panfrost/midgard: fpow is a two-part operation
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
752
753 /* Lower mods for float ops only. Integer ops don't support modifiers
754 * (saturate doesn't make sense on integers, neg/abs require dedicated
755 * instructions) */
756
757 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
758 NIR_PASS(progress, nir, nir_copy_prop);
759 NIR_PASS(progress, nir, nir_opt_dce);
760
761 /* We implement booleans as 32-bit 0/~0 */
762 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
763
764 /* Take us out of SSA */
765 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
766 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
767
768 /* We are a vector architecture; write combine where possible */
769 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
770 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
771
772 NIR_PASS(progress, nir, nir_opt_dce);
773 }
774
775 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
776 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
777 * r0. See the comments in compiler_context */
778
779 static void
780 alias_ssa(compiler_context *ctx, int dest, int src)
781 {
782 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
783 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
784 }
785
786 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
787
788 static void
789 unalias_ssa(compiler_context *ctx, int dest)
790 {
791 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
792 /* TODO: Remove from leftover or no? */
793 }
794
795 static void
796 midgard_pin_output(compiler_context *ctx, int index, int reg)
797 {
798 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
799 }
800
801 static bool
802 midgard_is_pinned(compiler_context *ctx, int index)
803 {
804 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
805 }
806
807 /* Do not actually emit a load; instead, cache the constant for inlining */
808
809 static void
810 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
811 {
812 nir_ssa_def def = instr->def;
813
814 float *v = ralloc_array(NULL, float, 4);
815 memcpy(v, &instr->value.f32, 4 * sizeof(float));
816 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
817 }
818
819 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
820 * do the inverse) */
821
822 static unsigned
823 expand_writemask(unsigned mask)
824 {
825 unsigned o = 0;
826
827 for (int i = 0; i < 4; ++i)
828 if (mask & (1 << i))
829 o |= (3 << (2 * i));
830
831 return o;
832 }
833
834 static unsigned
835 squeeze_writemask(unsigned mask)
836 {
837 unsigned o = 0;
838
839 for (int i = 0; i < 4; ++i)
840 if (mask & (3 << (2 * i)))
841 o |= (1 << i);
842
843 return o;
844
845 }
846
847 /* Determines effective writemask, taking quirks and expansion into account */
848 static unsigned
849 effective_writemask(midgard_vector_alu *alu)
850 {
851 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
852 * sense) */
853
854 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
855
856 /* If there is a fixed channel count, construct the appropriate mask */
857
858 if (channel_count)
859 return (1 << channel_count) - 1;
860
861 /* Otherwise, just squeeze the existing mask */
862 return squeeze_writemask(alu->mask);
863 }
864
865 static unsigned
866 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
867 {
868 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
869 return hash;
870
871 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
872
873 if (temp)
874 return temp - 1;
875
876 /* If no temp is find, allocate one */
877 temp = ctx->temp_count++;
878 ctx->max_hash = MAX2(ctx->max_hash, hash);
879
880 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
881
882 return temp;
883 }
884
885 static unsigned
886 nir_src_index(compiler_context *ctx, nir_src *src)
887 {
888 if (src->is_ssa)
889 return src->ssa->index;
890 else
891 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
892 }
893
894 static unsigned
895 nir_dest_index(compiler_context *ctx, nir_dest *dst)
896 {
897 if (dst->is_ssa)
898 return dst->ssa.index;
899 else
900 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
901 }
902
903 static unsigned
904 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
905 {
906 return nir_src_index(ctx, &src->src);
907 }
908
909 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
910 * a conditional test) into that register */
911
912 static void
913 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
914 {
915 /* XXX: Force component correct */
916 int condition = nir_src_index(ctx, src);
917
918 /* There is no boolean move instruction. Instead, we simulate a move by
919 * ANDing the condition with itself to get it into r31.w */
920
921 midgard_instruction ins = {
922 .type = TAG_ALU_4,
923 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
924 .ssa_args = {
925 .src0 = condition,
926 .src1 = condition,
927 .dest = SSA_FIXED_REGISTER(31),
928 },
929 .alu = {
930 .op = midgard_alu_op_iand,
931 .reg_mode = midgard_reg_mode_full,
932 .dest_override = midgard_dest_override_none,
933 .mask = (0x3 << 6), /* w */
934 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
935 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
936 },
937 };
938
939 emit_mir_instruction(ctx, ins);
940 }
941
942 #define ALU_CASE(nir, _op) \
943 case nir_op_##nir: \
944 op = midgard_alu_op_##_op; \
945 break;
946
947 static void
948 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
949 {
950 bool is_ssa = instr->dest.dest.is_ssa;
951
952 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
953 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
954 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
955
956 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
957 * supported. A few do not and are commented for now. Also, there are a
958 * number of NIR ops which Midgard does not support and need to be
959 * lowered, also TODO. This switch block emits the opcode and calling
960 * convention of the Midgard instruction; actual packing is done in
961 * emit_alu below */
962
963 unsigned op;
964
965 switch (instr->op) {
966 ALU_CASE(fadd, fadd);
967 ALU_CASE(fmul, fmul);
968 ALU_CASE(fmin, fmin);
969 ALU_CASE(fmax, fmax);
970 ALU_CASE(imin, imin);
971 ALU_CASE(imax, imax);
972 ALU_CASE(fmov, fmov);
973 ALU_CASE(ffloor, ffloor);
974 ALU_CASE(fround_even, froundeven);
975 ALU_CASE(ftrunc, ftrunc);
976 ALU_CASE(fceil, fceil);
977 ALU_CASE(fdot3, fdot3);
978 ALU_CASE(fdot4, fdot4);
979 ALU_CASE(iadd, iadd);
980 ALU_CASE(isub, isub);
981 ALU_CASE(imul, imul);
982 ALU_CASE(iabs, iabs);
983
984 /* XXX: Use fmov, not imov, since imov was causing major
985 * issues with texture precision? XXX research */
986 ALU_CASE(imov, fmov);
987
988 ALU_CASE(feq32, feq);
989 ALU_CASE(fne32, fne);
990 ALU_CASE(flt32, flt);
991 ALU_CASE(ieq32, ieq);
992 ALU_CASE(ine32, ine);
993 ALU_CASE(ilt32, ilt);
994 ALU_CASE(ult32, ult);
995
996 /* We don't have a native b2f32 instruction. Instead, like many
997 * GPUs, we exploit booleans as 0/~0 for false/true, and
998 * correspondingly AND
999 * by 1.0 to do the type conversion. For the moment, prime us
1000 * to emit:
1001 *
1002 * iand [whatever], #0
1003 *
1004 * At the end of emit_alu (as MIR), we'll fix-up the constant
1005 */
1006
1007 ALU_CASE(b2f32, iand);
1008 ALU_CASE(b2i32, iand);
1009
1010 /* Likewise, we don't have a dedicated f2b32 instruction, but
1011 * we can do a "not equal to 0.0" test. */
1012
1013 ALU_CASE(f2b32, fne);
1014 ALU_CASE(i2b32, ine);
1015
1016 ALU_CASE(frcp, frcp);
1017 ALU_CASE(frsq, frsqrt);
1018 ALU_CASE(fsqrt, fsqrt);
1019 ALU_CASE(fexp2, fexp2);
1020 ALU_CASE(flog2, flog2);
1021
1022 ALU_CASE(f2i32, f2i);
1023 ALU_CASE(f2u32, f2u);
1024 ALU_CASE(i2f32, i2f);
1025 ALU_CASE(u2f32, u2f);
1026
1027 ALU_CASE(fsin, fsin);
1028 ALU_CASE(fcos, fcos);
1029
1030 ALU_CASE(iand, iand);
1031 ALU_CASE(ior, ior);
1032 ALU_CASE(ixor, ixor);
1033 ALU_CASE(inot, inot);
1034 ALU_CASE(ishl, ishl);
1035 ALU_CASE(ishr, iasr);
1036 ALU_CASE(ushr, ilsr);
1037
1038 ALU_CASE(b32all_fequal2, fball_eq);
1039 ALU_CASE(b32all_fequal3, fball_eq);
1040 ALU_CASE(b32all_fequal4, fball_eq);
1041
1042 ALU_CASE(b32any_fnequal2, fbany_neq);
1043 ALU_CASE(b32any_fnequal3, fbany_neq);
1044 ALU_CASE(b32any_fnequal4, fbany_neq);
1045
1046 ALU_CASE(b32all_iequal2, iball_eq);
1047 ALU_CASE(b32all_iequal3, iball_eq);
1048 ALU_CASE(b32all_iequal4, iball_eq);
1049
1050 ALU_CASE(b32any_inequal2, ibany_neq);
1051 ALU_CASE(b32any_inequal3, ibany_neq);
1052 ALU_CASE(b32any_inequal4, ibany_neq);
1053
1054 /* For greater-or-equal, we lower to less-or-equal and flip the
1055 * arguments */
1056
1057 case nir_op_fge:
1058 case nir_op_fge32:
1059 case nir_op_ige32:
1060 case nir_op_uge32: {
1061 op =
1062 instr->op == nir_op_fge ? midgard_alu_op_fle :
1063 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1064 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1065 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1066 0;
1067
1068 /* Swap via temporary */
1069 nir_alu_src temp = instr->src[1];
1070 instr->src[1] = instr->src[0];
1071 instr->src[0] = temp;
1072
1073 break;
1074 }
1075
1076 case nir_op_b32csel: {
1077 op = midgard_alu_op_fcsel;
1078
1079 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1080 nr_inputs = 2;
1081
1082 emit_condition(ctx, &instr->src[0].src, false);
1083
1084 /* The condition is the first argument; move the other
1085 * arguments up one to be a binary instruction for
1086 * Midgard */
1087
1088 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1089 break;
1090 }
1091
1092 default:
1093 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1094 assert(0);
1095 return;
1096 }
1097
1098 /* Fetch unit, quirks, etc information */
1099 unsigned opcode_props = alu_opcode_props[op];
1100 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1101
1102 /* Initialise fields common between scalar/vector instructions */
1103 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1104
1105 /* src0 will always exist afaik, but src1 will not for 1-argument
1106 * instructions. The latter can only be fetched if the instruction
1107 * needs it, or else we may segfault. */
1108
1109 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1110 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1111
1112 /* Rather than use the instruction generation helpers, we do it
1113 * ourselves here to avoid the mess */
1114
1115 midgard_instruction ins = {
1116 .type = TAG_ALU_4,
1117 .ssa_args = {
1118 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1119 .src1 = quirk_flipped_r24 ? src0 : src1,
1120 .dest = dest,
1121 }
1122 };
1123
1124 nir_alu_src *nirmods[2] = { NULL };
1125
1126 if (nr_inputs == 2) {
1127 nirmods[0] = &instr->src[0];
1128 nirmods[1] = &instr->src[1];
1129 } else if (nr_inputs == 1) {
1130 nirmods[quirk_flipped_r24] = &instr->src[0];
1131 } else {
1132 assert(0);
1133 }
1134
1135 midgard_vector_alu alu = {
1136 .op = op,
1137 .reg_mode = midgard_reg_mode_full,
1138 .dest_override = midgard_dest_override_none,
1139 .outmod = outmod,
1140
1141 /* Writemask only valid for non-SSA NIR */
1142 .mask = expand_writemask((1 << nr_components) - 1),
1143
1144 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1145 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1146 };
1147
1148 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1149
1150 if (!is_ssa)
1151 alu.mask &= expand_writemask(instr->dest.write_mask);
1152
1153 ins.alu = alu;
1154
1155 /* Late fixup for emulated instructions */
1156
1157 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1158 /* Presently, our second argument is an inline #0 constant.
1159 * Switch over to an embedded 1.0 constant (that can't fit
1160 * inline, since we're 32-bit, not 16-bit like the inline
1161 * constants) */
1162
1163 ins.ssa_args.inline_constant = false;
1164 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1165 ins.has_constants = true;
1166
1167 if (instr->op == nir_op_b2f32) {
1168 ins.constants[0] = 1.0f;
1169 } else {
1170 /* Type pun it into place */
1171 uint32_t one = 0x1;
1172 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1173 }
1174
1175 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1176 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1177 ins.ssa_args.inline_constant = false;
1178 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1179 ins.has_constants = true;
1180 ins.constants[0] = 0.0f;
1181 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1182 }
1183
1184 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1185 /* To avoid duplicating the lookup tables (probably), true LUT
1186 * instructions can only operate as if they were scalars. Lower
1187 * them here by changing the component. */
1188
1189 uint8_t original_swizzle[4];
1190 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1191
1192 for (int i = 0; i < nr_components; ++i) {
1193 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1194
1195 for (int j = 0; j < 4; ++j)
1196 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1197
1198 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1199 emit_mir_instruction(ctx, ins);
1200 }
1201 } else {
1202 emit_mir_instruction(ctx, ins);
1203 }
1204 }
1205
1206 #undef ALU_CASE
1207
1208 static void
1209 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1210 {
1211 nir_const_value *const_offset;
1212 unsigned offset, reg;
1213
1214 switch (instr->intrinsic) {
1215 case nir_intrinsic_discard_if:
1216 emit_condition(ctx, &instr->src[0], true);
1217
1218 /* fallthrough */
1219
1220 case nir_intrinsic_discard: {
1221 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1222 struct midgard_instruction discard = v_branch(conditional, false);
1223 discard.branch.target_type = TARGET_DISCARD;
1224 emit_mir_instruction(ctx, discard);
1225
1226 ctx->can_discard = true;
1227 break;
1228 }
1229
1230 case nir_intrinsic_load_uniform:
1231 case nir_intrinsic_load_input:
1232 const_offset = nir_src_as_const_value(instr->src[0]);
1233 assert (const_offset && "no indirect inputs");
1234
1235 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1236
1237 reg = nir_dest_index(ctx, &instr->dest);
1238
1239 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1240 /* TODO: half-floats */
1241
1242 int uniform_offset = 0;
1243
1244 if (offset >= SPECIAL_UNIFORM_BASE) {
1245 /* XXX: Resolve which uniform */
1246 uniform_offset = 0;
1247 } else {
1248 /* Offset away from the special
1249 * uniform block */
1250
1251 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1252
1253 /* XXX */
1254 if (!entry) {
1255 DBG("WARNING: Unknown uniform %d\n", offset);
1256 break;
1257 }
1258
1259 uniform_offset = (uintptr_t) (entry) - 1;
1260 uniform_offset += ctx->special_uniforms;
1261 }
1262
1263 if (uniform_offset < ctx->uniform_cutoff) {
1264 /* Fast path: For the first 16 uniform,
1265 * accesses are 0-cycle, since they're
1266 * just a register fetch in the usual
1267 * case. So, we alias the registers
1268 * while we're still in SSA-space */
1269
1270 int reg_slot = 23 - uniform_offset;
1271 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1272 } else {
1273 /* Otherwise, read from the 'special'
1274 * UBO to access higher-indexed
1275 * uniforms, at a performance cost */
1276
1277 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1278
1279 /* TODO: Don't split */
1280 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1281 ins.load_store.address = uniform_offset >> 3;
1282
1283 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1284 emit_mir_instruction(ctx, ins);
1285 }
1286 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1287 /* XXX: Half-floats? */
1288 /* TODO: swizzle, mask */
1289
1290 midgard_instruction ins = m_load_vary_32(reg, offset);
1291
1292 midgard_varying_parameter p = {
1293 .is_varying = 1,
1294 .interpolation = midgard_interp_default,
1295 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1296 };
1297
1298 unsigned u;
1299 memcpy(&u, &p, sizeof(p));
1300 ins.load_store.varying_parameters = u;
1301
1302 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1303 emit_mir_instruction(ctx, ins);
1304 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1305 /* Constant encoded as a pinned constant */
1306
1307 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1308 ins.has_constants = true;
1309 ins.has_blend_constant = true;
1310 emit_mir_instruction(ctx, ins);
1311 } else if (ctx->is_blend) {
1312 /* For blend shaders, a load might be
1313 * translated various ways depending on what
1314 * we're loading. Figure out how this is used */
1315
1316 nir_variable *out = NULL;
1317
1318 nir_foreach_variable(var, &ctx->nir->inputs) {
1319 int drvloc = var->data.driver_location;
1320
1321 if (nir_intrinsic_base(instr) == drvloc) {
1322 out = var;
1323 break;
1324 }
1325 }
1326
1327 assert(out);
1328
1329 if (out->data.location == VARYING_SLOT_COL0) {
1330 /* Source color preloaded to r0 */
1331
1332 midgard_pin_output(ctx, reg, 0);
1333 } else if (out->data.location == VARYING_SLOT_COL1) {
1334 /* Destination color must be read from framebuffer */
1335
1336 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1337 ins.load_store.swizzle = 0; /* xxxx */
1338
1339 /* Read each component sequentially */
1340
1341 for (int c = 0; c < 4; ++c) {
1342 ins.load_store.mask = (1 << c);
1343 ins.load_store.unknown = c;
1344 emit_mir_instruction(ctx, ins);
1345 }
1346
1347 /* vadd.u2f hr2, abs(hr2), #0 */
1348
1349 midgard_vector_alu_src alu_src = blank_alu_src;
1350 alu_src.abs = true;
1351 alu_src.half = true;
1352
1353 midgard_instruction u2f = {
1354 .type = TAG_ALU_4,
1355 .ssa_args = {
1356 .src0 = reg,
1357 .src1 = SSA_UNUSED_0,
1358 .dest = reg,
1359 .inline_constant = true
1360 },
1361 .alu = {
1362 .op = midgard_alu_op_u2f,
1363 .reg_mode = midgard_reg_mode_half,
1364 .dest_override = midgard_dest_override_none,
1365 .mask = 0xF,
1366 .src1 = vector_alu_srco_unsigned(alu_src),
1367 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1368 }
1369 };
1370
1371 emit_mir_instruction(ctx, u2f);
1372
1373 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1374
1375 alu_src.abs = false;
1376
1377 midgard_instruction fmul = {
1378 .type = TAG_ALU_4,
1379 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1380 .ssa_args = {
1381 .src0 = reg,
1382 .dest = reg,
1383 .src1 = SSA_UNUSED_0,
1384 .inline_constant = true
1385 },
1386 .alu = {
1387 .op = midgard_alu_op_fmul,
1388 .reg_mode = midgard_reg_mode_full,
1389 .dest_override = midgard_dest_override_none,
1390 .outmod = midgard_outmod_sat,
1391 .mask = 0xFF,
1392 .src1 = vector_alu_srco_unsigned(alu_src),
1393 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1394 }
1395 };
1396
1397 emit_mir_instruction(ctx, fmul);
1398 } else {
1399 DBG("Unknown input in blend shader\n");
1400 assert(0);
1401 }
1402 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1403 midgard_instruction ins = m_load_attr_32(reg, offset);
1404 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1405 ins.load_store.mask = (1 << instr->num_components) - 1;
1406 emit_mir_instruction(ctx, ins);
1407 } else {
1408 DBG("Unknown load\n");
1409 assert(0);
1410 }
1411
1412 break;
1413
1414 case nir_intrinsic_store_output:
1415 const_offset = nir_src_as_const_value(instr->src[1]);
1416 assert(const_offset && "no indirect outputs");
1417
1418 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1419
1420 reg = nir_src_index(ctx, &instr->src[0]);
1421
1422 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1423 /* gl_FragColor is not emitted with load/store
1424 * instructions. Instead, it gets plonked into
1425 * r0 at the end of the shader and we do the
1426 * framebuffer writeout dance. TODO: Defer
1427 * writes */
1428
1429 midgard_pin_output(ctx, reg, 0);
1430
1431 /* Save the index we're writing to for later reference
1432 * in the epilogue */
1433
1434 ctx->fragment_output = reg;
1435 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1436 /* Varyings are written into one of two special
1437 * varying register, r26 or r27. The register itself is selected as the register
1438 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1439 *
1440 * Normally emitting fmov's is frowned upon,
1441 * but due to unique constraints of
1442 * REGISTER_VARYING, fmov emission + a
1443 * dedicated cleanup pass is the only way to
1444 * guarantee correctness when considering some
1445 * (common) edge cases XXX: FIXME */
1446
1447 /* If this varying corresponds to a constant (why?!),
1448 * emit that now since it won't get picked up by
1449 * hoisting (since there is no corresponding move
1450 * emitted otherwise) */
1451
1452 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1453
1454 if (constant_value) {
1455 /* Special case: emit the varying write
1456 * directly to r26 (looks funny in asm but it's
1457 * fine) and emit the store _now_. Possibly
1458 * slightly slower, but this is a really stupid
1459 * special case anyway (why on earth would you
1460 * have a constant varying? Your own fault for
1461 * slightly worse perf :P) */
1462
1463 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1464 attach_constants(ctx, &ins, constant_value, reg + 1);
1465 emit_mir_instruction(ctx, ins);
1466
1467 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1468 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1469 emit_mir_instruction(ctx, st);
1470 } else {
1471 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1472
1473 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1474 }
1475 } else {
1476 DBG("Unknown store\n");
1477 assert(0);
1478 }
1479
1480 break;
1481
1482 case nir_intrinsic_load_alpha_ref_float:
1483 assert(instr->dest.is_ssa);
1484
1485 float ref_value = ctx->alpha_ref;
1486
1487 float *v = ralloc_array(NULL, float, 4);
1488 memcpy(v, &ref_value, sizeof(float));
1489 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1490 break;
1491
1492
1493 default:
1494 printf ("Unhandled intrinsic\n");
1495 assert(0);
1496 break;
1497 }
1498 }
1499
1500 static unsigned
1501 midgard_tex_format(enum glsl_sampler_dim dim)
1502 {
1503 switch (dim) {
1504 case GLSL_SAMPLER_DIM_2D:
1505 case GLSL_SAMPLER_DIM_EXTERNAL:
1506 return TEXTURE_2D;
1507
1508 case GLSL_SAMPLER_DIM_3D:
1509 return TEXTURE_3D;
1510
1511 case GLSL_SAMPLER_DIM_CUBE:
1512 return TEXTURE_CUBE;
1513
1514 default:
1515 DBG("Unknown sampler dim type\n");
1516 assert(0);
1517 return 0;
1518 }
1519 }
1520
1521 static void
1522 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1523 {
1524 /* TODO */
1525 //assert (!instr->sampler);
1526 //assert (!instr->texture_array_size);
1527 assert (instr->op == nir_texop_tex);
1528
1529 /* Allocate registers via a round robin scheme to alternate between the two registers */
1530 int reg = ctx->texture_op_count & 1;
1531 int in_reg = reg, out_reg = reg;
1532
1533 /* Make room for the reg */
1534
1535 if (ctx->texture_index[reg] > -1)
1536 unalias_ssa(ctx, ctx->texture_index[reg]);
1537
1538 int texture_index = instr->texture_index;
1539 int sampler_index = texture_index;
1540
1541 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1542 switch (instr->src[i].src_type) {
1543 case nir_tex_src_coord: {
1544 int index = nir_src_index(ctx, &instr->src[i].src);
1545
1546 midgard_vector_alu_src alu_src = blank_alu_src;
1547 alu_src.swizzle = (COMPONENT_Y << 2);
1548
1549 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1550 emit_mir_instruction(ctx, ins);
1551
1552 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1553
1554 break;
1555 }
1556
1557 default: {
1558 DBG("Unknown source type\n");
1559 //assert(0);
1560 break;
1561 }
1562 }
1563 }
1564
1565 /* No helper to build texture words -- we do it all here */
1566 midgard_instruction ins = {
1567 .type = TAG_TEXTURE_4,
1568 .texture = {
1569 .op = TEXTURE_OP_NORMAL,
1570 .format = midgard_tex_format(instr->sampler_dim),
1571 .texture_handle = texture_index,
1572 .sampler_handle = sampler_index,
1573
1574 /* TODO: Don't force xyzw */
1575 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1576 .mask = 0xF,
1577
1578 /* TODO: half */
1579 //.in_reg_full = 1,
1580 .out_full = 1,
1581
1582 .filter = 1,
1583
1584 /* Always 1 */
1585 .unknown7 = 1,
1586
1587 /* Assume we can continue; hint it out later */
1588 .cont = 1,
1589 }
1590 };
1591
1592 /* Set registers to read and write from the same place */
1593 ins.texture.in_reg_select = in_reg;
1594 ins.texture.out_reg_select = out_reg;
1595
1596 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1597 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1598 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1599 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1600 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1601 } else {
1602 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1603 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1604 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1605 }
1606
1607 emit_mir_instruction(ctx, ins);
1608
1609 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1610
1611 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1612 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1613 ctx->texture_index[reg] = o_index;
1614
1615 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1616 emit_mir_instruction(ctx, ins2);
1617
1618 /* Used for .cont and .last hinting */
1619 ctx->texture_op_count++;
1620 }
1621
1622 static void
1623 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1624 {
1625 switch (instr->type) {
1626 case nir_jump_break: {
1627 /* Emit a branch out of the loop */
1628 struct midgard_instruction br = v_branch(false, false);
1629 br.branch.target_type = TARGET_BREAK;
1630 br.branch.target_break = ctx->current_loop;
1631 emit_mir_instruction(ctx, br);
1632
1633 DBG("break..\n");
1634 break;
1635 }
1636
1637 default:
1638 DBG("Unknown jump type %d\n", instr->type);
1639 break;
1640 }
1641 }
1642
1643 static void
1644 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1645 {
1646 switch (instr->type) {
1647 case nir_instr_type_load_const:
1648 emit_load_const(ctx, nir_instr_as_load_const(instr));
1649 break;
1650
1651 case nir_instr_type_intrinsic:
1652 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1653 break;
1654
1655 case nir_instr_type_alu:
1656 emit_alu(ctx, nir_instr_as_alu(instr));
1657 break;
1658
1659 case nir_instr_type_tex:
1660 emit_tex(ctx, nir_instr_as_tex(instr));
1661 break;
1662
1663 case nir_instr_type_jump:
1664 emit_jump(ctx, nir_instr_as_jump(instr));
1665 break;
1666
1667 case nir_instr_type_ssa_undef:
1668 /* Spurious */
1669 break;
1670
1671 default:
1672 DBG("Unhandled instruction type\n");
1673 break;
1674 }
1675 }
1676
1677 /* Determine the actual hardware from the index based on the RA results or special values */
1678
1679 static int
1680 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1681 {
1682 if (reg >= SSA_FIXED_MINIMUM)
1683 return SSA_REG_FROM_FIXED(reg);
1684
1685 if (reg >= 0) {
1686 assert(reg < maxreg);
1687 int r = ra_get_node_reg(g, reg);
1688 ctx->work_registers = MAX2(ctx->work_registers, r);
1689 return r;
1690 }
1691
1692 switch (reg) {
1693 /* fmov style unused */
1694 case SSA_UNUSED_0:
1695 return REGISTER_UNUSED;
1696
1697 /* lut style unused */
1698 case SSA_UNUSED_1:
1699 return REGISTER_UNUSED;
1700
1701 default:
1702 DBG("Unknown SSA register alias %d\n", reg);
1703 assert(0);
1704 return 31;
1705 }
1706 }
1707
1708 static unsigned int
1709 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1710 {
1711 /* Choose the first available register to minimise reported register pressure */
1712
1713 for (int i = 0; i < 16; ++i) {
1714 if (BITSET_TEST(regs, i)) {
1715 return i;
1716 }
1717 }
1718
1719 assert(0);
1720 return 0;
1721 }
1722
1723 static bool
1724 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1725 {
1726 if (ins->ssa_args.src0 == src) return true;
1727 if (ins->ssa_args.src1 == src) return true;
1728
1729 return false;
1730 }
1731
1732 static bool
1733 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1734 {
1735 /* Check the rest of the block for liveness */
1736 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1737 if (midgard_is_live_in_instr(ins, src))
1738 return true;
1739 }
1740
1741 /* Check the rest of the blocks for liveness */
1742 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1743 mir_foreach_instr_in_block(b, ins) {
1744 if (midgard_is_live_in_instr(ins, src))
1745 return true;
1746 }
1747 }
1748
1749 /* TODO: How does control flow interact in complex shaders? */
1750
1751 return false;
1752 }
1753
1754 static void
1755 allocate_registers(compiler_context *ctx)
1756 {
1757 /* First, initialize the RA */
1758 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1759
1760 /* Create a primary (general purpose) class, as well as special purpose
1761 * pipeline register classes */
1762
1763 int primary_class = ra_alloc_reg_class(regs);
1764 int varying_class = ra_alloc_reg_class(regs);
1765
1766 /* Add the full set of work registers */
1767 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1768 for (int i = 0; i < work_count; ++i)
1769 ra_class_add_reg(regs, primary_class, i);
1770
1771 /* Add special registers */
1772 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1773 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1774
1775 /* We're done setting up */
1776 ra_set_finalize(regs, NULL);
1777
1778 /* Transform the MIR into squeezed index form */
1779 mir_foreach_block(ctx, block) {
1780 mir_foreach_instr_in_block(block, ins) {
1781 if (ins->compact_branch) continue;
1782
1783 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1784 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1785 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1786 }
1787 if (midgard_debug & MIDGARD_DBG_SHADERS)
1788 print_mir_block(block);
1789 }
1790
1791 /* Let's actually do register allocation */
1792 int nodes = ctx->temp_count;
1793 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1794
1795 /* Set everything to the work register class, unless it has somewhere
1796 * special to go */
1797
1798 mir_foreach_block(ctx, block) {
1799 mir_foreach_instr_in_block(block, ins) {
1800 if (ins->compact_branch) continue;
1801
1802 if (ins->ssa_args.dest < 0) continue;
1803
1804 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1805
1806 int class = primary_class;
1807
1808 ra_set_node_class(g, ins->ssa_args.dest, class);
1809 }
1810 }
1811
1812 for (int index = 0; index <= ctx->max_hash; ++index) {
1813 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1814
1815 if (temp) {
1816 unsigned reg = temp - 1;
1817 int t = find_or_allocate_temp(ctx, index);
1818 ra_set_node_reg(g, t, reg);
1819 }
1820 }
1821
1822 /* Determine liveness */
1823
1824 int *live_start = malloc(nodes * sizeof(int));
1825 int *live_end = malloc(nodes * sizeof(int));
1826
1827 /* Initialize as non-existent */
1828
1829 for (int i = 0; i < nodes; ++i) {
1830 live_start[i] = live_end[i] = -1;
1831 }
1832
1833 int d = 0;
1834
1835 mir_foreach_block(ctx, block) {
1836 mir_foreach_instr_in_block(block, ins) {
1837 if (ins->compact_branch) continue;
1838
1839 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1840 /* If this destination is not yet live, it is now since we just wrote it */
1841
1842 int dest = ins->ssa_args.dest;
1843
1844 if (live_start[dest] == -1)
1845 live_start[dest] = d;
1846 }
1847
1848 /* Since we just used a source, the source might be
1849 * dead now. Scan the rest of the block for
1850 * invocations, and if there are none, the source dies
1851 * */
1852
1853 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1854
1855 for (int src = 0; src < 2; ++src) {
1856 int s = sources[src];
1857
1858 if (s < 0) continue;
1859
1860 if (s >= SSA_FIXED_MINIMUM) continue;
1861
1862 if (!is_live_after(ctx, block, ins, s)) {
1863 live_end[s] = d;
1864 }
1865 }
1866
1867 ++d;
1868 }
1869 }
1870
1871 /* If a node still hasn't been killed, kill it now */
1872
1873 for (int i = 0; i < nodes; ++i) {
1874 /* live_start == -1 most likely indicates a pinned output */
1875
1876 if (live_end[i] == -1)
1877 live_end[i] = d;
1878 }
1879
1880 /* Setup interference between nodes that are live at the same time */
1881
1882 for (int i = 0; i < nodes; ++i) {
1883 for (int j = i + 1; j < nodes; ++j) {
1884 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1885 ra_add_node_interference(g, i, j);
1886 }
1887 }
1888
1889 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1890
1891 if (!ra_allocate(g)) {
1892 DBG("Error allocating registers\n");
1893 assert(0);
1894 }
1895
1896 /* Cleanup */
1897 free(live_start);
1898 free(live_end);
1899
1900 mir_foreach_block(ctx, block) {
1901 mir_foreach_instr_in_block(block, ins) {
1902 if (ins->compact_branch) continue;
1903
1904 ssa_args args = ins->ssa_args;
1905
1906 switch (ins->type) {
1907 case TAG_ALU_4:
1908 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1909
1910 ins->registers.src2_imm = args.inline_constant;
1911
1912 if (args.inline_constant) {
1913 /* Encode inline 16-bit constant as a vector by default */
1914
1915 ins->registers.src2_reg = ins->inline_constant >> 11;
1916
1917 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1918
1919 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1920 ins->alu.src2 = imm << 2;
1921 } else {
1922 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1923 }
1924
1925 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1926
1927 break;
1928
1929 case TAG_LOAD_STORE_4: {
1930 if (OP_IS_STORE(ins->load_store.op)) {
1931 /* TODO: use ssa_args for store_vary */
1932 ins->load_store.reg = 0;
1933 } else {
1934 bool has_dest = args.dest >= 0;
1935 int ssa_arg = has_dest ? args.dest : args.src0;
1936
1937 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1938 }
1939
1940 break;
1941 }
1942
1943 default:
1944 break;
1945 }
1946 }
1947 }
1948 }
1949
1950 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1951 * use scalar ALU instructions, for functional or performance reasons. To do
1952 * this, we just demote vector ALU payloads to scalar. */
1953
1954 static int
1955 component_from_mask(unsigned mask)
1956 {
1957 for (int c = 0; c < 4; ++c) {
1958 if (mask & (3 << (2 * c)))
1959 return c;
1960 }
1961
1962 assert(0);
1963 return 0;
1964 }
1965
1966 static bool
1967 is_single_component_mask(unsigned mask)
1968 {
1969 int components = 0;
1970
1971 for (int c = 0; c < 4; ++c)
1972 if (mask & (3 << (2 * c)))
1973 components++;
1974
1975 return components == 1;
1976 }
1977
1978 /* Create a mask of accessed components from a swizzle to figure out vector
1979 * dependencies */
1980
1981 static unsigned
1982 swizzle_to_access_mask(unsigned swizzle)
1983 {
1984 unsigned component_mask = 0;
1985
1986 for (int i = 0; i < 4; ++i) {
1987 unsigned c = (swizzle >> (2 * i)) & 3;
1988 component_mask |= (1 << c);
1989 }
1990
1991 return component_mask;
1992 }
1993
1994 static unsigned
1995 vector_to_scalar_source(unsigned u)
1996 {
1997 midgard_vector_alu_src v;
1998 memcpy(&v, &u, sizeof(v));
1999
2000 midgard_scalar_alu_src s = {
2001 .abs = v.abs,
2002 .negate = v.negate,
2003 .full = !v.half,
2004 .component = (v.swizzle & 3) << 1
2005 };
2006
2007 unsigned o;
2008 memcpy(&o, &s, sizeof(s));
2009
2010 return o & ((1 << 6) - 1);
2011 }
2012
2013 static midgard_scalar_alu
2014 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2015 {
2016 /* The output component is from the mask */
2017 midgard_scalar_alu s = {
2018 .op = v.op,
2019 .src1 = vector_to_scalar_source(v.src1),
2020 .src2 = vector_to_scalar_source(v.src2),
2021 .unknown = 0,
2022 .outmod = v.outmod,
2023 .output_full = 1, /* TODO: Half */
2024 .output_component = component_from_mask(v.mask) << 1,
2025 };
2026
2027 /* Inline constant is passed along rather than trying to extract it
2028 * from v */
2029
2030 if (ins->ssa_args.inline_constant) {
2031 uint16_t imm = 0;
2032 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2033 imm |= (lower_11 >> 9) & 3;
2034 imm |= (lower_11 >> 6) & 4;
2035 imm |= (lower_11 >> 2) & 0x38;
2036 imm |= (lower_11 & 63) << 6;
2037
2038 s.src2 = imm;
2039 }
2040
2041 return s;
2042 }
2043
2044 /* Midgard prefetches instruction types, so during emission we need to
2045 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2046 * if this is the second to last and the last is an ALU, then it's also 1... */
2047
2048 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2049 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2050
2051 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2052 bytes_emitted += sizeof(type)
2053
2054 static void
2055 emit_binary_vector_instruction(midgard_instruction *ains,
2056 uint16_t *register_words, int *register_words_count,
2057 uint64_t *body_words, size_t *body_size, int *body_words_count,
2058 size_t *bytes_emitted)
2059 {
2060 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2061 *bytes_emitted += sizeof(midgard_reg_info);
2062
2063 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2064 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2065 *bytes_emitted += sizeof(midgard_vector_alu);
2066 }
2067
2068 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2069 * mind that we are a vector architecture and we can write to different
2070 * components simultaneously */
2071
2072 static bool
2073 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2074 {
2075 /* Each instruction reads some registers and writes to a register. See
2076 * where the first writes */
2077
2078 /* Figure out where exactly we wrote to */
2079 int source = first->ssa_args.dest;
2080 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2081
2082 /* As long as the second doesn't read from the first, we're okay */
2083 if (second->ssa_args.src0 == source) {
2084 if (first->type == TAG_ALU_4) {
2085 /* Figure out which components we just read from */
2086
2087 int q = second->alu.src1;
2088 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2089
2090 /* Check if there are components in common, and fail if so */
2091 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2092 return false;
2093 } else
2094 return false;
2095
2096 }
2097
2098 if (second->ssa_args.src1 == source)
2099 return false;
2100
2101 /* Otherwise, it's safe in that regard. Another data hazard is both
2102 * writing to the same place, of course */
2103
2104 if (second->ssa_args.dest == source) {
2105 /* ...but only if the components overlap */
2106 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2107
2108 if (dest_mask & source_mask)
2109 return false;
2110 }
2111
2112 /* ...That's it */
2113 return true;
2114 }
2115
2116 static bool
2117 midgard_has_hazard(
2118 midgard_instruction **segment, unsigned segment_size,
2119 midgard_instruction *ains)
2120 {
2121 for (int s = 0; s < segment_size; ++s)
2122 if (!can_run_concurrent_ssa(segment[s], ains))
2123 return true;
2124
2125 return false;
2126
2127
2128 }
2129
2130 /* Schedules, but does not emit, a single basic block. After scheduling, the
2131 * final tag and size of the block are known, which are necessary for branching
2132 * */
2133
2134 static midgard_bundle
2135 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2136 {
2137 int instructions_emitted = 0, instructions_consumed = -1;
2138 midgard_bundle bundle = { 0 };
2139
2140 uint8_t tag = ins->type;
2141
2142 /* Default to the instruction's tag */
2143 bundle.tag = tag;
2144
2145 switch (ins->type) {
2146 case TAG_ALU_4: {
2147 uint32_t control = 0;
2148 size_t bytes_emitted = sizeof(control);
2149
2150 /* TODO: Constant combining */
2151 int index = 0, last_unit = 0;
2152
2153 /* Previous instructions, for the purpose of parallelism */
2154 midgard_instruction *segment[4] = {0};
2155 int segment_size = 0;
2156
2157 instructions_emitted = -1;
2158 midgard_instruction *pins = ins;
2159
2160 for (;;) {
2161 midgard_instruction *ains = pins;
2162
2163 /* Advance instruction pointer */
2164 if (index) {
2165 ains = mir_next_op(pins);
2166 pins = ains;
2167 }
2168
2169 /* Out-of-work condition */
2170 if ((struct list_head *) ains == &block->instructions)
2171 break;
2172
2173 /* Ensure that the chain can continue */
2174 if (ains->type != TAG_ALU_4) break;
2175
2176 /* According to the presentation "The ARM
2177 * Mali-T880 Mobile GPU" from HotChips 27,
2178 * there are two pipeline stages. Branching
2179 * position determined experimentally. Lines
2180 * are executed in parallel:
2181 *
2182 * [ VMUL ] [ SADD ]
2183 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2184 *
2185 * Verify that there are no ordering dependencies here.
2186 *
2187 * TODO: Allow for parallelism!!!
2188 */
2189
2190 /* Pick a unit for it if it doesn't force a particular unit */
2191
2192 int unit = ains->unit;
2193
2194 if (!unit) {
2195 int op = ains->alu.op;
2196 int units = alu_opcode_props[op];
2197
2198 /* TODO: Promotion of scalars to vectors */
2199 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2200
2201 if (!vector)
2202 assert(units & UNITS_SCALAR);
2203
2204 if (vector) {
2205 if (last_unit >= UNIT_VADD) {
2206 if (units & UNIT_VLUT)
2207 unit = UNIT_VLUT;
2208 else
2209 break;
2210 } else {
2211 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2212 unit = UNIT_VMUL;
2213 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2214 unit = UNIT_VADD;
2215 else if (units & UNIT_VLUT)
2216 unit = UNIT_VLUT;
2217 else
2218 break;
2219 }
2220 } else {
2221 if (last_unit >= UNIT_VADD) {
2222 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2223 unit = UNIT_SMUL;
2224 else if (units & UNIT_VLUT)
2225 unit = UNIT_VLUT;
2226 else
2227 break;
2228 } else {
2229 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2230 unit = UNIT_SADD;
2231 else if (units & UNIT_SMUL)
2232 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2233 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2234 unit = UNIT_VADD;
2235 else
2236 break;
2237 }
2238 }
2239
2240 assert(unit & units);
2241 }
2242
2243 /* Late unit check, this time for encoding (not parallelism) */
2244 if (unit <= last_unit) break;
2245
2246 /* Clear the segment */
2247 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2248 segment_size = 0;
2249
2250 if (midgard_has_hazard(segment, segment_size, ains))
2251 break;
2252
2253 /* We're good to go -- emit the instruction */
2254 ains->unit = unit;
2255
2256 segment[segment_size++] = ains;
2257
2258 /* Only one set of embedded constants per
2259 * bundle possible; if we have more, we must
2260 * break the chain early, unfortunately */
2261
2262 if (ains->has_constants) {
2263 if (bundle.has_embedded_constants) {
2264 /* ...but if there are already
2265 * constants but these are the
2266 * *same* constants, we let it
2267 * through */
2268
2269 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2270 break;
2271 } else {
2272 bundle.has_embedded_constants = true;
2273 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2274
2275 /* If this is a blend shader special constant, track it for patching */
2276 if (ains->has_blend_constant)
2277 bundle.has_blend_constant = true;
2278 }
2279 }
2280
2281 if (ains->unit & UNITS_ANY_VECTOR) {
2282 emit_binary_vector_instruction(ains, bundle.register_words,
2283 &bundle.register_words_count, bundle.body_words,
2284 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2285 } else if (ains->compact_branch) {
2286 /* All of r0 has to be written out
2287 * along with the branch writeout.
2288 * (slow!) */
2289
2290 if (ains->writeout) {
2291 if (index == 0) {
2292 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2293 ins.unit = UNIT_VMUL;
2294
2295 control |= ins.unit;
2296
2297 emit_binary_vector_instruction(&ins, bundle.register_words,
2298 &bundle.register_words_count, bundle.body_words,
2299 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2300 } else {
2301 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2302 bool written_late = false;
2303 bool components[4] = { 0 };
2304 uint16_t register_dep_mask = 0;
2305 uint16_t written_mask = 0;
2306
2307 midgard_instruction *qins = ins;
2308 for (int t = 0; t < index; ++t) {
2309 if (qins->registers.out_reg != 0) {
2310 /* Mark down writes */
2311
2312 written_mask |= (1 << qins->registers.out_reg);
2313 } else {
2314 /* Mark down the register dependencies for errata check */
2315
2316 if (qins->registers.src1_reg < 16)
2317 register_dep_mask |= (1 << qins->registers.src1_reg);
2318
2319 if (qins->registers.src2_reg < 16)
2320 register_dep_mask |= (1 << qins->registers.src2_reg);
2321
2322 int mask = qins->alu.mask;
2323
2324 for (int c = 0; c < 4; ++c)
2325 if (mask & (0x3 << (2 * c)))
2326 components[c] = true;
2327
2328 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2329
2330 if (qins->unit == UNIT_VLUT)
2331 written_late = true;
2332 }
2333
2334 /* Advance instruction pointer */
2335 qins = mir_next_op(qins);
2336 }
2337
2338
2339 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2340 if (register_dep_mask & written_mask) {
2341 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2342 break;
2343 }
2344
2345 if (written_late)
2346 break;
2347
2348 /* If even a single component is not written, break it up (conservative check). */
2349 bool breakup = false;
2350
2351 for (int c = 0; c < 4; ++c)
2352 if (!components[c])
2353 breakup = true;
2354
2355 if (breakup)
2356 break;
2357
2358 /* Otherwise, we're free to proceed */
2359 }
2360 }
2361
2362 if (ains->unit == ALU_ENAB_BRANCH) {
2363 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2364 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2365 bytes_emitted += sizeof(midgard_branch_extended);
2366 } else {
2367 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2368 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2369 bytes_emitted += sizeof(ains->br_compact);
2370 }
2371 } else {
2372 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2373 bytes_emitted += sizeof(midgard_reg_info);
2374
2375 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2376 bundle.body_words_count++;
2377 bytes_emitted += sizeof(midgard_scalar_alu);
2378 }
2379
2380 /* Defer marking until after writing to allow for break */
2381 control |= ains->unit;
2382 last_unit = ains->unit;
2383 ++instructions_emitted;
2384 ++index;
2385 }
2386
2387 /* Bubble up the number of instructions for skipping */
2388 instructions_consumed = index - 1;
2389
2390 int padding = 0;
2391
2392 /* Pad ALU op to nearest word */
2393
2394 if (bytes_emitted & 15) {
2395 padding = 16 - (bytes_emitted & 15);
2396 bytes_emitted += padding;
2397 }
2398
2399 /* Constants must always be quadwords */
2400 if (bundle.has_embedded_constants)
2401 bytes_emitted += 16;
2402
2403 /* Size ALU instruction for tag */
2404 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2405 bundle.padding = padding;
2406 bundle.control = bundle.tag | control;
2407
2408 break;
2409 }
2410
2411 case TAG_LOAD_STORE_4: {
2412 /* Load store instructions have two words at once. If
2413 * we only have one queued up, we need to NOP pad.
2414 * Otherwise, we store both in succession to save space
2415 * and cycles -- letting them go in parallel -- skip
2416 * the next. The usefulness of this optimisation is
2417 * greatly dependent on the quality of the instruction
2418 * scheduler.
2419 */
2420
2421 midgard_instruction *next_op = mir_next_op(ins);
2422
2423 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2424 /* As the two operate concurrently, make sure
2425 * they are not dependent */
2426
2427 if (can_run_concurrent_ssa(ins, next_op) || true) {
2428 /* Skip ahead, since it's redundant with the pair */
2429 instructions_consumed = 1 + (instructions_emitted++);
2430 }
2431 }
2432
2433 break;
2434 }
2435
2436 default:
2437 /* Texture ops default to single-op-per-bundle scheduling */
2438 break;
2439 }
2440
2441 /* Copy the instructions into the bundle */
2442 bundle.instruction_count = instructions_emitted + 1;
2443
2444 int used_idx = 0;
2445
2446 midgard_instruction *uins = ins;
2447 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2448 bundle.instructions[used_idx++] = *uins;
2449 uins = mir_next_op(uins);
2450 }
2451
2452 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2453
2454 return bundle;
2455 }
2456
2457 static int
2458 quadword_size(int tag)
2459 {
2460 switch (tag) {
2461 case TAG_ALU_4:
2462 return 1;
2463
2464 case TAG_ALU_8:
2465 return 2;
2466
2467 case TAG_ALU_12:
2468 return 3;
2469
2470 case TAG_ALU_16:
2471 return 4;
2472
2473 case TAG_LOAD_STORE_4:
2474 return 1;
2475
2476 case TAG_TEXTURE_4:
2477 return 1;
2478
2479 default:
2480 assert(0);
2481 return 0;
2482 }
2483 }
2484
2485 /* Schedule a single block by iterating its instruction to create bundles.
2486 * While we go, tally about the bundle sizes to compute the block size. */
2487
2488 static void
2489 schedule_block(compiler_context *ctx, midgard_block *block)
2490 {
2491 util_dynarray_init(&block->bundles, NULL);
2492
2493 block->quadword_count = 0;
2494
2495 mir_foreach_instr_in_block(block, ins) {
2496 int skip;
2497 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2498 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2499
2500 if (bundle.has_blend_constant) {
2501 /* TODO: Multiblock? */
2502 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2503 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2504 }
2505
2506 while(skip--)
2507 ins = mir_next_op(ins);
2508
2509 block->quadword_count += quadword_size(bundle.tag);
2510 }
2511
2512 block->is_scheduled = true;
2513 }
2514
2515 static void
2516 schedule_program(compiler_context *ctx)
2517 {
2518 allocate_registers(ctx);
2519
2520 mir_foreach_block(ctx, block) {
2521 schedule_block(ctx, block);
2522 }
2523 }
2524
2525 /* After everything is scheduled, emit whole bundles at a time */
2526
2527 static void
2528 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2529 {
2530 int lookahead = next_tag << 4;
2531
2532 switch (bundle->tag) {
2533 case TAG_ALU_4:
2534 case TAG_ALU_8:
2535 case TAG_ALU_12:
2536 case TAG_ALU_16: {
2537 /* Actually emit each component */
2538 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2539
2540 for (int i = 0; i < bundle->register_words_count; ++i)
2541 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2542
2543 /* Emit body words based on the instructions bundled */
2544 for (int i = 0; i < bundle->instruction_count; ++i) {
2545 midgard_instruction *ins = &bundle->instructions[i];
2546
2547 if (ins->unit & UNITS_ANY_VECTOR) {
2548 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2549 } else if (ins->compact_branch) {
2550 /* Dummy move, XXX DRY */
2551 if ((i == 0) && ins->writeout) {
2552 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2553 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2554 }
2555
2556 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2557 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2558 } else {
2559 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2560 }
2561 } else {
2562 /* Scalar */
2563 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2564 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2565 }
2566 }
2567
2568 /* Emit padding (all zero) */
2569 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2570
2571 /* Tack on constants */
2572
2573 if (bundle->has_embedded_constants) {
2574 util_dynarray_append(emission, float, bundle->constants[0]);
2575 util_dynarray_append(emission, float, bundle->constants[1]);
2576 util_dynarray_append(emission, float, bundle->constants[2]);
2577 util_dynarray_append(emission, float, bundle->constants[3]);
2578 }
2579
2580 break;
2581 }
2582
2583 case TAG_LOAD_STORE_4: {
2584 /* One or two composing instructions */
2585
2586 uint64_t current64, next64 = LDST_NOP;
2587
2588 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2589
2590 if (bundle->instruction_count == 2)
2591 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2592
2593 midgard_load_store instruction = {
2594 .type = bundle->tag,
2595 .next_type = next_tag,
2596 .word1 = current64,
2597 .word2 = next64
2598 };
2599
2600 util_dynarray_append(emission, midgard_load_store, instruction);
2601
2602 break;
2603 }
2604
2605 case TAG_TEXTURE_4: {
2606 /* Texture instructions are easy, since there is no
2607 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2608
2609 midgard_instruction *ins = &bundle->instructions[0];
2610
2611 ins->texture.type = TAG_TEXTURE_4;
2612 ins->texture.next_type = next_tag;
2613
2614 ctx->texture_op_count--;
2615
2616 if (!ctx->texture_op_count) {
2617 ins->texture.cont = 0;
2618 ins->texture.last = 1;
2619 }
2620
2621 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2622 break;
2623 }
2624
2625 default:
2626 DBG("Unknown midgard instruction type\n");
2627 assert(0);
2628 break;
2629 }
2630 }
2631
2632
2633 /* ALU instructions can inline or embed constants, which decreases register
2634 * pressure and saves space. */
2635
2636 #define CONDITIONAL_ATTACH(src) { \
2637 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2638 \
2639 if (entry) { \
2640 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2641 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2642 } \
2643 }
2644
2645 static void
2646 inline_alu_constants(compiler_context *ctx)
2647 {
2648 mir_foreach_instr(ctx, alu) {
2649 /* Other instructions cannot inline constants */
2650 if (alu->type != TAG_ALU_4) continue;
2651
2652 /* If there is already a constant here, we can do nothing */
2653 if (alu->has_constants) continue;
2654
2655 CONDITIONAL_ATTACH(src0);
2656
2657 if (!alu->has_constants) {
2658 CONDITIONAL_ATTACH(src1)
2659 } else if (!alu->inline_constant) {
2660 /* Corner case: _two_ vec4 constants, for instance with a
2661 * csel. For this case, we can only use a constant
2662 * register for one, we'll have to emit a move for the
2663 * other. Note, if both arguments are constants, then
2664 * necessarily neither argument depends on the value of
2665 * any particular register. As the destination register
2666 * will be wiped, that means we can spill the constant
2667 * to the destination register.
2668 */
2669
2670 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2671 unsigned scratch = alu->ssa_args.dest;
2672
2673 if (entry) {
2674 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2675 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2676
2677 /* Force a break XXX Defer r31 writes */
2678 ins.unit = UNIT_VLUT;
2679
2680 /* Set the source */
2681 alu->ssa_args.src1 = scratch;
2682
2683 /* Inject us -before- the last instruction which set r31 */
2684 mir_insert_instruction_before(mir_prev_op(alu), ins);
2685 }
2686 }
2687 }
2688 }
2689
2690 /* Midgard supports two types of constants, embedded constants (128-bit) and
2691 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2692 * constants can be demoted to inline constants, for space savings and
2693 * sometimes a performance boost */
2694
2695 static void
2696 embedded_to_inline_constant(compiler_context *ctx)
2697 {
2698 mir_foreach_instr(ctx, ins) {
2699 if (!ins->has_constants) continue;
2700
2701 if (ins->ssa_args.inline_constant) continue;
2702
2703 /* Blend constants must not be inlined by definition */
2704 if (ins->has_blend_constant) continue;
2705
2706 /* src1 cannot be an inline constant due to encoding
2707 * restrictions. So, if possible we try to flip the arguments
2708 * in that case */
2709
2710 int op = ins->alu.op;
2711
2712 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2713 /* Flip based on op. Fallthrough intentional */
2714
2715 switch (op) {
2716 /* These ops require an operational change to flip their arguments TODO */
2717 case midgard_alu_op_flt:
2718 case midgard_alu_op_fle:
2719 case midgard_alu_op_ilt:
2720 case midgard_alu_op_ile:
2721 case midgard_alu_op_fcsel:
2722 case midgard_alu_op_icsel:
2723 case midgard_alu_op_isub:
2724 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2725 break;
2726
2727 /* These ops are commutative and Just Flip */
2728 case midgard_alu_op_fne:
2729 case midgard_alu_op_fadd:
2730 case midgard_alu_op_fmul:
2731 case midgard_alu_op_fmin:
2732 case midgard_alu_op_fmax:
2733 case midgard_alu_op_iadd:
2734 case midgard_alu_op_imul:
2735 case midgard_alu_op_feq:
2736 case midgard_alu_op_ieq:
2737 case midgard_alu_op_ine:
2738 case midgard_alu_op_iand:
2739 case midgard_alu_op_ior:
2740 case midgard_alu_op_ixor:
2741 /* Flip the SSA numbers */
2742 ins->ssa_args.src0 = ins->ssa_args.src1;
2743 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2744
2745 /* And flip the modifiers */
2746
2747 unsigned src_temp;
2748
2749 src_temp = ins->alu.src2;
2750 ins->alu.src2 = ins->alu.src1;
2751 ins->alu.src1 = src_temp;
2752
2753 default:
2754 break;
2755 }
2756 }
2757
2758 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2759 /* Extract the source information */
2760
2761 midgard_vector_alu_src *src;
2762 int q = ins->alu.src2;
2763 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2764 src = m;
2765
2766 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2767 int component = src->swizzle & 3;
2768
2769 /* Scale constant appropriately, if we can legally */
2770 uint16_t scaled_constant = 0;
2771
2772 /* XXX: Check legality */
2773 if (midgard_is_integer_op(op)) {
2774 /* TODO: Inline integer */
2775 continue;
2776
2777 unsigned int *iconstants = (unsigned int *) ins->constants;
2778 scaled_constant = (uint16_t) iconstants[component];
2779
2780 /* Constant overflow after resize */
2781 if (scaled_constant != iconstants[component])
2782 continue;
2783 } else {
2784 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2785 }
2786
2787 /* We don't know how to handle these with a constant */
2788
2789 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2790 DBG("Bailing inline constant...\n");
2791 continue;
2792 }
2793
2794 /* Make sure that the constant is not itself a
2795 * vector by checking if all accessed values
2796 * (by the swizzle) are the same. */
2797
2798 uint32_t *cons = (uint32_t *) ins->constants;
2799 uint32_t value = cons[component];
2800
2801 bool is_vector = false;
2802 unsigned mask = effective_writemask(&ins->alu);
2803
2804 for (int c = 1; c < 4; ++c) {
2805 /* We only care if this component is actually used */
2806 if (!(mask & (1 << c)))
2807 continue;
2808
2809 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2810
2811 if (test != value) {
2812 is_vector = true;
2813 break;
2814 }
2815 }
2816
2817 if (is_vector)
2818 continue;
2819
2820 /* Get rid of the embedded constant */
2821 ins->has_constants = false;
2822 ins->ssa_args.src1 = SSA_UNUSED_0;
2823 ins->ssa_args.inline_constant = true;
2824 ins->inline_constant = scaled_constant;
2825 }
2826 }
2827 }
2828
2829 /* Map normal SSA sources to other SSA sources / fixed registers (like
2830 * uniforms) */
2831
2832 static void
2833 map_ssa_to_alias(compiler_context *ctx, int *ref)
2834 {
2835 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2836
2837 if (alias) {
2838 /* Remove entry in leftovers to avoid a redunant fmov */
2839
2840 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2841
2842 if (leftover)
2843 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2844
2845 /* Assign the alias map */
2846 *ref = alias - 1;
2847 return;
2848 }
2849 }
2850
2851 #define AS_SRC(to, u) \
2852 int q##to = ins->alu.src2; \
2853 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2854
2855 /* Removing unused moves is necessary to clean up the texture pipeline results.
2856 *
2857 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2858
2859 static void
2860 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2861 {
2862 mir_foreach_instr_in_block_safe(block, ins) {
2863 if (ins->type != TAG_ALU_4) continue;
2864
2865 if (ins->alu.op != midgard_alu_op_fmov) continue;
2866
2867 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2868
2869 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2870
2871 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2872
2873 mir_remove_instruction(ins);
2874 }
2875 }
2876
2877 /* The following passes reorder MIR instructions to enable better scheduling */
2878
2879 static void
2880 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2881 {
2882 mir_foreach_instr_in_block_safe(block, ins) {
2883 if (ins->type != TAG_LOAD_STORE_4) continue;
2884
2885 /* We've found a load/store op. Check if next is also load/store. */
2886 midgard_instruction *next_op = mir_next_op(ins);
2887 if (&next_op->link != &block->instructions) {
2888 if (next_op->type == TAG_LOAD_STORE_4) {
2889 /* If so, we're done since we're a pair */
2890 ins = mir_next_op(ins);
2891 continue;
2892 }
2893
2894 /* Maximum search distance to pair, to avoid register pressure disasters */
2895 int search_distance = 8;
2896
2897 /* Otherwise, we have an orphaned load/store -- search for another load */
2898 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2899 /* Terminate search if necessary */
2900 if (!(search_distance--)) break;
2901
2902 if (c->type != TAG_LOAD_STORE_4) continue;
2903
2904 if (OP_IS_STORE(c->load_store.op)) continue;
2905
2906 /* We found one! Move it up to pair and remove it from the old location */
2907
2908 mir_insert_instruction_before(ins, *c);
2909 mir_remove_instruction(c);
2910
2911 break;
2912 }
2913 }
2914 }
2915 }
2916
2917 /* Emit varying stores late */
2918
2919 static void
2920 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2921 /* Iterate in reverse to get the final write, rather than the first */
2922
2923 mir_foreach_instr_in_block_safe_rev(block, ins) {
2924 /* Check if what we just wrote needs a store */
2925 int idx = ins->ssa_args.dest;
2926 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2927
2928 if (!varying) continue;
2929
2930 varying -= 1;
2931
2932 /* We need to store to the appropriate varying, so emit the
2933 * move/store */
2934
2935 /* TODO: Integrate with special purpose RA (and scheduler?) */
2936 bool high_varying_register = false;
2937
2938 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2939
2940 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2941 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2942
2943 mir_insert_instruction_before(mir_next_op(ins), st);
2944 mir_insert_instruction_before(mir_next_op(ins), mov);
2945
2946 /* We no longer need to store this varying */
2947 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2948 }
2949 }
2950
2951 /* If there are leftovers after the below pass, emit actual fmov
2952 * instructions for the slow-but-correct path */
2953
2954 static void
2955 emit_leftover_move(compiler_context *ctx)
2956 {
2957 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2958 int base = ((uintptr_t) leftover->key) - 1;
2959 int mapped = base;
2960
2961 map_ssa_to_alias(ctx, &mapped);
2962 EMIT(fmov, mapped, blank_alu_src, base);
2963 }
2964 }
2965
2966 static void
2967 actualise_ssa_to_alias(compiler_context *ctx)
2968 {
2969 mir_foreach_instr(ctx, ins) {
2970 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2971 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2972 }
2973
2974 emit_leftover_move(ctx);
2975 }
2976
2977 /* Vertex shaders do not write gl_Position as is; instead, they write a
2978 * transformed screen space position as a varying. See section 12.5 "Coordinate
2979 * Transformation" of the ES 3.2 full specification for details.
2980 *
2981 * This transformation occurs early on, as NIR and prior to optimisation, in
2982 * order to take advantage of NIR optimisation passes of the transform itself.
2983 * */
2984
2985 static void
2986 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2987 {
2988 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2989
2990 /* Get viewport from the uniforms */
2991 nir_intrinsic_instr *load;
2992 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2993 load->num_components = 4;
2994 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2995 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2996 nir_builder_instr_insert(b, &load->instr);
2997
2998 /* Formatted as <width, height, centerx, centery> */
2999 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
3000 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
3001 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
3002 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
3003
3004 /* XXX: From uniforms? */
3005 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
3006 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
3007
3008 /* World space to normalised device coordinates */
3009
3010 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3011 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3012
3013 /* Normalised device coordinates to screen space */
3014
3015 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3016 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3017
3018 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3019 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3020 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3021
3022 /* gl_Position will be written out in screenspace xyz, with w set to
3023 * the reciprocal we computed earlier. The transformed w component is
3024 * then used for perspective-correct varying interpolation. The
3025 * transformed w component must preserve its original sign; this is
3026 * used in depth clipping computations */
3027
3028 nir_ssa_def *screen_space = nir_vec4(b,
3029 nir_channel(b, viewport_xy, 0),
3030 nir_channel(b, viewport_xy, 1),
3031 screen_depth,
3032 w_recip);
3033
3034 /* Finally, write out the transformed values to the varying */
3035
3036 nir_intrinsic_instr *store;
3037 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3038 store->num_components = 4;
3039 nir_intrinsic_set_base(store, 0);
3040 nir_intrinsic_set_write_mask(store, 0xf);
3041 store->src[0].ssa = screen_space;
3042 store->src[0].is_ssa = true;
3043 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3044 nir_builder_instr_insert(b, &store->instr);
3045 }
3046
3047 static void
3048 transform_position_writes(nir_shader *shader)
3049 {
3050 nir_foreach_function(func, shader) {
3051 nir_foreach_block(block, func->impl) {
3052 nir_foreach_instr_safe(instr, block) {
3053 if (instr->type != nir_instr_type_intrinsic) continue;
3054
3055 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3056 nir_variable *out = NULL;
3057
3058 switch (intr->intrinsic) {
3059 case nir_intrinsic_store_output:
3060 /* already had i/o lowered.. lookup the matching output var: */
3061 nir_foreach_variable(var, &shader->outputs) {
3062 int drvloc = var->data.driver_location;
3063
3064 if (nir_intrinsic_base(intr) == drvloc) {
3065 out = var;
3066 break;
3067 }
3068 }
3069
3070 break;
3071
3072 default:
3073 break;
3074 }
3075
3076 if (!out) continue;
3077
3078 if (out->data.mode != nir_var_shader_out)
3079 continue;
3080
3081 if (out->data.location != VARYING_SLOT_POS)
3082 continue;
3083
3084 nir_builder b;
3085 nir_builder_init(&b, func->impl);
3086 b.cursor = nir_before_instr(instr);
3087
3088 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3089 nir_instr_remove(instr);
3090 }
3091 }
3092 }
3093 }
3094
3095 static void
3096 emit_fragment_epilogue(compiler_context *ctx)
3097 {
3098 /* Special case: writing out constants requires us to include the move
3099 * explicitly now, so shove it into r0 */
3100
3101 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3102
3103 if (constant_value) {
3104 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3105 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3106 emit_mir_instruction(ctx, ins);
3107 }
3108
3109 /* Perform the actual fragment writeout. We have two writeout/branch
3110 * instructions, forming a loop until writeout is successful as per the
3111 * docs. TODO: gl_FragDepth */
3112
3113 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3114 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3115 }
3116
3117 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3118 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3119 * with the int8 analogue to the fragment epilogue */
3120
3121 static void
3122 emit_blend_epilogue(compiler_context *ctx)
3123 {
3124 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3125
3126 midgard_instruction scale = {
3127 .type = TAG_ALU_4,
3128 .unit = UNIT_VMUL,
3129 .inline_constant = _mesa_float_to_half(255.0),
3130 .ssa_args = {
3131 .src0 = SSA_FIXED_REGISTER(0),
3132 .src1 = SSA_UNUSED_0,
3133 .dest = SSA_FIXED_REGISTER(24),
3134 .inline_constant = true
3135 },
3136 .alu = {
3137 .op = midgard_alu_op_fmul,
3138 .reg_mode = midgard_reg_mode_full,
3139 .dest_override = midgard_dest_override_lower,
3140 .mask = 0xFF,
3141 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3142 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3143 }
3144 };
3145
3146 emit_mir_instruction(ctx, scale);
3147
3148 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3149
3150 midgard_vector_alu_src alu_src = blank_alu_src;
3151 alu_src.half = true;
3152
3153 midgard_instruction f2u8 = {
3154 .type = TAG_ALU_4,
3155 .ssa_args = {
3156 .src0 = SSA_FIXED_REGISTER(24),
3157 .src1 = SSA_UNUSED_0,
3158 .dest = SSA_FIXED_REGISTER(0),
3159 .inline_constant = true
3160 },
3161 .alu = {
3162 .op = midgard_alu_op_f2u8,
3163 .reg_mode = midgard_reg_mode_half,
3164 .dest_override = midgard_dest_override_lower,
3165 .outmod = midgard_outmod_pos,
3166 .mask = 0xF,
3167 .src1 = vector_alu_srco_unsigned(alu_src),
3168 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3169 }
3170 };
3171
3172 emit_mir_instruction(ctx, f2u8);
3173
3174 /* vmul.imov.quarter r0, r0, r0 */
3175
3176 midgard_instruction imov_8 = {
3177 .type = TAG_ALU_4,
3178 .ssa_args = {
3179 .src0 = SSA_UNUSED_1,
3180 .src1 = SSA_FIXED_REGISTER(0),
3181 .dest = SSA_FIXED_REGISTER(0),
3182 },
3183 .alu = {
3184 .op = midgard_alu_op_imov,
3185 .reg_mode = midgard_reg_mode_quarter,
3186 .dest_override = midgard_dest_override_none,
3187 .mask = 0xFF,
3188 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3189 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3190 }
3191 };
3192
3193 /* Emit branch epilogue with the 8-bit move as the source */
3194
3195 emit_mir_instruction(ctx, imov_8);
3196 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3197
3198 emit_mir_instruction(ctx, imov_8);
3199 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3200 }
3201
3202 static midgard_block *
3203 emit_block(compiler_context *ctx, nir_block *block)
3204 {
3205 midgard_block *this_block = malloc(sizeof(midgard_block));
3206 list_addtail(&this_block->link, &ctx->blocks);
3207
3208 this_block->is_scheduled = false;
3209 ++ctx->block_count;
3210
3211 ctx->texture_index[0] = -1;
3212 ctx->texture_index[1] = -1;
3213
3214 /* Set up current block */
3215 list_inithead(&this_block->instructions);
3216 ctx->current_block = this_block;
3217
3218 nir_foreach_instr(instr, block) {
3219 emit_instr(ctx, instr);
3220 ++ctx->instruction_count;
3221 }
3222
3223 inline_alu_constants(ctx);
3224 embedded_to_inline_constant(ctx);
3225
3226 /* Perform heavylifting for aliasing */
3227 actualise_ssa_to_alias(ctx);
3228
3229 midgard_emit_store(ctx, this_block);
3230 midgard_eliminate_orphan_moves(ctx, this_block);
3231 midgard_pair_load_store(ctx, this_block);
3232
3233 /* Append fragment shader epilogue (value writeout) */
3234 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3235 if (block == nir_impl_last_block(ctx->func->impl)) {
3236 if (ctx->is_blend)
3237 emit_blend_epilogue(ctx);
3238 else
3239 emit_fragment_epilogue(ctx);
3240 }
3241 }
3242
3243 /* Fallthrough save */
3244 this_block->next_fallthrough = ctx->previous_source_block;
3245
3246 if (block == nir_start_block(ctx->func->impl))
3247 ctx->initial_block = this_block;
3248
3249 if (block == nir_impl_last_block(ctx->func->impl))
3250 ctx->final_block = this_block;
3251
3252 /* Allow the next control flow to access us retroactively, for
3253 * branching etc */
3254 ctx->current_block = this_block;
3255
3256 /* Document the fallthrough chain */
3257 ctx->previous_source_block = this_block;
3258
3259 return this_block;
3260 }
3261
3262 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3263
3264 static void
3265 emit_if(struct compiler_context *ctx, nir_if *nif)
3266 {
3267 /* Conditional branches expect the condition in r31.w; emit a move for
3268 * that in the _previous_ block (which is the current block). */
3269 emit_condition(ctx, &nif->condition, true);
3270
3271 /* Speculatively emit the branch, but we can't fill it in until later */
3272 EMIT(branch, true, true);
3273 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3274
3275 /* Emit the two subblocks */
3276 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3277
3278 /* Emit a jump from the end of the then block to the end of the else */
3279 EMIT(branch, false, false);
3280 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3281
3282 /* Emit second block, and check if it's empty */
3283
3284 int else_idx = ctx->block_count;
3285 int count_in = ctx->instruction_count;
3286 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3287 int after_else_idx = ctx->block_count;
3288
3289 /* Now that we have the subblocks emitted, fix up the branches */
3290
3291 assert(then_block);
3292 assert(else_block);
3293
3294 if (ctx->instruction_count == count_in) {
3295 /* The else block is empty, so don't emit an exit jump */
3296 mir_remove_instruction(then_exit);
3297 then_branch->branch.target_block = after_else_idx;
3298 } else {
3299 then_branch->branch.target_block = else_idx;
3300 then_exit->branch.target_block = after_else_idx;
3301 }
3302 }
3303
3304 static void
3305 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3306 {
3307 /* Remember where we are */
3308 midgard_block *start_block = ctx->current_block;
3309
3310 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3311 * single current_loop variable, maybe we need a stack */
3312
3313 int loop_idx = ++ctx->current_loop;
3314
3315 /* Get index from before the body so we can loop back later */
3316 int start_idx = ctx->block_count;
3317
3318 /* Emit the body itself */
3319 emit_cf_list(ctx, &nloop->body);
3320
3321 /* Branch back to loop back */
3322 struct midgard_instruction br_back = v_branch(false, false);
3323 br_back.branch.target_block = start_idx;
3324 emit_mir_instruction(ctx, br_back);
3325
3326 /* Find the index of the block about to follow us (note: we don't add
3327 * one; blocks are 0-indexed so we get a fencepost problem) */
3328 int break_block_idx = ctx->block_count;
3329
3330 /* Fix up the break statements we emitted to point to the right place,
3331 * now that we can allocate a block number for them */
3332
3333 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3334 if (midgard_debug & MIDGARD_DBG_SHADERS)
3335 print_mir_block(block);
3336 mir_foreach_instr_in_block(block, ins) {
3337 if (ins->type != TAG_ALU_4) continue;
3338 if (!ins->compact_branch) continue;
3339 if (ins->prepacked_branch) continue;
3340
3341 /* We found a branch -- check the type to see if we need to do anything */
3342 if (ins->branch.target_type != TARGET_BREAK) continue;
3343
3344 /* It's a break! Check if it's our break */
3345 if (ins->branch.target_break != loop_idx) continue;
3346
3347 /* Okay, cool, we're breaking out of this loop.
3348 * Rewrite from a break to a goto */
3349
3350 ins->branch.target_type = TARGET_GOTO;
3351 ins->branch.target_block = break_block_idx;
3352 }
3353 }
3354 }
3355
3356 static midgard_block *
3357 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3358 {
3359 midgard_block *start_block = NULL;
3360
3361 foreach_list_typed(nir_cf_node, node, node, list) {
3362 switch (node->type) {
3363 case nir_cf_node_block: {
3364 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3365
3366 if (!start_block)
3367 start_block = block;
3368
3369 break;
3370 }
3371
3372 case nir_cf_node_if:
3373 emit_if(ctx, nir_cf_node_as_if(node));
3374 break;
3375
3376 case nir_cf_node_loop:
3377 emit_loop(ctx, nir_cf_node_as_loop(node));
3378 break;
3379
3380 case nir_cf_node_function:
3381 assert(0);
3382 break;
3383 }
3384 }
3385
3386 return start_block;
3387 }
3388
3389 /* Due to lookahead, we need to report the first tag executed in the command
3390 * stream and in branch targets. An initial block might be empty, so iterate
3391 * until we find one that 'works' */
3392
3393 static unsigned
3394 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3395 {
3396 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3397
3398 unsigned first_tag = 0;
3399
3400 do {
3401 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3402
3403 if (initial_bundle) {
3404 first_tag = initial_bundle->tag;
3405 break;
3406 }
3407
3408 /* Initial block is empty, try the next block */
3409 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3410 } while(initial_block != NULL);
3411
3412 assert(first_tag);
3413 return first_tag;
3414 }
3415
3416 int
3417 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3418 {
3419 struct util_dynarray *compiled = &program->compiled;
3420
3421 midgard_debug = debug_get_option_midgard_debug();
3422
3423 compiler_context ictx = {
3424 .nir = nir,
3425 .stage = nir->info.stage,
3426
3427 .is_blend = is_blend,
3428 .blend_constant_offset = -1,
3429
3430 .alpha_ref = program->alpha_ref
3431 };
3432
3433 compiler_context *ctx = &ictx;
3434
3435 /* TODO: Decide this at runtime */
3436 ctx->uniform_cutoff = 8;
3437
3438 switch (ctx->stage) {
3439 case MESA_SHADER_VERTEX:
3440 ctx->special_uniforms = 1;
3441 break;
3442
3443 default:
3444 ctx->special_uniforms = 0;
3445 break;
3446 }
3447
3448 /* Append epilogue uniforms if necessary. The cmdstream depends on
3449 * these being at the -end-; see assign_var_locations. */
3450
3451 if (ctx->stage == MESA_SHADER_VERTEX) {
3452 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3453 }
3454
3455 /* Assign var locations early, so the epilogue can use them if necessary */
3456
3457 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3458 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3459 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3460
3461 /* Initialize at a global (not block) level hash tables */
3462
3463 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3464 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3465 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3466 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3467 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3468 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3469
3470 /* Assign actual uniform location, skipping over samplers */
3471
3472 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3473
3474 nir_foreach_variable(var, &nir->uniforms) {
3475 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3476
3477 unsigned length = glsl_get_aoa_size(var->type);
3478
3479 if (!length) {
3480 length = glsl_get_length(var->type);
3481 }
3482
3483 if (!length) {
3484 length = glsl_get_matrix_columns(var->type);
3485 }
3486
3487 for (int col = 0; col < length; ++col) {
3488 int id = ctx->uniform_count++;
3489 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3490 }
3491 }
3492
3493 /* Record the varying mapping for the command stream's bookkeeping */
3494
3495 struct exec_list *varyings =
3496 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3497
3498 nir_foreach_variable(var, varyings) {
3499 unsigned loc = var->data.driver_location;
3500 program->varyings[loc] = var->data.location;
3501 }
3502
3503 /* Lower vars -- not I/O -- before epilogue */
3504
3505 NIR_PASS_V(nir, nir_lower_var_copies);
3506 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3507 NIR_PASS_V(nir, nir_split_var_copies);
3508 NIR_PASS_V(nir, nir_lower_var_copies);
3509 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3510 NIR_PASS_V(nir, nir_lower_var_copies);
3511 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3512 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3513
3514 /* Append vertex epilogue before optimisation, so the epilogue itself
3515 * is optimised */
3516
3517 if (ctx->stage == MESA_SHADER_VERTEX)
3518 transform_position_writes(nir);
3519
3520 /* Optimisation passes */
3521
3522 optimise_nir(nir);
3523
3524 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3525 nir_print_shader(nir, stdout);
3526 }
3527
3528 /* Assign counts, now that we're sure (post-optimisation) */
3529 program->uniform_count = nir->num_uniforms;
3530
3531 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3532 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3533
3534
3535 nir_foreach_function(func, nir) {
3536 if (!func->impl)
3537 continue;
3538
3539 list_inithead(&ctx->blocks);
3540 ctx->block_count = 0;
3541 ctx->func = func;
3542
3543 emit_cf_list(ctx, &func->impl->body);
3544 emit_block(ctx, func->impl->end_block);
3545
3546 break; /* TODO: Multi-function shaders */
3547 }
3548
3549 util_dynarray_init(compiled, NULL);
3550
3551 /* Schedule! */
3552 schedule_program(ctx);
3553
3554 /* Now that all the bundles are scheduled and we can calculate block
3555 * sizes, emit actual branch instructions rather than placeholders */
3556
3557 int br_block_idx = 0;
3558
3559 mir_foreach_block(ctx, block) {
3560 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3561 for (int c = 0; c < bundle->instruction_count; ++c) {
3562 midgard_instruction *ins = &bundle->instructions[c];
3563
3564 if (!midgard_is_branch_unit(ins->unit)) continue;
3565
3566 if (ins->prepacked_branch) continue;
3567
3568 /* Parse some basic branch info */
3569 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3570 bool is_conditional = ins->branch.conditional;
3571 bool is_inverted = ins->branch.invert_conditional;
3572 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3573
3574 /* Determine the block we're jumping to */
3575 int target_number = ins->branch.target_block;
3576
3577 /* Report the destination tag. Discards don't need this */
3578 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3579
3580 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3581 int quadword_offset = 0;
3582
3583 if (is_discard) {
3584 /* Jump to the end of the shader. We
3585 * need to include not only the
3586 * following blocks, but also the
3587 * contents of our current block (since
3588 * discard can come in the middle of
3589 * the block) */
3590
3591 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3592
3593 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3594 quadword_offset += quadword_size(bun->tag);
3595 }
3596
3597 mir_foreach_block_from(ctx, blk, b) {
3598 quadword_offset += b->quadword_count;
3599 }
3600
3601 } else if (target_number > br_block_idx) {
3602 /* Jump forward */
3603
3604 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3605 midgard_block *blk = mir_get_block(ctx, idx);
3606 assert(blk);
3607
3608 quadword_offset += blk->quadword_count;
3609 }
3610 } else {
3611 /* Jump backwards */
3612
3613 for (int idx = br_block_idx; idx >= target_number; --idx) {
3614 midgard_block *blk = mir_get_block(ctx, idx);
3615 assert(blk);
3616
3617 quadword_offset -= blk->quadword_count;
3618 }
3619 }
3620
3621 /* Unconditional extended branches (far jumps)
3622 * have issues, so we always use a conditional
3623 * branch, setting the condition to always for
3624 * unconditional. For compact unconditional
3625 * branches, cond isn't used so it doesn't
3626 * matter what we pick. */
3627
3628 midgard_condition cond =
3629 !is_conditional ? midgard_condition_always :
3630 is_inverted ? midgard_condition_false :
3631 midgard_condition_true;
3632
3633 midgard_jmp_writeout_op op =
3634 is_discard ? midgard_jmp_writeout_op_discard :
3635 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3636 midgard_jmp_writeout_op_branch_cond;
3637
3638 if (!is_compact) {
3639 midgard_branch_extended branch =
3640 midgard_create_branch_extended(
3641 cond, op,
3642 dest_tag,
3643 quadword_offset);
3644
3645 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3646 } else if (is_conditional || is_discard) {
3647 midgard_branch_cond branch = {
3648 .op = op,
3649 .dest_tag = dest_tag,
3650 .offset = quadword_offset,
3651 .cond = cond
3652 };
3653
3654 assert(branch.offset == quadword_offset);
3655
3656 memcpy(&ins->br_compact, &branch, sizeof(branch));
3657 } else {
3658 assert(op == midgard_jmp_writeout_op_branch_uncond);
3659
3660 midgard_branch_uncond branch = {
3661 .op = op,
3662 .dest_tag = dest_tag,
3663 .offset = quadword_offset,
3664 .unknown = 1
3665 };
3666
3667 assert(branch.offset == quadword_offset);
3668
3669 memcpy(&ins->br_compact, &branch, sizeof(branch));
3670 }
3671 }
3672 }
3673
3674 ++br_block_idx;
3675 }
3676
3677 /* Emit flat binary from the instruction arrays. Iterate each block in
3678 * sequence. Save instruction boundaries such that lookahead tags can
3679 * be assigned easily */
3680
3681 /* Cache _all_ bundles in source order for lookahead across failed branches */
3682
3683 int bundle_count = 0;
3684 mir_foreach_block(ctx, block) {
3685 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3686 }
3687 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3688 int bundle_idx = 0;
3689 mir_foreach_block(ctx, block) {
3690 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3691 source_order_bundles[bundle_idx++] = bundle;
3692 }
3693 }
3694
3695 int current_bundle = 0;
3696
3697 mir_foreach_block(ctx, block) {
3698 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3699 int lookahead = 1;
3700
3701 if (current_bundle + 1 < bundle_count) {
3702 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3703
3704 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3705 lookahead = 1;
3706 } else {
3707 lookahead = next;
3708 }
3709 }
3710
3711 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3712 ++current_bundle;
3713 }
3714
3715 /* TODO: Free deeper */
3716 //util_dynarray_fini(&block->instructions);
3717 }
3718
3719 free(source_order_bundles);
3720
3721 /* Report the very first tag executed */
3722 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3723
3724 /* Deal with off-by-one related to the fencepost problem */
3725 program->work_register_count = ctx->work_registers + 1;
3726
3727 program->can_discard = ctx->can_discard;
3728 program->uniform_cutoff = ctx->uniform_cutoff;
3729
3730 program->blend_patch_offset = ctx->blend_constant_offset;
3731
3732 if (midgard_debug & MIDGARD_DBG_SHADERS)
3733 disassemble_midgard(program->compiled.data, program->compiled.size);
3734
3735 return 0;
3736 }