70e9666ce71bb8aa8744d4d9314508007720d3f7
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
115 bool half, bool sext)
116 {
117 if (!src) return blank_alu_src;
118
119 /* Figure out how many components there are so we can adjust the
120 * swizzle. Specifically we want to broadcast the last channel so
121 * things like ball2/3 work
122 */
123
124 if (broadcast_count) {
125 uint8_t last_component = src->swizzle[broadcast_count - 1];
126
127 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
128 src->swizzle[c] = last_component;
129 }
130 }
131
132 midgard_vector_alu_src alu_src = {
133 .rep_low = 0,
134 .rep_high = 0,
135 .half = half,
136 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
137 };
138
139 if (is_int) {
140 alu_src.mod = midgard_int_normal;
141
142 /* Sign/zero-extend if needed */
143
144 if (half) {
145 alu_src.mod = sext ?
146 midgard_int_sign_extend
147 : midgard_int_zero_extend;
148 }
149
150 /* These should have been lowered away */
151 assert(!(src->abs || src->negate));
152 } else {
153 alu_src.mod = (src->abs << 0) | (src->negate << 1);
154 }
155
156 return alu_src;
157 }
158
159 /* load/store instructions have both 32-bit and 16-bit variants, depending on
160 * whether we are using vectors composed of highp or mediump. At the moment, we
161 * don't support half-floats -- this requires changes in other parts of the
162 * compiler -- therefore the 16-bit versions are commented out. */
163
164 //M_LOAD(ld_attr_16);
165 M_LOAD(ld_attr_32);
166 //M_LOAD(ld_vary_16);
167 M_LOAD(ld_vary_32);
168 //M_LOAD(ld_uniform_16);
169 M_LOAD(ld_uniform_32);
170 M_LOAD(ld_color_buffer_8);
171 //M_STORE(st_vary_16);
172 M_STORE(st_vary_32);
173 M_STORE(st_cubemap_coords);
174
175 static midgard_instruction
176 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
177 {
178 midgard_branch_cond branch = {
179 .op = op,
180 .dest_tag = tag,
181 .offset = offset,
182 .cond = cond
183 };
184
185 uint16_t compact;
186 memcpy(&compact, &branch, sizeof(branch));
187
188 midgard_instruction ins = {
189 .type = TAG_ALU_4,
190 .unit = ALU_ENAB_BR_COMPACT,
191 .prepacked_branch = true,
192 .compact_branch = true,
193 .br_compact = compact
194 };
195
196 if (op == midgard_jmp_writeout_op_writeout)
197 ins.writeout = true;
198
199 return ins;
200 }
201
202 static midgard_instruction
203 v_branch(bool conditional, bool invert)
204 {
205 midgard_instruction ins = {
206 .type = TAG_ALU_4,
207 .unit = ALU_ENAB_BRANCH,
208 .compact_branch = true,
209 .branch = {
210 .conditional = conditional,
211 .invert_conditional = invert
212 }
213 };
214
215 return ins;
216 }
217
218 static midgard_branch_extended
219 midgard_create_branch_extended( midgard_condition cond,
220 midgard_jmp_writeout_op op,
221 unsigned dest_tag,
222 signed quadword_offset)
223 {
224 /* For unclear reasons, the condition code is repeated 8 times */
225 uint16_t duplicated_cond =
226 (cond << 14) |
227 (cond << 12) |
228 (cond << 10) |
229 (cond << 8) |
230 (cond << 6) |
231 (cond << 4) |
232 (cond << 2) |
233 (cond << 0);
234
235 midgard_branch_extended branch = {
236 .op = op,
237 .dest_tag = dest_tag,
238 .offset = quadword_offset,
239 .cond = duplicated_cond
240 };
241
242 return branch;
243 }
244
245 static void
246 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
247 {
248 ins->has_constants = true;
249 memcpy(&ins->constants, constants, 16);
250 }
251
252 static int
253 glsl_type_size(const struct glsl_type *type, bool bindless)
254 {
255 return glsl_count_attribute_slots(type, false);
256 }
257
258 /* Lower fdot2 to a vector multiplication followed by channel addition */
259 static void
260 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
261 {
262 if (alu->op != nir_op_fdot2)
263 return;
264
265 b->cursor = nir_before_instr(&alu->instr);
266
267 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
268 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
269
270 nir_ssa_def *product = nir_fmul(b, src0, src1);
271
272 nir_ssa_def *sum = nir_fadd(b,
273 nir_channel(b, product, 0),
274 nir_channel(b, product, 1));
275
276 /* Replace the fdot2 with this sum */
277 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
278 }
279
280 static int
281 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
282 {
283 switch (instr->intrinsic) {
284 case nir_intrinsic_load_viewport_scale:
285 return PAN_SYSVAL_VIEWPORT_SCALE;
286 case nir_intrinsic_load_viewport_offset:
287 return PAN_SYSVAL_VIEWPORT_OFFSET;
288 default:
289 return -1;
290 }
291 }
292
293 static unsigned
294 nir_dest_index(compiler_context *ctx, nir_dest *dst)
295 {
296 if (dst->is_ssa)
297 return dst->ssa.index;
298 else {
299 assert(!dst->reg.indirect);
300 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
301 }
302 }
303
304 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
305 unsigned *dest)
306 {
307 nir_intrinsic_instr *intr;
308 nir_dest *dst = NULL;
309 nir_tex_instr *tex;
310 int sysval = -1;
311
312 switch (instr->type) {
313 case nir_instr_type_intrinsic:
314 intr = nir_instr_as_intrinsic(instr);
315 sysval = midgard_nir_sysval_for_intrinsic(intr);
316 dst = &intr->dest;
317 break;
318 case nir_instr_type_tex:
319 tex = nir_instr_as_tex(instr);
320 if (tex->op != nir_texop_txs)
321 break;
322
323 sysval = PAN_SYSVAL(TEXTURE_SIZE,
324 PAN_TXS_SYSVAL_ID(tex->texture_index,
325 nir_tex_instr_dest_size(tex) -
326 (tex->is_array ? 1 : 0),
327 tex->is_array));
328 dst = &tex->dest;
329 break;
330 default:
331 break;
332 }
333
334 if (dest && dst)
335 *dest = nir_dest_index(ctx, dst);
336
337 return sysval;
338 }
339
340 static void
341 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
342 {
343 int sysval;
344
345 sysval = sysval_for_instr(ctx, instr, NULL);
346 if (sysval < 0)
347 return;
348
349 /* We have a sysval load; check if it's already been assigned */
350
351 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
352 return;
353
354 /* It hasn't -- so assign it now! */
355
356 unsigned id = ctx->sysval_count++;
357 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
358 ctx->sysvals[id] = sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
363 {
364 ctx->sysval_count = 0;
365
366 nir_foreach_function(function, shader) {
367 if (!function->impl) continue;
368
369 nir_foreach_block(block, function->impl) {
370 nir_foreach_instr_safe(instr, block) {
371 midgard_nir_assign_sysval_body(ctx, instr);
372 }
373 }
374 }
375 }
376
377 static bool
378 midgard_nir_lower_fdot2(nir_shader *shader)
379 {
380 bool progress = false;
381
382 nir_foreach_function(function, shader) {
383 if (!function->impl) continue;
384
385 nir_builder _b;
386 nir_builder *b = &_b;
387 nir_builder_init(b, function->impl);
388
389 nir_foreach_block(block, function->impl) {
390 nir_foreach_instr_safe(instr, block) {
391 if (instr->type != nir_instr_type_alu) continue;
392
393 nir_alu_instr *alu = nir_instr_as_alu(instr);
394 midgard_nir_lower_fdot2_body(b, alu);
395
396 progress |= true;
397 }
398 }
399
400 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
401
402 }
403
404 return progress;
405 }
406
407 static void
408 optimise_nir(nir_shader *nir)
409 {
410 bool progress;
411 unsigned lower_flrp =
412 (nir->options->lower_flrp16 ? 16 : 0) |
413 (nir->options->lower_flrp32 ? 32 : 0) |
414 (nir->options->lower_flrp64 ? 64 : 0);
415
416 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
417 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
418 NIR_PASS(progress, nir, nir_lower_idiv);
419
420 nir_lower_tex_options lower_tex_1st_pass_options = {
421 .lower_rect = true,
422 .lower_txp = ~0
423 };
424
425 nir_lower_tex_options lower_tex_2nd_pass_options = {
426 .lower_txs_lod = true,
427 };
428
429 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
430 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
431
432 do {
433 progress = false;
434
435 NIR_PASS(progress, nir, nir_lower_var_copies);
436 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
437
438 NIR_PASS(progress, nir, nir_copy_prop);
439 NIR_PASS(progress, nir, nir_opt_dce);
440 NIR_PASS(progress, nir, nir_opt_dead_cf);
441 NIR_PASS(progress, nir, nir_opt_cse);
442 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
443 NIR_PASS(progress, nir, nir_opt_algebraic);
444 NIR_PASS(progress, nir, nir_opt_constant_folding);
445
446 if (lower_flrp != 0) {
447 bool lower_flrp_progress = false;
448 NIR_PASS(lower_flrp_progress,
449 nir,
450 nir_lower_flrp,
451 lower_flrp,
452 false /* always_precise */,
453 nir->options->lower_ffma);
454 if (lower_flrp_progress) {
455 NIR_PASS(progress, nir,
456 nir_opt_constant_folding);
457 progress = true;
458 }
459
460 /* Nothing should rematerialize any flrps, so we only
461 * need to do this lowering once.
462 */
463 lower_flrp = 0;
464 }
465
466 NIR_PASS(progress, nir, nir_opt_undef);
467 NIR_PASS(progress, nir, nir_opt_loop_unroll,
468 nir_var_shader_in |
469 nir_var_shader_out |
470 nir_var_function_temp);
471
472 NIR_PASS(progress, nir, nir_opt_vectorize);
473 } while (progress);
474
475 /* Must be run at the end to prevent creation of fsin/fcos ops */
476 NIR_PASS(progress, nir, midgard_nir_scale_trig);
477
478 do {
479 progress = false;
480
481 NIR_PASS(progress, nir, nir_opt_dce);
482 NIR_PASS(progress, nir, nir_opt_algebraic);
483 NIR_PASS(progress, nir, nir_opt_constant_folding);
484 NIR_PASS(progress, nir, nir_copy_prop);
485 } while (progress);
486
487 NIR_PASS(progress, nir, nir_opt_algebraic_late);
488
489 /* We implement booleans as 32-bit 0/~0 */
490 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
491
492 /* Now that booleans are lowered, we can run out late opts */
493 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
494
495 /* Lower mods for float ops only. Integer ops don't support modifiers
496 * (saturate doesn't make sense on integers, neg/abs require dedicated
497 * instructions) */
498
499 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502
503 /* Take us out of SSA */
504 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
505 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
506
507 /* We are a vector architecture; write combine where possible */
508 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
509 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
510
511 NIR_PASS(progress, nir, nir_opt_dce);
512 }
513
514 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
515 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
516 * r0. See the comments in compiler_context */
517
518 static void
519 alias_ssa(compiler_context *ctx, int dest, int src)
520 {
521 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
522 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
523 }
524
525 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
526
527 static void
528 unalias_ssa(compiler_context *ctx, int dest)
529 {
530 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
531 /* TODO: Remove from leftover or no? */
532 }
533
534 /* Do not actually emit a load; instead, cache the constant for inlining */
535
536 static void
537 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
538 {
539 nir_ssa_def def = instr->def;
540
541 float *v = rzalloc_array(NULL, float, 4);
542 nir_const_load_to_arr(v, instr, f32);
543 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
544 }
545
546 static unsigned
547 nir_src_index(compiler_context *ctx, nir_src *src)
548 {
549 if (src->is_ssa)
550 return src->ssa->index;
551 else {
552 assert(!src->reg.indirect);
553 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
554 }
555 }
556
557 static unsigned
558 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
559 {
560 return nir_src_index(ctx, &src->src);
561 }
562
563 static bool
564 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
565 {
566 unsigned comp = src->swizzle[0];
567
568 for (unsigned c = 1; c < nr_components; ++c) {
569 if (src->swizzle[c] != comp)
570 return true;
571 }
572
573 return false;
574 }
575
576 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
577 * output of a conditional test) into that register */
578
579 static void
580 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
581 {
582 int condition = nir_src_index(ctx, src);
583
584 /* Source to swizzle the desired component into w */
585
586 const midgard_vector_alu_src alu_src = {
587 .swizzle = SWIZZLE(component, component, component, component),
588 };
589
590 /* There is no boolean move instruction. Instead, we simulate a move by
591 * ANDing the condition with itself to get it into r31.w */
592
593 midgard_instruction ins = {
594 .type = TAG_ALU_4,
595
596 /* We need to set the conditional as close as possible */
597 .precede_break = true,
598 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
599
600 .ssa_args = {
601 .src0 = condition,
602 .src1 = condition,
603 .dest = SSA_FIXED_REGISTER(31),
604 },
605
606 .alu = {
607 .op = midgard_alu_op_iand,
608 .outmod = midgard_outmod_int_wrap,
609 .reg_mode = midgard_reg_mode_32,
610 .dest_override = midgard_dest_override_none,
611 .mask = (0x3 << 6), /* w */
612 .src1 = vector_alu_srco_unsigned(alu_src),
613 .src2 = vector_alu_srco_unsigned(alu_src)
614 },
615 };
616
617 emit_mir_instruction(ctx, ins);
618 }
619
620 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
621 * r31 instead */
622
623 static void
624 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
625 {
626 int condition = nir_src_index(ctx, &src->src);
627
628 /* Source to swizzle the desired component into w */
629
630 const midgard_vector_alu_src alu_src = {
631 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
632 };
633
634 /* There is no boolean move instruction. Instead, we simulate a move by
635 * ANDing the condition with itself to get it into r31.w */
636
637 midgard_instruction ins = {
638 .type = TAG_ALU_4,
639 .precede_break = true,
640 .ssa_args = {
641 .src0 = condition,
642 .src1 = condition,
643 .dest = SSA_FIXED_REGISTER(31),
644 },
645 .alu = {
646 .op = midgard_alu_op_iand,
647 .outmod = midgard_outmod_int_wrap,
648 .reg_mode = midgard_reg_mode_32,
649 .dest_override = midgard_dest_override_none,
650 .mask = expand_writemask(mask_of(nr_comp)),
651 .src1 = vector_alu_srco_unsigned(alu_src),
652 .src2 = vector_alu_srco_unsigned(alu_src)
653 },
654 };
655
656 emit_mir_instruction(ctx, ins);
657 }
658
659
660
661 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
662 * pinning to eliminate this move in all known cases */
663
664 static void
665 emit_indirect_offset(compiler_context *ctx, nir_src *src)
666 {
667 int offset = nir_src_index(ctx, src);
668
669 midgard_instruction ins = {
670 .type = TAG_ALU_4,
671 .ssa_args = {
672 .src0 = SSA_UNUSED_1,
673 .src1 = offset,
674 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
675 },
676 .alu = {
677 .op = midgard_alu_op_imov,
678 .outmod = midgard_outmod_int_wrap,
679 .reg_mode = midgard_reg_mode_32,
680 .dest_override = midgard_dest_override_none,
681 .mask = (0x3 << 6), /* w */
682 .src1 = vector_alu_srco_unsigned(zero_alu_src),
683 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
684 },
685 };
686
687 emit_mir_instruction(ctx, ins);
688 }
689
690 #define ALU_CASE(nir, _op) \
691 case nir_op_##nir: \
692 op = midgard_alu_op_##_op; \
693 break;
694
695 #define ALU_CASE_BCAST(nir, _op, count) \
696 case nir_op_##nir: \
697 op = midgard_alu_op_##_op; \
698 broadcast_swizzle = count; \
699 break;
700 static bool
701 nir_is_fzero_constant(nir_src src)
702 {
703 if (!nir_src_is_const(src))
704 return false;
705
706 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
707 if (nir_src_comp_as_float(src, c) != 0.0)
708 return false;
709 }
710
711 return true;
712 }
713
714 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
715 * special treatment override this anyway. */
716
717 static midgard_reg_mode
718 reg_mode_for_nir(nir_alu_instr *instr)
719 {
720 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
721
722 switch (src_bitsize) {
723 case 8:
724 return midgard_reg_mode_8;
725 case 16:
726 return midgard_reg_mode_16;
727 case 32:
728 return midgard_reg_mode_32;
729 case 64:
730 return midgard_reg_mode_64;
731 default:
732 unreachable("Invalid bit size");
733 }
734 }
735
736 static void
737 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
738 {
739 bool is_ssa = instr->dest.dest.is_ssa;
740
741 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
742 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
743 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
744
745 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
746 * supported. A few do not and are commented for now. Also, there are a
747 * number of NIR ops which Midgard does not support and need to be
748 * lowered, also TODO. This switch block emits the opcode and calling
749 * convention of the Midgard instruction; actual packing is done in
750 * emit_alu below */
751
752 unsigned op;
753
754 /* Number of components valid to check for the instruction (the rest
755 * will be forced to the last), or 0 to use as-is. Relevant as
756 * ball-type instructions have a channel count in NIR but are all vec4
757 * in Midgard */
758
759 unsigned broadcast_swizzle = 0;
760
761 /* What register mode should we operate in? */
762 midgard_reg_mode reg_mode =
763 reg_mode_for_nir(instr);
764
765 /* Do we need a destination override? Used for inline
766 * type conversion */
767
768 midgard_dest_override dest_override =
769 midgard_dest_override_none;
770
771 /* Should we use a smaller respective source and sign-extend? */
772
773 bool half_1 = false, sext_1 = false;
774 bool half_2 = false, sext_2 = false;
775
776 switch (instr->op) {
777 ALU_CASE(fadd, fadd);
778 ALU_CASE(fmul, fmul);
779 ALU_CASE(fmin, fmin);
780 ALU_CASE(fmax, fmax);
781 ALU_CASE(imin, imin);
782 ALU_CASE(imax, imax);
783 ALU_CASE(umin, umin);
784 ALU_CASE(umax, umax);
785 ALU_CASE(ffloor, ffloor);
786 ALU_CASE(fround_even, froundeven);
787 ALU_CASE(ftrunc, ftrunc);
788 ALU_CASE(fceil, fceil);
789 ALU_CASE(fdot3, fdot3);
790 ALU_CASE(fdot4, fdot4);
791 ALU_CASE(iadd, iadd);
792 ALU_CASE(isub, isub);
793 ALU_CASE(imul, imul);
794
795 /* Zero shoved as second-arg */
796 ALU_CASE(iabs, iabsdiff);
797
798 ALU_CASE(mov, imov);
799
800 ALU_CASE(feq32, feq);
801 ALU_CASE(fne32, fne);
802 ALU_CASE(flt32, flt);
803 ALU_CASE(ieq32, ieq);
804 ALU_CASE(ine32, ine);
805 ALU_CASE(ilt32, ilt);
806 ALU_CASE(ult32, ult);
807
808 /* We don't have a native b2f32 instruction. Instead, like many
809 * GPUs, we exploit booleans as 0/~0 for false/true, and
810 * correspondingly AND
811 * by 1.0 to do the type conversion. For the moment, prime us
812 * to emit:
813 *
814 * iand [whatever], #0
815 *
816 * At the end of emit_alu (as MIR), we'll fix-up the constant
817 */
818
819 ALU_CASE(b2f32, iand);
820 ALU_CASE(b2i32, iand);
821
822 /* Likewise, we don't have a dedicated f2b32 instruction, but
823 * we can do a "not equal to 0.0" test. */
824
825 ALU_CASE(f2b32, fne);
826 ALU_CASE(i2b32, ine);
827
828 ALU_CASE(frcp, frcp);
829 ALU_CASE(frsq, frsqrt);
830 ALU_CASE(fsqrt, fsqrt);
831 ALU_CASE(fexp2, fexp2);
832 ALU_CASE(flog2, flog2);
833
834 ALU_CASE(f2i32, f2i_rtz);
835 ALU_CASE(f2u32, f2u_rtz);
836 ALU_CASE(i2f32, i2f_rtz);
837 ALU_CASE(u2f32, u2f_rtz);
838
839 ALU_CASE(fsin, fsin);
840 ALU_CASE(fcos, fcos);
841
842 /* Second op implicit #0 */
843 ALU_CASE(inot, inor);
844 ALU_CASE(iand, iand);
845 ALU_CASE(ior, ior);
846 ALU_CASE(ixor, ixor);
847 ALU_CASE(ishl, ishl);
848 ALU_CASE(ishr, iasr);
849 ALU_CASE(ushr, ilsr);
850
851 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
852 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
853 ALU_CASE(b32all_fequal4, fball_eq);
854
855 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
856 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
857 ALU_CASE(b32any_fnequal4, fbany_neq);
858
859 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
860 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
861 ALU_CASE(b32all_iequal4, iball_eq);
862
863 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
864 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
865 ALU_CASE(b32any_inequal4, ibany_neq);
866
867 /* Source mods will be shoved in later */
868 ALU_CASE(fabs, fmov);
869 ALU_CASE(fneg, fmov);
870 ALU_CASE(fsat, fmov);
871
872 /* For size conversion, we use a move. Ideally though we would squash
873 * these ops together; maybe that has to happen after in NIR as part of
874 * propagation...? An earlier algebraic pass ensured we step down by
875 * only / exactly one size. If stepping down, we use a dest override to
876 * reduce the size; if stepping up, we use a larger-sized move with a
877 * half source and a sign/zero-extension modifier */
878
879 case nir_op_i2i8:
880 case nir_op_i2i16:
881 case nir_op_i2i32:
882 /* If we end up upscale, we'll need a sign-extend on the
883 * operand (the second argument) */
884
885 sext_2 = true;
886 case nir_op_u2u8:
887 case nir_op_u2u16:
888 case nir_op_u2u32: {
889 op = midgard_alu_op_imov;
890
891 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
892 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
893
894
895 if (dst_bitsize == (src_bitsize * 2)) {
896 /* Converting up */
897 half_2 = true;
898
899 /* Use a greater register mode */
900 reg_mode++;
901 } else if (src_bitsize == (dst_bitsize * 2)) {
902 /* Converting down */
903 dest_override = midgard_dest_override_lower;
904 }
905
906 break;
907 }
908
909 /* For greater-or-equal, we lower to less-or-equal and flip the
910 * arguments */
911
912 case nir_op_fge:
913 case nir_op_fge32:
914 case nir_op_ige32:
915 case nir_op_uge32: {
916 op =
917 instr->op == nir_op_fge ? midgard_alu_op_fle :
918 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
919 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
920 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
921 0;
922
923 /* Swap via temporary */
924 nir_alu_src temp = instr->src[1];
925 instr->src[1] = instr->src[0];
926 instr->src[0] = temp;
927
928 break;
929 }
930
931 case nir_op_b32csel: {
932 /* Midgard features both fcsel and icsel, depending on
933 * the type of the arguments/output. However, as long
934 * as we're careful we can _always_ use icsel and
935 * _never_ need fcsel, since the latter does additional
936 * floating-point-specific processing whereas the
937 * former just moves bits on the wire. It's not obvious
938 * why these are separate opcodes, save for the ability
939 * to do things like sat/pos/abs/neg for free */
940
941 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
942 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
943
944 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
945 nr_inputs = 2;
946
947 /* Emit the condition into r31 */
948
949 if (mixed)
950 emit_condition_mixed(ctx, &instr->src[0], nr_components);
951 else
952 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
953
954 /* The condition is the first argument; move the other
955 * arguments up one to be a binary instruction for
956 * Midgard */
957
958 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
959 break;
960 }
961
962 default:
963 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
964 assert(0);
965 return;
966 }
967
968 /* Midgard can perform certain modifiers on output of an ALU op */
969 unsigned outmod;
970
971 if (midgard_is_integer_out_op(op)) {
972 outmod = midgard_outmod_int_wrap;
973 } else {
974 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
975 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
976 }
977
978 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
979
980 if (instr->op == nir_op_fmax) {
981 if (nir_is_fzero_constant(instr->src[0].src)) {
982 op = midgard_alu_op_fmov;
983 nr_inputs = 1;
984 outmod = midgard_outmod_pos;
985 instr->src[0] = instr->src[1];
986 } else if (nir_is_fzero_constant(instr->src[1].src)) {
987 op = midgard_alu_op_fmov;
988 nr_inputs = 1;
989 outmod = midgard_outmod_pos;
990 }
991 }
992
993 /* Fetch unit, quirks, etc information */
994 unsigned opcode_props = alu_opcode_props[op].props;
995 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
996
997 /* src0 will always exist afaik, but src1 will not for 1-argument
998 * instructions. The latter can only be fetched if the instruction
999 * needs it, or else we may segfault. */
1000
1001 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1002 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1003
1004 /* Rather than use the instruction generation helpers, we do it
1005 * ourselves here to avoid the mess */
1006
1007 midgard_instruction ins = {
1008 .type = TAG_ALU_4,
1009 .ssa_args = {
1010 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1011 .src1 = quirk_flipped_r24 ? src0 : src1,
1012 .dest = dest,
1013 }
1014 };
1015
1016 nir_alu_src *nirmods[2] = { NULL };
1017
1018 if (nr_inputs == 2) {
1019 nirmods[0] = &instr->src[0];
1020 nirmods[1] = &instr->src[1];
1021 } else if (nr_inputs == 1) {
1022 nirmods[quirk_flipped_r24] = &instr->src[0];
1023 } else {
1024 assert(0);
1025 }
1026
1027 /* These were lowered to a move, so apply the corresponding mod */
1028
1029 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1030 nir_alu_src *s = nirmods[quirk_flipped_r24];
1031
1032 if (instr->op == nir_op_fneg)
1033 s->negate = !s->negate;
1034
1035 if (instr->op == nir_op_fabs)
1036 s->abs = !s->abs;
1037 }
1038
1039 bool is_int = midgard_is_integer_op(op);
1040
1041 midgard_vector_alu alu = {
1042 .op = op,
1043 .reg_mode = reg_mode,
1044 .dest_override = dest_override,
1045 .outmod = outmod,
1046
1047 /* Writemask only valid for non-SSA NIR */
1048 .mask = expand_writemask(mask_of(nr_components)),
1049
1050 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1051 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1052 };
1053
1054 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1055
1056 if (!is_ssa)
1057 alu.mask &= expand_writemask(instr->dest.write_mask);
1058
1059 ins.alu = alu;
1060
1061 /* Late fixup for emulated instructions */
1062
1063 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1064 /* Presently, our second argument is an inline #0 constant.
1065 * Switch over to an embedded 1.0 constant (that can't fit
1066 * inline, since we're 32-bit, not 16-bit like the inline
1067 * constants) */
1068
1069 ins.ssa_args.inline_constant = false;
1070 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1071 ins.has_constants = true;
1072
1073 if (instr->op == nir_op_b2f32) {
1074 ins.constants[0] = 1.0f;
1075 } else {
1076 /* Type pun it into place */
1077 uint32_t one = 0x1;
1078 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1079 }
1080
1081 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1082 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1083 /* Lots of instructions need a 0 plonked in */
1084 ins.ssa_args.inline_constant = false;
1085 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1086 ins.has_constants = true;
1087 ins.constants[0] = 0.0f;
1088 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1089 } else if (instr->op == nir_op_inot) {
1090 /* ~b = ~(b & b), so duplicate the source */
1091 ins.ssa_args.src1 = ins.ssa_args.src0;
1092 ins.alu.src2 = ins.alu.src1;
1093 }
1094
1095 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1096 /* To avoid duplicating the lookup tables (probably), true LUT
1097 * instructions can only operate as if they were scalars. Lower
1098 * them here by changing the component. */
1099
1100 uint8_t original_swizzle[4];
1101 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1102
1103 for (int i = 0; i < nr_components; ++i) {
1104 /* Mask the associated component, dropping the
1105 * instruction if needed */
1106
1107 ins.alu.mask = (0x3) << (2 * i);
1108 ins.alu.mask &= alu.mask;
1109
1110 if (!ins.alu.mask)
1111 continue;
1112
1113 for (int j = 0; j < 4; ++j)
1114 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1115
1116 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1117 emit_mir_instruction(ctx, ins);
1118 }
1119 } else {
1120 emit_mir_instruction(ctx, ins);
1121 }
1122 }
1123
1124 #undef ALU_CASE
1125
1126 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1127 * optimized) versions of UBO #0 */
1128
1129 static void
1130 emit_ubo_read(
1131 compiler_context *ctx,
1132 unsigned dest,
1133 unsigned offset,
1134 nir_src *indirect_offset,
1135 unsigned index)
1136 {
1137 /* TODO: half-floats */
1138
1139 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1140 /* Fast path: For the first 16 uniforms, direct accesses are
1141 * 0-cycle, since they're just a register fetch in the usual
1142 * case. So, we alias the registers while we're still in
1143 * SSA-space */
1144
1145 int reg_slot = 23 - offset;
1146 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1147 } else {
1148 /* Otherwise, read from the 'special' UBO to access
1149 * higher-indexed uniforms, at a performance cost. More
1150 * generally, we're emitting a UBO read instruction. */
1151
1152 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1153
1154 /* TODO: Don't split */
1155 ins.load_store.varying_parameters = (offset & 7) << 7;
1156 ins.load_store.address = offset >> 3;
1157
1158 if (indirect_offset) {
1159 emit_indirect_offset(ctx, indirect_offset);
1160 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1161 } else {
1162 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1163 }
1164
1165 /* TODO respect index */
1166
1167 emit_mir_instruction(ctx, ins);
1168 }
1169 }
1170
1171 static void
1172 emit_varying_read(
1173 compiler_context *ctx,
1174 unsigned dest, unsigned offset,
1175 unsigned nr_comp, unsigned component,
1176 nir_src *indirect_offset, nir_alu_type type)
1177 {
1178 /* XXX: Half-floats? */
1179 /* TODO: swizzle, mask */
1180
1181 midgard_instruction ins = m_ld_vary_32(dest, offset);
1182 ins.load_store.mask = mask_of(nr_comp);
1183 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1184
1185 midgard_varying_parameter p = {
1186 .is_varying = 1,
1187 .interpolation = midgard_interp_default,
1188 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1189 };
1190
1191 unsigned u;
1192 memcpy(&u, &p, sizeof(p));
1193 ins.load_store.varying_parameters = u;
1194
1195 if (indirect_offset) {
1196 /* We need to add in the dynamic index, moved to r27.w */
1197 emit_indirect_offset(ctx, indirect_offset);
1198 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1199 } else {
1200 /* Just a direct load */
1201 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1202 }
1203
1204 /* Use the type appropriate load */
1205 switch (type) {
1206 case nir_type_uint:
1207 case nir_type_bool:
1208 ins.load_store.op = midgard_op_ld_vary_32u;
1209 break;
1210 case nir_type_int:
1211 ins.load_store.op = midgard_op_ld_vary_32i;
1212 break;
1213 case nir_type_float:
1214 ins.load_store.op = midgard_op_ld_vary_32;
1215 break;
1216 default:
1217 unreachable("Attempted to load unknown type");
1218 break;
1219 }
1220
1221 emit_mir_instruction(ctx, ins);
1222 }
1223
1224 static void
1225 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1226 {
1227 unsigned dest;
1228 /* Figure out which uniform this is */
1229 int sysval = sysval_for_instr(ctx, instr, &dest);
1230 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1231
1232 /* Sysvals are prefix uniforms */
1233 unsigned uniform = ((uintptr_t) val) - 1;
1234
1235 /* Emit the read itself -- this is never indirect */
1236 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1237 }
1238
1239 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1240 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1241 * generations have faster vectorized reads. This operation is for blend
1242 * shaders in particular; reading the tilebuffer from the fragment shader
1243 * remains an open problem. */
1244
1245 static void
1246 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1247 {
1248 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1249 ins.load_store.swizzle = 0; /* xxxx */
1250
1251 /* Read each component sequentially */
1252
1253 for (unsigned c = 0; c < 4; ++c) {
1254 ins.load_store.mask = (1 << c);
1255 ins.load_store.unknown = c;
1256 emit_mir_instruction(ctx, ins);
1257 }
1258 }
1259
1260 static void
1261 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1262 {
1263 unsigned offset = 0, reg;
1264
1265 switch (instr->intrinsic) {
1266 case nir_intrinsic_discard_if:
1267 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1268
1269 /* fallthrough */
1270
1271 case nir_intrinsic_discard: {
1272 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1273 struct midgard_instruction discard = v_branch(conditional, false);
1274 discard.branch.target_type = TARGET_DISCARD;
1275 emit_mir_instruction(ctx, discard);
1276
1277 ctx->can_discard = true;
1278 break;
1279 }
1280
1281 case nir_intrinsic_load_uniform:
1282 case nir_intrinsic_load_ubo:
1283 case nir_intrinsic_load_input: {
1284 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1285 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1286
1287 /* Get the base type of the intrinsic */
1288 /* TODO: Infer type? Does it matter? */
1289 nir_alu_type t =
1290 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1291 t = nir_alu_type_get_base_type(t);
1292
1293 if (!is_ubo) {
1294 offset = nir_intrinsic_base(instr);
1295 }
1296
1297 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1298
1299 nir_src *src_offset = nir_get_io_offset_src(instr);
1300
1301 bool direct = nir_src_is_const(*src_offset);
1302
1303 if (direct)
1304 offset += nir_src_as_uint(*src_offset);
1305
1306 /* We may need to apply a fractional offset */
1307 int component = instr->intrinsic == nir_intrinsic_load_input ?
1308 nir_intrinsic_component(instr) : 0;
1309 reg = nir_dest_index(ctx, &instr->dest);
1310
1311 if (is_uniform && !ctx->is_blend) {
1312 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1313 } else if (is_ubo) {
1314 nir_src index = instr->src[0];
1315
1316 /* We don't yet support indirect UBOs. For indirect
1317 * block numbers (if that's possible), we don't know
1318 * enough about the hardware yet. For indirect sources,
1319 * we know what we need but we need to add some NIR
1320 * support for lowering correctly with respect to
1321 * 128-bit reads */
1322
1323 assert(nir_src_is_const(index));
1324 assert(nir_src_is_const(*src_offset));
1325
1326 /* TODO: Alignment */
1327 assert((offset & 0xF) == 0);
1328
1329 uint32_t uindex = nir_src_as_uint(index) + 1;
1330 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1331 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1332 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1333 } else if (ctx->is_blend) {
1334 /* For blend shaders, load the input color, which is
1335 * preloaded to r0 */
1336
1337 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1338 emit_mir_instruction(ctx, move);
1339 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1340 midgard_instruction ins = m_ld_attr_32(reg, offset);
1341 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1342 ins.load_store.mask = mask_of(nr_comp);
1343
1344 /* Use the type appropriate load */
1345 switch (t) {
1346 case nir_type_uint:
1347 case nir_type_bool:
1348 ins.load_store.op = midgard_op_ld_attr_32u;
1349 break;
1350 case nir_type_int:
1351 ins.load_store.op = midgard_op_ld_attr_32i;
1352 break;
1353 case nir_type_float:
1354 ins.load_store.op = midgard_op_ld_attr_32;
1355 break;
1356 default:
1357 unreachable("Attempted to load unknown type");
1358 break;
1359 }
1360
1361 emit_mir_instruction(ctx, ins);
1362 } else {
1363 DBG("Unknown load\n");
1364 assert(0);
1365 }
1366
1367 break;
1368 }
1369
1370 /* Reads off the tilebuffer during blending, tasty */
1371 case nir_intrinsic_load_raw_output_pan:
1372 reg = nir_dest_index(ctx, &instr->dest);
1373 assert(ctx->is_blend);
1374 emit_fb_read_blend_scalar(ctx, reg);
1375 break;
1376
1377 case nir_intrinsic_load_blend_const_color_rgba: {
1378 assert(ctx->is_blend);
1379 reg = nir_dest_index(ctx, &instr->dest);
1380
1381 /* Blend constants are embedded directly in the shader and
1382 * patched in, so we use some magic routing */
1383
1384 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1385 ins.has_constants = true;
1386 ins.has_blend_constant = true;
1387 emit_mir_instruction(ctx, ins);
1388 break;
1389 }
1390
1391 case nir_intrinsic_store_output:
1392 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1393
1394 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1395
1396 reg = nir_src_index(ctx, &instr->src[0]);
1397
1398 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1399 /* gl_FragColor is not emitted with load/store
1400 * instructions. Instead, it gets plonked into
1401 * r0 at the end of the shader and we do the
1402 * framebuffer writeout dance. TODO: Defer
1403 * writes */
1404
1405 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1406 emit_mir_instruction(ctx, move);
1407
1408 /* Save the index we're writing to for later reference
1409 * in the epilogue */
1410
1411 ctx->fragment_output = reg;
1412 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1413 /* Varyings are written into one of two special
1414 * varying register, r26 or r27. The register itself is
1415 * selected as the register in the st_vary instruction,
1416 * minus the base of 26. E.g. write into r27 and then
1417 * call st_vary(1) */
1418
1419 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1420 emit_mir_instruction(ctx, ins);
1421
1422 /* We should have been vectorized, though we don't
1423 * currently check that st_vary is emitted only once
1424 * per slot (this is relevant, since there's not a mask
1425 * parameter available on the store [set to 0 by the
1426 * blob]). We do respect the component by adjusting the
1427 * swizzle. */
1428
1429 unsigned component = nir_intrinsic_component(instr);
1430
1431 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1432 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1433 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1434 emit_mir_instruction(ctx, st);
1435 } else {
1436 DBG("Unknown store\n");
1437 assert(0);
1438 }
1439
1440 break;
1441
1442 /* Special case of store_output for lowered blend shaders */
1443 case nir_intrinsic_store_raw_output_pan:
1444 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1445 reg = nir_src_index(ctx, &instr->src[0]);
1446
1447 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1448 emit_mir_instruction(ctx, move);
1449 ctx->fragment_output = reg;
1450
1451 break;
1452
1453 case nir_intrinsic_load_alpha_ref_float:
1454 assert(instr->dest.is_ssa);
1455
1456 float ref_value = ctx->alpha_ref;
1457
1458 float *v = ralloc_array(NULL, float, 4);
1459 memcpy(v, &ref_value, sizeof(float));
1460 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1461 break;
1462
1463 case nir_intrinsic_load_viewport_scale:
1464 case nir_intrinsic_load_viewport_offset:
1465 emit_sysval_read(ctx, &instr->instr);
1466 break;
1467
1468 default:
1469 printf ("Unhandled intrinsic\n");
1470 assert(0);
1471 break;
1472 }
1473 }
1474
1475 static unsigned
1476 midgard_tex_format(enum glsl_sampler_dim dim)
1477 {
1478 switch (dim) {
1479 case GLSL_SAMPLER_DIM_1D:
1480 case GLSL_SAMPLER_DIM_BUF:
1481 return MALI_TEX_1D;
1482
1483 case GLSL_SAMPLER_DIM_2D:
1484 case GLSL_SAMPLER_DIM_EXTERNAL:
1485 return MALI_TEX_2D;
1486
1487 case GLSL_SAMPLER_DIM_3D:
1488 return MALI_TEX_3D;
1489
1490 case GLSL_SAMPLER_DIM_CUBE:
1491 return MALI_TEX_CUBE;
1492
1493 default:
1494 DBG("Unknown sampler dim type\n");
1495 assert(0);
1496 return 0;
1497 }
1498 }
1499
1500 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1501 * was successful */
1502
1503 static bool
1504 pan_attach_constant_bias(
1505 compiler_context *ctx,
1506 nir_src lod,
1507 midgard_texture_word *word)
1508 {
1509 /* To attach as constant, it has to *be* constant */
1510
1511 if (!nir_src_is_const(lod))
1512 return false;
1513
1514 float f = nir_src_as_float(lod);
1515
1516 /* Break into fixed-point */
1517 signed lod_int = f;
1518 float lod_frac = f - lod_int;
1519
1520 /* Carry over negative fractions */
1521 if (lod_frac < 0.0) {
1522 lod_int--;
1523 lod_frac += 1.0;
1524 }
1525
1526 /* Encode */
1527 word->bias = float_to_ubyte(lod_frac);
1528 word->bias_int = lod_int;
1529
1530 return true;
1531 }
1532
1533 static enum mali_sampler_type
1534 midgard_sampler_type(nir_alu_type t)
1535 {
1536 switch (nir_alu_type_get_base_type(t)) {
1537 case nir_type_float:
1538 return MALI_SAMPLER_FLOAT;
1539 case nir_type_int:
1540 return MALI_SAMPLER_SIGNED;
1541 case nir_type_uint:
1542 return MALI_SAMPLER_UNSIGNED;
1543 default:
1544 unreachable("Unknown sampler type");
1545 }
1546 }
1547
1548 static void
1549 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1550 unsigned midgard_texop)
1551 {
1552 /* TODO */
1553 //assert (!instr->sampler);
1554 //assert (!instr->texture_array_size);
1555
1556 /* Allocate registers via a round robin scheme to alternate between the two registers */
1557 int reg = ctx->texture_op_count & 1;
1558 int in_reg = reg, out_reg = reg;
1559
1560 /* Make room for the reg */
1561
1562 if (ctx->texture_index[reg] > -1)
1563 unalias_ssa(ctx, ctx->texture_index[reg]);
1564
1565 int texture_index = instr->texture_index;
1566 int sampler_index = texture_index;
1567
1568 /* No helper to build texture words -- we do it all here */
1569 midgard_instruction ins = {
1570 .type = TAG_TEXTURE_4,
1571 .texture = {
1572 .op = midgard_texop,
1573 .format = midgard_tex_format(instr->sampler_dim),
1574 .texture_handle = texture_index,
1575 .sampler_handle = sampler_index,
1576
1577 /* TODO: Regalloc it in */
1578 .swizzle = SWIZZLE_XYZW,
1579 .mask = 0xF,
1580
1581 /* TODO: half */
1582 .in_reg_full = 1,
1583 .out_full = 1,
1584
1585 .sampler_type = midgard_sampler_type(instr->dest_type),
1586 }
1587 };
1588
1589 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1590 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1591 int index = nir_src_index(ctx, &instr->src[i].src);
1592 int nr_comp = nir_src_num_components(instr->src[i].src);
1593 midgard_vector_alu_src alu_src = blank_alu_src;
1594
1595 switch (instr->src[i].src_type) {
1596 case nir_tex_src_coord: {
1597 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1598 /* texelFetch is undefined on samplerCube */
1599 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1600
1601 /* For cubemaps, we need to load coords into
1602 * special r27, and then use a special ld/st op
1603 * to select the face and copy the xy into the
1604 * texture register */
1605
1606 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1607
1608 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1609 emit_mir_instruction(ctx, move);
1610
1611 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1612 st.load_store.unknown = 0x24; /* XXX: What is this? */
1613 st.load_store.mask = 0x3; /* xy */
1614 st.load_store.swizzle = alu_src.swizzle;
1615 emit_mir_instruction(ctx, st);
1616
1617 ins.texture.in_reg_swizzle = swizzle_of(2);
1618 } else {
1619 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1620
1621 midgard_instruction mov = v_mov(index, alu_src, reg);
1622 mov.alu.mask = expand_writemask(mask_of(nr_comp));
1623 emit_mir_instruction(ctx, mov);
1624
1625 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1626 /* Texel fetch opcodes care about the
1627 * values of z and w, so we actually
1628 * need to spill into a second register
1629 * for a texel fetch with register bias
1630 * (for non-2D). TODO: Implement that
1631 */
1632
1633 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1634
1635 midgard_instruction zero = v_mov(index, alu_src, reg);
1636 zero.ssa_args.inline_constant = true;
1637 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1638 zero.has_constants = true;
1639 zero.alu.mask = ~mov.alu.mask;
1640 emit_mir_instruction(ctx, zero);
1641
1642 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1643 } else {
1644 /* Non-texel fetch doesn't need that
1645 * nonsense. However we do use the Z
1646 * for array indexing */
1647 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1648 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1649 }
1650 }
1651
1652 break;
1653 }
1654
1655 case nir_tex_src_bias:
1656 case nir_tex_src_lod: {
1657 /* Try as a constant if we can */
1658
1659 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1660 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1661 break;
1662
1663 /* Otherwise we use a register. To keep RA simple, we
1664 * put the bias/LOD into the w component of the input
1665 * source, which is otherwise in xy */
1666
1667 alu_src.swizzle = SWIZZLE_XXXX;
1668
1669 midgard_instruction mov = v_mov(index, alu_src, reg);
1670 mov.alu.mask = expand_writemask(1 << COMPONENT_W);
1671 emit_mir_instruction(ctx, mov);
1672
1673 ins.texture.lod_register = true;
1674
1675 midgard_tex_register_select sel = {
1676 .select = in_reg,
1677 .full = 1,
1678
1679 /* w */
1680 .component_lo = 1,
1681 .component_hi = 1
1682 };
1683
1684 uint8_t packed;
1685 memcpy(&packed, &sel, sizeof(packed));
1686 ins.texture.bias = packed;
1687
1688 break;
1689 };
1690
1691 default:
1692 unreachable("Unknown texture source type\n");
1693 }
1694 }
1695
1696 /* Set registers to read and write from the same place */
1697 ins.texture.in_reg_select = in_reg;
1698 ins.texture.out_reg_select = out_reg;
1699
1700 emit_mir_instruction(ctx, ins);
1701
1702 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1703
1704 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1705 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1706 ctx->texture_index[reg] = o_index;
1707
1708 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1709 emit_mir_instruction(ctx, ins2);
1710
1711 /* Used for .cont and .last hinting */
1712 ctx->texture_op_count++;
1713 }
1714
1715 static void
1716 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1717 {
1718 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1719 * generic tex in some cases (which confuses the hardware) */
1720
1721 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1722
1723 if (is_vertex && instr->op == nir_texop_tex)
1724 instr->op = nir_texop_txl;
1725
1726 switch (instr->op) {
1727 case nir_texop_tex:
1728 case nir_texop_txb:
1729 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1730 break;
1731 case nir_texop_txl:
1732 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1733 break;
1734 case nir_texop_txf:
1735 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1736 break;
1737 case nir_texop_txs:
1738 emit_sysval_read(ctx, &instr->instr);
1739 break;
1740 default:
1741 unreachable("Unhanlded texture op");
1742 }
1743 }
1744
1745 static void
1746 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1747 {
1748 switch (instr->type) {
1749 case nir_jump_break: {
1750 /* Emit a branch out of the loop */
1751 struct midgard_instruction br = v_branch(false, false);
1752 br.branch.target_type = TARGET_BREAK;
1753 br.branch.target_break = ctx->current_loop_depth;
1754 emit_mir_instruction(ctx, br);
1755
1756 DBG("break..\n");
1757 break;
1758 }
1759
1760 default:
1761 DBG("Unknown jump type %d\n", instr->type);
1762 break;
1763 }
1764 }
1765
1766 static void
1767 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1768 {
1769 switch (instr->type) {
1770 case nir_instr_type_load_const:
1771 emit_load_const(ctx, nir_instr_as_load_const(instr));
1772 break;
1773
1774 case nir_instr_type_intrinsic:
1775 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1776 break;
1777
1778 case nir_instr_type_alu:
1779 emit_alu(ctx, nir_instr_as_alu(instr));
1780 break;
1781
1782 case nir_instr_type_tex:
1783 emit_tex(ctx, nir_instr_as_tex(instr));
1784 break;
1785
1786 case nir_instr_type_jump:
1787 emit_jump(ctx, nir_instr_as_jump(instr));
1788 break;
1789
1790 case nir_instr_type_ssa_undef:
1791 /* Spurious */
1792 break;
1793
1794 default:
1795 DBG("Unhandled instruction type\n");
1796 break;
1797 }
1798 }
1799
1800
1801 /* ALU instructions can inline or embed constants, which decreases register
1802 * pressure and saves space. */
1803
1804 #define CONDITIONAL_ATTACH(src) { \
1805 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1806 \
1807 if (entry) { \
1808 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1809 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1810 } \
1811 }
1812
1813 static void
1814 inline_alu_constants(compiler_context *ctx)
1815 {
1816 mir_foreach_instr(ctx, alu) {
1817 /* Other instructions cannot inline constants */
1818 if (alu->type != TAG_ALU_4) continue;
1819
1820 /* If there is already a constant here, we can do nothing */
1821 if (alu->has_constants) continue;
1822
1823 /* It makes no sense to inline constants on a branch */
1824 if (alu->compact_branch || alu->prepacked_branch) continue;
1825
1826 CONDITIONAL_ATTACH(src0);
1827
1828 if (!alu->has_constants) {
1829 CONDITIONAL_ATTACH(src1)
1830 } else if (!alu->inline_constant) {
1831 /* Corner case: _two_ vec4 constants, for instance with a
1832 * csel. For this case, we can only use a constant
1833 * register for one, we'll have to emit a move for the
1834 * other. Note, if both arguments are constants, then
1835 * necessarily neither argument depends on the value of
1836 * any particular register. As the destination register
1837 * will be wiped, that means we can spill the constant
1838 * to the destination register.
1839 */
1840
1841 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1842 unsigned scratch = alu->ssa_args.dest;
1843
1844 if (entry) {
1845 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1846 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1847
1848 /* Force a break XXX Defer r31 writes */
1849 ins.unit = UNIT_VLUT;
1850
1851 /* Set the source */
1852 alu->ssa_args.src1 = scratch;
1853
1854 /* Inject us -before- the last instruction which set r31 */
1855 mir_insert_instruction_before(mir_prev_op(alu), ins);
1856 }
1857 }
1858 }
1859 }
1860
1861 /* Midgard supports two types of constants, embedded constants (128-bit) and
1862 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1863 * constants can be demoted to inline constants, for space savings and
1864 * sometimes a performance boost */
1865
1866 static void
1867 embedded_to_inline_constant(compiler_context *ctx)
1868 {
1869 mir_foreach_instr(ctx, ins) {
1870 if (!ins->has_constants) continue;
1871
1872 if (ins->ssa_args.inline_constant) continue;
1873
1874 /* Blend constants must not be inlined by definition */
1875 if (ins->has_blend_constant) continue;
1876
1877 /* src1 cannot be an inline constant due to encoding
1878 * restrictions. So, if possible we try to flip the arguments
1879 * in that case */
1880
1881 int op = ins->alu.op;
1882
1883 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1884 switch (op) {
1885 /* These ops require an operational change to flip
1886 * their arguments TODO */
1887 case midgard_alu_op_flt:
1888 case midgard_alu_op_fle:
1889 case midgard_alu_op_ilt:
1890 case midgard_alu_op_ile:
1891 case midgard_alu_op_fcsel:
1892 case midgard_alu_op_icsel:
1893 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1894 default:
1895 break;
1896 }
1897
1898 if (alu_opcode_props[op].props & OP_COMMUTES) {
1899 /* Flip the SSA numbers */
1900 ins->ssa_args.src0 = ins->ssa_args.src1;
1901 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1902
1903 /* And flip the modifiers */
1904
1905 unsigned src_temp;
1906
1907 src_temp = ins->alu.src2;
1908 ins->alu.src2 = ins->alu.src1;
1909 ins->alu.src1 = src_temp;
1910 }
1911 }
1912
1913 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1914 /* Extract the source information */
1915
1916 midgard_vector_alu_src *src;
1917 int q = ins->alu.src2;
1918 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1919 src = m;
1920
1921 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1922 int component = src->swizzle & 3;
1923
1924 /* Scale constant appropriately, if we can legally */
1925 uint16_t scaled_constant = 0;
1926
1927 if (midgard_is_integer_op(op)) {
1928 unsigned int *iconstants = (unsigned int *) ins->constants;
1929 scaled_constant = (uint16_t) iconstants[component];
1930
1931 /* Constant overflow after resize */
1932 if (scaled_constant != iconstants[component])
1933 continue;
1934 } else {
1935 float original = (float) ins->constants[component];
1936 scaled_constant = _mesa_float_to_half(original);
1937
1938 /* Check for loss of precision. If this is
1939 * mediump, we don't care, but for a highp
1940 * shader, we need to pay attention. NIR
1941 * doesn't yet tell us which mode we're in!
1942 * Practically this prevents most constants
1943 * from being inlined, sadly. */
1944
1945 float fp32 = _mesa_half_to_float(scaled_constant);
1946
1947 if (fp32 != original)
1948 continue;
1949 }
1950
1951 /* We don't know how to handle these with a constant */
1952
1953 if (src->mod || src->half || src->rep_low || src->rep_high) {
1954 DBG("Bailing inline constant...\n");
1955 continue;
1956 }
1957
1958 /* Make sure that the constant is not itself a
1959 * vector by checking if all accessed values
1960 * (by the swizzle) are the same. */
1961
1962 uint32_t *cons = (uint32_t *) ins->constants;
1963 uint32_t value = cons[component];
1964
1965 bool is_vector = false;
1966 unsigned mask = effective_writemask(&ins->alu);
1967
1968 for (int c = 1; c < 4; ++c) {
1969 /* We only care if this component is actually used */
1970 if (!(mask & (1 << c)))
1971 continue;
1972
1973 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1974
1975 if (test != value) {
1976 is_vector = true;
1977 break;
1978 }
1979 }
1980
1981 if (is_vector)
1982 continue;
1983
1984 /* Get rid of the embedded constant */
1985 ins->has_constants = false;
1986 ins->ssa_args.src1 = SSA_UNUSED_0;
1987 ins->ssa_args.inline_constant = true;
1988 ins->inline_constant = scaled_constant;
1989 }
1990 }
1991 }
1992
1993 /* Map normal SSA sources to other SSA sources / fixed registers (like
1994 * uniforms) */
1995
1996 static void
1997 map_ssa_to_alias(compiler_context *ctx, int *ref)
1998 {
1999 /* Sign is used quite deliberately for unused */
2000 if (*ref < 0)
2001 return;
2002
2003 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2004
2005 if (alias) {
2006 /* Remove entry in leftovers to avoid a redunant fmov */
2007
2008 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2009
2010 if (leftover)
2011 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2012
2013 /* Assign the alias map */
2014 *ref = alias - 1;
2015 return;
2016 }
2017 }
2018
2019 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2020 * texture pipeline */
2021
2022 static bool
2023 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2024 {
2025 bool progress = false;
2026
2027 mir_foreach_instr_in_block_safe(block, ins) {
2028 if (ins->type != TAG_ALU_4) continue;
2029 if (ins->compact_branch) continue;
2030
2031 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2032 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2033
2034 mir_remove_instruction(ins);
2035 progress = true;
2036 }
2037
2038 return progress;
2039 }
2040
2041 /* Dead code elimination for branches at the end of a block - only one branch
2042 * per block is legal semantically */
2043
2044 static void
2045 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2046 {
2047 bool branched = false;
2048
2049 mir_foreach_instr_in_block_safe(block, ins) {
2050 if (!midgard_is_branch_unit(ins->unit)) continue;
2051
2052 /* We ignore prepacked branches since the fragment epilogue is
2053 * just generally special */
2054 if (ins->prepacked_branch) continue;
2055
2056 /* Discards are similarly special and may not correspond to the
2057 * end of a block */
2058
2059 if (ins->branch.target_type == TARGET_DISCARD) continue;
2060
2061 if (branched) {
2062 /* We already branched, so this is dead */
2063 mir_remove_instruction(ins);
2064 }
2065
2066 branched = true;
2067 }
2068 }
2069
2070 static bool
2071 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2072 {
2073 /* abs or neg */
2074 if (!is_int && src.mod) return true;
2075
2076 /* Other int mods don't matter in isolation */
2077 if (is_int && src.mod == midgard_int_shift) return true;
2078
2079 /* size-conversion */
2080 if (src.half) return true;
2081
2082 /* swizzle */
2083 for (unsigned c = 0; c < 4; ++c) {
2084 if (!(mask & (1 << c))) continue;
2085 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2086 }
2087
2088 return false;
2089 }
2090
2091 static bool
2092 mir_nontrivial_source2_mod(midgard_instruction *ins)
2093 {
2094 unsigned mask = squeeze_writemask(ins->alu.mask);
2095 bool is_int = midgard_is_integer_op(ins->alu.op);
2096
2097 midgard_vector_alu_src src2 =
2098 vector_alu_from_unsigned(ins->alu.src2);
2099
2100 return mir_nontrivial_mod(src2, is_int, mask);
2101 }
2102
2103 static bool
2104 mir_nontrivial_outmod(midgard_instruction *ins)
2105 {
2106 bool is_int = midgard_is_integer_op(ins->alu.op);
2107 unsigned mod = ins->alu.outmod;
2108
2109 /* Type conversion is a sort of outmod */
2110 if (ins->alu.dest_override != midgard_dest_override_none)
2111 return true;
2112
2113 if (is_int)
2114 return mod != midgard_outmod_int_wrap;
2115 else
2116 return mod != midgard_outmod_none;
2117 }
2118
2119 static bool
2120 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2121 {
2122 bool progress = false;
2123
2124 mir_foreach_instr_in_block_safe(block, ins) {
2125 if (ins->type != TAG_ALU_4) continue;
2126 if (!OP_IS_MOVE(ins->alu.op)) continue;
2127
2128 unsigned from = ins->ssa_args.src1;
2129 unsigned to = ins->ssa_args.dest;
2130
2131 /* We only work on pure SSA */
2132
2133 if (to >= SSA_FIXED_MINIMUM) continue;
2134 if (from >= SSA_FIXED_MINIMUM) continue;
2135 if (to >= ctx->func->impl->ssa_alloc) continue;
2136 if (from >= ctx->func->impl->ssa_alloc) continue;
2137
2138 /* Constant propagation is not handled here, either */
2139 if (ins->ssa_args.inline_constant) continue;
2140 if (ins->has_constants) continue;
2141
2142 if (mir_nontrivial_source2_mod(ins)) continue;
2143 if (mir_nontrivial_outmod(ins)) continue;
2144
2145 /* We're clear -- rewrite */
2146 mir_rewrite_index_src(ctx, to, from);
2147 mir_remove_instruction(ins);
2148 progress |= true;
2149 }
2150
2151 return progress;
2152 }
2153
2154 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2155 * the move can be propagated away entirely */
2156
2157 static bool
2158 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2159 {
2160 /* Nothing to do */
2161 if (comp == midgard_outmod_none)
2162 return true;
2163
2164 if (*outmod == midgard_outmod_none) {
2165 *outmod = comp;
2166 return true;
2167 }
2168
2169 /* TODO: Compose rules */
2170 return false;
2171 }
2172
2173 static bool
2174 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2175 {
2176 bool progress = false;
2177
2178 mir_foreach_instr_in_block_safe(block, ins) {
2179 if (ins->type != TAG_ALU_4) continue;
2180 if (ins->alu.op != midgard_alu_op_fmov) continue;
2181 if (ins->alu.outmod != midgard_outmod_pos) continue;
2182
2183 /* TODO: Registers? */
2184 unsigned src = ins->ssa_args.src1;
2185 if (src >= ctx->func->impl->ssa_alloc) continue;
2186 assert(!mir_has_multiple_writes(ctx, src));
2187
2188 /* There might be a source modifier, too */
2189 if (mir_nontrivial_source2_mod(ins)) continue;
2190
2191 /* Backpropagate the modifier */
2192 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2193 if (v->type != TAG_ALU_4) continue;
2194 if (v->ssa_args.dest != src) continue;
2195
2196 /* Can we even take a float outmod? */
2197 if (midgard_is_integer_out_op(v->alu.op)) continue;
2198
2199 midgard_outmod_float temp = v->alu.outmod;
2200 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2201
2202 /* Throw in the towel.. */
2203 if (!progress) break;
2204
2205 /* Otherwise, transfer the modifier */
2206 v->alu.outmod = temp;
2207 ins->alu.outmod = midgard_outmod_none;
2208
2209 break;
2210 }
2211 }
2212
2213 return progress;
2214 }
2215
2216 static bool
2217 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2218 {
2219 bool progress = false;
2220
2221 mir_foreach_instr_in_block_safe(block, ins) {
2222 if (ins->type != TAG_ALU_4) continue;
2223 if (!OP_IS_MOVE(ins->alu.op)) continue;
2224
2225 unsigned from = ins->ssa_args.src1;
2226 unsigned to = ins->ssa_args.dest;
2227
2228 /* Make sure it's simple enough for us to handle */
2229
2230 if (from >= SSA_FIXED_MINIMUM) continue;
2231 if (from >= ctx->func->impl->ssa_alloc) continue;
2232 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2233 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2234
2235 bool eliminated = false;
2236
2237 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2238 /* The texture registers are not SSA so be careful.
2239 * Conservatively, just stop if we hit a texture op
2240 * (even if it may not write) to where we are */
2241
2242 if (v->type != TAG_ALU_4)
2243 break;
2244
2245 if (v->ssa_args.dest == from) {
2246 /* We don't want to track partial writes ... */
2247 if (v->alu.mask == 0xF) {
2248 v->ssa_args.dest = to;
2249 eliminated = true;
2250 }
2251
2252 break;
2253 }
2254 }
2255
2256 if (eliminated)
2257 mir_remove_instruction(ins);
2258
2259 progress |= eliminated;
2260 }
2261
2262 return progress;
2263 }
2264
2265 /* The following passes reorder MIR instructions to enable better scheduling */
2266
2267 static void
2268 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2269 {
2270 mir_foreach_instr_in_block_safe(block, ins) {
2271 if (ins->type != TAG_LOAD_STORE_4) continue;
2272
2273 /* We've found a load/store op. Check if next is also load/store. */
2274 midgard_instruction *next_op = mir_next_op(ins);
2275 if (&next_op->link != &block->instructions) {
2276 if (next_op->type == TAG_LOAD_STORE_4) {
2277 /* If so, we're done since we're a pair */
2278 ins = mir_next_op(ins);
2279 continue;
2280 }
2281
2282 /* Maximum search distance to pair, to avoid register pressure disasters */
2283 int search_distance = 8;
2284
2285 /* Otherwise, we have an orphaned load/store -- search for another load */
2286 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2287 /* Terminate search if necessary */
2288 if (!(search_distance--)) break;
2289
2290 if (c->type != TAG_LOAD_STORE_4) continue;
2291
2292 /* Stores cannot be reordered, since they have
2293 * dependencies. For the same reason, indirect
2294 * loads cannot be reordered as their index is
2295 * loaded in r27.w */
2296
2297 if (OP_IS_STORE(c->load_store.op)) continue;
2298
2299 /* It appears the 0x800 bit is set whenever a
2300 * load is direct, unset when it is indirect.
2301 * Skip indirect loads. */
2302
2303 if (!(c->load_store.unknown & 0x800)) continue;
2304
2305 /* We found one! Move it up to pair and remove it from the old location */
2306
2307 mir_insert_instruction_before(ins, *c);
2308 mir_remove_instruction(c);
2309
2310 break;
2311 }
2312 }
2313 }
2314 }
2315
2316 /* If there are leftovers after the below pass, emit actual fmov
2317 * instructions for the slow-but-correct path */
2318
2319 static void
2320 emit_leftover_move(compiler_context *ctx)
2321 {
2322 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2323 int base = ((uintptr_t) leftover->key) - 1;
2324 int mapped = base;
2325
2326 map_ssa_to_alias(ctx, &mapped);
2327 EMIT(mov, mapped, blank_alu_src, base);
2328 }
2329 }
2330
2331 static void
2332 actualise_ssa_to_alias(compiler_context *ctx)
2333 {
2334 mir_foreach_instr(ctx, ins) {
2335 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2336 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2337 }
2338
2339 emit_leftover_move(ctx);
2340 }
2341
2342 static void
2343 emit_fragment_epilogue(compiler_context *ctx)
2344 {
2345 /* Special case: writing out constants requires us to include the move
2346 * explicitly now, so shove it into r0 */
2347
2348 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2349
2350 if (constant_value) {
2351 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2352 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2353 emit_mir_instruction(ctx, ins);
2354 }
2355
2356 /* Perform the actual fragment writeout. We have two writeout/branch
2357 * instructions, forming a loop until writeout is successful as per the
2358 * docs. TODO: gl_FragDepth */
2359
2360 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2361 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2362 }
2363
2364 static midgard_block *
2365 emit_block(compiler_context *ctx, nir_block *block)
2366 {
2367 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2368 list_addtail(&this_block->link, &ctx->blocks);
2369
2370 this_block->is_scheduled = false;
2371 ++ctx->block_count;
2372
2373 ctx->texture_index[0] = -1;
2374 ctx->texture_index[1] = -1;
2375
2376 /* Add us as a successor to the block we are following */
2377 if (ctx->current_block)
2378 midgard_block_add_successor(ctx->current_block, this_block);
2379
2380 /* Set up current block */
2381 list_inithead(&this_block->instructions);
2382 ctx->current_block = this_block;
2383
2384 nir_foreach_instr(instr, block) {
2385 emit_instr(ctx, instr);
2386 ++ctx->instruction_count;
2387 }
2388
2389 inline_alu_constants(ctx);
2390 embedded_to_inline_constant(ctx);
2391
2392 /* Perform heavylifting for aliasing */
2393 actualise_ssa_to_alias(ctx);
2394
2395 midgard_pair_load_store(ctx, this_block);
2396
2397 /* Append fragment shader epilogue (value writeout) */
2398 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2399 if (block == nir_impl_last_block(ctx->func->impl)) {
2400 emit_fragment_epilogue(ctx);
2401 }
2402 }
2403
2404 if (block == nir_start_block(ctx->func->impl))
2405 ctx->initial_block = this_block;
2406
2407 if (block == nir_impl_last_block(ctx->func->impl))
2408 ctx->final_block = this_block;
2409
2410 /* Allow the next control flow to access us retroactively, for
2411 * branching etc */
2412 ctx->current_block = this_block;
2413
2414 /* Document the fallthrough chain */
2415 ctx->previous_source_block = this_block;
2416
2417 return this_block;
2418 }
2419
2420 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2421
2422 static void
2423 emit_if(struct compiler_context *ctx, nir_if *nif)
2424 {
2425 /* Conditional branches expect the condition in r31.w; emit a move for
2426 * that in the _previous_ block (which is the current block). */
2427 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2428
2429 /* Speculatively emit the branch, but we can't fill it in until later */
2430 EMIT(branch, true, true);
2431 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2432
2433 /* Emit the two subblocks */
2434 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2435
2436 /* Emit a jump from the end of the then block to the end of the else */
2437 EMIT(branch, false, false);
2438 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2439
2440 /* Emit second block, and check if it's empty */
2441
2442 int else_idx = ctx->block_count;
2443 int count_in = ctx->instruction_count;
2444 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2445 int after_else_idx = ctx->block_count;
2446
2447 /* Now that we have the subblocks emitted, fix up the branches */
2448
2449 assert(then_block);
2450 assert(else_block);
2451
2452 if (ctx->instruction_count == count_in) {
2453 /* The else block is empty, so don't emit an exit jump */
2454 mir_remove_instruction(then_exit);
2455 then_branch->branch.target_block = after_else_idx;
2456 } else {
2457 then_branch->branch.target_block = else_idx;
2458 then_exit->branch.target_block = after_else_idx;
2459 }
2460 }
2461
2462 static void
2463 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2464 {
2465 /* Remember where we are */
2466 midgard_block *start_block = ctx->current_block;
2467
2468 /* Allocate a loop number, growing the current inner loop depth */
2469 int loop_idx = ++ctx->current_loop_depth;
2470
2471 /* Get index from before the body so we can loop back later */
2472 int start_idx = ctx->block_count;
2473
2474 /* Emit the body itself */
2475 emit_cf_list(ctx, &nloop->body);
2476
2477 /* Branch back to loop back */
2478 struct midgard_instruction br_back = v_branch(false, false);
2479 br_back.branch.target_block = start_idx;
2480 emit_mir_instruction(ctx, br_back);
2481
2482 /* Mark down that branch in the graph. Note that we're really branching
2483 * to the block *after* we started in. TODO: Why doesn't the branch
2484 * itself have an off-by-one then...? */
2485 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2486
2487 /* Find the index of the block about to follow us (note: we don't add
2488 * one; blocks are 0-indexed so we get a fencepost problem) */
2489 int break_block_idx = ctx->block_count;
2490
2491 /* Fix up the break statements we emitted to point to the right place,
2492 * now that we can allocate a block number for them */
2493
2494 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2495 mir_foreach_instr_in_block(block, ins) {
2496 if (ins->type != TAG_ALU_4) continue;
2497 if (!ins->compact_branch) continue;
2498 if (ins->prepacked_branch) continue;
2499
2500 /* We found a branch -- check the type to see if we need to do anything */
2501 if (ins->branch.target_type != TARGET_BREAK) continue;
2502
2503 /* It's a break! Check if it's our break */
2504 if (ins->branch.target_break != loop_idx) continue;
2505
2506 /* Okay, cool, we're breaking out of this loop.
2507 * Rewrite from a break to a goto */
2508
2509 ins->branch.target_type = TARGET_GOTO;
2510 ins->branch.target_block = break_block_idx;
2511 }
2512 }
2513
2514 /* Now that we've finished emitting the loop, free up the depth again
2515 * so we play nice with recursion amid nested loops */
2516 --ctx->current_loop_depth;
2517 }
2518
2519 static midgard_block *
2520 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2521 {
2522 midgard_block *start_block = NULL;
2523
2524 foreach_list_typed(nir_cf_node, node, node, list) {
2525 switch (node->type) {
2526 case nir_cf_node_block: {
2527 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2528
2529 if (!start_block)
2530 start_block = block;
2531
2532 break;
2533 }
2534
2535 case nir_cf_node_if:
2536 emit_if(ctx, nir_cf_node_as_if(node));
2537 break;
2538
2539 case nir_cf_node_loop:
2540 emit_loop(ctx, nir_cf_node_as_loop(node));
2541 break;
2542
2543 case nir_cf_node_function:
2544 assert(0);
2545 break;
2546 }
2547 }
2548
2549 return start_block;
2550 }
2551
2552 /* Due to lookahead, we need to report the first tag executed in the command
2553 * stream and in branch targets. An initial block might be empty, so iterate
2554 * until we find one that 'works' */
2555
2556 static unsigned
2557 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2558 {
2559 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2560
2561 unsigned first_tag = 0;
2562
2563 do {
2564 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2565
2566 if (initial_bundle) {
2567 first_tag = initial_bundle->tag;
2568 break;
2569 }
2570
2571 /* Initial block is empty, try the next block */
2572 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2573 } while(initial_block != NULL);
2574
2575 assert(first_tag);
2576 return first_tag;
2577 }
2578
2579 int
2580 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2581 {
2582 struct util_dynarray *compiled = &program->compiled;
2583
2584 midgard_debug = debug_get_option_midgard_debug();
2585
2586 compiler_context ictx = {
2587 .nir = nir,
2588 .stage = nir->info.stage,
2589
2590 .is_blend = is_blend,
2591 .blend_constant_offset = -1,
2592
2593 .alpha_ref = program->alpha_ref
2594 };
2595
2596 compiler_context *ctx = &ictx;
2597
2598 /* TODO: Decide this at runtime */
2599 ctx->uniform_cutoff = 8;
2600
2601 /* Initialize at a global (not block) level hash tables */
2602
2603 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2604 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2605 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2606 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2607 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2608
2609 /* Record the varying mapping for the command stream's bookkeeping */
2610
2611 struct exec_list *varyings =
2612 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2613
2614 unsigned max_varying = 0;
2615 nir_foreach_variable(var, varyings) {
2616 unsigned loc = var->data.driver_location;
2617 unsigned sz = glsl_type_size(var->type, FALSE);
2618
2619 for (int c = 0; c < sz; ++c) {
2620 program->varyings[loc + c] = var->data.location + c;
2621 max_varying = MAX2(max_varying, loc + c);
2622 }
2623 }
2624
2625 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2626 * (so we don't accidentally duplicate the epilogue since mesa/st has
2627 * messed with our I/O quite a bit already) */
2628
2629 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2630
2631 if (ctx->stage == MESA_SHADER_VERTEX)
2632 NIR_PASS_V(nir, nir_lower_viewport_transform);
2633
2634 NIR_PASS_V(nir, nir_lower_var_copies);
2635 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2636 NIR_PASS_V(nir, nir_split_var_copies);
2637 NIR_PASS_V(nir, nir_lower_var_copies);
2638 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2639 NIR_PASS_V(nir, nir_lower_var_copies);
2640 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2641
2642 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2643
2644 /* Optimisation passes */
2645
2646 optimise_nir(nir);
2647
2648 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2649 nir_print_shader(nir, stdout);
2650 }
2651
2652 /* Assign sysvals and counts, now that we're sure
2653 * (post-optimisation) */
2654
2655 midgard_nir_assign_sysvals(ctx, nir);
2656
2657 program->uniform_count = nir->num_uniforms;
2658 program->sysval_count = ctx->sysval_count;
2659 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2660
2661 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2662 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2663
2664 nir_foreach_function(func, nir) {
2665 if (!func->impl)
2666 continue;
2667
2668 list_inithead(&ctx->blocks);
2669 ctx->block_count = 0;
2670 ctx->func = func;
2671
2672 emit_cf_list(ctx, &func->impl->body);
2673 emit_block(ctx, func->impl->end_block);
2674
2675 break; /* TODO: Multi-function shaders */
2676 }
2677
2678 util_dynarray_init(compiled, NULL);
2679
2680 /* MIR-level optimizations */
2681
2682 bool progress = false;
2683
2684 do {
2685 progress = false;
2686
2687 mir_foreach_block(ctx, block) {
2688 progress |= midgard_opt_pos_propagate(ctx, block);
2689 progress |= midgard_opt_copy_prop(ctx, block);
2690 progress |= midgard_opt_copy_prop_tex(ctx, block);
2691 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2692 }
2693 } while (progress);
2694
2695 /* Nested control-flow can result in dead branches at the end of the
2696 * block. This messes with our analysis and is just dead code, so cull
2697 * them */
2698 mir_foreach_block(ctx, block) {
2699 midgard_opt_cull_dead_branch(ctx, block);
2700 }
2701
2702 /* Schedule! */
2703 schedule_program(ctx);
2704
2705 /* Now that all the bundles are scheduled and we can calculate block
2706 * sizes, emit actual branch instructions rather than placeholders */
2707
2708 int br_block_idx = 0;
2709
2710 mir_foreach_block(ctx, block) {
2711 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2712 for (int c = 0; c < bundle->instruction_count; ++c) {
2713 midgard_instruction *ins = bundle->instructions[c];
2714
2715 if (!midgard_is_branch_unit(ins->unit)) continue;
2716
2717 if (ins->prepacked_branch) continue;
2718
2719 /* Parse some basic branch info */
2720 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2721 bool is_conditional = ins->branch.conditional;
2722 bool is_inverted = ins->branch.invert_conditional;
2723 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2724
2725 /* Determine the block we're jumping to */
2726 int target_number = ins->branch.target_block;
2727
2728 /* Report the destination tag */
2729 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2730
2731 /* Count up the number of quadwords we're
2732 * jumping over = number of quadwords until
2733 * (br_block_idx, target_number) */
2734
2735 int quadword_offset = 0;
2736
2737 if (is_discard) {
2738 /* Jump to the end of the shader. We
2739 * need to include not only the
2740 * following blocks, but also the
2741 * contents of our current block (since
2742 * discard can come in the middle of
2743 * the block) */
2744
2745 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2746
2747 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2748 quadword_offset += quadword_size(bun->tag);
2749 }
2750
2751 mir_foreach_block_from(ctx, blk, b) {
2752 quadword_offset += b->quadword_count;
2753 }
2754
2755 } else if (target_number > br_block_idx) {
2756 /* Jump forward */
2757
2758 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2759 midgard_block *blk = mir_get_block(ctx, idx);
2760 assert(blk);
2761
2762 quadword_offset += blk->quadword_count;
2763 }
2764 } else {
2765 /* Jump backwards */
2766
2767 for (int idx = br_block_idx; idx >= target_number; --idx) {
2768 midgard_block *blk = mir_get_block(ctx, idx);
2769 assert(blk);
2770
2771 quadword_offset -= blk->quadword_count;
2772 }
2773 }
2774
2775 /* Unconditional extended branches (far jumps)
2776 * have issues, so we always use a conditional
2777 * branch, setting the condition to always for
2778 * unconditional. For compact unconditional
2779 * branches, cond isn't used so it doesn't
2780 * matter what we pick. */
2781
2782 midgard_condition cond =
2783 !is_conditional ? midgard_condition_always :
2784 is_inverted ? midgard_condition_false :
2785 midgard_condition_true;
2786
2787 midgard_jmp_writeout_op op =
2788 is_discard ? midgard_jmp_writeout_op_discard :
2789 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2790 midgard_jmp_writeout_op_branch_cond;
2791
2792 if (!is_compact) {
2793 midgard_branch_extended branch =
2794 midgard_create_branch_extended(
2795 cond, op,
2796 dest_tag,
2797 quadword_offset);
2798
2799 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2800 } else if (is_conditional || is_discard) {
2801 midgard_branch_cond branch = {
2802 .op = op,
2803 .dest_tag = dest_tag,
2804 .offset = quadword_offset,
2805 .cond = cond
2806 };
2807
2808 assert(branch.offset == quadword_offset);
2809
2810 memcpy(&ins->br_compact, &branch, sizeof(branch));
2811 } else {
2812 assert(op == midgard_jmp_writeout_op_branch_uncond);
2813
2814 midgard_branch_uncond branch = {
2815 .op = op,
2816 .dest_tag = dest_tag,
2817 .offset = quadword_offset,
2818 .unknown = 1
2819 };
2820
2821 assert(branch.offset == quadword_offset);
2822
2823 memcpy(&ins->br_compact, &branch, sizeof(branch));
2824 }
2825 }
2826 }
2827
2828 ++br_block_idx;
2829 }
2830
2831 /* Emit flat binary from the instruction arrays. Iterate each block in
2832 * sequence. Save instruction boundaries such that lookahead tags can
2833 * be assigned easily */
2834
2835 /* Cache _all_ bundles in source order for lookahead across failed branches */
2836
2837 int bundle_count = 0;
2838 mir_foreach_block(ctx, block) {
2839 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2840 }
2841 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2842 int bundle_idx = 0;
2843 mir_foreach_block(ctx, block) {
2844 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2845 source_order_bundles[bundle_idx++] = bundle;
2846 }
2847 }
2848
2849 int current_bundle = 0;
2850
2851 /* Midgard prefetches instruction types, so during emission we
2852 * need to lookahead. Unless this is the last instruction, in
2853 * which we return 1. Or if this is the second to last and the
2854 * last is an ALU, then it's also 1... */
2855
2856 mir_foreach_block(ctx, block) {
2857 mir_foreach_bundle_in_block(block, bundle) {
2858 int lookahead = 1;
2859
2860 if (current_bundle + 1 < bundle_count) {
2861 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2862
2863 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2864 lookahead = 1;
2865 } else {
2866 lookahead = next;
2867 }
2868 }
2869
2870 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2871 ++current_bundle;
2872 }
2873
2874 /* TODO: Free deeper */
2875 //util_dynarray_fini(&block->instructions);
2876 }
2877
2878 free(source_order_bundles);
2879
2880 /* Report the very first tag executed */
2881 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2882
2883 /* Deal with off-by-one related to the fencepost problem */
2884 program->work_register_count = ctx->work_registers + 1;
2885
2886 program->can_discard = ctx->can_discard;
2887 program->uniform_cutoff = ctx->uniform_cutoff;
2888
2889 program->blend_patch_offset = ctx->blend_constant_offset;
2890
2891 if (midgard_debug & MIDGARD_DBG_SHADERS)
2892 disassemble_midgard(program->compiled.data, program->compiled.size);
2893
2894 return 0;
2895 }