panfrost/midgard: Implement fpow
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_scalar_alu_src blank_scalar_alu_src = {
208 .full = true
209 };
210
211 /* Used for encoding the unused source of 1-op instructions */
212 const midgard_vector_alu_src zero_alu_src = { 0 };
213
214 /* Coerce structs to integer */
215
216 static unsigned
217 vector_alu_srco_unsigned(midgard_vector_alu_src src)
218 {
219 unsigned u;
220 memcpy(&u, &src, sizeof(src));
221 return u;
222 }
223
224 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
225 * the corresponding Midgard source */
226
227 static midgard_vector_alu_src
228 vector_alu_modifiers(nir_alu_src *src)
229 {
230 if (!src) return blank_alu_src;
231
232 midgard_vector_alu_src alu_src = {
233 .abs = src->abs,
234 .negate = src->negate,
235 .rep_low = 0,
236 .rep_high = 0,
237 .half = 0, /* TODO */
238 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
239 };
240
241 return alu_src;
242 }
243
244 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
245
246 static midgard_instruction
247 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
248 {
249 midgard_instruction ins = {
250 .type = TAG_ALU_4,
251 .ssa_args = {
252 .src0 = SSA_UNUSED_1,
253 .src1 = src,
254 .dest = dest,
255 },
256 .alu = {
257 .op = midgard_alu_op_fmov,
258 .reg_mode = midgard_reg_mode_full,
259 .dest_override = midgard_dest_override_none,
260 .mask = 0xFF,
261 .src1 = vector_alu_srco_unsigned(zero_alu_src),
262 .src2 = vector_alu_srco_unsigned(mod)
263 },
264 };
265
266 return ins;
267 }
268
269 /* load/store instructions have both 32-bit and 16-bit variants, depending on
270 * whether we are using vectors composed of highp or mediump. At the moment, we
271 * don't support half-floats -- this requires changes in other parts of the
272 * compiler -- therefore the 16-bit versions are commented out. */
273
274 //M_LOAD(load_attr_16);
275 M_LOAD(load_attr_32);
276 //M_LOAD(load_vary_16);
277 M_LOAD(load_vary_32);
278 //M_LOAD(load_uniform_16);
279 M_LOAD(load_uniform_32);
280 M_LOAD(load_color_buffer_8);
281 //M_STORE(store_vary_16);
282 M_STORE(store_vary_32);
283
284 static midgard_instruction
285 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
286 {
287 midgard_branch_cond branch = {
288 .op = op,
289 .dest_tag = tag,
290 .offset = offset,
291 .cond = cond
292 };
293
294 uint16_t compact;
295 memcpy(&compact, &branch, sizeof(branch));
296
297 midgard_instruction ins = {
298 .type = TAG_ALU_4,
299 .unit = ALU_ENAB_BR_COMPACT,
300 .prepacked_branch = true,
301 .compact_branch = true,
302 .br_compact = compact
303 };
304
305 if (op == midgard_jmp_writeout_op_writeout)
306 ins.writeout = true;
307
308 return ins;
309 }
310
311 static midgard_instruction
312 v_branch(bool conditional, bool invert)
313 {
314 midgard_instruction ins = {
315 .type = TAG_ALU_4,
316 .unit = ALU_ENAB_BRANCH,
317 .compact_branch = true,
318 .branch = {
319 .conditional = conditional,
320 .invert_conditional = invert
321 }
322 };
323
324 return ins;
325 }
326
327 static midgard_branch_extended
328 midgard_create_branch_extended( midgard_condition cond,
329 midgard_jmp_writeout_op op,
330 unsigned dest_tag,
331 signed quadword_offset)
332 {
333 /* For unclear reasons, the condition code is repeated 8 times */
334 uint16_t duplicated_cond =
335 (cond << 14) |
336 (cond << 12) |
337 (cond << 10) |
338 (cond << 8) |
339 (cond << 6) |
340 (cond << 4) |
341 (cond << 2) |
342 (cond << 0);
343
344 midgard_branch_extended branch = {
345 .op = op,
346 .dest_tag = dest_tag,
347 .offset = quadword_offset,
348 .cond = duplicated_cond
349 };
350
351 return branch;
352 }
353
354 typedef struct midgard_bundle {
355 /* Tag for the overall bundle */
356 int tag;
357
358 /* Instructions contained by the bundle */
359 int instruction_count;
360 midgard_instruction instructions[5];
361
362 /* Bundle-wide ALU configuration */
363 int padding;
364 int control;
365 bool has_embedded_constants;
366 float constants[4];
367 bool has_blend_constant;
368
369 uint16_t register_words[8];
370 int register_words_count;
371
372 uint64_t body_words[8];
373 size_t body_size[8];
374 int body_words_count;
375 } midgard_bundle;
376
377 typedef struct compiler_context {
378 nir_shader *nir;
379 gl_shader_stage stage;
380
381 /* Is internally a blend shader? Depends on stage == FRAGMENT */
382 bool is_blend;
383
384 /* Tracking for blend constant patching */
385 int blend_constant_number;
386 int blend_constant_offset;
387
388 /* Current NIR function */
389 nir_function *func;
390
391 /* Unordered list of midgard_blocks */
392 int block_count;
393 struct list_head blocks;
394
395 midgard_block *initial_block;
396 midgard_block *previous_source_block;
397 midgard_block *final_block;
398
399 /* List of midgard_instructions emitted for the current block */
400 midgard_block *current_block;
401
402 /* The index corresponding to the current loop, e.g. for breaks/contineus */
403 int current_loop;
404
405 /* Constants which have been loaded, for later inlining */
406 struct hash_table_u64 *ssa_constants;
407
408 /* SSA indices to be outputted to corresponding varying offset */
409 struct hash_table_u64 *ssa_varyings;
410
411 /* SSA values / registers which have been aliased. Naively, these
412 * demand a fmov output; instead, we alias them in a later pass to
413 * avoid the wasted op.
414 *
415 * A note on encoding: to avoid dynamic memory management here, rather
416 * than ampping to a pointer, we map to the source index; the key
417 * itself is just the destination index. */
418
419 struct hash_table_u64 *ssa_to_alias;
420 struct set *leftover_ssa_to_alias;
421
422 /* Actual SSA-to-register for RA */
423 struct hash_table_u64 *ssa_to_register;
424
425 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
426 struct hash_table_u64 *hash_to_temp;
427 int temp_count;
428 int max_hash;
429
430 /* Uniform IDs for mdg */
431 struct hash_table_u64 *uniform_nir_to_mdg;
432 int uniform_count;
433
434 struct hash_table_u64 *varying_nir_to_mdg;
435 int varying_count;
436
437 /* Just the count of the max register used. Higher count => higher
438 * register pressure */
439 int work_registers;
440
441 /* Used for cont/last hinting. Increase when a tex op is added.
442 * Decrease when a tex op is removed. */
443 int texture_op_count;
444
445 /* Mapping of texture register -> SSA index for unaliasing */
446 int texture_index[2];
447
448 /* Count of special uniforms (viewport, etc) in vec4 units */
449 int special_uniforms;
450
451 /* If any path hits a discard instruction */
452 bool can_discard;
453
454 /* The number of uniforms allowable for the fast path */
455 int uniform_cutoff;
456
457 /* Count of instructions emitted from NIR overall, across all blocks */
458 int instruction_count;
459
460 /* Alpha ref value passed in */
461 float alpha_ref;
462
463 /* The index corresponding to the fragment output */
464 unsigned fragment_output;
465 } compiler_context;
466
467 /* Append instruction to end of current block */
468
469 static midgard_instruction *
470 mir_upload_ins(struct midgard_instruction ins)
471 {
472 midgard_instruction *heap = malloc(sizeof(ins));
473 memcpy(heap, &ins, sizeof(ins));
474 return heap;
475 }
476
477 static void
478 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
479 {
480 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
481 }
482
483 static void
484 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
485 {
486 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
487 }
488
489 static void
490 mir_remove_instruction(struct midgard_instruction *ins)
491 {
492 list_del(&ins->link);
493 }
494
495 static midgard_instruction*
496 mir_prev_op(struct midgard_instruction *ins)
497 {
498 return list_last_entry(&(ins->link), midgard_instruction, link);
499 }
500
501 static midgard_instruction*
502 mir_next_op(struct midgard_instruction *ins)
503 {
504 return list_first_entry(&(ins->link), midgard_instruction, link);
505 }
506
507 static midgard_block *
508 mir_next_block(struct midgard_block *blk)
509 {
510 return list_first_entry(&(blk->link), midgard_block, link);
511 }
512
513
514 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
515 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
516
517 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
518 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
520 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
523
524
525 static midgard_instruction *
526 mir_last_in_block(struct midgard_block *block)
527 {
528 return list_last_entry(&block->instructions, struct midgard_instruction, link);
529 }
530
531 static midgard_block *
532 mir_get_block(compiler_context *ctx, int idx)
533 {
534 struct list_head *lst = &ctx->blocks;
535
536 while ((idx--) + 1)
537 lst = lst->next;
538
539 return (struct midgard_block *) lst;
540 }
541
542 /* Pretty printer for internal Midgard IR */
543
544 static void
545 print_mir_source(int source)
546 {
547 if (source >= SSA_FIXED_MINIMUM) {
548 /* Specific register */
549 int reg = SSA_REG_FROM_FIXED(source);
550
551 /* TODO: Moving threshold */
552 if (reg > 16 && reg < 24)
553 printf("u%d", 23 - reg);
554 else
555 printf("r%d", reg);
556 } else {
557 printf("%d", source);
558 }
559 }
560
561 static void
562 print_mir_instruction(midgard_instruction *ins)
563 {
564 printf("\t");
565
566 switch (ins->type) {
567 case TAG_ALU_4: {
568 midgard_alu_op op = ins->alu.op;
569 const char *name = alu_opcode_names[op];
570
571 if (ins->unit)
572 printf("%d.", ins->unit);
573
574 printf("%s", name ? name : "??");
575 break;
576 }
577
578 case TAG_LOAD_STORE_4: {
579 midgard_load_store_op op = ins->load_store.op;
580 const char *name = load_store_opcode_names[op];
581
582 assert(name);
583 printf("%s", name);
584 break;
585 }
586
587 case TAG_TEXTURE_4: {
588 printf("texture");
589 break;
590 }
591
592 default:
593 assert(0);
594 }
595
596 ssa_args *args = &ins->ssa_args;
597
598 printf(" %d, ", args->dest);
599
600 print_mir_source(args->src0);
601 printf(", ");
602
603 if (args->inline_constant)
604 printf("#%d", ins->inline_constant);
605 else
606 print_mir_source(args->src1);
607
608 if (ins->has_constants)
609 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
610
611 printf("\n");
612 }
613
614 static void
615 print_mir_block(midgard_block *block)
616 {
617 printf("{\n");
618
619 mir_foreach_instr_in_block(block, ins) {
620 print_mir_instruction(ins);
621 }
622
623 printf("}\n");
624 }
625
626
627
628 static void
629 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
630 {
631 ins->has_constants = true;
632 memcpy(&ins->constants, constants, 16);
633
634 /* If this is the special blend constant, mark this instruction */
635
636 if (ctx->is_blend && ctx->blend_constant_number == name)
637 ins->has_blend_constant = true;
638 }
639
640 static int
641 glsl_type_size(const struct glsl_type *type)
642 {
643 return glsl_count_attribute_slots(type, false);
644 }
645
646 /* Lower fdot2 to a vector multiplication followed by channel addition */
647 static void
648 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
649 {
650 if (alu->op != nir_op_fdot2)
651 return;
652
653 b->cursor = nir_before_instr(&alu->instr);
654
655 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
656 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
657
658 nir_ssa_def *product = nir_fmul(b, src0, src1);
659
660 nir_ssa_def *sum = nir_fadd(b,
661 nir_channel(b, product, 0),
662 nir_channel(b, product, 1));
663
664 /* Replace the fdot2 with this sum */
665 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
666 }
667
668 static bool
669 midgard_nir_lower_fdot2(nir_shader *shader)
670 {
671 bool progress = false;
672
673 nir_foreach_function(function, shader) {
674 if (!function->impl) continue;
675
676 nir_builder _b;
677 nir_builder *b = &_b;
678 nir_builder_init(b, function->impl);
679
680 nir_foreach_block(block, function->impl) {
681 nir_foreach_instr_safe(instr, block) {
682 if (instr->type != nir_instr_type_alu) continue;
683
684 nir_alu_instr *alu = nir_instr_as_alu(instr);
685 midgard_nir_lower_fdot2_body(b, alu);
686
687 progress |= true;
688 }
689 }
690
691 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
692
693 }
694
695 return progress;
696 }
697
698 static void
699 optimise_nir(nir_shader *nir)
700 {
701 bool progress;
702
703 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
704 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
705
706 nir_lower_tex_options lower_tex_options = {
707 .lower_rect = true
708 };
709
710 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
711
712 do {
713 progress = false;
714
715 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
716 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
717 NIR_PASS(progress, nir, nir_lower_var_copies);
718 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
719
720 NIR_PASS(progress, nir, nir_copy_prop);
721 NIR_PASS(progress, nir, nir_opt_dce);
722 NIR_PASS(progress, nir, nir_opt_dead_cf);
723 NIR_PASS(progress, nir, nir_opt_cse);
724 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
725 NIR_PASS(progress, nir, nir_opt_algebraic);
726 NIR_PASS(progress, nir, nir_opt_constant_folding);
727 NIR_PASS(progress, nir, nir_opt_undef);
728 NIR_PASS(progress, nir, nir_opt_loop_unroll,
729 nir_var_shader_in |
730 nir_var_shader_out |
731 nir_var_function_temp);
732
733 /* TODO: Enable vectorize when merged upstream */
734 // NIR_PASS(progress, nir, nir_opt_vectorize);
735 } while (progress);
736
737 /* Must be run at the end to prevent creation of fsin/fcos ops */
738 NIR_PASS(progress, nir, midgard_nir_scale_trig);
739
740 do {
741 progress = false;
742
743 NIR_PASS(progress, nir, nir_opt_dce);
744 NIR_PASS(progress, nir, nir_opt_algebraic);
745 NIR_PASS(progress, nir, nir_opt_constant_folding);
746 NIR_PASS(progress, nir, nir_copy_prop);
747 } while (progress);
748
749 NIR_PASS(progress, nir, nir_opt_algebraic_late);
750
751 /* Lower mods */
752 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
753 NIR_PASS(progress, nir, nir_copy_prop);
754 NIR_PASS(progress, nir, nir_opt_dce);
755
756 /* Take us out of SSA */
757 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
758 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
759
760 /* We are a vector architecture; write combine where possible */
761 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
762 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
763
764 NIR_PASS(progress, nir, nir_opt_dce);
765 }
766
767 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
768 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
769 * r0. See the comments in compiler_context */
770
771 static void
772 alias_ssa(compiler_context *ctx, int dest, int src)
773 {
774 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
775 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
776 }
777
778 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
779
780 static void
781 unalias_ssa(compiler_context *ctx, int dest)
782 {
783 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
784 /* TODO: Remove from leftover or no? */
785 }
786
787 static void
788 midgard_pin_output(compiler_context *ctx, int index, int reg)
789 {
790 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
791 }
792
793 static bool
794 midgard_is_pinned(compiler_context *ctx, int index)
795 {
796 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
797 }
798
799 /* Do not actually emit a load; instead, cache the constant for inlining */
800
801 static void
802 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
803 {
804 nir_ssa_def def = instr->def;
805
806 float *v = ralloc_array(NULL, float, 4);
807 memcpy(v, &instr->value.f32, 4 * sizeof(float));
808 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
809 }
810
811 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
812 * do the inverse) */
813
814 static unsigned
815 expand_writemask(unsigned mask)
816 {
817 unsigned o = 0;
818
819 for (int i = 0; i < 4; ++i)
820 if (mask & (1 << i))
821 o |= (3 << (2 * i));
822
823 return o;
824 }
825
826 static unsigned
827 squeeze_writemask(unsigned mask)
828 {
829 unsigned o = 0;
830
831 for (int i = 0; i < 4; ++i)
832 if (mask & (3 << (2 * i)))
833 o |= (1 << i);
834
835 return o;
836
837 }
838
839 /* Determines effective writemask, taking quirks and expansion into account */
840 static unsigned
841 effective_writemask(midgard_vector_alu *alu)
842 {
843 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
844 * sense) */
845
846 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
847
848 /* If there is a fixed channel count, construct the appropriate mask */
849
850 if (channel_count)
851 return (1 << channel_count) - 1;
852
853 /* Otherwise, just squeeze the existing mask */
854 return squeeze_writemask(alu->mask);
855 }
856
857 static unsigned
858 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
859 {
860 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
861 return hash;
862
863 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
864
865 if (temp)
866 return temp - 1;
867
868 /* If no temp is find, allocate one */
869 temp = ctx->temp_count++;
870 ctx->max_hash = MAX2(ctx->max_hash, hash);
871
872 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
873
874 return temp;
875 }
876
877 static unsigned
878 nir_src_index(compiler_context *ctx, nir_src *src)
879 {
880 if (src->is_ssa)
881 return src->ssa->index;
882 else
883 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
884 }
885
886 static unsigned
887 nir_dest_index(compiler_context *ctx, nir_dest *dst)
888 {
889 if (dst->is_ssa)
890 return dst->ssa.index;
891 else
892 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
893 }
894
895 static unsigned
896 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
897 {
898 return nir_src_index(ctx, &src->src);
899 }
900
901 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
902 * a conditional test) into that register */
903
904 static void
905 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
906 {
907 /* XXX: Force component correct */
908 int condition = nir_src_index(ctx, src);
909
910 const midgard_vector_alu_src alu_src = {
911 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
912 };
913
914 /* There is no boolean move instruction. Instead, we simulate a move by
915 * ANDing the condition with itself to get it into r31.w */
916
917 midgard_instruction ins = {
918 .type = TAG_ALU_4,
919 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
920 .ssa_args = {
921 .src0 = condition,
922 .src1 = condition,
923 .dest = SSA_FIXED_REGISTER(31),
924 },
925 .alu = {
926 .op = midgard_alu_op_iand,
927 .reg_mode = midgard_reg_mode_full,
928 .dest_override = midgard_dest_override_none,
929 .mask = (0x3 << 6), /* w */
930 .src1 = vector_alu_srco_unsigned(alu_src),
931 .src2 = vector_alu_srco_unsigned(alu_src)
932 },
933 };
934
935 emit_mir_instruction(ctx, ins);
936 }
937
938 #define ALU_CASE(nir, _op) \
939 case nir_op_##nir: \
940 op = midgard_alu_op_##_op; \
941 break;
942
943 static void
944 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
945 {
946 bool is_ssa = instr->dest.dest.is_ssa;
947
948 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
949 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
950 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
951
952 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
953 * supported. A few do not and are commented for now. Also, there are a
954 * number of NIR ops which Midgard does not support and need to be
955 * lowered, also TODO. This switch block emits the opcode and calling
956 * convention of the Midgard instruction; actual packing is done in
957 * emit_alu below */
958
959 unsigned op;
960
961 switch (instr->op) {
962 ALU_CASE(fadd, fadd);
963 ALU_CASE(fmul, fmul);
964 ALU_CASE(fmin, fmin);
965 ALU_CASE(fmax, fmax);
966 ALU_CASE(imin, imin);
967 ALU_CASE(imax, imax);
968 ALU_CASE(fmov, fmov);
969 ALU_CASE(ffloor, ffloor);
970 ALU_CASE(fround_even, froundeven);
971 ALU_CASE(ftrunc, ftrunc);
972 ALU_CASE(fceil, fceil);
973 ALU_CASE(fdot3, fdot3);
974 ALU_CASE(fdot4, fdot4);
975 ALU_CASE(iadd, iadd);
976 ALU_CASE(isub, isub);
977 ALU_CASE(imul, imul);
978
979 /* XXX: Use fmov, not imov, since imov was causing major
980 * issues with texture precision? XXX research */
981 ALU_CASE(imov, fmov);
982
983 ALU_CASE(feq, feq);
984 ALU_CASE(fne, fne);
985 ALU_CASE(flt, flt);
986 ALU_CASE(ieq, ieq);
987 ALU_CASE(ine, ine);
988 ALU_CASE(ilt, ilt);
989
990 ALU_CASE(frcp, frcp);
991 ALU_CASE(frsq, frsqrt);
992 ALU_CASE(fsqrt, fsqrt);
993 ALU_CASE(fpow, fpow);
994 ALU_CASE(fexp2, fexp2);
995 ALU_CASE(flog2, flog2);
996
997 ALU_CASE(f2i32, f2i);
998 ALU_CASE(f2u32, f2u);
999 ALU_CASE(i2f32, i2f);
1000 ALU_CASE(u2f32, u2f);
1001
1002 ALU_CASE(fsin, fsin);
1003 ALU_CASE(fcos, fcos);
1004
1005 ALU_CASE(iand, iand);
1006 ALU_CASE(ior, ior);
1007 ALU_CASE(ixor, ixor);
1008 ALU_CASE(inot, inot);
1009 ALU_CASE(ishl, ishl);
1010 ALU_CASE(ishr, iasr);
1011 ALU_CASE(ushr, ilsr);
1012
1013 ALU_CASE(ball_fequal4, fball_eq);
1014 ALU_CASE(bany_fnequal4, fbany_neq);
1015 ALU_CASE(ball_iequal4, iball_eq);
1016 ALU_CASE(bany_inequal4, ibany_neq);
1017
1018 /* For greater-or-equal, we use less-or-equal and flip the
1019 * arguments */
1020
1021 case nir_op_ige: {
1022 op = midgard_alu_op_ile;
1023
1024 /* Swap via temporary */
1025 nir_alu_src temp = instr->src[1];
1026 instr->src[1] = instr->src[0];
1027 instr->src[0] = temp;
1028
1029 break;
1030 }
1031
1032 case nir_op_bcsel: {
1033 op = midgard_alu_op_fcsel;
1034
1035 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1036 nr_inputs = 2;
1037
1038 emit_condition(ctx, &instr->src[0].src, false);
1039
1040 /* The condition is the first argument; move the other
1041 * arguments up one to be a binary instruction for
1042 * Midgard */
1043
1044 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1045 break;
1046 }
1047
1048 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1049 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1050 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1051 *
1052 * iand [whatever], #0
1053 *
1054 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1055
1056 case nir_op_b2f32: {
1057 op = midgard_alu_op_iand;
1058 break;
1059 }
1060
1061 default:
1062 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1063 assert(0);
1064 return;
1065 }
1066
1067 /* Fetch unit, quirks, etc information */
1068 unsigned opcode_props = alu_opcode_props[op];
1069 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1070
1071 /* Initialise fields common between scalar/vector instructions */
1072 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1073
1074 /* src0 will always exist afaik, but src1 will not for 1-argument
1075 * instructions. The latter can only be fetched if the instruction
1076 * needs it, or else we may segfault. */
1077
1078 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1079 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1080
1081 /* Rather than use the instruction generation helpers, we do it
1082 * ourselves here to avoid the mess */
1083
1084 midgard_instruction ins = {
1085 .type = TAG_ALU_4,
1086 .ssa_args = {
1087 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1088 .src1 = quirk_flipped_r24 ? src0 : src1,
1089 .dest = dest,
1090 }
1091 };
1092
1093 nir_alu_src *nirmods[2] = { NULL };
1094
1095 if (nr_inputs == 2) {
1096 nirmods[0] = &instr->src[0];
1097 nirmods[1] = &instr->src[1];
1098 } else if (nr_inputs == 1) {
1099 nirmods[quirk_flipped_r24] = &instr->src[0];
1100 } else {
1101 assert(0);
1102 }
1103
1104 midgard_vector_alu alu = {
1105 .op = op,
1106 .reg_mode = midgard_reg_mode_full,
1107 .dest_override = midgard_dest_override_none,
1108 .outmod = outmod,
1109
1110 /* Writemask only valid for non-SSA NIR */
1111 .mask = expand_writemask((1 << nr_components) - 1),
1112
1113 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1114 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1115 };
1116
1117 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1118
1119 if (!is_ssa)
1120 alu.mask &= expand_writemask(instr->dest.write_mask);
1121
1122 ins.alu = alu;
1123
1124 /* Late fixup for emulated instructions */
1125
1126 if (instr->op == nir_op_b2f32) {
1127 /* Presently, our second argument is an inline #0 constant.
1128 * Switch over to an embedded 1.0 constant (that can't fit
1129 * inline, since we're 32-bit, not 16-bit like the inline
1130 * constants) */
1131
1132 ins.ssa_args.inline_constant = false;
1133 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1134 ins.has_constants = true;
1135 ins.constants[0] = 1.0;
1136 }
1137
1138 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1139 /* To avoid duplicating the lookup tables (probably), true LUT
1140 * instructions can only operate as if they were scalars. Lower
1141 * them here by changing the component. */
1142
1143 uint8_t original_swizzle[4];
1144 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1145
1146 for (int i = 0; i < nr_components; ++i) {
1147 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1148
1149 for (int j = 0; j < 4; ++j)
1150 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1151
1152 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1153 emit_mir_instruction(ctx, ins);
1154 }
1155 } else {
1156 emit_mir_instruction(ctx, ins);
1157 }
1158 }
1159
1160 #undef ALU_CASE
1161
1162 static void
1163 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1164 {
1165 nir_const_value *const_offset;
1166 unsigned offset, reg;
1167
1168 switch (instr->intrinsic) {
1169 case nir_intrinsic_discard_if:
1170 emit_condition(ctx, &instr->src[0], true);
1171
1172 /* fallthrough */
1173
1174 case nir_intrinsic_discard: {
1175 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1176 struct midgard_instruction discard = v_branch(conditional, false);
1177 discard.branch.target_type = TARGET_DISCARD;
1178 emit_mir_instruction(ctx, discard);
1179
1180 ctx->can_discard = true;
1181 break;
1182 }
1183
1184 case nir_intrinsic_load_uniform:
1185 case nir_intrinsic_load_input:
1186 const_offset = nir_src_as_const_value(instr->src[0]);
1187 assert (const_offset && "no indirect inputs");
1188
1189 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1190
1191 reg = nir_dest_index(ctx, &instr->dest);
1192
1193 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1194 /* TODO: half-floats */
1195
1196 int uniform_offset = 0;
1197
1198 if (offset >= SPECIAL_UNIFORM_BASE) {
1199 /* XXX: Resolve which uniform */
1200 uniform_offset = 0;
1201 } else {
1202 /* Offset away from the special
1203 * uniform block */
1204
1205 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1206
1207 /* XXX */
1208 if (!entry) {
1209 DBG("WARNING: Unknown uniform %d\n", offset);
1210 break;
1211 }
1212
1213 uniform_offset = (uintptr_t) (entry) - 1;
1214 uniform_offset += ctx->special_uniforms;
1215 }
1216
1217 if (uniform_offset < ctx->uniform_cutoff) {
1218 /* Fast path: For the first 16 uniform,
1219 * accesses are 0-cycle, since they're
1220 * just a register fetch in the usual
1221 * case. So, we alias the registers
1222 * while we're still in SSA-space */
1223
1224 int reg_slot = 23 - uniform_offset;
1225 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1226 } else {
1227 /* Otherwise, read from the 'special'
1228 * UBO to access higher-indexed
1229 * uniforms, at a performance cost */
1230
1231 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1232
1233 /* TODO: Don't split */
1234 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1235 ins.load_store.address = uniform_offset >> 3;
1236
1237 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1238 emit_mir_instruction(ctx, ins);
1239 }
1240 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1241 /* XXX: Half-floats? */
1242 /* TODO: swizzle, mask */
1243
1244 midgard_instruction ins = m_load_vary_32(reg, offset);
1245
1246 midgard_varying_parameter p = {
1247 .is_varying = 1,
1248 .interpolation = midgard_interp_default,
1249 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1250 };
1251
1252 unsigned u;
1253 memcpy(&u, &p, sizeof(p));
1254 ins.load_store.varying_parameters = u;
1255
1256 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1257 emit_mir_instruction(ctx, ins);
1258 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1259 /* Constant encoded as a pinned constant */
1260
1261 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1262 ins.has_constants = true;
1263 ins.has_blend_constant = true;
1264 emit_mir_instruction(ctx, ins);
1265 } else if (ctx->is_blend) {
1266 /* For blend shaders, a load might be
1267 * translated various ways depending on what
1268 * we're loading. Figure out how this is used */
1269
1270 nir_variable *out = NULL;
1271
1272 nir_foreach_variable(var, &ctx->nir->inputs) {
1273 int drvloc = var->data.driver_location;
1274
1275 if (nir_intrinsic_base(instr) == drvloc) {
1276 out = var;
1277 break;
1278 }
1279 }
1280
1281 assert(out);
1282
1283 if (out->data.location == VARYING_SLOT_COL0) {
1284 /* Source color preloaded to r0 */
1285
1286 midgard_pin_output(ctx, reg, 0);
1287 } else if (out->data.location == VARYING_SLOT_COL1) {
1288 /* Destination color must be read from framebuffer */
1289
1290 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1291 ins.load_store.swizzle = 0; /* xxxx */
1292
1293 /* Read each component sequentially */
1294
1295 for (int c = 0; c < 4; ++c) {
1296 ins.load_store.mask = (1 << c);
1297 ins.load_store.unknown = c;
1298 emit_mir_instruction(ctx, ins);
1299 }
1300
1301 /* vadd.u2f hr2, abs(hr2), #0 */
1302
1303 midgard_vector_alu_src alu_src = blank_alu_src;
1304 alu_src.abs = true;
1305 alu_src.half = true;
1306
1307 midgard_instruction u2f = {
1308 .type = TAG_ALU_4,
1309 .ssa_args = {
1310 .src0 = reg,
1311 .src1 = SSA_UNUSED_0,
1312 .dest = reg,
1313 .inline_constant = true
1314 },
1315 .alu = {
1316 .op = midgard_alu_op_u2f,
1317 .reg_mode = midgard_reg_mode_half,
1318 .dest_override = midgard_dest_override_none,
1319 .mask = 0xF,
1320 .src1 = vector_alu_srco_unsigned(alu_src),
1321 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1322 }
1323 };
1324
1325 emit_mir_instruction(ctx, u2f);
1326
1327 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1328
1329 alu_src.abs = false;
1330
1331 midgard_instruction fmul = {
1332 .type = TAG_ALU_4,
1333 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1334 .ssa_args = {
1335 .src0 = reg,
1336 .dest = reg,
1337 .src1 = SSA_UNUSED_0,
1338 .inline_constant = true
1339 },
1340 .alu = {
1341 .op = midgard_alu_op_fmul,
1342 .reg_mode = midgard_reg_mode_full,
1343 .dest_override = midgard_dest_override_none,
1344 .outmod = midgard_outmod_sat,
1345 .mask = 0xFF,
1346 .src1 = vector_alu_srco_unsigned(alu_src),
1347 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1348 }
1349 };
1350
1351 emit_mir_instruction(ctx, fmul);
1352 } else {
1353 DBG("Unknown input in blend shader\n");
1354 assert(0);
1355 }
1356 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1357 midgard_instruction ins = m_load_attr_32(reg, offset);
1358 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1359 ins.load_store.mask = (1 << instr->num_components) - 1;
1360 emit_mir_instruction(ctx, ins);
1361 } else {
1362 DBG("Unknown load\n");
1363 assert(0);
1364 }
1365
1366 break;
1367
1368 case nir_intrinsic_store_output:
1369 const_offset = nir_src_as_const_value(instr->src[1]);
1370 assert(const_offset && "no indirect outputs");
1371
1372 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1373
1374 reg = nir_src_index(ctx, &instr->src[0]);
1375
1376 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1377 /* gl_FragColor is not emitted with load/store
1378 * instructions. Instead, it gets plonked into
1379 * r0 at the end of the shader and we do the
1380 * framebuffer writeout dance. TODO: Defer
1381 * writes */
1382
1383 midgard_pin_output(ctx, reg, 0);
1384
1385 /* Save the index we're writing to for later reference
1386 * in the epilogue */
1387
1388 ctx->fragment_output = reg;
1389 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1390 /* Varyings are written into one of two special
1391 * varying register, r26 or r27. The register itself is selected as the register
1392 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1393 *
1394 * Normally emitting fmov's is frowned upon,
1395 * but due to unique constraints of
1396 * REGISTER_VARYING, fmov emission + a
1397 * dedicated cleanup pass is the only way to
1398 * guarantee correctness when considering some
1399 * (common) edge cases XXX: FIXME */
1400
1401 /* Look up how it was actually laid out */
1402
1403 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1404
1405 if (!entry) {
1406 DBG("WARNING: skipping varying\n");
1407 break;
1408 }
1409
1410 offset = (uintptr_t) (entry) - 1;
1411
1412 /* If this varying corresponds to a constant (why?!),
1413 * emit that now since it won't get picked up by
1414 * hoisting (since there is no corresponding move
1415 * emitted otherwise) */
1416
1417 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1418
1419 if (constant_value) {
1420 /* Special case: emit the varying write
1421 * directly to r26 (looks funny in asm but it's
1422 * fine) and emit the store _now_. Possibly
1423 * slightly slower, but this is a really stupid
1424 * special case anyway (why on earth would you
1425 * have a constant varying? Your own fault for
1426 * slightly worse perf :P) */
1427
1428 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1429 attach_constants(ctx, &ins, constant_value, reg + 1);
1430 emit_mir_instruction(ctx, ins);
1431
1432 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1433 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1434 emit_mir_instruction(ctx, st);
1435 } else {
1436 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1437
1438 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1439 }
1440 } else {
1441 DBG("Unknown store\n");
1442 assert(0);
1443 }
1444
1445 break;
1446
1447 case nir_intrinsic_load_alpha_ref_float:
1448 assert(instr->dest.is_ssa);
1449
1450 float ref_value = ctx->alpha_ref;
1451
1452 float *v = ralloc_array(NULL, float, 4);
1453 memcpy(v, &ref_value, sizeof(float));
1454 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1455 break;
1456
1457
1458 default:
1459 printf ("Unhandled intrinsic\n");
1460 assert(0);
1461 break;
1462 }
1463 }
1464
1465 static unsigned
1466 midgard_tex_format(enum glsl_sampler_dim dim)
1467 {
1468 switch (dim) {
1469 case GLSL_SAMPLER_DIM_2D:
1470 case GLSL_SAMPLER_DIM_EXTERNAL:
1471 return TEXTURE_2D;
1472
1473 case GLSL_SAMPLER_DIM_3D:
1474 return TEXTURE_3D;
1475
1476 case GLSL_SAMPLER_DIM_CUBE:
1477 return TEXTURE_CUBE;
1478
1479 default:
1480 DBG("Unknown sampler dim type\n");
1481 assert(0);
1482 return 0;
1483 }
1484 }
1485
1486 static void
1487 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1488 {
1489 /* TODO */
1490 //assert (!instr->sampler);
1491 //assert (!instr->texture_array_size);
1492 assert (instr->op == nir_texop_tex);
1493
1494 /* Allocate registers via a round robin scheme to alternate between the two registers */
1495 int reg = ctx->texture_op_count & 1;
1496 int in_reg = reg, out_reg = reg;
1497
1498 /* Make room for the reg */
1499
1500 if (ctx->texture_index[reg] > -1)
1501 unalias_ssa(ctx, ctx->texture_index[reg]);
1502
1503 int texture_index = instr->texture_index;
1504 int sampler_index = texture_index;
1505
1506 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1507 switch (instr->src[i].src_type) {
1508 case nir_tex_src_coord: {
1509 int index = nir_src_index(ctx, &instr->src[i].src);
1510
1511 midgard_vector_alu_src alu_src = blank_alu_src;
1512 alu_src.swizzle = (COMPONENT_Y << 2);
1513
1514 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1515 emit_mir_instruction(ctx, ins);
1516
1517 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1518
1519 break;
1520 }
1521
1522 default: {
1523 DBG("Unknown source type\n");
1524 //assert(0);
1525 break;
1526 }
1527 }
1528 }
1529
1530 /* No helper to build texture words -- we do it all here */
1531 midgard_instruction ins = {
1532 .type = TAG_TEXTURE_4,
1533 .texture = {
1534 .op = TEXTURE_OP_NORMAL,
1535 .format = midgard_tex_format(instr->sampler_dim),
1536 .texture_handle = texture_index,
1537 .sampler_handle = sampler_index,
1538
1539 /* TODO: Don't force xyzw */
1540 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1541 .mask = 0xF,
1542
1543 /* TODO: half */
1544 //.in_reg_full = 1,
1545 .out_full = 1,
1546
1547 .filter = 1,
1548
1549 /* Always 1 */
1550 .unknown7 = 1,
1551
1552 /* Assume we can continue; hint it out later */
1553 .cont = 1,
1554 }
1555 };
1556
1557 /* Set registers to read and write from the same place */
1558 ins.texture.in_reg_select = in_reg;
1559 ins.texture.out_reg_select = out_reg;
1560
1561 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1562 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1563 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1564 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1565 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1566 } else {
1567 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1568 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1569 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1570 }
1571
1572 emit_mir_instruction(ctx, ins);
1573
1574 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1575
1576 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1577 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1578 ctx->texture_index[reg] = o_index;
1579
1580 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1581 emit_mir_instruction(ctx, ins2);
1582
1583 /* Used for .cont and .last hinting */
1584 ctx->texture_op_count++;
1585 }
1586
1587 static void
1588 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1589 {
1590 switch (instr->type) {
1591 case nir_jump_break: {
1592 /* Emit a branch out of the loop */
1593 struct midgard_instruction br = v_branch(false, false);
1594 br.branch.target_type = TARGET_BREAK;
1595 br.branch.target_break = ctx->current_loop;
1596 emit_mir_instruction(ctx, br);
1597
1598 DBG("break..\n");
1599 break;
1600 }
1601
1602 default:
1603 DBG("Unknown jump type %d\n", instr->type);
1604 break;
1605 }
1606 }
1607
1608 static void
1609 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1610 {
1611 switch (instr->type) {
1612 case nir_instr_type_load_const:
1613 emit_load_const(ctx, nir_instr_as_load_const(instr));
1614 break;
1615
1616 case nir_instr_type_intrinsic:
1617 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1618 break;
1619
1620 case nir_instr_type_alu:
1621 emit_alu(ctx, nir_instr_as_alu(instr));
1622 break;
1623
1624 case nir_instr_type_tex:
1625 emit_tex(ctx, nir_instr_as_tex(instr));
1626 break;
1627
1628 case nir_instr_type_jump:
1629 emit_jump(ctx, nir_instr_as_jump(instr));
1630 break;
1631
1632 case nir_instr_type_ssa_undef:
1633 /* Spurious */
1634 break;
1635
1636 default:
1637 DBG("Unhandled instruction type\n");
1638 break;
1639 }
1640 }
1641
1642 /* Determine the actual hardware from the index based on the RA results or special values */
1643
1644 static int
1645 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1646 {
1647 if (reg >= SSA_FIXED_MINIMUM)
1648 return SSA_REG_FROM_FIXED(reg);
1649
1650 if (reg >= 0) {
1651 assert(reg < maxreg);
1652 int r = ra_get_node_reg(g, reg);
1653 ctx->work_registers = MAX2(ctx->work_registers, r);
1654 return r;
1655 }
1656
1657 switch (reg) {
1658 /* fmov style unused */
1659 case SSA_UNUSED_0:
1660 return REGISTER_UNUSED;
1661
1662 /* lut style unused */
1663 case SSA_UNUSED_1:
1664 return REGISTER_UNUSED;
1665
1666 default:
1667 DBG("Unknown SSA register alias %d\n", reg);
1668 assert(0);
1669 return 31;
1670 }
1671 }
1672
1673 static unsigned int
1674 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1675 {
1676 /* Choose the first available register to minimise reported register pressure */
1677
1678 for (int i = 0; i < 16; ++i) {
1679 if (BITSET_TEST(regs, i)) {
1680 return i;
1681 }
1682 }
1683
1684 assert(0);
1685 return 0;
1686 }
1687
1688 static bool
1689 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1690 {
1691 if (ins->ssa_args.src0 == src) return true;
1692 if (ins->ssa_args.src1 == src) return true;
1693
1694 return false;
1695 }
1696
1697 static bool
1698 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1699 {
1700 /* Check the rest of the block for liveness */
1701 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1702 if (midgard_is_live_in_instr(ins, src))
1703 return true;
1704 }
1705
1706 /* Check the rest of the blocks for liveness */
1707 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1708 mir_foreach_instr_in_block(b, ins) {
1709 if (midgard_is_live_in_instr(ins, src))
1710 return true;
1711 }
1712 }
1713
1714 /* TODO: How does control flow interact in complex shaders? */
1715
1716 return false;
1717 }
1718
1719 static void
1720 allocate_registers(compiler_context *ctx)
1721 {
1722 /* First, initialize the RA */
1723 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1724
1725 /* Create a primary (general purpose) class, as well as special purpose
1726 * pipeline register classes */
1727
1728 int primary_class = ra_alloc_reg_class(regs);
1729 int varying_class = ra_alloc_reg_class(regs);
1730
1731 /* Add the full set of work registers */
1732 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1733 for (int i = 0; i < work_count; ++i)
1734 ra_class_add_reg(regs, primary_class, i);
1735
1736 /* Add special registers */
1737 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1738 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1739
1740 /* We're done setting up */
1741 ra_set_finalize(regs, NULL);
1742
1743 /* Transform the MIR into squeezed index form */
1744 mir_foreach_block(ctx, block) {
1745 mir_foreach_instr_in_block(block, ins) {
1746 if (ins->compact_branch) continue;
1747
1748 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1749 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1750 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1751 }
1752 if (midgard_debug & MIDGARD_DBG_SHADERS)
1753 print_mir_block(block);
1754 }
1755
1756 /* Let's actually do register allocation */
1757 int nodes = ctx->temp_count;
1758 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1759
1760 /* Set everything to the work register class, unless it has somewhere
1761 * special to go */
1762
1763 mir_foreach_block(ctx, block) {
1764 mir_foreach_instr_in_block(block, ins) {
1765 if (ins->compact_branch) continue;
1766
1767 if (ins->ssa_args.dest < 0) continue;
1768
1769 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1770
1771 int class = primary_class;
1772
1773 ra_set_node_class(g, ins->ssa_args.dest, class);
1774 }
1775 }
1776
1777 for (int index = 0; index <= ctx->max_hash; ++index) {
1778 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1779
1780 if (temp) {
1781 unsigned reg = temp - 1;
1782 int t = find_or_allocate_temp(ctx, index);
1783 ra_set_node_reg(g, t, reg);
1784 }
1785 }
1786
1787 /* Determine liveness */
1788
1789 int *live_start = malloc(nodes * sizeof(int));
1790 int *live_end = malloc(nodes * sizeof(int));
1791
1792 /* Initialize as non-existent */
1793
1794 for (int i = 0; i < nodes; ++i) {
1795 live_start[i] = live_end[i] = -1;
1796 }
1797
1798 int d = 0;
1799
1800 mir_foreach_block(ctx, block) {
1801 mir_foreach_instr_in_block(block, ins) {
1802 if (ins->compact_branch) continue;
1803
1804 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1805 /* If this destination is not yet live, it is now since we just wrote it */
1806
1807 int dest = ins->ssa_args.dest;
1808
1809 if (live_start[dest] == -1)
1810 live_start[dest] = d;
1811 }
1812
1813 /* Since we just used a source, the source might be
1814 * dead now. Scan the rest of the block for
1815 * invocations, and if there are none, the source dies
1816 * */
1817
1818 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1819
1820 for (int src = 0; src < 2; ++src) {
1821 int s = sources[src];
1822
1823 if (s < 0) continue;
1824
1825 if (s >= SSA_FIXED_MINIMUM) continue;
1826
1827 if (!is_live_after(ctx, block, ins, s)) {
1828 live_end[s] = d;
1829 }
1830 }
1831
1832 ++d;
1833 }
1834 }
1835
1836 /* If a node still hasn't been killed, kill it now */
1837
1838 for (int i = 0; i < nodes; ++i) {
1839 /* live_start == -1 most likely indicates a pinned output */
1840
1841 if (live_end[i] == -1)
1842 live_end[i] = d;
1843 }
1844
1845 /* Setup interference between nodes that are live at the same time */
1846
1847 for (int i = 0; i < nodes; ++i) {
1848 for (int j = i + 1; j < nodes; ++j) {
1849 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1850 ra_add_node_interference(g, i, j);
1851 }
1852 }
1853
1854 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1855
1856 if (!ra_allocate(g)) {
1857 DBG("Error allocating registers\n");
1858 assert(0);
1859 }
1860
1861 /* Cleanup */
1862 free(live_start);
1863 free(live_end);
1864
1865 mir_foreach_block(ctx, block) {
1866 mir_foreach_instr_in_block(block, ins) {
1867 if (ins->compact_branch) continue;
1868
1869 ssa_args args = ins->ssa_args;
1870
1871 switch (ins->type) {
1872 case TAG_ALU_4:
1873 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1874
1875 ins->registers.src2_imm = args.inline_constant;
1876
1877 if (args.inline_constant) {
1878 /* Encode inline 16-bit constant as a vector by default */
1879
1880 ins->registers.src2_reg = ins->inline_constant >> 11;
1881
1882 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1883
1884 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1885 ins->alu.src2 = imm << 2;
1886 } else {
1887 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1888 }
1889
1890 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1891
1892 break;
1893
1894 case TAG_LOAD_STORE_4: {
1895 if (OP_IS_STORE(ins->load_store.op)) {
1896 /* TODO: use ssa_args for store_vary */
1897 ins->load_store.reg = 0;
1898 } else {
1899 bool has_dest = args.dest >= 0;
1900 int ssa_arg = has_dest ? args.dest : args.src0;
1901
1902 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1903 }
1904
1905 break;
1906 }
1907
1908 default:
1909 break;
1910 }
1911 }
1912 }
1913 }
1914
1915 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1916 * use scalar ALU instructions, for functional or performance reasons. To do
1917 * this, we just demote vector ALU payloads to scalar. */
1918
1919 static int
1920 component_from_mask(unsigned mask)
1921 {
1922 for (int c = 0; c < 4; ++c) {
1923 if (mask & (3 << (2 * c)))
1924 return c;
1925 }
1926
1927 assert(0);
1928 return 0;
1929 }
1930
1931 static bool
1932 is_single_component_mask(unsigned mask)
1933 {
1934 int components = 0;
1935
1936 for (int c = 0; c < 4; ++c)
1937 if (mask & (3 << (2 * c)))
1938 components++;
1939
1940 return components == 1;
1941 }
1942
1943 /* Create a mask of accessed components from a swizzle to figure out vector
1944 * dependencies */
1945
1946 static unsigned
1947 swizzle_to_access_mask(unsigned swizzle)
1948 {
1949 unsigned component_mask = 0;
1950
1951 for (int i = 0; i < 4; ++i) {
1952 unsigned c = (swizzle >> (2 * i)) & 3;
1953 component_mask |= (1 << c);
1954 }
1955
1956 return component_mask;
1957 }
1958
1959 static unsigned
1960 vector_to_scalar_source(unsigned u)
1961 {
1962 midgard_vector_alu_src v;
1963 memcpy(&v, &u, sizeof(v));
1964
1965 midgard_scalar_alu_src s = {
1966 .abs = v.abs,
1967 .negate = v.negate,
1968 .full = !v.half,
1969 .component = (v.swizzle & 3) << 1
1970 };
1971
1972 unsigned o;
1973 memcpy(&o, &s, sizeof(s));
1974
1975 return o & ((1 << 6) - 1);
1976 }
1977
1978 static midgard_scalar_alu
1979 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1980 {
1981 /* The output component is from the mask */
1982 midgard_scalar_alu s = {
1983 .op = v.op,
1984 .src1 = vector_to_scalar_source(v.src1),
1985 .src2 = vector_to_scalar_source(v.src2),
1986 .unknown = 0,
1987 .outmod = v.outmod,
1988 .output_full = 1, /* TODO: Half */
1989 .output_component = component_from_mask(v.mask) << 1,
1990 };
1991
1992 /* Inline constant is passed along rather than trying to extract it
1993 * from v */
1994
1995 if (ins->ssa_args.inline_constant) {
1996 uint16_t imm = 0;
1997 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1998 imm |= (lower_11 >> 9) & 3;
1999 imm |= (lower_11 >> 6) & 4;
2000 imm |= (lower_11 >> 2) & 0x38;
2001 imm |= (lower_11 & 63) << 6;
2002
2003 s.src2 = imm;
2004 }
2005
2006 return s;
2007 }
2008
2009 /* Midgard prefetches instruction types, so during emission we need to
2010 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2011 * if this is the second to last and the last is an ALU, then it's also 1... */
2012
2013 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2014 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2015
2016 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2017 bytes_emitted += sizeof(type)
2018
2019 static void
2020 emit_binary_vector_instruction(midgard_instruction *ains,
2021 uint16_t *register_words, int *register_words_count,
2022 uint64_t *body_words, size_t *body_size, int *body_words_count,
2023 size_t *bytes_emitted)
2024 {
2025 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2026 *bytes_emitted += sizeof(midgard_reg_info);
2027
2028 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2029 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2030 *bytes_emitted += sizeof(midgard_vector_alu);
2031 }
2032
2033 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2034 * mind that we are a vector architecture and we can write to different
2035 * components simultaneously */
2036
2037 static bool
2038 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2039 {
2040 /* Each instruction reads some registers and writes to a register. See
2041 * where the first writes */
2042
2043 /* Figure out where exactly we wrote to */
2044 int source = first->ssa_args.dest;
2045 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2046
2047 /* As long as the second doesn't read from the first, we're okay */
2048 if (second->ssa_args.src0 == source) {
2049 if (first->type == TAG_ALU_4) {
2050 /* Figure out which components we just read from */
2051
2052 int q = second->alu.src1;
2053 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2054
2055 /* Check if there are components in common, and fail if so */
2056 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2057 return false;
2058 } else
2059 return false;
2060
2061 }
2062
2063 if (second->ssa_args.src1 == source)
2064 return false;
2065
2066 /* Otherwise, it's safe in that regard. Another data hazard is both
2067 * writing to the same place, of course */
2068
2069 if (second->ssa_args.dest == source) {
2070 /* ...but only if the components overlap */
2071 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2072
2073 if (dest_mask & source_mask)
2074 return false;
2075 }
2076
2077 /* ...That's it */
2078 return true;
2079 }
2080
2081 static bool
2082 midgard_has_hazard(
2083 midgard_instruction **segment, unsigned segment_size,
2084 midgard_instruction *ains)
2085 {
2086 for (int s = 0; s < segment_size; ++s)
2087 if (!can_run_concurrent_ssa(segment[s], ains))
2088 return true;
2089
2090 return false;
2091
2092
2093 }
2094
2095 /* Schedules, but does not emit, a single basic block. After scheduling, the
2096 * final tag and size of the block are known, which are necessary for branching
2097 * */
2098
2099 static midgard_bundle
2100 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2101 {
2102 int instructions_emitted = 0, instructions_consumed = -1;
2103 midgard_bundle bundle = { 0 };
2104
2105 uint8_t tag = ins->type;
2106
2107 /* Default to the instruction's tag */
2108 bundle.tag = tag;
2109
2110 switch (ins->type) {
2111 case TAG_ALU_4: {
2112 uint32_t control = 0;
2113 size_t bytes_emitted = sizeof(control);
2114
2115 /* TODO: Constant combining */
2116 int index = 0, last_unit = 0;
2117
2118 /* Previous instructions, for the purpose of parallelism */
2119 midgard_instruction *segment[4] = {0};
2120 int segment_size = 0;
2121
2122 instructions_emitted = -1;
2123 midgard_instruction *pins = ins;
2124
2125 for (;;) {
2126 midgard_instruction *ains = pins;
2127
2128 /* Advance instruction pointer */
2129 if (index) {
2130 ains = mir_next_op(pins);
2131 pins = ains;
2132 }
2133
2134 /* Out-of-work condition */
2135 if ((struct list_head *) ains == &block->instructions)
2136 break;
2137
2138 /* Ensure that the chain can continue */
2139 if (ains->type != TAG_ALU_4) break;
2140
2141 /* According to the presentation "The ARM
2142 * Mali-T880 Mobile GPU" from HotChips 27,
2143 * there are two pipeline stages. Branching
2144 * position determined experimentally. Lines
2145 * are executed in parallel:
2146 *
2147 * [ VMUL ] [ SADD ]
2148 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2149 *
2150 * Verify that there are no ordering dependencies here.
2151 *
2152 * TODO: Allow for parallelism!!!
2153 */
2154
2155 /* Pick a unit for it if it doesn't force a particular unit */
2156
2157 int unit = ains->unit;
2158
2159 if (!unit) {
2160 int op = ains->alu.op;
2161 int units = alu_opcode_props[op];
2162
2163 /* TODO: Promotion of scalars to vectors */
2164 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2165
2166 if (!vector)
2167 assert(units & UNITS_SCALAR);
2168
2169 if (vector) {
2170 if (last_unit >= UNIT_VADD) {
2171 if (units & UNIT_VLUT)
2172 unit = UNIT_VLUT;
2173 else
2174 break;
2175 } else {
2176 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2177 unit = UNIT_VMUL;
2178 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2179 unit = UNIT_VADD;
2180 else if (units & UNIT_VLUT)
2181 unit = UNIT_VLUT;
2182 else
2183 break;
2184 }
2185 } else {
2186 if (last_unit >= UNIT_VADD) {
2187 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2188 unit = UNIT_SMUL;
2189 else if (units & UNIT_VLUT)
2190 unit = UNIT_VLUT;
2191 else
2192 break;
2193 } else {
2194 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2195 unit = UNIT_SADD;
2196 else if (units & UNIT_SMUL)
2197 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2198 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2199 unit = UNIT_VADD;
2200 else
2201 break;
2202 }
2203 }
2204
2205 assert(unit & units);
2206 }
2207
2208 /* Late unit check, this time for encoding (not parallelism) */
2209 if (unit <= last_unit) break;
2210
2211 /* Clear the segment */
2212 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2213 segment_size = 0;
2214
2215 if (midgard_has_hazard(segment, segment_size, ains))
2216 break;
2217
2218 /* We're good to go -- emit the instruction */
2219 ains->unit = unit;
2220
2221 segment[segment_size++] = ains;
2222
2223 /* Only one set of embedded constants per
2224 * bundle possible; if we have more, we must
2225 * break the chain early, unfortunately */
2226
2227 if (ains->has_constants) {
2228 if (bundle.has_embedded_constants) {
2229 /* ...but if there are already
2230 * constants but these are the
2231 * *same* constants, we let it
2232 * through */
2233
2234 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2235 break;
2236 } else {
2237 bundle.has_embedded_constants = true;
2238 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2239
2240 /* If this is a blend shader special constant, track it for patching */
2241 if (ains->has_blend_constant)
2242 bundle.has_blend_constant = true;
2243 }
2244 }
2245
2246 if (ains->unit & UNITS_ANY_VECTOR) {
2247 emit_binary_vector_instruction(ains, bundle.register_words,
2248 &bundle.register_words_count, bundle.body_words,
2249 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2250 } else if (ains->compact_branch) {
2251 /* All of r0 has to be written out
2252 * along with the branch writeout.
2253 * (slow!) */
2254
2255 if (ains->writeout) {
2256 if (index == 0) {
2257 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2258 ins.unit = UNIT_VMUL;
2259
2260 control |= ins.unit;
2261
2262 emit_binary_vector_instruction(&ins, bundle.register_words,
2263 &bundle.register_words_count, bundle.body_words,
2264 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2265 } else {
2266 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2267 bool written_late = false;
2268 bool components[4] = { 0 };
2269 uint16_t register_dep_mask = 0;
2270 uint16_t written_mask = 0;
2271
2272 midgard_instruction *qins = ins;
2273 for (int t = 0; t < index; ++t) {
2274 if (qins->registers.out_reg != 0) {
2275 /* Mark down writes */
2276
2277 written_mask |= (1 << qins->registers.out_reg);
2278 } else {
2279 /* Mark down the register dependencies for errata check */
2280
2281 if (qins->registers.src1_reg < 16)
2282 register_dep_mask |= (1 << qins->registers.src1_reg);
2283
2284 if (qins->registers.src2_reg < 16)
2285 register_dep_mask |= (1 << qins->registers.src2_reg);
2286
2287 int mask = qins->alu.mask;
2288
2289 for (int c = 0; c < 4; ++c)
2290 if (mask & (0x3 << (2 * c)))
2291 components[c] = true;
2292
2293 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2294
2295 if (qins->unit == UNIT_VLUT)
2296 written_late = true;
2297 }
2298
2299 /* Advance instruction pointer */
2300 qins = mir_next_op(qins);
2301 }
2302
2303
2304 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2305 if (register_dep_mask & written_mask) {
2306 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2307 break;
2308 }
2309
2310 if (written_late)
2311 break;
2312
2313 /* If even a single component is not written, break it up (conservative check). */
2314 bool breakup = false;
2315
2316 for (int c = 0; c < 4; ++c)
2317 if (!components[c])
2318 breakup = true;
2319
2320 if (breakup)
2321 break;
2322
2323 /* Otherwise, we're free to proceed */
2324 }
2325 }
2326
2327 if (ains->unit == ALU_ENAB_BRANCH) {
2328 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2329 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2330 bytes_emitted += sizeof(midgard_branch_extended);
2331 } else {
2332 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2333 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2334 bytes_emitted += sizeof(ains->br_compact);
2335 }
2336 } else {
2337 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2338 bytes_emitted += sizeof(midgard_reg_info);
2339
2340 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2341 bundle.body_words_count++;
2342 bytes_emitted += sizeof(midgard_scalar_alu);
2343 }
2344
2345 /* Defer marking until after writing to allow for break */
2346 control |= ains->unit;
2347 last_unit = ains->unit;
2348 ++instructions_emitted;
2349 ++index;
2350 }
2351
2352 /* Bubble up the number of instructions for skipping */
2353 instructions_consumed = index - 1;
2354
2355 int padding = 0;
2356
2357 /* Pad ALU op to nearest word */
2358
2359 if (bytes_emitted & 15) {
2360 padding = 16 - (bytes_emitted & 15);
2361 bytes_emitted += padding;
2362 }
2363
2364 /* Constants must always be quadwords */
2365 if (bundle.has_embedded_constants)
2366 bytes_emitted += 16;
2367
2368 /* Size ALU instruction for tag */
2369 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2370 bundle.padding = padding;
2371 bundle.control = bundle.tag | control;
2372
2373 break;
2374 }
2375
2376 case TAG_LOAD_STORE_4: {
2377 /* Load store instructions have two words at once. If
2378 * we only have one queued up, we need to NOP pad.
2379 * Otherwise, we store both in succession to save space
2380 * and cycles -- letting them go in parallel -- skip
2381 * the next. The usefulness of this optimisation is
2382 * greatly dependent on the quality of the instruction
2383 * scheduler.
2384 */
2385
2386 midgard_instruction *next_op = mir_next_op(ins);
2387
2388 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2389 /* As the two operate concurrently, make sure
2390 * they are not dependent */
2391
2392 if (can_run_concurrent_ssa(ins, next_op) || true) {
2393 /* Skip ahead, since it's redundant with the pair */
2394 instructions_consumed = 1 + (instructions_emitted++);
2395 }
2396 }
2397
2398 break;
2399 }
2400
2401 default:
2402 /* Texture ops default to single-op-per-bundle scheduling */
2403 break;
2404 }
2405
2406 /* Copy the instructions into the bundle */
2407 bundle.instruction_count = instructions_emitted + 1;
2408
2409 int used_idx = 0;
2410
2411 midgard_instruction *uins = ins;
2412 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2413 bundle.instructions[used_idx++] = *uins;
2414 uins = mir_next_op(uins);
2415 }
2416
2417 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2418
2419 return bundle;
2420 }
2421
2422 static int
2423 quadword_size(int tag)
2424 {
2425 switch (tag) {
2426 case TAG_ALU_4:
2427 return 1;
2428
2429 case TAG_ALU_8:
2430 return 2;
2431
2432 case TAG_ALU_12:
2433 return 3;
2434
2435 case TAG_ALU_16:
2436 return 4;
2437
2438 case TAG_LOAD_STORE_4:
2439 return 1;
2440
2441 case TAG_TEXTURE_4:
2442 return 1;
2443
2444 default:
2445 assert(0);
2446 return 0;
2447 }
2448 }
2449
2450 /* Schedule a single block by iterating its instruction to create bundles.
2451 * While we go, tally about the bundle sizes to compute the block size. */
2452
2453 static void
2454 schedule_block(compiler_context *ctx, midgard_block *block)
2455 {
2456 util_dynarray_init(&block->bundles, NULL);
2457
2458 block->quadword_count = 0;
2459
2460 mir_foreach_instr_in_block(block, ins) {
2461 int skip;
2462 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2463 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2464
2465 if (bundle.has_blend_constant) {
2466 /* TODO: Multiblock? */
2467 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2468 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2469 }
2470
2471 while(skip--)
2472 ins = mir_next_op(ins);
2473
2474 block->quadword_count += quadword_size(bundle.tag);
2475 }
2476
2477 block->is_scheduled = true;
2478 }
2479
2480 static void
2481 schedule_program(compiler_context *ctx)
2482 {
2483 allocate_registers(ctx);
2484
2485 mir_foreach_block(ctx, block) {
2486 schedule_block(ctx, block);
2487 }
2488 }
2489
2490 /* After everything is scheduled, emit whole bundles at a time */
2491
2492 static void
2493 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2494 {
2495 int lookahead = next_tag << 4;
2496
2497 switch (bundle->tag) {
2498 case TAG_ALU_4:
2499 case TAG_ALU_8:
2500 case TAG_ALU_12:
2501 case TAG_ALU_16: {
2502 /* Actually emit each component */
2503 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2504
2505 for (int i = 0; i < bundle->register_words_count; ++i)
2506 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2507
2508 /* Emit body words based on the instructions bundled */
2509 for (int i = 0; i < bundle->instruction_count; ++i) {
2510 midgard_instruction *ins = &bundle->instructions[i];
2511
2512 if (ins->unit & UNITS_ANY_VECTOR) {
2513 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2514 } else if (ins->compact_branch) {
2515 /* Dummy move, XXX DRY */
2516 if ((i == 0) && ins->writeout) {
2517 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2518 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2519 }
2520
2521 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2522 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2523 } else {
2524 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2525 }
2526 } else {
2527 /* Scalar */
2528 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2529 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2530 }
2531 }
2532
2533 /* Emit padding (all zero) */
2534 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2535
2536 /* Tack on constants */
2537
2538 if (bundle->has_embedded_constants) {
2539 util_dynarray_append(emission, float, bundle->constants[0]);
2540 util_dynarray_append(emission, float, bundle->constants[1]);
2541 util_dynarray_append(emission, float, bundle->constants[2]);
2542 util_dynarray_append(emission, float, bundle->constants[3]);
2543 }
2544
2545 break;
2546 }
2547
2548 case TAG_LOAD_STORE_4: {
2549 /* One or two composing instructions */
2550
2551 uint64_t current64, next64 = LDST_NOP;
2552
2553 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2554
2555 if (bundle->instruction_count == 2)
2556 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2557
2558 midgard_load_store instruction = {
2559 .type = bundle->tag,
2560 .next_type = next_tag,
2561 .word1 = current64,
2562 .word2 = next64
2563 };
2564
2565 util_dynarray_append(emission, midgard_load_store, instruction);
2566
2567 break;
2568 }
2569
2570 case TAG_TEXTURE_4: {
2571 /* Texture instructions are easy, since there is no
2572 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2573
2574 midgard_instruction *ins = &bundle->instructions[0];
2575
2576 ins->texture.type = TAG_TEXTURE_4;
2577 ins->texture.next_type = next_tag;
2578
2579 ctx->texture_op_count--;
2580
2581 if (!ctx->texture_op_count) {
2582 ins->texture.cont = 0;
2583 ins->texture.last = 1;
2584 }
2585
2586 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2587 break;
2588 }
2589
2590 default:
2591 DBG("Unknown midgard instruction type\n");
2592 assert(0);
2593 break;
2594 }
2595 }
2596
2597
2598 /* ALU instructions can inline or embed constants, which decreases register
2599 * pressure and saves space. */
2600
2601 #define CONDITIONAL_ATTACH(src) { \
2602 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2603 \
2604 if (entry) { \
2605 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2606 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2607 } \
2608 }
2609
2610 static void
2611 inline_alu_constants(compiler_context *ctx)
2612 {
2613 mir_foreach_instr(ctx, alu) {
2614 /* Other instructions cannot inline constants */
2615 if (alu->type != TAG_ALU_4) continue;
2616
2617 /* If there is already a constant here, we can do nothing */
2618 if (alu->has_constants) continue;
2619
2620 CONDITIONAL_ATTACH(src0);
2621
2622 if (!alu->has_constants) {
2623 CONDITIONAL_ATTACH(src1)
2624 } else if (!alu->inline_constant) {
2625 /* Corner case: _two_ vec4 constants, for instance with a
2626 * csel. For this case, we can only use a constant
2627 * register for one, we'll have to emit a move for the
2628 * other. Note, if both arguments are constants, then
2629 * necessarily neither argument depends on the value of
2630 * any particular register. As the destination register
2631 * will be wiped, that means we can spill the constant
2632 * to the destination register.
2633 */
2634
2635 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2636 unsigned scratch = alu->ssa_args.dest;
2637
2638 if (entry) {
2639 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2640 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2641
2642 /* Force a break XXX Defer r31 writes */
2643 ins.unit = UNIT_VLUT;
2644
2645 /* Set the source */
2646 alu->ssa_args.src1 = scratch;
2647
2648 /* Inject us -before- the last instruction which set r31 */
2649 mir_insert_instruction_before(mir_prev_op(alu), ins);
2650 }
2651 }
2652 }
2653 }
2654
2655 /* Midgard supports two types of constants, embedded constants (128-bit) and
2656 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2657 * constants can be demoted to inline constants, for space savings and
2658 * sometimes a performance boost */
2659
2660 static void
2661 embedded_to_inline_constant(compiler_context *ctx)
2662 {
2663 mir_foreach_instr(ctx, ins) {
2664 if (!ins->has_constants) continue;
2665
2666 if (ins->ssa_args.inline_constant) continue;
2667
2668 /* Blend constants must not be inlined by definition */
2669 if (ins->has_blend_constant) continue;
2670
2671 /* src1 cannot be an inline constant due to encoding
2672 * restrictions. So, if possible we try to flip the arguments
2673 * in that case */
2674
2675 int op = ins->alu.op;
2676
2677 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2678 /* Flip based on op. Fallthrough intentional */
2679
2680 switch (op) {
2681 /* These ops require an operational change to flip their arguments TODO */
2682 case midgard_alu_op_flt:
2683 case midgard_alu_op_fle:
2684 case midgard_alu_op_ilt:
2685 case midgard_alu_op_ile:
2686 case midgard_alu_op_fcsel:
2687 case midgard_alu_op_icsel:
2688 case midgard_alu_op_isub:
2689 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2690 break;
2691
2692 /* These ops are commutative and Just Flip */
2693 case midgard_alu_op_fne:
2694 case midgard_alu_op_fadd:
2695 case midgard_alu_op_fmul:
2696 case midgard_alu_op_fmin:
2697 case midgard_alu_op_fmax:
2698 case midgard_alu_op_iadd:
2699 case midgard_alu_op_imul:
2700 case midgard_alu_op_feq:
2701 case midgard_alu_op_ieq:
2702 case midgard_alu_op_ine:
2703 case midgard_alu_op_iand:
2704 case midgard_alu_op_ior:
2705 case midgard_alu_op_ixor:
2706 /* Flip the SSA numbers */
2707 ins->ssa_args.src0 = ins->ssa_args.src1;
2708 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2709
2710 /* And flip the modifiers */
2711
2712 unsigned src_temp;
2713
2714 src_temp = ins->alu.src2;
2715 ins->alu.src2 = ins->alu.src1;
2716 ins->alu.src1 = src_temp;
2717
2718 default:
2719 break;
2720 }
2721 }
2722
2723 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2724 /* Extract the source information */
2725
2726 midgard_vector_alu_src *src;
2727 int q = ins->alu.src2;
2728 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2729 src = m;
2730
2731 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2732 int component = src->swizzle & 3;
2733
2734 /* Scale constant appropriately, if we can legally */
2735 uint16_t scaled_constant = 0;
2736
2737 /* XXX: Check legality */
2738 if (midgard_is_integer_op(op)) {
2739 /* TODO: Inline integer */
2740 continue;
2741
2742 unsigned int *iconstants = (unsigned int *) ins->constants;
2743 scaled_constant = (uint16_t) iconstants[component];
2744
2745 /* Constant overflow after resize */
2746 if (scaled_constant != iconstants[component])
2747 continue;
2748 } else {
2749 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2750 }
2751
2752 /* We don't know how to handle these with a constant */
2753
2754 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2755 DBG("Bailing inline constant...\n");
2756 continue;
2757 }
2758
2759 /* Make sure that the constant is not itself a
2760 * vector by checking if all accessed values
2761 * (by the swizzle) are the same. */
2762
2763 uint32_t *cons = (uint32_t *) ins->constants;
2764 uint32_t value = cons[component];
2765
2766 bool is_vector = false;
2767 unsigned mask = effective_writemask(&ins->alu);
2768
2769 for (int c = 1; c < 4; ++c) {
2770 /* We only care if this component is actually used */
2771 if (!(mask & (1 << c)))
2772 continue;
2773
2774 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2775
2776 if (test != value) {
2777 is_vector = true;
2778 break;
2779 }
2780 }
2781
2782 if (is_vector)
2783 continue;
2784
2785 /* Get rid of the embedded constant */
2786 ins->has_constants = false;
2787 ins->ssa_args.src1 = SSA_UNUSED_0;
2788 ins->ssa_args.inline_constant = true;
2789 ins->inline_constant = scaled_constant;
2790 }
2791 }
2792 }
2793
2794 /* Map normal SSA sources to other SSA sources / fixed registers (like
2795 * uniforms) */
2796
2797 static void
2798 map_ssa_to_alias(compiler_context *ctx, int *ref)
2799 {
2800 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2801
2802 if (alias) {
2803 /* Remove entry in leftovers to avoid a redunant fmov */
2804
2805 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2806
2807 if (leftover)
2808 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2809
2810 /* Assign the alias map */
2811 *ref = alias - 1;
2812 return;
2813 }
2814 }
2815
2816 #define AS_SRC(to, u) \
2817 int q##to = ins->alu.src2; \
2818 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2819
2820 /* Removing unused moves is necessary to clean up the texture pipeline results.
2821 *
2822 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2823
2824 static void
2825 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2826 {
2827 mir_foreach_instr_in_block_safe(block, ins) {
2828 if (ins->type != TAG_ALU_4) continue;
2829
2830 if (ins->alu.op != midgard_alu_op_fmov) continue;
2831
2832 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2833
2834 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2835
2836 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2837
2838 mir_remove_instruction(ins);
2839 }
2840 }
2841
2842 /* The following passes reorder MIR instructions to enable better scheduling */
2843
2844 static void
2845 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2846 {
2847 mir_foreach_instr_in_block_safe(block, ins) {
2848 if (ins->type != TAG_LOAD_STORE_4) continue;
2849
2850 /* We've found a load/store op. Check if next is also load/store. */
2851 midgard_instruction *next_op = mir_next_op(ins);
2852 if (&next_op->link != &block->instructions) {
2853 if (next_op->type == TAG_LOAD_STORE_4) {
2854 /* If so, we're done since we're a pair */
2855 ins = mir_next_op(ins);
2856 continue;
2857 }
2858
2859 /* Maximum search distance to pair, to avoid register pressure disasters */
2860 int search_distance = 8;
2861
2862 /* Otherwise, we have an orphaned load/store -- search for another load */
2863 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2864 /* Terminate search if necessary */
2865 if (!(search_distance--)) break;
2866
2867 if (c->type != TAG_LOAD_STORE_4) continue;
2868
2869 if (OP_IS_STORE(c->load_store.op)) continue;
2870
2871 /* We found one! Move it up to pair and remove it from the old location */
2872
2873 mir_insert_instruction_before(ins, *c);
2874 mir_remove_instruction(c);
2875
2876 break;
2877 }
2878 }
2879 }
2880 }
2881
2882 /* Emit varying stores late */
2883
2884 static void
2885 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2886 /* Iterate in reverse to get the final write, rather than the first */
2887
2888 mir_foreach_instr_in_block_safe_rev(block, ins) {
2889 /* Check if what we just wrote needs a store */
2890 int idx = ins->ssa_args.dest;
2891 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2892
2893 if (!varying) continue;
2894
2895 varying -= 1;
2896
2897 /* We need to store to the appropriate varying, so emit the
2898 * move/store */
2899
2900 /* TODO: Integrate with special purpose RA (and scheduler?) */
2901 bool high_varying_register = false;
2902
2903 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2904
2905 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2906 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2907
2908 mir_insert_instruction_before(mir_next_op(ins), st);
2909 mir_insert_instruction_before(mir_next_op(ins), mov);
2910
2911 /* We no longer need to store this varying */
2912 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2913 }
2914 }
2915
2916 /* If there are leftovers after the below pass, emit actual fmov
2917 * instructions for the slow-but-correct path */
2918
2919 static void
2920 emit_leftover_move(compiler_context *ctx)
2921 {
2922 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2923 int base = ((uintptr_t) leftover->key) - 1;
2924 int mapped = base;
2925
2926 map_ssa_to_alias(ctx, &mapped);
2927 EMIT(fmov, mapped, blank_alu_src, base);
2928 }
2929 }
2930
2931 static void
2932 actualise_ssa_to_alias(compiler_context *ctx)
2933 {
2934 mir_foreach_instr(ctx, ins) {
2935 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2936 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2937 }
2938
2939 emit_leftover_move(ctx);
2940 }
2941
2942 /* Vertex shaders do not write gl_Position as is; instead, they write a
2943 * transformed screen space position as a varying. See section 12.5 "Coordinate
2944 * Transformation" of the ES 3.2 full specification for details.
2945 *
2946 * This transformation occurs early on, as NIR and prior to optimisation, in
2947 * order to take advantage of NIR optimisation passes of the transform itself.
2948 * */
2949
2950 static void
2951 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2952 {
2953 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2954
2955 /* Get viewport from the uniforms */
2956 nir_intrinsic_instr *load;
2957 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2958 load->num_components = 4;
2959 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2960 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2961 nir_builder_instr_insert(b, &load->instr);
2962
2963 /* Formatted as <width, height, centerx, centery> */
2964 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2965 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2966 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2967 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2968
2969 /* XXX: From uniforms? */
2970 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2971 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2972
2973 /* World space to normalised device coordinates */
2974
2975 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2976 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2977
2978 /* Normalised device coordinates to screen space */
2979
2980 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2981 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2982
2983 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2984 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2985 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2986
2987 /* gl_Position will be written out in screenspace xyz, with w set to
2988 * the reciprocal we computed earlier. The transformed w component is
2989 * then used for perspective-correct varying interpolation. The
2990 * transformed w component must preserve its original sign; this is
2991 * used in depth clipping computations */
2992
2993 nir_ssa_def *screen_space = nir_vec4(b,
2994 nir_channel(b, viewport_xy, 0),
2995 nir_channel(b, viewport_xy, 1),
2996 screen_depth,
2997 w_recip);
2998
2999 /* Finally, write out the transformed values to the varying */
3000
3001 nir_intrinsic_instr *store;
3002 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3003 store->num_components = 4;
3004 nir_intrinsic_set_base(store, 0);
3005 nir_intrinsic_set_write_mask(store, 0xf);
3006 store->src[0].ssa = screen_space;
3007 store->src[0].is_ssa = true;
3008 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3009 nir_builder_instr_insert(b, &store->instr);
3010 }
3011
3012 static void
3013 transform_position_writes(nir_shader *shader)
3014 {
3015 nir_foreach_function(func, shader) {
3016 nir_foreach_block(block, func->impl) {
3017 nir_foreach_instr_safe(instr, block) {
3018 if (instr->type != nir_instr_type_intrinsic) continue;
3019
3020 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3021 nir_variable *out = NULL;
3022
3023 switch (intr->intrinsic) {
3024 case nir_intrinsic_store_output:
3025 /* already had i/o lowered.. lookup the matching output var: */
3026 nir_foreach_variable(var, &shader->outputs) {
3027 int drvloc = var->data.driver_location;
3028
3029 if (nir_intrinsic_base(intr) == drvloc) {
3030 out = var;
3031 break;
3032 }
3033 }
3034
3035 break;
3036
3037 default:
3038 break;
3039 }
3040
3041 if (!out) continue;
3042
3043 if (out->data.mode != nir_var_shader_out)
3044 continue;
3045
3046 if (out->data.location != VARYING_SLOT_POS)
3047 continue;
3048
3049 nir_builder b;
3050 nir_builder_init(&b, func->impl);
3051 b.cursor = nir_before_instr(instr);
3052
3053 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3054 nir_instr_remove(instr);
3055 }
3056 }
3057 }
3058 }
3059
3060 static void
3061 emit_fragment_epilogue(compiler_context *ctx)
3062 {
3063 /* Special case: writing out constants requires us to include the move
3064 * explicitly now, so shove it into r0 */
3065
3066 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3067
3068 if (constant_value) {
3069 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3070 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3071 emit_mir_instruction(ctx, ins);
3072 }
3073
3074 /* Perform the actual fragment writeout. We have two writeout/branch
3075 * instructions, forming a loop until writeout is successful as per the
3076 * docs. TODO: gl_FragDepth */
3077
3078 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3079 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3080 }
3081
3082 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3083 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3084 * with the int8 analogue to the fragment epilogue */
3085
3086 static void
3087 emit_blend_epilogue(compiler_context *ctx)
3088 {
3089 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3090
3091 midgard_instruction scale = {
3092 .type = TAG_ALU_4,
3093 .unit = UNIT_VMUL,
3094 .inline_constant = _mesa_float_to_half(255.0),
3095 .ssa_args = {
3096 .src0 = SSA_FIXED_REGISTER(0),
3097 .src1 = SSA_UNUSED_0,
3098 .dest = SSA_FIXED_REGISTER(24),
3099 .inline_constant = true
3100 },
3101 .alu = {
3102 .op = midgard_alu_op_fmul,
3103 .reg_mode = midgard_reg_mode_full,
3104 .dest_override = midgard_dest_override_lower,
3105 .mask = 0xFF,
3106 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3107 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3108 }
3109 };
3110
3111 emit_mir_instruction(ctx, scale);
3112
3113 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3114
3115 midgard_vector_alu_src alu_src = blank_alu_src;
3116 alu_src.half = true;
3117
3118 midgard_instruction f2u8 = {
3119 .type = TAG_ALU_4,
3120 .ssa_args = {
3121 .src0 = SSA_FIXED_REGISTER(24),
3122 .src1 = SSA_UNUSED_0,
3123 .dest = SSA_FIXED_REGISTER(0),
3124 .inline_constant = true
3125 },
3126 .alu = {
3127 .op = midgard_alu_op_f2u8,
3128 .reg_mode = midgard_reg_mode_half,
3129 .dest_override = midgard_dest_override_lower,
3130 .outmod = midgard_outmod_pos,
3131 .mask = 0xF,
3132 .src1 = vector_alu_srco_unsigned(alu_src),
3133 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3134 }
3135 };
3136
3137 emit_mir_instruction(ctx, f2u8);
3138
3139 /* vmul.imov.quarter r0, r0, r0 */
3140
3141 midgard_instruction imov_8 = {
3142 .type = TAG_ALU_4,
3143 .ssa_args = {
3144 .src0 = SSA_UNUSED_1,
3145 .src1 = SSA_FIXED_REGISTER(0),
3146 .dest = SSA_FIXED_REGISTER(0),
3147 },
3148 .alu = {
3149 .op = midgard_alu_op_imov,
3150 .reg_mode = midgard_reg_mode_quarter,
3151 .dest_override = midgard_dest_override_none,
3152 .mask = 0xFF,
3153 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3154 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3155 }
3156 };
3157
3158 /* Emit branch epilogue with the 8-bit move as the source */
3159
3160 emit_mir_instruction(ctx, imov_8);
3161 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3162
3163 emit_mir_instruction(ctx, imov_8);
3164 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3165 }
3166
3167 static midgard_block *
3168 emit_block(compiler_context *ctx, nir_block *block)
3169 {
3170 midgard_block *this_block = malloc(sizeof(midgard_block));
3171 list_addtail(&this_block->link, &ctx->blocks);
3172
3173 this_block->is_scheduled = false;
3174 ++ctx->block_count;
3175
3176 ctx->texture_index[0] = -1;
3177 ctx->texture_index[1] = -1;
3178
3179 /* Set up current block */
3180 list_inithead(&this_block->instructions);
3181 ctx->current_block = this_block;
3182
3183 nir_foreach_instr(instr, block) {
3184 emit_instr(ctx, instr);
3185 ++ctx->instruction_count;
3186 }
3187
3188 inline_alu_constants(ctx);
3189 embedded_to_inline_constant(ctx);
3190
3191 /* Perform heavylifting for aliasing */
3192 actualise_ssa_to_alias(ctx);
3193
3194 midgard_emit_store(ctx, this_block);
3195 midgard_eliminate_orphan_moves(ctx, this_block);
3196 midgard_pair_load_store(ctx, this_block);
3197
3198 /* Append fragment shader epilogue (value writeout) */
3199 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3200 if (block == nir_impl_last_block(ctx->func->impl)) {
3201 if (ctx->is_blend)
3202 emit_blend_epilogue(ctx);
3203 else
3204 emit_fragment_epilogue(ctx);
3205 }
3206 }
3207
3208 /* Fallthrough save */
3209 this_block->next_fallthrough = ctx->previous_source_block;
3210
3211 if (block == nir_start_block(ctx->func->impl))
3212 ctx->initial_block = this_block;
3213
3214 if (block == nir_impl_last_block(ctx->func->impl))
3215 ctx->final_block = this_block;
3216
3217 /* Allow the next control flow to access us retroactively, for
3218 * branching etc */
3219 ctx->current_block = this_block;
3220
3221 /* Document the fallthrough chain */
3222 ctx->previous_source_block = this_block;
3223
3224 return this_block;
3225 }
3226
3227 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3228
3229 static void
3230 emit_if(struct compiler_context *ctx, nir_if *nif)
3231 {
3232 /* Conditional branches expect the condition in r31.w; emit a move for
3233 * that in the _previous_ block (which is the current block). */
3234 emit_condition(ctx, &nif->condition, true);
3235
3236 /* Speculatively emit the branch, but we can't fill it in until later */
3237 EMIT(branch, true, true);
3238 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3239
3240 /* Emit the two subblocks */
3241 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3242
3243 /* Emit a jump from the end of the then block to the end of the else */
3244 EMIT(branch, false, false);
3245 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3246
3247 /* Emit second block, and check if it's empty */
3248
3249 int else_idx = ctx->block_count;
3250 int count_in = ctx->instruction_count;
3251 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3252 int after_else_idx = ctx->block_count;
3253
3254 /* Now that we have the subblocks emitted, fix up the branches */
3255
3256 assert(then_block);
3257 assert(else_block);
3258
3259 if (ctx->instruction_count == count_in) {
3260 /* The else block is empty, so don't emit an exit jump */
3261 mir_remove_instruction(then_exit);
3262 then_branch->branch.target_block = after_else_idx;
3263 } else {
3264 then_branch->branch.target_block = else_idx;
3265 then_exit->branch.target_block = after_else_idx;
3266 }
3267 }
3268
3269 static void
3270 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3271 {
3272 /* Remember where we are */
3273 midgard_block *start_block = ctx->current_block;
3274
3275 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3276 * single current_loop variable, maybe we need a stack */
3277
3278 int loop_idx = ++ctx->current_loop;
3279
3280 /* Get index from before the body so we can loop back later */
3281 int start_idx = ctx->block_count;
3282
3283 /* Emit the body itself */
3284 emit_cf_list(ctx, &nloop->body);
3285
3286 /* Branch back to loop back */
3287 struct midgard_instruction br_back = v_branch(false, false);
3288 br_back.branch.target_block = start_idx;
3289 emit_mir_instruction(ctx, br_back);
3290
3291 /* Find the index of the block about to follow us (note: we don't add
3292 * one; blocks are 0-indexed so we get a fencepost problem) */
3293 int break_block_idx = ctx->block_count;
3294
3295 /* Fix up the break statements we emitted to point to the right place,
3296 * now that we can allocate a block number for them */
3297
3298 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3299 if (midgard_debug & MIDGARD_DBG_SHADERS)
3300 print_mir_block(block);
3301 mir_foreach_instr_in_block(block, ins) {
3302 if (ins->type != TAG_ALU_4) continue;
3303 if (!ins->compact_branch) continue;
3304 if (ins->prepacked_branch) continue;
3305
3306 /* We found a branch -- check the type to see if we need to do anything */
3307 if (ins->branch.target_type != TARGET_BREAK) continue;
3308
3309 /* It's a break! Check if it's our break */
3310 if (ins->branch.target_break != loop_idx) continue;
3311
3312 /* Okay, cool, we're breaking out of this loop.
3313 * Rewrite from a break to a goto */
3314
3315 ins->branch.target_type = TARGET_GOTO;
3316 ins->branch.target_block = break_block_idx;
3317 }
3318 }
3319 }
3320
3321 static midgard_block *
3322 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3323 {
3324 midgard_block *start_block = NULL;
3325
3326 foreach_list_typed(nir_cf_node, node, node, list) {
3327 switch (node->type) {
3328 case nir_cf_node_block: {
3329 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3330
3331 if (!start_block)
3332 start_block = block;
3333
3334 break;
3335 }
3336
3337 case nir_cf_node_if:
3338 emit_if(ctx, nir_cf_node_as_if(node));
3339 break;
3340
3341 case nir_cf_node_loop:
3342 emit_loop(ctx, nir_cf_node_as_loop(node));
3343 break;
3344
3345 case nir_cf_node_function:
3346 assert(0);
3347 break;
3348 }
3349 }
3350
3351 return start_block;
3352 }
3353
3354 /* Due to lookahead, we need to report the first tag executed in the command
3355 * stream and in branch targets. An initial block might be empty, so iterate
3356 * until we find one that 'works' */
3357
3358 static unsigned
3359 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3360 {
3361 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3362
3363 unsigned first_tag = 0;
3364
3365 do {
3366 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3367
3368 if (initial_bundle) {
3369 first_tag = initial_bundle->tag;
3370 break;
3371 }
3372
3373 /* Initial block is empty, try the next block */
3374 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3375 } while(initial_block != NULL);
3376
3377 assert(first_tag);
3378 return first_tag;
3379 }
3380
3381 int
3382 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3383 {
3384 struct util_dynarray *compiled = &program->compiled;
3385
3386 midgard_debug = debug_get_option_midgard_debug();
3387
3388 compiler_context ictx = {
3389 .nir = nir,
3390 .stage = nir->info.stage,
3391
3392 .is_blend = is_blend,
3393 .blend_constant_offset = -1,
3394
3395 .alpha_ref = program->alpha_ref
3396 };
3397
3398 compiler_context *ctx = &ictx;
3399
3400 /* TODO: Decide this at runtime */
3401 ctx->uniform_cutoff = 8;
3402
3403 switch (ctx->stage) {
3404 case MESA_SHADER_VERTEX:
3405 ctx->special_uniforms = 1;
3406 break;
3407
3408 default:
3409 ctx->special_uniforms = 0;
3410 break;
3411 }
3412
3413 /* Append epilogue uniforms if necessary. The cmdstream depends on
3414 * these being at the -end-; see assign_var_locations. */
3415
3416 if (ctx->stage == MESA_SHADER_VERTEX) {
3417 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3418 }
3419
3420 /* Assign var locations early, so the epilogue can use them if necessary */
3421
3422 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3423 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3424 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3425
3426 /* Initialize at a global (not block) level hash tables */
3427
3428 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3429 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3430 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3431 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3432 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3433 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3434
3435 /* Assign actual uniform location, skipping over samplers */
3436
3437 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3438
3439 nir_foreach_variable(var, &nir->uniforms) {
3440 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3441
3442 unsigned length = glsl_get_aoa_size(var->type);
3443
3444 if (!length) {
3445 length = glsl_get_length(var->type);
3446 }
3447
3448 if (!length) {
3449 length = glsl_get_matrix_columns(var->type);
3450 }
3451
3452 for (int col = 0; col < length; ++col) {
3453 int id = ctx->uniform_count++;
3454 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3455 }
3456 }
3457
3458 if (ctx->stage == MESA_SHADER_VERTEX) {
3459 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3460
3461 /* First, collect the special varyings */
3462 nir_foreach_variable(var, &nir->outputs) {
3463 if (var->data.location == VARYING_SLOT_POS) {
3464 /* Set position first, always. It takes up two
3465 * spots, the latter one is de facto unused (at
3466 * least from the shader's perspective), we
3467 * just need to skip over the spot*/
3468
3469 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3470 ctx->varying_count = MAX2(ctx->varying_count, 2);
3471 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3472 /* Set point size second (third, see above) */
3473 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3474 ctx->varying_count = MAX2(ctx->varying_count, 3);
3475
3476 program->writes_point_size = true;
3477 }
3478 }
3479
3480 /* Now, collect normal varyings */
3481
3482 nir_foreach_variable(var, &nir->outputs) {
3483 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3484
3485 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3486 int id = ctx->varying_count++;
3487 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3488 }
3489 }
3490 }
3491
3492
3493
3494 /* Lower vars -- not I/O -- before epilogue */
3495
3496 NIR_PASS_V(nir, nir_lower_var_copies);
3497 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3498 NIR_PASS_V(nir, nir_split_var_copies);
3499 NIR_PASS_V(nir, nir_lower_var_copies);
3500 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3501 NIR_PASS_V(nir, nir_lower_var_copies);
3502 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3503 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3504
3505 /* Append vertex epilogue before optimisation, so the epilogue itself
3506 * is optimised */
3507
3508 if (ctx->stage == MESA_SHADER_VERTEX)
3509 transform_position_writes(nir);
3510
3511 /* Optimisation passes */
3512
3513 optimise_nir(nir);
3514
3515 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3516 nir_print_shader(nir, stdout);
3517 }
3518
3519 /* Assign counts, now that we're sure (post-optimisation) */
3520 program->uniform_count = nir->num_uniforms;
3521
3522 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3523 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3524
3525
3526 nir_foreach_function(func, nir) {
3527 if (!func->impl)
3528 continue;
3529
3530 list_inithead(&ctx->blocks);
3531 ctx->block_count = 0;
3532 ctx->func = func;
3533
3534 emit_cf_list(ctx, &func->impl->body);
3535 emit_block(ctx, func->impl->end_block);
3536
3537 break; /* TODO: Multi-function shaders */
3538 }
3539
3540 util_dynarray_init(compiled, NULL);
3541
3542 /* Schedule! */
3543 schedule_program(ctx);
3544
3545 /* Now that all the bundles are scheduled and we can calculate block
3546 * sizes, emit actual branch instructions rather than placeholders */
3547
3548 int br_block_idx = 0;
3549
3550 mir_foreach_block(ctx, block) {
3551 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3552 for (int c = 0; c < bundle->instruction_count; ++c) {
3553 midgard_instruction *ins = &bundle->instructions[c];
3554
3555 if (!midgard_is_branch_unit(ins->unit)) continue;
3556
3557 if (ins->prepacked_branch) continue;
3558
3559 /* Parse some basic branch info */
3560 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3561 bool is_conditional = ins->branch.conditional;
3562 bool is_inverted = ins->branch.invert_conditional;
3563 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3564
3565 /* Determine the block we're jumping to */
3566 int target_number = ins->branch.target_block;
3567
3568 /* Report the destination tag. Discards don't need this */
3569 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3570
3571 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3572 int quadword_offset = 0;
3573
3574 if (is_discard) {
3575 /* Jump to the end of the shader. We
3576 * need to include not only the
3577 * following blocks, but also the
3578 * contents of our current block (since
3579 * discard can come in the middle of
3580 * the block) */
3581
3582 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3583
3584 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3585 quadword_offset += quadword_size(bun->tag);
3586 }
3587
3588 mir_foreach_block_from(ctx, blk, b) {
3589 quadword_offset += b->quadword_count;
3590 }
3591
3592 } else if (target_number > br_block_idx) {
3593 /* Jump forward */
3594
3595 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3596 midgard_block *blk = mir_get_block(ctx, idx);
3597 assert(blk);
3598
3599 quadword_offset += blk->quadword_count;
3600 }
3601 } else {
3602 /* Jump backwards */
3603
3604 for (int idx = br_block_idx; idx >= target_number; --idx) {
3605 midgard_block *blk = mir_get_block(ctx, idx);
3606 assert(blk);
3607
3608 quadword_offset -= blk->quadword_count;
3609 }
3610 }
3611
3612 /* Unconditional extended branches (far jumps)
3613 * have issues, so we always use a conditional
3614 * branch, setting the condition to always for
3615 * unconditional. For compact unconditional
3616 * branches, cond isn't used so it doesn't
3617 * matter what we pick. */
3618
3619 midgard_condition cond =
3620 !is_conditional ? midgard_condition_always :
3621 is_inverted ? midgard_condition_false :
3622 midgard_condition_true;
3623
3624 midgard_jmp_writeout_op op =
3625 is_discard ? midgard_jmp_writeout_op_discard :
3626 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3627 midgard_jmp_writeout_op_branch_cond;
3628
3629 if (!is_compact) {
3630 midgard_branch_extended branch =
3631 midgard_create_branch_extended(
3632 cond, op,
3633 dest_tag,
3634 quadword_offset);
3635
3636 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3637 } else if (is_conditional || is_discard) {
3638 midgard_branch_cond branch = {
3639 .op = op,
3640 .dest_tag = dest_tag,
3641 .offset = quadword_offset,
3642 .cond = cond
3643 };
3644
3645 assert(branch.offset == quadword_offset);
3646
3647 memcpy(&ins->br_compact, &branch, sizeof(branch));
3648 } else {
3649 assert(op == midgard_jmp_writeout_op_branch_uncond);
3650
3651 midgard_branch_uncond branch = {
3652 .op = op,
3653 .dest_tag = dest_tag,
3654 .offset = quadword_offset,
3655 .unknown = 1
3656 };
3657
3658 assert(branch.offset == quadword_offset);
3659
3660 memcpy(&ins->br_compact, &branch, sizeof(branch));
3661 }
3662 }
3663 }
3664
3665 ++br_block_idx;
3666 }
3667
3668 /* Emit flat binary from the instruction arrays. Iterate each block in
3669 * sequence. Save instruction boundaries such that lookahead tags can
3670 * be assigned easily */
3671
3672 /* Cache _all_ bundles in source order for lookahead across failed branches */
3673
3674 int bundle_count = 0;
3675 mir_foreach_block(ctx, block) {
3676 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3677 }
3678 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3679 int bundle_idx = 0;
3680 mir_foreach_block(ctx, block) {
3681 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3682 source_order_bundles[bundle_idx++] = bundle;
3683 }
3684 }
3685
3686 int current_bundle = 0;
3687
3688 mir_foreach_block(ctx, block) {
3689 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3690 int lookahead = 1;
3691
3692 if (current_bundle + 1 < bundle_count) {
3693 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3694
3695 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3696 lookahead = 1;
3697 } else {
3698 lookahead = next;
3699 }
3700 }
3701
3702 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3703 ++current_bundle;
3704 }
3705
3706 /* TODO: Free deeper */
3707 //util_dynarray_fini(&block->instructions);
3708 }
3709
3710 free(source_order_bundles);
3711
3712 /* Report the very first tag executed */
3713 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3714
3715 /* Deal with off-by-one related to the fencepost problem */
3716 program->work_register_count = ctx->work_registers + 1;
3717
3718 program->can_discard = ctx->can_discard;
3719 program->uniform_cutoff = ctx->uniform_cutoff;
3720
3721 program->blend_patch_offset = ctx->blend_constant_offset;
3722
3723 if (midgard_debug & MIDGARD_DBG_SHADERS)
3724 disassemble_midgard(program->compiled.data, program->compiled.size);
3725
3726 return 0;
3727 }