nir: make nir_const_value scalar
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
180
181 #define M_LOAD_STORE(name, rname, uname) \
182 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
183 midgard_instruction i = { \
184 .type = TAG_LOAD_STORE_4, \
185 .ssa_args = { \
186 .rname = ssa, \
187 .uname = -1, \
188 .src1 = -1 \
189 }, \
190 .load_store = { \
191 .op = midgard_op_##name, \
192 .mask = 0xF, \
193 .swizzle = SWIZZLE_XYZW, \
194 .address = address \
195 } \
196 }; \
197 \
198 return i; \
199 }
200
201 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
202 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
203
204 const midgard_vector_alu_src blank_alu_src = {
205 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
206 };
207
208 const midgard_vector_alu_src blank_alu_src_xxxx = {
209 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
210 };
211
212 const midgard_scalar_alu_src blank_scalar_alu_src = {
213 .full = true
214 };
215
216 /* Used for encoding the unused source of 1-op instructions */
217 const midgard_vector_alu_src zero_alu_src = { 0 };
218
219 /* Coerce structs to integer */
220
221 static unsigned
222 vector_alu_srco_unsigned(midgard_vector_alu_src src)
223 {
224 unsigned u;
225 memcpy(&u, &src, sizeof(src));
226 return u;
227 }
228
229 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
230 * the corresponding Midgard source */
231
232 static midgard_vector_alu_src
233 vector_alu_modifiers(nir_alu_src *src)
234 {
235 if (!src) return blank_alu_src;
236
237 midgard_vector_alu_src alu_src = {
238 .abs = src->abs,
239 .negate = src->negate,
240 .rep_low = 0,
241 .rep_high = 0,
242 .half = 0, /* TODO */
243 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
244 };
245
246 return alu_src;
247 }
248
249 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
250
251 static midgard_instruction
252 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
253 {
254 midgard_instruction ins = {
255 .type = TAG_ALU_4,
256 .ssa_args = {
257 .src0 = SSA_UNUSED_1,
258 .src1 = src,
259 .dest = dest,
260 },
261 .alu = {
262 .op = midgard_alu_op_fmov,
263 .reg_mode = midgard_reg_mode_full,
264 .dest_override = midgard_dest_override_none,
265 .mask = 0xFF,
266 .src1 = vector_alu_srco_unsigned(zero_alu_src),
267 .src2 = vector_alu_srco_unsigned(mod)
268 },
269 };
270
271 return ins;
272 }
273
274 /* load/store instructions have both 32-bit and 16-bit variants, depending on
275 * whether we are using vectors composed of highp or mediump. At the moment, we
276 * don't support half-floats -- this requires changes in other parts of the
277 * compiler -- therefore the 16-bit versions are commented out. */
278
279 //M_LOAD(load_attr_16);
280 M_LOAD(load_attr_32);
281 //M_LOAD(load_vary_16);
282 M_LOAD(load_vary_32);
283 //M_LOAD(load_uniform_16);
284 M_LOAD(load_uniform_32);
285 M_LOAD(load_color_buffer_8);
286 //M_STORE(store_vary_16);
287 M_STORE(store_vary_32);
288 M_STORE(store_cubemap_coords);
289
290 static midgard_instruction
291 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
292 {
293 midgard_branch_cond branch = {
294 .op = op,
295 .dest_tag = tag,
296 .offset = offset,
297 .cond = cond
298 };
299
300 uint16_t compact;
301 memcpy(&compact, &branch, sizeof(branch));
302
303 midgard_instruction ins = {
304 .type = TAG_ALU_4,
305 .unit = ALU_ENAB_BR_COMPACT,
306 .prepacked_branch = true,
307 .compact_branch = true,
308 .br_compact = compact
309 };
310
311 if (op == midgard_jmp_writeout_op_writeout)
312 ins.writeout = true;
313
314 return ins;
315 }
316
317 static midgard_instruction
318 v_branch(bool conditional, bool invert)
319 {
320 midgard_instruction ins = {
321 .type = TAG_ALU_4,
322 .unit = ALU_ENAB_BRANCH,
323 .compact_branch = true,
324 .branch = {
325 .conditional = conditional,
326 .invert_conditional = invert
327 }
328 };
329
330 return ins;
331 }
332
333 static midgard_branch_extended
334 midgard_create_branch_extended( midgard_condition cond,
335 midgard_jmp_writeout_op op,
336 unsigned dest_tag,
337 signed quadword_offset)
338 {
339 /* For unclear reasons, the condition code is repeated 8 times */
340 uint16_t duplicated_cond =
341 (cond << 14) |
342 (cond << 12) |
343 (cond << 10) |
344 (cond << 8) |
345 (cond << 6) |
346 (cond << 4) |
347 (cond << 2) |
348 (cond << 0);
349
350 midgard_branch_extended branch = {
351 .op = op,
352 .dest_tag = dest_tag,
353 .offset = quadword_offset,
354 .cond = duplicated_cond
355 };
356
357 return branch;
358 }
359
360 typedef struct midgard_bundle {
361 /* Tag for the overall bundle */
362 int tag;
363
364 /* Instructions contained by the bundle */
365 int instruction_count;
366 midgard_instruction instructions[5];
367
368 /* Bundle-wide ALU configuration */
369 int padding;
370 int control;
371 bool has_embedded_constants;
372 float constants[4];
373 bool has_blend_constant;
374
375 uint16_t register_words[8];
376 int register_words_count;
377
378 uint64_t body_words[8];
379 size_t body_size[8];
380 int body_words_count;
381 } midgard_bundle;
382
383 typedef struct compiler_context {
384 nir_shader *nir;
385 gl_shader_stage stage;
386
387 /* Is internally a blend shader? Depends on stage == FRAGMENT */
388 bool is_blend;
389
390 /* Tracking for blend constant patching */
391 int blend_constant_number;
392 int blend_constant_offset;
393
394 /* Current NIR function */
395 nir_function *func;
396
397 /* Unordered list of midgard_blocks */
398 int block_count;
399 struct list_head blocks;
400
401 midgard_block *initial_block;
402 midgard_block *previous_source_block;
403 midgard_block *final_block;
404
405 /* List of midgard_instructions emitted for the current block */
406 midgard_block *current_block;
407
408 /* The index corresponding to the current loop, e.g. for breaks/contineus */
409 int current_loop;
410
411 /* Constants which have been loaded, for later inlining */
412 struct hash_table_u64 *ssa_constants;
413
414 /* SSA indices to be outputted to corresponding varying offset */
415 struct hash_table_u64 *ssa_varyings;
416
417 /* SSA values / registers which have been aliased. Naively, these
418 * demand a fmov output; instead, we alias them in a later pass to
419 * avoid the wasted op.
420 *
421 * A note on encoding: to avoid dynamic memory management here, rather
422 * than ampping to a pointer, we map to the source index; the key
423 * itself is just the destination index. */
424
425 struct hash_table_u64 *ssa_to_alias;
426 struct set *leftover_ssa_to_alias;
427
428 /* Actual SSA-to-register for RA */
429 struct hash_table_u64 *ssa_to_register;
430
431 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
432 struct hash_table_u64 *hash_to_temp;
433 int temp_count;
434 int max_hash;
435
436 /* Just the count of the max register used. Higher count => higher
437 * register pressure */
438 int work_registers;
439
440 /* Used for cont/last hinting. Increase when a tex op is added.
441 * Decrease when a tex op is removed. */
442 int texture_op_count;
443
444 /* Mapping of texture register -> SSA index for unaliasing */
445 int texture_index[2];
446
447 /* If any path hits a discard instruction */
448 bool can_discard;
449
450 /* The number of uniforms allowable for the fast path */
451 int uniform_cutoff;
452
453 /* Count of instructions emitted from NIR overall, across all blocks */
454 int instruction_count;
455
456 /* Alpha ref value passed in */
457 float alpha_ref;
458
459 /* The index corresponding to the fragment output */
460 unsigned fragment_output;
461
462 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
463 unsigned sysvals[MAX_SYSVAL_COUNT];
464 unsigned sysval_count;
465 struct hash_table_u64 *sysval_to_id;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type, bool bindless)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static int
670 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
671 {
672 switch (instr->intrinsic) {
673 case nir_intrinsic_load_viewport_scale:
674 return PAN_SYSVAL_VIEWPORT_SCALE;
675 case nir_intrinsic_load_viewport_offset:
676 return PAN_SYSVAL_VIEWPORT_OFFSET;
677 default:
678 return -1;
679 }
680 }
681
682 static void
683 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
684 {
685 int sysval = -1;
686
687 if (instr->type == nir_instr_type_intrinsic) {
688 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
689 sysval = midgard_nir_sysval_for_intrinsic(intr);
690 }
691
692 if (sysval < 0)
693 return;
694
695 /* We have a sysval load; check if it's already been assigned */
696
697 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
698 return;
699
700 /* It hasn't -- so assign it now! */
701
702 unsigned id = ctx->sysval_count++;
703 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
704 ctx->sysvals[id] = sysval;
705 }
706
707 static void
708 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
709 {
710 ctx->sysval_count = 0;
711
712 nir_foreach_function(function, shader) {
713 if (!function->impl) continue;
714
715 nir_foreach_block(block, function->impl) {
716 nir_foreach_instr_safe(instr, block) {
717 midgard_nir_assign_sysval_body(ctx, instr);
718 }
719 }
720 }
721 }
722
723 static bool
724 midgard_nir_lower_fdot2(nir_shader *shader)
725 {
726 bool progress = false;
727
728 nir_foreach_function(function, shader) {
729 if (!function->impl) continue;
730
731 nir_builder _b;
732 nir_builder *b = &_b;
733 nir_builder_init(b, function->impl);
734
735 nir_foreach_block(block, function->impl) {
736 nir_foreach_instr_safe(instr, block) {
737 if (instr->type != nir_instr_type_alu) continue;
738
739 nir_alu_instr *alu = nir_instr_as_alu(instr);
740 midgard_nir_lower_fdot2_body(b, alu);
741
742 progress |= true;
743 }
744 }
745
746 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
747
748 }
749
750 return progress;
751 }
752
753 static void
754 optimise_nir(nir_shader *nir)
755 {
756 bool progress;
757
758 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
759 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
760
761 nir_lower_tex_options lower_tex_options = {
762 .lower_rect = true
763 };
764
765 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
766
767 do {
768 progress = false;
769
770 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
771 NIR_PASS(progress, nir, nir_lower_var_copies);
772 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
773
774 NIR_PASS(progress, nir, nir_copy_prop);
775 NIR_PASS(progress, nir, nir_opt_dce);
776 NIR_PASS(progress, nir, nir_opt_dead_cf);
777 NIR_PASS(progress, nir, nir_opt_cse);
778 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
779 NIR_PASS(progress, nir, nir_opt_algebraic);
780 NIR_PASS(progress, nir, nir_opt_constant_folding);
781 NIR_PASS(progress, nir, nir_opt_undef);
782 NIR_PASS(progress, nir, nir_opt_loop_unroll,
783 nir_var_shader_in |
784 nir_var_shader_out |
785 nir_var_function_temp);
786
787 /* TODO: Enable vectorize when merged upstream */
788 // NIR_PASS(progress, nir, nir_opt_vectorize);
789 } while (progress);
790
791 /* Must be run at the end to prevent creation of fsin/fcos ops */
792 NIR_PASS(progress, nir, midgard_nir_scale_trig);
793
794 do {
795 progress = false;
796
797 NIR_PASS(progress, nir, nir_opt_dce);
798 NIR_PASS(progress, nir, nir_opt_algebraic);
799 NIR_PASS(progress, nir, nir_opt_constant_folding);
800 NIR_PASS(progress, nir, nir_copy_prop);
801 } while (progress);
802
803 NIR_PASS(progress, nir, nir_opt_algebraic_late);
804 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
805
806 /* Lower mods for float ops only. Integer ops don't support modifiers
807 * (saturate doesn't make sense on integers, neg/abs require dedicated
808 * instructions) */
809
810 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
811 NIR_PASS(progress, nir, nir_copy_prop);
812 NIR_PASS(progress, nir, nir_opt_dce);
813
814 /* We implement booleans as 32-bit 0/~0 */
815 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
816
817 /* Take us out of SSA */
818 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
819 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
820
821 /* We are a vector architecture; write combine where possible */
822 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
823 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
824
825 NIR_PASS(progress, nir, nir_opt_dce);
826 }
827
828 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
829 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
830 * r0. See the comments in compiler_context */
831
832 static void
833 alias_ssa(compiler_context *ctx, int dest, int src)
834 {
835 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
836 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
837 }
838
839 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
840
841 static void
842 unalias_ssa(compiler_context *ctx, int dest)
843 {
844 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
845 /* TODO: Remove from leftover or no? */
846 }
847
848 static void
849 midgard_pin_output(compiler_context *ctx, int index, int reg)
850 {
851 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
852 }
853
854 static bool
855 midgard_is_pinned(compiler_context *ctx, int index)
856 {
857 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
858 }
859
860 /* Do not actually emit a load; instead, cache the constant for inlining */
861
862 static void
863 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
864 {
865 nir_ssa_def def = instr->def;
866
867 float *v = ralloc_array(NULL, float, 4);
868 nir_const_load_to_arr(v, instr, f32);
869 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
870 }
871
872 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
873 * do the inverse) */
874
875 static unsigned
876 expand_writemask(unsigned mask)
877 {
878 unsigned o = 0;
879
880 for (int i = 0; i < 4; ++i)
881 if (mask & (1 << i))
882 o |= (3 << (2 * i));
883
884 return o;
885 }
886
887 static unsigned
888 squeeze_writemask(unsigned mask)
889 {
890 unsigned o = 0;
891
892 for (int i = 0; i < 4; ++i)
893 if (mask & (3 << (2 * i)))
894 o |= (1 << i);
895
896 return o;
897
898 }
899
900 /* Determines effective writemask, taking quirks and expansion into account */
901 static unsigned
902 effective_writemask(midgard_vector_alu *alu)
903 {
904 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
905 * sense) */
906
907 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
908
909 /* If there is a fixed channel count, construct the appropriate mask */
910
911 if (channel_count)
912 return (1 << channel_count) - 1;
913
914 /* Otherwise, just squeeze the existing mask */
915 return squeeze_writemask(alu->mask);
916 }
917
918 static unsigned
919 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
920 {
921 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
922 return hash;
923
924 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
925
926 if (temp)
927 return temp - 1;
928
929 /* If no temp is find, allocate one */
930 temp = ctx->temp_count++;
931 ctx->max_hash = MAX2(ctx->max_hash, hash);
932
933 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
934
935 return temp;
936 }
937
938 static unsigned
939 nir_src_index(compiler_context *ctx, nir_src *src)
940 {
941 if (src->is_ssa)
942 return src->ssa->index;
943 else
944 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
945 }
946
947 static unsigned
948 nir_dest_index(compiler_context *ctx, nir_dest *dst)
949 {
950 if (dst->is_ssa)
951 return dst->ssa.index;
952 else
953 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
954 }
955
956 static unsigned
957 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
958 {
959 return nir_src_index(ctx, &src->src);
960 }
961
962 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
963 * a conditional test) into that register */
964
965 static void
966 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
967 {
968 /* XXX: Force component correct */
969 int condition = nir_src_index(ctx, src);
970
971 /* There is no boolean move instruction. Instead, we simulate a move by
972 * ANDing the condition with itself to get it into r31.w */
973
974 midgard_instruction ins = {
975 .type = TAG_ALU_4,
976 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
977 .ssa_args = {
978 .src0 = condition,
979 .src1 = condition,
980 .dest = SSA_FIXED_REGISTER(31),
981 },
982 .alu = {
983 .op = midgard_alu_op_iand,
984 .reg_mode = midgard_reg_mode_full,
985 .dest_override = midgard_dest_override_none,
986 .mask = (0x3 << 6), /* w */
987 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
988 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
989 },
990 };
991
992 emit_mir_instruction(ctx, ins);
993 }
994
995 #define ALU_CASE(nir, _op) \
996 case nir_op_##nir: \
997 op = midgard_alu_op_##_op; \
998 break;
999
1000 static void
1001 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1002 {
1003 bool is_ssa = instr->dest.dest.is_ssa;
1004
1005 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1006 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1007 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1008
1009 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1010 * supported. A few do not and are commented for now. Also, there are a
1011 * number of NIR ops which Midgard does not support and need to be
1012 * lowered, also TODO. This switch block emits the opcode and calling
1013 * convention of the Midgard instruction; actual packing is done in
1014 * emit_alu below */
1015
1016 unsigned op;
1017
1018 switch (instr->op) {
1019 ALU_CASE(fadd, fadd);
1020 ALU_CASE(fmul, fmul);
1021 ALU_CASE(fmin, fmin);
1022 ALU_CASE(fmax, fmax);
1023 ALU_CASE(imin, imin);
1024 ALU_CASE(imax, imax);
1025 ALU_CASE(umin, umin);
1026 ALU_CASE(umax, umax);
1027 ALU_CASE(fmov, fmov);
1028 ALU_CASE(ffloor, ffloor);
1029 ALU_CASE(fround_even, froundeven);
1030 ALU_CASE(ftrunc, ftrunc);
1031 ALU_CASE(fceil, fceil);
1032 ALU_CASE(fdot3, fdot3);
1033 ALU_CASE(fdot4, fdot4);
1034 ALU_CASE(iadd, iadd);
1035 ALU_CASE(isub, isub);
1036 ALU_CASE(imul, imul);
1037 ALU_CASE(iabs, iabs);
1038
1039 /* XXX: Use fmov, not imov, since imov was causing major
1040 * issues with texture precision? XXX research */
1041 ALU_CASE(imov, fmov);
1042
1043 ALU_CASE(feq32, feq);
1044 ALU_CASE(fne32, fne);
1045 ALU_CASE(flt32, flt);
1046 ALU_CASE(ieq32, ieq);
1047 ALU_CASE(ine32, ine);
1048 ALU_CASE(ilt32, ilt);
1049 ALU_CASE(ult32, ult);
1050
1051 /* We don't have a native b2f32 instruction. Instead, like many
1052 * GPUs, we exploit booleans as 0/~0 for false/true, and
1053 * correspondingly AND
1054 * by 1.0 to do the type conversion. For the moment, prime us
1055 * to emit:
1056 *
1057 * iand [whatever], #0
1058 *
1059 * At the end of emit_alu (as MIR), we'll fix-up the constant
1060 */
1061
1062 ALU_CASE(b2f32, iand);
1063 ALU_CASE(b2i32, iand);
1064
1065 /* Likewise, we don't have a dedicated f2b32 instruction, but
1066 * we can do a "not equal to 0.0" test. */
1067
1068 ALU_CASE(f2b32, fne);
1069 ALU_CASE(i2b32, ine);
1070
1071 ALU_CASE(frcp, frcp);
1072 ALU_CASE(frsq, frsqrt);
1073 ALU_CASE(fsqrt, fsqrt);
1074 ALU_CASE(fexp2, fexp2);
1075 ALU_CASE(flog2, flog2);
1076
1077 ALU_CASE(f2i32, f2i);
1078 ALU_CASE(f2u32, f2u);
1079 ALU_CASE(i2f32, i2f);
1080 ALU_CASE(u2f32, u2f);
1081
1082 ALU_CASE(fsin, fsin);
1083 ALU_CASE(fcos, fcos);
1084
1085 ALU_CASE(iand, iand);
1086 ALU_CASE(ior, ior);
1087 ALU_CASE(ixor, ixor);
1088 ALU_CASE(inot, inot);
1089 ALU_CASE(ishl, ishl);
1090 ALU_CASE(ishr, iasr);
1091 ALU_CASE(ushr, ilsr);
1092
1093 ALU_CASE(b32all_fequal2, fball_eq);
1094 ALU_CASE(b32all_fequal3, fball_eq);
1095 ALU_CASE(b32all_fequal4, fball_eq);
1096
1097 ALU_CASE(b32any_fnequal2, fbany_neq);
1098 ALU_CASE(b32any_fnequal3, fbany_neq);
1099 ALU_CASE(b32any_fnequal4, fbany_neq);
1100
1101 ALU_CASE(b32all_iequal2, iball_eq);
1102 ALU_CASE(b32all_iequal3, iball_eq);
1103 ALU_CASE(b32all_iequal4, iball_eq);
1104
1105 ALU_CASE(b32any_inequal2, ibany_neq);
1106 ALU_CASE(b32any_inequal3, ibany_neq);
1107 ALU_CASE(b32any_inequal4, ibany_neq);
1108
1109 /* For greater-or-equal, we lower to less-or-equal and flip the
1110 * arguments */
1111
1112 case nir_op_fge:
1113 case nir_op_fge32:
1114 case nir_op_ige32:
1115 case nir_op_uge32: {
1116 op =
1117 instr->op == nir_op_fge ? midgard_alu_op_fle :
1118 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1119 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1120 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1121 0;
1122
1123 /* Swap via temporary */
1124 nir_alu_src temp = instr->src[1];
1125 instr->src[1] = instr->src[0];
1126 instr->src[0] = temp;
1127
1128 break;
1129 }
1130
1131 case nir_op_b32csel: {
1132 op = midgard_alu_op_fcsel;
1133
1134 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1135 nr_inputs = 2;
1136
1137 emit_condition(ctx, &instr->src[0].src, false);
1138
1139 /* The condition is the first argument; move the other
1140 * arguments up one to be a binary instruction for
1141 * Midgard */
1142
1143 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1144 break;
1145 }
1146
1147 default:
1148 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1149 assert(0);
1150 return;
1151 }
1152
1153 /* Fetch unit, quirks, etc information */
1154 unsigned opcode_props = alu_opcode_props[op];
1155 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1156
1157 /* Initialise fields common between scalar/vector instructions */
1158 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1159
1160 /* src0 will always exist afaik, but src1 will not for 1-argument
1161 * instructions. The latter can only be fetched if the instruction
1162 * needs it, or else we may segfault. */
1163
1164 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1165 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1166
1167 /* Rather than use the instruction generation helpers, we do it
1168 * ourselves here to avoid the mess */
1169
1170 midgard_instruction ins = {
1171 .type = TAG_ALU_4,
1172 .ssa_args = {
1173 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1174 .src1 = quirk_flipped_r24 ? src0 : src1,
1175 .dest = dest,
1176 }
1177 };
1178
1179 nir_alu_src *nirmods[2] = { NULL };
1180
1181 if (nr_inputs == 2) {
1182 nirmods[0] = &instr->src[0];
1183 nirmods[1] = &instr->src[1];
1184 } else if (nr_inputs == 1) {
1185 nirmods[quirk_flipped_r24] = &instr->src[0];
1186 } else {
1187 assert(0);
1188 }
1189
1190 midgard_vector_alu alu = {
1191 .op = op,
1192 .reg_mode = midgard_reg_mode_full,
1193 .dest_override = midgard_dest_override_none,
1194 .outmod = outmod,
1195
1196 /* Writemask only valid for non-SSA NIR */
1197 .mask = expand_writemask((1 << nr_components) - 1),
1198
1199 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1200 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1201 };
1202
1203 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1204
1205 if (!is_ssa)
1206 alu.mask &= expand_writemask(instr->dest.write_mask);
1207
1208 ins.alu = alu;
1209
1210 /* Late fixup for emulated instructions */
1211
1212 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1213 /* Presently, our second argument is an inline #0 constant.
1214 * Switch over to an embedded 1.0 constant (that can't fit
1215 * inline, since we're 32-bit, not 16-bit like the inline
1216 * constants) */
1217
1218 ins.ssa_args.inline_constant = false;
1219 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1220 ins.has_constants = true;
1221
1222 if (instr->op == nir_op_b2f32) {
1223 ins.constants[0] = 1.0f;
1224 } else {
1225 /* Type pun it into place */
1226 uint32_t one = 0x1;
1227 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1228 }
1229
1230 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1231 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1232 ins.ssa_args.inline_constant = false;
1233 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1234 ins.has_constants = true;
1235 ins.constants[0] = 0.0f;
1236 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1237 }
1238
1239 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1240 /* To avoid duplicating the lookup tables (probably), true LUT
1241 * instructions can only operate as if they were scalars. Lower
1242 * them here by changing the component. */
1243
1244 uint8_t original_swizzle[4];
1245 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1246
1247 for (int i = 0; i < nr_components; ++i) {
1248 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1249
1250 for (int j = 0; j < 4; ++j)
1251 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1252
1253 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1254 emit_mir_instruction(ctx, ins);
1255 }
1256 } else {
1257 emit_mir_instruction(ctx, ins);
1258 }
1259 }
1260
1261 #undef ALU_CASE
1262
1263 static void
1264 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset)
1265 {
1266 /* TODO: half-floats */
1267
1268 if (offset < ctx->uniform_cutoff) {
1269 /* Fast path: For the first 16 uniform,
1270 * accesses are 0-cycle, since they're
1271 * just a register fetch in the usual
1272 * case. So, we alias the registers
1273 * while we're still in SSA-space */
1274
1275 int reg_slot = 23 - offset;
1276 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1277 } else {
1278 /* Otherwise, read from the 'special'
1279 * UBO to access higher-indexed
1280 * uniforms, at a performance cost */
1281
1282 midgard_instruction ins = m_load_uniform_32(dest, offset);
1283
1284 /* TODO: Don't split */
1285 ins.load_store.varying_parameters = (offset & 7) << 7;
1286 ins.load_store.address = offset >> 3;
1287
1288 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1289 emit_mir_instruction(ctx, ins);
1290 }
1291 }
1292
1293 static void
1294 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1295 {
1296 /* First, pull out the destination */
1297 unsigned dest = nir_dest_index(ctx, &instr->dest);
1298
1299 /* Now, figure out which uniform this is */
1300 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1301 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1302
1303 /* Sysvals are prefix uniforms */
1304 unsigned uniform = ((uintptr_t) val) - 1;
1305
1306 emit_uniform_read(ctx, dest, uniform);
1307 }
1308
1309 static void
1310 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1311 {
1312 unsigned offset, reg;
1313
1314 switch (instr->intrinsic) {
1315 case nir_intrinsic_discard_if:
1316 emit_condition(ctx, &instr->src[0], true);
1317
1318 /* fallthrough */
1319
1320 case nir_intrinsic_discard: {
1321 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1322 struct midgard_instruction discard = v_branch(conditional, false);
1323 discard.branch.target_type = TARGET_DISCARD;
1324 emit_mir_instruction(ctx, discard);
1325
1326 ctx->can_discard = true;
1327 break;
1328 }
1329
1330 case nir_intrinsic_load_uniform:
1331 case nir_intrinsic_load_input:
1332 assert(nir_src_is_const(instr->src[0]) && "no indirect inputs");
1333
1334 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
1335
1336 reg = nir_dest_index(ctx, &instr->dest);
1337
1338 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1339 emit_uniform_read(ctx, reg, ctx->sysval_count + offset);
1340 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1341 /* XXX: Half-floats? */
1342 /* TODO: swizzle, mask */
1343
1344 midgard_instruction ins = m_load_vary_32(reg, offset);
1345
1346 midgard_varying_parameter p = {
1347 .is_varying = 1,
1348 .interpolation = midgard_interp_default,
1349 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1350 };
1351
1352 unsigned u;
1353 memcpy(&u, &p, sizeof(p));
1354 ins.load_store.varying_parameters = u;
1355
1356 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1357 emit_mir_instruction(ctx, ins);
1358 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1359 /* Constant encoded as a pinned constant */
1360
1361 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1362 ins.has_constants = true;
1363 ins.has_blend_constant = true;
1364 emit_mir_instruction(ctx, ins);
1365 } else if (ctx->is_blend) {
1366 /* For blend shaders, a load might be
1367 * translated various ways depending on what
1368 * we're loading. Figure out how this is used */
1369
1370 nir_variable *out = NULL;
1371
1372 nir_foreach_variable(var, &ctx->nir->inputs) {
1373 int drvloc = var->data.driver_location;
1374
1375 if (nir_intrinsic_base(instr) == drvloc) {
1376 out = var;
1377 break;
1378 }
1379 }
1380
1381 assert(out);
1382
1383 if (out->data.location == VARYING_SLOT_COL0) {
1384 /* Source color preloaded to r0 */
1385
1386 midgard_pin_output(ctx, reg, 0);
1387 } else if (out->data.location == VARYING_SLOT_COL1) {
1388 /* Destination color must be read from framebuffer */
1389
1390 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1391 ins.load_store.swizzle = 0; /* xxxx */
1392
1393 /* Read each component sequentially */
1394
1395 for (int c = 0; c < 4; ++c) {
1396 ins.load_store.mask = (1 << c);
1397 ins.load_store.unknown = c;
1398 emit_mir_instruction(ctx, ins);
1399 }
1400
1401 /* vadd.u2f hr2, abs(hr2), #0 */
1402
1403 midgard_vector_alu_src alu_src = blank_alu_src;
1404 alu_src.abs = true;
1405 alu_src.half = true;
1406
1407 midgard_instruction u2f = {
1408 .type = TAG_ALU_4,
1409 .ssa_args = {
1410 .src0 = reg,
1411 .src1 = SSA_UNUSED_0,
1412 .dest = reg,
1413 .inline_constant = true
1414 },
1415 .alu = {
1416 .op = midgard_alu_op_u2f,
1417 .reg_mode = midgard_reg_mode_half,
1418 .dest_override = midgard_dest_override_none,
1419 .mask = 0xF,
1420 .src1 = vector_alu_srco_unsigned(alu_src),
1421 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1422 }
1423 };
1424
1425 emit_mir_instruction(ctx, u2f);
1426
1427 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1428
1429 alu_src.abs = false;
1430
1431 midgard_instruction fmul = {
1432 .type = TAG_ALU_4,
1433 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1434 .ssa_args = {
1435 .src0 = reg,
1436 .dest = reg,
1437 .src1 = SSA_UNUSED_0,
1438 .inline_constant = true
1439 },
1440 .alu = {
1441 .op = midgard_alu_op_fmul,
1442 .reg_mode = midgard_reg_mode_full,
1443 .dest_override = midgard_dest_override_none,
1444 .outmod = midgard_outmod_sat,
1445 .mask = 0xFF,
1446 .src1 = vector_alu_srco_unsigned(alu_src),
1447 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1448 }
1449 };
1450
1451 emit_mir_instruction(ctx, fmul);
1452 } else {
1453 DBG("Unknown input in blend shader\n");
1454 assert(0);
1455 }
1456 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1457 midgard_instruction ins = m_load_attr_32(reg, offset);
1458 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1459 ins.load_store.mask = (1 << instr->num_components) - 1;
1460 emit_mir_instruction(ctx, ins);
1461 } else {
1462 DBG("Unknown load\n");
1463 assert(0);
1464 }
1465
1466 break;
1467
1468 case nir_intrinsic_store_output:
1469 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1470
1471 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1472
1473 reg = nir_src_index(ctx, &instr->src[0]);
1474
1475 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1476 /* gl_FragColor is not emitted with load/store
1477 * instructions. Instead, it gets plonked into
1478 * r0 at the end of the shader and we do the
1479 * framebuffer writeout dance. TODO: Defer
1480 * writes */
1481
1482 midgard_pin_output(ctx, reg, 0);
1483
1484 /* Save the index we're writing to for later reference
1485 * in the epilogue */
1486
1487 ctx->fragment_output = reg;
1488 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1489 /* Varyings are written into one of two special
1490 * varying register, r26 or r27. The register itself is selected as the register
1491 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1492 *
1493 * Normally emitting fmov's is frowned upon,
1494 * but due to unique constraints of
1495 * REGISTER_VARYING, fmov emission + a
1496 * dedicated cleanup pass is the only way to
1497 * guarantee correctness when considering some
1498 * (common) edge cases XXX: FIXME */
1499
1500 /* If this varying corresponds to a constant (why?!),
1501 * emit that now since it won't get picked up by
1502 * hoisting (since there is no corresponding move
1503 * emitted otherwise) */
1504
1505 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1506
1507 if (constant_value) {
1508 /* Special case: emit the varying write
1509 * directly to r26 (looks funny in asm but it's
1510 * fine) and emit the store _now_. Possibly
1511 * slightly slower, but this is a really stupid
1512 * special case anyway (why on earth would you
1513 * have a constant varying? Your own fault for
1514 * slightly worse perf :P) */
1515
1516 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1517 attach_constants(ctx, &ins, constant_value, reg + 1);
1518 emit_mir_instruction(ctx, ins);
1519
1520 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1521 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1522 emit_mir_instruction(ctx, st);
1523 } else {
1524 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1525
1526 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1527 }
1528 } else {
1529 DBG("Unknown store\n");
1530 assert(0);
1531 }
1532
1533 break;
1534
1535 case nir_intrinsic_load_alpha_ref_float:
1536 assert(instr->dest.is_ssa);
1537
1538 float ref_value = ctx->alpha_ref;
1539
1540 float *v = ralloc_array(NULL, float, 4);
1541 memcpy(v, &ref_value, sizeof(float));
1542 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1543 break;
1544
1545 case nir_intrinsic_load_viewport_scale:
1546 case nir_intrinsic_load_viewport_offset:
1547 emit_sysval_read(ctx, instr);
1548 break;
1549
1550 default:
1551 printf ("Unhandled intrinsic\n");
1552 assert(0);
1553 break;
1554 }
1555 }
1556
1557 static unsigned
1558 midgard_tex_format(enum glsl_sampler_dim dim)
1559 {
1560 switch (dim) {
1561 case GLSL_SAMPLER_DIM_2D:
1562 case GLSL_SAMPLER_DIM_EXTERNAL:
1563 return TEXTURE_2D;
1564
1565 case GLSL_SAMPLER_DIM_3D:
1566 return TEXTURE_3D;
1567
1568 case GLSL_SAMPLER_DIM_CUBE:
1569 return TEXTURE_CUBE;
1570
1571 default:
1572 DBG("Unknown sampler dim type\n");
1573 assert(0);
1574 return 0;
1575 }
1576 }
1577
1578 static void
1579 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1580 {
1581 /* TODO */
1582 //assert (!instr->sampler);
1583 //assert (!instr->texture_array_size);
1584 assert (instr->op == nir_texop_tex);
1585
1586 /* Allocate registers via a round robin scheme to alternate between the two registers */
1587 int reg = ctx->texture_op_count & 1;
1588 int in_reg = reg, out_reg = reg;
1589
1590 /* Make room for the reg */
1591
1592 if (ctx->texture_index[reg] > -1)
1593 unalias_ssa(ctx, ctx->texture_index[reg]);
1594
1595 int texture_index = instr->texture_index;
1596 int sampler_index = texture_index;
1597
1598 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1599 switch (instr->src[i].src_type) {
1600 case nir_tex_src_coord: {
1601 int index = nir_src_index(ctx, &instr->src[i].src);
1602
1603 midgard_vector_alu_src alu_src = blank_alu_src;
1604
1605 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1606
1607 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1608 /* For cubemaps, we need to load coords into
1609 * special r27, and then use a special ld/st op
1610 * to copy into the texture register */
1611
1612 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1613
1614 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1615 emit_mir_instruction(ctx, move);
1616
1617 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1618 st.load_store.unknown = 0x24; /* XXX: What is this? */
1619 st.load_store.mask = 0x3; /* xy? */
1620 st.load_store.swizzle = alu_src.swizzle;
1621 emit_mir_instruction(ctx, st);
1622
1623 } else {
1624 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1625
1626 midgard_instruction ins = v_fmov(index, alu_src, reg);
1627 emit_mir_instruction(ctx, ins);
1628 }
1629
1630 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1631
1632 break;
1633 }
1634
1635 default: {
1636 DBG("Unknown source type\n");
1637 //assert(0);
1638 break;
1639 }
1640 }
1641 }
1642
1643 /* No helper to build texture words -- we do it all here */
1644 midgard_instruction ins = {
1645 .type = TAG_TEXTURE_4,
1646 .texture = {
1647 .op = TEXTURE_OP_NORMAL,
1648 .format = midgard_tex_format(instr->sampler_dim),
1649 .texture_handle = texture_index,
1650 .sampler_handle = sampler_index,
1651
1652 /* TODO: Don't force xyzw */
1653 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1654 .mask = 0xF,
1655
1656 /* TODO: half */
1657 //.in_reg_full = 1,
1658 .out_full = 1,
1659
1660 .filter = 1,
1661
1662 /* Always 1 */
1663 .unknown7 = 1,
1664
1665 /* Assume we can continue; hint it out later */
1666 .cont = 1,
1667 }
1668 };
1669
1670 /* Set registers to read and write from the same place */
1671 ins.texture.in_reg_select = in_reg;
1672 ins.texture.out_reg_select = out_reg;
1673
1674 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1675 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1676 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1677 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1678 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1679 } else {
1680 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1681 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1682 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1683 }
1684
1685 emit_mir_instruction(ctx, ins);
1686
1687 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1688
1689 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1690 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1691 ctx->texture_index[reg] = o_index;
1692
1693 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1694 emit_mir_instruction(ctx, ins2);
1695
1696 /* Used for .cont and .last hinting */
1697 ctx->texture_op_count++;
1698 }
1699
1700 static void
1701 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1702 {
1703 switch (instr->type) {
1704 case nir_jump_break: {
1705 /* Emit a branch out of the loop */
1706 struct midgard_instruction br = v_branch(false, false);
1707 br.branch.target_type = TARGET_BREAK;
1708 br.branch.target_break = ctx->current_loop;
1709 emit_mir_instruction(ctx, br);
1710
1711 DBG("break..\n");
1712 break;
1713 }
1714
1715 default:
1716 DBG("Unknown jump type %d\n", instr->type);
1717 break;
1718 }
1719 }
1720
1721 static void
1722 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1723 {
1724 switch (instr->type) {
1725 case nir_instr_type_load_const:
1726 emit_load_const(ctx, nir_instr_as_load_const(instr));
1727 break;
1728
1729 case nir_instr_type_intrinsic:
1730 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1731 break;
1732
1733 case nir_instr_type_alu:
1734 emit_alu(ctx, nir_instr_as_alu(instr));
1735 break;
1736
1737 case nir_instr_type_tex:
1738 emit_tex(ctx, nir_instr_as_tex(instr));
1739 break;
1740
1741 case nir_instr_type_jump:
1742 emit_jump(ctx, nir_instr_as_jump(instr));
1743 break;
1744
1745 case nir_instr_type_ssa_undef:
1746 /* Spurious */
1747 break;
1748
1749 default:
1750 DBG("Unhandled instruction type\n");
1751 break;
1752 }
1753 }
1754
1755 /* Determine the actual hardware from the index based on the RA results or special values */
1756
1757 static int
1758 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1759 {
1760 if (reg >= SSA_FIXED_MINIMUM)
1761 return SSA_REG_FROM_FIXED(reg);
1762
1763 if (reg >= 0) {
1764 assert(reg < maxreg);
1765 int r = ra_get_node_reg(g, reg);
1766 ctx->work_registers = MAX2(ctx->work_registers, r);
1767 return r;
1768 }
1769
1770 switch (reg) {
1771 /* fmov style unused */
1772 case SSA_UNUSED_0:
1773 return REGISTER_UNUSED;
1774
1775 /* lut style unused */
1776 case SSA_UNUSED_1:
1777 return REGISTER_UNUSED;
1778
1779 default:
1780 DBG("Unknown SSA register alias %d\n", reg);
1781 assert(0);
1782 return 31;
1783 }
1784 }
1785
1786 static unsigned int
1787 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1788 {
1789 /* Choose the first available register to minimise reported register pressure */
1790
1791 for (int i = 0; i < 16; ++i) {
1792 if (BITSET_TEST(regs, i)) {
1793 return i;
1794 }
1795 }
1796
1797 assert(0);
1798 return 0;
1799 }
1800
1801 static bool
1802 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1803 {
1804 if (ins->ssa_args.src0 == src) return true;
1805 if (ins->ssa_args.src1 == src) return true;
1806
1807 return false;
1808 }
1809
1810 static bool
1811 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1812 {
1813 /* Check the rest of the block for liveness */
1814 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1815 if (midgard_is_live_in_instr(ins, src))
1816 return true;
1817 }
1818
1819 /* Check the rest of the blocks for liveness */
1820 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1821 mir_foreach_instr_in_block(b, ins) {
1822 if (midgard_is_live_in_instr(ins, src))
1823 return true;
1824 }
1825 }
1826
1827 /* TODO: How does control flow interact in complex shaders? */
1828
1829 return false;
1830 }
1831
1832 static void
1833 allocate_registers(compiler_context *ctx)
1834 {
1835 /* First, initialize the RA */
1836 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1837
1838 /* Create a primary (general purpose) class, as well as special purpose
1839 * pipeline register classes */
1840
1841 int primary_class = ra_alloc_reg_class(regs);
1842 int varying_class = ra_alloc_reg_class(regs);
1843
1844 /* Add the full set of work registers */
1845 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1846 for (int i = 0; i < work_count; ++i)
1847 ra_class_add_reg(regs, primary_class, i);
1848
1849 /* Add special registers */
1850 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1851 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1852
1853 /* We're done setting up */
1854 ra_set_finalize(regs, NULL);
1855
1856 /* Transform the MIR into squeezed index form */
1857 mir_foreach_block(ctx, block) {
1858 mir_foreach_instr_in_block(block, ins) {
1859 if (ins->compact_branch) continue;
1860
1861 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1862 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1863 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1864 }
1865 if (midgard_debug & MIDGARD_DBG_SHADERS)
1866 print_mir_block(block);
1867 }
1868
1869 /* Let's actually do register allocation */
1870 int nodes = ctx->temp_count;
1871 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1872
1873 /* Set everything to the work register class, unless it has somewhere
1874 * special to go */
1875
1876 mir_foreach_block(ctx, block) {
1877 mir_foreach_instr_in_block(block, ins) {
1878 if (ins->compact_branch) continue;
1879
1880 if (ins->ssa_args.dest < 0) continue;
1881
1882 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1883
1884 int class = primary_class;
1885
1886 ra_set_node_class(g, ins->ssa_args.dest, class);
1887 }
1888 }
1889
1890 for (int index = 0; index <= ctx->max_hash; ++index) {
1891 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1892
1893 if (temp) {
1894 unsigned reg = temp - 1;
1895 int t = find_or_allocate_temp(ctx, index);
1896 ra_set_node_reg(g, t, reg);
1897 }
1898 }
1899
1900 /* Determine liveness */
1901
1902 int *live_start = malloc(nodes * sizeof(int));
1903 int *live_end = malloc(nodes * sizeof(int));
1904
1905 /* Initialize as non-existent */
1906
1907 for (int i = 0; i < nodes; ++i) {
1908 live_start[i] = live_end[i] = -1;
1909 }
1910
1911 int d = 0;
1912
1913 mir_foreach_block(ctx, block) {
1914 mir_foreach_instr_in_block(block, ins) {
1915 if (ins->compact_branch) continue;
1916
1917 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1918 /* If this destination is not yet live, it is now since we just wrote it */
1919
1920 int dest = ins->ssa_args.dest;
1921
1922 if (live_start[dest] == -1)
1923 live_start[dest] = d;
1924 }
1925
1926 /* Since we just used a source, the source might be
1927 * dead now. Scan the rest of the block for
1928 * invocations, and if there are none, the source dies
1929 * */
1930
1931 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1932
1933 for (int src = 0; src < 2; ++src) {
1934 int s = sources[src];
1935
1936 if (s < 0) continue;
1937
1938 if (s >= SSA_FIXED_MINIMUM) continue;
1939
1940 if (!is_live_after(ctx, block, ins, s)) {
1941 live_end[s] = d;
1942 }
1943 }
1944
1945 ++d;
1946 }
1947 }
1948
1949 /* If a node still hasn't been killed, kill it now */
1950
1951 for (int i = 0; i < nodes; ++i) {
1952 /* live_start == -1 most likely indicates a pinned output */
1953
1954 if (live_end[i] == -1)
1955 live_end[i] = d;
1956 }
1957
1958 /* Setup interference between nodes that are live at the same time */
1959
1960 for (int i = 0; i < nodes; ++i) {
1961 for (int j = i + 1; j < nodes; ++j) {
1962 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1963 ra_add_node_interference(g, i, j);
1964 }
1965 }
1966
1967 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1968
1969 if (!ra_allocate(g)) {
1970 DBG("Error allocating registers\n");
1971 assert(0);
1972 }
1973
1974 /* Cleanup */
1975 free(live_start);
1976 free(live_end);
1977
1978 mir_foreach_block(ctx, block) {
1979 mir_foreach_instr_in_block(block, ins) {
1980 if (ins->compact_branch) continue;
1981
1982 ssa_args args = ins->ssa_args;
1983
1984 switch (ins->type) {
1985 case TAG_ALU_4:
1986 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1987
1988 ins->registers.src2_imm = args.inline_constant;
1989
1990 if (args.inline_constant) {
1991 /* Encode inline 16-bit constant as a vector by default */
1992
1993 ins->registers.src2_reg = ins->inline_constant >> 11;
1994
1995 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1996
1997 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1998 ins->alu.src2 = imm << 2;
1999 } else {
2000 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2001 }
2002
2003 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2004
2005 break;
2006
2007 case TAG_LOAD_STORE_4: {
2008 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2009 /* TODO: use ssa_args for store_vary */
2010 ins->load_store.reg = 0;
2011 } else {
2012 bool has_dest = args.dest >= 0;
2013 int ssa_arg = has_dest ? args.dest : args.src0;
2014
2015 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2016 }
2017
2018 break;
2019 }
2020
2021 default:
2022 break;
2023 }
2024 }
2025 }
2026 }
2027
2028 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2029 * use scalar ALU instructions, for functional or performance reasons. To do
2030 * this, we just demote vector ALU payloads to scalar. */
2031
2032 static int
2033 component_from_mask(unsigned mask)
2034 {
2035 for (int c = 0; c < 4; ++c) {
2036 if (mask & (3 << (2 * c)))
2037 return c;
2038 }
2039
2040 assert(0);
2041 return 0;
2042 }
2043
2044 static bool
2045 is_single_component_mask(unsigned mask)
2046 {
2047 int components = 0;
2048
2049 for (int c = 0; c < 4; ++c)
2050 if (mask & (3 << (2 * c)))
2051 components++;
2052
2053 return components == 1;
2054 }
2055
2056 /* Create a mask of accessed components from a swizzle to figure out vector
2057 * dependencies */
2058
2059 static unsigned
2060 swizzle_to_access_mask(unsigned swizzle)
2061 {
2062 unsigned component_mask = 0;
2063
2064 for (int i = 0; i < 4; ++i) {
2065 unsigned c = (swizzle >> (2 * i)) & 3;
2066 component_mask |= (1 << c);
2067 }
2068
2069 return component_mask;
2070 }
2071
2072 static unsigned
2073 vector_to_scalar_source(unsigned u)
2074 {
2075 midgard_vector_alu_src v;
2076 memcpy(&v, &u, sizeof(v));
2077
2078 midgard_scalar_alu_src s = {
2079 .abs = v.abs,
2080 .negate = v.negate,
2081 .full = !v.half,
2082 .component = (v.swizzle & 3) << 1
2083 };
2084
2085 unsigned o;
2086 memcpy(&o, &s, sizeof(s));
2087
2088 return o & ((1 << 6) - 1);
2089 }
2090
2091 static midgard_scalar_alu
2092 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2093 {
2094 /* The output component is from the mask */
2095 midgard_scalar_alu s = {
2096 .op = v.op,
2097 .src1 = vector_to_scalar_source(v.src1),
2098 .src2 = vector_to_scalar_source(v.src2),
2099 .unknown = 0,
2100 .outmod = v.outmod,
2101 .output_full = 1, /* TODO: Half */
2102 .output_component = component_from_mask(v.mask) << 1,
2103 };
2104
2105 /* Inline constant is passed along rather than trying to extract it
2106 * from v */
2107
2108 if (ins->ssa_args.inline_constant) {
2109 uint16_t imm = 0;
2110 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2111 imm |= (lower_11 >> 9) & 3;
2112 imm |= (lower_11 >> 6) & 4;
2113 imm |= (lower_11 >> 2) & 0x38;
2114 imm |= (lower_11 & 63) << 6;
2115
2116 s.src2 = imm;
2117 }
2118
2119 return s;
2120 }
2121
2122 /* Midgard prefetches instruction types, so during emission we need to
2123 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2124 * if this is the second to last and the last is an ALU, then it's also 1... */
2125
2126 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2127 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2128
2129 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2130 bytes_emitted += sizeof(type)
2131
2132 static void
2133 emit_binary_vector_instruction(midgard_instruction *ains,
2134 uint16_t *register_words, int *register_words_count,
2135 uint64_t *body_words, size_t *body_size, int *body_words_count,
2136 size_t *bytes_emitted)
2137 {
2138 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2139 *bytes_emitted += sizeof(midgard_reg_info);
2140
2141 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2142 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2143 *bytes_emitted += sizeof(midgard_vector_alu);
2144 }
2145
2146 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2147 * mind that we are a vector architecture and we can write to different
2148 * components simultaneously */
2149
2150 static bool
2151 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2152 {
2153 /* Each instruction reads some registers and writes to a register. See
2154 * where the first writes */
2155
2156 /* Figure out where exactly we wrote to */
2157 int source = first->ssa_args.dest;
2158 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2159
2160 /* As long as the second doesn't read from the first, we're okay */
2161 if (second->ssa_args.src0 == source) {
2162 if (first->type == TAG_ALU_4) {
2163 /* Figure out which components we just read from */
2164
2165 int q = second->alu.src1;
2166 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2167
2168 /* Check if there are components in common, and fail if so */
2169 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2170 return false;
2171 } else
2172 return false;
2173
2174 }
2175
2176 if (second->ssa_args.src1 == source)
2177 return false;
2178
2179 /* Otherwise, it's safe in that regard. Another data hazard is both
2180 * writing to the same place, of course */
2181
2182 if (second->ssa_args.dest == source) {
2183 /* ...but only if the components overlap */
2184 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2185
2186 if (dest_mask & source_mask)
2187 return false;
2188 }
2189
2190 /* ...That's it */
2191 return true;
2192 }
2193
2194 static bool
2195 midgard_has_hazard(
2196 midgard_instruction **segment, unsigned segment_size,
2197 midgard_instruction *ains)
2198 {
2199 for (int s = 0; s < segment_size; ++s)
2200 if (!can_run_concurrent_ssa(segment[s], ains))
2201 return true;
2202
2203 return false;
2204
2205
2206 }
2207
2208 /* Schedules, but does not emit, a single basic block. After scheduling, the
2209 * final tag and size of the block are known, which are necessary for branching
2210 * */
2211
2212 static midgard_bundle
2213 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2214 {
2215 int instructions_emitted = 0, instructions_consumed = -1;
2216 midgard_bundle bundle = { 0 };
2217
2218 uint8_t tag = ins->type;
2219
2220 /* Default to the instruction's tag */
2221 bundle.tag = tag;
2222
2223 switch (ins->type) {
2224 case TAG_ALU_4: {
2225 uint32_t control = 0;
2226 size_t bytes_emitted = sizeof(control);
2227
2228 /* TODO: Constant combining */
2229 int index = 0, last_unit = 0;
2230
2231 /* Previous instructions, for the purpose of parallelism */
2232 midgard_instruction *segment[4] = {0};
2233 int segment_size = 0;
2234
2235 instructions_emitted = -1;
2236 midgard_instruction *pins = ins;
2237
2238 for (;;) {
2239 midgard_instruction *ains = pins;
2240
2241 /* Advance instruction pointer */
2242 if (index) {
2243 ains = mir_next_op(pins);
2244 pins = ains;
2245 }
2246
2247 /* Out-of-work condition */
2248 if ((struct list_head *) ains == &block->instructions)
2249 break;
2250
2251 /* Ensure that the chain can continue */
2252 if (ains->type != TAG_ALU_4) break;
2253
2254 /* According to the presentation "The ARM
2255 * Mali-T880 Mobile GPU" from HotChips 27,
2256 * there are two pipeline stages. Branching
2257 * position determined experimentally. Lines
2258 * are executed in parallel:
2259 *
2260 * [ VMUL ] [ SADD ]
2261 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2262 *
2263 * Verify that there are no ordering dependencies here.
2264 *
2265 * TODO: Allow for parallelism!!!
2266 */
2267
2268 /* Pick a unit for it if it doesn't force a particular unit */
2269
2270 int unit = ains->unit;
2271
2272 if (!unit) {
2273 int op = ains->alu.op;
2274 int units = alu_opcode_props[op];
2275
2276 /* TODO: Promotion of scalars to vectors */
2277 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2278
2279 if (!vector)
2280 assert(units & UNITS_SCALAR);
2281
2282 if (vector) {
2283 if (last_unit >= UNIT_VADD) {
2284 if (units & UNIT_VLUT)
2285 unit = UNIT_VLUT;
2286 else
2287 break;
2288 } else {
2289 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2290 unit = UNIT_VMUL;
2291 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2292 unit = UNIT_VADD;
2293 else if (units & UNIT_VLUT)
2294 unit = UNIT_VLUT;
2295 else
2296 break;
2297 }
2298 } else {
2299 if (last_unit >= UNIT_VADD) {
2300 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2301 unit = UNIT_SMUL;
2302 else if (units & UNIT_VLUT)
2303 unit = UNIT_VLUT;
2304 else
2305 break;
2306 } else {
2307 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2308 unit = UNIT_SADD;
2309 else if (units & UNIT_SMUL)
2310 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2311 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2312 unit = UNIT_VADD;
2313 else
2314 break;
2315 }
2316 }
2317
2318 assert(unit & units);
2319 }
2320
2321 /* Late unit check, this time for encoding (not parallelism) */
2322 if (unit <= last_unit) break;
2323
2324 /* Clear the segment */
2325 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2326 segment_size = 0;
2327
2328 if (midgard_has_hazard(segment, segment_size, ains))
2329 break;
2330
2331 /* We're good to go -- emit the instruction */
2332 ains->unit = unit;
2333
2334 segment[segment_size++] = ains;
2335
2336 /* Only one set of embedded constants per
2337 * bundle possible; if we have more, we must
2338 * break the chain early, unfortunately */
2339
2340 if (ains->has_constants) {
2341 if (bundle.has_embedded_constants) {
2342 /* ...but if there are already
2343 * constants but these are the
2344 * *same* constants, we let it
2345 * through */
2346
2347 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2348 break;
2349 } else {
2350 bundle.has_embedded_constants = true;
2351 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2352
2353 /* If this is a blend shader special constant, track it for patching */
2354 if (ains->has_blend_constant)
2355 bundle.has_blend_constant = true;
2356 }
2357 }
2358
2359 if (ains->unit & UNITS_ANY_VECTOR) {
2360 emit_binary_vector_instruction(ains, bundle.register_words,
2361 &bundle.register_words_count, bundle.body_words,
2362 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2363 } else if (ains->compact_branch) {
2364 /* All of r0 has to be written out
2365 * along with the branch writeout.
2366 * (slow!) */
2367
2368 if (ains->writeout) {
2369 if (index == 0) {
2370 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2371 ins.unit = UNIT_VMUL;
2372
2373 control |= ins.unit;
2374
2375 emit_binary_vector_instruction(&ins, bundle.register_words,
2376 &bundle.register_words_count, bundle.body_words,
2377 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2378 } else {
2379 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2380 bool written_late = false;
2381 bool components[4] = { 0 };
2382 uint16_t register_dep_mask = 0;
2383 uint16_t written_mask = 0;
2384
2385 midgard_instruction *qins = ins;
2386 for (int t = 0; t < index; ++t) {
2387 if (qins->registers.out_reg != 0) {
2388 /* Mark down writes */
2389
2390 written_mask |= (1 << qins->registers.out_reg);
2391 } else {
2392 /* Mark down the register dependencies for errata check */
2393
2394 if (qins->registers.src1_reg < 16)
2395 register_dep_mask |= (1 << qins->registers.src1_reg);
2396
2397 if (qins->registers.src2_reg < 16)
2398 register_dep_mask |= (1 << qins->registers.src2_reg);
2399
2400 int mask = qins->alu.mask;
2401
2402 for (int c = 0; c < 4; ++c)
2403 if (mask & (0x3 << (2 * c)))
2404 components[c] = true;
2405
2406 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2407
2408 if (qins->unit == UNIT_VLUT)
2409 written_late = true;
2410 }
2411
2412 /* Advance instruction pointer */
2413 qins = mir_next_op(qins);
2414 }
2415
2416
2417 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2418 if (register_dep_mask & written_mask) {
2419 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2420 break;
2421 }
2422
2423 if (written_late)
2424 break;
2425
2426 /* If even a single component is not written, break it up (conservative check). */
2427 bool breakup = false;
2428
2429 for (int c = 0; c < 4; ++c)
2430 if (!components[c])
2431 breakup = true;
2432
2433 if (breakup)
2434 break;
2435
2436 /* Otherwise, we're free to proceed */
2437 }
2438 }
2439
2440 if (ains->unit == ALU_ENAB_BRANCH) {
2441 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2442 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2443 bytes_emitted += sizeof(midgard_branch_extended);
2444 } else {
2445 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2446 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2447 bytes_emitted += sizeof(ains->br_compact);
2448 }
2449 } else {
2450 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2451 bytes_emitted += sizeof(midgard_reg_info);
2452
2453 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2454 bundle.body_words_count++;
2455 bytes_emitted += sizeof(midgard_scalar_alu);
2456 }
2457
2458 /* Defer marking until after writing to allow for break */
2459 control |= ains->unit;
2460 last_unit = ains->unit;
2461 ++instructions_emitted;
2462 ++index;
2463 }
2464
2465 /* Bubble up the number of instructions for skipping */
2466 instructions_consumed = index - 1;
2467
2468 int padding = 0;
2469
2470 /* Pad ALU op to nearest word */
2471
2472 if (bytes_emitted & 15) {
2473 padding = 16 - (bytes_emitted & 15);
2474 bytes_emitted += padding;
2475 }
2476
2477 /* Constants must always be quadwords */
2478 if (bundle.has_embedded_constants)
2479 bytes_emitted += 16;
2480
2481 /* Size ALU instruction for tag */
2482 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2483 bundle.padding = padding;
2484 bundle.control = bundle.tag | control;
2485
2486 break;
2487 }
2488
2489 case TAG_LOAD_STORE_4: {
2490 /* Load store instructions have two words at once. If
2491 * we only have one queued up, we need to NOP pad.
2492 * Otherwise, we store both in succession to save space
2493 * and cycles -- letting them go in parallel -- skip
2494 * the next. The usefulness of this optimisation is
2495 * greatly dependent on the quality of the instruction
2496 * scheduler.
2497 */
2498
2499 midgard_instruction *next_op = mir_next_op(ins);
2500
2501 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2502 /* As the two operate concurrently, make sure
2503 * they are not dependent */
2504
2505 if (can_run_concurrent_ssa(ins, next_op) || true) {
2506 /* Skip ahead, since it's redundant with the pair */
2507 instructions_consumed = 1 + (instructions_emitted++);
2508 }
2509 }
2510
2511 break;
2512 }
2513
2514 default:
2515 /* Texture ops default to single-op-per-bundle scheduling */
2516 break;
2517 }
2518
2519 /* Copy the instructions into the bundle */
2520 bundle.instruction_count = instructions_emitted + 1;
2521
2522 int used_idx = 0;
2523
2524 midgard_instruction *uins = ins;
2525 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2526 bundle.instructions[used_idx++] = *uins;
2527 uins = mir_next_op(uins);
2528 }
2529
2530 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2531
2532 return bundle;
2533 }
2534
2535 static int
2536 quadword_size(int tag)
2537 {
2538 switch (tag) {
2539 case TAG_ALU_4:
2540 return 1;
2541
2542 case TAG_ALU_8:
2543 return 2;
2544
2545 case TAG_ALU_12:
2546 return 3;
2547
2548 case TAG_ALU_16:
2549 return 4;
2550
2551 case TAG_LOAD_STORE_4:
2552 return 1;
2553
2554 case TAG_TEXTURE_4:
2555 return 1;
2556
2557 default:
2558 assert(0);
2559 return 0;
2560 }
2561 }
2562
2563 /* Schedule a single block by iterating its instruction to create bundles.
2564 * While we go, tally about the bundle sizes to compute the block size. */
2565
2566 static void
2567 schedule_block(compiler_context *ctx, midgard_block *block)
2568 {
2569 util_dynarray_init(&block->bundles, NULL);
2570
2571 block->quadword_count = 0;
2572
2573 mir_foreach_instr_in_block(block, ins) {
2574 int skip;
2575 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2576 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2577
2578 if (bundle.has_blend_constant) {
2579 /* TODO: Multiblock? */
2580 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2581 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2582 }
2583
2584 while(skip--)
2585 ins = mir_next_op(ins);
2586
2587 block->quadword_count += quadword_size(bundle.tag);
2588 }
2589
2590 block->is_scheduled = true;
2591 }
2592
2593 static void
2594 schedule_program(compiler_context *ctx)
2595 {
2596 allocate_registers(ctx);
2597
2598 mir_foreach_block(ctx, block) {
2599 schedule_block(ctx, block);
2600 }
2601 }
2602
2603 /* After everything is scheduled, emit whole bundles at a time */
2604
2605 static void
2606 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2607 {
2608 int lookahead = next_tag << 4;
2609
2610 switch (bundle->tag) {
2611 case TAG_ALU_4:
2612 case TAG_ALU_8:
2613 case TAG_ALU_12:
2614 case TAG_ALU_16: {
2615 /* Actually emit each component */
2616 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2617
2618 for (int i = 0; i < bundle->register_words_count; ++i)
2619 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2620
2621 /* Emit body words based on the instructions bundled */
2622 for (int i = 0; i < bundle->instruction_count; ++i) {
2623 midgard_instruction *ins = &bundle->instructions[i];
2624
2625 if (ins->unit & UNITS_ANY_VECTOR) {
2626 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2627 } else if (ins->compact_branch) {
2628 /* Dummy move, XXX DRY */
2629 if ((i == 0) && ins->writeout) {
2630 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2631 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2632 }
2633
2634 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2635 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2636 } else {
2637 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2638 }
2639 } else {
2640 /* Scalar */
2641 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2642 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2643 }
2644 }
2645
2646 /* Emit padding (all zero) */
2647 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2648
2649 /* Tack on constants */
2650
2651 if (bundle->has_embedded_constants) {
2652 util_dynarray_append(emission, float, bundle->constants[0]);
2653 util_dynarray_append(emission, float, bundle->constants[1]);
2654 util_dynarray_append(emission, float, bundle->constants[2]);
2655 util_dynarray_append(emission, float, bundle->constants[3]);
2656 }
2657
2658 break;
2659 }
2660
2661 case TAG_LOAD_STORE_4: {
2662 /* One or two composing instructions */
2663
2664 uint64_t current64, next64 = LDST_NOP;
2665
2666 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2667
2668 if (bundle->instruction_count == 2)
2669 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2670
2671 midgard_load_store instruction = {
2672 .type = bundle->tag,
2673 .next_type = next_tag,
2674 .word1 = current64,
2675 .word2 = next64
2676 };
2677
2678 util_dynarray_append(emission, midgard_load_store, instruction);
2679
2680 break;
2681 }
2682
2683 case TAG_TEXTURE_4: {
2684 /* Texture instructions are easy, since there is no
2685 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2686
2687 midgard_instruction *ins = &bundle->instructions[0];
2688
2689 ins->texture.type = TAG_TEXTURE_4;
2690 ins->texture.next_type = next_tag;
2691
2692 ctx->texture_op_count--;
2693
2694 if (!ctx->texture_op_count) {
2695 ins->texture.cont = 0;
2696 ins->texture.last = 1;
2697 }
2698
2699 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2700 break;
2701 }
2702
2703 default:
2704 DBG("Unknown midgard instruction type\n");
2705 assert(0);
2706 break;
2707 }
2708 }
2709
2710
2711 /* ALU instructions can inline or embed constants, which decreases register
2712 * pressure and saves space. */
2713
2714 #define CONDITIONAL_ATTACH(src) { \
2715 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2716 \
2717 if (entry) { \
2718 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2719 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2720 } \
2721 }
2722
2723 static void
2724 inline_alu_constants(compiler_context *ctx)
2725 {
2726 mir_foreach_instr(ctx, alu) {
2727 /* Other instructions cannot inline constants */
2728 if (alu->type != TAG_ALU_4) continue;
2729
2730 /* If there is already a constant here, we can do nothing */
2731 if (alu->has_constants) continue;
2732
2733 CONDITIONAL_ATTACH(src0);
2734
2735 if (!alu->has_constants) {
2736 CONDITIONAL_ATTACH(src1)
2737 } else if (!alu->inline_constant) {
2738 /* Corner case: _two_ vec4 constants, for instance with a
2739 * csel. For this case, we can only use a constant
2740 * register for one, we'll have to emit a move for the
2741 * other. Note, if both arguments are constants, then
2742 * necessarily neither argument depends on the value of
2743 * any particular register. As the destination register
2744 * will be wiped, that means we can spill the constant
2745 * to the destination register.
2746 */
2747
2748 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2749 unsigned scratch = alu->ssa_args.dest;
2750
2751 if (entry) {
2752 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2753 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2754
2755 /* Force a break XXX Defer r31 writes */
2756 ins.unit = UNIT_VLUT;
2757
2758 /* Set the source */
2759 alu->ssa_args.src1 = scratch;
2760
2761 /* Inject us -before- the last instruction which set r31 */
2762 mir_insert_instruction_before(mir_prev_op(alu), ins);
2763 }
2764 }
2765 }
2766 }
2767
2768 /* Midgard supports two types of constants, embedded constants (128-bit) and
2769 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2770 * constants can be demoted to inline constants, for space savings and
2771 * sometimes a performance boost */
2772
2773 static void
2774 embedded_to_inline_constant(compiler_context *ctx)
2775 {
2776 mir_foreach_instr(ctx, ins) {
2777 if (!ins->has_constants) continue;
2778
2779 if (ins->ssa_args.inline_constant) continue;
2780
2781 /* Blend constants must not be inlined by definition */
2782 if (ins->has_blend_constant) continue;
2783
2784 /* src1 cannot be an inline constant due to encoding
2785 * restrictions. So, if possible we try to flip the arguments
2786 * in that case */
2787
2788 int op = ins->alu.op;
2789
2790 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2791 /* Flip based on op. Fallthrough intentional */
2792
2793 switch (op) {
2794 /* These ops require an operational change to flip their arguments TODO */
2795 case midgard_alu_op_flt:
2796 case midgard_alu_op_fle:
2797 case midgard_alu_op_ilt:
2798 case midgard_alu_op_ile:
2799 case midgard_alu_op_fcsel:
2800 case midgard_alu_op_icsel:
2801 case midgard_alu_op_isub:
2802 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2803 break;
2804
2805 /* These ops are commutative and Just Flip */
2806 case midgard_alu_op_fne:
2807 case midgard_alu_op_fadd:
2808 case midgard_alu_op_fmul:
2809 case midgard_alu_op_fmin:
2810 case midgard_alu_op_fmax:
2811 case midgard_alu_op_iadd:
2812 case midgard_alu_op_imul:
2813 case midgard_alu_op_feq:
2814 case midgard_alu_op_ieq:
2815 case midgard_alu_op_ine:
2816 case midgard_alu_op_iand:
2817 case midgard_alu_op_ior:
2818 case midgard_alu_op_ixor:
2819 /* Flip the SSA numbers */
2820 ins->ssa_args.src0 = ins->ssa_args.src1;
2821 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2822
2823 /* And flip the modifiers */
2824
2825 unsigned src_temp;
2826
2827 src_temp = ins->alu.src2;
2828 ins->alu.src2 = ins->alu.src1;
2829 ins->alu.src1 = src_temp;
2830
2831 default:
2832 break;
2833 }
2834 }
2835
2836 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2837 /* Extract the source information */
2838
2839 midgard_vector_alu_src *src;
2840 int q = ins->alu.src2;
2841 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2842 src = m;
2843
2844 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2845 int component = src->swizzle & 3;
2846
2847 /* Scale constant appropriately, if we can legally */
2848 uint16_t scaled_constant = 0;
2849
2850 /* XXX: Check legality */
2851 if (midgard_is_integer_op(op)) {
2852 /* TODO: Inline integer */
2853 continue;
2854
2855 unsigned int *iconstants = (unsigned int *) ins->constants;
2856 scaled_constant = (uint16_t) iconstants[component];
2857
2858 /* Constant overflow after resize */
2859 if (scaled_constant != iconstants[component])
2860 continue;
2861 } else {
2862 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2863 }
2864
2865 /* We don't know how to handle these with a constant */
2866
2867 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2868 DBG("Bailing inline constant...\n");
2869 continue;
2870 }
2871
2872 /* Make sure that the constant is not itself a
2873 * vector by checking if all accessed values
2874 * (by the swizzle) are the same. */
2875
2876 uint32_t *cons = (uint32_t *) ins->constants;
2877 uint32_t value = cons[component];
2878
2879 bool is_vector = false;
2880 unsigned mask = effective_writemask(&ins->alu);
2881
2882 for (int c = 1; c < 4; ++c) {
2883 /* We only care if this component is actually used */
2884 if (!(mask & (1 << c)))
2885 continue;
2886
2887 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2888
2889 if (test != value) {
2890 is_vector = true;
2891 break;
2892 }
2893 }
2894
2895 if (is_vector)
2896 continue;
2897
2898 /* Get rid of the embedded constant */
2899 ins->has_constants = false;
2900 ins->ssa_args.src1 = SSA_UNUSED_0;
2901 ins->ssa_args.inline_constant = true;
2902 ins->inline_constant = scaled_constant;
2903 }
2904 }
2905 }
2906
2907 /* Map normal SSA sources to other SSA sources / fixed registers (like
2908 * uniforms) */
2909
2910 static void
2911 map_ssa_to_alias(compiler_context *ctx, int *ref)
2912 {
2913 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2914
2915 if (alias) {
2916 /* Remove entry in leftovers to avoid a redunant fmov */
2917
2918 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2919
2920 if (leftover)
2921 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2922
2923 /* Assign the alias map */
2924 *ref = alias - 1;
2925 return;
2926 }
2927 }
2928
2929 #define AS_SRC(to, u) \
2930 int q##to = ins->alu.src2; \
2931 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2932
2933 /* Removing unused moves is necessary to clean up the texture pipeline results.
2934 *
2935 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2936
2937 static void
2938 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2939 {
2940 mir_foreach_instr_in_block_safe(block, ins) {
2941 if (ins->type != TAG_ALU_4) continue;
2942
2943 if (ins->alu.op != midgard_alu_op_fmov) continue;
2944
2945 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2946
2947 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2948
2949 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2950
2951 mir_remove_instruction(ins);
2952 }
2953 }
2954
2955 /* The following passes reorder MIR instructions to enable better scheduling */
2956
2957 static void
2958 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2959 {
2960 mir_foreach_instr_in_block_safe(block, ins) {
2961 if (ins->type != TAG_LOAD_STORE_4) continue;
2962
2963 /* We've found a load/store op. Check if next is also load/store. */
2964 midgard_instruction *next_op = mir_next_op(ins);
2965 if (&next_op->link != &block->instructions) {
2966 if (next_op->type == TAG_LOAD_STORE_4) {
2967 /* If so, we're done since we're a pair */
2968 ins = mir_next_op(ins);
2969 continue;
2970 }
2971
2972 /* Maximum search distance to pair, to avoid register pressure disasters */
2973 int search_distance = 8;
2974
2975 /* Otherwise, we have an orphaned load/store -- search for another load */
2976 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2977 /* Terminate search if necessary */
2978 if (!(search_distance--)) break;
2979
2980 if (c->type != TAG_LOAD_STORE_4) continue;
2981
2982 if (OP_IS_STORE(c->load_store.op)) continue;
2983
2984 /* We found one! Move it up to pair and remove it from the old location */
2985
2986 mir_insert_instruction_before(ins, *c);
2987 mir_remove_instruction(c);
2988
2989 break;
2990 }
2991 }
2992 }
2993 }
2994
2995 /* Emit varying stores late */
2996
2997 static void
2998 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2999 /* Iterate in reverse to get the final write, rather than the first */
3000
3001 mir_foreach_instr_in_block_safe_rev(block, ins) {
3002 /* Check if what we just wrote needs a store */
3003 int idx = ins->ssa_args.dest;
3004 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3005
3006 if (!varying) continue;
3007
3008 varying -= 1;
3009
3010 /* We need to store to the appropriate varying, so emit the
3011 * move/store */
3012
3013 /* TODO: Integrate with special purpose RA (and scheduler?) */
3014 bool high_varying_register = false;
3015
3016 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3017
3018 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3019 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3020
3021 mir_insert_instruction_before(mir_next_op(ins), st);
3022 mir_insert_instruction_before(mir_next_op(ins), mov);
3023
3024 /* We no longer need to store this varying */
3025 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3026 }
3027 }
3028
3029 /* If there are leftovers after the below pass, emit actual fmov
3030 * instructions for the slow-but-correct path */
3031
3032 static void
3033 emit_leftover_move(compiler_context *ctx)
3034 {
3035 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3036 int base = ((uintptr_t) leftover->key) - 1;
3037 int mapped = base;
3038
3039 map_ssa_to_alias(ctx, &mapped);
3040 EMIT(fmov, mapped, blank_alu_src, base);
3041 }
3042 }
3043
3044 static void
3045 actualise_ssa_to_alias(compiler_context *ctx)
3046 {
3047 mir_foreach_instr(ctx, ins) {
3048 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3049 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3050 }
3051
3052 emit_leftover_move(ctx);
3053 }
3054
3055 static void
3056 emit_fragment_epilogue(compiler_context *ctx)
3057 {
3058 /* Special case: writing out constants requires us to include the move
3059 * explicitly now, so shove it into r0 */
3060
3061 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3062
3063 if (constant_value) {
3064 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3065 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3066 emit_mir_instruction(ctx, ins);
3067 }
3068
3069 /* Perform the actual fragment writeout. We have two writeout/branch
3070 * instructions, forming a loop until writeout is successful as per the
3071 * docs. TODO: gl_FragDepth */
3072
3073 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3074 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3075 }
3076
3077 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3078 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3079 * with the int8 analogue to the fragment epilogue */
3080
3081 static void
3082 emit_blend_epilogue(compiler_context *ctx)
3083 {
3084 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3085
3086 midgard_instruction scale = {
3087 .type = TAG_ALU_4,
3088 .unit = UNIT_VMUL,
3089 .inline_constant = _mesa_float_to_half(255.0),
3090 .ssa_args = {
3091 .src0 = SSA_FIXED_REGISTER(0),
3092 .src1 = SSA_UNUSED_0,
3093 .dest = SSA_FIXED_REGISTER(24),
3094 .inline_constant = true
3095 },
3096 .alu = {
3097 .op = midgard_alu_op_fmul,
3098 .reg_mode = midgard_reg_mode_full,
3099 .dest_override = midgard_dest_override_lower,
3100 .mask = 0xFF,
3101 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3102 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3103 }
3104 };
3105
3106 emit_mir_instruction(ctx, scale);
3107
3108 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3109
3110 midgard_vector_alu_src alu_src = blank_alu_src;
3111 alu_src.half = true;
3112
3113 midgard_instruction f2u8 = {
3114 .type = TAG_ALU_4,
3115 .ssa_args = {
3116 .src0 = SSA_FIXED_REGISTER(24),
3117 .src1 = SSA_UNUSED_0,
3118 .dest = SSA_FIXED_REGISTER(0),
3119 .inline_constant = true
3120 },
3121 .alu = {
3122 .op = midgard_alu_op_f2u8,
3123 .reg_mode = midgard_reg_mode_half,
3124 .dest_override = midgard_dest_override_lower,
3125 .outmod = midgard_outmod_pos,
3126 .mask = 0xF,
3127 .src1 = vector_alu_srco_unsigned(alu_src),
3128 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3129 }
3130 };
3131
3132 emit_mir_instruction(ctx, f2u8);
3133
3134 /* vmul.imov.quarter r0, r0, r0 */
3135
3136 midgard_instruction imov_8 = {
3137 .type = TAG_ALU_4,
3138 .ssa_args = {
3139 .src0 = SSA_UNUSED_1,
3140 .src1 = SSA_FIXED_REGISTER(0),
3141 .dest = SSA_FIXED_REGISTER(0),
3142 },
3143 .alu = {
3144 .op = midgard_alu_op_imov,
3145 .reg_mode = midgard_reg_mode_quarter,
3146 .dest_override = midgard_dest_override_none,
3147 .mask = 0xFF,
3148 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3149 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3150 }
3151 };
3152
3153 /* Emit branch epilogue with the 8-bit move as the source */
3154
3155 emit_mir_instruction(ctx, imov_8);
3156 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3157
3158 emit_mir_instruction(ctx, imov_8);
3159 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3160 }
3161
3162 static midgard_block *
3163 emit_block(compiler_context *ctx, nir_block *block)
3164 {
3165 midgard_block *this_block = malloc(sizeof(midgard_block));
3166 list_addtail(&this_block->link, &ctx->blocks);
3167
3168 this_block->is_scheduled = false;
3169 ++ctx->block_count;
3170
3171 ctx->texture_index[0] = -1;
3172 ctx->texture_index[1] = -1;
3173
3174 /* Set up current block */
3175 list_inithead(&this_block->instructions);
3176 ctx->current_block = this_block;
3177
3178 nir_foreach_instr(instr, block) {
3179 emit_instr(ctx, instr);
3180 ++ctx->instruction_count;
3181 }
3182
3183 inline_alu_constants(ctx);
3184 embedded_to_inline_constant(ctx);
3185
3186 /* Perform heavylifting for aliasing */
3187 actualise_ssa_to_alias(ctx);
3188
3189 midgard_emit_store(ctx, this_block);
3190 midgard_eliminate_orphan_moves(ctx, this_block);
3191 midgard_pair_load_store(ctx, this_block);
3192
3193 /* Append fragment shader epilogue (value writeout) */
3194 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3195 if (block == nir_impl_last_block(ctx->func->impl)) {
3196 if (ctx->is_blend)
3197 emit_blend_epilogue(ctx);
3198 else
3199 emit_fragment_epilogue(ctx);
3200 }
3201 }
3202
3203 /* Fallthrough save */
3204 this_block->next_fallthrough = ctx->previous_source_block;
3205
3206 if (block == nir_start_block(ctx->func->impl))
3207 ctx->initial_block = this_block;
3208
3209 if (block == nir_impl_last_block(ctx->func->impl))
3210 ctx->final_block = this_block;
3211
3212 /* Allow the next control flow to access us retroactively, for
3213 * branching etc */
3214 ctx->current_block = this_block;
3215
3216 /* Document the fallthrough chain */
3217 ctx->previous_source_block = this_block;
3218
3219 return this_block;
3220 }
3221
3222 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3223
3224 static void
3225 emit_if(struct compiler_context *ctx, nir_if *nif)
3226 {
3227 /* Conditional branches expect the condition in r31.w; emit a move for
3228 * that in the _previous_ block (which is the current block). */
3229 emit_condition(ctx, &nif->condition, true);
3230
3231 /* Speculatively emit the branch, but we can't fill it in until later */
3232 EMIT(branch, true, true);
3233 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3234
3235 /* Emit the two subblocks */
3236 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3237
3238 /* Emit a jump from the end of the then block to the end of the else */
3239 EMIT(branch, false, false);
3240 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3241
3242 /* Emit second block, and check if it's empty */
3243
3244 int else_idx = ctx->block_count;
3245 int count_in = ctx->instruction_count;
3246 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3247 int after_else_idx = ctx->block_count;
3248
3249 /* Now that we have the subblocks emitted, fix up the branches */
3250
3251 assert(then_block);
3252 assert(else_block);
3253
3254 if (ctx->instruction_count == count_in) {
3255 /* The else block is empty, so don't emit an exit jump */
3256 mir_remove_instruction(then_exit);
3257 then_branch->branch.target_block = after_else_idx;
3258 } else {
3259 then_branch->branch.target_block = else_idx;
3260 then_exit->branch.target_block = after_else_idx;
3261 }
3262 }
3263
3264 static void
3265 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3266 {
3267 /* Remember where we are */
3268 midgard_block *start_block = ctx->current_block;
3269
3270 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3271 * single current_loop variable, maybe we need a stack */
3272
3273 int loop_idx = ++ctx->current_loop;
3274
3275 /* Get index from before the body so we can loop back later */
3276 int start_idx = ctx->block_count;
3277
3278 /* Emit the body itself */
3279 emit_cf_list(ctx, &nloop->body);
3280
3281 /* Branch back to loop back */
3282 struct midgard_instruction br_back = v_branch(false, false);
3283 br_back.branch.target_block = start_idx;
3284 emit_mir_instruction(ctx, br_back);
3285
3286 /* Find the index of the block about to follow us (note: we don't add
3287 * one; blocks are 0-indexed so we get a fencepost problem) */
3288 int break_block_idx = ctx->block_count;
3289
3290 /* Fix up the break statements we emitted to point to the right place,
3291 * now that we can allocate a block number for them */
3292
3293 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3294 if (midgard_debug & MIDGARD_DBG_SHADERS)
3295 print_mir_block(block);
3296 mir_foreach_instr_in_block(block, ins) {
3297 if (ins->type != TAG_ALU_4) continue;
3298 if (!ins->compact_branch) continue;
3299 if (ins->prepacked_branch) continue;
3300
3301 /* We found a branch -- check the type to see if we need to do anything */
3302 if (ins->branch.target_type != TARGET_BREAK) continue;
3303
3304 /* It's a break! Check if it's our break */
3305 if (ins->branch.target_break != loop_idx) continue;
3306
3307 /* Okay, cool, we're breaking out of this loop.
3308 * Rewrite from a break to a goto */
3309
3310 ins->branch.target_type = TARGET_GOTO;
3311 ins->branch.target_block = break_block_idx;
3312 }
3313 }
3314 }
3315
3316 static midgard_block *
3317 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3318 {
3319 midgard_block *start_block = NULL;
3320
3321 foreach_list_typed(nir_cf_node, node, node, list) {
3322 switch (node->type) {
3323 case nir_cf_node_block: {
3324 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3325
3326 if (!start_block)
3327 start_block = block;
3328
3329 break;
3330 }
3331
3332 case nir_cf_node_if:
3333 emit_if(ctx, nir_cf_node_as_if(node));
3334 break;
3335
3336 case nir_cf_node_loop:
3337 emit_loop(ctx, nir_cf_node_as_loop(node));
3338 break;
3339
3340 case nir_cf_node_function:
3341 assert(0);
3342 break;
3343 }
3344 }
3345
3346 return start_block;
3347 }
3348
3349 /* Due to lookahead, we need to report the first tag executed in the command
3350 * stream and in branch targets. An initial block might be empty, so iterate
3351 * until we find one that 'works' */
3352
3353 static unsigned
3354 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3355 {
3356 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3357
3358 unsigned first_tag = 0;
3359
3360 do {
3361 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3362
3363 if (initial_bundle) {
3364 first_tag = initial_bundle->tag;
3365 break;
3366 }
3367
3368 /* Initial block is empty, try the next block */
3369 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3370 } while(initial_block != NULL);
3371
3372 assert(first_tag);
3373 return first_tag;
3374 }
3375
3376 int
3377 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3378 {
3379 struct util_dynarray *compiled = &program->compiled;
3380
3381 midgard_debug = debug_get_option_midgard_debug();
3382
3383 compiler_context ictx = {
3384 .nir = nir,
3385 .stage = nir->info.stage,
3386
3387 .is_blend = is_blend,
3388 .blend_constant_offset = -1,
3389
3390 .alpha_ref = program->alpha_ref
3391 };
3392
3393 compiler_context *ctx = &ictx;
3394
3395 /* TODO: Decide this at runtime */
3396 ctx->uniform_cutoff = 8;
3397
3398 /* Assign var locations early, so the epilogue can use them if necessary */
3399
3400 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3401 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3402 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3403
3404 /* Initialize at a global (not block) level hash tables */
3405
3406 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3407 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3408 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3409 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3410 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3411 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3412 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3413
3414 /* Record the varying mapping for the command stream's bookkeeping */
3415
3416 struct exec_list *varyings =
3417 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3418
3419 nir_foreach_variable(var, varyings) {
3420 unsigned loc = var->data.driver_location;
3421 program->varyings[loc] = var->data.location;
3422 }
3423
3424 /* Lower gl_Position pre-optimisation */
3425
3426 if (ctx->stage == MESA_SHADER_VERTEX)
3427 NIR_PASS_V(nir, nir_lower_viewport_transform);
3428
3429 NIR_PASS_V(nir, nir_lower_var_copies);
3430 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3431 NIR_PASS_V(nir, nir_split_var_copies);
3432 NIR_PASS_V(nir, nir_lower_var_copies);
3433 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3434 NIR_PASS_V(nir, nir_lower_var_copies);
3435 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3436
3437 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3438
3439 /* Optimisation passes */
3440
3441 optimise_nir(nir);
3442
3443 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3444 nir_print_shader(nir, stdout);
3445 }
3446
3447 /* Assign sysvals and counts, now that we're sure
3448 * (post-optimisation) */
3449
3450 midgard_nir_assign_sysvals(ctx, nir);
3451
3452 program->uniform_count = nir->num_uniforms;
3453 program->sysval_count = ctx->sysval_count;
3454 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3455
3456 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3457 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3458
3459 nir_foreach_function(func, nir) {
3460 if (!func->impl)
3461 continue;
3462
3463 list_inithead(&ctx->blocks);
3464 ctx->block_count = 0;
3465 ctx->func = func;
3466
3467 emit_cf_list(ctx, &func->impl->body);
3468 emit_block(ctx, func->impl->end_block);
3469
3470 break; /* TODO: Multi-function shaders */
3471 }
3472
3473 util_dynarray_init(compiled, NULL);
3474
3475 /* Schedule! */
3476 schedule_program(ctx);
3477
3478 /* Now that all the bundles are scheduled and we can calculate block
3479 * sizes, emit actual branch instructions rather than placeholders */
3480
3481 int br_block_idx = 0;
3482
3483 mir_foreach_block(ctx, block) {
3484 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3485 for (int c = 0; c < bundle->instruction_count; ++c) {
3486 midgard_instruction *ins = &bundle->instructions[c];
3487
3488 if (!midgard_is_branch_unit(ins->unit)) continue;
3489
3490 if (ins->prepacked_branch) continue;
3491
3492 /* Parse some basic branch info */
3493 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3494 bool is_conditional = ins->branch.conditional;
3495 bool is_inverted = ins->branch.invert_conditional;
3496 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3497
3498 /* Determine the block we're jumping to */
3499 int target_number = ins->branch.target_block;
3500
3501 /* Report the destination tag. Discards don't need this */
3502 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3503
3504 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3505 int quadword_offset = 0;
3506
3507 if (is_discard) {
3508 /* Jump to the end of the shader. We
3509 * need to include not only the
3510 * following blocks, but also the
3511 * contents of our current block (since
3512 * discard can come in the middle of
3513 * the block) */
3514
3515 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3516
3517 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3518 quadword_offset += quadword_size(bun->tag);
3519 }
3520
3521 mir_foreach_block_from(ctx, blk, b) {
3522 quadword_offset += b->quadword_count;
3523 }
3524
3525 } else if (target_number > br_block_idx) {
3526 /* Jump forward */
3527
3528 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3529 midgard_block *blk = mir_get_block(ctx, idx);
3530 assert(blk);
3531
3532 quadword_offset += blk->quadword_count;
3533 }
3534 } else {
3535 /* Jump backwards */
3536
3537 for (int idx = br_block_idx; idx >= target_number; --idx) {
3538 midgard_block *blk = mir_get_block(ctx, idx);
3539 assert(blk);
3540
3541 quadword_offset -= blk->quadword_count;
3542 }
3543 }
3544
3545 /* Unconditional extended branches (far jumps)
3546 * have issues, so we always use a conditional
3547 * branch, setting the condition to always for
3548 * unconditional. For compact unconditional
3549 * branches, cond isn't used so it doesn't
3550 * matter what we pick. */
3551
3552 midgard_condition cond =
3553 !is_conditional ? midgard_condition_always :
3554 is_inverted ? midgard_condition_false :
3555 midgard_condition_true;
3556
3557 midgard_jmp_writeout_op op =
3558 is_discard ? midgard_jmp_writeout_op_discard :
3559 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3560 midgard_jmp_writeout_op_branch_cond;
3561
3562 if (!is_compact) {
3563 midgard_branch_extended branch =
3564 midgard_create_branch_extended(
3565 cond, op,
3566 dest_tag,
3567 quadword_offset);
3568
3569 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3570 } else if (is_conditional || is_discard) {
3571 midgard_branch_cond branch = {
3572 .op = op,
3573 .dest_tag = dest_tag,
3574 .offset = quadword_offset,
3575 .cond = cond
3576 };
3577
3578 assert(branch.offset == quadword_offset);
3579
3580 memcpy(&ins->br_compact, &branch, sizeof(branch));
3581 } else {
3582 assert(op == midgard_jmp_writeout_op_branch_uncond);
3583
3584 midgard_branch_uncond branch = {
3585 .op = op,
3586 .dest_tag = dest_tag,
3587 .offset = quadword_offset,
3588 .unknown = 1
3589 };
3590
3591 assert(branch.offset == quadword_offset);
3592
3593 memcpy(&ins->br_compact, &branch, sizeof(branch));
3594 }
3595 }
3596 }
3597
3598 ++br_block_idx;
3599 }
3600
3601 /* Emit flat binary from the instruction arrays. Iterate each block in
3602 * sequence. Save instruction boundaries such that lookahead tags can
3603 * be assigned easily */
3604
3605 /* Cache _all_ bundles in source order for lookahead across failed branches */
3606
3607 int bundle_count = 0;
3608 mir_foreach_block(ctx, block) {
3609 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3610 }
3611 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3612 int bundle_idx = 0;
3613 mir_foreach_block(ctx, block) {
3614 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3615 source_order_bundles[bundle_idx++] = bundle;
3616 }
3617 }
3618
3619 int current_bundle = 0;
3620
3621 mir_foreach_block(ctx, block) {
3622 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3623 int lookahead = 1;
3624
3625 if (current_bundle + 1 < bundle_count) {
3626 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3627
3628 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3629 lookahead = 1;
3630 } else {
3631 lookahead = next;
3632 }
3633 }
3634
3635 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3636 ++current_bundle;
3637 }
3638
3639 /* TODO: Free deeper */
3640 //util_dynarray_fini(&block->instructions);
3641 }
3642
3643 free(source_order_bundles);
3644
3645 /* Report the very first tag executed */
3646 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3647
3648 /* Deal with off-by-one related to the fencepost problem */
3649 program->work_register_count = ctx->work_registers + 1;
3650
3651 program->can_discard = ctx->can_discard;
3652 program->uniform_cutoff = ctx->uniform_cutoff;
3653
3654 program->blend_patch_offset = ctx->blend_constant_offset;
3655
3656 if (midgard_debug & MIDGARD_DBG_SHADERS)
3657 disassemble_midgard(program->compiled.data, program->compiled.size);
3658
3659 return 0;
3660 }