panfrost/midgard: Simplify blend read
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
115 bool half, bool sext)
116 {
117 if (!src) return blank_alu_src;
118
119 /* Figure out how many components there are so we can adjust the
120 * swizzle. Specifically we want to broadcast the last channel so
121 * things like ball2/3 work
122 */
123
124 if (broadcast_count) {
125 uint8_t last_component = src->swizzle[broadcast_count - 1];
126
127 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
128 src->swizzle[c] = last_component;
129 }
130 }
131
132 midgard_vector_alu_src alu_src = {
133 .rep_low = 0,
134 .rep_high = 0,
135 .half = half,
136 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
137 };
138
139 if (is_int) {
140 alu_src.mod = midgard_int_normal;
141
142 /* Sign/zero-extend if needed */
143
144 if (half) {
145 alu_src.mod = sext ?
146 midgard_int_sign_extend
147 : midgard_int_zero_extend;
148 }
149
150 /* These should have been lowered away */
151 assert(!(src->abs || src->negate));
152 } else {
153 alu_src.mod = (src->abs << 0) | (src->negate << 1);
154 }
155
156 return alu_src;
157 }
158
159 /* load/store instructions have both 32-bit and 16-bit variants, depending on
160 * whether we are using vectors composed of highp or mediump. At the moment, we
161 * don't support half-floats -- this requires changes in other parts of the
162 * compiler -- therefore the 16-bit versions are commented out. */
163
164 //M_LOAD(ld_attr_16);
165 M_LOAD(ld_attr_32);
166 //M_LOAD(ld_vary_16);
167 M_LOAD(ld_vary_32);
168 //M_LOAD(ld_uniform_16);
169 M_LOAD(ld_uniform_32);
170 M_LOAD(ld_color_buffer_8);
171 //M_STORE(st_vary_16);
172 M_STORE(st_vary_32);
173 M_STORE(st_cubemap_coords);
174
175 static midgard_instruction
176 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
177 {
178 midgard_branch_cond branch = {
179 .op = op,
180 .dest_tag = tag,
181 .offset = offset,
182 .cond = cond
183 };
184
185 uint16_t compact;
186 memcpy(&compact, &branch, sizeof(branch));
187
188 midgard_instruction ins = {
189 .type = TAG_ALU_4,
190 .unit = ALU_ENAB_BR_COMPACT,
191 .prepacked_branch = true,
192 .compact_branch = true,
193 .br_compact = compact
194 };
195
196 if (op == midgard_jmp_writeout_op_writeout)
197 ins.writeout = true;
198
199 return ins;
200 }
201
202 static midgard_instruction
203 v_branch(bool conditional, bool invert)
204 {
205 midgard_instruction ins = {
206 .type = TAG_ALU_4,
207 .unit = ALU_ENAB_BRANCH,
208 .compact_branch = true,
209 .branch = {
210 .conditional = conditional,
211 .invert_conditional = invert
212 }
213 };
214
215 return ins;
216 }
217
218 static midgard_branch_extended
219 midgard_create_branch_extended( midgard_condition cond,
220 midgard_jmp_writeout_op op,
221 unsigned dest_tag,
222 signed quadword_offset)
223 {
224 /* For unclear reasons, the condition code is repeated 8 times */
225 uint16_t duplicated_cond =
226 (cond << 14) |
227 (cond << 12) |
228 (cond << 10) |
229 (cond << 8) |
230 (cond << 6) |
231 (cond << 4) |
232 (cond << 2) |
233 (cond << 0);
234
235 midgard_branch_extended branch = {
236 .op = op,
237 .dest_tag = dest_tag,
238 .offset = quadword_offset,
239 .cond = duplicated_cond
240 };
241
242 return branch;
243 }
244
245 static void
246 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
247 {
248 ins->has_constants = true;
249 memcpy(&ins->constants, constants, 16);
250 }
251
252 static int
253 glsl_type_size(const struct glsl_type *type, bool bindless)
254 {
255 return glsl_count_attribute_slots(type, false);
256 }
257
258 /* Lower fdot2 to a vector multiplication followed by channel addition */
259 static void
260 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
261 {
262 if (alu->op != nir_op_fdot2)
263 return;
264
265 b->cursor = nir_before_instr(&alu->instr);
266
267 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
268 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
269
270 nir_ssa_def *product = nir_fmul(b, src0, src1);
271
272 nir_ssa_def *sum = nir_fadd(b,
273 nir_channel(b, product, 0),
274 nir_channel(b, product, 1));
275
276 /* Replace the fdot2 with this sum */
277 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
278 }
279
280 static int
281 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
282 {
283 switch (instr->intrinsic) {
284 case nir_intrinsic_load_viewport_scale:
285 return PAN_SYSVAL_VIEWPORT_SCALE;
286 case nir_intrinsic_load_viewport_offset:
287 return PAN_SYSVAL_VIEWPORT_OFFSET;
288 default:
289 return -1;
290 }
291 }
292
293 static unsigned
294 nir_dest_index(compiler_context *ctx, nir_dest *dst)
295 {
296 if (dst->is_ssa)
297 return dst->ssa.index;
298 else {
299 assert(!dst->reg.indirect);
300 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
301 }
302 }
303
304 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
305 unsigned *dest)
306 {
307 nir_intrinsic_instr *intr;
308 nir_dest *dst = NULL;
309 nir_tex_instr *tex;
310 int sysval = -1;
311
312 switch (instr->type) {
313 case nir_instr_type_intrinsic:
314 intr = nir_instr_as_intrinsic(instr);
315 sysval = midgard_nir_sysval_for_intrinsic(intr);
316 dst = &intr->dest;
317 break;
318 case nir_instr_type_tex:
319 tex = nir_instr_as_tex(instr);
320 if (tex->op != nir_texop_txs)
321 break;
322
323 sysval = PAN_SYSVAL(TEXTURE_SIZE,
324 PAN_TXS_SYSVAL_ID(tex->texture_index,
325 nir_tex_instr_dest_size(tex) -
326 (tex->is_array ? 1 : 0),
327 tex->is_array));
328 dst = &tex->dest;
329 break;
330 default:
331 break;
332 }
333
334 if (dest && dst)
335 *dest = nir_dest_index(ctx, dst);
336
337 return sysval;
338 }
339
340 static void
341 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
342 {
343 int sysval;
344
345 sysval = sysval_for_instr(ctx, instr, NULL);
346 if (sysval < 0)
347 return;
348
349 /* We have a sysval load; check if it's already been assigned */
350
351 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
352 return;
353
354 /* It hasn't -- so assign it now! */
355
356 unsigned id = ctx->sysval_count++;
357 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
358 ctx->sysvals[id] = sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
363 {
364 ctx->sysval_count = 0;
365
366 nir_foreach_function(function, shader) {
367 if (!function->impl) continue;
368
369 nir_foreach_block(block, function->impl) {
370 nir_foreach_instr_safe(instr, block) {
371 midgard_nir_assign_sysval_body(ctx, instr);
372 }
373 }
374 }
375 }
376
377 static bool
378 midgard_nir_lower_fdot2(nir_shader *shader)
379 {
380 bool progress = false;
381
382 nir_foreach_function(function, shader) {
383 if (!function->impl) continue;
384
385 nir_builder _b;
386 nir_builder *b = &_b;
387 nir_builder_init(b, function->impl);
388
389 nir_foreach_block(block, function->impl) {
390 nir_foreach_instr_safe(instr, block) {
391 if (instr->type != nir_instr_type_alu) continue;
392
393 nir_alu_instr *alu = nir_instr_as_alu(instr);
394 midgard_nir_lower_fdot2_body(b, alu);
395
396 progress |= true;
397 }
398 }
399
400 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
401
402 }
403
404 return progress;
405 }
406
407 static void
408 optimise_nir(nir_shader *nir)
409 {
410 bool progress;
411 unsigned lower_flrp =
412 (nir->options->lower_flrp16 ? 16 : 0) |
413 (nir->options->lower_flrp32 ? 32 : 0) |
414 (nir->options->lower_flrp64 ? 64 : 0);
415
416 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
417 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
418 NIR_PASS(progress, nir, nir_lower_idiv);
419
420 nir_lower_tex_options lower_tex_1st_pass_options = {
421 .lower_rect = true,
422 .lower_txp = ~0
423 };
424
425 nir_lower_tex_options lower_tex_2nd_pass_options = {
426 .lower_txs_lod = true,
427 };
428
429 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
430 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
431
432 do {
433 progress = false;
434
435 NIR_PASS(progress, nir, nir_lower_var_copies);
436 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
437
438 NIR_PASS(progress, nir, nir_copy_prop);
439 NIR_PASS(progress, nir, nir_opt_dce);
440 NIR_PASS(progress, nir, nir_opt_dead_cf);
441 NIR_PASS(progress, nir, nir_opt_cse);
442 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
443 NIR_PASS(progress, nir, nir_opt_algebraic);
444 NIR_PASS(progress, nir, nir_opt_constant_folding);
445
446 if (lower_flrp != 0) {
447 bool lower_flrp_progress = false;
448 NIR_PASS(lower_flrp_progress,
449 nir,
450 nir_lower_flrp,
451 lower_flrp,
452 false /* always_precise */,
453 nir->options->lower_ffma);
454 if (lower_flrp_progress) {
455 NIR_PASS(progress, nir,
456 nir_opt_constant_folding);
457 progress = true;
458 }
459
460 /* Nothing should rematerialize any flrps, so we only
461 * need to do this lowering once.
462 */
463 lower_flrp = 0;
464 }
465
466 NIR_PASS(progress, nir, nir_opt_undef);
467 NIR_PASS(progress, nir, nir_opt_loop_unroll,
468 nir_var_shader_in |
469 nir_var_shader_out |
470 nir_var_function_temp);
471
472 NIR_PASS(progress, nir, nir_opt_vectorize);
473 } while (progress);
474
475 /* Must be run at the end to prevent creation of fsin/fcos ops */
476 NIR_PASS(progress, nir, midgard_nir_scale_trig);
477
478 do {
479 progress = false;
480
481 NIR_PASS(progress, nir, nir_opt_dce);
482 NIR_PASS(progress, nir, nir_opt_algebraic);
483 NIR_PASS(progress, nir, nir_opt_constant_folding);
484 NIR_PASS(progress, nir, nir_copy_prop);
485 } while (progress);
486
487 NIR_PASS(progress, nir, nir_opt_algebraic_late);
488
489 /* We implement booleans as 32-bit 0/~0 */
490 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
491
492 /* Now that booleans are lowered, we can run out late opts */
493 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
494
495 /* Lower mods for float ops only. Integer ops don't support modifiers
496 * (saturate doesn't make sense on integers, neg/abs require dedicated
497 * instructions) */
498
499 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502
503 /* Take us out of SSA */
504 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
505 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
506
507 /* We are a vector architecture; write combine where possible */
508 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
509 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
510
511 NIR_PASS(progress, nir, nir_opt_dce);
512 }
513
514 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
515 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
516 * r0. See the comments in compiler_context */
517
518 static void
519 alias_ssa(compiler_context *ctx, int dest, int src)
520 {
521 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
522 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
523 }
524
525 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
526
527 static void
528 unalias_ssa(compiler_context *ctx, int dest)
529 {
530 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
531 /* TODO: Remove from leftover or no? */
532 }
533
534 /* Do not actually emit a load; instead, cache the constant for inlining */
535
536 static void
537 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
538 {
539 nir_ssa_def def = instr->def;
540
541 float *v = rzalloc_array(NULL, float, 4);
542 nir_const_load_to_arr(v, instr, f32);
543 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
544 }
545
546 static unsigned
547 nir_src_index(compiler_context *ctx, nir_src *src)
548 {
549 if (src->is_ssa)
550 return src->ssa->index;
551 else {
552 assert(!src->reg.indirect);
553 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
554 }
555 }
556
557 static unsigned
558 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
559 {
560 return nir_src_index(ctx, &src->src);
561 }
562
563 static bool
564 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
565 {
566 unsigned comp = src->swizzle[0];
567
568 for (unsigned c = 1; c < nr_components; ++c) {
569 if (src->swizzle[c] != comp)
570 return true;
571 }
572
573 return false;
574 }
575
576 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
577 * output of a conditional test) into that register */
578
579 static void
580 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
581 {
582 int condition = nir_src_index(ctx, src);
583
584 /* Source to swizzle the desired component into w */
585
586 const midgard_vector_alu_src alu_src = {
587 .swizzle = SWIZZLE(component, component, component, component),
588 };
589
590 /* There is no boolean move instruction. Instead, we simulate a move by
591 * ANDing the condition with itself to get it into r31.w */
592
593 midgard_instruction ins = {
594 .type = TAG_ALU_4,
595
596 /* We need to set the conditional as close as possible */
597 .precede_break = true,
598 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
599
600 .ssa_args = {
601 .src0 = condition,
602 .src1 = condition,
603 .dest = SSA_FIXED_REGISTER(31),
604 },
605
606 .alu = {
607 .op = midgard_alu_op_iand,
608 .outmod = midgard_outmod_int_wrap,
609 .reg_mode = midgard_reg_mode_32,
610 .dest_override = midgard_dest_override_none,
611 .mask = (0x3 << 6), /* w */
612 .src1 = vector_alu_srco_unsigned(alu_src),
613 .src2 = vector_alu_srco_unsigned(alu_src)
614 },
615 };
616
617 emit_mir_instruction(ctx, ins);
618 }
619
620 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
621 * r31 instead */
622
623 static void
624 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
625 {
626 int condition = nir_src_index(ctx, &src->src);
627
628 /* Source to swizzle the desired component into w */
629
630 const midgard_vector_alu_src alu_src = {
631 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
632 };
633
634 /* There is no boolean move instruction. Instead, we simulate a move by
635 * ANDing the condition with itself to get it into r31.w */
636
637 midgard_instruction ins = {
638 .type = TAG_ALU_4,
639 .precede_break = true,
640 .ssa_args = {
641 .src0 = condition,
642 .src1 = condition,
643 .dest = SSA_FIXED_REGISTER(31),
644 },
645 .alu = {
646 .op = midgard_alu_op_iand,
647 .outmod = midgard_outmod_int_wrap,
648 .reg_mode = midgard_reg_mode_32,
649 .dest_override = midgard_dest_override_none,
650 .mask = expand_writemask(mask_of(nr_comp)),
651 .src1 = vector_alu_srco_unsigned(alu_src),
652 .src2 = vector_alu_srco_unsigned(alu_src)
653 },
654 };
655
656 emit_mir_instruction(ctx, ins);
657 }
658
659
660
661 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
662 * pinning to eliminate this move in all known cases */
663
664 static void
665 emit_indirect_offset(compiler_context *ctx, nir_src *src)
666 {
667 int offset = nir_src_index(ctx, src);
668
669 midgard_instruction ins = {
670 .type = TAG_ALU_4,
671 .ssa_args = {
672 .src0 = SSA_UNUSED_1,
673 .src1 = offset,
674 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
675 },
676 .alu = {
677 .op = midgard_alu_op_imov,
678 .outmod = midgard_outmod_int_wrap,
679 .reg_mode = midgard_reg_mode_32,
680 .dest_override = midgard_dest_override_none,
681 .mask = (0x3 << 6), /* w */
682 .src1 = vector_alu_srco_unsigned(zero_alu_src),
683 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
684 },
685 };
686
687 emit_mir_instruction(ctx, ins);
688 }
689
690 #define ALU_CASE(nir, _op) \
691 case nir_op_##nir: \
692 op = midgard_alu_op_##_op; \
693 break;
694
695 #define ALU_CASE_BCAST(nir, _op, count) \
696 case nir_op_##nir: \
697 op = midgard_alu_op_##_op; \
698 broadcast_swizzle = count; \
699 break;
700 static bool
701 nir_is_fzero_constant(nir_src src)
702 {
703 if (!nir_src_is_const(src))
704 return false;
705
706 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
707 if (nir_src_comp_as_float(src, c) != 0.0)
708 return false;
709 }
710
711 return true;
712 }
713
714 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
715 * special treatment override this anyway. */
716
717 static midgard_reg_mode
718 reg_mode_for_nir(nir_alu_instr *instr)
719 {
720 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
721
722 switch (src_bitsize) {
723 case 8:
724 return midgard_reg_mode_8;
725 case 16:
726 return midgard_reg_mode_16;
727 case 32:
728 return midgard_reg_mode_32;
729 case 64:
730 return midgard_reg_mode_64;
731 default:
732 unreachable("Invalid bit size");
733 }
734 }
735
736 static void
737 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
738 {
739 bool is_ssa = instr->dest.dest.is_ssa;
740
741 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
742 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
743 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
744
745 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
746 * supported. A few do not and are commented for now. Also, there are a
747 * number of NIR ops which Midgard does not support and need to be
748 * lowered, also TODO. This switch block emits the opcode and calling
749 * convention of the Midgard instruction; actual packing is done in
750 * emit_alu below */
751
752 unsigned op;
753
754 /* Number of components valid to check for the instruction (the rest
755 * will be forced to the last), or 0 to use as-is. Relevant as
756 * ball-type instructions have a channel count in NIR but are all vec4
757 * in Midgard */
758
759 unsigned broadcast_swizzle = 0;
760
761 /* What register mode should we operate in? */
762 midgard_reg_mode reg_mode =
763 reg_mode_for_nir(instr);
764
765 /* Do we need a destination override? Used for inline
766 * type conversion */
767
768 midgard_dest_override dest_override =
769 midgard_dest_override_none;
770
771 /* Should we use a smaller respective source and sign-extend? */
772
773 bool half_1 = false, sext_1 = false;
774 bool half_2 = false, sext_2 = false;
775
776 switch (instr->op) {
777 ALU_CASE(fadd, fadd);
778 ALU_CASE(fmul, fmul);
779 ALU_CASE(fmin, fmin);
780 ALU_CASE(fmax, fmax);
781 ALU_CASE(imin, imin);
782 ALU_CASE(imax, imax);
783 ALU_CASE(umin, umin);
784 ALU_CASE(umax, umax);
785 ALU_CASE(ffloor, ffloor);
786 ALU_CASE(fround_even, froundeven);
787 ALU_CASE(ftrunc, ftrunc);
788 ALU_CASE(fceil, fceil);
789 ALU_CASE(fdot3, fdot3);
790 ALU_CASE(fdot4, fdot4);
791 ALU_CASE(iadd, iadd);
792 ALU_CASE(isub, isub);
793 ALU_CASE(imul, imul);
794
795 /* Zero shoved as second-arg */
796 ALU_CASE(iabs, iabsdiff);
797
798 ALU_CASE(mov, imov);
799
800 ALU_CASE(feq32, feq);
801 ALU_CASE(fne32, fne);
802 ALU_CASE(flt32, flt);
803 ALU_CASE(ieq32, ieq);
804 ALU_CASE(ine32, ine);
805 ALU_CASE(ilt32, ilt);
806 ALU_CASE(ult32, ult);
807
808 /* We don't have a native b2f32 instruction. Instead, like many
809 * GPUs, we exploit booleans as 0/~0 for false/true, and
810 * correspondingly AND
811 * by 1.0 to do the type conversion. For the moment, prime us
812 * to emit:
813 *
814 * iand [whatever], #0
815 *
816 * At the end of emit_alu (as MIR), we'll fix-up the constant
817 */
818
819 ALU_CASE(b2f32, iand);
820 ALU_CASE(b2i32, iand);
821
822 /* Likewise, we don't have a dedicated f2b32 instruction, but
823 * we can do a "not equal to 0.0" test. */
824
825 ALU_CASE(f2b32, fne);
826 ALU_CASE(i2b32, ine);
827
828 ALU_CASE(frcp, frcp);
829 ALU_CASE(frsq, frsqrt);
830 ALU_CASE(fsqrt, fsqrt);
831 ALU_CASE(fexp2, fexp2);
832 ALU_CASE(flog2, flog2);
833
834 ALU_CASE(f2i32, f2i_rtz);
835 ALU_CASE(f2u32, f2u_rtz);
836 ALU_CASE(i2f32, i2f_rtz);
837 ALU_CASE(u2f32, u2f_rtz);
838
839 ALU_CASE(fsin, fsin);
840 ALU_CASE(fcos, fcos);
841
842 /* Second op implicit #0 */
843 ALU_CASE(inot, inor);
844 ALU_CASE(iand, iand);
845 ALU_CASE(ior, ior);
846 ALU_CASE(ixor, ixor);
847 ALU_CASE(ishl, ishl);
848 ALU_CASE(ishr, iasr);
849 ALU_CASE(ushr, ilsr);
850
851 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
852 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
853 ALU_CASE(b32all_fequal4, fball_eq);
854
855 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
856 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
857 ALU_CASE(b32any_fnequal4, fbany_neq);
858
859 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
860 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
861 ALU_CASE(b32all_iequal4, iball_eq);
862
863 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
864 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
865 ALU_CASE(b32any_inequal4, ibany_neq);
866
867 /* Source mods will be shoved in later */
868 ALU_CASE(fabs, fmov);
869 ALU_CASE(fneg, fmov);
870 ALU_CASE(fsat, fmov);
871
872 /* For size conversion, we use a move. Ideally though we would squash
873 * these ops together; maybe that has to happen after in NIR as part of
874 * propagation...? An earlier algebraic pass ensured we step down by
875 * only / exactly one size. If stepping down, we use a dest override to
876 * reduce the size; if stepping up, we use a larger-sized move with a
877 * half source and a sign/zero-extension modifier */
878
879 case nir_op_i2i8:
880 case nir_op_i2i16:
881 case nir_op_i2i32:
882 /* If we end up upscale, we'll need a sign-extend on the
883 * operand (the second argument) */
884
885 sext_2 = true;
886 case nir_op_u2u8:
887 case nir_op_u2u16:
888 case nir_op_u2u32: {
889 op = midgard_alu_op_imov;
890
891 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
892 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
893
894
895 if (dst_bitsize == (src_bitsize * 2)) {
896 /* Converting up */
897 half_2 = true;
898
899 /* Use a greater register mode */
900 reg_mode++;
901 } else if (src_bitsize == (dst_bitsize * 2)) {
902 /* Converting down */
903 dest_override = midgard_dest_override_lower;
904 }
905
906 break;
907 }
908
909 /* For greater-or-equal, we lower to less-or-equal and flip the
910 * arguments */
911
912 case nir_op_fge:
913 case nir_op_fge32:
914 case nir_op_ige32:
915 case nir_op_uge32: {
916 op =
917 instr->op == nir_op_fge ? midgard_alu_op_fle :
918 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
919 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
920 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
921 0;
922
923 /* Swap via temporary */
924 nir_alu_src temp = instr->src[1];
925 instr->src[1] = instr->src[0];
926 instr->src[0] = temp;
927
928 break;
929 }
930
931 case nir_op_b32csel: {
932 /* Midgard features both fcsel and icsel, depending on
933 * the type of the arguments/output. However, as long
934 * as we're careful we can _always_ use icsel and
935 * _never_ need fcsel, since the latter does additional
936 * floating-point-specific processing whereas the
937 * former just moves bits on the wire. It's not obvious
938 * why these are separate opcodes, save for the ability
939 * to do things like sat/pos/abs/neg for free */
940
941 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
942 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
943
944 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
945 nr_inputs = 2;
946
947 /* Emit the condition into r31 */
948
949 if (mixed)
950 emit_condition_mixed(ctx, &instr->src[0], nr_components);
951 else
952 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
953
954 /* The condition is the first argument; move the other
955 * arguments up one to be a binary instruction for
956 * Midgard */
957
958 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
959 break;
960 }
961
962 default:
963 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
964 assert(0);
965 return;
966 }
967
968 /* Midgard can perform certain modifiers on output of an ALU op */
969 unsigned outmod;
970
971 if (midgard_is_integer_out_op(op)) {
972 outmod = midgard_outmod_int_wrap;
973 } else {
974 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
975 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
976 }
977
978 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
979
980 if (instr->op == nir_op_fmax) {
981 if (nir_is_fzero_constant(instr->src[0].src)) {
982 op = midgard_alu_op_fmov;
983 nr_inputs = 1;
984 outmod = midgard_outmod_pos;
985 instr->src[0] = instr->src[1];
986 } else if (nir_is_fzero_constant(instr->src[1].src)) {
987 op = midgard_alu_op_fmov;
988 nr_inputs = 1;
989 outmod = midgard_outmod_pos;
990 }
991 }
992
993 /* Fetch unit, quirks, etc information */
994 unsigned opcode_props = alu_opcode_props[op].props;
995 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
996
997 /* src0 will always exist afaik, but src1 will not for 1-argument
998 * instructions. The latter can only be fetched if the instruction
999 * needs it, or else we may segfault. */
1000
1001 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1002 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1003
1004 /* Rather than use the instruction generation helpers, we do it
1005 * ourselves here to avoid the mess */
1006
1007 midgard_instruction ins = {
1008 .type = TAG_ALU_4,
1009 .ssa_args = {
1010 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1011 .src1 = quirk_flipped_r24 ? src0 : src1,
1012 .dest = dest,
1013 }
1014 };
1015
1016 nir_alu_src *nirmods[2] = { NULL };
1017
1018 if (nr_inputs == 2) {
1019 nirmods[0] = &instr->src[0];
1020 nirmods[1] = &instr->src[1];
1021 } else if (nr_inputs == 1) {
1022 nirmods[quirk_flipped_r24] = &instr->src[0];
1023 } else {
1024 assert(0);
1025 }
1026
1027 /* These were lowered to a move, so apply the corresponding mod */
1028
1029 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1030 nir_alu_src *s = nirmods[quirk_flipped_r24];
1031
1032 if (instr->op == nir_op_fneg)
1033 s->negate = !s->negate;
1034
1035 if (instr->op == nir_op_fabs)
1036 s->abs = !s->abs;
1037 }
1038
1039 bool is_int = midgard_is_integer_op(op);
1040
1041 midgard_vector_alu alu = {
1042 .op = op,
1043 .reg_mode = reg_mode,
1044 .dest_override = dest_override,
1045 .outmod = outmod,
1046
1047 /* Writemask only valid for non-SSA NIR */
1048 .mask = expand_writemask(mask_of(nr_components)),
1049
1050 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1051 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1052 };
1053
1054 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1055
1056 if (!is_ssa)
1057 alu.mask &= expand_writemask(instr->dest.write_mask);
1058
1059 ins.alu = alu;
1060
1061 /* Late fixup for emulated instructions */
1062
1063 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1064 /* Presently, our second argument is an inline #0 constant.
1065 * Switch over to an embedded 1.0 constant (that can't fit
1066 * inline, since we're 32-bit, not 16-bit like the inline
1067 * constants) */
1068
1069 ins.ssa_args.inline_constant = false;
1070 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1071 ins.has_constants = true;
1072
1073 if (instr->op == nir_op_b2f32) {
1074 ins.constants[0] = 1.0f;
1075 } else {
1076 /* Type pun it into place */
1077 uint32_t one = 0x1;
1078 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1079 }
1080
1081 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1082 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1083 /* Lots of instructions need a 0 plonked in */
1084 ins.ssa_args.inline_constant = false;
1085 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1086 ins.has_constants = true;
1087 ins.constants[0] = 0.0f;
1088 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1089 } else if (instr->op == nir_op_inot) {
1090 /* ~b = ~(b & b), so duplicate the source */
1091 ins.ssa_args.src1 = ins.ssa_args.src0;
1092 ins.alu.src2 = ins.alu.src1;
1093 }
1094
1095 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1096 /* To avoid duplicating the lookup tables (probably), true LUT
1097 * instructions can only operate as if they were scalars. Lower
1098 * them here by changing the component. */
1099
1100 uint8_t original_swizzle[4];
1101 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1102
1103 for (int i = 0; i < nr_components; ++i) {
1104 /* Mask the associated component, dropping the
1105 * instruction if needed */
1106
1107 ins.alu.mask = (0x3) << (2 * i);
1108 ins.alu.mask &= alu.mask;
1109
1110 if (!ins.alu.mask)
1111 continue;
1112
1113 for (int j = 0; j < 4; ++j)
1114 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1115
1116 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1117 emit_mir_instruction(ctx, ins);
1118 }
1119 } else {
1120 emit_mir_instruction(ctx, ins);
1121 }
1122 }
1123
1124 #undef ALU_CASE
1125
1126 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1127 * optimized) versions of UBO #0 */
1128
1129 static void
1130 emit_ubo_read(
1131 compiler_context *ctx,
1132 unsigned dest,
1133 unsigned offset,
1134 nir_src *indirect_offset,
1135 unsigned index)
1136 {
1137 /* TODO: half-floats */
1138
1139 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1140 /* Fast path: For the first 16 uniforms, direct accesses are
1141 * 0-cycle, since they're just a register fetch in the usual
1142 * case. So, we alias the registers while we're still in
1143 * SSA-space */
1144
1145 int reg_slot = 23 - offset;
1146 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1147 } else {
1148 /* Otherwise, read from the 'special' UBO to access
1149 * higher-indexed uniforms, at a performance cost. More
1150 * generally, we're emitting a UBO read instruction. */
1151
1152 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1153
1154 /* TODO: Don't split */
1155 ins.load_store.varying_parameters = (offset & 7) << 7;
1156 ins.load_store.address = offset >> 3;
1157
1158 if (indirect_offset) {
1159 emit_indirect_offset(ctx, indirect_offset);
1160 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1161 } else {
1162 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1163 }
1164
1165 /* TODO respect index */
1166
1167 emit_mir_instruction(ctx, ins);
1168 }
1169 }
1170
1171 static void
1172 emit_varying_read(
1173 compiler_context *ctx,
1174 unsigned dest, unsigned offset,
1175 unsigned nr_comp, unsigned component,
1176 nir_src *indirect_offset, nir_alu_type type)
1177 {
1178 /* XXX: Half-floats? */
1179 /* TODO: swizzle, mask */
1180
1181 midgard_instruction ins = m_ld_vary_32(dest, offset);
1182 ins.load_store.mask = mask_of(nr_comp);
1183 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1184
1185 midgard_varying_parameter p = {
1186 .is_varying = 1,
1187 .interpolation = midgard_interp_default,
1188 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1189 };
1190
1191 unsigned u;
1192 memcpy(&u, &p, sizeof(p));
1193 ins.load_store.varying_parameters = u;
1194
1195 if (indirect_offset) {
1196 /* We need to add in the dynamic index, moved to r27.w */
1197 emit_indirect_offset(ctx, indirect_offset);
1198 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1199 } else {
1200 /* Just a direct load */
1201 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1202 }
1203
1204 /* Use the type appropriate load */
1205 switch (type) {
1206 case nir_type_uint:
1207 case nir_type_bool:
1208 ins.load_store.op = midgard_op_ld_vary_32u;
1209 break;
1210 case nir_type_int:
1211 ins.load_store.op = midgard_op_ld_vary_32i;
1212 break;
1213 case nir_type_float:
1214 ins.load_store.op = midgard_op_ld_vary_32;
1215 break;
1216 default:
1217 unreachable("Attempted to load unknown type");
1218 break;
1219 }
1220
1221 emit_mir_instruction(ctx, ins);
1222 }
1223
1224 static void
1225 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1226 {
1227 unsigned dest;
1228 /* Figure out which uniform this is */
1229 int sysval = sysval_for_instr(ctx, instr, &dest);
1230 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1231
1232 /* Sysvals are prefix uniforms */
1233 unsigned uniform = ((uintptr_t) val) - 1;
1234
1235 /* Emit the read itself -- this is never indirect */
1236 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1237 }
1238
1239 static void
1240 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1241 {
1242 unsigned offset = 0, reg;
1243
1244 switch (instr->intrinsic) {
1245 case nir_intrinsic_discard_if:
1246 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1247
1248 /* fallthrough */
1249
1250 case nir_intrinsic_discard: {
1251 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1252 struct midgard_instruction discard = v_branch(conditional, false);
1253 discard.branch.target_type = TARGET_DISCARD;
1254 emit_mir_instruction(ctx, discard);
1255
1256 ctx->can_discard = true;
1257 break;
1258 }
1259
1260 case nir_intrinsic_load_uniform:
1261 case nir_intrinsic_load_ubo:
1262 case nir_intrinsic_load_input: {
1263 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1264 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1265
1266 /* Get the base type of the intrinsic */
1267 /* TODO: Infer type? Does it matter? */
1268 nir_alu_type t =
1269 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1270 t = nir_alu_type_get_base_type(t);
1271
1272 if (!is_ubo) {
1273 offset = nir_intrinsic_base(instr);
1274 }
1275
1276 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1277
1278 nir_src *src_offset = nir_get_io_offset_src(instr);
1279
1280 bool direct = nir_src_is_const(*src_offset);
1281
1282 if (direct)
1283 offset += nir_src_as_uint(*src_offset);
1284
1285 /* We may need to apply a fractional offset */
1286 int component = instr->intrinsic == nir_intrinsic_load_input ?
1287 nir_intrinsic_component(instr) : 0;
1288 reg = nir_dest_index(ctx, &instr->dest);
1289
1290 if (is_uniform && !ctx->is_blend) {
1291 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1292 } else if (is_ubo) {
1293 nir_src index = instr->src[0];
1294
1295 /* We don't yet support indirect UBOs. For indirect
1296 * block numbers (if that's possible), we don't know
1297 * enough about the hardware yet. For indirect sources,
1298 * we know what we need but we need to add some NIR
1299 * support for lowering correctly with respect to
1300 * 128-bit reads */
1301
1302 assert(nir_src_is_const(index));
1303 assert(nir_src_is_const(*src_offset));
1304
1305 /* TODO: Alignment */
1306 assert((offset & 0xF) == 0);
1307
1308 uint32_t uindex = nir_src_as_uint(index) + 1;
1309 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1310 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1311 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1312 } else if (ctx->is_blend) {
1313 /* For blend shaders, load the input color, which is
1314 * preloaded to r0 */
1315
1316 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1317 emit_mir_instruction(ctx, move);
1318 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1319 midgard_instruction ins = m_ld_attr_32(reg, offset);
1320 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1321 ins.load_store.mask = mask_of(nr_comp);
1322
1323 /* Use the type appropriate load */
1324 switch (t) {
1325 case nir_type_uint:
1326 case nir_type_bool:
1327 ins.load_store.op = midgard_op_ld_attr_32u;
1328 break;
1329 case nir_type_int:
1330 ins.load_store.op = midgard_op_ld_attr_32i;
1331 break;
1332 case nir_type_float:
1333 ins.load_store.op = midgard_op_ld_attr_32;
1334 break;
1335 default:
1336 unreachable("Attempted to load unknown type");
1337 break;
1338 }
1339
1340 emit_mir_instruction(ctx, ins);
1341 } else {
1342 DBG("Unknown load\n");
1343 assert(0);
1344 }
1345
1346 break;
1347 }
1348
1349 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1350
1351 case nir_intrinsic_load_raw_output_pan:
1352 reg = nir_dest_index(ctx, &instr->dest);
1353 assert(ctx->is_blend);
1354
1355 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1356 emit_mir_instruction(ctx, ins);
1357 break;
1358
1359 case nir_intrinsic_load_blend_const_color_rgba: {
1360 assert(ctx->is_blend);
1361 reg = nir_dest_index(ctx, &instr->dest);
1362
1363 /* Blend constants are embedded directly in the shader and
1364 * patched in, so we use some magic routing */
1365
1366 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1367 ins.has_constants = true;
1368 ins.has_blend_constant = true;
1369 emit_mir_instruction(ctx, ins);
1370 break;
1371 }
1372
1373 case nir_intrinsic_store_output:
1374 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1375
1376 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1377
1378 reg = nir_src_index(ctx, &instr->src[0]);
1379
1380 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1381 /* gl_FragColor is not emitted with load/store
1382 * instructions. Instead, it gets plonked into
1383 * r0 at the end of the shader and we do the
1384 * framebuffer writeout dance. TODO: Defer
1385 * writes */
1386
1387 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1388 emit_mir_instruction(ctx, move);
1389
1390 /* Save the index we're writing to for later reference
1391 * in the epilogue */
1392
1393 ctx->fragment_output = reg;
1394 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1395 /* Varyings are written into one of two special
1396 * varying register, r26 or r27. The register itself is
1397 * selected as the register in the st_vary instruction,
1398 * minus the base of 26. E.g. write into r27 and then
1399 * call st_vary(1) */
1400
1401 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1402 emit_mir_instruction(ctx, ins);
1403
1404 /* We should have been vectorized, though we don't
1405 * currently check that st_vary is emitted only once
1406 * per slot (this is relevant, since there's not a mask
1407 * parameter available on the store [set to 0 by the
1408 * blob]). We do respect the component by adjusting the
1409 * swizzle. */
1410
1411 unsigned component = nir_intrinsic_component(instr);
1412
1413 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1414 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1415 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1416 emit_mir_instruction(ctx, st);
1417 } else {
1418 DBG("Unknown store\n");
1419 assert(0);
1420 }
1421
1422 break;
1423
1424 /* Special case of store_output for lowered blend shaders */
1425 case nir_intrinsic_store_raw_output_pan:
1426 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1427 reg = nir_src_index(ctx, &instr->src[0]);
1428
1429 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1430 emit_mir_instruction(ctx, move);
1431 ctx->fragment_output = reg;
1432
1433 break;
1434
1435 case nir_intrinsic_load_alpha_ref_float:
1436 assert(instr->dest.is_ssa);
1437
1438 float ref_value = ctx->alpha_ref;
1439
1440 float *v = ralloc_array(NULL, float, 4);
1441 memcpy(v, &ref_value, sizeof(float));
1442 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1443 break;
1444
1445 case nir_intrinsic_load_viewport_scale:
1446 case nir_intrinsic_load_viewport_offset:
1447 emit_sysval_read(ctx, &instr->instr);
1448 break;
1449
1450 default:
1451 printf ("Unhandled intrinsic\n");
1452 assert(0);
1453 break;
1454 }
1455 }
1456
1457 static unsigned
1458 midgard_tex_format(enum glsl_sampler_dim dim)
1459 {
1460 switch (dim) {
1461 case GLSL_SAMPLER_DIM_1D:
1462 case GLSL_SAMPLER_DIM_BUF:
1463 return MALI_TEX_1D;
1464
1465 case GLSL_SAMPLER_DIM_2D:
1466 case GLSL_SAMPLER_DIM_EXTERNAL:
1467 return MALI_TEX_2D;
1468
1469 case GLSL_SAMPLER_DIM_3D:
1470 return MALI_TEX_3D;
1471
1472 case GLSL_SAMPLER_DIM_CUBE:
1473 return MALI_TEX_CUBE;
1474
1475 default:
1476 DBG("Unknown sampler dim type\n");
1477 assert(0);
1478 return 0;
1479 }
1480 }
1481
1482 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1483 * was successful */
1484
1485 static bool
1486 pan_attach_constant_bias(
1487 compiler_context *ctx,
1488 nir_src lod,
1489 midgard_texture_word *word)
1490 {
1491 /* To attach as constant, it has to *be* constant */
1492
1493 if (!nir_src_is_const(lod))
1494 return false;
1495
1496 float f = nir_src_as_float(lod);
1497
1498 /* Break into fixed-point */
1499 signed lod_int = f;
1500 float lod_frac = f - lod_int;
1501
1502 /* Carry over negative fractions */
1503 if (lod_frac < 0.0) {
1504 lod_int--;
1505 lod_frac += 1.0;
1506 }
1507
1508 /* Encode */
1509 word->bias = float_to_ubyte(lod_frac);
1510 word->bias_int = lod_int;
1511
1512 return true;
1513 }
1514
1515 static enum mali_sampler_type
1516 midgard_sampler_type(nir_alu_type t)
1517 {
1518 switch (nir_alu_type_get_base_type(t)) {
1519 case nir_type_float:
1520 return MALI_SAMPLER_FLOAT;
1521 case nir_type_int:
1522 return MALI_SAMPLER_SIGNED;
1523 case nir_type_uint:
1524 return MALI_SAMPLER_UNSIGNED;
1525 default:
1526 unreachable("Unknown sampler type");
1527 }
1528 }
1529
1530 static void
1531 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1532 unsigned midgard_texop)
1533 {
1534 /* TODO */
1535 //assert (!instr->sampler);
1536 //assert (!instr->texture_array_size);
1537
1538 /* Allocate registers via a round robin scheme to alternate between the two registers */
1539 int reg = ctx->texture_op_count & 1;
1540 int in_reg = reg, out_reg = reg;
1541
1542 /* Make room for the reg */
1543
1544 if (ctx->texture_index[reg] > -1)
1545 unalias_ssa(ctx, ctx->texture_index[reg]);
1546
1547 int texture_index = instr->texture_index;
1548 int sampler_index = texture_index;
1549
1550 /* No helper to build texture words -- we do it all here */
1551 midgard_instruction ins = {
1552 .type = TAG_TEXTURE_4,
1553 .texture = {
1554 .op = midgard_texop,
1555 .format = midgard_tex_format(instr->sampler_dim),
1556 .texture_handle = texture_index,
1557 .sampler_handle = sampler_index,
1558
1559 /* TODO: Regalloc it in */
1560 .swizzle = SWIZZLE_XYZW,
1561 .mask = 0xF,
1562
1563 /* TODO: half */
1564 .in_reg_full = 1,
1565 .out_full = 1,
1566
1567 .sampler_type = midgard_sampler_type(instr->dest_type),
1568 }
1569 };
1570
1571 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1572 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1573 int index = nir_src_index(ctx, &instr->src[i].src);
1574 int nr_comp = nir_src_num_components(instr->src[i].src);
1575 midgard_vector_alu_src alu_src = blank_alu_src;
1576
1577 switch (instr->src[i].src_type) {
1578 case nir_tex_src_coord: {
1579 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1580 /* texelFetch is undefined on samplerCube */
1581 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1582
1583 /* For cubemaps, we need to load coords into
1584 * special r27, and then use a special ld/st op
1585 * to select the face and copy the xy into the
1586 * texture register */
1587
1588 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1589
1590 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1591 emit_mir_instruction(ctx, move);
1592
1593 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1594 st.load_store.unknown = 0x24; /* XXX: What is this? */
1595 st.load_store.mask = 0x3; /* xy */
1596 st.load_store.swizzle = alu_src.swizzle;
1597 emit_mir_instruction(ctx, st);
1598
1599 ins.texture.in_reg_swizzle = swizzle_of(2);
1600 } else {
1601 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1602
1603 midgard_instruction mov = v_mov(index, alu_src, reg);
1604 mov.alu.mask = expand_writemask(mask_of(nr_comp));
1605 emit_mir_instruction(ctx, mov);
1606
1607 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1608 /* Texel fetch opcodes care about the
1609 * values of z and w, so we actually
1610 * need to spill into a second register
1611 * for a texel fetch with register bias
1612 * (for non-2D). TODO: Implement that
1613 */
1614
1615 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1616
1617 midgard_instruction zero = v_mov(index, alu_src, reg);
1618 zero.ssa_args.inline_constant = true;
1619 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1620 zero.has_constants = true;
1621 zero.alu.mask = ~mov.alu.mask;
1622 emit_mir_instruction(ctx, zero);
1623
1624 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1625 } else {
1626 /* Non-texel fetch doesn't need that
1627 * nonsense. However we do use the Z
1628 * for array indexing */
1629 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1630 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1631 }
1632 }
1633
1634 break;
1635 }
1636
1637 case nir_tex_src_bias:
1638 case nir_tex_src_lod: {
1639 /* Try as a constant if we can */
1640
1641 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1642 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1643 break;
1644
1645 /* Otherwise we use a register. To keep RA simple, we
1646 * put the bias/LOD into the w component of the input
1647 * source, which is otherwise in xy */
1648
1649 alu_src.swizzle = SWIZZLE_XXXX;
1650
1651 midgard_instruction mov = v_mov(index, alu_src, reg);
1652 mov.alu.mask = expand_writemask(1 << COMPONENT_W);
1653 emit_mir_instruction(ctx, mov);
1654
1655 ins.texture.lod_register = true;
1656
1657 midgard_tex_register_select sel = {
1658 .select = in_reg,
1659 .full = 1,
1660
1661 /* w */
1662 .component_lo = 1,
1663 .component_hi = 1
1664 };
1665
1666 uint8_t packed;
1667 memcpy(&packed, &sel, sizeof(packed));
1668 ins.texture.bias = packed;
1669
1670 break;
1671 };
1672
1673 default:
1674 unreachable("Unknown texture source type\n");
1675 }
1676 }
1677
1678 /* Set registers to read and write from the same place */
1679 ins.texture.in_reg_select = in_reg;
1680 ins.texture.out_reg_select = out_reg;
1681
1682 emit_mir_instruction(ctx, ins);
1683
1684 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1685
1686 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1687 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1688 ctx->texture_index[reg] = o_index;
1689
1690 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1691 emit_mir_instruction(ctx, ins2);
1692
1693 /* Used for .cont and .last hinting */
1694 ctx->texture_op_count++;
1695 }
1696
1697 static void
1698 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1699 {
1700 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1701 * generic tex in some cases (which confuses the hardware) */
1702
1703 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1704
1705 if (is_vertex && instr->op == nir_texop_tex)
1706 instr->op = nir_texop_txl;
1707
1708 switch (instr->op) {
1709 case nir_texop_tex:
1710 case nir_texop_txb:
1711 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1712 break;
1713 case nir_texop_txl:
1714 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1715 break;
1716 case nir_texop_txf:
1717 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1718 break;
1719 case nir_texop_txs:
1720 emit_sysval_read(ctx, &instr->instr);
1721 break;
1722 default:
1723 unreachable("Unhanlded texture op");
1724 }
1725 }
1726
1727 static void
1728 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1729 {
1730 switch (instr->type) {
1731 case nir_jump_break: {
1732 /* Emit a branch out of the loop */
1733 struct midgard_instruction br = v_branch(false, false);
1734 br.branch.target_type = TARGET_BREAK;
1735 br.branch.target_break = ctx->current_loop_depth;
1736 emit_mir_instruction(ctx, br);
1737
1738 DBG("break..\n");
1739 break;
1740 }
1741
1742 default:
1743 DBG("Unknown jump type %d\n", instr->type);
1744 break;
1745 }
1746 }
1747
1748 static void
1749 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1750 {
1751 switch (instr->type) {
1752 case nir_instr_type_load_const:
1753 emit_load_const(ctx, nir_instr_as_load_const(instr));
1754 break;
1755
1756 case nir_instr_type_intrinsic:
1757 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1758 break;
1759
1760 case nir_instr_type_alu:
1761 emit_alu(ctx, nir_instr_as_alu(instr));
1762 break;
1763
1764 case nir_instr_type_tex:
1765 emit_tex(ctx, nir_instr_as_tex(instr));
1766 break;
1767
1768 case nir_instr_type_jump:
1769 emit_jump(ctx, nir_instr_as_jump(instr));
1770 break;
1771
1772 case nir_instr_type_ssa_undef:
1773 /* Spurious */
1774 break;
1775
1776 default:
1777 DBG("Unhandled instruction type\n");
1778 break;
1779 }
1780 }
1781
1782
1783 /* ALU instructions can inline or embed constants, which decreases register
1784 * pressure and saves space. */
1785
1786 #define CONDITIONAL_ATTACH(src) { \
1787 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1788 \
1789 if (entry) { \
1790 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1791 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1792 } \
1793 }
1794
1795 static void
1796 inline_alu_constants(compiler_context *ctx)
1797 {
1798 mir_foreach_instr(ctx, alu) {
1799 /* Other instructions cannot inline constants */
1800 if (alu->type != TAG_ALU_4) continue;
1801
1802 /* If there is already a constant here, we can do nothing */
1803 if (alu->has_constants) continue;
1804
1805 /* It makes no sense to inline constants on a branch */
1806 if (alu->compact_branch || alu->prepacked_branch) continue;
1807
1808 CONDITIONAL_ATTACH(src0);
1809
1810 if (!alu->has_constants) {
1811 CONDITIONAL_ATTACH(src1)
1812 } else if (!alu->inline_constant) {
1813 /* Corner case: _two_ vec4 constants, for instance with a
1814 * csel. For this case, we can only use a constant
1815 * register for one, we'll have to emit a move for the
1816 * other. Note, if both arguments are constants, then
1817 * necessarily neither argument depends on the value of
1818 * any particular register. As the destination register
1819 * will be wiped, that means we can spill the constant
1820 * to the destination register.
1821 */
1822
1823 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1824 unsigned scratch = alu->ssa_args.dest;
1825
1826 if (entry) {
1827 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1828 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1829
1830 /* Force a break XXX Defer r31 writes */
1831 ins.unit = UNIT_VLUT;
1832
1833 /* Set the source */
1834 alu->ssa_args.src1 = scratch;
1835
1836 /* Inject us -before- the last instruction which set r31 */
1837 mir_insert_instruction_before(mir_prev_op(alu), ins);
1838 }
1839 }
1840 }
1841 }
1842
1843 /* Midgard supports two types of constants, embedded constants (128-bit) and
1844 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1845 * constants can be demoted to inline constants, for space savings and
1846 * sometimes a performance boost */
1847
1848 static void
1849 embedded_to_inline_constant(compiler_context *ctx)
1850 {
1851 mir_foreach_instr(ctx, ins) {
1852 if (!ins->has_constants) continue;
1853
1854 if (ins->ssa_args.inline_constant) continue;
1855
1856 /* Blend constants must not be inlined by definition */
1857 if (ins->has_blend_constant) continue;
1858
1859 /* src1 cannot be an inline constant due to encoding
1860 * restrictions. So, if possible we try to flip the arguments
1861 * in that case */
1862
1863 int op = ins->alu.op;
1864
1865 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1866 switch (op) {
1867 /* These ops require an operational change to flip
1868 * their arguments TODO */
1869 case midgard_alu_op_flt:
1870 case midgard_alu_op_fle:
1871 case midgard_alu_op_ilt:
1872 case midgard_alu_op_ile:
1873 case midgard_alu_op_fcsel:
1874 case midgard_alu_op_icsel:
1875 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1876 default:
1877 break;
1878 }
1879
1880 if (alu_opcode_props[op].props & OP_COMMUTES) {
1881 /* Flip the SSA numbers */
1882 ins->ssa_args.src0 = ins->ssa_args.src1;
1883 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1884
1885 /* And flip the modifiers */
1886
1887 unsigned src_temp;
1888
1889 src_temp = ins->alu.src2;
1890 ins->alu.src2 = ins->alu.src1;
1891 ins->alu.src1 = src_temp;
1892 }
1893 }
1894
1895 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1896 /* Extract the source information */
1897
1898 midgard_vector_alu_src *src;
1899 int q = ins->alu.src2;
1900 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1901 src = m;
1902
1903 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1904 int component = src->swizzle & 3;
1905
1906 /* Scale constant appropriately, if we can legally */
1907 uint16_t scaled_constant = 0;
1908
1909 if (midgard_is_integer_op(op)) {
1910 unsigned int *iconstants = (unsigned int *) ins->constants;
1911 scaled_constant = (uint16_t) iconstants[component];
1912
1913 /* Constant overflow after resize */
1914 if (scaled_constant != iconstants[component])
1915 continue;
1916 } else {
1917 float original = (float) ins->constants[component];
1918 scaled_constant = _mesa_float_to_half(original);
1919
1920 /* Check for loss of precision. If this is
1921 * mediump, we don't care, but for a highp
1922 * shader, we need to pay attention. NIR
1923 * doesn't yet tell us which mode we're in!
1924 * Practically this prevents most constants
1925 * from being inlined, sadly. */
1926
1927 float fp32 = _mesa_half_to_float(scaled_constant);
1928
1929 if (fp32 != original)
1930 continue;
1931 }
1932
1933 /* We don't know how to handle these with a constant */
1934
1935 if (src->mod || src->half || src->rep_low || src->rep_high) {
1936 DBG("Bailing inline constant...\n");
1937 continue;
1938 }
1939
1940 /* Make sure that the constant is not itself a
1941 * vector by checking if all accessed values
1942 * (by the swizzle) are the same. */
1943
1944 uint32_t *cons = (uint32_t *) ins->constants;
1945 uint32_t value = cons[component];
1946
1947 bool is_vector = false;
1948 unsigned mask = effective_writemask(&ins->alu);
1949
1950 for (int c = 1; c < 4; ++c) {
1951 /* We only care if this component is actually used */
1952 if (!(mask & (1 << c)))
1953 continue;
1954
1955 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1956
1957 if (test != value) {
1958 is_vector = true;
1959 break;
1960 }
1961 }
1962
1963 if (is_vector)
1964 continue;
1965
1966 /* Get rid of the embedded constant */
1967 ins->has_constants = false;
1968 ins->ssa_args.src1 = SSA_UNUSED_0;
1969 ins->ssa_args.inline_constant = true;
1970 ins->inline_constant = scaled_constant;
1971 }
1972 }
1973 }
1974
1975 /* Map normal SSA sources to other SSA sources / fixed registers (like
1976 * uniforms) */
1977
1978 static void
1979 map_ssa_to_alias(compiler_context *ctx, int *ref)
1980 {
1981 /* Sign is used quite deliberately for unused */
1982 if (*ref < 0)
1983 return;
1984
1985 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
1986
1987 if (alias) {
1988 /* Remove entry in leftovers to avoid a redunant fmov */
1989
1990 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
1991
1992 if (leftover)
1993 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
1994
1995 /* Assign the alias map */
1996 *ref = alias - 1;
1997 return;
1998 }
1999 }
2000
2001 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2002 * texture pipeline */
2003
2004 static bool
2005 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2006 {
2007 bool progress = false;
2008
2009 mir_foreach_instr_in_block_safe(block, ins) {
2010 if (ins->type != TAG_ALU_4) continue;
2011 if (ins->compact_branch) continue;
2012
2013 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2014 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2015
2016 mir_remove_instruction(ins);
2017 progress = true;
2018 }
2019
2020 return progress;
2021 }
2022
2023 /* Dead code elimination for branches at the end of a block - only one branch
2024 * per block is legal semantically */
2025
2026 static void
2027 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2028 {
2029 bool branched = false;
2030
2031 mir_foreach_instr_in_block_safe(block, ins) {
2032 if (!midgard_is_branch_unit(ins->unit)) continue;
2033
2034 /* We ignore prepacked branches since the fragment epilogue is
2035 * just generally special */
2036 if (ins->prepacked_branch) continue;
2037
2038 /* Discards are similarly special and may not correspond to the
2039 * end of a block */
2040
2041 if (ins->branch.target_type == TARGET_DISCARD) continue;
2042
2043 if (branched) {
2044 /* We already branched, so this is dead */
2045 mir_remove_instruction(ins);
2046 }
2047
2048 branched = true;
2049 }
2050 }
2051
2052 static bool
2053 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2054 {
2055 /* abs or neg */
2056 if (!is_int && src.mod) return true;
2057
2058 /* Other int mods don't matter in isolation */
2059 if (is_int && src.mod == midgard_int_shift) return true;
2060
2061 /* size-conversion */
2062 if (src.half) return true;
2063
2064 /* swizzle */
2065 for (unsigned c = 0; c < 4; ++c) {
2066 if (!(mask & (1 << c))) continue;
2067 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2068 }
2069
2070 return false;
2071 }
2072
2073 static bool
2074 mir_nontrivial_source2_mod(midgard_instruction *ins)
2075 {
2076 unsigned mask = squeeze_writemask(ins->alu.mask);
2077 bool is_int = midgard_is_integer_op(ins->alu.op);
2078
2079 midgard_vector_alu_src src2 =
2080 vector_alu_from_unsigned(ins->alu.src2);
2081
2082 return mir_nontrivial_mod(src2, is_int, mask);
2083 }
2084
2085 static bool
2086 mir_nontrivial_outmod(midgard_instruction *ins)
2087 {
2088 bool is_int = midgard_is_integer_op(ins->alu.op);
2089 unsigned mod = ins->alu.outmod;
2090
2091 /* Type conversion is a sort of outmod */
2092 if (ins->alu.dest_override != midgard_dest_override_none)
2093 return true;
2094
2095 if (is_int)
2096 return mod != midgard_outmod_int_wrap;
2097 else
2098 return mod != midgard_outmod_none;
2099 }
2100
2101 static bool
2102 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2103 {
2104 bool progress = false;
2105
2106 mir_foreach_instr_in_block_safe(block, ins) {
2107 if (ins->type != TAG_ALU_4) continue;
2108 if (!OP_IS_MOVE(ins->alu.op)) continue;
2109
2110 unsigned from = ins->ssa_args.src1;
2111 unsigned to = ins->ssa_args.dest;
2112
2113 /* We only work on pure SSA */
2114
2115 if (to >= SSA_FIXED_MINIMUM) continue;
2116 if (from >= SSA_FIXED_MINIMUM) continue;
2117 if (to >= ctx->func->impl->ssa_alloc) continue;
2118 if (from >= ctx->func->impl->ssa_alloc) continue;
2119
2120 /* Constant propagation is not handled here, either */
2121 if (ins->ssa_args.inline_constant) continue;
2122 if (ins->has_constants) continue;
2123
2124 if (mir_nontrivial_source2_mod(ins)) continue;
2125 if (mir_nontrivial_outmod(ins)) continue;
2126
2127 /* We're clear -- rewrite */
2128 mir_rewrite_index_src(ctx, to, from);
2129 mir_remove_instruction(ins);
2130 progress |= true;
2131 }
2132
2133 return progress;
2134 }
2135
2136 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2137 * the move can be propagated away entirely */
2138
2139 static bool
2140 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2141 {
2142 /* Nothing to do */
2143 if (comp == midgard_outmod_none)
2144 return true;
2145
2146 if (*outmod == midgard_outmod_none) {
2147 *outmod = comp;
2148 return true;
2149 }
2150
2151 /* TODO: Compose rules */
2152 return false;
2153 }
2154
2155 static bool
2156 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2157 {
2158 bool progress = false;
2159
2160 mir_foreach_instr_in_block_safe(block, ins) {
2161 if (ins->type != TAG_ALU_4) continue;
2162 if (ins->alu.op != midgard_alu_op_fmov) continue;
2163 if (ins->alu.outmod != midgard_outmod_pos) continue;
2164
2165 /* TODO: Registers? */
2166 unsigned src = ins->ssa_args.src1;
2167 if (src >= ctx->func->impl->ssa_alloc) continue;
2168 assert(!mir_has_multiple_writes(ctx, src));
2169
2170 /* There might be a source modifier, too */
2171 if (mir_nontrivial_source2_mod(ins)) continue;
2172
2173 /* Backpropagate the modifier */
2174 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2175 if (v->type != TAG_ALU_4) continue;
2176 if (v->ssa_args.dest != src) continue;
2177
2178 /* Can we even take a float outmod? */
2179 if (midgard_is_integer_out_op(v->alu.op)) continue;
2180
2181 midgard_outmod_float temp = v->alu.outmod;
2182 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2183
2184 /* Throw in the towel.. */
2185 if (!progress) break;
2186
2187 /* Otherwise, transfer the modifier */
2188 v->alu.outmod = temp;
2189 ins->alu.outmod = midgard_outmod_none;
2190
2191 break;
2192 }
2193 }
2194
2195 return progress;
2196 }
2197
2198 static bool
2199 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2200 {
2201 bool progress = false;
2202
2203 mir_foreach_instr_in_block_safe(block, ins) {
2204 if (ins->type != TAG_ALU_4) continue;
2205 if (!OP_IS_MOVE(ins->alu.op)) continue;
2206
2207 unsigned from = ins->ssa_args.src1;
2208 unsigned to = ins->ssa_args.dest;
2209
2210 /* Make sure it's simple enough for us to handle */
2211
2212 if (from >= SSA_FIXED_MINIMUM) continue;
2213 if (from >= ctx->func->impl->ssa_alloc) continue;
2214 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2215 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2216
2217 bool eliminated = false;
2218
2219 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2220 /* The texture registers are not SSA so be careful.
2221 * Conservatively, just stop if we hit a texture op
2222 * (even if it may not write) to where we are */
2223
2224 if (v->type != TAG_ALU_4)
2225 break;
2226
2227 if (v->ssa_args.dest == from) {
2228 /* We don't want to track partial writes ... */
2229 if (v->alu.mask == 0xF) {
2230 v->ssa_args.dest = to;
2231 eliminated = true;
2232 }
2233
2234 break;
2235 }
2236 }
2237
2238 if (eliminated)
2239 mir_remove_instruction(ins);
2240
2241 progress |= eliminated;
2242 }
2243
2244 return progress;
2245 }
2246
2247 /* The following passes reorder MIR instructions to enable better scheduling */
2248
2249 static void
2250 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2251 {
2252 mir_foreach_instr_in_block_safe(block, ins) {
2253 if (ins->type != TAG_LOAD_STORE_4) continue;
2254
2255 /* We've found a load/store op. Check if next is also load/store. */
2256 midgard_instruction *next_op = mir_next_op(ins);
2257 if (&next_op->link != &block->instructions) {
2258 if (next_op->type == TAG_LOAD_STORE_4) {
2259 /* If so, we're done since we're a pair */
2260 ins = mir_next_op(ins);
2261 continue;
2262 }
2263
2264 /* Maximum search distance to pair, to avoid register pressure disasters */
2265 int search_distance = 8;
2266
2267 /* Otherwise, we have an orphaned load/store -- search for another load */
2268 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2269 /* Terminate search if necessary */
2270 if (!(search_distance--)) break;
2271
2272 if (c->type != TAG_LOAD_STORE_4) continue;
2273
2274 /* Stores cannot be reordered, since they have
2275 * dependencies. For the same reason, indirect
2276 * loads cannot be reordered as their index is
2277 * loaded in r27.w */
2278
2279 if (OP_IS_STORE(c->load_store.op)) continue;
2280
2281 /* It appears the 0x800 bit is set whenever a
2282 * load is direct, unset when it is indirect.
2283 * Skip indirect loads. */
2284
2285 if (!(c->load_store.unknown & 0x800)) continue;
2286
2287 /* We found one! Move it up to pair and remove it from the old location */
2288
2289 mir_insert_instruction_before(ins, *c);
2290 mir_remove_instruction(c);
2291
2292 break;
2293 }
2294 }
2295 }
2296 }
2297
2298 /* If there are leftovers after the below pass, emit actual fmov
2299 * instructions for the slow-but-correct path */
2300
2301 static void
2302 emit_leftover_move(compiler_context *ctx)
2303 {
2304 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2305 int base = ((uintptr_t) leftover->key) - 1;
2306 int mapped = base;
2307
2308 map_ssa_to_alias(ctx, &mapped);
2309 EMIT(mov, mapped, blank_alu_src, base);
2310 }
2311 }
2312
2313 static void
2314 actualise_ssa_to_alias(compiler_context *ctx)
2315 {
2316 mir_foreach_instr(ctx, ins) {
2317 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2318 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2319 }
2320
2321 emit_leftover_move(ctx);
2322 }
2323
2324 static void
2325 emit_fragment_epilogue(compiler_context *ctx)
2326 {
2327 /* Special case: writing out constants requires us to include the move
2328 * explicitly now, so shove it into r0 */
2329
2330 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2331
2332 if (constant_value) {
2333 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2334 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2335 emit_mir_instruction(ctx, ins);
2336 }
2337
2338 /* Perform the actual fragment writeout. We have two writeout/branch
2339 * instructions, forming a loop until writeout is successful as per the
2340 * docs. TODO: gl_FragDepth */
2341
2342 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2343 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2344 }
2345
2346 static midgard_block *
2347 emit_block(compiler_context *ctx, nir_block *block)
2348 {
2349 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2350 list_addtail(&this_block->link, &ctx->blocks);
2351
2352 this_block->is_scheduled = false;
2353 ++ctx->block_count;
2354
2355 ctx->texture_index[0] = -1;
2356 ctx->texture_index[1] = -1;
2357
2358 /* Add us as a successor to the block we are following */
2359 if (ctx->current_block)
2360 midgard_block_add_successor(ctx->current_block, this_block);
2361
2362 /* Set up current block */
2363 list_inithead(&this_block->instructions);
2364 ctx->current_block = this_block;
2365
2366 nir_foreach_instr(instr, block) {
2367 emit_instr(ctx, instr);
2368 ++ctx->instruction_count;
2369 }
2370
2371 inline_alu_constants(ctx);
2372 embedded_to_inline_constant(ctx);
2373
2374 /* Perform heavylifting for aliasing */
2375 actualise_ssa_to_alias(ctx);
2376
2377 midgard_pair_load_store(ctx, this_block);
2378
2379 /* Append fragment shader epilogue (value writeout) */
2380 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2381 if (block == nir_impl_last_block(ctx->func->impl)) {
2382 emit_fragment_epilogue(ctx);
2383 }
2384 }
2385
2386 if (block == nir_start_block(ctx->func->impl))
2387 ctx->initial_block = this_block;
2388
2389 if (block == nir_impl_last_block(ctx->func->impl))
2390 ctx->final_block = this_block;
2391
2392 /* Allow the next control flow to access us retroactively, for
2393 * branching etc */
2394 ctx->current_block = this_block;
2395
2396 /* Document the fallthrough chain */
2397 ctx->previous_source_block = this_block;
2398
2399 return this_block;
2400 }
2401
2402 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2403
2404 static void
2405 emit_if(struct compiler_context *ctx, nir_if *nif)
2406 {
2407 /* Conditional branches expect the condition in r31.w; emit a move for
2408 * that in the _previous_ block (which is the current block). */
2409 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2410
2411 /* Speculatively emit the branch, but we can't fill it in until later */
2412 EMIT(branch, true, true);
2413 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2414
2415 /* Emit the two subblocks */
2416 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2417
2418 /* Emit a jump from the end of the then block to the end of the else */
2419 EMIT(branch, false, false);
2420 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2421
2422 /* Emit second block, and check if it's empty */
2423
2424 int else_idx = ctx->block_count;
2425 int count_in = ctx->instruction_count;
2426 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2427 int after_else_idx = ctx->block_count;
2428
2429 /* Now that we have the subblocks emitted, fix up the branches */
2430
2431 assert(then_block);
2432 assert(else_block);
2433
2434 if (ctx->instruction_count == count_in) {
2435 /* The else block is empty, so don't emit an exit jump */
2436 mir_remove_instruction(then_exit);
2437 then_branch->branch.target_block = after_else_idx;
2438 } else {
2439 then_branch->branch.target_block = else_idx;
2440 then_exit->branch.target_block = after_else_idx;
2441 }
2442 }
2443
2444 static void
2445 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2446 {
2447 /* Remember where we are */
2448 midgard_block *start_block = ctx->current_block;
2449
2450 /* Allocate a loop number, growing the current inner loop depth */
2451 int loop_idx = ++ctx->current_loop_depth;
2452
2453 /* Get index from before the body so we can loop back later */
2454 int start_idx = ctx->block_count;
2455
2456 /* Emit the body itself */
2457 emit_cf_list(ctx, &nloop->body);
2458
2459 /* Branch back to loop back */
2460 struct midgard_instruction br_back = v_branch(false, false);
2461 br_back.branch.target_block = start_idx;
2462 emit_mir_instruction(ctx, br_back);
2463
2464 /* Mark down that branch in the graph. Note that we're really branching
2465 * to the block *after* we started in. TODO: Why doesn't the branch
2466 * itself have an off-by-one then...? */
2467 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2468
2469 /* Find the index of the block about to follow us (note: we don't add
2470 * one; blocks are 0-indexed so we get a fencepost problem) */
2471 int break_block_idx = ctx->block_count;
2472
2473 /* Fix up the break statements we emitted to point to the right place,
2474 * now that we can allocate a block number for them */
2475
2476 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2477 mir_foreach_instr_in_block(block, ins) {
2478 if (ins->type != TAG_ALU_4) continue;
2479 if (!ins->compact_branch) continue;
2480 if (ins->prepacked_branch) continue;
2481
2482 /* We found a branch -- check the type to see if we need to do anything */
2483 if (ins->branch.target_type != TARGET_BREAK) continue;
2484
2485 /* It's a break! Check if it's our break */
2486 if (ins->branch.target_break != loop_idx) continue;
2487
2488 /* Okay, cool, we're breaking out of this loop.
2489 * Rewrite from a break to a goto */
2490
2491 ins->branch.target_type = TARGET_GOTO;
2492 ins->branch.target_block = break_block_idx;
2493 }
2494 }
2495
2496 /* Now that we've finished emitting the loop, free up the depth again
2497 * so we play nice with recursion amid nested loops */
2498 --ctx->current_loop_depth;
2499 }
2500
2501 static midgard_block *
2502 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2503 {
2504 midgard_block *start_block = NULL;
2505
2506 foreach_list_typed(nir_cf_node, node, node, list) {
2507 switch (node->type) {
2508 case nir_cf_node_block: {
2509 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2510
2511 if (!start_block)
2512 start_block = block;
2513
2514 break;
2515 }
2516
2517 case nir_cf_node_if:
2518 emit_if(ctx, nir_cf_node_as_if(node));
2519 break;
2520
2521 case nir_cf_node_loop:
2522 emit_loop(ctx, nir_cf_node_as_loop(node));
2523 break;
2524
2525 case nir_cf_node_function:
2526 assert(0);
2527 break;
2528 }
2529 }
2530
2531 return start_block;
2532 }
2533
2534 /* Due to lookahead, we need to report the first tag executed in the command
2535 * stream and in branch targets. An initial block might be empty, so iterate
2536 * until we find one that 'works' */
2537
2538 static unsigned
2539 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2540 {
2541 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2542
2543 unsigned first_tag = 0;
2544
2545 do {
2546 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2547
2548 if (initial_bundle) {
2549 first_tag = initial_bundle->tag;
2550 break;
2551 }
2552
2553 /* Initial block is empty, try the next block */
2554 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2555 } while(initial_block != NULL);
2556
2557 assert(first_tag);
2558 return first_tag;
2559 }
2560
2561 int
2562 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2563 {
2564 struct util_dynarray *compiled = &program->compiled;
2565
2566 midgard_debug = debug_get_option_midgard_debug();
2567
2568 compiler_context ictx = {
2569 .nir = nir,
2570 .stage = nir->info.stage,
2571
2572 .is_blend = is_blend,
2573 .blend_constant_offset = -1,
2574
2575 .alpha_ref = program->alpha_ref
2576 };
2577
2578 compiler_context *ctx = &ictx;
2579
2580 /* TODO: Decide this at runtime */
2581 ctx->uniform_cutoff = 8;
2582
2583 /* Initialize at a global (not block) level hash tables */
2584
2585 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2586 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2587 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2588 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2589 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2590
2591 /* Record the varying mapping for the command stream's bookkeeping */
2592
2593 struct exec_list *varyings =
2594 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2595
2596 unsigned max_varying = 0;
2597 nir_foreach_variable(var, varyings) {
2598 unsigned loc = var->data.driver_location;
2599 unsigned sz = glsl_type_size(var->type, FALSE);
2600
2601 for (int c = 0; c < sz; ++c) {
2602 program->varyings[loc + c] = var->data.location + c;
2603 max_varying = MAX2(max_varying, loc + c);
2604 }
2605 }
2606
2607 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2608 * (so we don't accidentally duplicate the epilogue since mesa/st has
2609 * messed with our I/O quite a bit already) */
2610
2611 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2612
2613 if (ctx->stage == MESA_SHADER_VERTEX)
2614 NIR_PASS_V(nir, nir_lower_viewport_transform);
2615
2616 NIR_PASS_V(nir, nir_lower_var_copies);
2617 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2618 NIR_PASS_V(nir, nir_split_var_copies);
2619 NIR_PASS_V(nir, nir_lower_var_copies);
2620 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2621 NIR_PASS_V(nir, nir_lower_var_copies);
2622 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2623
2624 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2625
2626 /* Optimisation passes */
2627
2628 optimise_nir(nir);
2629
2630 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2631 nir_print_shader(nir, stdout);
2632 }
2633
2634 /* Assign sysvals and counts, now that we're sure
2635 * (post-optimisation) */
2636
2637 midgard_nir_assign_sysvals(ctx, nir);
2638
2639 program->uniform_count = nir->num_uniforms;
2640 program->sysval_count = ctx->sysval_count;
2641 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2642
2643 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2644 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2645
2646 nir_foreach_function(func, nir) {
2647 if (!func->impl)
2648 continue;
2649
2650 list_inithead(&ctx->blocks);
2651 ctx->block_count = 0;
2652 ctx->func = func;
2653
2654 emit_cf_list(ctx, &func->impl->body);
2655 emit_block(ctx, func->impl->end_block);
2656
2657 break; /* TODO: Multi-function shaders */
2658 }
2659
2660 util_dynarray_init(compiled, NULL);
2661
2662 /* MIR-level optimizations */
2663
2664 bool progress = false;
2665
2666 do {
2667 progress = false;
2668
2669 mir_foreach_block(ctx, block) {
2670 progress |= midgard_opt_pos_propagate(ctx, block);
2671 progress |= midgard_opt_copy_prop(ctx, block);
2672 progress |= midgard_opt_copy_prop_tex(ctx, block);
2673 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2674 }
2675 } while (progress);
2676
2677 /* Nested control-flow can result in dead branches at the end of the
2678 * block. This messes with our analysis and is just dead code, so cull
2679 * them */
2680 mir_foreach_block(ctx, block) {
2681 midgard_opt_cull_dead_branch(ctx, block);
2682 }
2683
2684 /* Schedule! */
2685 schedule_program(ctx);
2686
2687 /* Now that all the bundles are scheduled and we can calculate block
2688 * sizes, emit actual branch instructions rather than placeholders */
2689
2690 int br_block_idx = 0;
2691
2692 mir_foreach_block(ctx, block) {
2693 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2694 for (int c = 0; c < bundle->instruction_count; ++c) {
2695 midgard_instruction *ins = bundle->instructions[c];
2696
2697 if (!midgard_is_branch_unit(ins->unit)) continue;
2698
2699 if (ins->prepacked_branch) continue;
2700
2701 /* Parse some basic branch info */
2702 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2703 bool is_conditional = ins->branch.conditional;
2704 bool is_inverted = ins->branch.invert_conditional;
2705 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2706
2707 /* Determine the block we're jumping to */
2708 int target_number = ins->branch.target_block;
2709
2710 /* Report the destination tag */
2711 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2712
2713 /* Count up the number of quadwords we're
2714 * jumping over = number of quadwords until
2715 * (br_block_idx, target_number) */
2716
2717 int quadword_offset = 0;
2718
2719 if (is_discard) {
2720 /* Jump to the end of the shader. We
2721 * need to include not only the
2722 * following blocks, but also the
2723 * contents of our current block (since
2724 * discard can come in the middle of
2725 * the block) */
2726
2727 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2728
2729 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2730 quadword_offset += quadword_size(bun->tag);
2731 }
2732
2733 mir_foreach_block_from(ctx, blk, b) {
2734 quadword_offset += b->quadword_count;
2735 }
2736
2737 } else if (target_number > br_block_idx) {
2738 /* Jump forward */
2739
2740 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2741 midgard_block *blk = mir_get_block(ctx, idx);
2742 assert(blk);
2743
2744 quadword_offset += blk->quadword_count;
2745 }
2746 } else {
2747 /* Jump backwards */
2748
2749 for (int idx = br_block_idx; idx >= target_number; --idx) {
2750 midgard_block *blk = mir_get_block(ctx, idx);
2751 assert(blk);
2752
2753 quadword_offset -= blk->quadword_count;
2754 }
2755 }
2756
2757 /* Unconditional extended branches (far jumps)
2758 * have issues, so we always use a conditional
2759 * branch, setting the condition to always for
2760 * unconditional. For compact unconditional
2761 * branches, cond isn't used so it doesn't
2762 * matter what we pick. */
2763
2764 midgard_condition cond =
2765 !is_conditional ? midgard_condition_always :
2766 is_inverted ? midgard_condition_false :
2767 midgard_condition_true;
2768
2769 midgard_jmp_writeout_op op =
2770 is_discard ? midgard_jmp_writeout_op_discard :
2771 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2772 midgard_jmp_writeout_op_branch_cond;
2773
2774 if (!is_compact) {
2775 midgard_branch_extended branch =
2776 midgard_create_branch_extended(
2777 cond, op,
2778 dest_tag,
2779 quadword_offset);
2780
2781 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2782 } else if (is_conditional || is_discard) {
2783 midgard_branch_cond branch = {
2784 .op = op,
2785 .dest_tag = dest_tag,
2786 .offset = quadword_offset,
2787 .cond = cond
2788 };
2789
2790 assert(branch.offset == quadword_offset);
2791
2792 memcpy(&ins->br_compact, &branch, sizeof(branch));
2793 } else {
2794 assert(op == midgard_jmp_writeout_op_branch_uncond);
2795
2796 midgard_branch_uncond branch = {
2797 .op = op,
2798 .dest_tag = dest_tag,
2799 .offset = quadword_offset,
2800 .unknown = 1
2801 };
2802
2803 assert(branch.offset == quadword_offset);
2804
2805 memcpy(&ins->br_compact, &branch, sizeof(branch));
2806 }
2807 }
2808 }
2809
2810 ++br_block_idx;
2811 }
2812
2813 /* Emit flat binary from the instruction arrays. Iterate each block in
2814 * sequence. Save instruction boundaries such that lookahead tags can
2815 * be assigned easily */
2816
2817 /* Cache _all_ bundles in source order for lookahead across failed branches */
2818
2819 int bundle_count = 0;
2820 mir_foreach_block(ctx, block) {
2821 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2822 }
2823 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2824 int bundle_idx = 0;
2825 mir_foreach_block(ctx, block) {
2826 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2827 source_order_bundles[bundle_idx++] = bundle;
2828 }
2829 }
2830
2831 int current_bundle = 0;
2832
2833 /* Midgard prefetches instruction types, so during emission we
2834 * need to lookahead. Unless this is the last instruction, in
2835 * which we return 1. Or if this is the second to last and the
2836 * last is an ALU, then it's also 1... */
2837
2838 mir_foreach_block(ctx, block) {
2839 mir_foreach_bundle_in_block(block, bundle) {
2840 int lookahead = 1;
2841
2842 if (current_bundle + 1 < bundle_count) {
2843 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2844
2845 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2846 lookahead = 1;
2847 } else {
2848 lookahead = next;
2849 }
2850 }
2851
2852 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2853 ++current_bundle;
2854 }
2855
2856 /* TODO: Free deeper */
2857 //util_dynarray_fini(&block->instructions);
2858 }
2859
2860 free(source_order_bundles);
2861
2862 /* Report the very first tag executed */
2863 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2864
2865 /* Deal with off-by-one related to the fencepost problem */
2866 program->work_register_count = ctx->work_registers + 1;
2867
2868 program->can_discard = ctx->can_discard;
2869 program->uniform_cutoff = ctx->uniform_cutoff;
2870
2871 program->blend_patch_offset = ctx->blend_constant_offset;
2872
2873 if (midgard_debug & MIDGARD_DBG_SHADERS)
2874 disassemble_midgard(program->compiled.data, program->compiled.size);
2875
2876 return 0;
2877 }