panfrost/midgard: Add load/store opcodes
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 /* When emitting bundle, should this instruction have a break forced
142 * before it? Used for r31 writes which are valid only within a single
143 * bundle and *need* to happen as early as possible... this is a hack,
144 * TODO remove when we have a scheduler */
145 bool precede_break;
146
147 bool has_constants;
148 float constants[4];
149 uint16_t inline_constant;
150 bool has_blend_constant;
151
152 bool compact_branch;
153 bool writeout;
154 bool prepacked_branch;
155
156 union {
157 midgard_load_store_word load_store;
158 midgard_vector_alu alu;
159 midgard_texture_word texture;
160 midgard_branch_extended branch_extended;
161 uint16_t br_compact;
162
163 /* General branch, rather than packed br_compact. Higher level
164 * than the other components */
165 midgard_branch branch;
166 };
167 } midgard_instruction;
168
169 typedef struct midgard_block {
170 /* Link to next block. Must be first for mir_get_block */
171 struct list_head link;
172
173 /* List of midgard_instructions emitted for the current block */
174 struct list_head instructions;
175
176 bool is_scheduled;
177
178 /* List of midgard_bundles emitted (after the scheduler has run) */
179 struct util_dynarray bundles;
180
181 /* Number of quadwords _actually_ emitted, as determined after scheduling */
182 unsigned quadword_count;
183
184 /* Successors: always one forward (the block after us), maybe
185 * one backwards (for a backward branch). No need for a second
186 * forward, since graph traversal would get there eventually
187 * anyway */
188 struct midgard_block *successors[2];
189 unsigned nr_successors;
190
191 /* The successors pointer form a graph, and in the case of
192 * complex control flow, this graph has a cycles. To aid
193 * traversal during liveness analysis, we have a visited?
194 * boolean for passes to use as they see fit, provided they
195 * clean up later */
196 bool visited;
197 } midgard_block;
198
199 static void
200 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
201 {
202 block->successors[block->nr_successors++] = successor;
203 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
204 }
205
206 /* Helpers to generate midgard_instruction's using macro magic, since every
207 * driver seems to do it that way */
208
209 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
210 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
211
212 #define M_LOAD_STORE(name, rname, uname) \
213 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
214 midgard_instruction i = { \
215 .type = TAG_LOAD_STORE_4, \
216 .ssa_args = { \
217 .rname = ssa, \
218 .uname = -1, \
219 .src1 = -1 \
220 }, \
221 .load_store = { \
222 .op = midgard_op_##name, \
223 .mask = 0xF, \
224 .swizzle = SWIZZLE_XYZW, \
225 .address = address \
226 } \
227 }; \
228 \
229 return i; \
230 }
231
232 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
233 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
234
235 const midgard_vector_alu_src blank_alu_src = {
236 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
237 };
238
239 const midgard_vector_alu_src blank_alu_src_xxxx = {
240 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
241 };
242
243 const midgard_scalar_alu_src blank_scalar_alu_src = {
244 .full = true
245 };
246
247 /* Used for encoding the unused source of 1-op instructions */
248 const midgard_vector_alu_src zero_alu_src = { 0 };
249
250 /* Coerce structs to integer */
251
252 static unsigned
253 vector_alu_srco_unsigned(midgard_vector_alu_src src)
254 {
255 unsigned u;
256 memcpy(&u, &src, sizeof(src));
257 return u;
258 }
259
260 static midgard_vector_alu_src
261 vector_alu_from_unsigned(unsigned u)
262 {
263 midgard_vector_alu_src s;
264 memcpy(&s, &u, sizeof(s));
265 return s;
266 }
267
268 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
269 * the corresponding Midgard source */
270
271 static midgard_vector_alu_src
272 vector_alu_modifiers(nir_alu_src *src, bool is_int)
273 {
274 if (!src) return blank_alu_src;
275
276 midgard_vector_alu_src alu_src = {
277 .rep_low = 0,
278 .rep_high = 0,
279 .half = 0, /* TODO */
280 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
281 };
282
283 if (is_int) {
284 /* TODO: sign-extend/zero-extend */
285 alu_src.mod = midgard_int_normal;
286
287 /* These should have been lowered away */
288 assert(!(src->abs || src->negate));
289 } else {
290 alu_src.mod = (src->abs << 0) | (src->negate << 1);
291 }
292
293 return alu_src;
294 }
295
296 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
297
298 static midgard_instruction
299 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
300 {
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .ssa_args = {
304 .src0 = SSA_UNUSED_1,
305 .src1 = src,
306 .dest = dest,
307 },
308 .alu = {
309 .op = midgard_alu_op_fmov,
310 .reg_mode = midgard_reg_mode_32,
311 .dest_override = midgard_dest_override_none,
312 .mask = 0xFF,
313 .src1 = vector_alu_srco_unsigned(zero_alu_src),
314 .src2 = vector_alu_srco_unsigned(mod)
315 },
316 };
317
318 return ins;
319 }
320
321 /* load/store instructions have both 32-bit and 16-bit variants, depending on
322 * whether we are using vectors composed of highp or mediump. At the moment, we
323 * don't support half-floats -- this requires changes in other parts of the
324 * compiler -- therefore the 16-bit versions are commented out. */
325
326 //M_LOAD(ld_attr_16);
327 M_LOAD(ld_attr_32);
328 //M_LOAD(ld_vary_16);
329 M_LOAD(ld_vary_32);
330 //M_LOAD(ld_uniform_16);
331 M_LOAD(ld_uniform_32);
332 M_LOAD(ld_color_buffer_8);
333 //M_STORE(st_vary_16);
334 M_STORE(st_vary_32);
335 M_STORE(st_cubemap_coords);
336
337 static midgard_instruction
338 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
339 {
340 midgard_branch_cond branch = {
341 .op = op,
342 .dest_tag = tag,
343 .offset = offset,
344 .cond = cond
345 };
346
347 uint16_t compact;
348 memcpy(&compact, &branch, sizeof(branch));
349
350 midgard_instruction ins = {
351 .type = TAG_ALU_4,
352 .unit = ALU_ENAB_BR_COMPACT,
353 .prepacked_branch = true,
354 .compact_branch = true,
355 .br_compact = compact
356 };
357
358 if (op == midgard_jmp_writeout_op_writeout)
359 ins.writeout = true;
360
361 return ins;
362 }
363
364 static midgard_instruction
365 v_branch(bool conditional, bool invert)
366 {
367 midgard_instruction ins = {
368 .type = TAG_ALU_4,
369 .unit = ALU_ENAB_BRANCH,
370 .compact_branch = true,
371 .branch = {
372 .conditional = conditional,
373 .invert_conditional = invert
374 }
375 };
376
377 return ins;
378 }
379
380 static midgard_branch_extended
381 midgard_create_branch_extended( midgard_condition cond,
382 midgard_jmp_writeout_op op,
383 unsigned dest_tag,
384 signed quadword_offset)
385 {
386 /* For unclear reasons, the condition code is repeated 8 times */
387 uint16_t duplicated_cond =
388 (cond << 14) |
389 (cond << 12) |
390 (cond << 10) |
391 (cond << 8) |
392 (cond << 6) |
393 (cond << 4) |
394 (cond << 2) |
395 (cond << 0);
396
397 midgard_branch_extended branch = {
398 .op = op,
399 .dest_tag = dest_tag,
400 .offset = quadword_offset,
401 .cond = duplicated_cond
402 };
403
404 return branch;
405 }
406
407 typedef struct midgard_bundle {
408 /* Tag for the overall bundle */
409 int tag;
410
411 /* Instructions contained by the bundle */
412 int instruction_count;
413 midgard_instruction instructions[5];
414
415 /* Bundle-wide ALU configuration */
416 int padding;
417 int control;
418 bool has_embedded_constants;
419 float constants[4];
420 bool has_blend_constant;
421
422 uint16_t register_words[8];
423 int register_words_count;
424
425 uint64_t body_words[8];
426 size_t body_size[8];
427 int body_words_count;
428 } midgard_bundle;
429
430 typedef struct compiler_context {
431 nir_shader *nir;
432 gl_shader_stage stage;
433
434 /* Is internally a blend shader? Depends on stage == FRAGMENT */
435 bool is_blend;
436
437 /* Tracking for blend constant patching */
438 int blend_constant_number;
439 int blend_constant_offset;
440
441 /* Current NIR function */
442 nir_function *func;
443
444 /* Unordered list of midgard_blocks */
445 int block_count;
446 struct list_head blocks;
447
448 midgard_block *initial_block;
449 midgard_block *previous_source_block;
450 midgard_block *final_block;
451
452 /* List of midgard_instructions emitted for the current block */
453 midgard_block *current_block;
454
455 /* The current "depth" of the loop, for disambiguating breaks/continues
456 * when using nested loops */
457 int current_loop_depth;
458
459 /* Constants which have been loaded, for later inlining */
460 struct hash_table_u64 *ssa_constants;
461
462 /* SSA indices to be outputted to corresponding varying offset */
463 struct hash_table_u64 *ssa_varyings;
464
465 /* SSA values / registers which have been aliased. Naively, these
466 * demand a fmov output; instead, we alias them in a later pass to
467 * avoid the wasted op.
468 *
469 * A note on encoding: to avoid dynamic memory management here, rather
470 * than ampping to a pointer, we map to the source index; the key
471 * itself is just the destination index. */
472
473 struct hash_table_u64 *ssa_to_alias;
474 struct set *leftover_ssa_to_alias;
475
476 /* Actual SSA-to-register for RA */
477 struct hash_table_u64 *ssa_to_register;
478
479 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
480 struct hash_table_u64 *hash_to_temp;
481 int temp_count;
482 int max_hash;
483
484 /* Just the count of the max register used. Higher count => higher
485 * register pressure */
486 int work_registers;
487
488 /* Used for cont/last hinting. Increase when a tex op is added.
489 * Decrease when a tex op is removed. */
490 int texture_op_count;
491
492 /* Mapping of texture register -> SSA index for unaliasing */
493 int texture_index[2];
494
495 /* If any path hits a discard instruction */
496 bool can_discard;
497
498 /* The number of uniforms allowable for the fast path */
499 int uniform_cutoff;
500
501 /* Count of instructions emitted from NIR overall, across all blocks */
502 int instruction_count;
503
504 /* Alpha ref value passed in */
505 float alpha_ref;
506
507 /* The index corresponding to the fragment output */
508 unsigned fragment_output;
509
510 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
511 unsigned sysvals[MAX_SYSVAL_COUNT];
512 unsigned sysval_count;
513 struct hash_table_u64 *sysval_to_id;
514 } compiler_context;
515
516 /* Append instruction to end of current block */
517
518 static midgard_instruction *
519 mir_upload_ins(struct midgard_instruction ins)
520 {
521 midgard_instruction *heap = malloc(sizeof(ins));
522 memcpy(heap, &ins, sizeof(ins));
523 return heap;
524 }
525
526 static void
527 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
528 {
529 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
530 }
531
532 static void
533 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
534 {
535 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
536 }
537
538 static void
539 mir_remove_instruction(struct midgard_instruction *ins)
540 {
541 list_del(&ins->link);
542 }
543
544 static midgard_instruction*
545 mir_prev_op(struct midgard_instruction *ins)
546 {
547 return list_last_entry(&(ins->link), midgard_instruction, link);
548 }
549
550 static midgard_instruction*
551 mir_next_op(struct midgard_instruction *ins)
552 {
553 return list_first_entry(&(ins->link), midgard_instruction, link);
554 }
555
556 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
557 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
558
559 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
560 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
561 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
562 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
563 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
564 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
565 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
566
567
568 static midgard_instruction *
569 mir_last_in_block(struct midgard_block *block)
570 {
571 return list_last_entry(&block->instructions, struct midgard_instruction, link);
572 }
573
574 static midgard_block *
575 mir_get_block(compiler_context *ctx, int idx)
576 {
577 struct list_head *lst = &ctx->blocks;
578
579 while ((idx--) + 1)
580 lst = lst->next;
581
582 return (struct midgard_block *) lst;
583 }
584
585 /* Pretty printer for internal Midgard IR */
586
587 static void
588 print_mir_source(int source)
589 {
590 if (source >= SSA_FIXED_MINIMUM) {
591 /* Specific register */
592 int reg = SSA_REG_FROM_FIXED(source);
593
594 /* TODO: Moving threshold */
595 if (reg > 16 && reg < 24)
596 printf("u%d", 23 - reg);
597 else
598 printf("r%d", reg);
599 } else {
600 printf("%d", source);
601 }
602 }
603
604 static void
605 print_mir_instruction(midgard_instruction *ins)
606 {
607 printf("\t");
608
609 switch (ins->type) {
610 case TAG_ALU_4: {
611 midgard_alu_op op = ins->alu.op;
612 const char *name = alu_opcode_props[op].name;
613
614 if (ins->unit)
615 printf("%d.", ins->unit);
616
617 printf("%s", name ? name : "??");
618 break;
619 }
620
621 case TAG_LOAD_STORE_4: {
622 midgard_load_store_op op = ins->load_store.op;
623 const char *name = load_store_opcode_names[op];
624
625 assert(name);
626 printf("%s", name);
627 break;
628 }
629
630 case TAG_TEXTURE_4: {
631 printf("texture");
632 break;
633 }
634
635 default:
636 assert(0);
637 }
638
639 ssa_args *args = &ins->ssa_args;
640
641 printf(" %d, ", args->dest);
642
643 print_mir_source(args->src0);
644 printf(", ");
645
646 if (args->inline_constant)
647 printf("#%d", ins->inline_constant);
648 else
649 print_mir_source(args->src1);
650
651 if (ins->has_constants)
652 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
653
654 printf("\n");
655 }
656
657 static void
658 print_mir_block(midgard_block *block)
659 {
660 printf("{\n");
661
662 mir_foreach_instr_in_block(block, ins) {
663 print_mir_instruction(ins);
664 }
665
666 printf("}\n");
667 }
668
669 static void
670 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
671 {
672 ins->has_constants = true;
673 memcpy(&ins->constants, constants, 16);
674
675 /* If this is the special blend constant, mark this instruction */
676
677 if (ctx->is_blend && ctx->blend_constant_number == name)
678 ins->has_blend_constant = true;
679 }
680
681 static int
682 glsl_type_size(const struct glsl_type *type, bool bindless)
683 {
684 return glsl_count_attribute_slots(type, false);
685 }
686
687 /* Lower fdot2 to a vector multiplication followed by channel addition */
688 static void
689 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
690 {
691 if (alu->op != nir_op_fdot2)
692 return;
693
694 b->cursor = nir_before_instr(&alu->instr);
695
696 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
697 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
698
699 nir_ssa_def *product = nir_fmul(b, src0, src1);
700
701 nir_ssa_def *sum = nir_fadd(b,
702 nir_channel(b, product, 0),
703 nir_channel(b, product, 1));
704
705 /* Replace the fdot2 with this sum */
706 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
707 }
708
709 static int
710 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
711 {
712 switch (instr->intrinsic) {
713 case nir_intrinsic_load_viewport_scale:
714 return PAN_SYSVAL_VIEWPORT_SCALE;
715 case nir_intrinsic_load_viewport_offset:
716 return PAN_SYSVAL_VIEWPORT_OFFSET;
717 default:
718 return -1;
719 }
720 }
721
722 static void
723 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
724 {
725 int sysval = -1;
726
727 if (instr->type == nir_instr_type_intrinsic) {
728 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
729 sysval = midgard_nir_sysval_for_intrinsic(intr);
730 }
731
732 if (sysval < 0)
733 return;
734
735 /* We have a sysval load; check if it's already been assigned */
736
737 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
738 return;
739
740 /* It hasn't -- so assign it now! */
741
742 unsigned id = ctx->sysval_count++;
743 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
744 ctx->sysvals[id] = sysval;
745 }
746
747 static void
748 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
749 {
750 ctx->sysval_count = 0;
751
752 nir_foreach_function(function, shader) {
753 if (!function->impl) continue;
754
755 nir_foreach_block(block, function->impl) {
756 nir_foreach_instr_safe(instr, block) {
757 midgard_nir_assign_sysval_body(ctx, instr);
758 }
759 }
760 }
761 }
762
763 static bool
764 midgard_nir_lower_fdot2(nir_shader *shader)
765 {
766 bool progress = false;
767
768 nir_foreach_function(function, shader) {
769 if (!function->impl) continue;
770
771 nir_builder _b;
772 nir_builder *b = &_b;
773 nir_builder_init(b, function->impl);
774
775 nir_foreach_block(block, function->impl) {
776 nir_foreach_instr_safe(instr, block) {
777 if (instr->type != nir_instr_type_alu) continue;
778
779 nir_alu_instr *alu = nir_instr_as_alu(instr);
780 midgard_nir_lower_fdot2_body(b, alu);
781
782 progress |= true;
783 }
784 }
785
786 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
787
788 }
789
790 return progress;
791 }
792
793 static void
794 optimise_nir(nir_shader *nir)
795 {
796 bool progress;
797 unsigned lower_flrp =
798 (nir->options->lower_flrp16 ? 16 : 0) |
799 (nir->options->lower_flrp32 ? 32 : 0) |
800 (nir->options->lower_flrp64 ? 64 : 0);
801
802 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
803 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
804
805 nir_lower_tex_options lower_tex_options = {
806 .lower_rect = true
807 };
808
809 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
810
811 do {
812 progress = false;
813
814 NIR_PASS(progress, nir, nir_lower_var_copies);
815 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
816
817 NIR_PASS(progress, nir, nir_copy_prop);
818 NIR_PASS(progress, nir, nir_opt_dce);
819 NIR_PASS(progress, nir, nir_opt_dead_cf);
820 NIR_PASS(progress, nir, nir_opt_cse);
821 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
822 NIR_PASS(progress, nir, nir_opt_algebraic);
823 NIR_PASS(progress, nir, nir_opt_constant_folding);
824
825 if (lower_flrp != 0) {
826 bool lower_flrp_progress = false;
827 NIR_PASS(lower_flrp_progress,
828 nir,
829 nir_lower_flrp,
830 lower_flrp,
831 false /* always_precise */,
832 nir->options->lower_ffma);
833 if (lower_flrp_progress) {
834 NIR_PASS(progress, nir,
835 nir_opt_constant_folding);
836 progress = true;
837 }
838
839 /* Nothing should rematerialize any flrps, so we only
840 * need to do this lowering once.
841 */
842 lower_flrp = 0;
843 }
844
845 NIR_PASS(progress, nir, nir_opt_undef);
846 NIR_PASS(progress, nir, nir_opt_loop_unroll,
847 nir_var_shader_in |
848 nir_var_shader_out |
849 nir_var_function_temp);
850
851 /* TODO: Enable vectorize when merged upstream */
852 // NIR_PASS(progress, nir, nir_opt_vectorize);
853 } while (progress);
854
855 /* Must be run at the end to prevent creation of fsin/fcos ops */
856 NIR_PASS(progress, nir, midgard_nir_scale_trig);
857
858 do {
859 progress = false;
860
861 NIR_PASS(progress, nir, nir_opt_dce);
862 NIR_PASS(progress, nir, nir_opt_algebraic);
863 NIR_PASS(progress, nir, nir_opt_constant_folding);
864 NIR_PASS(progress, nir, nir_copy_prop);
865 } while (progress);
866
867 NIR_PASS(progress, nir, nir_opt_algebraic_late);
868
869 /* We implement booleans as 32-bit 0/~0 */
870 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
871
872 /* Now that booleans are lowered, we can run out late opts */
873 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
874
875 /* Lower mods for float ops only. Integer ops don't support modifiers
876 * (saturate doesn't make sense on integers, neg/abs require dedicated
877 * instructions) */
878
879 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
880 NIR_PASS(progress, nir, nir_copy_prop);
881 NIR_PASS(progress, nir, nir_opt_dce);
882
883 /* Take us out of SSA */
884 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
885 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
886
887 /* We are a vector architecture; write combine where possible */
888 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
889 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
890
891 NIR_PASS(progress, nir, nir_opt_dce);
892 }
893
894 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
895 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
896 * r0. See the comments in compiler_context */
897
898 static void
899 alias_ssa(compiler_context *ctx, int dest, int src)
900 {
901 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
902 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
903 }
904
905 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
906
907 static void
908 unalias_ssa(compiler_context *ctx, int dest)
909 {
910 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
911 /* TODO: Remove from leftover or no? */
912 }
913
914 static void
915 midgard_pin_output(compiler_context *ctx, int index, int reg)
916 {
917 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
918 }
919
920 static bool
921 midgard_is_pinned(compiler_context *ctx, int index)
922 {
923 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
924 }
925
926 /* Do not actually emit a load; instead, cache the constant for inlining */
927
928 static void
929 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
930 {
931 nir_ssa_def def = instr->def;
932
933 float *v = rzalloc_array(NULL, float, 4);
934 nir_const_load_to_arr(v, instr, f32);
935 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
936 }
937
938 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
939 * do the inverse) */
940
941 static unsigned
942 expand_writemask(unsigned mask)
943 {
944 unsigned o = 0;
945
946 for (int i = 0; i < 4; ++i)
947 if (mask & (1 << i))
948 o |= (3 << (2 * i));
949
950 return o;
951 }
952
953 static unsigned
954 squeeze_writemask(unsigned mask)
955 {
956 unsigned o = 0;
957
958 for (int i = 0; i < 4; ++i)
959 if (mask & (3 << (2 * i)))
960 o |= (1 << i);
961
962 return o;
963
964 }
965
966 /* Determines effective writemask, taking quirks and expansion into account */
967 static unsigned
968 effective_writemask(midgard_vector_alu *alu)
969 {
970 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
971 * sense) */
972
973 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
974
975 /* If there is a fixed channel count, construct the appropriate mask */
976
977 if (channel_count)
978 return (1 << channel_count) - 1;
979
980 /* Otherwise, just squeeze the existing mask */
981 return squeeze_writemask(alu->mask);
982 }
983
984 static unsigned
985 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
986 {
987 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
988 return hash;
989
990 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
991
992 if (temp)
993 return temp - 1;
994
995 /* If no temp is find, allocate one */
996 temp = ctx->temp_count++;
997 ctx->max_hash = MAX2(ctx->max_hash, hash);
998
999 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
1000
1001 return temp;
1002 }
1003
1004 static unsigned
1005 nir_src_index(compiler_context *ctx, nir_src *src)
1006 {
1007 if (src->is_ssa)
1008 return src->ssa->index;
1009 else {
1010 assert(!src->reg.indirect);
1011 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
1012 }
1013 }
1014
1015 static unsigned
1016 nir_dest_index(compiler_context *ctx, nir_dest *dst)
1017 {
1018 if (dst->is_ssa)
1019 return dst->ssa.index;
1020 else {
1021 assert(!dst->reg.indirect);
1022 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1023 }
1024 }
1025
1026 static unsigned
1027 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1028 {
1029 return nir_src_index(ctx, &src->src);
1030 }
1031
1032 static bool
1033 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
1034 {
1035 unsigned comp = src->swizzle[0];
1036
1037 for (unsigned c = 1; c < nr_components; ++c) {
1038 if (src->swizzle[c] != comp)
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044
1045 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
1046 * output of a conditional test) into that register */
1047
1048 static void
1049 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1050 {
1051 int condition = nir_src_index(ctx, src);
1052
1053 /* Source to swizzle the desired component into w */
1054
1055 const midgard_vector_alu_src alu_src = {
1056 .swizzle = SWIZZLE(component, component, component, component),
1057 };
1058
1059 /* There is no boolean move instruction. Instead, we simulate a move by
1060 * ANDing the condition with itself to get it into r31.w */
1061
1062 midgard_instruction ins = {
1063 .type = TAG_ALU_4,
1064
1065 /* We need to set the conditional as close as possible */
1066 .precede_break = true,
1067 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
1068
1069 .ssa_args = {
1070
1071 .src0 = condition,
1072 .src1 = condition,
1073 .dest = SSA_FIXED_REGISTER(31),
1074 },
1075 .alu = {
1076 .op = midgard_alu_op_iand,
1077 .reg_mode = midgard_reg_mode_32,
1078 .dest_override = midgard_dest_override_none,
1079 .mask = (0x3 << 6), /* w */
1080 .src1 = vector_alu_srco_unsigned(alu_src),
1081 .src2 = vector_alu_srco_unsigned(alu_src)
1082 },
1083 };
1084
1085 emit_mir_instruction(ctx, ins);
1086 }
1087
1088 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
1089 * r31 instead */
1090
1091 static void
1092 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
1093 {
1094 int condition = nir_src_index(ctx, &src->src);
1095
1096 /* Source to swizzle the desired component into w */
1097
1098 const midgard_vector_alu_src alu_src = {
1099 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
1100 };
1101
1102 /* There is no boolean move instruction. Instead, we simulate a move by
1103 * ANDing the condition with itself to get it into r31.w */
1104
1105 midgard_instruction ins = {
1106 .type = TAG_ALU_4,
1107 .precede_break = true,
1108 .ssa_args = {
1109 .src0 = condition,
1110 .src1 = condition,
1111 .dest = SSA_FIXED_REGISTER(31),
1112 },
1113 .alu = {
1114 .op = midgard_alu_op_iand,
1115 .reg_mode = midgard_reg_mode_32,
1116 .dest_override = midgard_dest_override_none,
1117 .mask = expand_writemask((1 << nr_comp) - 1),
1118 .src1 = vector_alu_srco_unsigned(alu_src),
1119 .src2 = vector_alu_srco_unsigned(alu_src)
1120 },
1121 };
1122
1123 emit_mir_instruction(ctx, ins);
1124 }
1125
1126
1127
1128 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1129 * pinning to eliminate this move in all known cases */
1130
1131 static void
1132 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1133 {
1134 int offset = nir_src_index(ctx, src);
1135
1136 midgard_instruction ins = {
1137 .type = TAG_ALU_4,
1138 .ssa_args = {
1139 .src0 = SSA_UNUSED_1,
1140 .src1 = offset,
1141 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1142 },
1143 .alu = {
1144 .op = midgard_alu_op_imov,
1145 .reg_mode = midgard_reg_mode_32,
1146 .dest_override = midgard_dest_override_none,
1147 .mask = (0x3 << 6), /* w */
1148 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1149 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1150 },
1151 };
1152
1153 emit_mir_instruction(ctx, ins);
1154 }
1155
1156 #define ALU_CASE(nir, _op) \
1157 case nir_op_##nir: \
1158 op = midgard_alu_op_##_op; \
1159 break;
1160 static bool
1161 nir_is_fzero_constant(nir_src src)
1162 {
1163 if (!nir_src_is_const(src))
1164 return false;
1165
1166 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1167 if (nir_src_comp_as_float(src, c) != 0.0)
1168 return false;
1169 }
1170
1171 return true;
1172 }
1173
1174 static void
1175 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1176 {
1177 bool is_ssa = instr->dest.dest.is_ssa;
1178
1179 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1180 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1181 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1182
1183 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1184 * supported. A few do not and are commented for now. Also, there are a
1185 * number of NIR ops which Midgard does not support and need to be
1186 * lowered, also TODO. This switch block emits the opcode and calling
1187 * convention of the Midgard instruction; actual packing is done in
1188 * emit_alu below */
1189
1190 unsigned op;
1191
1192 switch (instr->op) {
1193 ALU_CASE(fadd, fadd);
1194 ALU_CASE(fmul, fmul);
1195 ALU_CASE(fmin, fmin);
1196 ALU_CASE(fmax, fmax);
1197 ALU_CASE(imin, imin);
1198 ALU_CASE(imax, imax);
1199 ALU_CASE(umin, umin);
1200 ALU_CASE(umax, umax);
1201 ALU_CASE(fmov, fmov);
1202 ALU_CASE(ffloor, ffloor);
1203 ALU_CASE(fround_even, froundeven);
1204 ALU_CASE(ftrunc, ftrunc);
1205 ALU_CASE(fceil, fceil);
1206 ALU_CASE(fdot3, fdot3);
1207 ALU_CASE(fdot4, fdot4);
1208 ALU_CASE(iadd, iadd);
1209 ALU_CASE(isub, isub);
1210 ALU_CASE(imul, imul);
1211 ALU_CASE(iabs, iabs);
1212 ALU_CASE(imov, imov);
1213
1214 ALU_CASE(feq32, feq);
1215 ALU_CASE(fne32, fne);
1216 ALU_CASE(flt32, flt);
1217 ALU_CASE(ieq32, ieq);
1218 ALU_CASE(ine32, ine);
1219 ALU_CASE(ilt32, ilt);
1220 ALU_CASE(ult32, ult);
1221
1222 /* We don't have a native b2f32 instruction. Instead, like many
1223 * GPUs, we exploit booleans as 0/~0 for false/true, and
1224 * correspondingly AND
1225 * by 1.0 to do the type conversion. For the moment, prime us
1226 * to emit:
1227 *
1228 * iand [whatever], #0
1229 *
1230 * At the end of emit_alu (as MIR), we'll fix-up the constant
1231 */
1232
1233 ALU_CASE(b2f32, iand);
1234 ALU_CASE(b2i32, iand);
1235
1236 /* Likewise, we don't have a dedicated f2b32 instruction, but
1237 * we can do a "not equal to 0.0" test. */
1238
1239 ALU_CASE(f2b32, fne);
1240 ALU_CASE(i2b32, ine);
1241
1242 ALU_CASE(frcp, frcp);
1243 ALU_CASE(frsq, frsqrt);
1244 ALU_CASE(fsqrt, fsqrt);
1245 ALU_CASE(fexp2, fexp2);
1246 ALU_CASE(flog2, flog2);
1247
1248 ALU_CASE(f2i32, f2i);
1249 ALU_CASE(f2u32, f2u);
1250 ALU_CASE(i2f32, i2f);
1251 ALU_CASE(u2f32, u2f);
1252
1253 ALU_CASE(fsin, fsin);
1254 ALU_CASE(fcos, fcos);
1255
1256 ALU_CASE(iand, iand);
1257 ALU_CASE(ior, ior);
1258 ALU_CASE(ixor, ixor);
1259 ALU_CASE(inot, inand);
1260 ALU_CASE(ishl, ishl);
1261 ALU_CASE(ishr, iasr);
1262 ALU_CASE(ushr, ilsr);
1263
1264 ALU_CASE(b32all_fequal2, fball_eq);
1265 ALU_CASE(b32all_fequal3, fball_eq);
1266 ALU_CASE(b32all_fequal4, fball_eq);
1267
1268 ALU_CASE(b32any_fnequal2, fbany_neq);
1269 ALU_CASE(b32any_fnequal3, fbany_neq);
1270 ALU_CASE(b32any_fnequal4, fbany_neq);
1271
1272 ALU_CASE(b32all_iequal2, iball_eq);
1273 ALU_CASE(b32all_iequal3, iball_eq);
1274 ALU_CASE(b32all_iequal4, iball_eq);
1275
1276 ALU_CASE(b32any_inequal2, ibany_neq);
1277 ALU_CASE(b32any_inequal3, ibany_neq);
1278 ALU_CASE(b32any_inequal4, ibany_neq);
1279
1280 /* For greater-or-equal, we lower to less-or-equal and flip the
1281 * arguments */
1282
1283 case nir_op_fge:
1284 case nir_op_fge32:
1285 case nir_op_ige32:
1286 case nir_op_uge32: {
1287 op =
1288 instr->op == nir_op_fge ? midgard_alu_op_fle :
1289 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1290 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1291 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1292 0;
1293
1294 /* Swap via temporary */
1295 nir_alu_src temp = instr->src[1];
1296 instr->src[1] = instr->src[0];
1297 instr->src[0] = temp;
1298
1299 break;
1300 }
1301
1302 case nir_op_b32csel: {
1303 /* Midgard features both fcsel and icsel, depending on
1304 * the type of the arguments/output. However, as long
1305 * as we're careful we can _always_ use icsel and
1306 * _never_ need fcsel, since the latter does additional
1307 * floating-point-specific processing whereas the
1308 * former just moves bits on the wire. It's not obvious
1309 * why these are separate opcodes, save for the ability
1310 * to do things like sat/pos/abs/neg for free */
1311
1312 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
1313 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
1314
1315 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1316 nr_inputs = 2;
1317
1318 /* Emit the condition into r31 */
1319
1320 if (mixed)
1321 emit_condition_mixed(ctx, &instr->src[0], nr_components);
1322 else
1323 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
1324
1325 /* The condition is the first argument; move the other
1326 * arguments up one to be a binary instruction for
1327 * Midgard */
1328
1329 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1330 break;
1331 }
1332
1333 default:
1334 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1335 assert(0);
1336 return;
1337 }
1338
1339 /* Midgard can perform certain modifiers on output of an ALU op */
1340 midgard_outmod outmod =
1341 midgard_is_integer_out_op(op) ? midgard_outmod_int :
1342 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1343
1344 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1345
1346 if (instr->op == nir_op_fmax) {
1347 if (nir_is_fzero_constant(instr->src[0].src)) {
1348 op = midgard_alu_op_fmov;
1349 nr_inputs = 1;
1350 outmod = midgard_outmod_pos;
1351 instr->src[0] = instr->src[1];
1352 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1353 op = midgard_alu_op_fmov;
1354 nr_inputs = 1;
1355 outmod = midgard_outmod_pos;
1356 }
1357 }
1358
1359 /* Fetch unit, quirks, etc information */
1360 unsigned opcode_props = alu_opcode_props[op].props;
1361 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1362
1363 /* src0 will always exist afaik, but src1 will not for 1-argument
1364 * instructions. The latter can only be fetched if the instruction
1365 * needs it, or else we may segfault. */
1366
1367 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1368 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1369
1370 /* Rather than use the instruction generation helpers, we do it
1371 * ourselves here to avoid the mess */
1372
1373 midgard_instruction ins = {
1374 .type = TAG_ALU_4,
1375 .ssa_args = {
1376 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1377 .src1 = quirk_flipped_r24 ? src0 : src1,
1378 .dest = dest,
1379 }
1380 };
1381
1382 nir_alu_src *nirmods[2] = { NULL };
1383
1384 if (nr_inputs == 2) {
1385 nirmods[0] = &instr->src[0];
1386 nirmods[1] = &instr->src[1];
1387 } else if (nr_inputs == 1) {
1388 nirmods[quirk_flipped_r24] = &instr->src[0];
1389 } else {
1390 assert(0);
1391 }
1392
1393 bool is_int = midgard_is_integer_op(op);
1394
1395 midgard_vector_alu alu = {
1396 .op = op,
1397 .reg_mode = midgard_reg_mode_32,
1398 .dest_override = midgard_dest_override_none,
1399 .outmod = outmod,
1400
1401 /* Writemask only valid for non-SSA NIR */
1402 .mask = expand_writemask((1 << nr_components) - 1),
1403
1404 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1405 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1406 };
1407
1408 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1409
1410 if (!is_ssa)
1411 alu.mask &= expand_writemask(instr->dest.write_mask);
1412
1413 ins.alu = alu;
1414
1415 /* Late fixup for emulated instructions */
1416
1417 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1418 /* Presently, our second argument is an inline #0 constant.
1419 * Switch over to an embedded 1.0 constant (that can't fit
1420 * inline, since we're 32-bit, not 16-bit like the inline
1421 * constants) */
1422
1423 ins.ssa_args.inline_constant = false;
1424 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1425 ins.has_constants = true;
1426
1427 if (instr->op == nir_op_b2f32) {
1428 ins.constants[0] = 1.0f;
1429 } else {
1430 /* Type pun it into place */
1431 uint32_t one = 0x1;
1432 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1433 }
1434
1435 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1436 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1437 ins.ssa_args.inline_constant = false;
1438 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1439 ins.has_constants = true;
1440 ins.constants[0] = 0.0f;
1441 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1442 } else if (instr->op == nir_op_inot) {
1443 /* ~b = ~(b & b), so duplicate the source */
1444 ins.ssa_args.src1 = ins.ssa_args.src0;
1445 ins.alu.src2 = ins.alu.src1;
1446 }
1447
1448 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1449 /* To avoid duplicating the lookup tables (probably), true LUT
1450 * instructions can only operate as if they were scalars. Lower
1451 * them here by changing the component. */
1452
1453 uint8_t original_swizzle[4];
1454 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1455
1456 for (int i = 0; i < nr_components; ++i) {
1457 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1458
1459 for (int j = 0; j < 4; ++j)
1460 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1461
1462 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1463 emit_mir_instruction(ctx, ins);
1464 }
1465 } else {
1466 emit_mir_instruction(ctx, ins);
1467 }
1468 }
1469
1470 #undef ALU_CASE
1471
1472 static void
1473 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1474 {
1475 /* TODO: half-floats */
1476
1477 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1478 /* Fast path: For the first 16 uniforms, direct accesses are
1479 * 0-cycle, since they're just a register fetch in the usual
1480 * case. So, we alias the registers while we're still in
1481 * SSA-space */
1482
1483 int reg_slot = 23 - offset;
1484 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1485 } else {
1486 /* Otherwise, read from the 'special' UBO to access
1487 * higher-indexed uniforms, at a performance cost. More
1488 * generally, we're emitting a UBO read instruction. */
1489
1490 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1491
1492 /* TODO: Don't split */
1493 ins.load_store.varying_parameters = (offset & 7) << 7;
1494 ins.load_store.address = offset >> 3;
1495
1496 if (indirect_offset) {
1497 emit_indirect_offset(ctx, indirect_offset);
1498 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1499 } else {
1500 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1501 }
1502
1503 emit_mir_instruction(ctx, ins);
1504 }
1505 }
1506
1507 static void
1508 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1509 {
1510 /* First, pull out the destination */
1511 unsigned dest = nir_dest_index(ctx, &instr->dest);
1512
1513 /* Now, figure out which uniform this is */
1514 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1515 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1516
1517 /* Sysvals are prefix uniforms */
1518 unsigned uniform = ((uintptr_t) val) - 1;
1519
1520 /* Emit the read itself -- this is never indirect */
1521 emit_uniform_read(ctx, dest, uniform, NULL);
1522 }
1523
1524 static void
1525 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1526 {
1527 unsigned offset, reg;
1528
1529 switch (instr->intrinsic) {
1530 case nir_intrinsic_discard_if:
1531 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1532
1533 /* fallthrough */
1534
1535 case nir_intrinsic_discard: {
1536 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1537 struct midgard_instruction discard = v_branch(conditional, false);
1538 discard.branch.target_type = TARGET_DISCARD;
1539 emit_mir_instruction(ctx, discard);
1540
1541 ctx->can_discard = true;
1542 break;
1543 }
1544
1545 case nir_intrinsic_load_uniform:
1546 case nir_intrinsic_load_input:
1547 offset = nir_intrinsic_base(instr);
1548
1549 bool direct = nir_src_is_const(instr->src[0]);
1550
1551 if (direct) {
1552 offset += nir_src_as_uint(instr->src[0]);
1553 }
1554
1555 reg = nir_dest_index(ctx, &instr->dest);
1556
1557 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1558 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1559 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1560 /* XXX: Half-floats? */
1561 /* TODO: swizzle, mask */
1562
1563 midgard_instruction ins = m_ld_vary_32(reg, offset);
1564
1565 midgard_varying_parameter p = {
1566 .is_varying = 1,
1567 .interpolation = midgard_interp_default,
1568 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1569 };
1570
1571 unsigned u;
1572 memcpy(&u, &p, sizeof(p));
1573 ins.load_store.varying_parameters = u;
1574
1575 if (direct) {
1576 /* We have the offset totally ready */
1577 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1578 } else {
1579 /* We have it partially ready, but we need to
1580 * add in the dynamic index, moved to r27.w */
1581 emit_indirect_offset(ctx, &instr->src[0]);
1582 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1583 }
1584
1585 emit_mir_instruction(ctx, ins);
1586 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1587 /* Constant encoded as a pinned constant */
1588
1589 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1590 ins.has_constants = true;
1591 ins.has_blend_constant = true;
1592 emit_mir_instruction(ctx, ins);
1593 } else if (ctx->is_blend) {
1594 /* For blend shaders, a load might be
1595 * translated various ways depending on what
1596 * we're loading. Figure out how this is used */
1597
1598 nir_variable *out = NULL;
1599
1600 nir_foreach_variable(var, &ctx->nir->inputs) {
1601 int drvloc = var->data.driver_location;
1602
1603 if (nir_intrinsic_base(instr) == drvloc) {
1604 out = var;
1605 break;
1606 }
1607 }
1608
1609 assert(out);
1610
1611 if (out->data.location == VARYING_SLOT_COL0) {
1612 /* Source color preloaded to r0 */
1613
1614 midgard_pin_output(ctx, reg, 0);
1615 } else if (out->data.location == VARYING_SLOT_COL1) {
1616 /* Destination color must be read from framebuffer */
1617
1618 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1619 ins.load_store.swizzle = 0; /* xxxx */
1620
1621 /* Read each component sequentially */
1622
1623 for (int c = 0; c < 4; ++c) {
1624 ins.load_store.mask = (1 << c);
1625 ins.load_store.unknown = c;
1626 emit_mir_instruction(ctx, ins);
1627 }
1628
1629 /* vadd.u2f hr2, zext(hr2), #0 */
1630
1631 midgard_vector_alu_src alu_src = blank_alu_src;
1632 alu_src.mod = midgard_int_zero_extend;
1633 alu_src.half = true;
1634
1635 midgard_instruction u2f = {
1636 .type = TAG_ALU_4,
1637 .ssa_args = {
1638 .src0 = reg,
1639 .src1 = SSA_UNUSED_0,
1640 .dest = reg,
1641 .inline_constant = true
1642 },
1643 .alu = {
1644 .op = midgard_alu_op_u2f,
1645 .reg_mode = midgard_reg_mode_16,
1646 .dest_override = midgard_dest_override_none,
1647 .mask = 0xF,
1648 .src1 = vector_alu_srco_unsigned(alu_src),
1649 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1650 }
1651 };
1652
1653 emit_mir_instruction(ctx, u2f);
1654
1655 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1656
1657 alu_src.mod = 0;
1658
1659 midgard_instruction fmul = {
1660 .type = TAG_ALU_4,
1661 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1662 .ssa_args = {
1663 .src0 = reg,
1664 .dest = reg,
1665 .src1 = SSA_UNUSED_0,
1666 .inline_constant = true
1667 },
1668 .alu = {
1669 .op = midgard_alu_op_fmul,
1670 .reg_mode = midgard_reg_mode_32,
1671 .dest_override = midgard_dest_override_none,
1672 .outmod = midgard_outmod_sat,
1673 .mask = 0xFF,
1674 .src1 = vector_alu_srco_unsigned(alu_src),
1675 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1676 }
1677 };
1678
1679 emit_mir_instruction(ctx, fmul);
1680 } else {
1681 DBG("Unknown input in blend shader\n");
1682 assert(0);
1683 }
1684 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1685 midgard_instruction ins = m_ld_attr_32(reg, offset);
1686 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1687 ins.load_store.mask = (1 << instr->num_components) - 1;
1688 emit_mir_instruction(ctx, ins);
1689 } else {
1690 DBG("Unknown load\n");
1691 assert(0);
1692 }
1693
1694 break;
1695
1696 case nir_intrinsic_store_output:
1697 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1698
1699 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1700
1701 reg = nir_src_index(ctx, &instr->src[0]);
1702
1703 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1704 /* gl_FragColor is not emitted with load/store
1705 * instructions. Instead, it gets plonked into
1706 * r0 at the end of the shader and we do the
1707 * framebuffer writeout dance. TODO: Defer
1708 * writes */
1709
1710 midgard_pin_output(ctx, reg, 0);
1711
1712 /* Save the index we're writing to for later reference
1713 * in the epilogue */
1714
1715 ctx->fragment_output = reg;
1716 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1717 /* Varyings are written into one of two special
1718 * varying register, r26 or r27. The register itself is selected as the register
1719 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1720 *
1721 * Normally emitting fmov's is frowned upon,
1722 * but due to unique constraints of
1723 * REGISTER_VARYING, fmov emission + a
1724 * dedicated cleanup pass is the only way to
1725 * guarantee correctness when considering some
1726 * (common) edge cases XXX: FIXME */
1727
1728 /* If this varying corresponds to a constant (why?!),
1729 * emit that now since it won't get picked up by
1730 * hoisting (since there is no corresponding move
1731 * emitted otherwise) */
1732
1733 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1734
1735 if (constant_value) {
1736 /* Special case: emit the varying write
1737 * directly to r26 (looks funny in asm but it's
1738 * fine) and emit the store _now_. Possibly
1739 * slightly slower, but this is a really stupid
1740 * special case anyway (why on earth would you
1741 * have a constant varying? Your own fault for
1742 * slightly worse perf :P) */
1743
1744 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1745 attach_constants(ctx, &ins, constant_value, reg + 1);
1746 emit_mir_instruction(ctx, ins);
1747
1748 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1749 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1750 emit_mir_instruction(ctx, st);
1751 } else {
1752 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1753
1754 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1755 }
1756 } else {
1757 DBG("Unknown store\n");
1758 assert(0);
1759 }
1760
1761 break;
1762
1763 case nir_intrinsic_load_alpha_ref_float:
1764 assert(instr->dest.is_ssa);
1765
1766 float ref_value = ctx->alpha_ref;
1767
1768 float *v = ralloc_array(NULL, float, 4);
1769 memcpy(v, &ref_value, sizeof(float));
1770 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1771 break;
1772
1773 case nir_intrinsic_load_viewport_scale:
1774 case nir_intrinsic_load_viewport_offset:
1775 emit_sysval_read(ctx, instr);
1776 break;
1777
1778 default:
1779 printf ("Unhandled intrinsic\n");
1780 assert(0);
1781 break;
1782 }
1783 }
1784
1785 static unsigned
1786 midgard_tex_format(enum glsl_sampler_dim dim)
1787 {
1788 switch (dim) {
1789 case GLSL_SAMPLER_DIM_2D:
1790 case GLSL_SAMPLER_DIM_EXTERNAL:
1791 return TEXTURE_2D;
1792
1793 case GLSL_SAMPLER_DIM_3D:
1794 return TEXTURE_3D;
1795
1796 case GLSL_SAMPLER_DIM_CUBE:
1797 return TEXTURE_CUBE;
1798
1799 default:
1800 DBG("Unknown sampler dim type\n");
1801 assert(0);
1802 return 0;
1803 }
1804 }
1805
1806 static void
1807 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1808 {
1809 /* TODO */
1810 //assert (!instr->sampler);
1811 //assert (!instr->texture_array_size);
1812 assert (instr->op == nir_texop_tex);
1813
1814 /* Allocate registers via a round robin scheme to alternate between the two registers */
1815 int reg = ctx->texture_op_count & 1;
1816 int in_reg = reg, out_reg = reg;
1817
1818 /* Make room for the reg */
1819
1820 if (ctx->texture_index[reg] > -1)
1821 unalias_ssa(ctx, ctx->texture_index[reg]);
1822
1823 int texture_index = instr->texture_index;
1824 int sampler_index = texture_index;
1825
1826 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1827 switch (instr->src[i].src_type) {
1828 case nir_tex_src_coord: {
1829 int index = nir_src_index(ctx, &instr->src[i].src);
1830
1831 midgard_vector_alu_src alu_src = blank_alu_src;
1832
1833 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1834
1835 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1836 /* For cubemaps, we need to load coords into
1837 * special r27, and then use a special ld/st op
1838 * to copy into the texture register */
1839
1840 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1841
1842 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1843 emit_mir_instruction(ctx, move);
1844
1845 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1846 st.load_store.unknown = 0x24; /* XXX: What is this? */
1847 st.load_store.mask = 0x3; /* xy? */
1848 st.load_store.swizzle = alu_src.swizzle;
1849 emit_mir_instruction(ctx, st);
1850
1851 } else {
1852 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1853
1854 midgard_instruction ins = v_fmov(index, alu_src, reg);
1855 emit_mir_instruction(ctx, ins);
1856 }
1857
1858 break;
1859 }
1860
1861 default: {
1862 DBG("Unknown source type\n");
1863 //assert(0);
1864 break;
1865 }
1866 }
1867 }
1868
1869 /* No helper to build texture words -- we do it all here */
1870 midgard_instruction ins = {
1871 .type = TAG_TEXTURE_4,
1872 .texture = {
1873 .op = TEXTURE_OP_NORMAL,
1874 .format = midgard_tex_format(instr->sampler_dim),
1875 .texture_handle = texture_index,
1876 .sampler_handle = sampler_index,
1877
1878 /* TODO: Don't force xyzw */
1879 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1880 .mask = 0xF,
1881
1882 /* TODO: half */
1883 //.in_reg_full = 1,
1884 .out_full = 1,
1885
1886 .filter = 1,
1887
1888 /* Always 1 */
1889 .unknown7 = 1,
1890
1891 /* Assume we can continue; hint it out later */
1892 .cont = 1,
1893 }
1894 };
1895
1896 /* Set registers to read and write from the same place */
1897 ins.texture.in_reg_select = in_reg;
1898 ins.texture.out_reg_select = out_reg;
1899
1900 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1901 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1902 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1903 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1904 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1905 } else {
1906 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1907 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1908 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1909 }
1910
1911 emit_mir_instruction(ctx, ins);
1912
1913 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1914
1915 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1916 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1917 ctx->texture_index[reg] = o_index;
1918
1919 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1920 emit_mir_instruction(ctx, ins2);
1921
1922 /* Used for .cont and .last hinting */
1923 ctx->texture_op_count++;
1924 }
1925
1926 static void
1927 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1928 {
1929 switch (instr->type) {
1930 case nir_jump_break: {
1931 /* Emit a branch out of the loop */
1932 struct midgard_instruction br = v_branch(false, false);
1933 br.branch.target_type = TARGET_BREAK;
1934 br.branch.target_break = ctx->current_loop_depth;
1935 emit_mir_instruction(ctx, br);
1936
1937 DBG("break..\n");
1938 break;
1939 }
1940
1941 default:
1942 DBG("Unknown jump type %d\n", instr->type);
1943 break;
1944 }
1945 }
1946
1947 static void
1948 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1949 {
1950 switch (instr->type) {
1951 case nir_instr_type_load_const:
1952 emit_load_const(ctx, nir_instr_as_load_const(instr));
1953 break;
1954
1955 case nir_instr_type_intrinsic:
1956 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1957 break;
1958
1959 case nir_instr_type_alu:
1960 emit_alu(ctx, nir_instr_as_alu(instr));
1961 break;
1962
1963 case nir_instr_type_tex:
1964 emit_tex(ctx, nir_instr_as_tex(instr));
1965 break;
1966
1967 case nir_instr_type_jump:
1968 emit_jump(ctx, nir_instr_as_jump(instr));
1969 break;
1970
1971 case nir_instr_type_ssa_undef:
1972 /* Spurious */
1973 break;
1974
1975 default:
1976 DBG("Unhandled instruction type\n");
1977 break;
1978 }
1979 }
1980
1981 /* Determine the actual hardware from the index based on the RA results or special values */
1982
1983 static int
1984 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1985 {
1986 if (reg >= SSA_FIXED_MINIMUM)
1987 return SSA_REG_FROM_FIXED(reg);
1988
1989 if (reg >= 0) {
1990 assert(reg < maxreg);
1991 assert(g);
1992 int r = ra_get_node_reg(g, reg);
1993 ctx->work_registers = MAX2(ctx->work_registers, r);
1994 return r;
1995 }
1996
1997 switch (reg) {
1998 /* fmov style unused */
1999 case SSA_UNUSED_0:
2000 return REGISTER_UNUSED;
2001
2002 /* lut style unused */
2003 case SSA_UNUSED_1:
2004 return REGISTER_UNUSED;
2005
2006 default:
2007 DBG("Unknown SSA register alias %d\n", reg);
2008 assert(0);
2009 return 31;
2010 }
2011 }
2012
2013 static unsigned int
2014 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
2015 {
2016 /* Choose the first available register to minimise reported register pressure */
2017
2018 for (int i = 0; i < 16; ++i) {
2019 if (BITSET_TEST(regs, i)) {
2020 return i;
2021 }
2022 }
2023
2024 assert(0);
2025 return 0;
2026 }
2027
2028 static bool
2029 midgard_is_live_in_instr(midgard_instruction *ins, int src)
2030 {
2031 if (ins->ssa_args.src0 == src) return true;
2032 if (ins->ssa_args.src1 == src) return true;
2033
2034 return false;
2035 }
2036
2037 /* Determine if a variable is live in the successors of a block */
2038 static bool
2039 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
2040 {
2041 for (unsigned i = 0; i < bl->nr_successors; ++i) {
2042 midgard_block *succ = bl->successors[i];
2043
2044 /* If we already visited, the value we're seeking
2045 * isn't down this path (or we would have short
2046 * circuited */
2047
2048 if (succ->visited) continue;
2049
2050 /* Otherwise (it's visited *now*), check the block */
2051
2052 succ->visited = true;
2053
2054 mir_foreach_instr_in_block(succ, ins) {
2055 if (midgard_is_live_in_instr(ins, src))
2056 return true;
2057 }
2058
2059 /* ...and also, check *its* successors */
2060 if (is_live_after_successors(ctx, succ, src))
2061 return true;
2062
2063 }
2064
2065 /* Welp. We're really not live. */
2066
2067 return false;
2068 }
2069
2070 static bool
2071 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2072 {
2073 /* Check the rest of the block for liveness */
2074
2075 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2076 if (midgard_is_live_in_instr(ins, src))
2077 return true;
2078 }
2079
2080 /* Check the rest of the blocks for liveness recursively */
2081
2082 bool succ = is_live_after_successors(ctx, block, src);
2083
2084 mir_foreach_block(ctx, block) {
2085 block->visited = false;
2086 }
2087
2088 return succ;
2089 }
2090
2091 /* Once registers have been decided via register allocation
2092 * (allocate_registers), we need to rewrite the MIR to use registers instead of
2093 * SSA */
2094
2095 static void
2096 install_registers(compiler_context *ctx, struct ra_graph *g)
2097 {
2098 mir_foreach_block(ctx, block) {
2099 mir_foreach_instr_in_block(block, ins) {
2100 if (ins->compact_branch) continue;
2101
2102 ssa_args args = ins->ssa_args;
2103
2104 switch (ins->type) {
2105 case TAG_ALU_4:
2106 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
2107
2108 ins->registers.src2_imm = args.inline_constant;
2109
2110 if (args.inline_constant) {
2111 /* Encode inline 16-bit constant as a vector by default */
2112
2113 ins->registers.src2_reg = ins->inline_constant >> 11;
2114
2115 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2116
2117 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2118 ins->alu.src2 = imm << 2;
2119 } else {
2120 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
2121 }
2122
2123 ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
2124
2125 break;
2126
2127 case TAG_LOAD_STORE_4: {
2128 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2129 /* TODO: use ssa_args for st_vary */
2130 ins->load_store.reg = 0;
2131 } else {
2132 bool has_dest = args.dest >= 0;
2133 int ssa_arg = has_dest ? args.dest : args.src0;
2134
2135 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
2136 }
2137
2138 break;
2139 }
2140
2141 default:
2142 break;
2143 }
2144 }
2145 }
2146
2147 }
2148
2149 /* This routine performs the actual register allocation. It should be succeeded
2150 * by install_registers */
2151
2152 static struct ra_graph *
2153 allocate_registers(compiler_context *ctx)
2154 {
2155 /* First, initialize the RA */
2156 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2157
2158 /* Create a primary (general purpose) class, as well as special purpose
2159 * pipeline register classes */
2160
2161 int primary_class = ra_alloc_reg_class(regs);
2162 int varying_class = ra_alloc_reg_class(regs);
2163
2164 /* Add the full set of work registers */
2165 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2166 for (int i = 0; i < work_count; ++i)
2167 ra_class_add_reg(regs, primary_class, i);
2168
2169 /* Add special registers */
2170 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2171 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2172
2173 /* We're done setting up */
2174 ra_set_finalize(regs, NULL);
2175
2176 /* Transform the MIR into squeezed index form */
2177 mir_foreach_block(ctx, block) {
2178 mir_foreach_instr_in_block(block, ins) {
2179 if (ins->compact_branch) continue;
2180
2181 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2182 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2183 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2184 }
2185 if (midgard_debug & MIDGARD_DBG_SHADERS)
2186 print_mir_block(block);
2187 }
2188
2189 /* No register allocation to do with no SSA */
2190
2191 if (!ctx->temp_count)
2192 return NULL;
2193
2194 /* Let's actually do register allocation */
2195 int nodes = ctx->temp_count;
2196 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2197
2198 /* Set everything to the work register class, unless it has somewhere
2199 * special to go */
2200
2201 mir_foreach_block(ctx, block) {
2202 mir_foreach_instr_in_block(block, ins) {
2203 if (ins->compact_branch) continue;
2204
2205 if (ins->ssa_args.dest < 0) continue;
2206
2207 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2208
2209 int class = primary_class;
2210
2211 ra_set_node_class(g, ins->ssa_args.dest, class);
2212 }
2213 }
2214
2215 for (int index = 0; index <= ctx->max_hash; ++index) {
2216 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2217
2218 if (temp) {
2219 unsigned reg = temp - 1;
2220 int t = find_or_allocate_temp(ctx, index);
2221 ra_set_node_reg(g, t, reg);
2222 }
2223 }
2224
2225 /* Determine liveness */
2226
2227 int *live_start = malloc(nodes * sizeof(int));
2228 int *live_end = malloc(nodes * sizeof(int));
2229
2230 /* Initialize as non-existent */
2231
2232 for (int i = 0; i < nodes; ++i) {
2233 live_start[i] = live_end[i] = -1;
2234 }
2235
2236 int d = 0;
2237
2238 mir_foreach_block(ctx, block) {
2239 mir_foreach_instr_in_block(block, ins) {
2240 if (ins->compact_branch) continue;
2241
2242 /* Dest is < 0 for st_vary instructions, which break
2243 * the usual SSA conventions. Liveness analysis doesn't
2244 * make sense on these instructions, so skip them to
2245 * avoid memory corruption */
2246
2247 if (ins->ssa_args.dest < 0) continue;
2248
2249 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2250 /* If this destination is not yet live, it is now since we just wrote it */
2251
2252 int dest = ins->ssa_args.dest;
2253
2254 if (live_start[dest] == -1)
2255 live_start[dest] = d;
2256 }
2257
2258 /* Since we just used a source, the source might be
2259 * dead now. Scan the rest of the block for
2260 * invocations, and if there are none, the source dies
2261 * */
2262
2263 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2264
2265 for (int src = 0; src < 2; ++src) {
2266 int s = sources[src];
2267
2268 if (s < 0) continue;
2269
2270 if (s >= SSA_FIXED_MINIMUM) continue;
2271
2272 if (!is_live_after(ctx, block, ins, s)) {
2273 live_end[s] = d;
2274 }
2275 }
2276
2277 ++d;
2278 }
2279 }
2280
2281 /* If a node still hasn't been killed, kill it now */
2282
2283 for (int i = 0; i < nodes; ++i) {
2284 /* live_start == -1 most likely indicates a pinned output */
2285
2286 if (live_end[i] == -1)
2287 live_end[i] = d;
2288 }
2289
2290 /* Setup interference between nodes that are live at the same time */
2291
2292 for (int i = 0; i < nodes; ++i) {
2293 for (int j = i + 1; j < nodes; ++j) {
2294 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2295 ra_add_node_interference(g, i, j);
2296 }
2297 }
2298
2299 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2300
2301 if (!ra_allocate(g)) {
2302 DBG("Error allocating registers\n");
2303 assert(0);
2304 }
2305
2306 /* Cleanup */
2307 free(live_start);
2308 free(live_end);
2309
2310 return g;
2311 }
2312
2313 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2314 * use scalar ALU instructions, for functional or performance reasons. To do
2315 * this, we just demote vector ALU payloads to scalar. */
2316
2317 static int
2318 component_from_mask(unsigned mask)
2319 {
2320 for (int c = 0; c < 4; ++c) {
2321 if (mask & (3 << (2 * c)))
2322 return c;
2323 }
2324
2325 assert(0);
2326 return 0;
2327 }
2328
2329 static bool
2330 is_single_component_mask(unsigned mask)
2331 {
2332 int components = 0;
2333
2334 for (int c = 0; c < 4; ++c)
2335 if (mask & (3 << (2 * c)))
2336 components++;
2337
2338 return components == 1;
2339 }
2340
2341 /* Create a mask of accessed components from a swizzle to figure out vector
2342 * dependencies */
2343
2344 static unsigned
2345 swizzle_to_access_mask(unsigned swizzle)
2346 {
2347 unsigned component_mask = 0;
2348
2349 for (int i = 0; i < 4; ++i) {
2350 unsigned c = (swizzle >> (2 * i)) & 3;
2351 component_mask |= (1 << c);
2352 }
2353
2354 return component_mask;
2355 }
2356
2357 static unsigned
2358 vector_to_scalar_source(unsigned u, bool is_int)
2359 {
2360 midgard_vector_alu_src v;
2361 memcpy(&v, &u, sizeof(v));
2362
2363 /* TODO: Integers */
2364
2365 midgard_scalar_alu_src s = {
2366 .full = !v.half,
2367 .component = (v.swizzle & 3) << 1
2368 };
2369
2370 if (is_int) {
2371 /* TODO */
2372 } else {
2373 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2374 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2375 }
2376
2377 unsigned o;
2378 memcpy(&o, &s, sizeof(s));
2379
2380 return o & ((1 << 6) - 1);
2381 }
2382
2383 static midgard_scalar_alu
2384 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2385 {
2386 bool is_int = midgard_is_integer_op(v.op);
2387
2388 /* The output component is from the mask */
2389 midgard_scalar_alu s = {
2390 .op = v.op,
2391 .src1 = vector_to_scalar_source(v.src1, is_int),
2392 .src2 = vector_to_scalar_source(v.src2, is_int),
2393 .unknown = 0,
2394 .outmod = v.outmod,
2395 .output_full = 1, /* TODO: Half */
2396 .output_component = component_from_mask(v.mask) << 1,
2397 };
2398
2399 /* Inline constant is passed along rather than trying to extract it
2400 * from v */
2401
2402 if (ins->ssa_args.inline_constant) {
2403 uint16_t imm = 0;
2404 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2405 imm |= (lower_11 >> 9) & 3;
2406 imm |= (lower_11 >> 6) & 4;
2407 imm |= (lower_11 >> 2) & 0x38;
2408 imm |= (lower_11 & 63) << 6;
2409
2410 s.src2 = imm;
2411 }
2412
2413 return s;
2414 }
2415
2416 /* Midgard prefetches instruction types, so during emission we need to
2417 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2418 * if this is the second to last and the last is an ALU, then it's also 1... */
2419
2420 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2421 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2422
2423 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2424 bytes_emitted += sizeof(type)
2425
2426 static void
2427 emit_binary_vector_instruction(midgard_instruction *ains,
2428 uint16_t *register_words, int *register_words_count,
2429 uint64_t *body_words, size_t *body_size, int *body_words_count,
2430 size_t *bytes_emitted)
2431 {
2432 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2433 *bytes_emitted += sizeof(midgard_reg_info);
2434
2435 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2436 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2437 *bytes_emitted += sizeof(midgard_vector_alu);
2438 }
2439
2440 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2441 * mind that we are a vector architecture and we can write to different
2442 * components simultaneously */
2443
2444 static bool
2445 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2446 {
2447 /* Each instruction reads some registers and writes to a register. See
2448 * where the first writes */
2449
2450 /* Figure out where exactly we wrote to */
2451 int source = first->ssa_args.dest;
2452 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2453
2454 /* As long as the second doesn't read from the first, we're okay */
2455 if (second->ssa_args.src0 == source) {
2456 if (first->type == TAG_ALU_4) {
2457 /* Figure out which components we just read from */
2458
2459 int q = second->alu.src1;
2460 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2461
2462 /* Check if there are components in common, and fail if so */
2463 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2464 return false;
2465 } else
2466 return false;
2467
2468 }
2469
2470 if (second->ssa_args.src1 == source)
2471 return false;
2472
2473 /* Otherwise, it's safe in that regard. Another data hazard is both
2474 * writing to the same place, of course */
2475
2476 if (second->ssa_args.dest == source) {
2477 /* ...but only if the components overlap */
2478 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2479
2480 if (dest_mask & source_mask)
2481 return false;
2482 }
2483
2484 /* ...That's it */
2485 return true;
2486 }
2487
2488 static bool
2489 midgard_has_hazard(
2490 midgard_instruction **segment, unsigned segment_size,
2491 midgard_instruction *ains)
2492 {
2493 for (int s = 0; s < segment_size; ++s)
2494 if (!can_run_concurrent_ssa(segment[s], ains))
2495 return true;
2496
2497 return false;
2498
2499
2500 }
2501
2502 /* Schedules, but does not emit, a single basic block. After scheduling, the
2503 * final tag and size of the block are known, which are necessary for branching
2504 * */
2505
2506 static midgard_bundle
2507 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2508 {
2509 int instructions_emitted = 0, instructions_consumed = -1;
2510 midgard_bundle bundle = { 0 };
2511
2512 uint8_t tag = ins->type;
2513
2514 /* Default to the instruction's tag */
2515 bundle.tag = tag;
2516
2517 switch (ins->type) {
2518 case TAG_ALU_4: {
2519 uint32_t control = 0;
2520 size_t bytes_emitted = sizeof(control);
2521
2522 /* TODO: Constant combining */
2523 int index = 0, last_unit = 0;
2524
2525 /* Previous instructions, for the purpose of parallelism */
2526 midgard_instruction *segment[4] = {0};
2527 int segment_size = 0;
2528
2529 instructions_emitted = -1;
2530 midgard_instruction *pins = ins;
2531
2532 for (;;) {
2533 midgard_instruction *ains = pins;
2534
2535 /* Advance instruction pointer */
2536 if (index) {
2537 ains = mir_next_op(pins);
2538 pins = ains;
2539 }
2540
2541 /* Out-of-work condition */
2542 if ((struct list_head *) ains == &block->instructions)
2543 break;
2544
2545 /* Ensure that the chain can continue */
2546 if (ains->type != TAG_ALU_4) break;
2547
2548 /* If there's already something in the bundle and we
2549 * have weird scheduler constraints, break now */
2550 if (ains->precede_break && index) break;
2551
2552 /* According to the presentation "The ARM
2553 * Mali-T880 Mobile GPU" from HotChips 27,
2554 * there are two pipeline stages. Branching
2555 * position determined experimentally. Lines
2556 * are executed in parallel:
2557 *
2558 * [ VMUL ] [ SADD ]
2559 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2560 *
2561 * Verify that there are no ordering dependencies here.
2562 *
2563 * TODO: Allow for parallelism!!!
2564 */
2565
2566 /* Pick a unit for it if it doesn't force a particular unit */
2567
2568 int unit = ains->unit;
2569
2570 if (!unit) {
2571 int op = ains->alu.op;
2572 int units = alu_opcode_props[op].props;
2573
2574 /* TODO: Promotion of scalars to vectors */
2575 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2576
2577 if (!vector)
2578 assert(units & UNITS_SCALAR);
2579
2580 if (vector) {
2581 if (last_unit >= UNIT_VADD) {
2582 if (units & UNIT_VLUT)
2583 unit = UNIT_VLUT;
2584 else
2585 break;
2586 } else {
2587 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2588 unit = UNIT_VMUL;
2589 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2590 unit = UNIT_VADD;
2591 else if (units & UNIT_VLUT)
2592 unit = UNIT_VLUT;
2593 else
2594 break;
2595 }
2596 } else {
2597 if (last_unit >= UNIT_VADD) {
2598 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2599 unit = UNIT_SMUL;
2600 else if (units & UNIT_VLUT)
2601 unit = UNIT_VLUT;
2602 else
2603 break;
2604 } else {
2605 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2606 unit = UNIT_SADD;
2607 else if (units & UNIT_SMUL)
2608 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2609 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2610 unit = UNIT_VADD;
2611 else
2612 break;
2613 }
2614 }
2615
2616 assert(unit & units);
2617 }
2618
2619 /* Late unit check, this time for encoding (not parallelism) */
2620 if (unit <= last_unit) break;
2621
2622 /* Clear the segment */
2623 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2624 segment_size = 0;
2625
2626 if (midgard_has_hazard(segment, segment_size, ains))
2627 break;
2628
2629 /* We're good to go -- emit the instruction */
2630 ains->unit = unit;
2631
2632 segment[segment_size++] = ains;
2633
2634 /* Only one set of embedded constants per
2635 * bundle possible; if we have more, we must
2636 * break the chain early, unfortunately */
2637
2638 if (ains->has_constants) {
2639 if (bundle.has_embedded_constants) {
2640 /* ...but if there are already
2641 * constants but these are the
2642 * *same* constants, we let it
2643 * through */
2644
2645 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2646 break;
2647 } else {
2648 bundle.has_embedded_constants = true;
2649 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2650
2651 /* If this is a blend shader special constant, track it for patching */
2652 if (ains->has_blend_constant)
2653 bundle.has_blend_constant = true;
2654 }
2655 }
2656
2657 if (ains->unit & UNITS_ANY_VECTOR) {
2658 emit_binary_vector_instruction(ains, bundle.register_words,
2659 &bundle.register_words_count, bundle.body_words,
2660 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2661 } else if (ains->compact_branch) {
2662 /* All of r0 has to be written out
2663 * along with the branch writeout.
2664 * (slow!) */
2665
2666 if (ains->writeout) {
2667 if (index == 0) {
2668 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2669 ins.unit = UNIT_VMUL;
2670
2671 control |= ins.unit;
2672
2673 emit_binary_vector_instruction(&ins, bundle.register_words,
2674 &bundle.register_words_count, bundle.body_words,
2675 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2676 } else {
2677 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2678 bool written_late = false;
2679 bool components[4] = { 0 };
2680 uint16_t register_dep_mask = 0;
2681 uint16_t written_mask = 0;
2682
2683 midgard_instruction *qins = ins;
2684 for (int t = 0; t < index; ++t) {
2685 if (qins->registers.out_reg != 0) {
2686 /* Mark down writes */
2687
2688 written_mask |= (1 << qins->registers.out_reg);
2689 } else {
2690 /* Mark down the register dependencies for errata check */
2691
2692 if (qins->registers.src1_reg < 16)
2693 register_dep_mask |= (1 << qins->registers.src1_reg);
2694
2695 if (qins->registers.src2_reg < 16)
2696 register_dep_mask |= (1 << qins->registers.src2_reg);
2697
2698 int mask = qins->alu.mask;
2699
2700 for (int c = 0; c < 4; ++c)
2701 if (mask & (0x3 << (2 * c)))
2702 components[c] = true;
2703
2704 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2705
2706 if (qins->unit == UNIT_VLUT)
2707 written_late = true;
2708 }
2709
2710 /* Advance instruction pointer */
2711 qins = mir_next_op(qins);
2712 }
2713
2714
2715 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2716 if (register_dep_mask & written_mask) {
2717 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2718 break;
2719 }
2720
2721 if (written_late)
2722 break;
2723
2724 /* If even a single component is not written, break it up (conservative check). */
2725 bool breakup = false;
2726
2727 for (int c = 0; c < 4; ++c)
2728 if (!components[c])
2729 breakup = true;
2730
2731 if (breakup)
2732 break;
2733
2734 /* Otherwise, we're free to proceed */
2735 }
2736 }
2737
2738 if (ains->unit == ALU_ENAB_BRANCH) {
2739 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2740 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2741 bytes_emitted += sizeof(midgard_branch_extended);
2742 } else {
2743 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2744 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2745 bytes_emitted += sizeof(ains->br_compact);
2746 }
2747 } else {
2748 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2749 bytes_emitted += sizeof(midgard_reg_info);
2750
2751 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2752 bundle.body_words_count++;
2753 bytes_emitted += sizeof(midgard_scalar_alu);
2754 }
2755
2756 /* Defer marking until after writing to allow for break */
2757 control |= ains->unit;
2758 last_unit = ains->unit;
2759 ++instructions_emitted;
2760 ++index;
2761 }
2762
2763 /* Bubble up the number of instructions for skipping */
2764 instructions_consumed = index - 1;
2765
2766 int padding = 0;
2767
2768 /* Pad ALU op to nearest word */
2769
2770 if (bytes_emitted & 15) {
2771 padding = 16 - (bytes_emitted & 15);
2772 bytes_emitted += padding;
2773 }
2774
2775 /* Constants must always be quadwords */
2776 if (bundle.has_embedded_constants)
2777 bytes_emitted += 16;
2778
2779 /* Size ALU instruction for tag */
2780 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2781 bundle.padding = padding;
2782 bundle.control = bundle.tag | control;
2783
2784 break;
2785 }
2786
2787 case TAG_LOAD_STORE_4: {
2788 /* Load store instructions have two words at once. If
2789 * we only have one queued up, we need to NOP pad.
2790 * Otherwise, we store both in succession to save space
2791 * and cycles -- letting them go in parallel -- skip
2792 * the next. The usefulness of this optimisation is
2793 * greatly dependent on the quality of the instruction
2794 * scheduler.
2795 */
2796
2797 midgard_instruction *next_op = mir_next_op(ins);
2798
2799 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2800 /* As the two operate concurrently, make sure
2801 * they are not dependent */
2802
2803 if (can_run_concurrent_ssa(ins, next_op) || true) {
2804 /* Skip ahead, since it's redundant with the pair */
2805 instructions_consumed = 1 + (instructions_emitted++);
2806 }
2807 }
2808
2809 break;
2810 }
2811
2812 default:
2813 /* Texture ops default to single-op-per-bundle scheduling */
2814 break;
2815 }
2816
2817 /* Copy the instructions into the bundle */
2818 bundle.instruction_count = instructions_emitted + 1;
2819
2820 int used_idx = 0;
2821
2822 midgard_instruction *uins = ins;
2823 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2824 bundle.instructions[used_idx++] = *uins;
2825 uins = mir_next_op(uins);
2826 }
2827
2828 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2829
2830 return bundle;
2831 }
2832
2833 static int
2834 quadword_size(int tag)
2835 {
2836 switch (tag) {
2837 case TAG_ALU_4:
2838 return 1;
2839
2840 case TAG_ALU_8:
2841 return 2;
2842
2843 case TAG_ALU_12:
2844 return 3;
2845
2846 case TAG_ALU_16:
2847 return 4;
2848
2849 case TAG_LOAD_STORE_4:
2850 return 1;
2851
2852 case TAG_TEXTURE_4:
2853 return 1;
2854
2855 default:
2856 assert(0);
2857 return 0;
2858 }
2859 }
2860
2861 /* Schedule a single block by iterating its instruction to create bundles.
2862 * While we go, tally about the bundle sizes to compute the block size. */
2863
2864 static void
2865 schedule_block(compiler_context *ctx, midgard_block *block)
2866 {
2867 util_dynarray_init(&block->bundles, NULL);
2868
2869 block->quadword_count = 0;
2870
2871 mir_foreach_instr_in_block(block, ins) {
2872 int skip;
2873 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2874 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2875
2876 if (bundle.has_blend_constant) {
2877 /* TODO: Multiblock? */
2878 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2879 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2880 }
2881
2882 while(skip--)
2883 ins = mir_next_op(ins);
2884
2885 block->quadword_count += quadword_size(bundle.tag);
2886 }
2887
2888 block->is_scheduled = true;
2889 }
2890
2891 static void
2892 schedule_program(compiler_context *ctx)
2893 {
2894 /* We run RA prior to scheduling */
2895 struct ra_graph *g = allocate_registers(ctx);
2896 install_registers(ctx, g);
2897
2898 mir_foreach_block(ctx, block) {
2899 schedule_block(ctx, block);
2900 }
2901 }
2902
2903 /* After everything is scheduled, emit whole bundles at a time */
2904
2905 static void
2906 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2907 {
2908 int lookahead = next_tag << 4;
2909
2910 switch (bundle->tag) {
2911 case TAG_ALU_4:
2912 case TAG_ALU_8:
2913 case TAG_ALU_12:
2914 case TAG_ALU_16: {
2915 /* Actually emit each component */
2916 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2917
2918 for (int i = 0; i < bundle->register_words_count; ++i)
2919 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2920
2921 /* Emit body words based on the instructions bundled */
2922 for (int i = 0; i < bundle->instruction_count; ++i) {
2923 midgard_instruction *ins = &bundle->instructions[i];
2924
2925 if (ins->unit & UNITS_ANY_VECTOR) {
2926 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2927 } else if (ins->compact_branch) {
2928 /* Dummy move, XXX DRY */
2929 if ((i == 0) && ins->writeout) {
2930 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2931 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2932 }
2933
2934 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2935 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2936 } else {
2937 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2938 }
2939 } else {
2940 /* Scalar */
2941 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2942 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2943 }
2944 }
2945
2946 /* Emit padding (all zero) */
2947 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2948
2949 /* Tack on constants */
2950
2951 if (bundle->has_embedded_constants) {
2952 util_dynarray_append(emission, float, bundle->constants[0]);
2953 util_dynarray_append(emission, float, bundle->constants[1]);
2954 util_dynarray_append(emission, float, bundle->constants[2]);
2955 util_dynarray_append(emission, float, bundle->constants[3]);
2956 }
2957
2958 break;
2959 }
2960
2961 case TAG_LOAD_STORE_4: {
2962 /* One or two composing instructions */
2963
2964 uint64_t current64, next64 = LDST_NOP;
2965
2966 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2967
2968 if (bundle->instruction_count == 2)
2969 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2970
2971 midgard_load_store instruction = {
2972 .type = bundle->tag,
2973 .next_type = next_tag,
2974 .word1 = current64,
2975 .word2 = next64
2976 };
2977
2978 util_dynarray_append(emission, midgard_load_store, instruction);
2979
2980 break;
2981 }
2982
2983 case TAG_TEXTURE_4: {
2984 /* Texture instructions are easy, since there is no
2985 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2986
2987 midgard_instruction *ins = &bundle->instructions[0];
2988
2989 ins->texture.type = TAG_TEXTURE_4;
2990 ins->texture.next_type = next_tag;
2991
2992 ctx->texture_op_count--;
2993
2994 if (!ctx->texture_op_count) {
2995 ins->texture.cont = 0;
2996 ins->texture.last = 1;
2997 }
2998
2999 util_dynarray_append(emission, midgard_texture_word, ins->texture);
3000 break;
3001 }
3002
3003 default:
3004 DBG("Unknown midgard instruction type\n");
3005 assert(0);
3006 break;
3007 }
3008 }
3009
3010
3011 /* ALU instructions can inline or embed constants, which decreases register
3012 * pressure and saves space. */
3013
3014 #define CONDITIONAL_ATTACH(src) { \
3015 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
3016 \
3017 if (entry) { \
3018 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
3019 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
3020 } \
3021 }
3022
3023 static void
3024 inline_alu_constants(compiler_context *ctx)
3025 {
3026 mir_foreach_instr(ctx, alu) {
3027 /* Other instructions cannot inline constants */
3028 if (alu->type != TAG_ALU_4) continue;
3029
3030 /* If there is already a constant here, we can do nothing */
3031 if (alu->has_constants) continue;
3032
3033 /* It makes no sense to inline constants on a branch */
3034 if (alu->compact_branch || alu->prepacked_branch) continue;
3035
3036 CONDITIONAL_ATTACH(src0);
3037
3038 if (!alu->has_constants) {
3039 CONDITIONAL_ATTACH(src1)
3040 } else if (!alu->inline_constant) {
3041 /* Corner case: _two_ vec4 constants, for instance with a
3042 * csel. For this case, we can only use a constant
3043 * register for one, we'll have to emit a move for the
3044 * other. Note, if both arguments are constants, then
3045 * necessarily neither argument depends on the value of
3046 * any particular register. As the destination register
3047 * will be wiped, that means we can spill the constant
3048 * to the destination register.
3049 */
3050
3051 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
3052 unsigned scratch = alu->ssa_args.dest;
3053
3054 if (entry) {
3055 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
3056 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
3057
3058 /* Force a break XXX Defer r31 writes */
3059 ins.unit = UNIT_VLUT;
3060
3061 /* Set the source */
3062 alu->ssa_args.src1 = scratch;
3063
3064 /* Inject us -before- the last instruction which set r31 */
3065 mir_insert_instruction_before(mir_prev_op(alu), ins);
3066 }
3067 }
3068 }
3069 }
3070
3071 /* Midgard supports two types of constants, embedded constants (128-bit) and
3072 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
3073 * constants can be demoted to inline constants, for space savings and
3074 * sometimes a performance boost */
3075
3076 static void
3077 embedded_to_inline_constant(compiler_context *ctx)
3078 {
3079 mir_foreach_instr(ctx, ins) {
3080 if (!ins->has_constants) continue;
3081
3082 if (ins->ssa_args.inline_constant) continue;
3083
3084 /* Blend constants must not be inlined by definition */
3085 if (ins->has_blend_constant) continue;
3086
3087 /* src1 cannot be an inline constant due to encoding
3088 * restrictions. So, if possible we try to flip the arguments
3089 * in that case */
3090
3091 int op = ins->alu.op;
3092
3093 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3094 switch (op) {
3095 /* These ops require an operational change to flip
3096 * their arguments TODO */
3097 case midgard_alu_op_flt:
3098 case midgard_alu_op_fle:
3099 case midgard_alu_op_ilt:
3100 case midgard_alu_op_ile:
3101 case midgard_alu_op_fcsel:
3102 case midgard_alu_op_icsel:
3103 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3104 default:
3105 break;
3106 }
3107
3108 if (alu_opcode_props[op].props & OP_COMMUTES) {
3109 /* Flip the SSA numbers */
3110 ins->ssa_args.src0 = ins->ssa_args.src1;
3111 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3112
3113 /* And flip the modifiers */
3114
3115 unsigned src_temp;
3116
3117 src_temp = ins->alu.src2;
3118 ins->alu.src2 = ins->alu.src1;
3119 ins->alu.src1 = src_temp;
3120 }
3121 }
3122
3123 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3124 /* Extract the source information */
3125
3126 midgard_vector_alu_src *src;
3127 int q = ins->alu.src2;
3128 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3129 src = m;
3130
3131 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3132 int component = src->swizzle & 3;
3133
3134 /* Scale constant appropriately, if we can legally */
3135 uint16_t scaled_constant = 0;
3136
3137 if (midgard_is_integer_op(op)) {
3138 unsigned int *iconstants = (unsigned int *) ins->constants;
3139 scaled_constant = (uint16_t) iconstants[component];
3140
3141 /* Constant overflow after resize */
3142 if (scaled_constant != iconstants[component])
3143 continue;
3144 } else {
3145 float original = (float) ins->constants[component];
3146 scaled_constant = _mesa_float_to_half(original);
3147
3148 /* Check for loss of precision. If this is
3149 * mediump, we don't care, but for a highp
3150 * shader, we need to pay attention. NIR
3151 * doesn't yet tell us which mode we're in!
3152 * Practically this prevents most constants
3153 * from being inlined, sadly. */
3154
3155 float fp32 = _mesa_half_to_float(scaled_constant);
3156
3157 if (fp32 != original)
3158 continue;
3159 }
3160
3161 /* We don't know how to handle these with a constant */
3162
3163 if (src->mod || src->half || src->rep_low || src->rep_high) {
3164 DBG("Bailing inline constant...\n");
3165 continue;
3166 }
3167
3168 /* Make sure that the constant is not itself a
3169 * vector by checking if all accessed values
3170 * (by the swizzle) are the same. */
3171
3172 uint32_t *cons = (uint32_t *) ins->constants;
3173 uint32_t value = cons[component];
3174
3175 bool is_vector = false;
3176 unsigned mask = effective_writemask(&ins->alu);
3177
3178 for (int c = 1; c < 4; ++c) {
3179 /* We only care if this component is actually used */
3180 if (!(mask & (1 << c)))
3181 continue;
3182
3183 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3184
3185 if (test != value) {
3186 is_vector = true;
3187 break;
3188 }
3189 }
3190
3191 if (is_vector)
3192 continue;
3193
3194 /* Get rid of the embedded constant */
3195 ins->has_constants = false;
3196 ins->ssa_args.src1 = SSA_UNUSED_0;
3197 ins->ssa_args.inline_constant = true;
3198 ins->inline_constant = scaled_constant;
3199 }
3200 }
3201 }
3202
3203 /* Map normal SSA sources to other SSA sources / fixed registers (like
3204 * uniforms) */
3205
3206 static void
3207 map_ssa_to_alias(compiler_context *ctx, int *ref)
3208 {
3209 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3210
3211 if (alias) {
3212 /* Remove entry in leftovers to avoid a redunant fmov */
3213
3214 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3215
3216 if (leftover)
3217 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3218
3219 /* Assign the alias map */
3220 *ref = alias - 1;
3221 return;
3222 }
3223 }
3224
3225 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3226 * texture pipeline */
3227
3228 static bool
3229 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3230 {
3231 bool progress = false;
3232
3233 mir_foreach_instr_in_block_safe(block, ins) {
3234 if (ins->type != TAG_ALU_4) continue;
3235 if (ins->compact_branch) continue;
3236
3237 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3238 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3239 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3240
3241 mir_remove_instruction(ins);
3242 progress = true;
3243 }
3244
3245 return progress;
3246 }
3247
3248 static bool
3249 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
3250 {
3251 /* abs or neg */
3252 if (!is_int && src.mod) return true;
3253
3254 /* swizzle */
3255 for (unsigned c = 0; c < 4; ++c) {
3256 if (!(mask & (1 << c))) continue;
3257 if (((src.swizzle >> (2*c)) & 3) != c) return true;
3258 }
3259
3260 return false;
3261 }
3262
3263 static bool
3264 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3265 {
3266 bool progress = false;
3267
3268 mir_foreach_instr_in_block_safe(block, ins) {
3269 if (ins->type != TAG_ALU_4) continue;
3270 if (!OP_IS_MOVE(ins->alu.op)) continue;
3271
3272 unsigned from = ins->ssa_args.src1;
3273 unsigned to = ins->ssa_args.dest;
3274
3275 /* We only work on pure SSA */
3276
3277 if (to >= SSA_FIXED_MINIMUM) continue;
3278 if (from >= SSA_FIXED_MINIMUM) continue;
3279 if (to >= ctx->func->impl->ssa_alloc) continue;
3280 if (from >= ctx->func->impl->ssa_alloc) continue;
3281
3282 /* Constant propagation is not handled here, either */
3283 if (ins->ssa_args.inline_constant) continue;
3284 if (ins->has_constants) continue;
3285
3286 /* Also, if the move has side effects, we're helpless */
3287
3288 midgard_vector_alu_src src =
3289 vector_alu_from_unsigned(ins->alu.src2);
3290 unsigned mask = squeeze_writemask(ins->alu.mask);
3291 bool is_int = midgard_is_integer_op(ins->alu.op);
3292
3293 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3294 if (ins->alu.outmod != midgard_outmod_none) continue;
3295
3296 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3297 if (v->ssa_args.src0 == to) {
3298 v->ssa_args.src0 = from;
3299 progress = true;
3300 }
3301
3302 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3303 v->ssa_args.src1 = from;
3304 progress = true;
3305 }
3306 }
3307 }
3308
3309 return progress;
3310 }
3311
3312 static bool
3313 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3314 {
3315 bool progress = false;
3316
3317 mir_foreach_instr_in_block_safe(block, ins) {
3318 if (ins->type != TAG_ALU_4) continue;
3319 if (!OP_IS_MOVE(ins->alu.op)) continue;
3320
3321 unsigned from = ins->ssa_args.src1;
3322 unsigned to = ins->ssa_args.dest;
3323
3324 /* Make sure it's simple enough for us to handle */
3325
3326 if (from >= SSA_FIXED_MINIMUM) continue;
3327 if (from >= ctx->func->impl->ssa_alloc) continue;
3328 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3329 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3330
3331 bool eliminated = false;
3332
3333 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3334 /* The texture registers are not SSA so be careful.
3335 * Conservatively, just stop if we hit a texture op
3336 * (even if it may not write) to where we are */
3337
3338 if (v->type != TAG_ALU_4)
3339 break;
3340
3341 if (v->ssa_args.dest == from) {
3342 /* We don't want to track partial writes ... */
3343 if (v->alu.mask == 0xF) {
3344 v->ssa_args.dest = to;
3345 eliminated = true;
3346 }
3347
3348 break;
3349 }
3350 }
3351
3352 if (eliminated)
3353 mir_remove_instruction(ins);
3354
3355 progress |= eliminated;
3356 }
3357
3358 return progress;
3359 }
3360
3361 /* The following passes reorder MIR instructions to enable better scheduling */
3362
3363 static void
3364 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3365 {
3366 mir_foreach_instr_in_block_safe(block, ins) {
3367 if (ins->type != TAG_LOAD_STORE_4) continue;
3368
3369 /* We've found a load/store op. Check if next is also load/store. */
3370 midgard_instruction *next_op = mir_next_op(ins);
3371 if (&next_op->link != &block->instructions) {
3372 if (next_op->type == TAG_LOAD_STORE_4) {
3373 /* If so, we're done since we're a pair */
3374 ins = mir_next_op(ins);
3375 continue;
3376 }
3377
3378 /* Maximum search distance to pair, to avoid register pressure disasters */
3379 int search_distance = 8;
3380
3381 /* Otherwise, we have an orphaned load/store -- search for another load */
3382 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3383 /* Terminate search if necessary */
3384 if (!(search_distance--)) break;
3385
3386 if (c->type != TAG_LOAD_STORE_4) continue;
3387
3388 /* Stores cannot be reordered, since they have
3389 * dependencies. For the same reason, indirect
3390 * loads cannot be reordered as their index is
3391 * loaded in r27.w */
3392
3393 if (OP_IS_STORE(c->load_store.op)) continue;
3394
3395 /* It appears the 0x800 bit is set whenever a
3396 * load is direct, unset when it is indirect.
3397 * Skip indirect loads. */
3398
3399 if (!(c->load_store.unknown & 0x800)) continue;
3400
3401 /* We found one! Move it up to pair and remove it from the old location */
3402
3403 mir_insert_instruction_before(ins, *c);
3404 mir_remove_instruction(c);
3405
3406 break;
3407 }
3408 }
3409 }
3410 }
3411
3412 /* Emit varying stores late */
3413
3414 static void
3415 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3416 /* Iterate in reverse to get the final write, rather than the first */
3417
3418 mir_foreach_instr_in_block_safe_rev(block, ins) {
3419 /* Check if what we just wrote needs a store */
3420 int idx = ins->ssa_args.dest;
3421 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3422
3423 if (!varying) continue;
3424
3425 varying -= 1;
3426
3427 /* We need to store to the appropriate varying, so emit the
3428 * move/store */
3429
3430 /* TODO: Integrate with special purpose RA (and scheduler?) */
3431 bool high_varying_register = false;
3432
3433 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3434
3435 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3436 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3437
3438 mir_insert_instruction_before(mir_next_op(ins), st);
3439 mir_insert_instruction_before(mir_next_op(ins), mov);
3440
3441 /* We no longer need to store this varying */
3442 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3443 }
3444 }
3445
3446 /* If there are leftovers after the below pass, emit actual fmov
3447 * instructions for the slow-but-correct path */
3448
3449 static void
3450 emit_leftover_move(compiler_context *ctx)
3451 {
3452 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3453 int base = ((uintptr_t) leftover->key) - 1;
3454 int mapped = base;
3455
3456 map_ssa_to_alias(ctx, &mapped);
3457 EMIT(fmov, mapped, blank_alu_src, base);
3458 }
3459 }
3460
3461 static void
3462 actualise_ssa_to_alias(compiler_context *ctx)
3463 {
3464 mir_foreach_instr(ctx, ins) {
3465 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3466 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3467 }
3468
3469 emit_leftover_move(ctx);
3470 }
3471
3472 static void
3473 emit_fragment_epilogue(compiler_context *ctx)
3474 {
3475 /* Special case: writing out constants requires us to include the move
3476 * explicitly now, so shove it into r0 */
3477
3478 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3479
3480 if (constant_value) {
3481 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3482 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3483 emit_mir_instruction(ctx, ins);
3484 }
3485
3486 /* Perform the actual fragment writeout. We have two writeout/branch
3487 * instructions, forming a loop until writeout is successful as per the
3488 * docs. TODO: gl_FragDepth */
3489
3490 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3491 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3492 }
3493
3494 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3495 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3496 * with the int8 analogue to the fragment epilogue */
3497
3498 static void
3499 emit_blend_epilogue(compiler_context *ctx)
3500 {
3501 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3502
3503 midgard_instruction scale = {
3504 .type = TAG_ALU_4,
3505 .unit = UNIT_VMUL,
3506 .inline_constant = _mesa_float_to_half(255.0),
3507 .ssa_args = {
3508 .src0 = SSA_FIXED_REGISTER(0),
3509 .src1 = SSA_UNUSED_0,
3510 .dest = SSA_FIXED_REGISTER(24),
3511 .inline_constant = true
3512 },
3513 .alu = {
3514 .op = midgard_alu_op_fmul,
3515 .reg_mode = midgard_reg_mode_32,
3516 .dest_override = midgard_dest_override_lower,
3517 .mask = 0xFF,
3518 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3519 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3520 }
3521 };
3522
3523 emit_mir_instruction(ctx, scale);
3524
3525 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3526
3527 midgard_vector_alu_src alu_src = blank_alu_src;
3528 alu_src.half = true;
3529
3530 midgard_instruction f2u8 = {
3531 .type = TAG_ALU_4,
3532 .ssa_args = {
3533 .src0 = SSA_FIXED_REGISTER(24),
3534 .src1 = SSA_UNUSED_0,
3535 .dest = SSA_FIXED_REGISTER(0),
3536 .inline_constant = true
3537 },
3538 .alu = {
3539 .op = midgard_alu_op_f2u8,
3540 .reg_mode = midgard_reg_mode_16,
3541 .dest_override = midgard_dest_override_lower,
3542 .outmod = midgard_outmod_pos,
3543 .mask = 0xF,
3544 .src1 = vector_alu_srco_unsigned(alu_src),
3545 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3546 }
3547 };
3548
3549 emit_mir_instruction(ctx, f2u8);
3550
3551 /* vmul.imov.quarter r0, r0, r0 */
3552
3553 midgard_instruction imov_8 = {
3554 .type = TAG_ALU_4,
3555 .ssa_args = {
3556 .src0 = SSA_UNUSED_1,
3557 .src1 = SSA_FIXED_REGISTER(0),
3558 .dest = SSA_FIXED_REGISTER(0),
3559 },
3560 .alu = {
3561 .op = midgard_alu_op_imov,
3562 .reg_mode = midgard_reg_mode_8,
3563 .dest_override = midgard_dest_override_none,
3564 .mask = 0xFF,
3565 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3566 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3567 }
3568 };
3569
3570 /* Emit branch epilogue with the 8-bit move as the source */
3571
3572 emit_mir_instruction(ctx, imov_8);
3573 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3574
3575 emit_mir_instruction(ctx, imov_8);
3576 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3577 }
3578
3579 static midgard_block *
3580 emit_block(compiler_context *ctx, nir_block *block)
3581 {
3582 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3583 list_addtail(&this_block->link, &ctx->blocks);
3584
3585 this_block->is_scheduled = false;
3586 ++ctx->block_count;
3587
3588 ctx->texture_index[0] = -1;
3589 ctx->texture_index[1] = -1;
3590
3591 /* Add us as a successor to the block we are following */
3592 if (ctx->current_block)
3593 midgard_block_add_successor(ctx->current_block, this_block);
3594
3595 /* Set up current block */
3596 list_inithead(&this_block->instructions);
3597 ctx->current_block = this_block;
3598
3599 nir_foreach_instr(instr, block) {
3600 emit_instr(ctx, instr);
3601 ++ctx->instruction_count;
3602 }
3603
3604 inline_alu_constants(ctx);
3605 embedded_to_inline_constant(ctx);
3606
3607 /* Perform heavylifting for aliasing */
3608 actualise_ssa_to_alias(ctx);
3609
3610 midgard_emit_store(ctx, this_block);
3611 midgard_pair_load_store(ctx, this_block);
3612
3613 /* Append fragment shader epilogue (value writeout) */
3614 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3615 if (block == nir_impl_last_block(ctx->func->impl)) {
3616 if (ctx->is_blend)
3617 emit_blend_epilogue(ctx);
3618 else
3619 emit_fragment_epilogue(ctx);
3620 }
3621 }
3622
3623 if (block == nir_start_block(ctx->func->impl))
3624 ctx->initial_block = this_block;
3625
3626 if (block == nir_impl_last_block(ctx->func->impl))
3627 ctx->final_block = this_block;
3628
3629 /* Allow the next control flow to access us retroactively, for
3630 * branching etc */
3631 ctx->current_block = this_block;
3632
3633 /* Document the fallthrough chain */
3634 ctx->previous_source_block = this_block;
3635
3636 return this_block;
3637 }
3638
3639 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3640
3641 static void
3642 emit_if(struct compiler_context *ctx, nir_if *nif)
3643 {
3644 /* Conditional branches expect the condition in r31.w; emit a move for
3645 * that in the _previous_ block (which is the current block). */
3646 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3647
3648 /* Speculatively emit the branch, but we can't fill it in until later */
3649 EMIT(branch, true, true);
3650 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3651
3652 /* Emit the two subblocks */
3653 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3654
3655 /* Emit a jump from the end of the then block to the end of the else */
3656 EMIT(branch, false, false);
3657 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3658
3659 /* Emit second block, and check if it's empty */
3660
3661 int else_idx = ctx->block_count;
3662 int count_in = ctx->instruction_count;
3663 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3664 int after_else_idx = ctx->block_count;
3665
3666 /* Now that we have the subblocks emitted, fix up the branches */
3667
3668 assert(then_block);
3669 assert(else_block);
3670
3671 if (ctx->instruction_count == count_in) {
3672 /* The else block is empty, so don't emit an exit jump */
3673 mir_remove_instruction(then_exit);
3674 then_branch->branch.target_block = after_else_idx;
3675 } else {
3676 then_branch->branch.target_block = else_idx;
3677 then_exit->branch.target_block = after_else_idx;
3678 }
3679 }
3680
3681 static void
3682 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3683 {
3684 /* Remember where we are */
3685 midgard_block *start_block = ctx->current_block;
3686
3687 /* Allocate a loop number, growing the current inner loop depth */
3688 int loop_idx = ++ctx->current_loop_depth;
3689
3690 /* Get index from before the body so we can loop back later */
3691 int start_idx = ctx->block_count;
3692
3693 /* Emit the body itself */
3694 emit_cf_list(ctx, &nloop->body);
3695
3696 /* Branch back to loop back */
3697 struct midgard_instruction br_back = v_branch(false, false);
3698 br_back.branch.target_block = start_idx;
3699 emit_mir_instruction(ctx, br_back);
3700
3701 /* Mark down that branch in the graph. Note that we're really branching
3702 * to the block *after* we started in. TODO: Why doesn't the branch
3703 * itself have an off-by-one then...? */
3704 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3705
3706 /* Find the index of the block about to follow us (note: we don't add
3707 * one; blocks are 0-indexed so we get a fencepost problem) */
3708 int break_block_idx = ctx->block_count;
3709
3710 /* Fix up the break statements we emitted to point to the right place,
3711 * now that we can allocate a block number for them */
3712
3713 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3714 mir_foreach_instr_in_block(block, ins) {
3715 if (ins->type != TAG_ALU_4) continue;
3716 if (!ins->compact_branch) continue;
3717 if (ins->prepacked_branch) continue;
3718
3719 /* We found a branch -- check the type to see if we need to do anything */
3720 if (ins->branch.target_type != TARGET_BREAK) continue;
3721
3722 /* It's a break! Check if it's our break */
3723 if (ins->branch.target_break != loop_idx) continue;
3724
3725 /* Okay, cool, we're breaking out of this loop.
3726 * Rewrite from a break to a goto */
3727
3728 ins->branch.target_type = TARGET_GOTO;
3729 ins->branch.target_block = break_block_idx;
3730 }
3731 }
3732
3733 /* Now that we've finished emitting the loop, free up the depth again
3734 * so we play nice with recursion amid nested loops */
3735 --ctx->current_loop_depth;
3736 }
3737
3738 static midgard_block *
3739 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3740 {
3741 midgard_block *start_block = NULL;
3742
3743 foreach_list_typed(nir_cf_node, node, node, list) {
3744 switch (node->type) {
3745 case nir_cf_node_block: {
3746 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3747
3748 if (!start_block)
3749 start_block = block;
3750
3751 break;
3752 }
3753
3754 case nir_cf_node_if:
3755 emit_if(ctx, nir_cf_node_as_if(node));
3756 break;
3757
3758 case nir_cf_node_loop:
3759 emit_loop(ctx, nir_cf_node_as_loop(node));
3760 break;
3761
3762 case nir_cf_node_function:
3763 assert(0);
3764 break;
3765 }
3766 }
3767
3768 return start_block;
3769 }
3770
3771 /* Due to lookahead, we need to report the first tag executed in the command
3772 * stream and in branch targets. An initial block might be empty, so iterate
3773 * until we find one that 'works' */
3774
3775 static unsigned
3776 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3777 {
3778 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3779
3780 unsigned first_tag = 0;
3781
3782 do {
3783 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3784
3785 if (initial_bundle) {
3786 first_tag = initial_bundle->tag;
3787 break;
3788 }
3789
3790 /* Initial block is empty, try the next block */
3791 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3792 } while(initial_block != NULL);
3793
3794 assert(first_tag);
3795 return first_tag;
3796 }
3797
3798 int
3799 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3800 {
3801 struct util_dynarray *compiled = &program->compiled;
3802
3803 midgard_debug = debug_get_option_midgard_debug();
3804
3805 compiler_context ictx = {
3806 .nir = nir,
3807 .stage = nir->info.stage,
3808
3809 .is_blend = is_blend,
3810 .blend_constant_offset = -1,
3811
3812 .alpha_ref = program->alpha_ref
3813 };
3814
3815 compiler_context *ctx = &ictx;
3816
3817 /* TODO: Decide this at runtime */
3818 ctx->uniform_cutoff = 8;
3819
3820 /* Assign var locations early, so the epilogue can use them if necessary */
3821
3822 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3823 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3824 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3825
3826 /* Initialize at a global (not block) level hash tables */
3827
3828 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3829 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3830 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3831 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3832 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3833 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3834 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3835
3836 /* Record the varying mapping for the command stream's bookkeeping */
3837
3838 struct exec_list *varyings =
3839 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3840
3841 nir_foreach_variable(var, varyings) {
3842 unsigned loc = var->data.driver_location;
3843 unsigned sz = glsl_type_size(var->type, FALSE);
3844
3845 for (int c = 0; c < sz; ++c) {
3846 program->varyings[loc + c] = var->data.location;
3847 }
3848 }
3849
3850 /* Lower gl_Position pre-optimisation */
3851
3852 if (ctx->stage == MESA_SHADER_VERTEX)
3853 NIR_PASS_V(nir, nir_lower_viewport_transform);
3854
3855 NIR_PASS_V(nir, nir_lower_var_copies);
3856 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3857 NIR_PASS_V(nir, nir_split_var_copies);
3858 NIR_PASS_V(nir, nir_lower_var_copies);
3859 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3860 NIR_PASS_V(nir, nir_lower_var_copies);
3861 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3862
3863 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3864
3865 /* Optimisation passes */
3866
3867 optimise_nir(nir);
3868
3869 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3870 nir_print_shader(nir, stdout);
3871 }
3872
3873 /* Assign sysvals and counts, now that we're sure
3874 * (post-optimisation) */
3875
3876 midgard_nir_assign_sysvals(ctx, nir);
3877
3878 program->uniform_count = nir->num_uniforms;
3879 program->sysval_count = ctx->sysval_count;
3880 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3881
3882 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3883 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3884
3885 nir_foreach_function(func, nir) {
3886 if (!func->impl)
3887 continue;
3888
3889 list_inithead(&ctx->blocks);
3890 ctx->block_count = 0;
3891 ctx->func = func;
3892
3893 emit_cf_list(ctx, &func->impl->body);
3894 emit_block(ctx, func->impl->end_block);
3895
3896 break; /* TODO: Multi-function shaders */
3897 }
3898
3899 util_dynarray_init(compiled, NULL);
3900
3901 /* MIR-level optimizations */
3902
3903 bool progress = false;
3904
3905 do {
3906 progress = false;
3907
3908 mir_foreach_block(ctx, block) {
3909 progress |= midgard_opt_copy_prop(ctx, block);
3910 progress |= midgard_opt_copy_prop_tex(ctx, block);
3911 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3912 }
3913 } while (progress);
3914
3915 /* Schedule! */
3916 schedule_program(ctx);
3917
3918 /* Now that all the bundles are scheduled and we can calculate block
3919 * sizes, emit actual branch instructions rather than placeholders */
3920
3921 int br_block_idx = 0;
3922
3923 mir_foreach_block(ctx, block) {
3924 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3925 for (int c = 0; c < bundle->instruction_count; ++c) {
3926 midgard_instruction *ins = &bundle->instructions[c];
3927
3928 if (!midgard_is_branch_unit(ins->unit)) continue;
3929
3930 if (ins->prepacked_branch) continue;
3931
3932 /* Parse some basic branch info */
3933 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3934 bool is_conditional = ins->branch.conditional;
3935 bool is_inverted = ins->branch.invert_conditional;
3936 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3937
3938 /* Determine the block we're jumping to */
3939 int target_number = ins->branch.target_block;
3940
3941 /* Report the destination tag. Discards don't need this */
3942 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3943
3944 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3945 int quadword_offset = 0;
3946
3947 if (is_discard) {
3948 /* Jump to the end of the shader. We
3949 * need to include not only the
3950 * following blocks, but also the
3951 * contents of our current block (since
3952 * discard can come in the middle of
3953 * the block) */
3954
3955 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3956
3957 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3958 quadword_offset += quadword_size(bun->tag);
3959 }
3960
3961 mir_foreach_block_from(ctx, blk, b) {
3962 quadword_offset += b->quadword_count;
3963 }
3964
3965 } else if (target_number > br_block_idx) {
3966 /* Jump forward */
3967
3968 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3969 midgard_block *blk = mir_get_block(ctx, idx);
3970 assert(blk);
3971
3972 quadword_offset += blk->quadword_count;
3973 }
3974 } else {
3975 /* Jump backwards */
3976
3977 for (int idx = br_block_idx; idx >= target_number; --idx) {
3978 midgard_block *blk = mir_get_block(ctx, idx);
3979 assert(blk);
3980
3981 quadword_offset -= blk->quadword_count;
3982 }
3983 }
3984
3985 /* Unconditional extended branches (far jumps)
3986 * have issues, so we always use a conditional
3987 * branch, setting the condition to always for
3988 * unconditional. For compact unconditional
3989 * branches, cond isn't used so it doesn't
3990 * matter what we pick. */
3991
3992 midgard_condition cond =
3993 !is_conditional ? midgard_condition_always :
3994 is_inverted ? midgard_condition_false :
3995 midgard_condition_true;
3996
3997 midgard_jmp_writeout_op op =
3998 is_discard ? midgard_jmp_writeout_op_discard :
3999 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
4000 midgard_jmp_writeout_op_branch_cond;
4001
4002 if (!is_compact) {
4003 midgard_branch_extended branch =
4004 midgard_create_branch_extended(
4005 cond, op,
4006 dest_tag,
4007 quadword_offset);
4008
4009 memcpy(&ins->branch_extended, &branch, sizeof(branch));
4010 } else if (is_conditional || is_discard) {
4011 midgard_branch_cond branch = {
4012 .op = op,
4013 .dest_tag = dest_tag,
4014 .offset = quadword_offset,
4015 .cond = cond
4016 };
4017
4018 assert(branch.offset == quadword_offset);
4019
4020 memcpy(&ins->br_compact, &branch, sizeof(branch));
4021 } else {
4022 assert(op == midgard_jmp_writeout_op_branch_uncond);
4023
4024 midgard_branch_uncond branch = {
4025 .op = op,
4026 .dest_tag = dest_tag,
4027 .offset = quadword_offset,
4028 .unknown = 1
4029 };
4030
4031 assert(branch.offset == quadword_offset);
4032
4033 memcpy(&ins->br_compact, &branch, sizeof(branch));
4034 }
4035 }
4036 }
4037
4038 ++br_block_idx;
4039 }
4040
4041 /* Emit flat binary from the instruction arrays. Iterate each block in
4042 * sequence. Save instruction boundaries such that lookahead tags can
4043 * be assigned easily */
4044
4045 /* Cache _all_ bundles in source order for lookahead across failed branches */
4046
4047 int bundle_count = 0;
4048 mir_foreach_block(ctx, block) {
4049 bundle_count += block->bundles.size / sizeof(midgard_bundle);
4050 }
4051 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
4052 int bundle_idx = 0;
4053 mir_foreach_block(ctx, block) {
4054 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4055 source_order_bundles[bundle_idx++] = bundle;
4056 }
4057 }
4058
4059 int current_bundle = 0;
4060
4061 mir_foreach_block(ctx, block) {
4062 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4063 int lookahead = 1;
4064
4065 if (current_bundle + 1 < bundle_count) {
4066 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
4067
4068 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
4069 lookahead = 1;
4070 } else {
4071 lookahead = next;
4072 }
4073 }
4074
4075 emit_binary_bundle(ctx, bundle, compiled, lookahead);
4076 ++current_bundle;
4077 }
4078
4079 /* TODO: Free deeper */
4080 //util_dynarray_fini(&block->instructions);
4081 }
4082
4083 free(source_order_bundles);
4084
4085 /* Report the very first tag executed */
4086 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
4087
4088 /* Deal with off-by-one related to the fencepost problem */
4089 program->work_register_count = ctx->work_registers + 1;
4090
4091 program->can_discard = ctx->can_discard;
4092 program->uniform_cutoff = ctx->uniform_cutoff;
4093
4094 program->blend_patch_offset = ctx->blend_constant_offset;
4095
4096 if (midgard_debug & MIDGARD_DBG_SHADERS)
4097 disassemble_midgard(program->compiled.data, program->compiled.size);
4098
4099 return 0;
4100 }