panfrost/midgard: Handle i2b constant
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
752
753 /* Lower mods for float ops only. Integer ops don't support modifiers
754 * (saturate doesn't make sense on integers, neg/abs require dedicated
755 * instructions) */
756
757 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
758 NIR_PASS(progress, nir, nir_copy_prop);
759 NIR_PASS(progress, nir, nir_opt_dce);
760
761 /* We implement booleans as 32-bit 0/~0 */
762 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
763
764 /* Take us out of SSA */
765 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
766 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
767
768 /* We are a vector architecture; write combine where possible */
769 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
770 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
771
772 NIR_PASS(progress, nir, nir_opt_dce);
773 }
774
775 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
776 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
777 * r0. See the comments in compiler_context */
778
779 static void
780 alias_ssa(compiler_context *ctx, int dest, int src)
781 {
782 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
783 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
784 }
785
786 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
787
788 static void
789 unalias_ssa(compiler_context *ctx, int dest)
790 {
791 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
792 /* TODO: Remove from leftover or no? */
793 }
794
795 static void
796 midgard_pin_output(compiler_context *ctx, int index, int reg)
797 {
798 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
799 }
800
801 static bool
802 midgard_is_pinned(compiler_context *ctx, int index)
803 {
804 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
805 }
806
807 /* Do not actually emit a load; instead, cache the constant for inlining */
808
809 static void
810 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
811 {
812 nir_ssa_def def = instr->def;
813
814 float *v = ralloc_array(NULL, float, 4);
815 memcpy(v, &instr->value.f32, 4 * sizeof(float));
816 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
817 }
818
819 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
820 * do the inverse) */
821
822 static unsigned
823 expand_writemask(unsigned mask)
824 {
825 unsigned o = 0;
826
827 for (int i = 0; i < 4; ++i)
828 if (mask & (1 << i))
829 o |= (3 << (2 * i));
830
831 return o;
832 }
833
834 static unsigned
835 squeeze_writemask(unsigned mask)
836 {
837 unsigned o = 0;
838
839 for (int i = 0; i < 4; ++i)
840 if (mask & (3 << (2 * i)))
841 o |= (1 << i);
842
843 return o;
844
845 }
846
847 /* Determines effective writemask, taking quirks and expansion into account */
848 static unsigned
849 effective_writemask(midgard_vector_alu *alu)
850 {
851 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
852 * sense) */
853
854 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
855
856 /* If there is a fixed channel count, construct the appropriate mask */
857
858 if (channel_count)
859 return (1 << channel_count) - 1;
860
861 /* Otherwise, just squeeze the existing mask */
862 return squeeze_writemask(alu->mask);
863 }
864
865 static unsigned
866 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
867 {
868 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
869 return hash;
870
871 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
872
873 if (temp)
874 return temp - 1;
875
876 /* If no temp is find, allocate one */
877 temp = ctx->temp_count++;
878 ctx->max_hash = MAX2(ctx->max_hash, hash);
879
880 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
881
882 return temp;
883 }
884
885 static unsigned
886 nir_src_index(compiler_context *ctx, nir_src *src)
887 {
888 if (src->is_ssa)
889 return src->ssa->index;
890 else
891 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
892 }
893
894 static unsigned
895 nir_dest_index(compiler_context *ctx, nir_dest *dst)
896 {
897 if (dst->is_ssa)
898 return dst->ssa.index;
899 else
900 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
901 }
902
903 static unsigned
904 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
905 {
906 return nir_src_index(ctx, &src->src);
907 }
908
909 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
910 * a conditional test) into that register */
911
912 static void
913 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
914 {
915 /* XXX: Force component correct */
916 int condition = nir_src_index(ctx, src);
917
918 /* There is no boolean move instruction. Instead, we simulate a move by
919 * ANDing the condition with itself to get it into r31.w */
920
921 midgard_instruction ins = {
922 .type = TAG_ALU_4,
923 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
924 .ssa_args = {
925 .src0 = condition,
926 .src1 = condition,
927 .dest = SSA_FIXED_REGISTER(31),
928 },
929 .alu = {
930 .op = midgard_alu_op_iand,
931 .reg_mode = midgard_reg_mode_full,
932 .dest_override = midgard_dest_override_none,
933 .mask = (0x3 << 6), /* w */
934 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
935 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
936 },
937 };
938
939 emit_mir_instruction(ctx, ins);
940 }
941
942 #define ALU_CASE(nir, _op) \
943 case nir_op_##nir: \
944 op = midgard_alu_op_##_op; \
945 break;
946
947 static void
948 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
949 {
950 bool is_ssa = instr->dest.dest.is_ssa;
951
952 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
953 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
954 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
955
956 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
957 * supported. A few do not and are commented for now. Also, there are a
958 * number of NIR ops which Midgard does not support and need to be
959 * lowered, also TODO. This switch block emits the opcode and calling
960 * convention of the Midgard instruction; actual packing is done in
961 * emit_alu below */
962
963 unsigned op;
964
965 switch (instr->op) {
966 ALU_CASE(fadd, fadd);
967 ALU_CASE(fmul, fmul);
968 ALU_CASE(fmin, fmin);
969 ALU_CASE(fmax, fmax);
970 ALU_CASE(imin, imin);
971 ALU_CASE(imax, imax);
972 ALU_CASE(fmov, fmov);
973 ALU_CASE(ffloor, ffloor);
974 ALU_CASE(fround_even, froundeven);
975 ALU_CASE(ftrunc, ftrunc);
976 ALU_CASE(fceil, fceil);
977 ALU_CASE(fdot3, fdot3);
978 ALU_CASE(fdot4, fdot4);
979 ALU_CASE(iadd, iadd);
980 ALU_CASE(isub, isub);
981 ALU_CASE(imul, imul);
982 ALU_CASE(iabs, iabs);
983
984 /* XXX: Use fmov, not imov, since imov was causing major
985 * issues with texture precision? XXX research */
986 ALU_CASE(imov, fmov);
987
988 ALU_CASE(feq32, feq);
989 ALU_CASE(fne32, fne);
990 ALU_CASE(flt32, flt);
991 ALU_CASE(ieq32, ieq);
992 ALU_CASE(ine32, ine);
993 ALU_CASE(ilt32, ilt);
994 ALU_CASE(ult32, ult);
995
996 /* We don't have a native b2f32 instruction. Instead, like many
997 * GPUs, we exploit booleans as 0/~0 for false/true, and
998 * correspondingly AND
999 * by 1.0 to do the type conversion. For the moment, prime us
1000 * to emit:
1001 *
1002 * iand [whatever], #0
1003 *
1004 * At the end of emit_alu (as MIR), we'll fix-up the constant
1005 */
1006
1007 ALU_CASE(b2f32, iand);
1008 ALU_CASE(b2i32, iand);
1009
1010 /* Likewise, we don't have a dedicated f2b32 instruction, but
1011 * we can do a "not equal to 0.0" test. */
1012
1013 ALU_CASE(f2b32, fne);
1014 ALU_CASE(i2b32, ine);
1015
1016 ALU_CASE(frcp, frcp);
1017 ALU_CASE(frsq, frsqrt);
1018 ALU_CASE(fsqrt, fsqrt);
1019 ALU_CASE(fpow, fpow);
1020 ALU_CASE(fexp2, fexp2);
1021 ALU_CASE(flog2, flog2);
1022
1023 ALU_CASE(f2i32, f2i);
1024 ALU_CASE(f2u32, f2u);
1025 ALU_CASE(i2f32, i2f);
1026 ALU_CASE(u2f32, u2f);
1027
1028 ALU_CASE(fsin, fsin);
1029 ALU_CASE(fcos, fcos);
1030
1031 ALU_CASE(iand, iand);
1032 ALU_CASE(ior, ior);
1033 ALU_CASE(ixor, ixor);
1034 ALU_CASE(inot, inot);
1035 ALU_CASE(ishl, ishl);
1036 ALU_CASE(ishr, iasr);
1037 ALU_CASE(ushr, ilsr);
1038
1039 ALU_CASE(b32all_fequal2, fball_eq);
1040 ALU_CASE(b32all_fequal3, fball_eq);
1041 ALU_CASE(b32all_fequal4, fball_eq);
1042
1043 ALU_CASE(b32any_fnequal2, fbany_neq);
1044 ALU_CASE(b32any_fnequal3, fbany_neq);
1045 ALU_CASE(b32any_fnequal4, fbany_neq);
1046
1047 ALU_CASE(b32all_iequal2, iball_eq);
1048 ALU_CASE(b32all_iequal3, iball_eq);
1049 ALU_CASE(b32all_iequal4, iball_eq);
1050
1051 ALU_CASE(b32any_inequal2, ibany_neq);
1052 ALU_CASE(b32any_inequal3, ibany_neq);
1053 ALU_CASE(b32any_inequal4, ibany_neq);
1054
1055 /* For greater-or-equal, we lower to less-or-equal and flip the
1056 * arguments */
1057
1058 case nir_op_fge:
1059 case nir_op_fge32:
1060 case nir_op_ige32:
1061 case nir_op_uge32: {
1062 op =
1063 instr->op == nir_op_fge ? midgard_alu_op_fle :
1064 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1065 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1066 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1067 0;
1068
1069 /* Swap via temporary */
1070 nir_alu_src temp = instr->src[1];
1071 instr->src[1] = instr->src[0];
1072 instr->src[0] = temp;
1073
1074 break;
1075 }
1076
1077 case nir_op_b32csel: {
1078 op = midgard_alu_op_fcsel;
1079
1080 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1081 nr_inputs = 2;
1082
1083 emit_condition(ctx, &instr->src[0].src, false);
1084
1085 /* The condition is the first argument; move the other
1086 * arguments up one to be a binary instruction for
1087 * Midgard */
1088
1089 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1090 break;
1091 }
1092
1093 default:
1094 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1095 assert(0);
1096 return;
1097 }
1098
1099 /* Fetch unit, quirks, etc information */
1100 unsigned opcode_props = alu_opcode_props[op];
1101 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1102
1103 /* Initialise fields common between scalar/vector instructions */
1104 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1105
1106 /* src0 will always exist afaik, but src1 will not for 1-argument
1107 * instructions. The latter can only be fetched if the instruction
1108 * needs it, or else we may segfault. */
1109
1110 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1111 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1112
1113 /* Rather than use the instruction generation helpers, we do it
1114 * ourselves here to avoid the mess */
1115
1116 midgard_instruction ins = {
1117 .type = TAG_ALU_4,
1118 .ssa_args = {
1119 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1120 .src1 = quirk_flipped_r24 ? src0 : src1,
1121 .dest = dest,
1122 }
1123 };
1124
1125 nir_alu_src *nirmods[2] = { NULL };
1126
1127 if (nr_inputs == 2) {
1128 nirmods[0] = &instr->src[0];
1129 nirmods[1] = &instr->src[1];
1130 } else if (nr_inputs == 1) {
1131 nirmods[quirk_flipped_r24] = &instr->src[0];
1132 } else {
1133 assert(0);
1134 }
1135
1136 midgard_vector_alu alu = {
1137 .op = op,
1138 .reg_mode = midgard_reg_mode_full,
1139 .dest_override = midgard_dest_override_none,
1140 .outmod = outmod,
1141
1142 /* Writemask only valid for non-SSA NIR */
1143 .mask = expand_writemask((1 << nr_components) - 1),
1144
1145 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1146 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1147 };
1148
1149 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1150
1151 if (!is_ssa)
1152 alu.mask &= expand_writemask(instr->dest.write_mask);
1153
1154 ins.alu = alu;
1155
1156 /* Late fixup for emulated instructions */
1157
1158 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1159 /* Presently, our second argument is an inline #0 constant.
1160 * Switch over to an embedded 1.0 constant (that can't fit
1161 * inline, since we're 32-bit, not 16-bit like the inline
1162 * constants) */
1163
1164 ins.ssa_args.inline_constant = false;
1165 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1166 ins.has_constants = true;
1167
1168 if (instr->op == nir_op_b2f32) {
1169 ins.constants[0] = 1.0f;
1170 } else {
1171 /* Type pun it into place */
1172 uint32_t one = 0x1;
1173 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1174 }
1175
1176 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1177 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1178 ins.ssa_args.inline_constant = false;
1179 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1180 ins.has_constants = true;
1181 ins.constants[0] = 0.0f;
1182 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1183 }
1184
1185 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1186 /* To avoid duplicating the lookup tables (probably), true LUT
1187 * instructions can only operate as if they were scalars. Lower
1188 * them here by changing the component. */
1189
1190 uint8_t original_swizzle[4];
1191 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1192
1193 for (int i = 0; i < nr_components; ++i) {
1194 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1195
1196 for (int j = 0; j < 4; ++j)
1197 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1198
1199 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1200 emit_mir_instruction(ctx, ins);
1201 }
1202 } else {
1203 emit_mir_instruction(ctx, ins);
1204 }
1205 }
1206
1207 #undef ALU_CASE
1208
1209 static void
1210 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1211 {
1212 nir_const_value *const_offset;
1213 unsigned offset, reg;
1214
1215 switch (instr->intrinsic) {
1216 case nir_intrinsic_discard_if:
1217 emit_condition(ctx, &instr->src[0], true);
1218
1219 /* fallthrough */
1220
1221 case nir_intrinsic_discard: {
1222 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1223 struct midgard_instruction discard = v_branch(conditional, false);
1224 discard.branch.target_type = TARGET_DISCARD;
1225 emit_mir_instruction(ctx, discard);
1226
1227 ctx->can_discard = true;
1228 break;
1229 }
1230
1231 case nir_intrinsic_load_uniform:
1232 case nir_intrinsic_load_input:
1233 const_offset = nir_src_as_const_value(instr->src[0]);
1234 assert (const_offset && "no indirect inputs");
1235
1236 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1237
1238 reg = nir_dest_index(ctx, &instr->dest);
1239
1240 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1241 /* TODO: half-floats */
1242
1243 int uniform_offset = 0;
1244
1245 if (offset >= SPECIAL_UNIFORM_BASE) {
1246 /* XXX: Resolve which uniform */
1247 uniform_offset = 0;
1248 } else {
1249 /* Offset away from the special
1250 * uniform block */
1251
1252 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1253
1254 /* XXX */
1255 if (!entry) {
1256 DBG("WARNING: Unknown uniform %d\n", offset);
1257 break;
1258 }
1259
1260 uniform_offset = (uintptr_t) (entry) - 1;
1261 uniform_offset += ctx->special_uniforms;
1262 }
1263
1264 if (uniform_offset < ctx->uniform_cutoff) {
1265 /* Fast path: For the first 16 uniform,
1266 * accesses are 0-cycle, since they're
1267 * just a register fetch in the usual
1268 * case. So, we alias the registers
1269 * while we're still in SSA-space */
1270
1271 int reg_slot = 23 - uniform_offset;
1272 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1273 } else {
1274 /* Otherwise, read from the 'special'
1275 * UBO to access higher-indexed
1276 * uniforms, at a performance cost */
1277
1278 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1279
1280 /* TODO: Don't split */
1281 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1282 ins.load_store.address = uniform_offset >> 3;
1283
1284 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1285 emit_mir_instruction(ctx, ins);
1286 }
1287 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1288 /* XXX: Half-floats? */
1289 /* TODO: swizzle, mask */
1290
1291 midgard_instruction ins = m_load_vary_32(reg, offset);
1292
1293 midgard_varying_parameter p = {
1294 .is_varying = 1,
1295 .interpolation = midgard_interp_default,
1296 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1297 };
1298
1299 unsigned u;
1300 memcpy(&u, &p, sizeof(p));
1301 ins.load_store.varying_parameters = u;
1302
1303 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1304 emit_mir_instruction(ctx, ins);
1305 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1306 /* Constant encoded as a pinned constant */
1307
1308 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1309 ins.has_constants = true;
1310 ins.has_blend_constant = true;
1311 emit_mir_instruction(ctx, ins);
1312 } else if (ctx->is_blend) {
1313 /* For blend shaders, a load might be
1314 * translated various ways depending on what
1315 * we're loading. Figure out how this is used */
1316
1317 nir_variable *out = NULL;
1318
1319 nir_foreach_variable(var, &ctx->nir->inputs) {
1320 int drvloc = var->data.driver_location;
1321
1322 if (nir_intrinsic_base(instr) == drvloc) {
1323 out = var;
1324 break;
1325 }
1326 }
1327
1328 assert(out);
1329
1330 if (out->data.location == VARYING_SLOT_COL0) {
1331 /* Source color preloaded to r0 */
1332
1333 midgard_pin_output(ctx, reg, 0);
1334 } else if (out->data.location == VARYING_SLOT_COL1) {
1335 /* Destination color must be read from framebuffer */
1336
1337 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1338 ins.load_store.swizzle = 0; /* xxxx */
1339
1340 /* Read each component sequentially */
1341
1342 for (int c = 0; c < 4; ++c) {
1343 ins.load_store.mask = (1 << c);
1344 ins.load_store.unknown = c;
1345 emit_mir_instruction(ctx, ins);
1346 }
1347
1348 /* vadd.u2f hr2, abs(hr2), #0 */
1349
1350 midgard_vector_alu_src alu_src = blank_alu_src;
1351 alu_src.abs = true;
1352 alu_src.half = true;
1353
1354 midgard_instruction u2f = {
1355 .type = TAG_ALU_4,
1356 .ssa_args = {
1357 .src0 = reg,
1358 .src1 = SSA_UNUSED_0,
1359 .dest = reg,
1360 .inline_constant = true
1361 },
1362 .alu = {
1363 .op = midgard_alu_op_u2f,
1364 .reg_mode = midgard_reg_mode_half,
1365 .dest_override = midgard_dest_override_none,
1366 .mask = 0xF,
1367 .src1 = vector_alu_srco_unsigned(alu_src),
1368 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1369 }
1370 };
1371
1372 emit_mir_instruction(ctx, u2f);
1373
1374 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1375
1376 alu_src.abs = false;
1377
1378 midgard_instruction fmul = {
1379 .type = TAG_ALU_4,
1380 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1381 .ssa_args = {
1382 .src0 = reg,
1383 .dest = reg,
1384 .src1 = SSA_UNUSED_0,
1385 .inline_constant = true
1386 },
1387 .alu = {
1388 .op = midgard_alu_op_fmul,
1389 .reg_mode = midgard_reg_mode_full,
1390 .dest_override = midgard_dest_override_none,
1391 .outmod = midgard_outmod_sat,
1392 .mask = 0xFF,
1393 .src1 = vector_alu_srco_unsigned(alu_src),
1394 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1395 }
1396 };
1397
1398 emit_mir_instruction(ctx, fmul);
1399 } else {
1400 DBG("Unknown input in blend shader\n");
1401 assert(0);
1402 }
1403 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1404 midgard_instruction ins = m_load_attr_32(reg, offset);
1405 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1406 ins.load_store.mask = (1 << instr->num_components) - 1;
1407 emit_mir_instruction(ctx, ins);
1408 } else {
1409 DBG("Unknown load\n");
1410 assert(0);
1411 }
1412
1413 break;
1414
1415 case nir_intrinsic_store_output:
1416 const_offset = nir_src_as_const_value(instr->src[1]);
1417 assert(const_offset && "no indirect outputs");
1418
1419 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1420
1421 reg = nir_src_index(ctx, &instr->src[0]);
1422
1423 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1424 /* gl_FragColor is not emitted with load/store
1425 * instructions. Instead, it gets plonked into
1426 * r0 at the end of the shader and we do the
1427 * framebuffer writeout dance. TODO: Defer
1428 * writes */
1429
1430 midgard_pin_output(ctx, reg, 0);
1431
1432 /* Save the index we're writing to for later reference
1433 * in the epilogue */
1434
1435 ctx->fragment_output = reg;
1436 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1437 /* Varyings are written into one of two special
1438 * varying register, r26 or r27. The register itself is selected as the register
1439 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1440 *
1441 * Normally emitting fmov's is frowned upon,
1442 * but due to unique constraints of
1443 * REGISTER_VARYING, fmov emission + a
1444 * dedicated cleanup pass is the only way to
1445 * guarantee correctness when considering some
1446 * (common) edge cases XXX: FIXME */
1447
1448 /* If this varying corresponds to a constant (why?!),
1449 * emit that now since it won't get picked up by
1450 * hoisting (since there is no corresponding move
1451 * emitted otherwise) */
1452
1453 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1454
1455 if (constant_value) {
1456 /* Special case: emit the varying write
1457 * directly to r26 (looks funny in asm but it's
1458 * fine) and emit the store _now_. Possibly
1459 * slightly slower, but this is a really stupid
1460 * special case anyway (why on earth would you
1461 * have a constant varying? Your own fault for
1462 * slightly worse perf :P) */
1463
1464 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1465 attach_constants(ctx, &ins, constant_value, reg + 1);
1466 emit_mir_instruction(ctx, ins);
1467
1468 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1469 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1470 emit_mir_instruction(ctx, st);
1471 } else {
1472 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1473
1474 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1475 }
1476 } else {
1477 DBG("Unknown store\n");
1478 assert(0);
1479 }
1480
1481 break;
1482
1483 case nir_intrinsic_load_alpha_ref_float:
1484 assert(instr->dest.is_ssa);
1485
1486 float ref_value = ctx->alpha_ref;
1487
1488 float *v = ralloc_array(NULL, float, 4);
1489 memcpy(v, &ref_value, sizeof(float));
1490 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1491 break;
1492
1493
1494 default:
1495 printf ("Unhandled intrinsic\n");
1496 assert(0);
1497 break;
1498 }
1499 }
1500
1501 static unsigned
1502 midgard_tex_format(enum glsl_sampler_dim dim)
1503 {
1504 switch (dim) {
1505 case GLSL_SAMPLER_DIM_2D:
1506 case GLSL_SAMPLER_DIM_EXTERNAL:
1507 return TEXTURE_2D;
1508
1509 case GLSL_SAMPLER_DIM_3D:
1510 return TEXTURE_3D;
1511
1512 case GLSL_SAMPLER_DIM_CUBE:
1513 return TEXTURE_CUBE;
1514
1515 default:
1516 DBG("Unknown sampler dim type\n");
1517 assert(0);
1518 return 0;
1519 }
1520 }
1521
1522 static void
1523 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1524 {
1525 /* TODO */
1526 //assert (!instr->sampler);
1527 //assert (!instr->texture_array_size);
1528 assert (instr->op == nir_texop_tex);
1529
1530 /* Allocate registers via a round robin scheme to alternate between the two registers */
1531 int reg = ctx->texture_op_count & 1;
1532 int in_reg = reg, out_reg = reg;
1533
1534 /* Make room for the reg */
1535
1536 if (ctx->texture_index[reg] > -1)
1537 unalias_ssa(ctx, ctx->texture_index[reg]);
1538
1539 int texture_index = instr->texture_index;
1540 int sampler_index = texture_index;
1541
1542 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1543 switch (instr->src[i].src_type) {
1544 case nir_tex_src_coord: {
1545 int index = nir_src_index(ctx, &instr->src[i].src);
1546
1547 midgard_vector_alu_src alu_src = blank_alu_src;
1548 alu_src.swizzle = (COMPONENT_Y << 2);
1549
1550 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1551 emit_mir_instruction(ctx, ins);
1552
1553 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1554
1555 break;
1556 }
1557
1558 default: {
1559 DBG("Unknown source type\n");
1560 //assert(0);
1561 break;
1562 }
1563 }
1564 }
1565
1566 /* No helper to build texture words -- we do it all here */
1567 midgard_instruction ins = {
1568 .type = TAG_TEXTURE_4,
1569 .texture = {
1570 .op = TEXTURE_OP_NORMAL,
1571 .format = midgard_tex_format(instr->sampler_dim),
1572 .texture_handle = texture_index,
1573 .sampler_handle = sampler_index,
1574
1575 /* TODO: Don't force xyzw */
1576 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1577 .mask = 0xF,
1578
1579 /* TODO: half */
1580 //.in_reg_full = 1,
1581 .out_full = 1,
1582
1583 .filter = 1,
1584
1585 /* Always 1 */
1586 .unknown7 = 1,
1587
1588 /* Assume we can continue; hint it out later */
1589 .cont = 1,
1590 }
1591 };
1592
1593 /* Set registers to read and write from the same place */
1594 ins.texture.in_reg_select = in_reg;
1595 ins.texture.out_reg_select = out_reg;
1596
1597 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1598 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1599 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1600 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1601 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1602 } else {
1603 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1604 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1605 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1606 }
1607
1608 emit_mir_instruction(ctx, ins);
1609
1610 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1611
1612 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1613 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1614 ctx->texture_index[reg] = o_index;
1615
1616 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1617 emit_mir_instruction(ctx, ins2);
1618
1619 /* Used for .cont and .last hinting */
1620 ctx->texture_op_count++;
1621 }
1622
1623 static void
1624 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1625 {
1626 switch (instr->type) {
1627 case nir_jump_break: {
1628 /* Emit a branch out of the loop */
1629 struct midgard_instruction br = v_branch(false, false);
1630 br.branch.target_type = TARGET_BREAK;
1631 br.branch.target_break = ctx->current_loop;
1632 emit_mir_instruction(ctx, br);
1633
1634 DBG("break..\n");
1635 break;
1636 }
1637
1638 default:
1639 DBG("Unknown jump type %d\n", instr->type);
1640 break;
1641 }
1642 }
1643
1644 static void
1645 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1646 {
1647 switch (instr->type) {
1648 case nir_instr_type_load_const:
1649 emit_load_const(ctx, nir_instr_as_load_const(instr));
1650 break;
1651
1652 case nir_instr_type_intrinsic:
1653 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1654 break;
1655
1656 case nir_instr_type_alu:
1657 emit_alu(ctx, nir_instr_as_alu(instr));
1658 break;
1659
1660 case nir_instr_type_tex:
1661 emit_tex(ctx, nir_instr_as_tex(instr));
1662 break;
1663
1664 case nir_instr_type_jump:
1665 emit_jump(ctx, nir_instr_as_jump(instr));
1666 break;
1667
1668 case nir_instr_type_ssa_undef:
1669 /* Spurious */
1670 break;
1671
1672 default:
1673 DBG("Unhandled instruction type\n");
1674 break;
1675 }
1676 }
1677
1678 /* Determine the actual hardware from the index based on the RA results or special values */
1679
1680 static int
1681 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1682 {
1683 if (reg >= SSA_FIXED_MINIMUM)
1684 return SSA_REG_FROM_FIXED(reg);
1685
1686 if (reg >= 0) {
1687 assert(reg < maxreg);
1688 int r = ra_get_node_reg(g, reg);
1689 ctx->work_registers = MAX2(ctx->work_registers, r);
1690 return r;
1691 }
1692
1693 switch (reg) {
1694 /* fmov style unused */
1695 case SSA_UNUSED_0:
1696 return REGISTER_UNUSED;
1697
1698 /* lut style unused */
1699 case SSA_UNUSED_1:
1700 return REGISTER_UNUSED;
1701
1702 default:
1703 DBG("Unknown SSA register alias %d\n", reg);
1704 assert(0);
1705 return 31;
1706 }
1707 }
1708
1709 static unsigned int
1710 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1711 {
1712 /* Choose the first available register to minimise reported register pressure */
1713
1714 for (int i = 0; i < 16; ++i) {
1715 if (BITSET_TEST(regs, i)) {
1716 return i;
1717 }
1718 }
1719
1720 assert(0);
1721 return 0;
1722 }
1723
1724 static bool
1725 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1726 {
1727 if (ins->ssa_args.src0 == src) return true;
1728 if (ins->ssa_args.src1 == src) return true;
1729
1730 return false;
1731 }
1732
1733 static bool
1734 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1735 {
1736 /* Check the rest of the block for liveness */
1737 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1738 if (midgard_is_live_in_instr(ins, src))
1739 return true;
1740 }
1741
1742 /* Check the rest of the blocks for liveness */
1743 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1744 mir_foreach_instr_in_block(b, ins) {
1745 if (midgard_is_live_in_instr(ins, src))
1746 return true;
1747 }
1748 }
1749
1750 /* TODO: How does control flow interact in complex shaders? */
1751
1752 return false;
1753 }
1754
1755 static void
1756 allocate_registers(compiler_context *ctx)
1757 {
1758 /* First, initialize the RA */
1759 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1760
1761 /* Create a primary (general purpose) class, as well as special purpose
1762 * pipeline register classes */
1763
1764 int primary_class = ra_alloc_reg_class(regs);
1765 int varying_class = ra_alloc_reg_class(regs);
1766
1767 /* Add the full set of work registers */
1768 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1769 for (int i = 0; i < work_count; ++i)
1770 ra_class_add_reg(regs, primary_class, i);
1771
1772 /* Add special registers */
1773 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1774 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1775
1776 /* We're done setting up */
1777 ra_set_finalize(regs, NULL);
1778
1779 /* Transform the MIR into squeezed index form */
1780 mir_foreach_block(ctx, block) {
1781 mir_foreach_instr_in_block(block, ins) {
1782 if (ins->compact_branch) continue;
1783
1784 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1785 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1786 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1787 }
1788 if (midgard_debug & MIDGARD_DBG_SHADERS)
1789 print_mir_block(block);
1790 }
1791
1792 /* Let's actually do register allocation */
1793 int nodes = ctx->temp_count;
1794 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1795
1796 /* Set everything to the work register class, unless it has somewhere
1797 * special to go */
1798
1799 mir_foreach_block(ctx, block) {
1800 mir_foreach_instr_in_block(block, ins) {
1801 if (ins->compact_branch) continue;
1802
1803 if (ins->ssa_args.dest < 0) continue;
1804
1805 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1806
1807 int class = primary_class;
1808
1809 ra_set_node_class(g, ins->ssa_args.dest, class);
1810 }
1811 }
1812
1813 for (int index = 0; index <= ctx->max_hash; ++index) {
1814 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1815
1816 if (temp) {
1817 unsigned reg = temp - 1;
1818 int t = find_or_allocate_temp(ctx, index);
1819 ra_set_node_reg(g, t, reg);
1820 }
1821 }
1822
1823 /* Determine liveness */
1824
1825 int *live_start = malloc(nodes * sizeof(int));
1826 int *live_end = malloc(nodes * sizeof(int));
1827
1828 /* Initialize as non-existent */
1829
1830 for (int i = 0; i < nodes; ++i) {
1831 live_start[i] = live_end[i] = -1;
1832 }
1833
1834 int d = 0;
1835
1836 mir_foreach_block(ctx, block) {
1837 mir_foreach_instr_in_block(block, ins) {
1838 if (ins->compact_branch) continue;
1839
1840 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1841 /* If this destination is not yet live, it is now since we just wrote it */
1842
1843 int dest = ins->ssa_args.dest;
1844
1845 if (live_start[dest] == -1)
1846 live_start[dest] = d;
1847 }
1848
1849 /* Since we just used a source, the source might be
1850 * dead now. Scan the rest of the block for
1851 * invocations, and if there are none, the source dies
1852 * */
1853
1854 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1855
1856 for (int src = 0; src < 2; ++src) {
1857 int s = sources[src];
1858
1859 if (s < 0) continue;
1860
1861 if (s >= SSA_FIXED_MINIMUM) continue;
1862
1863 if (!is_live_after(ctx, block, ins, s)) {
1864 live_end[s] = d;
1865 }
1866 }
1867
1868 ++d;
1869 }
1870 }
1871
1872 /* If a node still hasn't been killed, kill it now */
1873
1874 for (int i = 0; i < nodes; ++i) {
1875 /* live_start == -1 most likely indicates a pinned output */
1876
1877 if (live_end[i] == -1)
1878 live_end[i] = d;
1879 }
1880
1881 /* Setup interference between nodes that are live at the same time */
1882
1883 for (int i = 0; i < nodes; ++i) {
1884 for (int j = i + 1; j < nodes; ++j) {
1885 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1886 ra_add_node_interference(g, i, j);
1887 }
1888 }
1889
1890 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1891
1892 if (!ra_allocate(g)) {
1893 DBG("Error allocating registers\n");
1894 assert(0);
1895 }
1896
1897 /* Cleanup */
1898 free(live_start);
1899 free(live_end);
1900
1901 mir_foreach_block(ctx, block) {
1902 mir_foreach_instr_in_block(block, ins) {
1903 if (ins->compact_branch) continue;
1904
1905 ssa_args args = ins->ssa_args;
1906
1907 switch (ins->type) {
1908 case TAG_ALU_4:
1909 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1910
1911 ins->registers.src2_imm = args.inline_constant;
1912
1913 if (args.inline_constant) {
1914 /* Encode inline 16-bit constant as a vector by default */
1915
1916 ins->registers.src2_reg = ins->inline_constant >> 11;
1917
1918 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1919
1920 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1921 ins->alu.src2 = imm << 2;
1922 } else {
1923 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1924 }
1925
1926 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1927
1928 break;
1929
1930 case TAG_LOAD_STORE_4: {
1931 if (OP_IS_STORE(ins->load_store.op)) {
1932 /* TODO: use ssa_args for store_vary */
1933 ins->load_store.reg = 0;
1934 } else {
1935 bool has_dest = args.dest >= 0;
1936 int ssa_arg = has_dest ? args.dest : args.src0;
1937
1938 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1939 }
1940
1941 break;
1942 }
1943
1944 default:
1945 break;
1946 }
1947 }
1948 }
1949 }
1950
1951 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1952 * use scalar ALU instructions, for functional or performance reasons. To do
1953 * this, we just demote vector ALU payloads to scalar. */
1954
1955 static int
1956 component_from_mask(unsigned mask)
1957 {
1958 for (int c = 0; c < 4; ++c) {
1959 if (mask & (3 << (2 * c)))
1960 return c;
1961 }
1962
1963 assert(0);
1964 return 0;
1965 }
1966
1967 static bool
1968 is_single_component_mask(unsigned mask)
1969 {
1970 int components = 0;
1971
1972 for (int c = 0; c < 4; ++c)
1973 if (mask & (3 << (2 * c)))
1974 components++;
1975
1976 return components == 1;
1977 }
1978
1979 /* Create a mask of accessed components from a swizzle to figure out vector
1980 * dependencies */
1981
1982 static unsigned
1983 swizzle_to_access_mask(unsigned swizzle)
1984 {
1985 unsigned component_mask = 0;
1986
1987 for (int i = 0; i < 4; ++i) {
1988 unsigned c = (swizzle >> (2 * i)) & 3;
1989 component_mask |= (1 << c);
1990 }
1991
1992 return component_mask;
1993 }
1994
1995 static unsigned
1996 vector_to_scalar_source(unsigned u)
1997 {
1998 midgard_vector_alu_src v;
1999 memcpy(&v, &u, sizeof(v));
2000
2001 midgard_scalar_alu_src s = {
2002 .abs = v.abs,
2003 .negate = v.negate,
2004 .full = !v.half,
2005 .component = (v.swizzle & 3) << 1
2006 };
2007
2008 unsigned o;
2009 memcpy(&o, &s, sizeof(s));
2010
2011 return o & ((1 << 6) - 1);
2012 }
2013
2014 static midgard_scalar_alu
2015 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2016 {
2017 /* The output component is from the mask */
2018 midgard_scalar_alu s = {
2019 .op = v.op,
2020 .src1 = vector_to_scalar_source(v.src1),
2021 .src2 = vector_to_scalar_source(v.src2),
2022 .unknown = 0,
2023 .outmod = v.outmod,
2024 .output_full = 1, /* TODO: Half */
2025 .output_component = component_from_mask(v.mask) << 1,
2026 };
2027
2028 /* Inline constant is passed along rather than trying to extract it
2029 * from v */
2030
2031 if (ins->ssa_args.inline_constant) {
2032 uint16_t imm = 0;
2033 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2034 imm |= (lower_11 >> 9) & 3;
2035 imm |= (lower_11 >> 6) & 4;
2036 imm |= (lower_11 >> 2) & 0x38;
2037 imm |= (lower_11 & 63) << 6;
2038
2039 s.src2 = imm;
2040 }
2041
2042 return s;
2043 }
2044
2045 /* Midgard prefetches instruction types, so during emission we need to
2046 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2047 * if this is the second to last and the last is an ALU, then it's also 1... */
2048
2049 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2050 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2051
2052 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2053 bytes_emitted += sizeof(type)
2054
2055 static void
2056 emit_binary_vector_instruction(midgard_instruction *ains,
2057 uint16_t *register_words, int *register_words_count,
2058 uint64_t *body_words, size_t *body_size, int *body_words_count,
2059 size_t *bytes_emitted)
2060 {
2061 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2062 *bytes_emitted += sizeof(midgard_reg_info);
2063
2064 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2065 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2066 *bytes_emitted += sizeof(midgard_vector_alu);
2067 }
2068
2069 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2070 * mind that we are a vector architecture and we can write to different
2071 * components simultaneously */
2072
2073 static bool
2074 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2075 {
2076 /* Each instruction reads some registers and writes to a register. See
2077 * where the first writes */
2078
2079 /* Figure out where exactly we wrote to */
2080 int source = first->ssa_args.dest;
2081 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2082
2083 /* As long as the second doesn't read from the first, we're okay */
2084 if (second->ssa_args.src0 == source) {
2085 if (first->type == TAG_ALU_4) {
2086 /* Figure out which components we just read from */
2087
2088 int q = second->alu.src1;
2089 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2090
2091 /* Check if there are components in common, and fail if so */
2092 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2093 return false;
2094 } else
2095 return false;
2096
2097 }
2098
2099 if (second->ssa_args.src1 == source)
2100 return false;
2101
2102 /* Otherwise, it's safe in that regard. Another data hazard is both
2103 * writing to the same place, of course */
2104
2105 if (second->ssa_args.dest == source) {
2106 /* ...but only if the components overlap */
2107 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2108
2109 if (dest_mask & source_mask)
2110 return false;
2111 }
2112
2113 /* ...That's it */
2114 return true;
2115 }
2116
2117 static bool
2118 midgard_has_hazard(
2119 midgard_instruction **segment, unsigned segment_size,
2120 midgard_instruction *ains)
2121 {
2122 for (int s = 0; s < segment_size; ++s)
2123 if (!can_run_concurrent_ssa(segment[s], ains))
2124 return true;
2125
2126 return false;
2127
2128
2129 }
2130
2131 /* Schedules, but does not emit, a single basic block. After scheduling, the
2132 * final tag and size of the block are known, which are necessary for branching
2133 * */
2134
2135 static midgard_bundle
2136 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2137 {
2138 int instructions_emitted = 0, instructions_consumed = -1;
2139 midgard_bundle bundle = { 0 };
2140
2141 uint8_t tag = ins->type;
2142
2143 /* Default to the instruction's tag */
2144 bundle.tag = tag;
2145
2146 switch (ins->type) {
2147 case TAG_ALU_4: {
2148 uint32_t control = 0;
2149 size_t bytes_emitted = sizeof(control);
2150
2151 /* TODO: Constant combining */
2152 int index = 0, last_unit = 0;
2153
2154 /* Previous instructions, for the purpose of parallelism */
2155 midgard_instruction *segment[4] = {0};
2156 int segment_size = 0;
2157
2158 instructions_emitted = -1;
2159 midgard_instruction *pins = ins;
2160
2161 for (;;) {
2162 midgard_instruction *ains = pins;
2163
2164 /* Advance instruction pointer */
2165 if (index) {
2166 ains = mir_next_op(pins);
2167 pins = ains;
2168 }
2169
2170 /* Out-of-work condition */
2171 if ((struct list_head *) ains == &block->instructions)
2172 break;
2173
2174 /* Ensure that the chain can continue */
2175 if (ains->type != TAG_ALU_4) break;
2176
2177 /* According to the presentation "The ARM
2178 * Mali-T880 Mobile GPU" from HotChips 27,
2179 * there are two pipeline stages. Branching
2180 * position determined experimentally. Lines
2181 * are executed in parallel:
2182 *
2183 * [ VMUL ] [ SADD ]
2184 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2185 *
2186 * Verify that there are no ordering dependencies here.
2187 *
2188 * TODO: Allow for parallelism!!!
2189 */
2190
2191 /* Pick a unit for it if it doesn't force a particular unit */
2192
2193 int unit = ains->unit;
2194
2195 if (!unit) {
2196 int op = ains->alu.op;
2197 int units = alu_opcode_props[op];
2198
2199 /* TODO: Promotion of scalars to vectors */
2200 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2201
2202 if (!vector)
2203 assert(units & UNITS_SCALAR);
2204
2205 if (vector) {
2206 if (last_unit >= UNIT_VADD) {
2207 if (units & UNIT_VLUT)
2208 unit = UNIT_VLUT;
2209 else
2210 break;
2211 } else {
2212 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2213 unit = UNIT_VMUL;
2214 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2215 unit = UNIT_VADD;
2216 else if (units & UNIT_VLUT)
2217 unit = UNIT_VLUT;
2218 else
2219 break;
2220 }
2221 } else {
2222 if (last_unit >= UNIT_VADD) {
2223 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2224 unit = UNIT_SMUL;
2225 else if (units & UNIT_VLUT)
2226 unit = UNIT_VLUT;
2227 else
2228 break;
2229 } else {
2230 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2231 unit = UNIT_SADD;
2232 else if (units & UNIT_SMUL)
2233 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2234 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2235 unit = UNIT_VADD;
2236 else
2237 break;
2238 }
2239 }
2240
2241 assert(unit & units);
2242 }
2243
2244 /* Late unit check, this time for encoding (not parallelism) */
2245 if (unit <= last_unit) break;
2246
2247 /* Clear the segment */
2248 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2249 segment_size = 0;
2250
2251 if (midgard_has_hazard(segment, segment_size, ains))
2252 break;
2253
2254 /* We're good to go -- emit the instruction */
2255 ains->unit = unit;
2256
2257 segment[segment_size++] = ains;
2258
2259 /* Only one set of embedded constants per
2260 * bundle possible; if we have more, we must
2261 * break the chain early, unfortunately */
2262
2263 if (ains->has_constants) {
2264 if (bundle.has_embedded_constants) {
2265 /* ...but if there are already
2266 * constants but these are the
2267 * *same* constants, we let it
2268 * through */
2269
2270 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2271 break;
2272 } else {
2273 bundle.has_embedded_constants = true;
2274 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2275
2276 /* If this is a blend shader special constant, track it for patching */
2277 if (ains->has_blend_constant)
2278 bundle.has_blend_constant = true;
2279 }
2280 }
2281
2282 if (ains->unit & UNITS_ANY_VECTOR) {
2283 emit_binary_vector_instruction(ains, bundle.register_words,
2284 &bundle.register_words_count, bundle.body_words,
2285 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2286 } else if (ains->compact_branch) {
2287 /* All of r0 has to be written out
2288 * along with the branch writeout.
2289 * (slow!) */
2290
2291 if (ains->writeout) {
2292 if (index == 0) {
2293 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2294 ins.unit = UNIT_VMUL;
2295
2296 control |= ins.unit;
2297
2298 emit_binary_vector_instruction(&ins, bundle.register_words,
2299 &bundle.register_words_count, bundle.body_words,
2300 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2301 } else {
2302 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2303 bool written_late = false;
2304 bool components[4] = { 0 };
2305 uint16_t register_dep_mask = 0;
2306 uint16_t written_mask = 0;
2307
2308 midgard_instruction *qins = ins;
2309 for (int t = 0; t < index; ++t) {
2310 if (qins->registers.out_reg != 0) {
2311 /* Mark down writes */
2312
2313 written_mask |= (1 << qins->registers.out_reg);
2314 } else {
2315 /* Mark down the register dependencies for errata check */
2316
2317 if (qins->registers.src1_reg < 16)
2318 register_dep_mask |= (1 << qins->registers.src1_reg);
2319
2320 if (qins->registers.src2_reg < 16)
2321 register_dep_mask |= (1 << qins->registers.src2_reg);
2322
2323 int mask = qins->alu.mask;
2324
2325 for (int c = 0; c < 4; ++c)
2326 if (mask & (0x3 << (2 * c)))
2327 components[c] = true;
2328
2329 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2330
2331 if (qins->unit == UNIT_VLUT)
2332 written_late = true;
2333 }
2334
2335 /* Advance instruction pointer */
2336 qins = mir_next_op(qins);
2337 }
2338
2339
2340 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2341 if (register_dep_mask & written_mask) {
2342 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2343 break;
2344 }
2345
2346 if (written_late)
2347 break;
2348
2349 /* If even a single component is not written, break it up (conservative check). */
2350 bool breakup = false;
2351
2352 for (int c = 0; c < 4; ++c)
2353 if (!components[c])
2354 breakup = true;
2355
2356 if (breakup)
2357 break;
2358
2359 /* Otherwise, we're free to proceed */
2360 }
2361 }
2362
2363 if (ains->unit == ALU_ENAB_BRANCH) {
2364 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2365 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2366 bytes_emitted += sizeof(midgard_branch_extended);
2367 } else {
2368 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2369 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2370 bytes_emitted += sizeof(ains->br_compact);
2371 }
2372 } else {
2373 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2374 bytes_emitted += sizeof(midgard_reg_info);
2375
2376 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2377 bundle.body_words_count++;
2378 bytes_emitted += sizeof(midgard_scalar_alu);
2379 }
2380
2381 /* Defer marking until after writing to allow for break */
2382 control |= ains->unit;
2383 last_unit = ains->unit;
2384 ++instructions_emitted;
2385 ++index;
2386 }
2387
2388 /* Bubble up the number of instructions for skipping */
2389 instructions_consumed = index - 1;
2390
2391 int padding = 0;
2392
2393 /* Pad ALU op to nearest word */
2394
2395 if (bytes_emitted & 15) {
2396 padding = 16 - (bytes_emitted & 15);
2397 bytes_emitted += padding;
2398 }
2399
2400 /* Constants must always be quadwords */
2401 if (bundle.has_embedded_constants)
2402 bytes_emitted += 16;
2403
2404 /* Size ALU instruction for tag */
2405 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2406 bundle.padding = padding;
2407 bundle.control = bundle.tag | control;
2408
2409 break;
2410 }
2411
2412 case TAG_LOAD_STORE_4: {
2413 /* Load store instructions have two words at once. If
2414 * we only have one queued up, we need to NOP pad.
2415 * Otherwise, we store both in succession to save space
2416 * and cycles -- letting them go in parallel -- skip
2417 * the next. The usefulness of this optimisation is
2418 * greatly dependent on the quality of the instruction
2419 * scheduler.
2420 */
2421
2422 midgard_instruction *next_op = mir_next_op(ins);
2423
2424 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2425 /* As the two operate concurrently, make sure
2426 * they are not dependent */
2427
2428 if (can_run_concurrent_ssa(ins, next_op) || true) {
2429 /* Skip ahead, since it's redundant with the pair */
2430 instructions_consumed = 1 + (instructions_emitted++);
2431 }
2432 }
2433
2434 break;
2435 }
2436
2437 default:
2438 /* Texture ops default to single-op-per-bundle scheduling */
2439 break;
2440 }
2441
2442 /* Copy the instructions into the bundle */
2443 bundle.instruction_count = instructions_emitted + 1;
2444
2445 int used_idx = 0;
2446
2447 midgard_instruction *uins = ins;
2448 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2449 bundle.instructions[used_idx++] = *uins;
2450 uins = mir_next_op(uins);
2451 }
2452
2453 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2454
2455 return bundle;
2456 }
2457
2458 static int
2459 quadword_size(int tag)
2460 {
2461 switch (tag) {
2462 case TAG_ALU_4:
2463 return 1;
2464
2465 case TAG_ALU_8:
2466 return 2;
2467
2468 case TAG_ALU_12:
2469 return 3;
2470
2471 case TAG_ALU_16:
2472 return 4;
2473
2474 case TAG_LOAD_STORE_4:
2475 return 1;
2476
2477 case TAG_TEXTURE_4:
2478 return 1;
2479
2480 default:
2481 assert(0);
2482 return 0;
2483 }
2484 }
2485
2486 /* Schedule a single block by iterating its instruction to create bundles.
2487 * While we go, tally about the bundle sizes to compute the block size. */
2488
2489 static void
2490 schedule_block(compiler_context *ctx, midgard_block *block)
2491 {
2492 util_dynarray_init(&block->bundles, NULL);
2493
2494 block->quadword_count = 0;
2495
2496 mir_foreach_instr_in_block(block, ins) {
2497 int skip;
2498 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2499 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2500
2501 if (bundle.has_blend_constant) {
2502 /* TODO: Multiblock? */
2503 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2504 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2505 }
2506
2507 while(skip--)
2508 ins = mir_next_op(ins);
2509
2510 block->quadword_count += quadword_size(bundle.tag);
2511 }
2512
2513 block->is_scheduled = true;
2514 }
2515
2516 static void
2517 schedule_program(compiler_context *ctx)
2518 {
2519 allocate_registers(ctx);
2520
2521 mir_foreach_block(ctx, block) {
2522 schedule_block(ctx, block);
2523 }
2524 }
2525
2526 /* After everything is scheduled, emit whole bundles at a time */
2527
2528 static void
2529 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2530 {
2531 int lookahead = next_tag << 4;
2532
2533 switch (bundle->tag) {
2534 case TAG_ALU_4:
2535 case TAG_ALU_8:
2536 case TAG_ALU_12:
2537 case TAG_ALU_16: {
2538 /* Actually emit each component */
2539 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2540
2541 for (int i = 0; i < bundle->register_words_count; ++i)
2542 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2543
2544 /* Emit body words based on the instructions bundled */
2545 for (int i = 0; i < bundle->instruction_count; ++i) {
2546 midgard_instruction *ins = &bundle->instructions[i];
2547
2548 if (ins->unit & UNITS_ANY_VECTOR) {
2549 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2550 } else if (ins->compact_branch) {
2551 /* Dummy move, XXX DRY */
2552 if ((i == 0) && ins->writeout) {
2553 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2554 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2555 }
2556
2557 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2558 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2559 } else {
2560 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2561 }
2562 } else {
2563 /* Scalar */
2564 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2565 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2566 }
2567 }
2568
2569 /* Emit padding (all zero) */
2570 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2571
2572 /* Tack on constants */
2573
2574 if (bundle->has_embedded_constants) {
2575 util_dynarray_append(emission, float, bundle->constants[0]);
2576 util_dynarray_append(emission, float, bundle->constants[1]);
2577 util_dynarray_append(emission, float, bundle->constants[2]);
2578 util_dynarray_append(emission, float, bundle->constants[3]);
2579 }
2580
2581 break;
2582 }
2583
2584 case TAG_LOAD_STORE_4: {
2585 /* One or two composing instructions */
2586
2587 uint64_t current64, next64 = LDST_NOP;
2588
2589 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2590
2591 if (bundle->instruction_count == 2)
2592 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2593
2594 midgard_load_store instruction = {
2595 .type = bundle->tag,
2596 .next_type = next_tag,
2597 .word1 = current64,
2598 .word2 = next64
2599 };
2600
2601 util_dynarray_append(emission, midgard_load_store, instruction);
2602
2603 break;
2604 }
2605
2606 case TAG_TEXTURE_4: {
2607 /* Texture instructions are easy, since there is no
2608 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2609
2610 midgard_instruction *ins = &bundle->instructions[0];
2611
2612 ins->texture.type = TAG_TEXTURE_4;
2613 ins->texture.next_type = next_tag;
2614
2615 ctx->texture_op_count--;
2616
2617 if (!ctx->texture_op_count) {
2618 ins->texture.cont = 0;
2619 ins->texture.last = 1;
2620 }
2621
2622 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2623 break;
2624 }
2625
2626 default:
2627 DBG("Unknown midgard instruction type\n");
2628 assert(0);
2629 break;
2630 }
2631 }
2632
2633
2634 /* ALU instructions can inline or embed constants, which decreases register
2635 * pressure and saves space. */
2636
2637 #define CONDITIONAL_ATTACH(src) { \
2638 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2639 \
2640 if (entry) { \
2641 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2642 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2643 } \
2644 }
2645
2646 static void
2647 inline_alu_constants(compiler_context *ctx)
2648 {
2649 mir_foreach_instr(ctx, alu) {
2650 /* Other instructions cannot inline constants */
2651 if (alu->type != TAG_ALU_4) continue;
2652
2653 /* If there is already a constant here, we can do nothing */
2654 if (alu->has_constants) continue;
2655
2656 CONDITIONAL_ATTACH(src0);
2657
2658 if (!alu->has_constants) {
2659 CONDITIONAL_ATTACH(src1)
2660 } else if (!alu->inline_constant) {
2661 /* Corner case: _two_ vec4 constants, for instance with a
2662 * csel. For this case, we can only use a constant
2663 * register for one, we'll have to emit a move for the
2664 * other. Note, if both arguments are constants, then
2665 * necessarily neither argument depends on the value of
2666 * any particular register. As the destination register
2667 * will be wiped, that means we can spill the constant
2668 * to the destination register.
2669 */
2670
2671 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2672 unsigned scratch = alu->ssa_args.dest;
2673
2674 if (entry) {
2675 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2676 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2677
2678 /* Force a break XXX Defer r31 writes */
2679 ins.unit = UNIT_VLUT;
2680
2681 /* Set the source */
2682 alu->ssa_args.src1 = scratch;
2683
2684 /* Inject us -before- the last instruction which set r31 */
2685 mir_insert_instruction_before(mir_prev_op(alu), ins);
2686 }
2687 }
2688 }
2689 }
2690
2691 /* Midgard supports two types of constants, embedded constants (128-bit) and
2692 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2693 * constants can be demoted to inline constants, for space savings and
2694 * sometimes a performance boost */
2695
2696 static void
2697 embedded_to_inline_constant(compiler_context *ctx)
2698 {
2699 mir_foreach_instr(ctx, ins) {
2700 if (!ins->has_constants) continue;
2701
2702 if (ins->ssa_args.inline_constant) continue;
2703
2704 /* Blend constants must not be inlined by definition */
2705 if (ins->has_blend_constant) continue;
2706
2707 /* src1 cannot be an inline constant due to encoding
2708 * restrictions. So, if possible we try to flip the arguments
2709 * in that case */
2710
2711 int op = ins->alu.op;
2712
2713 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2714 /* Flip based on op. Fallthrough intentional */
2715
2716 switch (op) {
2717 /* These ops require an operational change to flip their arguments TODO */
2718 case midgard_alu_op_flt:
2719 case midgard_alu_op_fle:
2720 case midgard_alu_op_ilt:
2721 case midgard_alu_op_ile:
2722 case midgard_alu_op_fcsel:
2723 case midgard_alu_op_icsel:
2724 case midgard_alu_op_isub:
2725 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2726 break;
2727
2728 /* These ops are commutative and Just Flip */
2729 case midgard_alu_op_fne:
2730 case midgard_alu_op_fadd:
2731 case midgard_alu_op_fmul:
2732 case midgard_alu_op_fmin:
2733 case midgard_alu_op_fmax:
2734 case midgard_alu_op_iadd:
2735 case midgard_alu_op_imul:
2736 case midgard_alu_op_feq:
2737 case midgard_alu_op_ieq:
2738 case midgard_alu_op_ine:
2739 case midgard_alu_op_iand:
2740 case midgard_alu_op_ior:
2741 case midgard_alu_op_ixor:
2742 /* Flip the SSA numbers */
2743 ins->ssa_args.src0 = ins->ssa_args.src1;
2744 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2745
2746 /* And flip the modifiers */
2747
2748 unsigned src_temp;
2749
2750 src_temp = ins->alu.src2;
2751 ins->alu.src2 = ins->alu.src1;
2752 ins->alu.src1 = src_temp;
2753
2754 default:
2755 break;
2756 }
2757 }
2758
2759 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2760 /* Extract the source information */
2761
2762 midgard_vector_alu_src *src;
2763 int q = ins->alu.src2;
2764 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2765 src = m;
2766
2767 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2768 int component = src->swizzle & 3;
2769
2770 /* Scale constant appropriately, if we can legally */
2771 uint16_t scaled_constant = 0;
2772
2773 /* XXX: Check legality */
2774 if (midgard_is_integer_op(op)) {
2775 /* TODO: Inline integer */
2776 continue;
2777
2778 unsigned int *iconstants = (unsigned int *) ins->constants;
2779 scaled_constant = (uint16_t) iconstants[component];
2780
2781 /* Constant overflow after resize */
2782 if (scaled_constant != iconstants[component])
2783 continue;
2784 } else {
2785 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2786 }
2787
2788 /* We don't know how to handle these with a constant */
2789
2790 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2791 DBG("Bailing inline constant...\n");
2792 continue;
2793 }
2794
2795 /* Make sure that the constant is not itself a
2796 * vector by checking if all accessed values
2797 * (by the swizzle) are the same. */
2798
2799 uint32_t *cons = (uint32_t *) ins->constants;
2800 uint32_t value = cons[component];
2801
2802 bool is_vector = false;
2803 unsigned mask = effective_writemask(&ins->alu);
2804
2805 for (int c = 1; c < 4; ++c) {
2806 /* We only care if this component is actually used */
2807 if (!(mask & (1 << c)))
2808 continue;
2809
2810 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2811
2812 if (test != value) {
2813 is_vector = true;
2814 break;
2815 }
2816 }
2817
2818 if (is_vector)
2819 continue;
2820
2821 /* Get rid of the embedded constant */
2822 ins->has_constants = false;
2823 ins->ssa_args.src1 = SSA_UNUSED_0;
2824 ins->ssa_args.inline_constant = true;
2825 ins->inline_constant = scaled_constant;
2826 }
2827 }
2828 }
2829
2830 /* Map normal SSA sources to other SSA sources / fixed registers (like
2831 * uniforms) */
2832
2833 static void
2834 map_ssa_to_alias(compiler_context *ctx, int *ref)
2835 {
2836 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2837
2838 if (alias) {
2839 /* Remove entry in leftovers to avoid a redunant fmov */
2840
2841 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2842
2843 if (leftover)
2844 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2845
2846 /* Assign the alias map */
2847 *ref = alias - 1;
2848 return;
2849 }
2850 }
2851
2852 #define AS_SRC(to, u) \
2853 int q##to = ins->alu.src2; \
2854 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2855
2856 /* Removing unused moves is necessary to clean up the texture pipeline results.
2857 *
2858 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2859
2860 static void
2861 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2862 {
2863 mir_foreach_instr_in_block_safe(block, ins) {
2864 if (ins->type != TAG_ALU_4) continue;
2865
2866 if (ins->alu.op != midgard_alu_op_fmov) continue;
2867
2868 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2869
2870 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2871
2872 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2873
2874 mir_remove_instruction(ins);
2875 }
2876 }
2877
2878 /* The following passes reorder MIR instructions to enable better scheduling */
2879
2880 static void
2881 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2882 {
2883 mir_foreach_instr_in_block_safe(block, ins) {
2884 if (ins->type != TAG_LOAD_STORE_4) continue;
2885
2886 /* We've found a load/store op. Check if next is also load/store. */
2887 midgard_instruction *next_op = mir_next_op(ins);
2888 if (&next_op->link != &block->instructions) {
2889 if (next_op->type == TAG_LOAD_STORE_4) {
2890 /* If so, we're done since we're a pair */
2891 ins = mir_next_op(ins);
2892 continue;
2893 }
2894
2895 /* Maximum search distance to pair, to avoid register pressure disasters */
2896 int search_distance = 8;
2897
2898 /* Otherwise, we have an orphaned load/store -- search for another load */
2899 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2900 /* Terminate search if necessary */
2901 if (!(search_distance--)) break;
2902
2903 if (c->type != TAG_LOAD_STORE_4) continue;
2904
2905 if (OP_IS_STORE(c->load_store.op)) continue;
2906
2907 /* We found one! Move it up to pair and remove it from the old location */
2908
2909 mir_insert_instruction_before(ins, *c);
2910 mir_remove_instruction(c);
2911
2912 break;
2913 }
2914 }
2915 }
2916 }
2917
2918 /* Emit varying stores late */
2919
2920 static void
2921 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2922 /* Iterate in reverse to get the final write, rather than the first */
2923
2924 mir_foreach_instr_in_block_safe_rev(block, ins) {
2925 /* Check if what we just wrote needs a store */
2926 int idx = ins->ssa_args.dest;
2927 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2928
2929 if (!varying) continue;
2930
2931 varying -= 1;
2932
2933 /* We need to store to the appropriate varying, so emit the
2934 * move/store */
2935
2936 /* TODO: Integrate with special purpose RA (and scheduler?) */
2937 bool high_varying_register = false;
2938
2939 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2940
2941 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2942 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2943
2944 mir_insert_instruction_before(mir_next_op(ins), st);
2945 mir_insert_instruction_before(mir_next_op(ins), mov);
2946
2947 /* We no longer need to store this varying */
2948 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2949 }
2950 }
2951
2952 /* If there are leftovers after the below pass, emit actual fmov
2953 * instructions for the slow-but-correct path */
2954
2955 static void
2956 emit_leftover_move(compiler_context *ctx)
2957 {
2958 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2959 int base = ((uintptr_t) leftover->key) - 1;
2960 int mapped = base;
2961
2962 map_ssa_to_alias(ctx, &mapped);
2963 EMIT(fmov, mapped, blank_alu_src, base);
2964 }
2965 }
2966
2967 static void
2968 actualise_ssa_to_alias(compiler_context *ctx)
2969 {
2970 mir_foreach_instr(ctx, ins) {
2971 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2972 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2973 }
2974
2975 emit_leftover_move(ctx);
2976 }
2977
2978 /* Vertex shaders do not write gl_Position as is; instead, they write a
2979 * transformed screen space position as a varying. See section 12.5 "Coordinate
2980 * Transformation" of the ES 3.2 full specification for details.
2981 *
2982 * This transformation occurs early on, as NIR and prior to optimisation, in
2983 * order to take advantage of NIR optimisation passes of the transform itself.
2984 * */
2985
2986 static void
2987 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2988 {
2989 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2990
2991 /* Get viewport from the uniforms */
2992 nir_intrinsic_instr *load;
2993 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2994 load->num_components = 4;
2995 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2996 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2997 nir_builder_instr_insert(b, &load->instr);
2998
2999 /* Formatted as <width, height, centerx, centery> */
3000 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
3001 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
3002 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
3003 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
3004
3005 /* XXX: From uniforms? */
3006 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
3007 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
3008
3009 /* World space to normalised device coordinates */
3010
3011 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3012 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3013
3014 /* Normalised device coordinates to screen space */
3015
3016 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3017 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3018
3019 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3020 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3021 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3022
3023 /* gl_Position will be written out in screenspace xyz, with w set to
3024 * the reciprocal we computed earlier. The transformed w component is
3025 * then used for perspective-correct varying interpolation. The
3026 * transformed w component must preserve its original sign; this is
3027 * used in depth clipping computations */
3028
3029 nir_ssa_def *screen_space = nir_vec4(b,
3030 nir_channel(b, viewport_xy, 0),
3031 nir_channel(b, viewport_xy, 1),
3032 screen_depth,
3033 w_recip);
3034
3035 /* Finally, write out the transformed values to the varying */
3036
3037 nir_intrinsic_instr *store;
3038 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3039 store->num_components = 4;
3040 nir_intrinsic_set_base(store, 0);
3041 nir_intrinsic_set_write_mask(store, 0xf);
3042 store->src[0].ssa = screen_space;
3043 store->src[0].is_ssa = true;
3044 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3045 nir_builder_instr_insert(b, &store->instr);
3046 }
3047
3048 static void
3049 transform_position_writes(nir_shader *shader)
3050 {
3051 nir_foreach_function(func, shader) {
3052 nir_foreach_block(block, func->impl) {
3053 nir_foreach_instr_safe(instr, block) {
3054 if (instr->type != nir_instr_type_intrinsic) continue;
3055
3056 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3057 nir_variable *out = NULL;
3058
3059 switch (intr->intrinsic) {
3060 case nir_intrinsic_store_output:
3061 /* already had i/o lowered.. lookup the matching output var: */
3062 nir_foreach_variable(var, &shader->outputs) {
3063 int drvloc = var->data.driver_location;
3064
3065 if (nir_intrinsic_base(intr) == drvloc) {
3066 out = var;
3067 break;
3068 }
3069 }
3070
3071 break;
3072
3073 default:
3074 break;
3075 }
3076
3077 if (!out) continue;
3078
3079 if (out->data.mode != nir_var_shader_out)
3080 continue;
3081
3082 if (out->data.location != VARYING_SLOT_POS)
3083 continue;
3084
3085 nir_builder b;
3086 nir_builder_init(&b, func->impl);
3087 b.cursor = nir_before_instr(instr);
3088
3089 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3090 nir_instr_remove(instr);
3091 }
3092 }
3093 }
3094 }
3095
3096 static void
3097 emit_fragment_epilogue(compiler_context *ctx)
3098 {
3099 /* Special case: writing out constants requires us to include the move
3100 * explicitly now, so shove it into r0 */
3101
3102 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3103
3104 if (constant_value) {
3105 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3106 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3107 emit_mir_instruction(ctx, ins);
3108 }
3109
3110 /* Perform the actual fragment writeout. We have two writeout/branch
3111 * instructions, forming a loop until writeout is successful as per the
3112 * docs. TODO: gl_FragDepth */
3113
3114 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3115 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3116 }
3117
3118 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3119 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3120 * with the int8 analogue to the fragment epilogue */
3121
3122 static void
3123 emit_blend_epilogue(compiler_context *ctx)
3124 {
3125 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3126
3127 midgard_instruction scale = {
3128 .type = TAG_ALU_4,
3129 .unit = UNIT_VMUL,
3130 .inline_constant = _mesa_float_to_half(255.0),
3131 .ssa_args = {
3132 .src0 = SSA_FIXED_REGISTER(0),
3133 .src1 = SSA_UNUSED_0,
3134 .dest = SSA_FIXED_REGISTER(24),
3135 .inline_constant = true
3136 },
3137 .alu = {
3138 .op = midgard_alu_op_fmul,
3139 .reg_mode = midgard_reg_mode_full,
3140 .dest_override = midgard_dest_override_lower,
3141 .mask = 0xFF,
3142 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3143 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3144 }
3145 };
3146
3147 emit_mir_instruction(ctx, scale);
3148
3149 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3150
3151 midgard_vector_alu_src alu_src = blank_alu_src;
3152 alu_src.half = true;
3153
3154 midgard_instruction f2u8 = {
3155 .type = TAG_ALU_4,
3156 .ssa_args = {
3157 .src0 = SSA_FIXED_REGISTER(24),
3158 .src1 = SSA_UNUSED_0,
3159 .dest = SSA_FIXED_REGISTER(0),
3160 .inline_constant = true
3161 },
3162 .alu = {
3163 .op = midgard_alu_op_f2u8,
3164 .reg_mode = midgard_reg_mode_half,
3165 .dest_override = midgard_dest_override_lower,
3166 .outmod = midgard_outmod_pos,
3167 .mask = 0xF,
3168 .src1 = vector_alu_srco_unsigned(alu_src),
3169 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3170 }
3171 };
3172
3173 emit_mir_instruction(ctx, f2u8);
3174
3175 /* vmul.imov.quarter r0, r0, r0 */
3176
3177 midgard_instruction imov_8 = {
3178 .type = TAG_ALU_4,
3179 .ssa_args = {
3180 .src0 = SSA_UNUSED_1,
3181 .src1 = SSA_FIXED_REGISTER(0),
3182 .dest = SSA_FIXED_REGISTER(0),
3183 },
3184 .alu = {
3185 .op = midgard_alu_op_imov,
3186 .reg_mode = midgard_reg_mode_quarter,
3187 .dest_override = midgard_dest_override_none,
3188 .mask = 0xFF,
3189 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3190 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3191 }
3192 };
3193
3194 /* Emit branch epilogue with the 8-bit move as the source */
3195
3196 emit_mir_instruction(ctx, imov_8);
3197 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3198
3199 emit_mir_instruction(ctx, imov_8);
3200 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3201 }
3202
3203 static midgard_block *
3204 emit_block(compiler_context *ctx, nir_block *block)
3205 {
3206 midgard_block *this_block = malloc(sizeof(midgard_block));
3207 list_addtail(&this_block->link, &ctx->blocks);
3208
3209 this_block->is_scheduled = false;
3210 ++ctx->block_count;
3211
3212 ctx->texture_index[0] = -1;
3213 ctx->texture_index[1] = -1;
3214
3215 /* Set up current block */
3216 list_inithead(&this_block->instructions);
3217 ctx->current_block = this_block;
3218
3219 nir_foreach_instr(instr, block) {
3220 emit_instr(ctx, instr);
3221 ++ctx->instruction_count;
3222 }
3223
3224 inline_alu_constants(ctx);
3225 embedded_to_inline_constant(ctx);
3226
3227 /* Perform heavylifting for aliasing */
3228 actualise_ssa_to_alias(ctx);
3229
3230 midgard_emit_store(ctx, this_block);
3231 midgard_eliminate_orphan_moves(ctx, this_block);
3232 midgard_pair_load_store(ctx, this_block);
3233
3234 /* Append fragment shader epilogue (value writeout) */
3235 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3236 if (block == nir_impl_last_block(ctx->func->impl)) {
3237 if (ctx->is_blend)
3238 emit_blend_epilogue(ctx);
3239 else
3240 emit_fragment_epilogue(ctx);
3241 }
3242 }
3243
3244 /* Fallthrough save */
3245 this_block->next_fallthrough = ctx->previous_source_block;
3246
3247 if (block == nir_start_block(ctx->func->impl))
3248 ctx->initial_block = this_block;
3249
3250 if (block == nir_impl_last_block(ctx->func->impl))
3251 ctx->final_block = this_block;
3252
3253 /* Allow the next control flow to access us retroactively, for
3254 * branching etc */
3255 ctx->current_block = this_block;
3256
3257 /* Document the fallthrough chain */
3258 ctx->previous_source_block = this_block;
3259
3260 return this_block;
3261 }
3262
3263 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3264
3265 static void
3266 emit_if(struct compiler_context *ctx, nir_if *nif)
3267 {
3268 /* Conditional branches expect the condition in r31.w; emit a move for
3269 * that in the _previous_ block (which is the current block). */
3270 emit_condition(ctx, &nif->condition, true);
3271
3272 /* Speculatively emit the branch, but we can't fill it in until later */
3273 EMIT(branch, true, true);
3274 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3275
3276 /* Emit the two subblocks */
3277 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3278
3279 /* Emit a jump from the end of the then block to the end of the else */
3280 EMIT(branch, false, false);
3281 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3282
3283 /* Emit second block, and check if it's empty */
3284
3285 int else_idx = ctx->block_count;
3286 int count_in = ctx->instruction_count;
3287 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3288 int after_else_idx = ctx->block_count;
3289
3290 /* Now that we have the subblocks emitted, fix up the branches */
3291
3292 assert(then_block);
3293 assert(else_block);
3294
3295 if (ctx->instruction_count == count_in) {
3296 /* The else block is empty, so don't emit an exit jump */
3297 mir_remove_instruction(then_exit);
3298 then_branch->branch.target_block = after_else_idx;
3299 } else {
3300 then_branch->branch.target_block = else_idx;
3301 then_exit->branch.target_block = after_else_idx;
3302 }
3303 }
3304
3305 static void
3306 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3307 {
3308 /* Remember where we are */
3309 midgard_block *start_block = ctx->current_block;
3310
3311 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3312 * single current_loop variable, maybe we need a stack */
3313
3314 int loop_idx = ++ctx->current_loop;
3315
3316 /* Get index from before the body so we can loop back later */
3317 int start_idx = ctx->block_count;
3318
3319 /* Emit the body itself */
3320 emit_cf_list(ctx, &nloop->body);
3321
3322 /* Branch back to loop back */
3323 struct midgard_instruction br_back = v_branch(false, false);
3324 br_back.branch.target_block = start_idx;
3325 emit_mir_instruction(ctx, br_back);
3326
3327 /* Find the index of the block about to follow us (note: we don't add
3328 * one; blocks are 0-indexed so we get a fencepost problem) */
3329 int break_block_idx = ctx->block_count;
3330
3331 /* Fix up the break statements we emitted to point to the right place,
3332 * now that we can allocate a block number for them */
3333
3334 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3335 if (midgard_debug & MIDGARD_DBG_SHADERS)
3336 print_mir_block(block);
3337 mir_foreach_instr_in_block(block, ins) {
3338 if (ins->type != TAG_ALU_4) continue;
3339 if (!ins->compact_branch) continue;
3340 if (ins->prepacked_branch) continue;
3341
3342 /* We found a branch -- check the type to see if we need to do anything */
3343 if (ins->branch.target_type != TARGET_BREAK) continue;
3344
3345 /* It's a break! Check if it's our break */
3346 if (ins->branch.target_break != loop_idx) continue;
3347
3348 /* Okay, cool, we're breaking out of this loop.
3349 * Rewrite from a break to a goto */
3350
3351 ins->branch.target_type = TARGET_GOTO;
3352 ins->branch.target_block = break_block_idx;
3353 }
3354 }
3355 }
3356
3357 static midgard_block *
3358 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3359 {
3360 midgard_block *start_block = NULL;
3361
3362 foreach_list_typed(nir_cf_node, node, node, list) {
3363 switch (node->type) {
3364 case nir_cf_node_block: {
3365 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3366
3367 if (!start_block)
3368 start_block = block;
3369
3370 break;
3371 }
3372
3373 case nir_cf_node_if:
3374 emit_if(ctx, nir_cf_node_as_if(node));
3375 break;
3376
3377 case nir_cf_node_loop:
3378 emit_loop(ctx, nir_cf_node_as_loop(node));
3379 break;
3380
3381 case nir_cf_node_function:
3382 assert(0);
3383 break;
3384 }
3385 }
3386
3387 return start_block;
3388 }
3389
3390 /* Due to lookahead, we need to report the first tag executed in the command
3391 * stream and in branch targets. An initial block might be empty, so iterate
3392 * until we find one that 'works' */
3393
3394 static unsigned
3395 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3396 {
3397 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3398
3399 unsigned first_tag = 0;
3400
3401 do {
3402 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3403
3404 if (initial_bundle) {
3405 first_tag = initial_bundle->tag;
3406 break;
3407 }
3408
3409 /* Initial block is empty, try the next block */
3410 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3411 } while(initial_block != NULL);
3412
3413 assert(first_tag);
3414 return first_tag;
3415 }
3416
3417 int
3418 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3419 {
3420 struct util_dynarray *compiled = &program->compiled;
3421
3422 midgard_debug = debug_get_option_midgard_debug();
3423
3424 compiler_context ictx = {
3425 .nir = nir,
3426 .stage = nir->info.stage,
3427
3428 .is_blend = is_blend,
3429 .blend_constant_offset = -1,
3430
3431 .alpha_ref = program->alpha_ref
3432 };
3433
3434 compiler_context *ctx = &ictx;
3435
3436 /* TODO: Decide this at runtime */
3437 ctx->uniform_cutoff = 8;
3438
3439 switch (ctx->stage) {
3440 case MESA_SHADER_VERTEX:
3441 ctx->special_uniforms = 1;
3442 break;
3443
3444 default:
3445 ctx->special_uniforms = 0;
3446 break;
3447 }
3448
3449 /* Append epilogue uniforms if necessary. The cmdstream depends on
3450 * these being at the -end-; see assign_var_locations. */
3451
3452 if (ctx->stage == MESA_SHADER_VERTEX) {
3453 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3454 }
3455
3456 /* Assign var locations early, so the epilogue can use them if necessary */
3457
3458 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3459 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3460 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3461
3462 /* Initialize at a global (not block) level hash tables */
3463
3464 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3465 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3466 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3467 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3468 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3469 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3470
3471 /* Assign actual uniform location, skipping over samplers */
3472
3473 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3474
3475 nir_foreach_variable(var, &nir->uniforms) {
3476 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3477
3478 unsigned length = glsl_get_aoa_size(var->type);
3479
3480 if (!length) {
3481 length = glsl_get_length(var->type);
3482 }
3483
3484 if (!length) {
3485 length = glsl_get_matrix_columns(var->type);
3486 }
3487
3488 for (int col = 0; col < length; ++col) {
3489 int id = ctx->uniform_count++;
3490 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3491 }
3492 }
3493
3494 /* Record the varying mapping for the command stream's bookkeeping */
3495
3496 struct exec_list *varyings =
3497 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3498
3499 nir_foreach_variable(var, varyings) {
3500 unsigned loc = var->data.driver_location;
3501 program->varyings[loc] = var->data.location;
3502 }
3503
3504 /* Lower vars -- not I/O -- before epilogue */
3505
3506 NIR_PASS_V(nir, nir_lower_var_copies);
3507 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3508 NIR_PASS_V(nir, nir_split_var_copies);
3509 NIR_PASS_V(nir, nir_lower_var_copies);
3510 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3511 NIR_PASS_V(nir, nir_lower_var_copies);
3512 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3513 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3514
3515 /* Append vertex epilogue before optimisation, so the epilogue itself
3516 * is optimised */
3517
3518 if (ctx->stage == MESA_SHADER_VERTEX)
3519 transform_position_writes(nir);
3520
3521 /* Optimisation passes */
3522
3523 optimise_nir(nir);
3524
3525 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3526 nir_print_shader(nir, stdout);
3527 }
3528
3529 /* Assign counts, now that we're sure (post-optimisation) */
3530 program->uniform_count = nir->num_uniforms;
3531
3532 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3533 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3534
3535
3536 nir_foreach_function(func, nir) {
3537 if (!func->impl)
3538 continue;
3539
3540 list_inithead(&ctx->blocks);
3541 ctx->block_count = 0;
3542 ctx->func = func;
3543
3544 emit_cf_list(ctx, &func->impl->body);
3545 emit_block(ctx, func->impl->end_block);
3546
3547 break; /* TODO: Multi-function shaders */
3548 }
3549
3550 util_dynarray_init(compiled, NULL);
3551
3552 /* Schedule! */
3553 schedule_program(ctx);
3554
3555 /* Now that all the bundles are scheduled and we can calculate block
3556 * sizes, emit actual branch instructions rather than placeholders */
3557
3558 int br_block_idx = 0;
3559
3560 mir_foreach_block(ctx, block) {
3561 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3562 for (int c = 0; c < bundle->instruction_count; ++c) {
3563 midgard_instruction *ins = &bundle->instructions[c];
3564
3565 if (!midgard_is_branch_unit(ins->unit)) continue;
3566
3567 if (ins->prepacked_branch) continue;
3568
3569 /* Parse some basic branch info */
3570 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3571 bool is_conditional = ins->branch.conditional;
3572 bool is_inverted = ins->branch.invert_conditional;
3573 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3574
3575 /* Determine the block we're jumping to */
3576 int target_number = ins->branch.target_block;
3577
3578 /* Report the destination tag. Discards don't need this */
3579 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3580
3581 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3582 int quadword_offset = 0;
3583
3584 if (is_discard) {
3585 /* Jump to the end of the shader. We
3586 * need to include not only the
3587 * following blocks, but also the
3588 * contents of our current block (since
3589 * discard can come in the middle of
3590 * the block) */
3591
3592 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3593
3594 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3595 quadword_offset += quadword_size(bun->tag);
3596 }
3597
3598 mir_foreach_block_from(ctx, blk, b) {
3599 quadword_offset += b->quadword_count;
3600 }
3601
3602 } else if (target_number > br_block_idx) {
3603 /* Jump forward */
3604
3605 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3606 midgard_block *blk = mir_get_block(ctx, idx);
3607 assert(blk);
3608
3609 quadword_offset += blk->quadword_count;
3610 }
3611 } else {
3612 /* Jump backwards */
3613
3614 for (int idx = br_block_idx; idx >= target_number; --idx) {
3615 midgard_block *blk = mir_get_block(ctx, idx);
3616 assert(blk);
3617
3618 quadword_offset -= blk->quadword_count;
3619 }
3620 }
3621
3622 /* Unconditional extended branches (far jumps)
3623 * have issues, so we always use a conditional
3624 * branch, setting the condition to always for
3625 * unconditional. For compact unconditional
3626 * branches, cond isn't used so it doesn't
3627 * matter what we pick. */
3628
3629 midgard_condition cond =
3630 !is_conditional ? midgard_condition_always :
3631 is_inverted ? midgard_condition_false :
3632 midgard_condition_true;
3633
3634 midgard_jmp_writeout_op op =
3635 is_discard ? midgard_jmp_writeout_op_discard :
3636 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3637 midgard_jmp_writeout_op_branch_cond;
3638
3639 if (!is_compact) {
3640 midgard_branch_extended branch =
3641 midgard_create_branch_extended(
3642 cond, op,
3643 dest_tag,
3644 quadword_offset);
3645
3646 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3647 } else if (is_conditional || is_discard) {
3648 midgard_branch_cond branch = {
3649 .op = op,
3650 .dest_tag = dest_tag,
3651 .offset = quadword_offset,
3652 .cond = cond
3653 };
3654
3655 assert(branch.offset == quadword_offset);
3656
3657 memcpy(&ins->br_compact, &branch, sizeof(branch));
3658 } else {
3659 assert(op == midgard_jmp_writeout_op_branch_uncond);
3660
3661 midgard_branch_uncond branch = {
3662 .op = op,
3663 .dest_tag = dest_tag,
3664 .offset = quadword_offset,
3665 .unknown = 1
3666 };
3667
3668 assert(branch.offset == quadword_offset);
3669
3670 memcpy(&ins->br_compact, &branch, sizeof(branch));
3671 }
3672 }
3673 }
3674
3675 ++br_block_idx;
3676 }
3677
3678 /* Emit flat binary from the instruction arrays. Iterate each block in
3679 * sequence. Save instruction boundaries such that lookahead tags can
3680 * be assigned easily */
3681
3682 /* Cache _all_ bundles in source order for lookahead across failed branches */
3683
3684 int bundle_count = 0;
3685 mir_foreach_block(ctx, block) {
3686 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3687 }
3688 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3689 int bundle_idx = 0;
3690 mir_foreach_block(ctx, block) {
3691 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3692 source_order_bundles[bundle_idx++] = bundle;
3693 }
3694 }
3695
3696 int current_bundle = 0;
3697
3698 mir_foreach_block(ctx, block) {
3699 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3700 int lookahead = 1;
3701
3702 if (current_bundle + 1 < bundle_count) {
3703 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3704
3705 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3706 lookahead = 1;
3707 } else {
3708 lookahead = next;
3709 }
3710 }
3711
3712 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3713 ++current_bundle;
3714 }
3715
3716 /* TODO: Free deeper */
3717 //util_dynarray_fini(&block->instructions);
3718 }
3719
3720 free(source_order_bundles);
3721
3722 /* Report the very first tag executed */
3723 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3724
3725 /* Deal with off-by-one related to the fencepost problem */
3726 program->work_register_count = ctx->work_registers + 1;
3727
3728 program->can_discard = ctx->can_discard;
3729 program->uniform_cutoff = ctx->uniform_cutoff;
3730
3731 program->blend_patch_offset = ctx->blend_constant_offset;
3732
3733 if (midgard_debug & MIDGARD_DBG_SHADERS)
3734 disassemble_midgard(program->compiled.data, program->compiled.size);
3735
3736 return 0;
3737 }