panfrost/midgard: Flush undefineds to zero
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .mask = 0xF, \
92 .ssa_args = { \
93 .rname = ssa, \
94 .uname = -1, \
95 .src1 = -1 \
96 }, \
97 .load_store = { \
98 .op = midgard_op_##name, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
115 bool half, bool sext)
116 {
117 if (!src) return blank_alu_src;
118
119 /* Figure out how many components there are so we can adjust the
120 * swizzle. Specifically we want to broadcast the last channel so
121 * things like ball2/3 work
122 */
123
124 if (broadcast_count) {
125 uint8_t last_component = src->swizzle[broadcast_count - 1];
126
127 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
128 src->swizzle[c] = last_component;
129 }
130 }
131
132 midgard_vector_alu_src alu_src = {
133 .rep_low = 0,
134 .rep_high = 0,
135 .half = half,
136 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
137 };
138
139 if (is_int) {
140 alu_src.mod = midgard_int_normal;
141
142 /* Sign/zero-extend if needed */
143
144 if (half) {
145 alu_src.mod = sext ?
146 midgard_int_sign_extend
147 : midgard_int_zero_extend;
148 }
149
150 /* These should have been lowered away */
151 assert(!(src->abs || src->negate));
152 } else {
153 alu_src.mod = (src->abs << 0) | (src->negate << 1);
154 }
155
156 return alu_src;
157 }
158
159 /* load/store instructions have both 32-bit and 16-bit variants, depending on
160 * whether we are using vectors composed of highp or mediump. At the moment, we
161 * don't support half-floats -- this requires changes in other parts of the
162 * compiler -- therefore the 16-bit versions are commented out. */
163
164 //M_LOAD(ld_attr_16);
165 M_LOAD(ld_attr_32);
166 //M_LOAD(ld_vary_16);
167 M_LOAD(ld_vary_32);
168 //M_LOAD(ld_uniform_16);
169 M_LOAD(ld_uniform_32);
170 M_LOAD(ld_color_buffer_8);
171 //M_STORE(st_vary_16);
172 M_STORE(st_vary_32);
173 M_STORE(st_cubemap_coords);
174
175 static midgard_instruction
176 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
177 {
178 midgard_branch_cond branch = {
179 .op = op,
180 .dest_tag = tag,
181 .offset = offset,
182 .cond = cond
183 };
184
185 uint16_t compact;
186 memcpy(&compact, &branch, sizeof(branch));
187
188 midgard_instruction ins = {
189 .type = TAG_ALU_4,
190 .unit = ALU_ENAB_BR_COMPACT,
191 .prepacked_branch = true,
192 .compact_branch = true,
193 .br_compact = compact
194 };
195
196 if (op == midgard_jmp_writeout_op_writeout)
197 ins.writeout = true;
198
199 return ins;
200 }
201
202 static midgard_instruction
203 v_branch(bool conditional, bool invert)
204 {
205 midgard_instruction ins = {
206 .type = TAG_ALU_4,
207 .unit = ALU_ENAB_BRANCH,
208 .compact_branch = true,
209 .branch = {
210 .conditional = conditional,
211 .invert_conditional = invert
212 }
213 };
214
215 return ins;
216 }
217
218 static midgard_branch_extended
219 midgard_create_branch_extended( midgard_condition cond,
220 midgard_jmp_writeout_op op,
221 unsigned dest_tag,
222 signed quadword_offset)
223 {
224 /* For unclear reasons, the condition code is repeated 8 times */
225 uint16_t duplicated_cond =
226 (cond << 14) |
227 (cond << 12) |
228 (cond << 10) |
229 (cond << 8) |
230 (cond << 6) |
231 (cond << 4) |
232 (cond << 2) |
233 (cond << 0);
234
235 midgard_branch_extended branch = {
236 .op = op,
237 .dest_tag = dest_tag,
238 .offset = quadword_offset,
239 .cond = duplicated_cond
240 };
241
242 return branch;
243 }
244
245 static void
246 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
247 {
248 ins->has_constants = true;
249 memcpy(&ins->constants, constants, 16);
250 }
251
252 static int
253 glsl_type_size(const struct glsl_type *type, bool bindless)
254 {
255 return glsl_count_attribute_slots(type, false);
256 }
257
258 /* Lower fdot2 to a vector multiplication followed by channel addition */
259 static void
260 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
261 {
262 if (alu->op != nir_op_fdot2)
263 return;
264
265 b->cursor = nir_before_instr(&alu->instr);
266
267 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
268 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
269
270 nir_ssa_def *product = nir_fmul(b, src0, src1);
271
272 nir_ssa_def *sum = nir_fadd(b,
273 nir_channel(b, product, 0),
274 nir_channel(b, product, 1));
275
276 /* Replace the fdot2 with this sum */
277 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
278 }
279
280 static int
281 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
282 {
283 switch (instr->intrinsic) {
284 case nir_intrinsic_load_viewport_scale:
285 return PAN_SYSVAL_VIEWPORT_SCALE;
286 case nir_intrinsic_load_viewport_offset:
287 return PAN_SYSVAL_VIEWPORT_OFFSET;
288 default:
289 return -1;
290 }
291 }
292
293 static unsigned
294 nir_dest_index(compiler_context *ctx, nir_dest *dst)
295 {
296 if (dst->is_ssa)
297 return dst->ssa.index;
298 else {
299 assert(!dst->reg.indirect);
300 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
301 }
302 }
303
304 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
305 unsigned *dest)
306 {
307 nir_intrinsic_instr *intr;
308 nir_dest *dst = NULL;
309 nir_tex_instr *tex;
310 int sysval = -1;
311
312 switch (instr->type) {
313 case nir_instr_type_intrinsic:
314 intr = nir_instr_as_intrinsic(instr);
315 sysval = midgard_nir_sysval_for_intrinsic(intr);
316 dst = &intr->dest;
317 break;
318 case nir_instr_type_tex:
319 tex = nir_instr_as_tex(instr);
320 if (tex->op != nir_texop_txs)
321 break;
322
323 sysval = PAN_SYSVAL(TEXTURE_SIZE,
324 PAN_TXS_SYSVAL_ID(tex->texture_index,
325 nir_tex_instr_dest_size(tex) -
326 (tex->is_array ? 1 : 0),
327 tex->is_array));
328 dst = &tex->dest;
329 break;
330 default:
331 break;
332 }
333
334 if (dest && dst)
335 *dest = nir_dest_index(ctx, dst);
336
337 return sysval;
338 }
339
340 static void
341 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
342 {
343 int sysval;
344
345 sysval = sysval_for_instr(ctx, instr, NULL);
346 if (sysval < 0)
347 return;
348
349 /* We have a sysval load; check if it's already been assigned */
350
351 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
352 return;
353
354 /* It hasn't -- so assign it now! */
355
356 unsigned id = ctx->sysval_count++;
357 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
358 ctx->sysvals[id] = sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
363 {
364 ctx->sysval_count = 0;
365
366 nir_foreach_function(function, shader) {
367 if (!function->impl) continue;
368
369 nir_foreach_block(block, function->impl) {
370 nir_foreach_instr_safe(instr, block) {
371 midgard_nir_assign_sysval_body(ctx, instr);
372 }
373 }
374 }
375 }
376
377 static bool
378 midgard_nir_lower_fdot2(nir_shader *shader)
379 {
380 bool progress = false;
381
382 nir_foreach_function(function, shader) {
383 if (!function->impl) continue;
384
385 nir_builder _b;
386 nir_builder *b = &_b;
387 nir_builder_init(b, function->impl);
388
389 nir_foreach_block(block, function->impl) {
390 nir_foreach_instr_safe(instr, block) {
391 if (instr->type != nir_instr_type_alu) continue;
392
393 nir_alu_instr *alu = nir_instr_as_alu(instr);
394 midgard_nir_lower_fdot2_body(b, alu);
395
396 progress |= true;
397 }
398 }
399
400 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
401
402 }
403
404 return progress;
405 }
406
407 /* Flushes undefined values to zero */
408
409 static void
410 optimise_nir(nir_shader *nir)
411 {
412 bool progress;
413 unsigned lower_flrp =
414 (nir->options->lower_flrp16 ? 16 : 0) |
415 (nir->options->lower_flrp32 ? 32 : 0) |
416 (nir->options->lower_flrp64 ? 64 : 0);
417
418 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
419 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
420 NIR_PASS(progress, nir, nir_lower_idiv);
421
422 nir_lower_tex_options lower_tex_1st_pass_options = {
423 .lower_rect = true,
424 .lower_txp = ~0
425 };
426
427 nir_lower_tex_options lower_tex_2nd_pass_options = {
428 .lower_txs_lod = true,
429 };
430
431 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
432 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
433
434 do {
435 progress = false;
436
437 NIR_PASS(progress, nir, nir_lower_var_copies);
438 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
439
440 NIR_PASS(progress, nir, nir_copy_prop);
441 NIR_PASS(progress, nir, nir_opt_dce);
442 NIR_PASS(progress, nir, nir_opt_dead_cf);
443 NIR_PASS(progress, nir, nir_opt_cse);
444 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
445 NIR_PASS(progress, nir, nir_opt_algebraic);
446 NIR_PASS(progress, nir, nir_opt_constant_folding);
447
448 if (lower_flrp != 0) {
449 bool lower_flrp_progress = false;
450 NIR_PASS(lower_flrp_progress,
451 nir,
452 nir_lower_flrp,
453 lower_flrp,
454 false /* always_precise */,
455 nir->options->lower_ffma);
456 if (lower_flrp_progress) {
457 NIR_PASS(progress, nir,
458 nir_opt_constant_folding);
459 progress = true;
460 }
461
462 /* Nothing should rematerialize any flrps, so we only
463 * need to do this lowering once.
464 */
465 lower_flrp = 0;
466 }
467
468 NIR_PASS(progress, nir, nir_opt_undef);
469 NIR_PASS(progress, nir, nir_undef_to_zero);
470
471 NIR_PASS(progress, nir, nir_opt_loop_unroll,
472 nir_var_shader_in |
473 nir_var_shader_out |
474 nir_var_function_temp);
475
476 NIR_PASS(progress, nir, nir_opt_vectorize);
477 } while (progress);
478
479 /* Must be run at the end to prevent creation of fsin/fcos ops */
480 NIR_PASS(progress, nir, midgard_nir_scale_trig);
481
482 do {
483 progress = false;
484
485 NIR_PASS(progress, nir, nir_opt_dce);
486 NIR_PASS(progress, nir, nir_opt_algebraic);
487 NIR_PASS(progress, nir, nir_opt_constant_folding);
488 NIR_PASS(progress, nir, nir_copy_prop);
489 } while (progress);
490
491 NIR_PASS(progress, nir, nir_opt_algebraic_late);
492
493 /* We implement booleans as 32-bit 0/~0 */
494 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
495
496 /* Now that booleans are lowered, we can run out late opts */
497 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
498
499 /* Lower mods for float ops only. Integer ops don't support modifiers
500 * (saturate doesn't make sense on integers, neg/abs require dedicated
501 * instructions) */
502
503 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
504 NIR_PASS(progress, nir, nir_copy_prop);
505 NIR_PASS(progress, nir, nir_opt_dce);
506
507 /* Take us out of SSA */
508 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
509 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
510
511 /* We are a vector architecture; write combine where possible */
512 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
513 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
514
515 NIR_PASS(progress, nir, nir_opt_dce);
516 }
517
518 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
519 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
520 * r0. See the comments in compiler_context */
521
522 static void
523 alias_ssa(compiler_context *ctx, int dest, int src)
524 {
525 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
526 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
527 }
528
529 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
530
531 static void
532 unalias_ssa(compiler_context *ctx, int dest)
533 {
534 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
535 /* TODO: Remove from leftover or no? */
536 }
537
538 /* Do not actually emit a load; instead, cache the constant for inlining */
539
540 static void
541 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
542 {
543 nir_ssa_def def = instr->def;
544
545 float *v = rzalloc_array(NULL, float, 4);
546 nir_const_load_to_arr(v, instr, f32);
547 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
548 }
549
550 static unsigned
551 nir_src_index(compiler_context *ctx, nir_src *src)
552 {
553 if (src->is_ssa)
554 return src->ssa->index;
555 else {
556 assert(!src->reg.indirect);
557 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
558 }
559 }
560
561 static unsigned
562 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
563 {
564 return nir_src_index(ctx, &src->src);
565 }
566
567 static bool
568 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
569 {
570 unsigned comp = src->swizzle[0];
571
572 for (unsigned c = 1; c < nr_components; ++c) {
573 if (src->swizzle[c] != comp)
574 return true;
575 }
576
577 return false;
578 }
579
580 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
581 * output of a conditional test) into that register */
582
583 static void
584 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
585 {
586 int condition = nir_src_index(ctx, src);
587
588 /* Source to swizzle the desired component into w */
589
590 const midgard_vector_alu_src alu_src = {
591 .swizzle = SWIZZLE(component, component, component, component),
592 };
593
594 /* There is no boolean move instruction. Instead, we simulate a move by
595 * ANDing the condition with itself to get it into r31.w */
596
597 midgard_instruction ins = {
598 .type = TAG_ALU_4,
599
600 /* We need to set the conditional as close as possible */
601 .precede_break = true,
602 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
603 .mask = 1 << COMPONENT_W,
604
605 .ssa_args = {
606 .src0 = condition,
607 .src1 = condition,
608 .dest = SSA_FIXED_REGISTER(31),
609 },
610
611 .alu = {
612 .op = midgard_alu_op_iand,
613 .outmod = midgard_outmod_int_wrap,
614 .reg_mode = midgard_reg_mode_32,
615 .dest_override = midgard_dest_override_none,
616 .src1 = vector_alu_srco_unsigned(alu_src),
617 .src2 = vector_alu_srco_unsigned(alu_src)
618 },
619 };
620
621 emit_mir_instruction(ctx, ins);
622 }
623
624 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
625 * r31 instead */
626
627 static void
628 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
629 {
630 int condition = nir_src_index(ctx, &src->src);
631
632 /* Source to swizzle the desired component into w */
633
634 const midgard_vector_alu_src alu_src = {
635 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
636 };
637
638 /* There is no boolean move instruction. Instead, we simulate a move by
639 * ANDing the condition with itself to get it into r31.w */
640
641 midgard_instruction ins = {
642 .type = TAG_ALU_4,
643 .precede_break = true,
644 .mask = mask_of(nr_comp),
645 .ssa_args = {
646 .src0 = condition,
647 .src1 = condition,
648 .dest = SSA_FIXED_REGISTER(31),
649 },
650 .alu = {
651 .op = midgard_alu_op_iand,
652 .outmod = midgard_outmod_int_wrap,
653 .reg_mode = midgard_reg_mode_32,
654 .dest_override = midgard_dest_override_none,
655 .src1 = vector_alu_srco_unsigned(alu_src),
656 .src2 = vector_alu_srco_unsigned(alu_src)
657 },
658 };
659
660 emit_mir_instruction(ctx, ins);
661 }
662
663
664
665 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
666 * pinning to eliminate this move in all known cases */
667
668 static void
669 emit_indirect_offset(compiler_context *ctx, nir_src *src)
670 {
671 int offset = nir_src_index(ctx, src);
672
673 midgard_instruction ins = {
674 .type = TAG_ALU_4,
675 .mask = 1 << COMPONENT_W,
676 .ssa_args = {
677 .src0 = SSA_UNUSED_1,
678 .src1 = offset,
679 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
680 },
681 .alu = {
682 .op = midgard_alu_op_imov,
683 .outmod = midgard_outmod_int_wrap,
684 .reg_mode = midgard_reg_mode_32,
685 .dest_override = midgard_dest_override_none,
686 .src1 = vector_alu_srco_unsigned(zero_alu_src),
687 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
688 },
689 };
690
691 emit_mir_instruction(ctx, ins);
692 }
693
694 #define ALU_CASE(nir, _op) \
695 case nir_op_##nir: \
696 op = midgard_alu_op_##_op; \
697 assert(src_bitsize == dst_bitsize); \
698 break;
699
700 #define ALU_CASE_BCAST(nir, _op, count) \
701 case nir_op_##nir: \
702 op = midgard_alu_op_##_op; \
703 broadcast_swizzle = count; \
704 assert(src_bitsize == dst_bitsize); \
705 break;
706 static bool
707 nir_is_fzero_constant(nir_src src)
708 {
709 if (!nir_src_is_const(src))
710 return false;
711
712 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
713 if (nir_src_comp_as_float(src, c) != 0.0)
714 return false;
715 }
716
717 return true;
718 }
719
720 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
721 * special treatment override this anyway. */
722
723 static midgard_reg_mode
724 reg_mode_for_nir(nir_alu_instr *instr)
725 {
726 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
727
728 switch (src_bitsize) {
729 case 8:
730 return midgard_reg_mode_8;
731 case 16:
732 return midgard_reg_mode_16;
733 case 32:
734 return midgard_reg_mode_32;
735 case 64:
736 return midgard_reg_mode_64;
737 default:
738 unreachable("Invalid bit size");
739 }
740 }
741
742 static void
743 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
744 {
745 bool is_ssa = instr->dest.dest.is_ssa;
746
747 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
748 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
749 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
750
751 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
752 * supported. A few do not and are commented for now. Also, there are a
753 * number of NIR ops which Midgard does not support and need to be
754 * lowered, also TODO. This switch block emits the opcode and calling
755 * convention of the Midgard instruction; actual packing is done in
756 * emit_alu below */
757
758 unsigned op;
759
760 /* Number of components valid to check for the instruction (the rest
761 * will be forced to the last), or 0 to use as-is. Relevant as
762 * ball-type instructions have a channel count in NIR but are all vec4
763 * in Midgard */
764
765 unsigned broadcast_swizzle = 0;
766
767 /* What register mode should we operate in? */
768 midgard_reg_mode reg_mode =
769 reg_mode_for_nir(instr);
770
771 /* Do we need a destination override? Used for inline
772 * type conversion */
773
774 midgard_dest_override dest_override =
775 midgard_dest_override_none;
776
777 /* Should we use a smaller respective source and sign-extend? */
778
779 bool half_1 = false, sext_1 = false;
780 bool half_2 = false, sext_2 = false;
781
782 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
783 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
784
785 switch (instr->op) {
786 ALU_CASE(fadd, fadd);
787 ALU_CASE(fmul, fmul);
788 ALU_CASE(fmin, fmin);
789 ALU_CASE(fmax, fmax);
790 ALU_CASE(imin, imin);
791 ALU_CASE(imax, imax);
792 ALU_CASE(umin, umin);
793 ALU_CASE(umax, umax);
794 ALU_CASE(ffloor, ffloor);
795 ALU_CASE(fround_even, froundeven);
796 ALU_CASE(ftrunc, ftrunc);
797 ALU_CASE(fceil, fceil);
798 ALU_CASE(fdot3, fdot3);
799 ALU_CASE(fdot4, fdot4);
800 ALU_CASE(iadd, iadd);
801 ALU_CASE(isub, isub);
802 ALU_CASE(imul, imul);
803
804 /* Zero shoved as second-arg */
805 ALU_CASE(iabs, iabsdiff);
806
807 ALU_CASE(mov, imov);
808
809 ALU_CASE(feq32, feq);
810 ALU_CASE(fne32, fne);
811 ALU_CASE(flt32, flt);
812 ALU_CASE(ieq32, ieq);
813 ALU_CASE(ine32, ine);
814 ALU_CASE(ilt32, ilt);
815 ALU_CASE(ult32, ult);
816
817 /* We don't have a native b2f32 instruction. Instead, like many
818 * GPUs, we exploit booleans as 0/~0 for false/true, and
819 * correspondingly AND
820 * by 1.0 to do the type conversion. For the moment, prime us
821 * to emit:
822 *
823 * iand [whatever], #0
824 *
825 * At the end of emit_alu (as MIR), we'll fix-up the constant
826 */
827
828 ALU_CASE(b2f32, iand);
829 ALU_CASE(b2i32, iand);
830
831 /* Likewise, we don't have a dedicated f2b32 instruction, but
832 * we can do a "not equal to 0.0" test. */
833
834 ALU_CASE(f2b32, fne);
835 ALU_CASE(i2b32, ine);
836
837 ALU_CASE(frcp, frcp);
838 ALU_CASE(frsq, frsqrt);
839 ALU_CASE(fsqrt, fsqrt);
840 ALU_CASE(fexp2, fexp2);
841 ALU_CASE(flog2, flog2);
842
843 ALU_CASE(f2i32, f2i_rtz);
844 ALU_CASE(f2u32, f2u_rtz);
845 ALU_CASE(i2f32, i2f_rtz);
846 ALU_CASE(u2f32, u2f_rtz);
847
848 ALU_CASE(f2i16, f2i_rtz);
849 ALU_CASE(f2u16, f2u_rtz);
850 ALU_CASE(i2f16, i2f_rtz);
851 ALU_CASE(u2f16, u2f_rtz);
852
853 ALU_CASE(fsin, fsin);
854 ALU_CASE(fcos, fcos);
855
856 /* Second op implicit #0 */
857 ALU_CASE(inot, inor);
858 ALU_CASE(iand, iand);
859 ALU_CASE(ior, ior);
860 ALU_CASE(ixor, ixor);
861 ALU_CASE(ishl, ishl);
862 ALU_CASE(ishr, iasr);
863 ALU_CASE(ushr, ilsr);
864
865 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
866 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
867 ALU_CASE(b32all_fequal4, fball_eq);
868
869 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
870 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
871 ALU_CASE(b32any_fnequal4, fbany_neq);
872
873 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
874 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
875 ALU_CASE(b32all_iequal4, iball_eq);
876
877 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
878 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
879 ALU_CASE(b32any_inequal4, ibany_neq);
880
881 /* Source mods will be shoved in later */
882 ALU_CASE(fabs, fmov);
883 ALU_CASE(fneg, fmov);
884 ALU_CASE(fsat, fmov);
885
886 /* For size conversion, we use a move. Ideally though we would squash
887 * these ops together; maybe that has to happen after in NIR as part of
888 * propagation...? An earlier algebraic pass ensured we step down by
889 * only / exactly one size. If stepping down, we use a dest override to
890 * reduce the size; if stepping up, we use a larger-sized move with a
891 * half source and a sign/zero-extension modifier */
892
893 case nir_op_i2i8:
894 case nir_op_i2i16:
895 case nir_op_i2i32:
896 /* If we end up upscale, we'll need a sign-extend on the
897 * operand (the second argument) */
898
899 sext_2 = true;
900 case nir_op_u2u8:
901 case nir_op_u2u16:
902 case nir_op_u2u32: {
903 op = midgard_alu_op_imov;
904
905 if (dst_bitsize == (src_bitsize * 2)) {
906 /* Converting up */
907 half_2 = true;
908
909 /* Use a greater register mode */
910 reg_mode++;
911 } else if (src_bitsize == (dst_bitsize * 2)) {
912 /* Converting down */
913 dest_override = midgard_dest_override_lower;
914 }
915
916 break;
917 }
918
919 case nir_op_f2f16: {
920 assert(src_bitsize == 32);
921
922 op = midgard_alu_op_fmov;
923 dest_override = midgard_dest_override_lower;
924 break;
925 }
926
927 case nir_op_f2f32: {
928 assert(src_bitsize == 16);
929
930 op = midgard_alu_op_fmov;
931 half_2 = true;
932 reg_mode++;
933 break;
934 }
935
936
937 /* For greater-or-equal, we lower to less-or-equal and flip the
938 * arguments */
939
940 case nir_op_fge:
941 case nir_op_fge32:
942 case nir_op_ige32:
943 case nir_op_uge32: {
944 op =
945 instr->op == nir_op_fge ? midgard_alu_op_fle :
946 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
947 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
948 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
949 0;
950
951 /* Swap via temporary */
952 nir_alu_src temp = instr->src[1];
953 instr->src[1] = instr->src[0];
954 instr->src[0] = temp;
955
956 break;
957 }
958
959 case nir_op_b32csel: {
960 /* Midgard features both fcsel and icsel, depending on
961 * the type of the arguments/output. However, as long
962 * as we're careful we can _always_ use icsel and
963 * _never_ need fcsel, since the latter does additional
964 * floating-point-specific processing whereas the
965 * former just moves bits on the wire. It's not obvious
966 * why these are separate opcodes, save for the ability
967 * to do things like sat/pos/abs/neg for free */
968
969 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
970 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
971
972 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
973 nr_inputs = 2;
974
975 /* Emit the condition into r31 */
976
977 if (mixed)
978 emit_condition_mixed(ctx, &instr->src[0], nr_components);
979 else
980 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
981
982 /* The condition is the first argument; move the other
983 * arguments up one to be a binary instruction for
984 * Midgard */
985
986 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
987 break;
988 }
989
990 default:
991 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
992 assert(0);
993 return;
994 }
995
996 /* Midgard can perform certain modifiers on output of an ALU op */
997 unsigned outmod;
998
999 if (midgard_is_integer_out_op(op)) {
1000 outmod = midgard_outmod_int_wrap;
1001 } else {
1002 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
1003 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1004 }
1005
1006 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1007
1008 if (instr->op == nir_op_fmax) {
1009 if (nir_is_fzero_constant(instr->src[0].src)) {
1010 op = midgard_alu_op_fmov;
1011 nr_inputs = 1;
1012 outmod = midgard_outmod_pos;
1013 instr->src[0] = instr->src[1];
1014 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1015 op = midgard_alu_op_fmov;
1016 nr_inputs = 1;
1017 outmod = midgard_outmod_pos;
1018 }
1019 }
1020
1021 /* Fetch unit, quirks, etc information */
1022 unsigned opcode_props = alu_opcode_props[op].props;
1023 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1024
1025 /* src0 will always exist afaik, but src1 will not for 1-argument
1026 * instructions. The latter can only be fetched if the instruction
1027 * needs it, or else we may segfault. */
1028
1029 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1030 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1031
1032 /* Rather than use the instruction generation helpers, we do it
1033 * ourselves here to avoid the mess */
1034
1035 midgard_instruction ins = {
1036 .type = TAG_ALU_4,
1037 .ssa_args = {
1038 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1039 .src1 = quirk_flipped_r24 ? src0 : src1,
1040 .dest = dest,
1041 }
1042 };
1043
1044 nir_alu_src *nirmods[2] = { NULL };
1045
1046 if (nr_inputs == 2) {
1047 nirmods[0] = &instr->src[0];
1048 nirmods[1] = &instr->src[1];
1049 } else if (nr_inputs == 1) {
1050 nirmods[quirk_flipped_r24] = &instr->src[0];
1051 } else {
1052 assert(0);
1053 }
1054
1055 /* These were lowered to a move, so apply the corresponding mod */
1056
1057 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1058 nir_alu_src *s = nirmods[quirk_flipped_r24];
1059
1060 if (instr->op == nir_op_fneg)
1061 s->negate = !s->negate;
1062
1063 if (instr->op == nir_op_fabs)
1064 s->abs = !s->abs;
1065 }
1066
1067 bool is_int = midgard_is_integer_op(op);
1068
1069 ins.mask = mask_of(nr_components);
1070
1071 midgard_vector_alu alu = {
1072 .op = op,
1073 .reg_mode = reg_mode,
1074 .dest_override = dest_override,
1075 .outmod = outmod,
1076
1077 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1078 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1079 };
1080
1081 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1082
1083 if (!is_ssa)
1084 ins.mask &= instr->dest.write_mask;
1085
1086 ins.alu = alu;
1087
1088 /* Late fixup for emulated instructions */
1089
1090 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1091 /* Presently, our second argument is an inline #0 constant.
1092 * Switch over to an embedded 1.0 constant (that can't fit
1093 * inline, since we're 32-bit, not 16-bit like the inline
1094 * constants) */
1095
1096 ins.ssa_args.inline_constant = false;
1097 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1098 ins.has_constants = true;
1099
1100 if (instr->op == nir_op_b2f32) {
1101 ins.constants[0] = 1.0f;
1102 } else {
1103 /* Type pun it into place */
1104 uint32_t one = 0x1;
1105 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1106 }
1107
1108 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1109 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1110 /* Lots of instructions need a 0 plonked in */
1111 ins.ssa_args.inline_constant = false;
1112 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1113 ins.has_constants = true;
1114 ins.constants[0] = 0.0f;
1115 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1116 } else if (instr->op == nir_op_inot) {
1117 /* ~b = ~(b & b), so duplicate the source */
1118 ins.ssa_args.src1 = ins.ssa_args.src0;
1119 ins.alu.src2 = ins.alu.src1;
1120 }
1121
1122 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1123 /* To avoid duplicating the lookup tables (probably), true LUT
1124 * instructions can only operate as if they were scalars. Lower
1125 * them here by changing the component. */
1126
1127 uint8_t original_swizzle[4];
1128 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1129 unsigned orig_mask = ins.mask;
1130
1131 for (int i = 0; i < nr_components; ++i) {
1132 /* Mask the associated component, dropping the
1133 * instruction if needed */
1134
1135 ins.mask = 1 << i;
1136 ins.mask &= orig_mask;
1137
1138 if (!ins.mask)
1139 continue;
1140
1141 for (int j = 0; j < 4; ++j)
1142 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1143
1144 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1145 emit_mir_instruction(ctx, ins);
1146 }
1147 } else {
1148 emit_mir_instruction(ctx, ins);
1149 }
1150 }
1151
1152 #undef ALU_CASE
1153
1154 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1155 * optimized) versions of UBO #0 */
1156
1157 static void
1158 emit_ubo_read(
1159 compiler_context *ctx,
1160 unsigned dest,
1161 unsigned offset,
1162 nir_src *indirect_offset,
1163 unsigned index)
1164 {
1165 /* TODO: half-floats */
1166
1167 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1168 /* Fast path: For the first 16 uniforms, direct accesses are
1169 * 0-cycle, since they're just a register fetch in the usual
1170 * case. So, we alias the registers while we're still in
1171 * SSA-space */
1172
1173 int reg_slot = 23 - offset;
1174 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1175 } else {
1176 /* Otherwise, read from the 'special' UBO to access
1177 * higher-indexed uniforms, at a performance cost. More
1178 * generally, we're emitting a UBO read instruction. */
1179
1180 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1181
1182 /* TODO: Don't split */
1183 ins.load_store.varying_parameters = (offset & 7) << 7;
1184 ins.load_store.address = offset >> 3;
1185
1186 if (indirect_offset) {
1187 emit_indirect_offset(ctx, indirect_offset);
1188 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1189 } else {
1190 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1191 }
1192
1193 /* TODO respect index */
1194
1195 emit_mir_instruction(ctx, ins);
1196 }
1197 }
1198
1199 static void
1200 emit_varying_read(
1201 compiler_context *ctx,
1202 unsigned dest, unsigned offset,
1203 unsigned nr_comp, unsigned component,
1204 nir_src *indirect_offset, nir_alu_type type)
1205 {
1206 /* XXX: Half-floats? */
1207 /* TODO: swizzle, mask */
1208
1209 midgard_instruction ins = m_ld_vary_32(dest, offset);
1210 ins.mask = mask_of(nr_comp);
1211 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1212
1213 midgard_varying_parameter p = {
1214 .is_varying = 1,
1215 .interpolation = midgard_interp_default,
1216 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1217 };
1218
1219 unsigned u;
1220 memcpy(&u, &p, sizeof(p));
1221 ins.load_store.varying_parameters = u;
1222
1223 if (indirect_offset) {
1224 /* We need to add in the dynamic index, moved to r27.w */
1225 emit_indirect_offset(ctx, indirect_offset);
1226 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1227 } else {
1228 /* Just a direct load */
1229 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1230 }
1231
1232 /* Use the type appropriate load */
1233 switch (type) {
1234 case nir_type_uint:
1235 case nir_type_bool:
1236 ins.load_store.op = midgard_op_ld_vary_32u;
1237 break;
1238 case nir_type_int:
1239 ins.load_store.op = midgard_op_ld_vary_32i;
1240 break;
1241 case nir_type_float:
1242 ins.load_store.op = midgard_op_ld_vary_32;
1243 break;
1244 default:
1245 unreachable("Attempted to load unknown type");
1246 break;
1247 }
1248
1249 emit_mir_instruction(ctx, ins);
1250 }
1251
1252 static void
1253 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1254 {
1255 unsigned dest;
1256 /* Figure out which uniform this is */
1257 int sysval = sysval_for_instr(ctx, instr, &dest);
1258 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1259
1260 /* Sysvals are prefix uniforms */
1261 unsigned uniform = ((uintptr_t) val) - 1;
1262
1263 /* Emit the read itself -- this is never indirect */
1264 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1265 }
1266
1267 static void
1268 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1269 {
1270 unsigned offset = 0, reg;
1271
1272 switch (instr->intrinsic) {
1273 case nir_intrinsic_discard_if:
1274 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1275
1276 /* fallthrough */
1277
1278 case nir_intrinsic_discard: {
1279 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1280 struct midgard_instruction discard = v_branch(conditional, false);
1281 discard.branch.target_type = TARGET_DISCARD;
1282 emit_mir_instruction(ctx, discard);
1283
1284 ctx->can_discard = true;
1285 break;
1286 }
1287
1288 case nir_intrinsic_load_uniform:
1289 case nir_intrinsic_load_ubo:
1290 case nir_intrinsic_load_input: {
1291 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1292 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1293
1294 /* Get the base type of the intrinsic */
1295 /* TODO: Infer type? Does it matter? */
1296 nir_alu_type t =
1297 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1298 t = nir_alu_type_get_base_type(t);
1299
1300 if (!is_ubo) {
1301 offset = nir_intrinsic_base(instr);
1302 }
1303
1304 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1305
1306 nir_src *src_offset = nir_get_io_offset_src(instr);
1307
1308 bool direct = nir_src_is_const(*src_offset);
1309
1310 if (direct)
1311 offset += nir_src_as_uint(*src_offset);
1312
1313 /* We may need to apply a fractional offset */
1314 int component = instr->intrinsic == nir_intrinsic_load_input ?
1315 nir_intrinsic_component(instr) : 0;
1316 reg = nir_dest_index(ctx, &instr->dest);
1317
1318 if (is_uniform && !ctx->is_blend) {
1319 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1320 } else if (is_ubo) {
1321 nir_src index = instr->src[0];
1322
1323 /* We don't yet support indirect UBOs. For indirect
1324 * block numbers (if that's possible), we don't know
1325 * enough about the hardware yet. For indirect sources,
1326 * we know what we need but we need to add some NIR
1327 * support for lowering correctly with respect to
1328 * 128-bit reads */
1329
1330 assert(nir_src_is_const(index));
1331 assert(nir_src_is_const(*src_offset));
1332
1333 /* TODO: Alignment */
1334 assert((offset & 0xF) == 0);
1335
1336 uint32_t uindex = nir_src_as_uint(index) + 1;
1337 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1338 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1339 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1340 } else if (ctx->is_blend) {
1341 /* For blend shaders, load the input color, which is
1342 * preloaded to r0 */
1343
1344 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1345 emit_mir_instruction(ctx, move);
1346 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1347 midgard_instruction ins = m_ld_attr_32(reg, offset);
1348 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1349 ins.mask = mask_of(nr_comp);
1350
1351 /* Use the type appropriate load */
1352 switch (t) {
1353 case nir_type_uint:
1354 case nir_type_bool:
1355 ins.load_store.op = midgard_op_ld_attr_32u;
1356 break;
1357 case nir_type_int:
1358 ins.load_store.op = midgard_op_ld_attr_32i;
1359 break;
1360 case nir_type_float:
1361 ins.load_store.op = midgard_op_ld_attr_32;
1362 break;
1363 default:
1364 unreachable("Attempted to load unknown type");
1365 break;
1366 }
1367
1368 emit_mir_instruction(ctx, ins);
1369 } else {
1370 DBG("Unknown load\n");
1371 assert(0);
1372 }
1373
1374 break;
1375 }
1376
1377 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1378
1379 case nir_intrinsic_load_raw_output_pan:
1380 reg = nir_dest_index(ctx, &instr->dest);
1381 assert(ctx->is_blend);
1382
1383 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1384 emit_mir_instruction(ctx, ins);
1385 break;
1386
1387 case nir_intrinsic_load_blend_const_color_rgba: {
1388 assert(ctx->is_blend);
1389 reg = nir_dest_index(ctx, &instr->dest);
1390
1391 /* Blend constants are embedded directly in the shader and
1392 * patched in, so we use some magic routing */
1393
1394 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1395 ins.has_constants = true;
1396 ins.has_blend_constant = true;
1397 emit_mir_instruction(ctx, ins);
1398 break;
1399 }
1400
1401 case nir_intrinsic_store_output:
1402 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1403
1404 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1405
1406 reg = nir_src_index(ctx, &instr->src[0]);
1407
1408 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1409 /* gl_FragColor is not emitted with load/store
1410 * instructions. Instead, it gets plonked into
1411 * r0 at the end of the shader and we do the
1412 * framebuffer writeout dance. TODO: Defer
1413 * writes */
1414
1415 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1416 emit_mir_instruction(ctx, move);
1417
1418 /* Save the index we're writing to for later reference
1419 * in the epilogue */
1420
1421 ctx->fragment_output = reg;
1422 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1423 /* Varyings are written into one of two special
1424 * varying register, r26 or r27. The register itself is
1425 * selected as the register in the st_vary instruction,
1426 * minus the base of 26. E.g. write into r27 and then
1427 * call st_vary(1) */
1428
1429 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1430 emit_mir_instruction(ctx, ins);
1431
1432 /* We should have been vectorized, though we don't
1433 * currently check that st_vary is emitted only once
1434 * per slot (this is relevant, since there's not a mask
1435 * parameter available on the store [set to 0 by the
1436 * blob]). We do respect the component by adjusting the
1437 * swizzle. */
1438
1439 unsigned component = nir_intrinsic_component(instr);
1440
1441 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1442 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1443 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1444 emit_mir_instruction(ctx, st);
1445 } else {
1446 DBG("Unknown store\n");
1447 assert(0);
1448 }
1449
1450 break;
1451
1452 /* Special case of store_output for lowered blend shaders */
1453 case nir_intrinsic_store_raw_output_pan:
1454 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1455 reg = nir_src_index(ctx, &instr->src[0]);
1456
1457 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1458 emit_mir_instruction(ctx, move);
1459 ctx->fragment_output = reg;
1460
1461 break;
1462
1463 case nir_intrinsic_load_alpha_ref_float:
1464 assert(instr->dest.is_ssa);
1465
1466 float ref_value = ctx->alpha_ref;
1467
1468 float *v = ralloc_array(NULL, float, 4);
1469 memcpy(v, &ref_value, sizeof(float));
1470 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1471 break;
1472
1473 case nir_intrinsic_load_viewport_scale:
1474 case nir_intrinsic_load_viewport_offset:
1475 emit_sysval_read(ctx, &instr->instr);
1476 break;
1477
1478 default:
1479 printf ("Unhandled intrinsic\n");
1480 assert(0);
1481 break;
1482 }
1483 }
1484
1485 static unsigned
1486 midgard_tex_format(enum glsl_sampler_dim dim)
1487 {
1488 switch (dim) {
1489 case GLSL_SAMPLER_DIM_1D:
1490 case GLSL_SAMPLER_DIM_BUF:
1491 return MALI_TEX_1D;
1492
1493 case GLSL_SAMPLER_DIM_2D:
1494 case GLSL_SAMPLER_DIM_EXTERNAL:
1495 return MALI_TEX_2D;
1496
1497 case GLSL_SAMPLER_DIM_3D:
1498 return MALI_TEX_3D;
1499
1500 case GLSL_SAMPLER_DIM_CUBE:
1501 return MALI_TEX_CUBE;
1502
1503 default:
1504 DBG("Unknown sampler dim type\n");
1505 assert(0);
1506 return 0;
1507 }
1508 }
1509
1510 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1511 * was successful */
1512
1513 static bool
1514 pan_attach_constant_bias(
1515 compiler_context *ctx,
1516 nir_src lod,
1517 midgard_texture_word *word)
1518 {
1519 /* To attach as constant, it has to *be* constant */
1520
1521 if (!nir_src_is_const(lod))
1522 return false;
1523
1524 float f = nir_src_as_float(lod);
1525
1526 /* Break into fixed-point */
1527 signed lod_int = f;
1528 float lod_frac = f - lod_int;
1529
1530 /* Carry over negative fractions */
1531 if (lod_frac < 0.0) {
1532 lod_int--;
1533 lod_frac += 1.0;
1534 }
1535
1536 /* Encode */
1537 word->bias = float_to_ubyte(lod_frac);
1538 word->bias_int = lod_int;
1539
1540 return true;
1541 }
1542
1543 static enum mali_sampler_type
1544 midgard_sampler_type(nir_alu_type t)
1545 {
1546 switch (nir_alu_type_get_base_type(t)) {
1547 case nir_type_float:
1548 return MALI_SAMPLER_FLOAT;
1549 case nir_type_int:
1550 return MALI_SAMPLER_SIGNED;
1551 case nir_type_uint:
1552 return MALI_SAMPLER_UNSIGNED;
1553 default:
1554 unreachable("Unknown sampler type");
1555 }
1556 }
1557
1558 static void
1559 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1560 unsigned midgard_texop)
1561 {
1562 /* TODO */
1563 //assert (!instr->sampler);
1564 //assert (!instr->texture_array_size);
1565
1566 /* Allocate registers via a round robin scheme to alternate between the two registers */
1567 int reg = ctx->texture_op_count & 1;
1568 int in_reg = reg, out_reg = reg;
1569
1570 /* Make room for the reg */
1571
1572 if (ctx->texture_index[reg] > -1)
1573 unalias_ssa(ctx, ctx->texture_index[reg]);
1574
1575 int texture_index = instr->texture_index;
1576 int sampler_index = texture_index;
1577
1578 /* No helper to build texture words -- we do it all here */
1579 midgard_instruction ins = {
1580 .type = TAG_TEXTURE_4,
1581 .mask = 0xF,
1582 .texture = {
1583 .op = midgard_texop,
1584 .format = midgard_tex_format(instr->sampler_dim),
1585 .texture_handle = texture_index,
1586 .sampler_handle = sampler_index,
1587
1588 /* TODO: Regalloc it in */
1589 .swizzle = SWIZZLE_XYZW,
1590
1591 /* TODO: half */
1592 .in_reg_full = 1,
1593 .out_full = 1,
1594
1595 .sampler_type = midgard_sampler_type(instr->dest_type),
1596 }
1597 };
1598
1599 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1600 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1601 int index = nir_src_index(ctx, &instr->src[i].src);
1602 int nr_comp = nir_src_num_components(instr->src[i].src);
1603 midgard_vector_alu_src alu_src = blank_alu_src;
1604
1605 switch (instr->src[i].src_type) {
1606 case nir_tex_src_coord: {
1607 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1608 /* texelFetch is undefined on samplerCube */
1609 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1610
1611 /* For cubemaps, we need to load coords into
1612 * special r27, and then use a special ld/st op
1613 * to select the face and copy the xy into the
1614 * texture register */
1615
1616 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1617
1618 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1619 emit_mir_instruction(ctx, move);
1620
1621 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1622 st.load_store.unknown = 0x24; /* XXX: What is this? */
1623 st.mask = 0x3; /* xy */
1624 st.load_store.swizzle = alu_src.swizzle;
1625 emit_mir_instruction(ctx, st);
1626
1627 ins.texture.in_reg_swizzle = swizzle_of(2);
1628 } else {
1629 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1630
1631 midgard_instruction mov = v_mov(index, alu_src, reg);
1632 mov.mask = mask_of(nr_comp);
1633 emit_mir_instruction(ctx, mov);
1634
1635 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1636 /* Texel fetch opcodes care about the
1637 * values of z and w, so we actually
1638 * need to spill into a second register
1639 * for a texel fetch with register bias
1640 * (for non-2D). TODO: Implement that
1641 */
1642
1643 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1644
1645 midgard_instruction zero = v_mov(index, alu_src, reg);
1646 zero.ssa_args.inline_constant = true;
1647 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1648 zero.has_constants = true;
1649 zero.mask = ~mov.mask;
1650 emit_mir_instruction(ctx, zero);
1651
1652 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1653 } else {
1654 /* Non-texel fetch doesn't need that
1655 * nonsense. However we do use the Z
1656 * for array indexing */
1657 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1658 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1659 }
1660 }
1661
1662 break;
1663 }
1664
1665 case nir_tex_src_bias:
1666 case nir_tex_src_lod: {
1667 /* Try as a constant if we can */
1668
1669 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1670 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1671 break;
1672
1673 /* Otherwise we use a register. To keep RA simple, we
1674 * put the bias/LOD into the w component of the input
1675 * source, which is otherwise in xy */
1676
1677 alu_src.swizzle = SWIZZLE_XXXX;
1678
1679 midgard_instruction mov = v_mov(index, alu_src, reg);
1680 mov.mask = 1 << COMPONENT_W;
1681 emit_mir_instruction(ctx, mov);
1682
1683 ins.texture.lod_register = true;
1684
1685 midgard_tex_register_select sel = {
1686 .select = in_reg,
1687 .full = 1,
1688
1689 /* w */
1690 .component_lo = 1,
1691 .component_hi = 1
1692 };
1693
1694 uint8_t packed;
1695 memcpy(&packed, &sel, sizeof(packed));
1696 ins.texture.bias = packed;
1697
1698 break;
1699 };
1700
1701 default:
1702 unreachable("Unknown texture source type\n");
1703 }
1704 }
1705
1706 /* Set registers to read and write from the same place */
1707 ins.texture.in_reg_select = in_reg;
1708 ins.texture.out_reg_select = out_reg;
1709
1710 emit_mir_instruction(ctx, ins);
1711
1712 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1713 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1714 emit_mir_instruction(ctx, ins2);
1715
1716 /* Used for .cont and .last hinting */
1717 ctx->texture_op_count++;
1718 }
1719
1720 static void
1721 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1722 {
1723 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1724 * generic tex in some cases (which confuses the hardware) */
1725
1726 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1727
1728 if (is_vertex && instr->op == nir_texop_tex)
1729 instr->op = nir_texop_txl;
1730
1731 switch (instr->op) {
1732 case nir_texop_tex:
1733 case nir_texop_txb:
1734 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1735 break;
1736 case nir_texop_txl:
1737 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1738 break;
1739 case nir_texop_txf:
1740 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1741 break;
1742 case nir_texop_txs:
1743 emit_sysval_read(ctx, &instr->instr);
1744 break;
1745 default:
1746 unreachable("Unhanlded texture op");
1747 }
1748 }
1749
1750 static void
1751 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1752 {
1753 switch (instr->type) {
1754 case nir_jump_break: {
1755 /* Emit a branch out of the loop */
1756 struct midgard_instruction br = v_branch(false, false);
1757 br.branch.target_type = TARGET_BREAK;
1758 br.branch.target_break = ctx->current_loop_depth;
1759 emit_mir_instruction(ctx, br);
1760
1761 DBG("break..\n");
1762 break;
1763 }
1764
1765 default:
1766 DBG("Unknown jump type %d\n", instr->type);
1767 break;
1768 }
1769 }
1770
1771 static void
1772 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1773 {
1774 switch (instr->type) {
1775 case nir_instr_type_load_const:
1776 emit_load_const(ctx, nir_instr_as_load_const(instr));
1777 break;
1778
1779 case nir_instr_type_intrinsic:
1780 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1781 break;
1782
1783 case nir_instr_type_alu:
1784 emit_alu(ctx, nir_instr_as_alu(instr));
1785 break;
1786
1787 case nir_instr_type_tex:
1788 emit_tex(ctx, nir_instr_as_tex(instr));
1789 break;
1790
1791 case nir_instr_type_jump:
1792 emit_jump(ctx, nir_instr_as_jump(instr));
1793 break;
1794
1795 case nir_instr_type_ssa_undef:
1796 /* Spurious */
1797 break;
1798
1799 default:
1800 DBG("Unhandled instruction type\n");
1801 break;
1802 }
1803 }
1804
1805
1806 /* ALU instructions can inline or embed constants, which decreases register
1807 * pressure and saves space. */
1808
1809 #define CONDITIONAL_ATTACH(src) { \
1810 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1811 \
1812 if (entry) { \
1813 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1814 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1815 } \
1816 }
1817
1818 static void
1819 inline_alu_constants(compiler_context *ctx)
1820 {
1821 mir_foreach_instr(ctx, alu) {
1822 /* Other instructions cannot inline constants */
1823 if (alu->type != TAG_ALU_4) continue;
1824
1825 /* If there is already a constant here, we can do nothing */
1826 if (alu->has_constants) continue;
1827
1828 /* It makes no sense to inline constants on a branch */
1829 if (alu->compact_branch || alu->prepacked_branch) continue;
1830
1831 CONDITIONAL_ATTACH(src0);
1832
1833 if (!alu->has_constants) {
1834 CONDITIONAL_ATTACH(src1)
1835 } else if (!alu->inline_constant) {
1836 /* Corner case: _two_ vec4 constants, for instance with a
1837 * csel. For this case, we can only use a constant
1838 * register for one, we'll have to emit a move for the
1839 * other. Note, if both arguments are constants, then
1840 * necessarily neither argument depends on the value of
1841 * any particular register. As the destination register
1842 * will be wiped, that means we can spill the constant
1843 * to the destination register.
1844 */
1845
1846 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1847 unsigned scratch = alu->ssa_args.dest;
1848
1849 if (entry) {
1850 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1851 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1852
1853 /* Force a break XXX Defer r31 writes */
1854 ins.unit = UNIT_VLUT;
1855
1856 /* Set the source */
1857 alu->ssa_args.src1 = scratch;
1858
1859 /* Inject us -before- the last instruction which set r31 */
1860 mir_insert_instruction_before(mir_prev_op(alu), ins);
1861 }
1862 }
1863 }
1864 }
1865
1866 /* Midgard supports two types of constants, embedded constants (128-bit) and
1867 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1868 * constants can be demoted to inline constants, for space savings and
1869 * sometimes a performance boost */
1870
1871 static void
1872 embedded_to_inline_constant(compiler_context *ctx)
1873 {
1874 mir_foreach_instr(ctx, ins) {
1875 if (!ins->has_constants) continue;
1876
1877 if (ins->ssa_args.inline_constant) continue;
1878
1879 /* Blend constants must not be inlined by definition */
1880 if (ins->has_blend_constant) continue;
1881
1882 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1883 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1884 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1885
1886 if (!(is_16 || is_32))
1887 continue;
1888
1889 /* src1 cannot be an inline constant due to encoding
1890 * restrictions. So, if possible we try to flip the arguments
1891 * in that case */
1892
1893 int op = ins->alu.op;
1894
1895 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1896 switch (op) {
1897 /* These ops require an operational change to flip
1898 * their arguments TODO */
1899 case midgard_alu_op_flt:
1900 case midgard_alu_op_fle:
1901 case midgard_alu_op_ilt:
1902 case midgard_alu_op_ile:
1903 case midgard_alu_op_fcsel:
1904 case midgard_alu_op_icsel:
1905 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1906 default:
1907 break;
1908 }
1909
1910 if (alu_opcode_props[op].props & OP_COMMUTES) {
1911 /* Flip the SSA numbers */
1912 ins->ssa_args.src0 = ins->ssa_args.src1;
1913 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1914
1915 /* And flip the modifiers */
1916
1917 unsigned src_temp;
1918
1919 src_temp = ins->alu.src2;
1920 ins->alu.src2 = ins->alu.src1;
1921 ins->alu.src1 = src_temp;
1922 }
1923 }
1924
1925 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1926 /* Extract the source information */
1927
1928 midgard_vector_alu_src *src;
1929 int q = ins->alu.src2;
1930 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1931 src = m;
1932
1933 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1934 int component = src->swizzle & 3;
1935
1936 /* Scale constant appropriately, if we can legally */
1937 uint16_t scaled_constant = 0;
1938
1939 if (midgard_is_integer_op(op) || is_16) {
1940 unsigned int *iconstants = (unsigned int *) ins->constants;
1941 scaled_constant = (uint16_t) iconstants[component];
1942
1943 /* Constant overflow after resize */
1944 if (scaled_constant != iconstants[component])
1945 continue;
1946 } else {
1947 float original = (float) ins->constants[component];
1948 scaled_constant = _mesa_float_to_half(original);
1949
1950 /* Check for loss of precision. If this is
1951 * mediump, we don't care, but for a highp
1952 * shader, we need to pay attention. NIR
1953 * doesn't yet tell us which mode we're in!
1954 * Practically this prevents most constants
1955 * from being inlined, sadly. */
1956
1957 float fp32 = _mesa_half_to_float(scaled_constant);
1958
1959 if (fp32 != original)
1960 continue;
1961 }
1962
1963 /* We don't know how to handle these with a constant */
1964
1965 if (src->mod || src->half || src->rep_low || src->rep_high) {
1966 DBG("Bailing inline constant...\n");
1967 continue;
1968 }
1969
1970 /* Make sure that the constant is not itself a
1971 * vector by checking if all accessed values
1972 * (by the swizzle) are the same. */
1973
1974 uint32_t *cons = (uint32_t *) ins->constants;
1975 uint32_t value = cons[component];
1976
1977 bool is_vector = false;
1978 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1979
1980 for (int c = 1; c < 4; ++c) {
1981 /* We only care if this component is actually used */
1982 if (!(mask & (1 << c)))
1983 continue;
1984
1985 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1986
1987 if (test != value) {
1988 is_vector = true;
1989 break;
1990 }
1991 }
1992
1993 if (is_vector)
1994 continue;
1995
1996 /* Get rid of the embedded constant */
1997 ins->has_constants = false;
1998 ins->ssa_args.src1 = SSA_UNUSED_0;
1999 ins->ssa_args.inline_constant = true;
2000 ins->inline_constant = scaled_constant;
2001 }
2002 }
2003 }
2004
2005 /* Map normal SSA sources to other SSA sources / fixed registers (like
2006 * uniforms) */
2007
2008 static void
2009 map_ssa_to_alias(compiler_context *ctx, int *ref)
2010 {
2011 /* Sign is used quite deliberately for unused */
2012 if (*ref < 0)
2013 return;
2014
2015 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2016
2017 if (alias) {
2018 /* Remove entry in leftovers to avoid a redunant fmov */
2019
2020 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2021
2022 if (leftover)
2023 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2024
2025 /* Assign the alias map */
2026 *ref = alias - 1;
2027 return;
2028 }
2029 }
2030
2031 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2032 * texture pipeline */
2033
2034 static bool
2035 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2036 {
2037 bool progress = false;
2038
2039 mir_foreach_instr_in_block_safe(block, ins) {
2040 if (ins->type != TAG_ALU_4) continue;
2041 if (ins->compact_branch) continue;
2042
2043 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2044 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2045
2046 mir_remove_instruction(ins);
2047 progress = true;
2048 }
2049
2050 return progress;
2051 }
2052
2053 /* Dead code elimination for branches at the end of a block - only one branch
2054 * per block is legal semantically */
2055
2056 static void
2057 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2058 {
2059 bool branched = false;
2060
2061 mir_foreach_instr_in_block_safe(block, ins) {
2062 if (!midgard_is_branch_unit(ins->unit)) continue;
2063
2064 /* We ignore prepacked branches since the fragment epilogue is
2065 * just generally special */
2066 if (ins->prepacked_branch) continue;
2067
2068 /* Discards are similarly special and may not correspond to the
2069 * end of a block */
2070
2071 if (ins->branch.target_type == TARGET_DISCARD) continue;
2072
2073 if (branched) {
2074 /* We already branched, so this is dead */
2075 mir_remove_instruction(ins);
2076 }
2077
2078 branched = true;
2079 }
2080 }
2081
2082 static bool
2083 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2084 {
2085 /* abs or neg */
2086 if (!is_int && src.mod) return true;
2087
2088 /* Other int mods don't matter in isolation */
2089 if (is_int && src.mod == midgard_int_shift) return true;
2090
2091 /* size-conversion */
2092 if (src.half) return true;
2093
2094 /* swizzle */
2095 for (unsigned c = 0; c < 4; ++c) {
2096 if (!(mask & (1 << c))) continue;
2097 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2098 }
2099
2100 return false;
2101 }
2102
2103 static bool
2104 mir_nontrivial_source2_mod(midgard_instruction *ins)
2105 {
2106 bool is_int = midgard_is_integer_op(ins->alu.op);
2107
2108 midgard_vector_alu_src src2 =
2109 vector_alu_from_unsigned(ins->alu.src2);
2110
2111 return mir_nontrivial_mod(src2, is_int, ins->mask);
2112 }
2113
2114 static bool
2115 mir_nontrivial_outmod(midgard_instruction *ins)
2116 {
2117 bool is_int = midgard_is_integer_op(ins->alu.op);
2118 unsigned mod = ins->alu.outmod;
2119
2120 /* Type conversion is a sort of outmod */
2121 if (ins->alu.dest_override != midgard_dest_override_none)
2122 return true;
2123
2124 if (is_int)
2125 return mod != midgard_outmod_int_wrap;
2126 else
2127 return mod != midgard_outmod_none;
2128 }
2129
2130 static bool
2131 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2132 {
2133 bool progress = false;
2134
2135 mir_foreach_instr_in_block_safe(block, ins) {
2136 if (ins->type != TAG_ALU_4) continue;
2137 if (!OP_IS_MOVE(ins->alu.op)) continue;
2138
2139 unsigned from = ins->ssa_args.src1;
2140 unsigned to = ins->ssa_args.dest;
2141
2142 /* We only work on pure SSA */
2143
2144 if (to >= SSA_FIXED_MINIMUM) continue;
2145 if (from >= SSA_FIXED_MINIMUM) continue;
2146 if (to >= ctx->func->impl->ssa_alloc) continue;
2147 if (from >= ctx->func->impl->ssa_alloc) continue;
2148
2149 /* Constant propagation is not handled here, either */
2150 if (ins->ssa_args.inline_constant) continue;
2151 if (ins->has_constants) continue;
2152
2153 if (mir_nontrivial_source2_mod(ins)) continue;
2154 if (mir_nontrivial_outmod(ins)) continue;
2155
2156 /* We're clear -- rewrite */
2157 mir_rewrite_index_src(ctx, to, from);
2158 mir_remove_instruction(ins);
2159 progress |= true;
2160 }
2161
2162 return progress;
2163 }
2164
2165 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2166 * the move can be propagated away entirely */
2167
2168 static bool
2169 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2170 {
2171 /* Nothing to do */
2172 if (comp == midgard_outmod_none)
2173 return true;
2174
2175 if (*outmod == midgard_outmod_none) {
2176 *outmod = comp;
2177 return true;
2178 }
2179
2180 /* TODO: Compose rules */
2181 return false;
2182 }
2183
2184 static bool
2185 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2186 {
2187 bool progress = false;
2188
2189 mir_foreach_instr_in_block_safe(block, ins) {
2190 if (ins->type != TAG_ALU_4) continue;
2191 if (ins->alu.op != midgard_alu_op_fmov) continue;
2192 if (ins->alu.outmod != midgard_outmod_pos) continue;
2193
2194 /* TODO: Registers? */
2195 unsigned src = ins->ssa_args.src1;
2196 if (src >= ctx->func->impl->ssa_alloc) continue;
2197 assert(!mir_has_multiple_writes(ctx, src));
2198
2199 /* There might be a source modifier, too */
2200 if (mir_nontrivial_source2_mod(ins)) continue;
2201
2202 /* Backpropagate the modifier */
2203 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2204 if (v->type != TAG_ALU_4) continue;
2205 if (v->ssa_args.dest != src) continue;
2206
2207 /* Can we even take a float outmod? */
2208 if (midgard_is_integer_out_op(v->alu.op)) continue;
2209
2210 midgard_outmod_float temp = v->alu.outmod;
2211 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2212
2213 /* Throw in the towel.. */
2214 if (!progress) break;
2215
2216 /* Otherwise, transfer the modifier */
2217 v->alu.outmod = temp;
2218 ins->alu.outmod = midgard_outmod_none;
2219
2220 break;
2221 }
2222 }
2223
2224 return progress;
2225 }
2226
2227 /* The following passes reorder MIR instructions to enable better scheduling */
2228
2229 static void
2230 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2231 {
2232 mir_foreach_instr_in_block_safe(block, ins) {
2233 if (ins->type != TAG_LOAD_STORE_4) continue;
2234
2235 /* We've found a load/store op. Check if next is also load/store. */
2236 midgard_instruction *next_op = mir_next_op(ins);
2237 if (&next_op->link != &block->instructions) {
2238 if (next_op->type == TAG_LOAD_STORE_4) {
2239 /* If so, we're done since we're a pair */
2240 ins = mir_next_op(ins);
2241 continue;
2242 }
2243
2244 /* Maximum search distance to pair, to avoid register pressure disasters */
2245 int search_distance = 8;
2246
2247 /* Otherwise, we have an orphaned load/store -- search for another load */
2248 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2249 /* Terminate search if necessary */
2250 if (!(search_distance--)) break;
2251
2252 if (c->type != TAG_LOAD_STORE_4) continue;
2253
2254 /* Stores cannot be reordered, since they have
2255 * dependencies. For the same reason, indirect
2256 * loads cannot be reordered as their index is
2257 * loaded in r27.w */
2258
2259 if (OP_IS_STORE(c->load_store.op)) continue;
2260
2261 /* It appears the 0x800 bit is set whenever a
2262 * load is direct, unset when it is indirect.
2263 * Skip indirect loads. */
2264
2265 if (!(c->load_store.unknown & 0x800)) continue;
2266
2267 /* We found one! Move it up to pair and remove it from the old location */
2268
2269 mir_insert_instruction_before(ins, *c);
2270 mir_remove_instruction(c);
2271
2272 break;
2273 }
2274 }
2275 }
2276 }
2277
2278 /* If there are leftovers after the below pass, emit actual fmov
2279 * instructions for the slow-but-correct path */
2280
2281 static void
2282 emit_leftover_move(compiler_context *ctx)
2283 {
2284 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2285 int base = ((uintptr_t) leftover->key) - 1;
2286 int mapped = base;
2287
2288 map_ssa_to_alias(ctx, &mapped);
2289 EMIT(mov, mapped, blank_alu_src, base);
2290 }
2291 }
2292
2293 static void
2294 actualise_ssa_to_alias(compiler_context *ctx)
2295 {
2296 mir_foreach_instr(ctx, ins) {
2297 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2298 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2299 }
2300
2301 emit_leftover_move(ctx);
2302 }
2303
2304 static void
2305 emit_fragment_epilogue(compiler_context *ctx)
2306 {
2307 /* Special case: writing out constants requires us to include the move
2308 * explicitly now, so shove it into r0 */
2309
2310 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2311
2312 if (constant_value) {
2313 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2314 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2315 emit_mir_instruction(ctx, ins);
2316 }
2317
2318 /* Perform the actual fragment writeout. We have two writeout/branch
2319 * instructions, forming a loop until writeout is successful as per the
2320 * docs. TODO: gl_FragDepth */
2321
2322 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2323 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2324 }
2325
2326 static midgard_block *
2327 emit_block(compiler_context *ctx, nir_block *block)
2328 {
2329 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2330 list_addtail(&this_block->link, &ctx->blocks);
2331
2332 this_block->is_scheduled = false;
2333 ++ctx->block_count;
2334
2335 ctx->texture_index[0] = -1;
2336 ctx->texture_index[1] = -1;
2337
2338 /* Add us as a successor to the block we are following */
2339 if (ctx->current_block)
2340 midgard_block_add_successor(ctx->current_block, this_block);
2341
2342 /* Set up current block */
2343 list_inithead(&this_block->instructions);
2344 ctx->current_block = this_block;
2345
2346 nir_foreach_instr(instr, block) {
2347 emit_instr(ctx, instr);
2348 ++ctx->instruction_count;
2349 }
2350
2351 inline_alu_constants(ctx);
2352 embedded_to_inline_constant(ctx);
2353
2354 /* Perform heavylifting for aliasing */
2355 actualise_ssa_to_alias(ctx);
2356
2357 midgard_pair_load_store(ctx, this_block);
2358
2359 /* Append fragment shader epilogue (value writeout) */
2360 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2361 if (block == nir_impl_last_block(ctx->func->impl)) {
2362 emit_fragment_epilogue(ctx);
2363 }
2364 }
2365
2366 if (block == nir_start_block(ctx->func->impl))
2367 ctx->initial_block = this_block;
2368
2369 if (block == nir_impl_last_block(ctx->func->impl))
2370 ctx->final_block = this_block;
2371
2372 /* Allow the next control flow to access us retroactively, for
2373 * branching etc */
2374 ctx->current_block = this_block;
2375
2376 /* Document the fallthrough chain */
2377 ctx->previous_source_block = this_block;
2378
2379 return this_block;
2380 }
2381
2382 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2383
2384 static void
2385 emit_if(struct compiler_context *ctx, nir_if *nif)
2386 {
2387 /* Conditional branches expect the condition in r31.w; emit a move for
2388 * that in the _previous_ block (which is the current block). */
2389 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2390
2391 /* Speculatively emit the branch, but we can't fill it in until later */
2392 EMIT(branch, true, true);
2393 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2394
2395 /* Emit the two subblocks */
2396 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2397
2398 /* Emit a jump from the end of the then block to the end of the else */
2399 EMIT(branch, false, false);
2400 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2401
2402 /* Emit second block, and check if it's empty */
2403
2404 int else_idx = ctx->block_count;
2405 int count_in = ctx->instruction_count;
2406 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2407 int after_else_idx = ctx->block_count;
2408
2409 /* Now that we have the subblocks emitted, fix up the branches */
2410
2411 assert(then_block);
2412 assert(else_block);
2413
2414 if (ctx->instruction_count == count_in) {
2415 /* The else block is empty, so don't emit an exit jump */
2416 mir_remove_instruction(then_exit);
2417 then_branch->branch.target_block = after_else_idx;
2418 } else {
2419 then_branch->branch.target_block = else_idx;
2420 then_exit->branch.target_block = after_else_idx;
2421 }
2422 }
2423
2424 static void
2425 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2426 {
2427 /* Remember where we are */
2428 midgard_block *start_block = ctx->current_block;
2429
2430 /* Allocate a loop number, growing the current inner loop depth */
2431 int loop_idx = ++ctx->current_loop_depth;
2432
2433 /* Get index from before the body so we can loop back later */
2434 int start_idx = ctx->block_count;
2435
2436 /* Emit the body itself */
2437 emit_cf_list(ctx, &nloop->body);
2438
2439 /* Branch back to loop back */
2440 struct midgard_instruction br_back = v_branch(false, false);
2441 br_back.branch.target_block = start_idx;
2442 emit_mir_instruction(ctx, br_back);
2443
2444 /* Mark down that branch in the graph. Note that we're really branching
2445 * to the block *after* we started in. TODO: Why doesn't the branch
2446 * itself have an off-by-one then...? */
2447 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2448
2449 /* Find the index of the block about to follow us (note: we don't add
2450 * one; blocks are 0-indexed so we get a fencepost problem) */
2451 int break_block_idx = ctx->block_count;
2452
2453 /* Fix up the break statements we emitted to point to the right place,
2454 * now that we can allocate a block number for them */
2455
2456 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2457 mir_foreach_instr_in_block(block, ins) {
2458 if (ins->type != TAG_ALU_4) continue;
2459 if (!ins->compact_branch) continue;
2460 if (ins->prepacked_branch) continue;
2461
2462 /* We found a branch -- check the type to see if we need to do anything */
2463 if (ins->branch.target_type != TARGET_BREAK) continue;
2464
2465 /* It's a break! Check if it's our break */
2466 if (ins->branch.target_break != loop_idx) continue;
2467
2468 /* Okay, cool, we're breaking out of this loop.
2469 * Rewrite from a break to a goto */
2470
2471 ins->branch.target_type = TARGET_GOTO;
2472 ins->branch.target_block = break_block_idx;
2473 }
2474 }
2475
2476 /* Now that we've finished emitting the loop, free up the depth again
2477 * so we play nice with recursion amid nested loops */
2478 --ctx->current_loop_depth;
2479 }
2480
2481 static midgard_block *
2482 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2483 {
2484 midgard_block *start_block = NULL;
2485
2486 foreach_list_typed(nir_cf_node, node, node, list) {
2487 switch (node->type) {
2488 case nir_cf_node_block: {
2489 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2490
2491 if (!start_block)
2492 start_block = block;
2493
2494 break;
2495 }
2496
2497 case nir_cf_node_if:
2498 emit_if(ctx, nir_cf_node_as_if(node));
2499 break;
2500
2501 case nir_cf_node_loop:
2502 emit_loop(ctx, nir_cf_node_as_loop(node));
2503 break;
2504
2505 case nir_cf_node_function:
2506 assert(0);
2507 break;
2508 }
2509 }
2510
2511 return start_block;
2512 }
2513
2514 /* Due to lookahead, we need to report the first tag executed in the command
2515 * stream and in branch targets. An initial block might be empty, so iterate
2516 * until we find one that 'works' */
2517
2518 static unsigned
2519 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2520 {
2521 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2522
2523 unsigned first_tag = 0;
2524
2525 do {
2526 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2527
2528 if (initial_bundle) {
2529 first_tag = initial_bundle->tag;
2530 break;
2531 }
2532
2533 /* Initial block is empty, try the next block */
2534 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2535 } while(initial_block != NULL);
2536
2537 assert(first_tag);
2538 return first_tag;
2539 }
2540
2541 int
2542 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2543 {
2544 struct util_dynarray *compiled = &program->compiled;
2545
2546 midgard_debug = debug_get_option_midgard_debug();
2547
2548 compiler_context ictx = {
2549 .nir = nir,
2550 .stage = nir->info.stage,
2551
2552 .is_blend = is_blend,
2553 .blend_constant_offset = 0,
2554
2555 .alpha_ref = program->alpha_ref
2556 };
2557
2558 compiler_context *ctx = &ictx;
2559
2560 /* TODO: Decide this at runtime */
2561 ctx->uniform_cutoff = 8;
2562
2563 /* Initialize at a global (not block) level hash tables */
2564
2565 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2566 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2567 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2568 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2569 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2570
2571 /* Record the varying mapping for the command stream's bookkeeping */
2572
2573 struct exec_list *varyings =
2574 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2575
2576 unsigned max_varying = 0;
2577 nir_foreach_variable(var, varyings) {
2578 unsigned loc = var->data.driver_location;
2579 unsigned sz = glsl_type_size(var->type, FALSE);
2580
2581 for (int c = 0; c < sz; ++c) {
2582 program->varyings[loc + c] = var->data.location + c;
2583 max_varying = MAX2(max_varying, loc + c);
2584 }
2585 }
2586
2587 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2588 * (so we don't accidentally duplicate the epilogue since mesa/st has
2589 * messed with our I/O quite a bit already) */
2590
2591 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2592
2593 if (ctx->stage == MESA_SHADER_VERTEX)
2594 NIR_PASS_V(nir, nir_lower_viewport_transform);
2595
2596 NIR_PASS_V(nir, nir_lower_var_copies);
2597 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2598 NIR_PASS_V(nir, nir_split_var_copies);
2599 NIR_PASS_V(nir, nir_lower_var_copies);
2600 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2601 NIR_PASS_V(nir, nir_lower_var_copies);
2602 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2603
2604 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2605
2606 /* Optimisation passes */
2607
2608 optimise_nir(nir);
2609
2610 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2611 nir_print_shader(nir, stdout);
2612 }
2613
2614 /* Assign sysvals and counts, now that we're sure
2615 * (post-optimisation) */
2616
2617 midgard_nir_assign_sysvals(ctx, nir);
2618
2619 program->uniform_count = nir->num_uniforms;
2620 program->sysval_count = ctx->sysval_count;
2621 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2622
2623 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2624 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2625
2626 nir_foreach_function(func, nir) {
2627 if (!func->impl)
2628 continue;
2629
2630 list_inithead(&ctx->blocks);
2631 ctx->block_count = 0;
2632 ctx->func = func;
2633
2634 emit_cf_list(ctx, &func->impl->body);
2635 emit_block(ctx, func->impl->end_block);
2636
2637 break; /* TODO: Multi-function shaders */
2638 }
2639
2640 util_dynarray_init(compiled, NULL);
2641
2642 /* MIR-level optimizations */
2643
2644 bool progress = false;
2645
2646 do {
2647 progress = false;
2648
2649 mir_foreach_block(ctx, block) {
2650 progress |= midgard_opt_pos_propagate(ctx, block);
2651 progress |= midgard_opt_copy_prop(ctx, block);
2652 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2653 }
2654 } while (progress);
2655
2656 /* Nested control-flow can result in dead branches at the end of the
2657 * block. This messes with our analysis and is just dead code, so cull
2658 * them */
2659 mir_foreach_block(ctx, block) {
2660 midgard_opt_cull_dead_branch(ctx, block);
2661 }
2662
2663 /* Schedule! */
2664 schedule_program(ctx);
2665
2666 /* Now that all the bundles are scheduled and we can calculate block
2667 * sizes, emit actual branch instructions rather than placeholders */
2668
2669 int br_block_idx = 0;
2670
2671 mir_foreach_block(ctx, block) {
2672 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2673 for (int c = 0; c < bundle->instruction_count; ++c) {
2674 midgard_instruction *ins = bundle->instructions[c];
2675
2676 if (!midgard_is_branch_unit(ins->unit)) continue;
2677
2678 if (ins->prepacked_branch) continue;
2679
2680 /* Parse some basic branch info */
2681 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2682 bool is_conditional = ins->branch.conditional;
2683 bool is_inverted = ins->branch.invert_conditional;
2684 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2685
2686 /* Determine the block we're jumping to */
2687 int target_number = ins->branch.target_block;
2688
2689 /* Report the destination tag */
2690 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2691
2692 /* Count up the number of quadwords we're
2693 * jumping over = number of quadwords until
2694 * (br_block_idx, target_number) */
2695
2696 int quadword_offset = 0;
2697
2698 if (is_discard) {
2699 /* Jump to the end of the shader. We
2700 * need to include not only the
2701 * following blocks, but also the
2702 * contents of our current block (since
2703 * discard can come in the middle of
2704 * the block) */
2705
2706 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2707
2708 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2709 quadword_offset += quadword_size(bun->tag);
2710 }
2711
2712 mir_foreach_block_from(ctx, blk, b) {
2713 quadword_offset += b->quadword_count;
2714 }
2715
2716 } else if (target_number > br_block_idx) {
2717 /* Jump forward */
2718
2719 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2720 midgard_block *blk = mir_get_block(ctx, idx);
2721 assert(blk);
2722
2723 quadword_offset += blk->quadword_count;
2724 }
2725 } else {
2726 /* Jump backwards */
2727
2728 for (int idx = br_block_idx; idx >= target_number; --idx) {
2729 midgard_block *blk = mir_get_block(ctx, idx);
2730 assert(blk);
2731
2732 quadword_offset -= blk->quadword_count;
2733 }
2734 }
2735
2736 /* Unconditional extended branches (far jumps)
2737 * have issues, so we always use a conditional
2738 * branch, setting the condition to always for
2739 * unconditional. For compact unconditional
2740 * branches, cond isn't used so it doesn't
2741 * matter what we pick. */
2742
2743 midgard_condition cond =
2744 !is_conditional ? midgard_condition_always :
2745 is_inverted ? midgard_condition_false :
2746 midgard_condition_true;
2747
2748 midgard_jmp_writeout_op op =
2749 is_discard ? midgard_jmp_writeout_op_discard :
2750 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2751 midgard_jmp_writeout_op_branch_cond;
2752
2753 if (!is_compact) {
2754 midgard_branch_extended branch =
2755 midgard_create_branch_extended(
2756 cond, op,
2757 dest_tag,
2758 quadword_offset);
2759
2760 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2761 } else if (is_conditional || is_discard) {
2762 midgard_branch_cond branch = {
2763 .op = op,
2764 .dest_tag = dest_tag,
2765 .offset = quadword_offset,
2766 .cond = cond
2767 };
2768
2769 assert(branch.offset == quadword_offset);
2770
2771 memcpy(&ins->br_compact, &branch, sizeof(branch));
2772 } else {
2773 assert(op == midgard_jmp_writeout_op_branch_uncond);
2774
2775 midgard_branch_uncond branch = {
2776 .op = op,
2777 .dest_tag = dest_tag,
2778 .offset = quadword_offset,
2779 .unknown = 1
2780 };
2781
2782 assert(branch.offset == quadword_offset);
2783
2784 memcpy(&ins->br_compact, &branch, sizeof(branch));
2785 }
2786 }
2787 }
2788
2789 ++br_block_idx;
2790 }
2791
2792 /* Emit flat binary from the instruction arrays. Iterate each block in
2793 * sequence. Save instruction boundaries such that lookahead tags can
2794 * be assigned easily */
2795
2796 /* Cache _all_ bundles in source order for lookahead across failed branches */
2797
2798 int bundle_count = 0;
2799 mir_foreach_block(ctx, block) {
2800 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2801 }
2802 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2803 int bundle_idx = 0;
2804 mir_foreach_block(ctx, block) {
2805 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2806 source_order_bundles[bundle_idx++] = bundle;
2807 }
2808 }
2809
2810 int current_bundle = 0;
2811
2812 /* Midgard prefetches instruction types, so during emission we
2813 * need to lookahead. Unless this is the last instruction, in
2814 * which we return 1. Or if this is the second to last and the
2815 * last is an ALU, then it's also 1... */
2816
2817 mir_foreach_block(ctx, block) {
2818 mir_foreach_bundle_in_block(block, bundle) {
2819 int lookahead = 1;
2820
2821 if (current_bundle + 1 < bundle_count) {
2822 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2823
2824 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2825 lookahead = 1;
2826 } else {
2827 lookahead = next;
2828 }
2829 }
2830
2831 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2832 ++current_bundle;
2833 }
2834
2835 /* TODO: Free deeper */
2836 //util_dynarray_fini(&block->instructions);
2837 }
2838
2839 free(source_order_bundles);
2840
2841 /* Report the very first tag executed */
2842 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2843
2844 /* Deal with off-by-one related to the fencepost problem */
2845 program->work_register_count = ctx->work_registers + 1;
2846
2847 program->can_discard = ctx->can_discard;
2848 program->uniform_cutoff = ctx->uniform_cutoff;
2849
2850 program->blend_patch_offset = ctx->blend_constant_offset;
2851
2852 if (midgard_debug & MIDGARD_DBG_SHADERS)
2853 disassemble_midgard(program->compiled.data, program->compiled.size);
2854
2855 return 0;
2856 }