_conditional = invert
212 }
213 };
214
215 return ins;
216 }
217
218 static midgard_branch_extended
219 midgard_create_branch_extended( midgard_condition cond,
220 midgard_jmp_writeout_op op,
221 unsigned dest_tag,
222 signed quadword_offset)
223 {
224 /* For unclear reasons, the condition code is repeated 8 times */
225 uint16_t duplicated_cond =
226 (cond << 14) |
227 (cond << 12) |
228 (cond << 10) |
229 (cond << 8) |
230 (cond << 6) |
231 (cond << 4) |
232 (cond << 2) |
233 (cond << 0);
234
235 midgard_branch_extended branch = {
236 .op = op,
237 .dest_tag = dest_tag,
238 .offset = quadword_offset,
239 .cond = duplicated_cond
240 };
241
242 return branch;
243 }
244
245 static void
246 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
247 {
248 ins->has_constants = true;
249 memcpy(&ins->constants, constants, 16);
250 }
251
252 static int
253 glsl_type_size(const struct glsl_type *type, bool bindless)
254 {
255 return glsl_count_attribute_slots(type, false);
256 }
257
258 /* Lower fdot2 to a vector multiplication followed by channel addition */
259 static void
260 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
261 {
262 if (alu->op != nir_op_fdot2)
263 return;
264
265 b->cursor = nir_before_instr(&alu->instr);
266
267 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
268 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
269
270 nir_ssa_def *product = nir_fmul(b, src0, src1);
271
272 nir_ssa_def *sum = nir_fadd(b,
273 nir_channel(b, product, 0),
274 nir_channel(b, product, 1));
275
276 /* Replace the fdot2 with this sum */
277 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
278 }
279
280 static int
281 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
282 {
283 switch (instr->intrinsic) {
284 case nir_intrinsic_load_viewport_scale:
285 return PAN_SYSVAL_VIEWPORT_SCALE;
286 case nir_intrinsic_load_viewport_offset:
287 return PAN_SYSVAL_VIEWPORT_OFFSET;
288 default:
289 return -1;
290 }
291 }
292
293 static unsigned
294 nir_dest_index(compiler_context *ctx, nir_dest *dst)
295 {
296 if (dst->is_ssa)
297 return dst->ssa.index;
298 else {
299 assert(!dst->reg.indirect);
300 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
301 }
302 }
303
304 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
305 unsigned *dest)
306 {
307 nir_intrinsic_instr *intr;
308 nir_dest *dst = NULL;
309 nir_tex_instr *tex;
310 int sysval = -1;
311
312 switch (instr->type) {
313 case nir_instr_type_intrinsic:
314 intr = nir_instr_as_intrinsic(instr);
315 sysval = midgard_nir_sysval_for_intrinsic(intr);
316 dst = &intr->dest;
317 break;
318 case nir_instr_type_tex:
319 tex = nir_instr_as_tex(instr);
320 if (tex->op != nir_texop_txs)
321 break;
322
323 sysval = PAN_SYSVAL(TEXTURE_SIZE,
324 PAN_TXS_SYSVAL_ID(tex->texture_index,
325 nir_tex_instr_dest_size(tex) -
326 (tex->is_array ? 1 : 0),
327 tex->is_array));
328 dst = &tex->dest;
329 break;
330 default:
331 break;
332 }
333
334 if (dest && dst)
335 *dest = nir_dest_index(ctx, dst);
336
337 return sysval;
338 }
339
340 static void
341 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
342 {
343 int sysval;
344
345 sysval = sysval_for_instr(ctx, instr, NULL);
346 if (sysval < 0)
347 return;
348
349 /* We have a sysval load; check if it's already been assigned */
350
351 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
352 return;
353
354 /* It hasn't -- so assign it now! */
355
356 unsigned id = ctx->sysval_count++;
357 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
358 ctx->sysvals[id] = sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
363 {
364 ctx->sysval_count = 0;
365
366 nir_foreach_function(function, shader) {
367 if (!function->impl) continue;
368
369 nir_foreach_block(block, function->impl) {
370 nir_foreach_instr_safe(instr, block) {
371 midgard_nir_assign_sysval_body(ctx, instr);
372 }
373 }
374 }
375 }
376
377 static bool
378 midgard_nir_lower_fdot2(nir_shader *shader)
379 {
380 bool progress = false;
381
382 nir_foreach_function(function, shader) {
383 if (!function->impl) continue;
384
385 nir_builder _b;
386 nir_builder *b = &_b;
387 nir_builder_init(b, function->impl);
388
389 nir_foreach_block(block, function->impl) {
390 nir_foreach_instr_safe(instr, block) {
391 if (instr->type != nir_instr_type_alu) continue;
392
393 nir_alu_instr *alu = nir_instr_as_alu(instr);
394 midgard_nir_lower_fdot2_body(b, alu);
395
396 progress |= true;
397 }
398 }
399
400 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
401
402 }
403
404 return progress;
405 }
406
407 static void
408 optimise_nir(nir_shader *nir)
409 {
410 bool progress;
411 unsigned lower_flrp =
412 (nir->options->lower_flrp16 ? 16 : 0) |
413 (nir->options->lower_flrp32 ? 32 : 0) |
414 (nir->options->lower_flrp64 ? 64 : 0);
415
416 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
417 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
418 NIR_PASS(progress, nir, nir_lower_idiv);
419
420 nir_lower_tex_options lower_tex_1st_pass_options = {
421 .lower_rect = true,
422 .lower_txp = ~0
423 };
424
425 nir_lower_tex_options lower_tex_2nd_pass_options = {
426 .lower_txs_lod = true,
427 };
428
429 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
430 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
431
432 do {
433 progress = false;
434
435 NIR_PASS(progress, nir, nir_lower_var_copies);
436 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
437
438 NIR_PASS(progress, nir, nir_copy_prop);
439 NIR_PASS(progress, nir, nir_opt_dce);
440 NIR_PASS(progress, nir, nir_opt_dead_cf);
441 NIR_PASS(progress, nir, nir_opt_cse);
442 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
443 NIR_PASS(progress, nir, nir_opt_algebraic);
444 NIR_PASS(progress, nir, nir_opt_constant_folding);
445
446 if (lower_flrp != 0) {
447 bool lower_flrp_progress = false;
448 NIR_PASS(lower_flrp_progress,
449 nir,
450 nir_lower_flrp,
451 lower_flrp,
452 false /* always_precise */,
453 nir->options->lower_ffma);
454 if (lower_flrp_progress) {
455 NIR_PASS(progress, nir,
456 nir_opt_constant_folding);
457 progress = true;
458 }
459
460 /* Nothing should rematerialize any flrps, so we only
461 * need to do this lowering once.
462 */
463 lower_flrp = 0;
464 }
465
466 NIR_PASS(progress, nir, nir_opt_undef);
467 NIR_PASS(progress, nir, nir_opt_loop_unroll,
468 nir_var_shader_in |
469 nir_var_shader_out |
470 nir_var_function_temp);
471
472 NIR_PASS(progress, nir, nir_opt_vectorize);
473 } while (progress);
474
475 /* Must be run at the end to prevent creation of fsin/fcos ops */
476 NIR_PASS(progress, nir, midgard_nir_scale_trig);
477
478 do {
479 progress = false;
480
481 NIR_PASS(progress, nir, nir_opt_dce);
482 NIR_PASS(progress, nir, nir_opt_algebraic);
483 NIR_PASS(progress, nir, nir_opt_constant_folding);
484 NIR_PASS(progress, nir, nir_copy_prop);
485 } while (progress);
486
487 NIR_PASS(progress, nir, nir_opt_algebraic_late);
488
489 /* We implement booleans as 32-bit 0/~0 */
490 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
491
492 /* Now that booleans are lowered, we can run out late opts */
493 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
494
495 /* Lower mods for float ops only. Integer ops don't support modifiers
496 * (saturate doesn't make sense on integers, neg/abs require dedicated
497 * instructions) */
498
499 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502
503 /* Take us out of SSA */
504 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
505 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
506
507 /* We are a vector architecture; write combine where possible */
508 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
509 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
510
511 NIR_PASS(progress, nir, nir_opt_dce);
512 }
513
514 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
515 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
516 * r0. See the comments in compiler_context */
517
518 static void
519 alias_ssa(compiler_context *ctx, int dest, int src)
520 {
521 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
522 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
523 }
524
525 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
526
527 static void
528 unalias_ssa(compiler_context *ctx, int dest)
529 {
530 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
531 /* TODO: Remove from leftover or no? */
532 }
533
534 /* Do not actually emit a load; instead, cache the constant for inlining */
535
536 static void
537 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
538 {
539 nir_ssa_def def = instr->def;
540
541 float *v = rzalloc_array(NULL, float, 4);
542 nir_const_load_to_arr(v, instr, f32);
543 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
544 }
545
546 static unsigned
547 nir_src_index(compiler_context *ctx, nir_src *src)
548 {
549 if (src->is_ssa)
550 return src->ssa->index;
551 else {
552 assert(!src->reg.indirect);
553 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
554 }
555 }
556
557 static unsigned
558 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
559 {
560 return nir_src_index(ctx, &src->src);
561 }
562
563 static bool
564 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
565 {
566 unsigned comp = src->swizzle[0];
567
568 for (unsigned c = 1; c < nr_components; ++c) {
569 if (src->swizzle[c] != comp)
570 return true;
571 }
572
573 return false;
574 }
575
576 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
577 * output of a conditional test) into that register */
578
579 static void
580 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
581 {
582 int condition = nir_src_index(ctx, src);
583
584 /* Source to swizzle the desired component into w */
585
586 const midgard_vector_alu_src alu_src = {
587 .swizzle = SWIZZLE(component, component, component, component),
588 };
589
590 /* There is no boolean move instruction. Instead, we simulate a move by
591 * ANDing the condition with itself to get it into r31.w */
592
593 midgard_instruction ins = {
594 .type = TAG_ALU_4,
595
596 /* We need to set the conditional as close as possible */
597 .precede_break = true,
598 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
599
600 .ssa_args = {
601 .src0 = condition,
602 .src1 = condition,
603 .dest = SSA_FIXED_REGISTER(31),
604 },
605
606 .alu = {
607 .op = midgard_alu_op_iand,
608 .outmod = midgard_outmod_int_wrap,
609 .reg_mode = midgard_reg_mode_32,
610 .dest_override = midgard_dest_override_none,
611 .mask = (0x3 << 6), /* w */
612 .src1 = vector_alu_srco_unsigned(alu_src),
613 .src2 = vector_alu_srco_unsigned(alu_src)
614 },
615 };
616
617 emit_mir_instruction(ctx, ins);
618 }
619
620 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
621 * r31 instead */
622
623 static void
624 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
625 {
626 int condition = nir_src_index(ctx, &src->src);
627
628 /* Source to swizzle the desired component into w */
629
630 const midgard_vector_alu_src alu_src = {
631 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
632 };
633
634 /* There is no boolean move instruction. Instead, we simulate a move by
635 * ANDing the condition with itself to get it into r31.w */
636
637 midgard_instruction ins = {
638 .type = TAG_ALU_4,
639 .precede_break = true,
640 .ssa_args = {
641 .src0 = condition,
642 .src1 = condition,
643 .dest = SSA_FIXED_REGISTER(31),
644 },
645 .alu = {
646 .op = midgard_alu_op_iand,
647 .outmod = midgard_outmod_int_wrap,
648 .reg_mode = midgard_reg_mode_32,
649 .dest_override = midgard_dest_override_none,
650 .mask = expand_writemask(mask_of(nr_comp)),
651 .src1 = vector_alu_srco_unsigned(alu_src),
652 .src2 = vector_alu_srco_unsigned(alu_src)
653 },
654 };
655
656 emit_mir_instruction(ctx, ins);
657 }
658
659
660
661 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
662 * pinning to eliminate this move in all known cases */
663
664 static void
665 emit_indirect_offset(compiler_context *ctx, nir_src *src)
666 {
667 int offset = nir_src_index(ctx, src);
668
669 midgard_instruction ins = {
670 .type = TAG_ALU_4,
671 .ssa_args = {
672 .src0 = SSA_UNUSED_1,
673 .src1 = offset,
674 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
675 },
676 .alu = {
677 .op = midgard_alu_op_imov,
678 .outmod = midgard_outmod_int_wrap,
679 .reg_mode = midgard_reg_mode_32,
680 .dest_override = midgard_dest_override_none,
681 .mask = (0x3 << 6), /* w */
682 .src1 = vector_alu_srco_unsigned(zero_alu_src),
683 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
684 },
685 };
686
687 emit_mir_instruction(ctx, ins);
688 }
689
690 #define ALU_CASE(nir, _op) \
691 case nir_op_##nir: \
692 op = midgard_alu_op_##_op; \
693 assert(src_bitsize == dst_bitsize); \
694 break;
695
696 #define ALU_CASE_BCAST(nir, _op, count) \
697 case nir_op_##nir: \
698 op = midgard_alu_op_##_op; \
699 broadcast_swizzle = count; \
700 assert(src_bitsize == dst_bitsize); \
701 break;
702 static bool
703 nir_is_fzero_constant(nir_src src)
704 {
705 if (!nir_src_is_const(src))
706 return false;
707
708 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
709 if (nir_src_comp_as_float(src, c) != 0.0)
710 return false;
711 }
712
713 return true;
714 }
715
716 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
717 * special treatment override this anyway. */
718
719 static midgard_reg_mode
720 reg_mode_for_nir(nir_alu_instr *instr)
721 {
722 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
723
724 switch (src_bitsize) {
725 case 8:
726 return midgard_reg_mode_8;
727 case 16:
728 return midgard_reg_mode_16;
729 case 32:
730 return midgard_reg_mode_32;
731 case 64:
732 return midgard_reg_mode_64;
733 default:
734 unreachable("Invalid bit size");
735 }
736 }
737
738 static void
739 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
740 {
741 bool is_ssa = instr->dest.dest.is_ssa;
742
743 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
744 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
745 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
746
747 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
748 * supported. A few do not and are commented for now. Also, there are a
749 * number of NIR ops which Midgard does not support and need to be
750 * lowered, also TODO. This switch block emits the opcode and calling
751 * convention of the Midgard instruction; actual packing is done in
752 * emit_alu below */
753
754 unsigned op;
755
756 /* Number of components valid to check for the instruction (the rest
757 * will be forced to the last), or 0 to use as-is. Relevant as
758 * ball-type instructions have a channel count in NIR but are all vec4
759 * in Midgard */
760
761 unsigned broadcast_swizzle = 0;
762
763 /* What register mode should we operate in? */
764 midgard_reg_mode reg_mode =
765 reg_mode_for_nir(instr);
766
767 /* Do we need a destination override? Used for inline
768 * type conversion */
769
770 midgard_dest_override dest_override =
771 midgard_dest_override_none;
772
773 /* Should we use a smaller respective source and sign-extend? */
774
775 bool half_1 = false, sext_1 = false;
776 bool half_2 = false, sext_2 = false;
777
778 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
779 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
780
781 switch (instr->op) {
782 ALU_CASE(fadd, fadd);
783 ALU_CASE(fmul, fmul);
784 ALU_CASE(fmin, fmin);
785 ALU_CASE(fmax, fmax);
786 ALU_CASE(imin, imin);
787 ALU_CASE(imax, imax);
788 ALU_CASE(umin, umin);
789 ALU_CASE(umax, umax);
790 ALU_CASE(ffloor, ffloor);
791 ALU_CASE(fround_even, froundeven);
792 ALU_CASE(ftrunc, ftrunc);
793 ALU_CASE(fceil, fceil);
794 ALU_CASE(fdot3, fdot3);
795 ALU_CASE(fdot4, fdot4);
796 ALU_CASE(iadd, iadd);
797 ALU_CASE(isub, isub);
798 ALU_CASE(imul, imul);
799
800 /* Zero shoved as second-arg */
801 ALU_CASE(iabs, iabsdiff);
802
803 ALU_CASE(mov, imov);
804
805 ALU_CASE(feq32, feq);
806 ALU_CASE(fne32, fne);
807 ALU_CASE(flt32, flt);
808 ALU_CASE(ieq32, ieq);
809 ALU_CASE(ine32, ine);
810 ALU_CASE(ilt32, ilt);
811 ALU_CASE(ult32, ult);
812
813 /* We don't have a native b2f32 instruction. Instead, like many
814 * GPUs, we exploit booleans as 0/~0 for false/true, and
815 * correspondingly AND
816 * by 1.0 to do the type conversion. For the moment, prime us
817 * to emit:
818 *
819 * iand [whatever], #0
820 *
821 * At the end of emit_alu (as MIR), we'll fix-up the constant
822 */
823
824 ALU_CASE(b2f32, iand);
825 ALU_CASE(b2i32, iand);
826
827 /* Likewise, we don't have a dedicated f2b32 instruction, but
828 * we can do a "not equal to 0.0" test. */
829
830 ALU_CASE(f2b32, fne);
831 ALU_CASE(i2b32, ine);
832
833 ALU_CASE(frcp, frcp);
834 ALU_CASE(frsq, frsqrt);
835 ALU_CASE(fsqrt, fsqrt);
836 ALU_CASE(fexp2, fexp2);
837 ALU_CASE(flog2, flog2);
838
839 ALU_CASE(f2i32, f2i_rtz);
840 ALU_CASE(f2u32, f2u_rtz);
841 ALU_CASE(i2f32, i2f_rtz);
842 ALU_CASE(u2f32, u2f_rtz);
843
844 ALU_CASE(fsin, fsin);
845 ALU_CASE(fcos, fcos);
846
847 /* Second op implicit #0 */
848 ALU_CASE(inot, inor);
849 ALU_CASE(iand, iand);
850 ALU_CASE(ior, ior);
851 ALU_CASE(ixor, ixor);
852 ALU_CASE(ishl, ishl);
853 ALU_CASE(ishr, iasr);
854 ALU_CASE(ushr, ilsr);
855
856 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
857 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
858 ALU_CASE(b32all_fequal4, fball_eq);
859
860 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
861 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
862 ALU_CASE(b32any_fnequal4, fbany_neq);
863
864 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
865 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
866 ALU_CASE(b32all_iequal4, iball_eq);
867
868 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
869 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
870 ALU_CASE(b32any_inequal4, ibany_neq);
871
872 /* Source mods will be shoved in later */
873 ALU_CASE(fabs, fmov);
874 ALU_CASE(fneg, fmov);
875 ALU_CASE(fsat, fmov);
876
877 /* For size conversion, we use a move. Ideally though we would squash
878 * these ops together; maybe that has to happen after in NIR as part of
879 * propagation...? An earlier algebraic pass ensured we step down by
880 * only / exactly one size. If stepping down, we use a dest override to
881 * reduce the size; if stepping up, we use a larger-sized move with a
882 * half source and a sign/zero-extension modifier */
883
884 case nir_op_i2i8:
885 case nir_op_i2i16:
886 case nir_op_i2i32:
887 /* If we end up upscale, we'll need a sign-extend on the
888 * operand (the second argument) */
889
890 sext_2 = true;
891 case nir_op_u2u8:
892 case nir_op_u2u16:
893 case nir_op_u2u32: {
894 op = midgard_alu_op_imov;
895
896 if (dst_bitsize == (src_bitsize * 2)) {
897 /* Converting up */
898 half_2 = true;
899
900 /* Use a greater register mode */
901 reg_mode++;
902 } else if (src_bitsize == (dst_bitsize * 2)) {
903 /* Converting down */
904 dest_override = midgard_dest_override_lower;
905 }
906
907 break;
908 }
909
910 /* For greater-or-equal, we lower to less-or-equal and flip the
911 * arguments */
912
913 case nir_op_fge:
914 case nir_op_fge32:
915 case nir_op_ige32:
916 case nir_op_uge32: {
917 op =
918 instr->op == nir_op_fge ? midgard_alu_op_fle :
919 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
920 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
921 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
922 0;
923
924 /* Swap via temporary */
925 nir_alu_src temp = instr->src[1];
926 instr->src[1] = instr->src[0];
927 instr->src[0] = temp;
928
929 break;
930 }
931
932 case nir_op_b32csel: {
933 /* Midgard features both fcsel and icsel, depending on
934 * the type of the arguments/output. However, as long
935 * as we're careful we can _always_ use icsel and
936 * _never_ need fcsel, since the latter does additional
937 * floating-point-specific processing whereas the
938 * former just moves bits on the wire. It's not obvious
939 * why these are separate opcodes, save for the ability
940 * to do things like sat/pos/abs/neg for free */
941
942 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
943 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
944
945 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
946 nr_inputs = 2;
947
948 /* Emit the condition into r31 */
949
950 if (mixed)
951 emit_condition_mixed(ctx, &instr->src[0], nr_components);
952 else
953 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
954
955 /* The condition is the first argument; move the other
956 * arguments up one to be a binary instruction for
957 * Midgard */
958
959 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
960 break;
961 }
962
963 default:
964 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
965 assert(0);
966 return;
967 }
968
969 /* Midgard can perform certain modifiers on output of an ALU op */
970 unsigned outmod;
971
972 if (midgard_is_integer_out_op(op)) {
973 outmod = midgard_outmod_int_wrap;
974 } else {
975 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
976 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
977 }
978
979 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
980
981 if (instr->op == nir_op_fmax) {
982 if (nir_is_fzero_constant(instr->src[0].src)) {
983 op = midgard_alu_op_fmov;
984 nr_inputs = 1;
985 outmod = midgard_outmod_pos;
986 instr->src[0] = instr->src[1];
987 } else if (nir_is_fzero_constant(instr->src[1].src)) {
988 op = midgard_alu_op_fmov;
989 nr_inputs = 1;
990 outmod = midgard_outmod_pos;
991 }
992 }
993
994 /* Fetch unit, quirks, etc information */
995 unsigned opcode_props = alu_opcode_props[op].props;
996 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
997
998 /* src0 will always exist afaik, but src1 will not for 1-argument
999 * instructions. The latter can only be fetched if the instruction
1000 * needs it, or else we may segfault. */
1001
1002 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1003 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1004
1005 /* Rather than use the instruction generation helpers, we do it
1006 * ourselves here to avoid the mess */
1007
1008 midgard_instruction ins = {
1009 .type = TAG_ALU_4,
1010 .ssa_args = {
1011 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1012 .src1 = quirk_flipped_r24 ? src0 : src1,
1013 .dest = dest,
1014 }
1015 };
1016
1017 nir_alu_src *nirmods[2] = { NULL };
1018
1019 if (nr_inputs == 2) {
1020 nirmods[0] = &instr->src[0];
1021 nirmods[1] = &instr->src[1];
1022 } else if (nr_inputs == 1) {
1023 nirmods[quirk_flipped_r24] = &instr->src[0];
1024 } else {
1025 assert(0);
1026 }
1027
1028 /* These were lowered to a move, so apply the corresponding mod */
1029
1030 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1031 nir_alu_src *s = nirmods[quirk_flipped_r24];
1032
1033 if (instr->op == nir_op_fneg)
1034 s->negate = !s->negate;
1035
1036 if (instr->op == nir_op_fabs)
1037 s->abs = !s->abs;
1038 }
1039
1040 bool is_int = midgard_is_integer_op(op);
1041
1042 midgard_vector_alu alu = {
1043 .op = op,
1044 .reg_mode = reg_mode,
1045 .dest_override = dest_override,
1046 .outmod = outmod,
1047
1048 /* Writemask only valid for non-SSA NIR */
1049 .mask = expand_writemask(mask_of(nr_components)),
1050
1051 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1052 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1053 };
1054
1055 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1056
1057 if (!is_ssa)
1058 alu.mask &= expand_writemask(instr->dest.write_mask);
1059
1060 ins.alu = alu;
1061
1062 /* Late fixup for emulated instructions */
1063
1064 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1065 /* Presently, our second argument is an inline #0 constant.
1066 * Switch over to an embedded 1.0 constant (that can't fit
1067 * inline, since we're 32-bit, not 16-bit like the inline
1068 * constants) */
1069
1070 ins.ssa_args.inline_constant = false;
1071 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1072 ins.has_constants = true;
1073
1074 if (instr->op == nir_op_b2f32) {
1075 ins.constants[0] = 1.0f;
1076 } else {
1077 /* Type pun it into place */
1078 uint32_t one = 0x1;
1079 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1080 }
1081
1082 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1083 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1084 /* Lots of instructions need a 0 plonked in */
1085 ins.ssa_args.inline_constant = false;
1086 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1087 ins.has_constants = true;
1088 ins.constants[0] = 0.0f;
1089 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1090 } else if (instr->op == nir_op_inot) {
1091 /* ~b = ~(b & b), so duplicate the source */
1092 ins.ssa_args.src1 = ins.ssa_args.src0;
1093 ins.alu.src2 = ins.alu.src1;
1094 }
1095
1096 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1097 /* To avoid duplicating the lookup tables (probably), true LUT
1098 * instructions can only operate as if they were scalars. Lower
1099 * them here by changing the component. */
1100
1101 uint8_t original_swizzle[4];
1102 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1103
1104 for (int i = 0; i < nr_components; ++i) {
1105 /* Mask the associated component, dropping the
1106 * instruction if needed */
1107
1108 ins.alu.mask = (0x3) << (2 * i);
1109 ins.alu.mask &= alu.mask;
1110
1111 if (!ins.alu.mask)
1112 continue;
1113
1114 for (int j = 0; j < 4; ++j)
1115 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1116
1117 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1118 emit_mir_instruction(ctx, ins);
1119 }
1120 } else {
1121 emit_mir_instruction(ctx, ins);
1122 }
1123 }
1124
1125 #undef ALU_CASE
1126
1127 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1128 * optimized) versions of UBO #0 */
1129
1130 static void
1131 emit_ubo_read(
1132 compiler_context *ctx,
1133 unsigned dest,
1134 unsigned offset,
1135 nir_src *indirect_offset,
1136 unsigned index)
1137 {
1138 /* TODO: half-floats */
1139
1140 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1141 /* Fast path: For the first 16 uniforms, direct accesses are
1142 * 0-cycle, since they're just a register fetch in the usual
1143 * case. So, we alias the registers while we're still in
1144 * SSA-space */
1145
1146 int reg_slot = 23 - offset;
1147 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1148 } else {
1149 /* Otherwise, read from the 'special' UBO to access
1150 * higher-indexed uniforms, at a performance cost. More
1151 * generally, we're emitting a UBO read instruction. */
1152
1153 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1154
1155 /* TODO: Don't split */
1156 ins.load_store.varying_parameters = (offset & 7) << 7;
1157 ins.load_store.address = offset >> 3;
1158
1159 if (indirect_offset) {
1160 emit_indirect_offset(ctx, indirect_offset);
1161 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1162 } else {
1163 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1164 }
1165
1166 /* TODO respect index */
1167
1168 emit_mir_instruction(ctx, ins);
1169 }
1170 }
1171
1172 static void
1173 emit_varying_read(
1174 compiler_context *ctx,
1175 unsigned dest, unsigned offset,
1176 unsigned nr_comp, unsigned component,
1177 nir_src *indirect_offset, nir_alu_type type)
1178 {
1179 /* XXX: Half-floats? */
1180 /* TODO: swizzle, mask */
1181
1182 midgard_instruction ins = m_ld_vary_32(dest, offset);
1183 ins.load_store.mask = mask_of(nr_comp);
1184 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1185
1186 midgard_varying_parameter p = {
1187 .is_varying = 1,
1188 .interpolation = midgard_interp_default,
1189 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1190 };
1191
1192 unsigned u;
1193 memcpy(&u, &p, sizeof(p));
1194 ins.load_store.varying_parameters = u;
1195
1196 if (indirect_offset) {
1197 /* We need to add in the dynamic index, moved to r27.w */
1198 emit_indirect_offset(ctx, indirect_offset);
1199 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1200 } else {
1201 /* Just a direct load */
1202 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1203 }
1204
1205 /* Use the type appropriate load */
1206 switch (type) {
1207 case nir_type_uint:
1208 case nir_type_bool:
1209 ins.load_store.op = midgard_op_ld_vary_32u;
1210 break;
1211 case nir_type_int:
1212 ins.load_store.op = midgard_op_ld_vary_32i;
1213 break;
1214 case nir_type_float:
1215 ins.load_store.op = midgard_op_ld_vary_32;
1216 break;
1217 default:
1218 unreachable("Attempted to load unknown type");
1219 break;
1220 }
1221
1222 emit_mir_instruction(ctx, ins);
1223 }
1224
1225 static void
1226 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1227 {
1228 unsigned dest;
1229 /* Figure out which uniform this is */
1230 int sysval = sysval_for_instr(ctx, instr, &dest);
1231 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1232
1233 /* Sysvals are prefix uniforms */
1234 unsigned uniform = ((uintptr_t) val) - 1;
1235
1236 /* Emit the read itself -- this is never indirect */
1237 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1238 }
1239
1240 static void
1241 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1242 {
1243 unsigned offset = 0, reg;
1244
1245 switch (instr->intrinsic) {
1246 case nir_intrinsic_discard_if:
1247 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1248
1249 /* fallthrough */
1250
1251 case nir_intrinsic_discard: {
1252 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1253 struct midgard_instruction discard = v_branch(conditional, false);
1254 discard.branch.target_type = TARGET_DISCARD;
1255 emit_mir_instruction(ctx, discard);
1256
1257 ctx->can_discard = true;
1258 break;
1259 }
1260
1261 case nir_intrinsic_load_uniform:
1262 case nir_intrinsic_load_ubo:
1263 case nir_intrinsic_load_input: {
1264 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1265 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1266
1267 /* Get the base type of the intrinsic */
1268 /* TODO: Infer type? Does it matter? */
1269 nir_alu_type t =
1270 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1271 t = nir_alu_type_get_base_type(t);
1272
1273 if (!is_ubo) {
1274 offset = nir_intrinsic_base(instr);
1275 }
1276
1277 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1278
1279 nir_src *src_offset = nir_get_io_offset_src(instr);
1280
1281 bool direct = nir_src_is_const(*src_offset);
1282
1283 if (direct)
1284 offset += nir_src_as_uint(*src_offset);
1285
1286 /* We may need to apply a fractional offset */
1287 int component = instr->intrinsic == nir_intrinsic_load_input ?
1288 nir_intrinsic_component(instr) : 0;
1289 reg = nir_dest_index(ctx, &instr->dest);
1290
1291 if (is_uniform && !ctx->is_blend) {
1292 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1293 } else if (is_ubo) {
1294 nir_src index = instr->src[0];
1295
1296 /* We don't yet support indirect UBOs. For indirect
1297 * block numbers (if that's possible), we don't know
1298 * enough about the hardware yet. For indirect sources,
1299 * we know what we need but we need to add some NIR
1300 * support for lowering correctly with respect to
1301 * 128-bit reads */
1302
1303 assert(nir_src_is_const(index));
1304 assert(nir_src_is_const(*src_offset));
1305
1306 /* TODO: Alignment */
1307 assert((offset & 0xF) == 0);
1308
1309 uint32_t uindex = nir_src_as_uint(index) + 1;
1310 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1311 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1312 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1313 } else if (ctx->is_blend) {
1314 /* For blend shaders, load the input color, which is
1315 * preloaded to r0 */
1316
1317 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1318 emit_mir_instruction(ctx, move);
1319 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1320 midgard_instruction ins = m_ld_attr_32(reg, offset);
1321 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1322 ins.load_store.mask = mask_of(nr_comp);
1323
1324 /* Use the type appropriate load */
1325 switch (t) {
1326 case nir_type_uint:
1327 case nir_type_bool:
1328 ins.load_store.op = midgard_op_ld_attr_32u;
1329 break;
1330 case nir_type_int:
1331 ins.load_store.op = midgard_op_ld_attr_32i;
1332 break;
1333 case nir_type_float:
1334 ins.load_store.op = midgard_op_ld_attr_32;
1335 break;
1336 default:
1337 unreachable("Attempted to load unknown type");
1338 break;
1339 }
1340
1341 emit_mir_instruction(ctx, ins);
1342 } else {
1343 DBG("Unknown load\n");
1344 assert(0);
1345 }
1346
1347 break;
1348 }
1349
1350 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1351
1352 case nir_intrinsic_load_raw_output_pan:
1353 reg = nir_dest_index(ctx, &instr->dest);
1354 assert(ctx->is_blend);
1355
1356 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1357 emit_mir_instruction(ctx, ins);
1358 break;
1359
1360 case nir_intrinsic_load_blend_const_color_rgba: {
1361 assert(ctx->is_blend);
1362 reg = nir_dest_index(ctx, &instr->dest);
1363
1364 /* Blend constants are embedded directly in the shader and
1365 * patched in, so we use some magic routing */
1366
1367 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1368 ins.has_constants = true;
1369 ins.has_blend_constant = true;
1370 emit_mir_instruction(ctx, ins);
1371 break;
1372 }
1373
1374 case nir_intrinsic_store_output:
1375 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1376
1377 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1378
1379 reg = nir_src_index(ctx, &instr->src[0]);
1380
1381 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1382 /* gl_FragColor is not emitted with load/store
1383 * instructions. Instead, it gets plonked into
1384 * r0 at the end of the shader and we do the
1385 * framebuffer writeout dance. TODO: Defer
1386 * writes */
1387
1388 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1389 emit_mir_instruction(ctx, move);
1390
1391 /* Save the index we're writing to for later reference
1392 * in the epilogue */
1393
1394 ctx->fragment_output = reg;
1395 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1396 /* Varyings are written into one of two special
1397 * varying register, r26 or r27. The register itself is
1398 * selected as the register in the st_vary instruction,
1399 * minus the base of 26. E.g. write into r27 and then
1400 * call st_vary(1) */
1401
1402 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1403 emit_mir_instruction(ctx, ins);
1404
1405 /* We should have been vectorized, though we don't
1406 * currently check that st_vary is emitted only once
1407 * per slot (this is relevant, since there's not a mask
1408 * parameter available on the store [set to 0 by the
1409 * blob]). We do respect the component by adjusting the
1410 * swizzle. */
1411
1412 unsigned component = nir_intrinsic_component(instr);
1413
1414 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1415 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1416 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1417 emit_mir_instruction(ctx, st);
1418 } else {
1419 DBG("Unknown store\n");
1420 assert(0);
1421 }
1422
1423 break;
1424
1425 /* Special case of store_output for lowered blend shaders */
1426 case nir_intrinsic_store_raw_output_pan:
1427 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1428 reg = nir_src_index(ctx, &instr->src[0]);
1429
1430 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1431 emit_mir_instruction(ctx, move);
1432 ctx->fragment_output = reg;
1433
1434 break;
1435
1436 case nir_intrinsic_load_alpha_ref_float:
1437 assert(instr->dest.is_ssa);
1438
1439 float ref_value = ctx->alpha_ref;
1440
1441 float *v = ralloc_array(NULL, float, 4);
1442 memcpy(v, &ref_value, sizeof(float));
1443 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1444 break;
1445
1446 case nir_intrinsic_load_viewport_scale:
1447 case nir_intrinsic_load_viewport_offset:
1448 emit_sysval_read(ctx, &instr->instr);
1449 break;
1450
1451 default:
1452 printf ("Unhandled intrinsic\n");
1453 assert(0);
1454 break;
1455 }
1456 }
1457
1458 static unsigned
1459 midgard_tex_format(enum glsl_sampler_dim dim)
1460 {
1461 switch (dim) {
1462 case GLSL_SAMPLER_DIM_1D:
1463 case GLSL_SAMPLER_DIM_BUF:
1464 return MALI_TEX_1D;
1465
1466 case GLSL_SAMPLER_DIM_2D:
1467 case GLSL_SAMPLER_DIM_EXTERNAL:
1468 return MALI_TEX_2D;
1469
1470 case GLSL_SAMPLER_DIM_3D:
1471 return MALI_TEX_3D;
1472
1473 case GLSL_SAMPLER_DIM_CUBE:
1474 return MALI_TEX_CUBE;
1475
1476 default:
1477 DBG("Unknown sampler dim type\n");
1478 assert(0);
1479 return 0;
1480 }
1481 }
1482
1483 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1484 * was successful */
1485
1486 static bool
1487 pan_attach_constant_bias(
1488 compiler_context *ctx,
1489 nir_src lod,
1490 midgard_texture_word *word)
1491 {
1492 /* To attach as constant, it has to *be* constant */
1493
1494 if (!nir_src_is_const(lod))
1495 return false;
1496
1497 float f = nir_src_as_float(lod);
1498
1499 /* Break into fixed-point */
1500 signed lod_int = f;
1501 float lod_frac = f - lod_int;
1502
1503 /* Carry over negative fractions */
1504 if (lod_frac < 0.0) {
1505 lod_int--;
1506 lod_frac += 1.0;
1507 }
1508
1509 /* Encode */
1510 word->bias = float_to_ubyte(lod_frac);
1511 word->bias_int = lod_int;
1512
1513 return true;
1514 }
1515
1516 static enum mali_sampler_type
1517 midgard_sampler_type(nir_alu_type t)
1518 {
1519 switch (nir_alu_type_get_base_type(t)) {
1520 case nir_type_float:
1521 return MALI_SAMPLER_FLOAT;
1522 case nir_type_int:
1523 return MALI_SAMPLER_SIGNED;
1524 case nir_type_uint:
1525 return MALI_SAMPLER_UNSIGNED;
1526 default:
1527 unreachable("Unknown sampler type");
1528 }
1529 }
1530
1531 static void
1532 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1533 unsigned midgard_texop)
1534 {
1535 /* TODO */
1536 //assert (!instr->sampler);
1537 //assert (!instr->texture_array_size);
1538
1539 /* Allocate registers via a round robin scheme to alternate between the two registers */
1540 int reg = ctx->texture_op_count & 1;
1541 int in_reg = reg, out_reg = reg;
1542
1543 /* Make room for the reg */
1544
1545 if (ctx->texture_index[reg] > -1)
1546 unalias_ssa(ctx, ctx->texture_index[reg]);
1547
1548 int texture_index = instr->texture_index;
1549 int sampler_index = texture_index;
1550
1551 /* No helper to build texture words -- we do it all here */
1552 midgard_instruction ins = {
1553 .type = TAG_TEXTURE_4,
1554 .texture = {
1555 .op = midgard_texop,
1556 .format = midgard_tex_format(instr->sampler_dim),
1557 .texture_handle = texture_index,
1558 .sampler_handle = sampler_index,
1559
1560 /* TODO: Regalloc it in */
1561 .swizzle = SWIZZLE_XYZW,
1562 .mask = 0xF,
1563
1564 /* TODO: half */
1565 .in_reg_full = 1,
1566 .out_full = 1,
1567
1568 .sampler_type = midgard_sampler_type(instr->dest_type),
1569 }
1570 };
1571
1572 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1573 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1574 int index = nir_src_index(ctx, &instr->src[i].src);
1575 int nr_comp = nir_src_num_components(instr->src[i].src);
1576 midgard_vector_alu_src alu_src = blank_alu_src;
1577
1578 switch (instr->src[i].src_type) {
1579 case nir_tex_src_coord: {
1580 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1581 /* texelFetch is undefined on samplerCube */
1582 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1583
1584 /* For cubemaps, we need to load coords into
1585 * special r27, and then use a special ld/st op
1586 * to select the face and copy the xy into the
1587 * texture register */
1588
1589 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1590
1591 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1592 emit_mir_instruction(ctx, move);
1593
1594 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1595 st.load_store.unknown = 0x24; /* XXX: What is this? */
1596 st.load_store.mask = 0x3; /* xy */
1597 st.load_store.swizzle = alu_src.swizzle;
1598 emit_mir_instruction(ctx, st);
1599
1600 ins.texture.in_reg_swizzle = swizzle_of(2);
1601 } else {
1602 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1603
1604 midgard_instruction mov = v_mov(index, alu_src, reg);
1605 mov.alu.mask = expand_writemask(mask_of(nr_comp));
1606 emit_mir_instruction(ctx, mov);
1607
1608 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1609 /* Texel fetch opcodes care about the
1610 * values of z and w, so we actually
1611 * need to spill into a second register
1612 * for a texel fetch with register bias
1613 * (for non-2D). TODO: Implement that
1614 */
1615
1616 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1617
1618 midgard_instruction zero = v_mov(index, alu_src, reg);
1619 zero.ssa_args.inline_constant = true;
1620 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1621 zero.has_constants = true;
1622 zero.alu.mask = ~mov.alu.mask;
1623 emit_mir_instruction(ctx, zero);
1624
1625 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1626 } else {
1627 /* Non-texel fetch doesn't need that
1628 * nonsense. However we do use the Z
1629 * for array indexing */
1630 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1631 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1632 }
1633 }
1634
1635 break;
1636 }
1637
1638 case nir_tex_src_bias:
1639 case nir_tex_src_lod: {
1640 /* Try as a constant if we can */
1641
1642 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1643 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1644 break;
1645
1646 /* Otherwise we use a register. To keep RA simple, we
1647 * put the bias/LOD into the w component of the input
1648 * source, which is otherwise in xy */
1649
1650 alu_src.swizzle = SWIZZLE_XXXX;
1651
1652 midgard_instruction mov = v_mov(index, alu_src, reg);
1653 mov.alu.mask = expand_writemask(1 << COMPONENT_W);
1654 emit_mir_instruction(ctx, mov);
1655
1656 ins.texture.lod_register = true;
1657
1658 midgard_tex_register_select sel = {
1659 .select = in_reg,
1660 .full = 1,
1661
1662 /* w */
1663 .component_lo = 1,
1664 .component_hi = 1
1665 };
1666
1667 uint8_t packed;
1668 memcpy(&packed, &sel, sizeof(packed));
1669 ins.texture.bias = packed;
1670
1671 break;
1672 };
1673
1674 default:
1675 unreachable("Unknown texture source type\n");
1676 }
1677 }
1678
1679 /* Set registers to read and write from the same place */
1680 ins.texture.in_reg_select = in_reg;
1681 ins.texture.out_reg_select = out_reg;
1682
1683 emit_mir_instruction(ctx, ins);
1684
1685 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1686
1687 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1688 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1689 ctx->texture_index[reg] = o_index;
1690
1691 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1692 emit_mir_instruction(ctx, ins2);
1693
1694 /* Used for .cont and .last hinting */
1695 ctx->texture_op_count++;
1696 }
1697
1698 static void
1699 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1700 {
1701 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1702 * generic tex in some cases (which confuses the hardware) */
1703
1704 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1705
1706 if (is_vertex && instr->op == nir_texop_tex)
1707 instr->op = nir_texop_txl;
1708
1709 switch (instr->op) {
1710 case nir_texop_tex:
1711 case nir_texop_txb:
1712 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1713 break;
1714 case nir_texop_txl:
1715 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1716 break;
1717 case nir_texop_txf:
1718 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1719 break;
1720 case nir_texop_txs:
1721 emit_sysval_read(ctx, &instr->instr);
1722 break;
1723 default:
1724 unreachable("Unhanlded texture op");
1725 }
1726 }
1727
1728 static void
1729 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1730 {
1731 switch (instr->type) {
1732 case nir_jump_break: {
1733 /* Emit a branch out of the loop */
1734 struct midgard_instruction br = v_branch(false, false);
1735 br.branch.target_type = TARGET_BREAK;
1736 br.branch.target_break = ctx->current_loop_depth;
1737 emit_mir_instruction(ctx, br);
1738
1739 DBG("break..\n");
1740 break;
1741 }
1742
1743 default:
1744 DBG("Unknown jump type %d\n", instr->type);
1745 break;
1746 }
1747 }
1748
1749 static void
1750 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1751 {
1752 switch (instr->type) {
1753 case nir_instr_type_load_const:
1754 emit_load_const(ctx, nir_instr_as_load_const(instr));
1755 break;
1756
1757 case nir_instr_type_intrinsic:
1758 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1759 break;
1760
1761 case nir_instr_type_alu:
1762 emit_alu(ctx, nir_instr_as_alu(instr));
1763 break;
1764
1765 case nir_instr_type_tex:
1766 emit_tex(ctx, nir_instr_as_tex(instr));
1767 break;
1768
1769 case nir_instr_type_jump:
1770 emit_jump(ctx, nir_instr_as_jump(instr));
1771 break;
1772
1773 case nir_instr_type_ssa_undef:
1774 /* Spurious */
1775 break;
1776
1777 default:
1778 DBG("Unhandled instruction type\n");
1779 break;
1780 }
1781 }
1782
1783
1784 /* ALU instructions can inline or embed constants, which decreases register
1785 * pressure and saves space. */
1786
1787 #define CONDITIONAL_ATTACH(src) { \
1788 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1789 \
1790 if (entry) { \
1791 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1792 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1793 } \
1794 }
1795
1796 static void
1797 inline_alu_constants(compiler_context *ctx)
1798 {
1799 mir_foreach_instr(ctx, alu) {
1800 /* Other instructions cannot inline constants */
1801 if (alu->type != TAG_ALU_4) continue;
1802
1803 /* If there is already a constant here, we can do nothing */
1804 if (alu->has_constants) continue;
1805
1806 /* It makes no sense to inline constants on a branch */
1807 if (alu->compact_branch || alu->prepacked_branch) continue;
1808
1809 CONDITIONAL_ATTACH(src0);
1810
1811 if (!alu->has_constants) {
1812 CONDITIONAL_ATTACH(src1)
1813 } else if (!alu->inline_constant) {
1814 /* Corner case: _two_ vec4 constants, for instance with a
1815 * csel. For this case, we can only use a constant
1816 * register for one, we'll have to emit a move for the
1817 * other. Note, if both arguments are constants, then
1818 * necessarily neither argument depends on the value of
1819 * any particular register. As the destination register
1820 * will be wiped, that means we can spill the constant
1821 * to the destination register.
1822 */
1823
1824 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1825 unsigned scratch = alu->ssa_args.dest;
1826
1827 if (entry) {
1828 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1829 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1830
1831 /* Force a break XXX Defer r31 writes */
1832 ins.unit = UNIT_VLUT;
1833
1834 /* Set the source */
1835 alu->ssa_args.src1 = scratch;
1836
1837 /* Inject us -before- the last instruction which set r31 */
1838 mir_insert_instruction_before(mir_prev_op(alu), ins);
1839 }
1840 }
1841 }
1842 }
1843
1844 /* Midgard supports two types of constants, embedded constants (128-bit) and
1845 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1846 * constants can be demoted to inline constants, for space savings and
1847 * sometimes a performance boost */
1848
1849 static void
1850 embedded_to_inline_constant(compiler_context *ctx)
1851 {
1852 mir_foreach_instr(ctx, ins) {
1853 if (!ins->has_constants) continue;
1854
1855 if (ins->ssa_args.inline_constant) continue;
1856
1857 /* Blend constants must not be inlined by definition */
1858 if (ins->has_blend_constant) continue;
1859
1860 /* src1 cannot be an inline constant due to encoding
1861 * restrictions. So, if possible we try to flip the arguments
1862 * in that case */
1863
1864 int op = ins->alu.op;
1865
1866 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1867 switch (op) {
1868 /* These ops require an operational change to flip
1869 * their arguments TODO */
1870 case midgard_alu_op_flt:
1871 case midgard_alu_op_fle:
1872 case midgard_alu_op_ilt:
1873 case midgard_alu_op_ile:
1874 case midgard_alu_op_fcsel:
1875 case midgard_alu_op_icsel:
1876 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1877 default:
1878 break;
1879 }
1880
1881 if (alu_opcode_props[op].props & OP_COMMUTES) {
1882 /* Flip the SSA numbers */
1883 ins->ssa_args.src0 = ins->ssa_args.src1;
1884 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1885
1886 /* And flip the modifiers */
1887
1888 unsigned src_temp;
1889
1890 src_temp = ins->alu.src2;
1891 ins->alu.src2 = ins->alu.src1;
1892 ins->alu.src1 = src_temp;
1893 }
1894 }
1895
1896 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1897 /* Extract the source information */
1898
1899 midgard_vector_alu_src *src;
1900 int q = ins->alu.src2;
1901 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1902 src = m;
1903
1904 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1905 int component = src->swizzle & 3;
1906
1907 /* Scale constant appropriately, if we can legally */
1908 uint16_t scaled_constant = 0;
1909
1910 if (midgard_is_integer_op(op)) {
1911 unsigned int *iconstants = (unsigned int *) ins->constants;
1912 scaled_constant = (uint16_t) iconstants[component];
1913
1914 /* Constant overflow after resize */
1915 if (scaled_constant != iconstants[component])
1916 continue;
1917 } else {
1918 float original = (float) ins->constants[component];
1919 scaled_constant = _mesa_float_to_half(original);
1920
1921 /* Check for loss of precision. If this is
1922 * mediump, we don't care, but for a highp
1923 * shader, we need to pay attention. NIR
1924 * doesn't yet tell us which mode we're in!
1925 * Practically this prevents most constants
1926 * from being inlined, sadly. */
1927
1928 float fp32 = _mesa_half_to_float(scaled_constant);
1929
1930 if (fp32 != original)
1931 continue;
1932 }
1933
1934 /* We don't know how to handle these with a constant */
1935
1936 if (src->mod || src->half || src->rep_low || src->rep_high) {
1937 DBG("Bailing inline constant...\n");
1938 continue;
1939 }
1940
1941 /* Make sure that the constant is not itself a
1942 * vector by checking if all accessed values
1943 * (by the swizzle) are the same. */
1944
1945 uint32_t *cons = (uint32_t *) ins->constants;
1946 uint32_t value = cons[component];
1947
1948 bool is_vector = false;
1949 unsigned mask = effective_writemask(&ins->alu);
1950
1951 for (int c = 1; c < 4; ++c) {
1952 /* We only care if this component is actually used */
1953 if (!(mask & (1 << c)))
1954 continue;
1955
1956 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1957
1958 if (test != value) {
1959 is_vector = true;
1960 break;
1961 }
1962 }
1963
1964 if (is_vector)
1965 continue;
1966
1967 /* Get rid of the embedded constant */
1968 ins->has_constants = false;
1969 ins->ssa_args.src1 = SSA_UNUSED_0;
1970 ins->ssa_args.inline_constant = true;
1971 ins->inline_constant = scaled_constant;
1972 }
1973 }
1974 }
1975
1976 /* Map normal SSA sources to other SSA sources / fixed registers (like
1977 * uniforms) */
1978
1979 static void
1980 map_ssa_to_alias(compiler_context *ctx, int *ref)
1981 {
1982 /* Sign is used quite deliberately for unused */
1983 if (*ref < 0)
1984 return;
1985
1986 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
1987
1988 if (alias) {
1989 /* Remove entry in leftovers to avoid a redunant fmov */
1990
1991 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
1992
1993 if (leftover)
1994 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
1995
1996 /* Assign the alias map */
1997 *ref = alias - 1;
1998 return;
1999 }
2000 }
2001
2002 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2003 * texture pipeline */
2004
2005 static bool
2006 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2007 {
2008 bool progress = false;
2009
2010 mir_foreach_instr_in_block_safe(block, ins) {
2011 if (ins->type != TAG_ALU_4) continue;
2012 if (ins->compact_branch) continue;
2013
2014 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2015 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2016
2017 mir_remove_instruction(ins);
2018 progress = true;
2019 }
2020
2021 return progress;
2022 }
2023
2024 /* Dead code elimination for branches at the end of a block - only one branch
2025 * per block is legal semantically */
2026
2027 static void
2028 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2029 {
2030 bool branched = false;
2031
2032 mir_foreach_instr_in_block_safe(block, ins) {
2033 if (!midgard_is_branch_unit(ins->unit)) continue;
2034
2035 /* We ignore prepacked branches since the fragment epilogue is
2036 * just generally special */
2037 if (ins->prepacked_branch) continue;
2038
2039 /* Discards are similarly special and may not correspond to the
2040 * end of a block */
2041
2042 if (ins->branch.target_type == TARGET_DISCARD) continue;
2043
2044 if (branched) {
2045 /* We already branched, so this is dead */
2046 mir_remove_instruction(ins);
2047 }
2048
2049 branched = true;
2050 }
2051 }
2052
2053 static bool
2054 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2055 {
2056 /* abs or neg */
2057 if (!is_int && src.mod) return true;
2058
2059 /* Other int mods don't matter in isolation */
2060 if (is_int && src.mod == midgard_int_shift) return true;
2061
2062 /* size-conversion */
2063 if (src.half) return true;
2064
2065 /* swizzle */
2066 for (unsigned c = 0; c < 4; ++c) {
2067 if (!(mask & (1 << c))) continue;
2068 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2069 }
2070
2071 return false;
2072 }
2073
2074 static bool
2075 mir_nontrivial_source2_mod(midgard_instruction *ins)
2076 {
2077 unsigned mask = squeeze_writemask(ins->alu.mask);
2078 bool is_int = midgard_is_integer_op(ins->alu.op);
2079
2080 midgard_vector_alu_src src2 =
2081 vector_alu_from_unsigned(ins->alu.src2);
2082
2083 return mir_nontrivial_mod(src2, is_int, mask);
2084 }
2085
2086 static bool
2087 mir_nontrivial_outmod(midgard_instruction *ins)
2088 {
2089 bool is_int = midgard_is_integer_op(ins->alu.op);
2090 unsigned mod = ins->alu.outmod;
2091
2092 /* Type conversion is a sort of outmod */
2093 if (ins->alu.dest_override != midgard_dest_override_none)
2094 return true;
2095
2096 if (is_int)
2097 return mod != midgard_outmod_int_wrap;
2098 else
2099 return mod != midgard_outmod_none;
2100 }
2101
2102 static bool
2103 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2104 {
2105 bool progress = false;
2106
2107 mir_foreach_instr_in_block_safe(block, ins) {
2108 if (ins->type != TAG_ALU_4) continue;
2109 if (!OP_IS_MOVE(ins->alu.op)) continue;
2110
2111 unsigned from = ins->ssa_args.src1;
2112 unsigned to = ins->ssa_args.dest;
2113
2114 /* We only work on pure SSA */
2115
2116 if (to >= SSA_FIXED_MINIMUM) continue;
2117 if (from >= SSA_FIXED_MINIMUM) continue;
2118 if (to >= ctx->func->impl->ssa_alloc) continue;
2119 if (from >= ctx->func->impl->ssa_alloc) continue;
2120
2121 /* Constant propagation is not handled here, either */
2122 if (ins->ssa_args.inline_constant) continue;
2123 if (ins->has_constants) continue;
2124
2125 if (mir_nontrivial_source2_mod(ins)) continue;
2126 if (mir_nontrivial_outmod(ins)) continue;
2127
2128 /* We're clear -- rewrite */
2129 mir_rewrite_index_src(ctx, to, from);
2130 mir_remove_instruction(ins);
2131 progress |= true;
2132 }
2133
2134 return progress;
2135 }
2136
2137 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2138 * the move can be propagated away entirely */
2139
2140 static bool
2141 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2142 {
2143 /* Nothing to do */
2144 if (comp == midgard_outmod_none)
2145 return true;
2146
2147 if (*outmod == midgard_outmod_none) {
2148 *outmod = comp;
2149 return true;
2150 }
2151
2152 /* TODO: Compose rules */
2153 return false;
2154 }
2155
2156 static bool
2157 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2158 {
2159 bool progress = false;
2160
2161 mir_foreach_instr_in_block_safe(block, ins) {
2162 if (ins->type != TAG_ALU_4) continue;
2163 if (ins->alu.op != midgard_alu_op_fmov) continue;
2164 if (ins->alu.outmod != midgard_outmod_pos) continue;
2165
2166 /* TODO: Registers? */
2167 unsigned src = ins->ssa_args.src1;
2168 if (src >= ctx->func->impl->ssa_alloc) continue;
2169 assert(!mir_has_multiple_writes(ctx, src));
2170
2171 /* There might be a source modifier, too */
2172 if (mir_nontrivial_source2_mod(ins)) continue;
2173
2174 /* Backpropagate the modifier */
2175 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2176 if (v->type != TAG_ALU_4) continue;
2177 if (v->ssa_args.dest != src) continue;
2178
2179 /* Can we even take a float outmod? */
2180 if (midgard_is_integer_out_op(v->alu.op)) continue;
2181
2182 midgard_outmod_float temp = v->alu.outmod;
2183 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2184
2185 /* Throw in the towel.. */
2186 if (!progress) break;
2187
2188 /* Otherwise, transfer the modifier */
2189 v->alu.outmod = temp;
2190 ins->alu.outmod = midgard_outmod_none;
2191
2192 break;
2193 }
2194 }
2195
2196 return progress;
2197 }
2198
2199 static bool
2200 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2201 {
2202 bool progress = false;
2203
2204 mir_foreach_instr_in_block_safe(block, ins) {
2205 if (ins->type != TAG_ALU_4) continue;
2206 if (!OP_IS_MOVE(ins->alu.op)) continue;
2207
2208 unsigned from = ins->ssa_args.src1;
2209 unsigned to = ins->ssa_args.dest;
2210
2211 /* Make sure it's simple enough for us to handle */
2212
2213 if (from >= SSA_FIXED_MINIMUM) continue;
2214 if (from >= ctx->func->impl->ssa_alloc) continue;
2215 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2216 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2217
2218 bool eliminated = false;
2219
2220 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2221 /* The texture registers are not SSA so be careful.
2222 * Conservatively, just stop if we hit a texture op
2223 * (even if it may not write) to where we are */
2224
2225 if (v->type != TAG_ALU_4)
2226 break;
2227
2228 if (v->ssa_args.dest == from) {
2229 /* We don't want to track partial writes ... */
2230 if (v->alu.mask == 0xF) {
2231 v->ssa_args.dest = to;
2232 eliminated = true;
2233 }
2234
2235 break;
2236 }
2237 }
2238
2239 if (eliminated)
2240 mir_remove_instruction(ins);
2241
2242 progress |= eliminated;
2243 }
2244
2245 return progress;
2246 }
2247
2248 /* The following passes reorder MIR instructions to enable better scheduling */
2249
2250 static void
2251 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2252 {
2253 mir_foreach_instr_in_block_safe(block, ins) {
2254 if (ins->type != TAG_LOAD_STORE_4) continue;
2255
2256 /* We've found a load/store op. Check if next is also load/store. */
2257 midgard_instruction *next_op = mir_next_op(ins);
2258 if (&next_op->link != &block->instructions) {
2259 if (next_op->type == TAG_LOAD_STORE_4) {
2260 /* If so, we're done since we're a pair */
2261 ins = mir_next_op(ins);
2262 continue;
2263 }
2264
2265 /* Maximum search distance to pair, to avoid register pressure disasters */
2266 int search_distance = 8;
2267
2268 /* Otherwise, we have an orphaned load/store -- search for another load */
2269 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2270 /* Terminate search if necessary */
2271 if (!(search_distance--)) break;
2272
2273 if (c->type != TAG_LOAD_STORE_4) continue;
2274
2275 /* Stores cannot be reordered, since they have
2276 * dependencies. For the same reason, indirect
2277 * loads cannot be reordered as their index is
2278 * loaded in r27.w */
2279
2280 if (OP_IS_STORE(c->load_store.op)) continue;
2281
2282 /* It appears the 0x800 bit is set whenever a
2283 * load is direct, unset when it is indirect.
2284 * Skip indirect loads. */
2285
2286 if (!(c->load_store.unknown & 0x800)) continue;
2287
2288 /* We found one! Move it up to pair and remove it from the old location */
2289
2290 mir_insert_instruction_before(ins, *c);
2291 mir_remove_instruction(c);
2292
2293 break;
2294 }
2295 }
2296 }
2297 }
2298
2299 /* If there are leftovers after the below pass, emit actual fmov
2300 * instructions for the slow-but-correct path */
2301
2302 static void
2303 emit_leftover_move(compiler_context *ctx)
2304 {
2305 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2306 int base = ((uintptr_t) leftover->key) - 1;
2307 int mapped = base;
2308
2309 map_ssa_to_alias(ctx, &mapped);
2310 EMIT(mov, mapped, blank_alu_src, base);
2311 }
2312 }
2313
2314 static void
2315 actualise_ssa_to_alias(compiler_context *ctx)
2316 {
2317 mir_foreach_instr(ctx, ins) {
2318 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2319 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2320 }
2321
2322 emit_leftover_move(ctx);
2323 }
2324
2325 static void
2326 emit_fragment_epilogue(compiler_context *ctx)
2327 {
2328 /* Special case: writing out constants requires us to include the move
2329 * explicitly now, so shove it into r0 */
2330
2331 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2332
2333 if (constant_value) {
2334 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2335 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2336 emit_mir_instruction(ctx, ins);
2337 }
2338
2339 /* Perform the actual fragment writeout. We have two writeout/branch
2340 * instructions, forming a loop until writeout is successful as per the
2341 * docs. TODO: gl_FragDepth */
2342
2343 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2344 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2345 }
2346
2347 static midgard_block *
2348 emit_block(compiler_context *ctx, nir_block *block)
2349 {
2350 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2351 list_addtail(&this_block->link, &ctx->blocks);
2352
2353 this_block->is_scheduled = false;
2354 ++ctx->block_count;
2355
2356 ctx->texture_index[0] = -1;
2357 ctx->texture_index[1] = -1;
2358
2359 /* Add us as a successor to the block we are following */
2360 if (ctx->current_block)
2361 midgard_block_add_successor(ctx->current_block, this_block);
2362
2363 /* Set up current block */
2364 list_inithead(&this_block->instructions);
2365 ctx->current_block = this_block;
2366
2367 nir_foreach_instr(instr, block) {
2368 emit_instr(ctx, instr);
2369 ++ctx->instruction_count;
2370 }
2371
2372 inline_alu_constants(ctx);
2373 embedded_to_inline_constant(ctx);
2374
2375 /* Perform heavylifting for aliasing */
2376 actualise_ssa_to_alias(ctx);
2377
2378 midgard_pair_load_store(ctx, this_block);
2379
2380 /* Append fragment shader epilogue (value writeout) */
2381 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2382 if (block == nir_impl_last_block(ctx->func->impl)) {
2383 emit_fragment_epilogue(ctx);
2384 }
2385 }
2386
2387 if (block == nir_start_block(ctx->func->impl))
2388 ctx->initial_block = this_block;
2389
2390 if (block == nir_impl_last_block(ctx->func->impl))
2391 ctx->final_block = this_block;
2392
2393 /* Allow the next control flow to access us retroactively, for
2394 * branching etc */
2395 ctx->current_block = this_block;
2396
2397 /* Document the fallthrough chain */
2398 ctx->previous_source_block = this_block;
2399
2400 return this_block;
2401 }
2402
2403 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2404
2405 static void
2406 emit_if(struct compiler_context *ctx, nir_if *nif)
2407 {
2408 /* Conditional branches expect the condition in r31.w; emit a move for
2409 * that in the _previous_ block (which is the current block). */
2410 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2411
2412 /* Speculatively emit the branch, but we can't fill it in until later */
2413 EMIT(branch, true, true);
2414 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2415
2416 /* Emit the two subblocks */
2417 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2418
2419 /* Emit a jump from the end of the then block to the end of the else */
2420 EMIT(branch, false, false);
2421 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2422
2423 /* Emit second block, and check if it's empty */
2424
2425 int else_idx = ctx->block_count;
2426 int count_in = ctx->instruction_count;
2427 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2428 int after_else_idx = ctx->block_count;
2429
2430 /* Now that we have the subblocks emitted, fix up the branches */
2431
2432 assert(then_block);
2433 assert(else_block);
2434
2435 if (ctx->instruction_count == count_in) {
2436 /* The else block is empty, so don't emit an exit jump */
2437 mir_remove_instruction(then_exit);
2438 then_branch->branch.target_block = after_else_idx;
2439 } else {
2440 then_branch->branch.target_block = else_idx;
2441 then_exit->branch.target_block = after_else_idx;
2442 }
2443 }
2444
2445 static void
2446 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2447 {
2448 /* Remember where we are */
2449 midgard_block *start_block = ctx->current_block;
2450
2451 /* Allocate a loop number, growing the current inner loop depth */
2452 int loop_idx = ++ctx->current_loop_depth;
2453
2454 /* Get index from before the body so we can loop back later */
2455 int start_idx = ctx->block_count;
2456
2457 /* Emit the body itself */
2458 emit_cf_list(ctx, &nloop->body);
2459
2460 /* Branch back to loop back */
2461 struct midgard_instruction br_back = v_branch(false, false);
2462 br_back.branch.target_block = start_idx;
2463 emit_mir_instruction(ctx, br_back);
2464
2465 /* Mark down that branch in the graph. Note that we're really branching
2466 * to the block *after* we started in. TODO: Why doesn't the branch
2467 * itself have an off-by-one then...? */
2468 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2469
2470 /* Find the index of the block about to follow us (note: we don't add
2471 * one; blocks are 0-indexed so we get a fencepost problem) */
2472 int break_block_idx = ctx->block_count;
2473
2474 /* Fix up the break statements we emitted to point to the right place,
2475 * now that we can allocate a block number for them */
2476
2477 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2478 mir_foreach_instr_in_block(block, ins) {
2479 if (ins->type != TAG_ALU_4) continue;
2480 if (!ins->compact_branch) continue;
2481 if (ins->prepacked_branch) continue;
2482
2483 /* We found a branch -- check the type to see if we need to do anything */
2484 if (ins->branch.target_type != TARGET_BREAK) continue;
2485
2486 /* It's a break! Check if it's our break */
2487 if (ins->branch.target_break != loop_idx) continue;
2488
2489 /* Okay, cool, we're breaking out of this loop.
2490 * Rewrite from a break to a goto */
2491
2492 ins->branch.target_type = TARGET_GOTO;
2493 ins->branch.target_block = break_block_idx;
2494 }
2495 }
2496
2497 /* Now that we've finished emitting the loop, free up the depth again
2498 * so we play nice with recursion amid nested loops */
2499 --ctx->current_loop_depth;
2500 }
2501
2502 static midgard_block *
2503 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2504 {
2505 midgard_block *start_block = NULL;
2506
2507 foreach_list_typed(nir_cf_node, node, node, list) {
2508 switch (node->type) {
2509 case nir_cf_node_block: {
2510 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2511
2512 if (!start_block)
2513 start_block = block;
2514
2515 break;
2516 }
2517
2518 case nir_cf_node_if:
2519 emit_if(ctx, nir_cf_node_as_if(node));
2520 break;
2521
2522 case nir_cf_node_loop:
2523 emit_loop(ctx, nir_cf_node_as_loop(node));
2524 break;
2525
2526 case nir_cf_node_function:
2527 assert(0);
2528 break;
2529 }
2530 }
2531
2532 return start_block;
2533 }
2534
2535 /* Due to lookahead, we need to report the first tag executed in the command
2536 * stream and in branch targets. An initial block might be empty, so iterate
2537 * until we find one that 'works' */
2538
2539 static unsigned
2540 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2541 {
2542 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2543
2544 unsigned first_tag = 0;
2545
2546 do {
2547 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2548
2549 if (initial_bundle) {
2550 first_tag = initial_bundle->tag;
2551 break;
2552 }
2553
2554 /* Initial block is empty, try the next block */
2555 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2556 } while(initial_block != NULL);
2557
2558 assert(first_tag);
2559 return first_tag;
2560 }
2561
2562 int
2563 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2564 {
2565 struct util_dynarray *compiled = &program->compiled;
2566
2567 midgard_debug = debug_get_option_midgard_debug();
2568
2569 compiler_context ictx = {
2570 .nir = nir,
2571 .stage = nir->info.stage,
2572
2573 .is_blend = is_blend,
2574 .blend_constant_offset = -1,
2575
2576 .alpha_ref = program->alpha_ref
2577 };
2578
2579 compiler_context *ctx = &ictx;
2580
2581 /* TODO: Decide this at runtime */
2582 ctx->uniform_cutoff = 8;
2583
2584 /* Initialize at a global (not block) level hash tables */
2585
2586 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2587 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2588 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2589 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2590 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2591
2592 /* Record the varying mapping for the command stream's bookkeeping */
2593
2594 struct exec_list *varyings =
2595 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2596
2597 unsigned max_varying = 0;
2598 nir_foreach_variable(var, varyings) {
2599 unsigned loc = var->data.driver_location;
2600 unsigned sz = glsl_type_size(var->type, FALSE);
2601
2602 for (int c = 0; c < sz; ++c) {
2603 program->varyings[loc + c] = var->data.location + c;
2604 max_varying = MAX2(max_varying, loc + c);
2605 }
2606 }
2607
2608 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2609 * (so we don't accidentally duplicate the epilogue since mesa/st has
2610 * messed with our I/O quite a bit already) */
2611
2612 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2613
2614 if (ctx->stage == MESA_SHADER_VERTEX)
2615 NIR_PASS_V(nir, nir_lower_viewport_transform);
2616
2617 NIR_PASS_V(nir, nir_lower_var_copies);
2618 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2619 NIR_PASS_V(nir, nir_split_var_copies);
2620 NIR_PASS_V(nir, nir_lower_var_copies);
2621 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2622 NIR_PASS_V(nir, nir_lower_var_copies);
2623 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2624
2625 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2626
2627 /* Optimisation passes */
2628
2629 optimise_nir(nir);
2630
2631 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2632 nir_print_shader(nir, stdout);
2633 }
2634
2635 /* Assign sysvals and counts, now that we're sure
2636 * (post-optimisation) */
2637
2638 midgard_nir_assign_sysvals(ctx, nir);
2639
2640 program->uniform_count = nir->num_uniforms;
2641 program->sysval_count = ctx->sysval_count;
2642 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2643
2644 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2645 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2646
2647 nir_foreach_function(func, nir) {
2648 if (!func->impl)
2649 continue;
2650
2651 list_inithead(&ctx->blocks);
2652 ctx->block_count = 0;
2653 ctx->func = func;
2654
2655 emit_cf_list(ctx, &func->impl->body);
2656 emit_block(ctx, func->impl->end_block);
2657
2658 break; /* TODO: Multi-function shaders */
2659 }
2660
2661 util_dynarray_init(compiled, NULL);
2662
2663 /* MIR-level optimizations */
2664
2665 bool progress = false;
2666
2667 do {
2668 progress = false;
2669
2670 mir_foreach_block(ctx, block) {
2671 progress |= midgard_opt_pos_propagate(ctx, block);
2672 progress |= midgard_opt_copy_prop(ctx, block);
2673 progress |= midgard_opt_copy_prop_tex(ctx, block);
2674 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2675 }
2676 } while (progress);
2677
2678 /* Nested control-flow can result in dead branches at the end of the
2679 * block. This messes with our analysis and is just dead code, so cull
2680 * them */
2681 mir_foreach_block(ctx, block) {
2682 midgard_opt_cull_dead_branch(ctx, block);
2683 }
2684
2685 /* Schedule! */
2686 schedule_program(ctx);
2687
2688 /* Now that all the bundles are scheduled and we can calculate block
2689 * sizes, emit actual branch instructions rather than placeholders */
2690
2691 int br_block_idx = 0;
2692
2693 mir_foreach_block(ctx, block) {
2694 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2695 for (int c = 0; c < bundle->instruction_count; ++c) {
2696 midgard_instruction *ins = bundle->instructions[c];
2697
2698 if (!midgard_is_branch_unit(ins->unit)) continue;
2699
2700 if (ins->prepacked_branch) continue;
2701
2702 /* Parse some basic branch info */
2703 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2704 bool is_conditional = ins->branch.conditional;
2705 bool is_inverted = ins->branch.invert_conditional;
2706 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2707
2708 /* Determine the block we're jumping to */
2709 int target_number = ins->branch.target_block;
2710
2711 /* Report the destination tag */
2712 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2713
2714 /* Count up the number of quadwords we're
2715 * jumping over = number of quadwords until
2716 * (br_block_idx, target_number) */
2717
2718 int quadword_offset = 0;
2719
2720 if (is_discard) {
2721 /* Jump to the end of the shader. We
2722 * need to include not only the
2723 * following blocks, but also the
2724 * contents of our current block (since
2725 * discard can come in the middle of
2726 * the block) */
2727
2728 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2729
2730 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2731 quadword_offset += quadword_size(bun->tag);
2732 }
2733
2734 mir_foreach_block_from(ctx, blk, b) {
2735 quadword_offset += b->quadword_count;
2736 }
2737
2738 } else if (target_number > br_block_idx) {
2739 /* Jump forward */
2740
2741 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2742 midgard_block *blk = mir_get_block(ctx, idx);
2743 assert(blk);
2744
2745 quadword_offset += blk->quadword_count;
2746 }
2747 } else {
2748 /* Jump backwards */
2749
2750 for (int idx = br_block_idx; idx >= target_number; --idx) {
2751 midgard_block *blk = mir_get_block(ctx, idx);
2752 assert(blk);
2753
2754 quadword_offset -= blk->quadword_count;
2755 }
2756 }
2757
2758 /* Unconditional extended branches (far jumps)
2759 * have issues, so we always use a conditional
2760 * branch, setting the condition to always for
2761 * unconditional. For compact unconditional
2762 * branches, cond isn't used so it doesn't
2763 * matter what we pick. */
2764
2765 midgard_condition cond =
2766 !is_conditional ? midgard_condition_always :
2767 is_inverted ? midgard_condition_false :
2768 midgard_condition_true;
2769
2770 midgard_jmp_writeout_op op =
2771 is_discard ? midgard_jmp_writeout_op_discard :
2772 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2773 midgard_jmp_writeout_op_branch_cond;
2774
2775 if (!is_compact) {
2776 midgard_branch_extended branch =
2777 midgard_create_branch_extended(
2778 cond, op,
2779 dest_tag,
2780 quadword_offset);
2781
2782 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2783 } else if (is_conditional || is_discard) {
2784 midgard_branch_cond branch = {
2785 .op = op,
2786 .dest_tag = dest_tag,
2787 .offset = quadword_offset,
2788 .cond = cond
2789 };
2790
2791 assert(branch.offset == quadword_offset);
2792
2793 memcpy(&ins->br_compact, &branch, sizeof(branch));
2794 } else {
2795 assert(op == midgard_jmp_writeout_op_branch_uncond);
2796
2797 midgard_branch_uncond branch = {
2798 .op = op,
2799 .dest_tag = dest_tag,
2800 .offset = quadword_offset,
2801 .unknown = 1
2802 };
2803
2804 assert(branch.offset == quadword_offset);
2805
2806 memcpy(&ins->br_compact, &branch, sizeof(branch));
2807 }
2808 }
2809 }
2810
2811 ++br_block_idx;
2812 }
2813
2814 /* Emit flat binary from the instruction arrays. Iterate each block in
2815 * sequence. Save instruction boundaries such that lookahead tags can
2816 * be assigned easily */
2817
2818 /* Cache _all_ bundles in source order for lookahead across failed branches */
2819
2820 int bundle_count = 0;
2821 mir_foreach_block(ctx, block) {
2822 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2823 }
2824 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2825 int bundle_idx = 0;
2826 mir_foreach_block(ctx, block) {
2827 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2828 source_order_bundles[bundle_idx++] = bundle;
2829 }
2830 }
2831
2832 int current_bundle = 0;
2833
2834 /* Midgard prefetches instruction types, so during emission we
2835 * need to lookahead. Unless this is the last instruction, in
2836 * which we return 1. Or if this is the second to last and the
2837 * last is an ALU, then it's also 1... */
2838
2839 mir_foreach_block(ctx, block) {
2840 mir_foreach_bundle_in_block(block, bundle) {
2841 int lookahead = 1;
2842
2843 if (current_bundle + 1 < bundle_count) {
2844 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2845
2846 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2847 lookahead = 1;
2848 } else {
2849 lookahead = next;
2850 }
2851 }
2852
2853 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2854 ++current_bundle;
2855 }
2856
2857 /* TODO: Free deeper */
2858 //util_dynarray_fini(&block->instructions);
2859 }
2860
2861 free(source_order_bundles);
2862
2863 /* Report the very first tag executed */
2864 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2865
2866 /* Deal with off-by-one related to the fencepost problem */
2867 program->work_register_count = ctx->work_registers + 1;
2868
2869 program->can_discard = ctx->can_discard;
2870 program->uniform_cutoff = ctx->uniform_cutoff;
2871
2872 program->blend_patch_offset = ctx->blend_constant_offset;
2873
2874 if (midgard_debug & MIDGARD_DBG_SHADERS)
2875 disassemble_midgard(program->compiled.data, program->compiled.size);
2876
2877 return 0;
2878 }