nir: Initialize lower_flrp_progress everywhere
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_32,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 /* Lower csel with mixed condition channels to mulitple csel instructions. For
719 * context, the csel ops on Midgard are vector in *outputs*, but not in
720 * *conditions*. So, if the condition is e.g. yyyy, a single op can select a
721 * vec4. But if the condition is e.g. xyzw, four ops are needed as the ISA
722 * can't cope with the divergent channels.*/
723
724 static void
725 midgard_nir_lower_mixed_csel_body(nir_builder *b, nir_alu_instr *alu)
726 {
727 if (alu->op != nir_op_bcsel)
728 return;
729
730 b->cursor = nir_before_instr(&alu->instr);
731
732 /* Must be run before registering */
733 assert(alu->dest.dest.is_ssa);
734
735 /* Check for mixed condition */
736
737 unsigned comp = alu->src[0].swizzle[0];
738 unsigned nr_components = alu->dest.dest.ssa.num_components;
739
740 bool mixed = false;
741
742 for (unsigned c = 1; c < nr_components; ++c)
743 mixed |= (alu->src[0].swizzle[c] != comp);
744
745 if (!mixed)
746 return;
747
748 /* We're mixed, so lower */
749
750 assert(nr_components <= 4);
751 nir_ssa_def *results[4];
752
753 nir_ssa_def *cond = nir_ssa_for_alu_src(b, alu, 0);
754 nir_ssa_def *choice0 = nir_ssa_for_alu_src(b, alu, 1);
755 nir_ssa_def *choice1 = nir_ssa_for_alu_src(b, alu, 2);
756
757 for (unsigned c = 0; c < nr_components; ++c) {
758 results[c] = nir_bcsel(b,
759 nir_channel(b, cond, c),
760 nir_channel(b, choice0, c),
761 nir_channel(b, choice1, c));
762 }
763
764 /* Replace with our scalarized version */
765
766 nir_ssa_def *result = nir_vec(b, results, nr_components);
767 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(result));
768 }
769
770 static int
771 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
772 {
773 switch (instr->intrinsic) {
774 case nir_intrinsic_load_viewport_scale:
775 return PAN_SYSVAL_VIEWPORT_SCALE;
776 case nir_intrinsic_load_viewport_offset:
777 return PAN_SYSVAL_VIEWPORT_OFFSET;
778 default:
779 return -1;
780 }
781 }
782
783 static void
784 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
785 {
786 int sysval = -1;
787
788 if (instr->type == nir_instr_type_intrinsic) {
789 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
790 sysval = midgard_nir_sysval_for_intrinsic(intr);
791 }
792
793 if (sysval < 0)
794 return;
795
796 /* We have a sysval load; check if it's already been assigned */
797
798 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
799 return;
800
801 /* It hasn't -- so assign it now! */
802
803 unsigned id = ctx->sysval_count++;
804 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
805 ctx->sysvals[id] = sysval;
806 }
807
808 static void
809 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
810 {
811 ctx->sysval_count = 0;
812
813 nir_foreach_function(function, shader) {
814 if (!function->impl) continue;
815
816 nir_foreach_block(block, function->impl) {
817 nir_foreach_instr_safe(instr, block) {
818 midgard_nir_assign_sysval_body(ctx, instr);
819 }
820 }
821 }
822 }
823
824 static bool
825 midgard_nir_lower_fdot2(nir_shader *shader)
826 {
827 bool progress = false;
828
829 nir_foreach_function(function, shader) {
830 if (!function->impl) continue;
831
832 nir_builder _b;
833 nir_builder *b = &_b;
834 nir_builder_init(b, function->impl);
835
836 nir_foreach_block(block, function->impl) {
837 nir_foreach_instr_safe(instr, block) {
838 if (instr->type != nir_instr_type_alu) continue;
839
840 nir_alu_instr *alu = nir_instr_as_alu(instr);
841 midgard_nir_lower_fdot2_body(b, alu);
842
843 progress |= true;
844 }
845 }
846
847 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
848
849 }
850
851 return progress;
852 }
853
854 static bool
855 midgard_nir_lower_mixed_csel(nir_shader *shader)
856 {
857 bool progress = false;
858
859 nir_foreach_function(function, shader) {
860 if (!function->impl) continue;
861
862 nir_builder _b;
863 nir_builder *b = &_b;
864 nir_builder_init(b, function->impl);
865
866 nir_foreach_block(block, function->impl) {
867 nir_foreach_instr_safe(instr, block) {
868 if (instr->type != nir_instr_type_alu) continue;
869
870 nir_alu_instr *alu = nir_instr_as_alu(instr);
871 midgard_nir_lower_mixed_csel_body(b, alu);
872
873 progress |= true;
874 }
875 }
876
877 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
878
879 }
880
881 return progress;
882 }
883
884 static void
885 optimise_nir(nir_shader *nir)
886 {
887 bool progress;
888 unsigned lower_flrp =
889 (nir->options->lower_flrp16 ? 16 : 0) |
890 (nir->options->lower_flrp32 ? 32 : 0) |
891 (nir->options->lower_flrp64 ? 64 : 0);
892
893 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
894 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
895 NIR_PASS(progress, nir, midgard_nir_lower_mixed_csel);
896
897 nir_lower_tex_options lower_tex_options = {
898 .lower_rect = true
899 };
900
901 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
902
903 do {
904 progress = false;
905
906 NIR_PASS(progress, nir, nir_lower_var_copies);
907 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
908
909 NIR_PASS(progress, nir, nir_copy_prop);
910 NIR_PASS(progress, nir, nir_opt_dce);
911 NIR_PASS(progress, nir, nir_opt_dead_cf);
912 NIR_PASS(progress, nir, nir_opt_cse);
913 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
914 NIR_PASS(progress, nir, nir_opt_algebraic);
915 NIR_PASS(progress, nir, nir_opt_constant_folding);
916
917 if (lower_flrp != 0) {
918 bool lower_flrp_progress = false;
919 NIR_PASS(lower_flrp_progress,
920 nir,
921 nir_lower_flrp,
922 lower_flrp,
923 false /* always_precise */,
924 nir->options->lower_ffma);
925 if (lower_flrp_progress) {
926 NIR_PASS(progress, nir,
927 nir_opt_constant_folding);
928 progress = true;
929 }
930
931 /* Nothing should rematerialize any flrps, so we only
932 * need to do this lowering once.
933 */
934 lower_flrp = 0;
935 }
936
937 NIR_PASS(progress, nir, nir_opt_undef);
938 NIR_PASS(progress, nir, nir_opt_loop_unroll,
939 nir_var_shader_in |
940 nir_var_shader_out |
941 nir_var_function_temp);
942
943 /* TODO: Enable vectorize when merged upstream */
944 // NIR_PASS(progress, nir, nir_opt_vectorize);
945 } while (progress);
946
947 /* Must be run at the end to prevent creation of fsin/fcos ops */
948 NIR_PASS(progress, nir, midgard_nir_scale_trig);
949
950 do {
951 progress = false;
952
953 NIR_PASS(progress, nir, nir_opt_dce);
954 NIR_PASS(progress, nir, nir_opt_algebraic);
955 NIR_PASS(progress, nir, nir_opt_constant_folding);
956 NIR_PASS(progress, nir, nir_copy_prop);
957 } while (progress);
958
959 NIR_PASS(progress, nir, nir_opt_algebraic_late);
960 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
961
962 /* Lower mods for float ops only. Integer ops don't support modifiers
963 * (saturate doesn't make sense on integers, neg/abs require dedicated
964 * instructions) */
965
966 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
967 NIR_PASS(progress, nir, nir_copy_prop);
968 NIR_PASS(progress, nir, nir_opt_dce);
969
970 /* We implement booleans as 32-bit 0/~0 */
971 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
972
973 /* Take us out of SSA */
974 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
975 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
976
977 /* We are a vector architecture; write combine where possible */
978 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
979 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
980
981 NIR_PASS(progress, nir, nir_opt_dce);
982 }
983
984 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
985 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
986 * r0. See the comments in compiler_context */
987
988 static void
989 alias_ssa(compiler_context *ctx, int dest, int src)
990 {
991 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
992 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
993 }
994
995 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
996
997 static void
998 unalias_ssa(compiler_context *ctx, int dest)
999 {
1000 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
1001 /* TODO: Remove from leftover or no? */
1002 }
1003
1004 static void
1005 midgard_pin_output(compiler_context *ctx, int index, int reg)
1006 {
1007 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
1008 }
1009
1010 static bool
1011 midgard_is_pinned(compiler_context *ctx, int index)
1012 {
1013 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
1014 }
1015
1016 /* Do not actually emit a load; instead, cache the constant for inlining */
1017
1018 static void
1019 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
1020 {
1021 nir_ssa_def def = instr->def;
1022
1023 float *v = ralloc_array(NULL, float, 4);
1024 nir_const_load_to_arr(v, instr, f32);
1025 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
1026 }
1027
1028 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
1029 * do the inverse) */
1030
1031 static unsigned
1032 expand_writemask(unsigned mask)
1033 {
1034 unsigned o = 0;
1035
1036 for (int i = 0; i < 4; ++i)
1037 if (mask & (1 << i))
1038 o |= (3 << (2 * i));
1039
1040 return o;
1041 }
1042
1043 static unsigned
1044 squeeze_writemask(unsigned mask)
1045 {
1046 unsigned o = 0;
1047
1048 for (int i = 0; i < 4; ++i)
1049 if (mask & (3 << (2 * i)))
1050 o |= (1 << i);
1051
1052 return o;
1053
1054 }
1055
1056 /* Determines effective writemask, taking quirks and expansion into account */
1057 static unsigned
1058 effective_writemask(midgard_vector_alu *alu)
1059 {
1060 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
1061 * sense) */
1062
1063 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
1064
1065 /* If there is a fixed channel count, construct the appropriate mask */
1066
1067 if (channel_count)
1068 return (1 << channel_count) - 1;
1069
1070 /* Otherwise, just squeeze the existing mask */
1071 return squeeze_writemask(alu->mask);
1072 }
1073
1074 static unsigned
1075 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
1076 {
1077 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
1078 return hash;
1079
1080 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
1081
1082 if (temp)
1083 return temp - 1;
1084
1085 /* If no temp is find, allocate one */
1086 temp = ctx->temp_count++;
1087 ctx->max_hash = MAX2(ctx->max_hash, hash);
1088
1089 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
1090
1091 return temp;
1092 }
1093
1094 static unsigned
1095 nir_src_index(compiler_context *ctx, nir_src *src)
1096 {
1097 if (src->is_ssa)
1098 return src->ssa->index;
1099 else {
1100 assert(!src->reg.indirect);
1101 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
1102 }
1103 }
1104
1105 static unsigned
1106 nir_dest_index(compiler_context *ctx, nir_dest *dst)
1107 {
1108 if (dst->is_ssa)
1109 return dst->ssa.index;
1110 else {
1111 assert(!dst->reg.indirect);
1112 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1113 }
1114 }
1115
1116 static unsigned
1117 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1118 {
1119 return nir_src_index(ctx, &src->src);
1120 }
1121
1122 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1123 * a conditional test) into that register */
1124
1125 static void
1126 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1127 {
1128 int condition = nir_src_index(ctx, src);
1129
1130 /* Source to swizzle the desired component into w */
1131
1132 const midgard_vector_alu_src alu_src = {
1133 .swizzle = SWIZZLE(component, component, component, component),
1134 };
1135
1136 /* There is no boolean move instruction. Instead, we simulate a move by
1137 * ANDing the condition with itself to get it into r31.w */
1138
1139 midgard_instruction ins = {
1140 .type = TAG_ALU_4,
1141 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1142 .ssa_args = {
1143 .src0 = condition,
1144 .src1 = condition,
1145 .dest = SSA_FIXED_REGISTER(31),
1146 },
1147 .alu = {
1148 .op = midgard_alu_op_iand,
1149 .reg_mode = midgard_reg_mode_32,
1150 .dest_override = midgard_dest_override_none,
1151 .mask = (0x3 << 6), /* w */
1152 .src1 = vector_alu_srco_unsigned(alu_src),
1153 .src2 = vector_alu_srco_unsigned(alu_src)
1154 },
1155 };
1156
1157 emit_mir_instruction(ctx, ins);
1158 }
1159
1160 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1161 * pinning to eliminate this move in all known cases */
1162
1163 static void
1164 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1165 {
1166 int offset = nir_src_index(ctx, src);
1167
1168 midgard_instruction ins = {
1169 .type = TAG_ALU_4,
1170 .ssa_args = {
1171 .src0 = SSA_UNUSED_1,
1172 .src1 = offset,
1173 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1174 },
1175 .alu = {
1176 .op = midgard_alu_op_imov,
1177 .reg_mode = midgard_reg_mode_32,
1178 .dest_override = midgard_dest_override_none,
1179 .mask = (0x3 << 6), /* w */
1180 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1181 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1182 },
1183 };
1184
1185 emit_mir_instruction(ctx, ins);
1186 }
1187
1188 #define ALU_CASE(nir, _op) \
1189 case nir_op_##nir: \
1190 op = midgard_alu_op_##_op; \
1191 break;
1192
1193 static bool
1194 nir_is_fzero_constant(nir_src src)
1195 {
1196 if (!nir_src_is_const(src))
1197 return false;
1198
1199 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1200 if (nir_src_comp_as_float(src, c) != 0.0)
1201 return false;
1202 }
1203
1204 return true;
1205 }
1206
1207 static void
1208 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1209 {
1210 bool is_ssa = instr->dest.dest.is_ssa;
1211
1212 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1213 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1214 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1215
1216 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1217 * supported. A few do not and are commented for now. Also, there are a
1218 * number of NIR ops which Midgard does not support and need to be
1219 * lowered, also TODO. This switch block emits the opcode and calling
1220 * convention of the Midgard instruction; actual packing is done in
1221 * emit_alu below */
1222
1223 unsigned op;
1224
1225 switch (instr->op) {
1226 ALU_CASE(fadd, fadd);
1227 ALU_CASE(fmul, fmul);
1228 ALU_CASE(fmin, fmin);
1229 ALU_CASE(fmax, fmax);
1230 ALU_CASE(imin, imin);
1231 ALU_CASE(imax, imax);
1232 ALU_CASE(umin, umin);
1233 ALU_CASE(umax, umax);
1234 ALU_CASE(fmov, fmov);
1235 ALU_CASE(ffloor, ffloor);
1236 ALU_CASE(fround_even, froundeven);
1237 ALU_CASE(ftrunc, ftrunc);
1238 ALU_CASE(fceil, fceil);
1239 ALU_CASE(fdot3, fdot3);
1240 ALU_CASE(fdot4, fdot4);
1241 ALU_CASE(iadd, iadd);
1242 ALU_CASE(isub, isub);
1243 ALU_CASE(imul, imul);
1244 ALU_CASE(iabs, iabs);
1245 ALU_CASE(imov, imov);
1246
1247 ALU_CASE(feq32, feq);
1248 ALU_CASE(fne32, fne);
1249 ALU_CASE(flt32, flt);
1250 ALU_CASE(ieq32, ieq);
1251 ALU_CASE(ine32, ine);
1252 ALU_CASE(ilt32, ilt);
1253 ALU_CASE(ult32, ult);
1254
1255 /* We don't have a native b2f32 instruction. Instead, like many
1256 * GPUs, we exploit booleans as 0/~0 for false/true, and
1257 * correspondingly AND
1258 * by 1.0 to do the type conversion. For the moment, prime us
1259 * to emit:
1260 *
1261 * iand [whatever], #0
1262 *
1263 * At the end of emit_alu (as MIR), we'll fix-up the constant
1264 */
1265
1266 ALU_CASE(b2f32, iand);
1267 ALU_CASE(b2i32, iand);
1268
1269 /* Likewise, we don't have a dedicated f2b32 instruction, but
1270 * we can do a "not equal to 0.0" test. */
1271
1272 ALU_CASE(f2b32, fne);
1273 ALU_CASE(i2b32, ine);
1274
1275 ALU_CASE(frcp, frcp);
1276 ALU_CASE(frsq, frsqrt);
1277 ALU_CASE(fsqrt, fsqrt);
1278 ALU_CASE(fexp2, fexp2);
1279 ALU_CASE(flog2, flog2);
1280
1281 ALU_CASE(f2i32, f2i);
1282 ALU_CASE(f2u32, f2u);
1283 ALU_CASE(i2f32, i2f);
1284 ALU_CASE(u2f32, u2f);
1285
1286 ALU_CASE(fsin, fsin);
1287 ALU_CASE(fcos, fcos);
1288
1289 ALU_CASE(iand, iand);
1290 ALU_CASE(ior, ior);
1291 ALU_CASE(ixor, ixor);
1292 ALU_CASE(inot, inand);
1293 ALU_CASE(ishl, ishl);
1294 ALU_CASE(ishr, iasr);
1295 ALU_CASE(ushr, ilsr);
1296
1297 ALU_CASE(b32all_fequal2, fball_eq);
1298 ALU_CASE(b32all_fequal3, fball_eq);
1299 ALU_CASE(b32all_fequal4, fball_eq);
1300
1301 ALU_CASE(b32any_fnequal2, fbany_neq);
1302 ALU_CASE(b32any_fnequal3, fbany_neq);
1303 ALU_CASE(b32any_fnequal4, fbany_neq);
1304
1305 ALU_CASE(b32all_iequal2, iball_eq);
1306 ALU_CASE(b32all_iequal3, iball_eq);
1307 ALU_CASE(b32all_iequal4, iball_eq);
1308
1309 ALU_CASE(b32any_inequal2, ibany_neq);
1310 ALU_CASE(b32any_inequal3, ibany_neq);
1311 ALU_CASE(b32any_inequal4, ibany_neq);
1312
1313 /* For greater-or-equal, we lower to less-or-equal and flip the
1314 * arguments */
1315
1316 case nir_op_fge:
1317 case nir_op_fge32:
1318 case nir_op_ige32:
1319 case nir_op_uge32: {
1320 op =
1321 instr->op == nir_op_fge ? midgard_alu_op_fle :
1322 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1323 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1324 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1325 0;
1326
1327 /* Swap via temporary */
1328 nir_alu_src temp = instr->src[1];
1329 instr->src[1] = instr->src[0];
1330 instr->src[0] = temp;
1331
1332 break;
1333 }
1334
1335 /* For a few special csel cases not handled by NIR, we can opt to
1336 * bitwise. Otherwise, we emit the condition and do a real csel */
1337
1338 case nir_op_b32csel: {
1339 if (nir_is_fzero_constant(instr->src[2].src)) {
1340 /* (b ? v : 0) = (b & v) */
1341 op = midgard_alu_op_iand;
1342 nr_inputs = 2;
1343 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1344 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1345 op = midgard_alu_op_iandnot;
1346 nr_inputs = 2;
1347 instr->src[1] = instr->src[0];
1348 instr->src[0] = instr->src[2];
1349 } else {
1350 /* Midgard features both fcsel and icsel, depending on
1351 * the type of the arguments/output. However, as long
1352 * as we're careful we can _always_ use icsel and
1353 * _never_ need fcsel, since the latter does additional
1354 * floating-point-specific processing whereas the
1355 * former just moves bits on the wire. It's not obvious
1356 * why these are separate opcodes, save for the ability
1357 * to do things like sat/pos/abs/neg for free */
1358
1359 op = midgard_alu_op_icsel;
1360
1361 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1362 nr_inputs = 2;
1363
1364 /* Figure out which component the condition is in */
1365
1366 unsigned comp = instr->src[0].swizzle[0];
1367
1368 /* Make sure NIR isn't throwing a mixed condition at us */
1369
1370 for (unsigned c = 1; c < nr_components; ++c)
1371 assert(instr->src[0].swizzle[c] == comp);
1372
1373 /* Emit the condition into r31.w */
1374 emit_condition(ctx, &instr->src[0].src, false, comp);
1375
1376 /* The condition is the first argument; move the other
1377 * arguments up one to be a binary instruction for
1378 * Midgard */
1379
1380 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1381 }
1382 break;
1383 }
1384
1385 default:
1386 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1387 assert(0);
1388 return;
1389 }
1390
1391 /* Midgard can perform certain modifiers on output ofa n ALU op */
1392 midgard_outmod outmod =
1393 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1394
1395 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1396
1397 if (instr->op == nir_op_fmax) {
1398 if (nir_is_fzero_constant(instr->src[0].src)) {
1399 op = midgard_alu_op_fmov;
1400 nr_inputs = 1;
1401 outmod = midgard_outmod_pos;
1402 instr->src[0] = instr->src[1];
1403 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1404 op = midgard_alu_op_fmov;
1405 nr_inputs = 1;
1406 outmod = midgard_outmod_pos;
1407 }
1408 }
1409
1410 /* Fetch unit, quirks, etc information */
1411 unsigned opcode_props = alu_opcode_props[op].props;
1412 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1413
1414 /* src0 will always exist afaik, but src1 will not for 1-argument
1415 * instructions. The latter can only be fetched if the instruction
1416 * needs it, or else we may segfault. */
1417
1418 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1419 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1420
1421 /* Rather than use the instruction generation helpers, we do it
1422 * ourselves here to avoid the mess */
1423
1424 midgard_instruction ins = {
1425 .type = TAG_ALU_4,
1426 .ssa_args = {
1427 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1428 .src1 = quirk_flipped_r24 ? src0 : src1,
1429 .dest = dest,
1430 }
1431 };
1432
1433 nir_alu_src *nirmods[2] = { NULL };
1434
1435 if (nr_inputs == 2) {
1436 nirmods[0] = &instr->src[0];
1437 nirmods[1] = &instr->src[1];
1438 } else if (nr_inputs == 1) {
1439 nirmods[quirk_flipped_r24] = &instr->src[0];
1440 } else {
1441 assert(0);
1442 }
1443
1444 bool is_int = midgard_is_integer_op(op);
1445
1446 midgard_vector_alu alu = {
1447 .op = op,
1448 .reg_mode = midgard_reg_mode_32,
1449 .dest_override = midgard_dest_override_none,
1450 .outmod = outmod,
1451
1452 /* Writemask only valid for non-SSA NIR */
1453 .mask = expand_writemask((1 << nr_components) - 1),
1454
1455 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1456 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1457 };
1458
1459 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1460
1461 if (!is_ssa)
1462 alu.mask &= expand_writemask(instr->dest.write_mask);
1463
1464 ins.alu = alu;
1465
1466 /* Late fixup for emulated instructions */
1467
1468 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1469 /* Presently, our second argument is an inline #0 constant.
1470 * Switch over to an embedded 1.0 constant (that can't fit
1471 * inline, since we're 32-bit, not 16-bit like the inline
1472 * constants) */
1473
1474 ins.ssa_args.inline_constant = false;
1475 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1476 ins.has_constants = true;
1477
1478 if (instr->op == nir_op_b2f32) {
1479 ins.constants[0] = 1.0f;
1480 } else {
1481 /* Type pun it into place */
1482 uint32_t one = 0x1;
1483 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1484 }
1485
1486 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1487 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1488 ins.ssa_args.inline_constant = false;
1489 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1490 ins.has_constants = true;
1491 ins.constants[0] = 0.0f;
1492 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1493 } else if (instr->op == nir_op_inot) {
1494 /* ~b = ~(b & b), so duplicate the source */
1495 ins.ssa_args.src1 = ins.ssa_args.src0;
1496 ins.alu.src2 = ins.alu.src1;
1497 }
1498
1499 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1500 /* To avoid duplicating the lookup tables (probably), true LUT
1501 * instructions can only operate as if they were scalars. Lower
1502 * them here by changing the component. */
1503
1504 uint8_t original_swizzle[4];
1505 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1506
1507 for (int i = 0; i < nr_components; ++i) {
1508 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1509
1510 for (int j = 0; j < 4; ++j)
1511 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1512
1513 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1514 emit_mir_instruction(ctx, ins);
1515 }
1516 } else {
1517 emit_mir_instruction(ctx, ins);
1518 }
1519 }
1520
1521 #undef ALU_CASE
1522
1523 static void
1524 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1525 {
1526 /* TODO: half-floats */
1527
1528 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1529 /* Fast path: For the first 16 uniforms, direct accesses are
1530 * 0-cycle, since they're just a register fetch in the usual
1531 * case. So, we alias the registers while we're still in
1532 * SSA-space */
1533
1534 int reg_slot = 23 - offset;
1535 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1536 } else {
1537 /* Otherwise, read from the 'special' UBO to access
1538 * higher-indexed uniforms, at a performance cost. More
1539 * generally, we're emitting a UBO read instruction. */
1540
1541 midgard_instruction ins = m_load_uniform_32(dest, offset);
1542
1543 /* TODO: Don't split */
1544 ins.load_store.varying_parameters = (offset & 7) << 7;
1545 ins.load_store.address = offset >> 3;
1546
1547 if (indirect_offset) {
1548 emit_indirect_offset(ctx, indirect_offset);
1549 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1550 } else {
1551 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1552 }
1553
1554 emit_mir_instruction(ctx, ins);
1555 }
1556 }
1557
1558 static void
1559 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1560 {
1561 /* First, pull out the destination */
1562 unsigned dest = nir_dest_index(ctx, &instr->dest);
1563
1564 /* Now, figure out which uniform this is */
1565 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1566 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1567
1568 /* Sysvals are prefix uniforms */
1569 unsigned uniform = ((uintptr_t) val) - 1;
1570
1571 /* Emit the read itself -- this is never indirect */
1572 emit_uniform_read(ctx, dest, uniform, NULL);
1573 }
1574
1575 static void
1576 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1577 {
1578 unsigned offset, reg;
1579
1580 switch (instr->intrinsic) {
1581 case nir_intrinsic_discard_if:
1582 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1583
1584 /* fallthrough */
1585
1586 case nir_intrinsic_discard: {
1587 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1588 struct midgard_instruction discard = v_branch(conditional, false);
1589 discard.branch.target_type = TARGET_DISCARD;
1590 emit_mir_instruction(ctx, discard);
1591
1592 ctx->can_discard = true;
1593 break;
1594 }
1595
1596 case nir_intrinsic_load_uniform:
1597 case nir_intrinsic_load_input:
1598 offset = nir_intrinsic_base(instr);
1599
1600 bool direct = nir_src_is_const(instr->src[0]);
1601
1602 if (direct) {
1603 offset += nir_src_as_uint(instr->src[0]);
1604 }
1605
1606 reg = nir_dest_index(ctx, &instr->dest);
1607
1608 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1609 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1610 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1611 /* XXX: Half-floats? */
1612 /* TODO: swizzle, mask */
1613
1614 midgard_instruction ins = m_load_vary_32(reg, offset);
1615
1616 midgard_varying_parameter p = {
1617 .is_varying = 1,
1618 .interpolation = midgard_interp_default,
1619 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1620 };
1621
1622 unsigned u;
1623 memcpy(&u, &p, sizeof(p));
1624 ins.load_store.varying_parameters = u;
1625
1626 if (direct) {
1627 /* We have the offset totally ready */
1628 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1629 } else {
1630 /* We have it partially ready, but we need to
1631 * add in the dynamic index, moved to r27.w */
1632 emit_indirect_offset(ctx, &instr->src[0]);
1633 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1634 }
1635
1636 emit_mir_instruction(ctx, ins);
1637 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1638 /* Constant encoded as a pinned constant */
1639
1640 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1641 ins.has_constants = true;
1642 ins.has_blend_constant = true;
1643 emit_mir_instruction(ctx, ins);
1644 } else if (ctx->is_blend) {
1645 /* For blend shaders, a load might be
1646 * translated various ways depending on what
1647 * we're loading. Figure out how this is used */
1648
1649 nir_variable *out = NULL;
1650
1651 nir_foreach_variable(var, &ctx->nir->inputs) {
1652 int drvloc = var->data.driver_location;
1653
1654 if (nir_intrinsic_base(instr) == drvloc) {
1655 out = var;
1656 break;
1657 }
1658 }
1659
1660 assert(out);
1661
1662 if (out->data.location == VARYING_SLOT_COL0) {
1663 /* Source color preloaded to r0 */
1664
1665 midgard_pin_output(ctx, reg, 0);
1666 } else if (out->data.location == VARYING_SLOT_COL1) {
1667 /* Destination color must be read from framebuffer */
1668
1669 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1670 ins.load_store.swizzle = 0; /* xxxx */
1671
1672 /* Read each component sequentially */
1673
1674 for (int c = 0; c < 4; ++c) {
1675 ins.load_store.mask = (1 << c);
1676 ins.load_store.unknown = c;
1677 emit_mir_instruction(ctx, ins);
1678 }
1679
1680 /* vadd.u2f hr2, zext(hr2), #0 */
1681
1682 midgard_vector_alu_src alu_src = blank_alu_src;
1683 alu_src.mod = midgard_int_zero_extend;
1684 alu_src.half = true;
1685
1686 midgard_instruction u2f = {
1687 .type = TAG_ALU_4,
1688 .ssa_args = {
1689 .src0 = reg,
1690 .src1 = SSA_UNUSED_0,
1691 .dest = reg,
1692 .inline_constant = true
1693 },
1694 .alu = {
1695 .op = midgard_alu_op_u2f,
1696 .reg_mode = midgard_reg_mode_16,
1697 .dest_override = midgard_dest_override_none,
1698 .mask = 0xF,
1699 .src1 = vector_alu_srco_unsigned(alu_src),
1700 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1701 }
1702 };
1703
1704 emit_mir_instruction(ctx, u2f);
1705
1706 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1707
1708 alu_src.mod = 0;
1709
1710 midgard_instruction fmul = {
1711 .type = TAG_ALU_4,
1712 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1713 .ssa_args = {
1714 .src0 = reg,
1715 .dest = reg,
1716 .src1 = SSA_UNUSED_0,
1717 .inline_constant = true
1718 },
1719 .alu = {
1720 .op = midgard_alu_op_fmul,
1721 .reg_mode = midgard_reg_mode_32,
1722 .dest_override = midgard_dest_override_none,
1723 .outmod = midgard_outmod_sat,
1724 .mask = 0xFF,
1725 .src1 = vector_alu_srco_unsigned(alu_src),
1726 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1727 }
1728 };
1729
1730 emit_mir_instruction(ctx, fmul);
1731 } else {
1732 DBG("Unknown input in blend shader\n");
1733 assert(0);
1734 }
1735 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1736 midgard_instruction ins = m_load_attr_32(reg, offset);
1737 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1738 ins.load_store.mask = (1 << instr->num_components) - 1;
1739 emit_mir_instruction(ctx, ins);
1740 } else {
1741 DBG("Unknown load\n");
1742 assert(0);
1743 }
1744
1745 break;
1746
1747 case nir_intrinsic_store_output:
1748 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1749
1750 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1751
1752 reg = nir_src_index(ctx, &instr->src[0]);
1753
1754 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1755 /* gl_FragColor is not emitted with load/store
1756 * instructions. Instead, it gets plonked into
1757 * r0 at the end of the shader and we do the
1758 * framebuffer writeout dance. TODO: Defer
1759 * writes */
1760
1761 midgard_pin_output(ctx, reg, 0);
1762
1763 /* Save the index we're writing to for later reference
1764 * in the epilogue */
1765
1766 ctx->fragment_output = reg;
1767 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1768 /* Varyings are written into one of two special
1769 * varying register, r26 or r27. The register itself is selected as the register
1770 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1771 *
1772 * Normally emitting fmov's is frowned upon,
1773 * but due to unique constraints of
1774 * REGISTER_VARYING, fmov emission + a
1775 * dedicated cleanup pass is the only way to
1776 * guarantee correctness when considering some
1777 * (common) edge cases XXX: FIXME */
1778
1779 /* If this varying corresponds to a constant (why?!),
1780 * emit that now since it won't get picked up by
1781 * hoisting (since there is no corresponding move
1782 * emitted otherwise) */
1783
1784 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1785
1786 if (constant_value) {
1787 /* Special case: emit the varying write
1788 * directly to r26 (looks funny in asm but it's
1789 * fine) and emit the store _now_. Possibly
1790 * slightly slower, but this is a really stupid
1791 * special case anyway (why on earth would you
1792 * have a constant varying? Your own fault for
1793 * slightly worse perf :P) */
1794
1795 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1796 attach_constants(ctx, &ins, constant_value, reg + 1);
1797 emit_mir_instruction(ctx, ins);
1798
1799 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1800 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1801 emit_mir_instruction(ctx, st);
1802 } else {
1803 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1804
1805 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1806 }
1807 } else {
1808 DBG("Unknown store\n");
1809 assert(0);
1810 }
1811
1812 break;
1813
1814 case nir_intrinsic_load_alpha_ref_float:
1815 assert(instr->dest.is_ssa);
1816
1817 float ref_value = ctx->alpha_ref;
1818
1819 float *v = ralloc_array(NULL, float, 4);
1820 memcpy(v, &ref_value, sizeof(float));
1821 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1822 break;
1823
1824 case nir_intrinsic_load_viewport_scale:
1825 case nir_intrinsic_load_viewport_offset:
1826 emit_sysval_read(ctx, instr);
1827 break;
1828
1829 default:
1830 printf ("Unhandled intrinsic\n");
1831 assert(0);
1832 break;
1833 }
1834 }
1835
1836 static unsigned
1837 midgard_tex_format(enum glsl_sampler_dim dim)
1838 {
1839 switch (dim) {
1840 case GLSL_SAMPLER_DIM_2D:
1841 case GLSL_SAMPLER_DIM_EXTERNAL:
1842 return TEXTURE_2D;
1843
1844 case GLSL_SAMPLER_DIM_3D:
1845 return TEXTURE_3D;
1846
1847 case GLSL_SAMPLER_DIM_CUBE:
1848 return TEXTURE_CUBE;
1849
1850 default:
1851 DBG("Unknown sampler dim type\n");
1852 assert(0);
1853 return 0;
1854 }
1855 }
1856
1857 static void
1858 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1859 {
1860 /* TODO */
1861 //assert (!instr->sampler);
1862 //assert (!instr->texture_array_size);
1863 assert (instr->op == nir_texop_tex);
1864
1865 /* Allocate registers via a round robin scheme to alternate between the two registers */
1866 int reg = ctx->texture_op_count & 1;
1867 int in_reg = reg, out_reg = reg;
1868
1869 /* Make room for the reg */
1870
1871 if (ctx->texture_index[reg] > -1)
1872 unalias_ssa(ctx, ctx->texture_index[reg]);
1873
1874 int texture_index = instr->texture_index;
1875 int sampler_index = texture_index;
1876
1877 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1878 switch (instr->src[i].src_type) {
1879 case nir_tex_src_coord: {
1880 int index = nir_src_index(ctx, &instr->src[i].src);
1881
1882 midgard_vector_alu_src alu_src = blank_alu_src;
1883
1884 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1885
1886 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1887 /* For cubemaps, we need to load coords into
1888 * special r27, and then use a special ld/st op
1889 * to copy into the texture register */
1890
1891 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1892
1893 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1894 emit_mir_instruction(ctx, move);
1895
1896 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1897 st.load_store.unknown = 0x24; /* XXX: What is this? */
1898 st.load_store.mask = 0x3; /* xy? */
1899 st.load_store.swizzle = alu_src.swizzle;
1900 emit_mir_instruction(ctx, st);
1901
1902 } else {
1903 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1904
1905 midgard_instruction ins = v_fmov(index, alu_src, reg);
1906 emit_mir_instruction(ctx, ins);
1907 }
1908
1909 break;
1910 }
1911
1912 default: {
1913 DBG("Unknown source type\n");
1914 //assert(0);
1915 break;
1916 }
1917 }
1918 }
1919
1920 /* No helper to build texture words -- we do it all here */
1921 midgard_instruction ins = {
1922 .type = TAG_TEXTURE_4,
1923 .texture = {
1924 .op = TEXTURE_OP_NORMAL,
1925 .format = midgard_tex_format(instr->sampler_dim),
1926 .texture_handle = texture_index,
1927 .sampler_handle = sampler_index,
1928
1929 /* TODO: Don't force xyzw */
1930 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1931 .mask = 0xF,
1932
1933 /* TODO: half */
1934 //.in_reg_full = 1,
1935 .out_full = 1,
1936
1937 .filter = 1,
1938
1939 /* Always 1 */
1940 .unknown7 = 1,
1941
1942 /* Assume we can continue; hint it out later */
1943 .cont = 1,
1944 }
1945 };
1946
1947 /* Set registers to read and write from the same place */
1948 ins.texture.in_reg_select = in_reg;
1949 ins.texture.out_reg_select = out_reg;
1950
1951 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1952 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1953 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1954 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1955 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1956 } else {
1957 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1958 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1959 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1960 }
1961
1962 emit_mir_instruction(ctx, ins);
1963
1964 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1965
1966 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1967 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1968 ctx->texture_index[reg] = o_index;
1969
1970 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1971 emit_mir_instruction(ctx, ins2);
1972
1973 /* Used for .cont and .last hinting */
1974 ctx->texture_op_count++;
1975 }
1976
1977 static void
1978 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1979 {
1980 switch (instr->type) {
1981 case nir_jump_break: {
1982 /* Emit a branch out of the loop */
1983 struct midgard_instruction br = v_branch(false, false);
1984 br.branch.target_type = TARGET_BREAK;
1985 br.branch.target_break = ctx->current_loop_depth;
1986 emit_mir_instruction(ctx, br);
1987
1988 DBG("break..\n");
1989 break;
1990 }
1991
1992 default:
1993 DBG("Unknown jump type %d\n", instr->type);
1994 break;
1995 }
1996 }
1997
1998 static void
1999 emit_instr(compiler_context *ctx, struct nir_instr *instr)
2000 {
2001 switch (instr->type) {
2002 case nir_instr_type_load_const:
2003 emit_load_const(ctx, nir_instr_as_load_const(instr));
2004 break;
2005
2006 case nir_instr_type_intrinsic:
2007 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2008 break;
2009
2010 case nir_instr_type_alu:
2011 emit_alu(ctx, nir_instr_as_alu(instr));
2012 break;
2013
2014 case nir_instr_type_tex:
2015 emit_tex(ctx, nir_instr_as_tex(instr));
2016 break;
2017
2018 case nir_instr_type_jump:
2019 emit_jump(ctx, nir_instr_as_jump(instr));
2020 break;
2021
2022 case nir_instr_type_ssa_undef:
2023 /* Spurious */
2024 break;
2025
2026 default:
2027 DBG("Unhandled instruction type\n");
2028 break;
2029 }
2030 }
2031
2032 /* Determine the actual hardware from the index based on the RA results or special values */
2033
2034 static int
2035 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
2036 {
2037 if (reg >= SSA_FIXED_MINIMUM)
2038 return SSA_REG_FROM_FIXED(reg);
2039
2040 if (reg >= 0) {
2041 assert(reg < maxreg);
2042 assert(g);
2043 int r = ra_get_node_reg(g, reg);
2044 ctx->work_registers = MAX2(ctx->work_registers, r);
2045 return r;
2046 }
2047
2048 switch (reg) {
2049 /* fmov style unused */
2050 case SSA_UNUSED_0:
2051 return REGISTER_UNUSED;
2052
2053 /* lut style unused */
2054 case SSA_UNUSED_1:
2055 return REGISTER_UNUSED;
2056
2057 default:
2058 DBG("Unknown SSA register alias %d\n", reg);
2059 assert(0);
2060 return 31;
2061 }
2062 }
2063
2064 static unsigned int
2065 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
2066 {
2067 /* Choose the first available register to minimise reported register pressure */
2068
2069 for (int i = 0; i < 16; ++i) {
2070 if (BITSET_TEST(regs, i)) {
2071 return i;
2072 }
2073 }
2074
2075 assert(0);
2076 return 0;
2077 }
2078
2079 static bool
2080 midgard_is_live_in_instr(midgard_instruction *ins, int src)
2081 {
2082 if (ins->ssa_args.src0 == src) return true;
2083 if (ins->ssa_args.src1 == src) return true;
2084
2085 return false;
2086 }
2087
2088 /* Determine if a variable is live in the successors of a block */
2089 static bool
2090 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
2091 {
2092 for (unsigned i = 0; i < bl->nr_successors; ++i) {
2093 midgard_block *succ = bl->successors[i];
2094
2095 /* If we already visited, the value we're seeking
2096 * isn't down this path (or we would have short
2097 * circuited */
2098
2099 if (succ->visited) continue;
2100
2101 /* Otherwise (it's visited *now*), check the block */
2102
2103 succ->visited = true;
2104
2105 mir_foreach_instr_in_block(succ, ins) {
2106 if (midgard_is_live_in_instr(ins, src))
2107 return true;
2108 }
2109
2110 /* ...and also, check *its* successors */
2111 if (is_live_after_successors(ctx, succ, src))
2112 return true;
2113
2114 }
2115
2116 /* Welp. We're really not live. */
2117
2118 return false;
2119 }
2120
2121 static bool
2122 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2123 {
2124 /* Check the rest of the block for liveness */
2125
2126 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2127 if (midgard_is_live_in_instr(ins, src))
2128 return true;
2129 }
2130
2131 /* Check the rest of the blocks for liveness recursively */
2132
2133 bool succ = is_live_after_successors(ctx, block, src);
2134
2135 mir_foreach_block(ctx, block) {
2136 block->visited = false;
2137 }
2138
2139 return succ;
2140 }
2141
2142 /* Once registers have been decided via register allocation
2143 * (allocate_registers), we need to rewrite the MIR to use registers instead of
2144 * SSA */
2145
2146 static void
2147 install_registers(compiler_context *ctx, struct ra_graph *g)
2148 {
2149 mir_foreach_block(ctx, block) {
2150 mir_foreach_instr_in_block(block, ins) {
2151 if (ins->compact_branch) continue;
2152
2153 ssa_args args = ins->ssa_args;
2154
2155 switch (ins->type) {
2156 case TAG_ALU_4:
2157 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
2158
2159 ins->registers.src2_imm = args.inline_constant;
2160
2161 if (args.inline_constant) {
2162 /* Encode inline 16-bit constant as a vector by default */
2163
2164 ins->registers.src2_reg = ins->inline_constant >> 11;
2165
2166 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2167
2168 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2169 ins->alu.src2 = imm << 2;
2170 } else {
2171 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
2172 }
2173
2174 ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
2175
2176 break;
2177
2178 case TAG_LOAD_STORE_4: {
2179 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2180 /* TODO: use ssa_args for store_vary */
2181 ins->load_store.reg = 0;
2182 } else {
2183 bool has_dest = args.dest >= 0;
2184 int ssa_arg = has_dest ? args.dest : args.src0;
2185
2186 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
2187 }
2188
2189 break;
2190 }
2191
2192 default:
2193 break;
2194 }
2195 }
2196 }
2197
2198 }
2199
2200 /* This routine performs the actual register allocation. It should be succeeded
2201 * by install_registers */
2202
2203 static struct ra_graph *
2204 allocate_registers(compiler_context *ctx)
2205 {
2206 /* First, initialize the RA */
2207 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2208
2209 /* Create a primary (general purpose) class, as well as special purpose
2210 * pipeline register classes */
2211
2212 int primary_class = ra_alloc_reg_class(regs);
2213 int varying_class = ra_alloc_reg_class(regs);
2214
2215 /* Add the full set of work registers */
2216 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2217 for (int i = 0; i < work_count; ++i)
2218 ra_class_add_reg(regs, primary_class, i);
2219
2220 /* Add special registers */
2221 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2222 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2223
2224 /* We're done setting up */
2225 ra_set_finalize(regs, NULL);
2226
2227 /* Transform the MIR into squeezed index form */
2228 mir_foreach_block(ctx, block) {
2229 mir_foreach_instr_in_block(block, ins) {
2230 if (ins->compact_branch) continue;
2231
2232 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2233 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2234 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2235 }
2236 if (midgard_debug & MIDGARD_DBG_SHADERS)
2237 print_mir_block(block);
2238 }
2239
2240 /* No register allocation to do with no SSA */
2241
2242 if (!ctx->temp_count)
2243 return NULL;
2244
2245 /* Let's actually do register allocation */
2246 int nodes = ctx->temp_count;
2247 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2248
2249 /* Set everything to the work register class, unless it has somewhere
2250 * special to go */
2251
2252 mir_foreach_block(ctx, block) {
2253 mir_foreach_instr_in_block(block, ins) {
2254 if (ins->compact_branch) continue;
2255
2256 if (ins->ssa_args.dest < 0) continue;
2257
2258 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2259
2260 int class = primary_class;
2261
2262 ra_set_node_class(g, ins->ssa_args.dest, class);
2263 }
2264 }
2265
2266 for (int index = 0; index <= ctx->max_hash; ++index) {
2267 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2268
2269 if (temp) {
2270 unsigned reg = temp - 1;
2271 int t = find_or_allocate_temp(ctx, index);
2272 ra_set_node_reg(g, t, reg);
2273 }
2274 }
2275
2276 /* Determine liveness */
2277
2278 int *live_start = malloc(nodes * sizeof(int));
2279 int *live_end = malloc(nodes * sizeof(int));
2280
2281 /* Initialize as non-existent */
2282
2283 for (int i = 0; i < nodes; ++i) {
2284 live_start[i] = live_end[i] = -1;
2285 }
2286
2287 int d = 0;
2288
2289 mir_foreach_block(ctx, block) {
2290 mir_foreach_instr_in_block(block, ins) {
2291 if (ins->compact_branch) continue;
2292
2293 /* Dest is < 0 for store_vary instructions, which break
2294 * the usual SSA conventions. Liveness analysis doesn't
2295 * make sense on these instructions, so skip them to
2296 * avoid memory corruption */
2297
2298 if (ins->ssa_args.dest < 0) continue;
2299
2300 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2301 /* If this destination is not yet live, it is now since we just wrote it */
2302
2303 int dest = ins->ssa_args.dest;
2304
2305 if (live_start[dest] == -1)
2306 live_start[dest] = d;
2307 }
2308
2309 /* Since we just used a source, the source might be
2310 * dead now. Scan the rest of the block for
2311 * invocations, and if there are none, the source dies
2312 * */
2313
2314 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2315
2316 for (int src = 0; src < 2; ++src) {
2317 int s = sources[src];
2318
2319 if (s < 0) continue;
2320
2321 if (s >= SSA_FIXED_MINIMUM) continue;
2322
2323 if (!is_live_after(ctx, block, ins, s)) {
2324 live_end[s] = d;
2325 }
2326 }
2327
2328 ++d;
2329 }
2330 }
2331
2332 /* If a node still hasn't been killed, kill it now */
2333
2334 for (int i = 0; i < nodes; ++i) {
2335 /* live_start == -1 most likely indicates a pinned output */
2336
2337 if (live_end[i] == -1)
2338 live_end[i] = d;
2339 }
2340
2341 /* Setup interference between nodes that are live at the same time */
2342
2343 for (int i = 0; i < nodes; ++i) {
2344 for (int j = i + 1; j < nodes; ++j) {
2345 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2346 ra_add_node_interference(g, i, j);
2347 }
2348 }
2349
2350 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2351
2352 if (!ra_allocate(g)) {
2353 DBG("Error allocating registers\n");
2354 assert(0);
2355 }
2356
2357 /* Cleanup */
2358 free(live_start);
2359 free(live_end);
2360
2361 return g;
2362 }
2363
2364 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2365 * use scalar ALU instructions, for functional or performance reasons. To do
2366 * this, we just demote vector ALU payloads to scalar. */
2367
2368 static int
2369 component_from_mask(unsigned mask)
2370 {
2371 for (int c = 0; c < 4; ++c) {
2372 if (mask & (3 << (2 * c)))
2373 return c;
2374 }
2375
2376 assert(0);
2377 return 0;
2378 }
2379
2380 static bool
2381 is_single_component_mask(unsigned mask)
2382 {
2383 int components = 0;
2384
2385 for (int c = 0; c < 4; ++c)
2386 if (mask & (3 << (2 * c)))
2387 components++;
2388
2389 return components == 1;
2390 }
2391
2392 /* Create a mask of accessed components from a swizzle to figure out vector
2393 * dependencies */
2394
2395 static unsigned
2396 swizzle_to_access_mask(unsigned swizzle)
2397 {
2398 unsigned component_mask = 0;
2399
2400 for (int i = 0; i < 4; ++i) {
2401 unsigned c = (swizzle >> (2 * i)) & 3;
2402 component_mask |= (1 << c);
2403 }
2404
2405 return component_mask;
2406 }
2407
2408 static unsigned
2409 vector_to_scalar_source(unsigned u, bool is_int)
2410 {
2411 midgard_vector_alu_src v;
2412 memcpy(&v, &u, sizeof(v));
2413
2414 /* TODO: Integers */
2415
2416 midgard_scalar_alu_src s = {
2417 .full = !v.half,
2418 .component = (v.swizzle & 3) << 1
2419 };
2420
2421 if (is_int) {
2422 /* TODO */
2423 } else {
2424 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2425 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2426 }
2427
2428 unsigned o;
2429 memcpy(&o, &s, sizeof(s));
2430
2431 return o & ((1 << 6) - 1);
2432 }
2433
2434 static midgard_scalar_alu
2435 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2436 {
2437 bool is_int = midgard_is_integer_op(v.op);
2438
2439 /* The output component is from the mask */
2440 midgard_scalar_alu s = {
2441 .op = v.op,
2442 .src1 = vector_to_scalar_source(v.src1, is_int),
2443 .src2 = vector_to_scalar_source(v.src2, is_int),
2444 .unknown = 0,
2445 .outmod = v.outmod,
2446 .output_full = 1, /* TODO: Half */
2447 .output_component = component_from_mask(v.mask) << 1,
2448 };
2449
2450 /* Inline constant is passed along rather than trying to extract it
2451 * from v */
2452
2453 if (ins->ssa_args.inline_constant) {
2454 uint16_t imm = 0;
2455 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2456 imm |= (lower_11 >> 9) & 3;
2457 imm |= (lower_11 >> 6) & 4;
2458 imm |= (lower_11 >> 2) & 0x38;
2459 imm |= (lower_11 & 63) << 6;
2460
2461 s.src2 = imm;
2462 }
2463
2464 return s;
2465 }
2466
2467 /* Midgard prefetches instruction types, so during emission we need to
2468 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2469 * if this is the second to last and the last is an ALU, then it's also 1... */
2470
2471 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2472 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2473
2474 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2475 bytes_emitted += sizeof(type)
2476
2477 static void
2478 emit_binary_vector_instruction(midgard_instruction *ains,
2479 uint16_t *register_words, int *register_words_count,
2480 uint64_t *body_words, size_t *body_size, int *body_words_count,
2481 size_t *bytes_emitted)
2482 {
2483 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2484 *bytes_emitted += sizeof(midgard_reg_info);
2485
2486 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2487 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2488 *bytes_emitted += sizeof(midgard_vector_alu);
2489 }
2490
2491 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2492 * mind that we are a vector architecture and we can write to different
2493 * components simultaneously */
2494
2495 static bool
2496 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2497 {
2498 /* Each instruction reads some registers and writes to a register. See
2499 * where the first writes */
2500
2501 /* Figure out where exactly we wrote to */
2502 int source = first->ssa_args.dest;
2503 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2504
2505 /* As long as the second doesn't read from the first, we're okay */
2506 if (second->ssa_args.src0 == source) {
2507 if (first->type == TAG_ALU_4) {
2508 /* Figure out which components we just read from */
2509
2510 int q = second->alu.src1;
2511 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2512
2513 /* Check if there are components in common, and fail if so */
2514 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2515 return false;
2516 } else
2517 return false;
2518
2519 }
2520
2521 if (second->ssa_args.src1 == source)
2522 return false;
2523
2524 /* Otherwise, it's safe in that regard. Another data hazard is both
2525 * writing to the same place, of course */
2526
2527 if (second->ssa_args.dest == source) {
2528 /* ...but only if the components overlap */
2529 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2530
2531 if (dest_mask & source_mask)
2532 return false;
2533 }
2534
2535 /* ...That's it */
2536 return true;
2537 }
2538
2539 static bool
2540 midgard_has_hazard(
2541 midgard_instruction **segment, unsigned segment_size,
2542 midgard_instruction *ains)
2543 {
2544 for (int s = 0; s < segment_size; ++s)
2545 if (!can_run_concurrent_ssa(segment[s], ains))
2546 return true;
2547
2548 return false;
2549
2550
2551 }
2552
2553 /* Schedules, but does not emit, a single basic block. After scheduling, the
2554 * final tag and size of the block are known, which are necessary for branching
2555 * */
2556
2557 static midgard_bundle
2558 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2559 {
2560 int instructions_emitted = 0, instructions_consumed = -1;
2561 midgard_bundle bundle = { 0 };
2562
2563 uint8_t tag = ins->type;
2564
2565 /* Default to the instruction's tag */
2566 bundle.tag = tag;
2567
2568 switch (ins->type) {
2569 case TAG_ALU_4: {
2570 uint32_t control = 0;
2571 size_t bytes_emitted = sizeof(control);
2572
2573 /* TODO: Constant combining */
2574 int index = 0, last_unit = 0;
2575
2576 /* Previous instructions, for the purpose of parallelism */
2577 midgard_instruction *segment[4] = {0};
2578 int segment_size = 0;
2579
2580 instructions_emitted = -1;
2581 midgard_instruction *pins = ins;
2582
2583 for (;;) {
2584 midgard_instruction *ains = pins;
2585
2586 /* Advance instruction pointer */
2587 if (index) {
2588 ains = mir_next_op(pins);
2589 pins = ains;
2590 }
2591
2592 /* Out-of-work condition */
2593 if ((struct list_head *) ains == &block->instructions)
2594 break;
2595
2596 /* Ensure that the chain can continue */
2597 if (ains->type != TAG_ALU_4) break;
2598
2599 /* According to the presentation "The ARM
2600 * Mali-T880 Mobile GPU" from HotChips 27,
2601 * there are two pipeline stages. Branching
2602 * position determined experimentally. Lines
2603 * are executed in parallel:
2604 *
2605 * [ VMUL ] [ SADD ]
2606 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2607 *
2608 * Verify that there are no ordering dependencies here.
2609 *
2610 * TODO: Allow for parallelism!!!
2611 */
2612
2613 /* Pick a unit for it if it doesn't force a particular unit */
2614
2615 int unit = ains->unit;
2616
2617 if (!unit) {
2618 int op = ains->alu.op;
2619 int units = alu_opcode_props[op].props;
2620
2621 /* TODO: Promotion of scalars to vectors */
2622 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2623
2624 if (!vector)
2625 assert(units & UNITS_SCALAR);
2626
2627 if (vector) {
2628 if (last_unit >= UNIT_VADD) {
2629 if (units & UNIT_VLUT)
2630 unit = UNIT_VLUT;
2631 else
2632 break;
2633 } else {
2634 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2635 unit = UNIT_VMUL;
2636 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2637 unit = UNIT_VADD;
2638 else if (units & UNIT_VLUT)
2639 unit = UNIT_VLUT;
2640 else
2641 break;
2642 }
2643 } else {
2644 if (last_unit >= UNIT_VADD) {
2645 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2646 unit = UNIT_SMUL;
2647 else if (units & UNIT_VLUT)
2648 unit = UNIT_VLUT;
2649 else
2650 break;
2651 } else {
2652 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2653 unit = UNIT_SADD;
2654 else if (units & UNIT_SMUL)
2655 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2656 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2657 unit = UNIT_VADD;
2658 else
2659 break;
2660 }
2661 }
2662
2663 assert(unit & units);
2664 }
2665
2666 /* Late unit check, this time for encoding (not parallelism) */
2667 if (unit <= last_unit) break;
2668
2669 /* Clear the segment */
2670 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2671 segment_size = 0;
2672
2673 if (midgard_has_hazard(segment, segment_size, ains))
2674 break;
2675
2676 /* We're good to go -- emit the instruction */
2677 ains->unit = unit;
2678
2679 segment[segment_size++] = ains;
2680
2681 /* Only one set of embedded constants per
2682 * bundle possible; if we have more, we must
2683 * break the chain early, unfortunately */
2684
2685 if (ains->has_constants) {
2686 if (bundle.has_embedded_constants) {
2687 /* ...but if there are already
2688 * constants but these are the
2689 * *same* constants, we let it
2690 * through */
2691
2692 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2693 break;
2694 } else {
2695 bundle.has_embedded_constants = true;
2696 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2697
2698 /* If this is a blend shader special constant, track it for patching */
2699 if (ains->has_blend_constant)
2700 bundle.has_blend_constant = true;
2701 }
2702 }
2703
2704 if (ains->unit & UNITS_ANY_VECTOR) {
2705 emit_binary_vector_instruction(ains, bundle.register_words,
2706 &bundle.register_words_count, bundle.body_words,
2707 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2708 } else if (ains->compact_branch) {
2709 /* All of r0 has to be written out
2710 * along with the branch writeout.
2711 * (slow!) */
2712
2713 if (ains->writeout) {
2714 if (index == 0) {
2715 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2716 ins.unit = UNIT_VMUL;
2717
2718 control |= ins.unit;
2719
2720 emit_binary_vector_instruction(&ins, bundle.register_words,
2721 &bundle.register_words_count, bundle.body_words,
2722 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2723 } else {
2724 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2725 bool written_late = false;
2726 bool components[4] = { 0 };
2727 uint16_t register_dep_mask = 0;
2728 uint16_t written_mask = 0;
2729
2730 midgard_instruction *qins = ins;
2731 for (int t = 0; t < index; ++t) {
2732 if (qins->registers.out_reg != 0) {
2733 /* Mark down writes */
2734
2735 written_mask |= (1 << qins->registers.out_reg);
2736 } else {
2737 /* Mark down the register dependencies for errata check */
2738
2739 if (qins->registers.src1_reg < 16)
2740 register_dep_mask |= (1 << qins->registers.src1_reg);
2741
2742 if (qins->registers.src2_reg < 16)
2743 register_dep_mask |= (1 << qins->registers.src2_reg);
2744
2745 int mask = qins->alu.mask;
2746
2747 for (int c = 0; c < 4; ++c)
2748 if (mask & (0x3 << (2 * c)))
2749 components[c] = true;
2750
2751 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2752
2753 if (qins->unit == UNIT_VLUT)
2754 written_late = true;
2755 }
2756
2757 /* Advance instruction pointer */
2758 qins = mir_next_op(qins);
2759 }
2760
2761
2762 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2763 if (register_dep_mask & written_mask) {
2764 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2765 break;
2766 }
2767
2768 if (written_late)
2769 break;
2770
2771 /* If even a single component is not written, break it up (conservative check). */
2772 bool breakup = false;
2773
2774 for (int c = 0; c < 4; ++c)
2775 if (!components[c])
2776 breakup = true;
2777
2778 if (breakup)
2779 break;
2780
2781 /* Otherwise, we're free to proceed */
2782 }
2783 }
2784
2785 if (ains->unit == ALU_ENAB_BRANCH) {
2786 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2787 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2788 bytes_emitted += sizeof(midgard_branch_extended);
2789 } else {
2790 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2791 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2792 bytes_emitted += sizeof(ains->br_compact);
2793 }
2794 } else {
2795 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2796 bytes_emitted += sizeof(midgard_reg_info);
2797
2798 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2799 bundle.body_words_count++;
2800 bytes_emitted += sizeof(midgard_scalar_alu);
2801 }
2802
2803 /* Defer marking until after writing to allow for break */
2804 control |= ains->unit;
2805 last_unit = ains->unit;
2806 ++instructions_emitted;
2807 ++index;
2808 }
2809
2810 /* Bubble up the number of instructions for skipping */
2811 instructions_consumed = index - 1;
2812
2813 int padding = 0;
2814
2815 /* Pad ALU op to nearest word */
2816
2817 if (bytes_emitted & 15) {
2818 padding = 16 - (bytes_emitted & 15);
2819 bytes_emitted += padding;
2820 }
2821
2822 /* Constants must always be quadwords */
2823 if (bundle.has_embedded_constants)
2824 bytes_emitted += 16;
2825
2826 /* Size ALU instruction for tag */
2827 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2828 bundle.padding = padding;
2829 bundle.control = bundle.tag | control;
2830
2831 break;
2832 }
2833
2834 case TAG_LOAD_STORE_4: {
2835 /* Load store instructions have two words at once. If
2836 * we only have one queued up, we need to NOP pad.
2837 * Otherwise, we store both in succession to save space
2838 * and cycles -- letting them go in parallel -- skip
2839 * the next. The usefulness of this optimisation is
2840 * greatly dependent on the quality of the instruction
2841 * scheduler.
2842 */
2843
2844 midgard_instruction *next_op = mir_next_op(ins);
2845
2846 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2847 /* As the two operate concurrently, make sure
2848 * they are not dependent */
2849
2850 if (can_run_concurrent_ssa(ins, next_op) || true) {
2851 /* Skip ahead, since it's redundant with the pair */
2852 instructions_consumed = 1 + (instructions_emitted++);
2853 }
2854 }
2855
2856 break;
2857 }
2858
2859 default:
2860 /* Texture ops default to single-op-per-bundle scheduling */
2861 break;
2862 }
2863
2864 /* Copy the instructions into the bundle */
2865 bundle.instruction_count = instructions_emitted + 1;
2866
2867 int used_idx = 0;
2868
2869 midgard_instruction *uins = ins;
2870 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2871 bundle.instructions[used_idx++] = *uins;
2872 uins = mir_next_op(uins);
2873 }
2874
2875 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2876
2877 return bundle;
2878 }
2879
2880 static int
2881 quadword_size(int tag)
2882 {
2883 switch (tag) {
2884 case TAG_ALU_4:
2885 return 1;
2886
2887 case TAG_ALU_8:
2888 return 2;
2889
2890 case TAG_ALU_12:
2891 return 3;
2892
2893 case TAG_ALU_16:
2894 return 4;
2895
2896 case TAG_LOAD_STORE_4:
2897 return 1;
2898
2899 case TAG_TEXTURE_4:
2900 return 1;
2901
2902 default:
2903 assert(0);
2904 return 0;
2905 }
2906 }
2907
2908 /* Schedule a single block by iterating its instruction to create bundles.
2909 * While we go, tally about the bundle sizes to compute the block size. */
2910
2911 static void
2912 schedule_block(compiler_context *ctx, midgard_block *block)
2913 {
2914 util_dynarray_init(&block->bundles, NULL);
2915
2916 block->quadword_count = 0;
2917
2918 mir_foreach_instr_in_block(block, ins) {
2919 int skip;
2920 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2921 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2922
2923 if (bundle.has_blend_constant) {
2924 /* TODO: Multiblock? */
2925 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2926 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2927 }
2928
2929 while(skip--)
2930 ins = mir_next_op(ins);
2931
2932 block->quadword_count += quadword_size(bundle.tag);
2933 }
2934
2935 block->is_scheduled = true;
2936 }
2937
2938 static void
2939 schedule_program(compiler_context *ctx)
2940 {
2941 /* We run RA prior to scheduling */
2942 struct ra_graph *g = allocate_registers(ctx);
2943 install_registers(ctx, g);
2944
2945 mir_foreach_block(ctx, block) {
2946 schedule_block(ctx, block);
2947 }
2948 }
2949
2950 /* After everything is scheduled, emit whole bundles at a time */
2951
2952 static void
2953 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2954 {
2955 int lookahead = next_tag << 4;
2956
2957 switch (bundle->tag) {
2958 case TAG_ALU_4:
2959 case TAG_ALU_8:
2960 case TAG_ALU_12:
2961 case TAG_ALU_16: {
2962 /* Actually emit each component */
2963 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2964
2965 for (int i = 0; i < bundle->register_words_count; ++i)
2966 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2967
2968 /* Emit body words based on the instructions bundled */
2969 for (int i = 0; i < bundle->instruction_count; ++i) {
2970 midgard_instruction *ins = &bundle->instructions[i];
2971
2972 if (ins->unit & UNITS_ANY_VECTOR) {
2973 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2974 } else if (ins->compact_branch) {
2975 /* Dummy move, XXX DRY */
2976 if ((i == 0) && ins->writeout) {
2977 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2978 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2979 }
2980
2981 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2982 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2983 } else {
2984 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2985 }
2986 } else {
2987 /* Scalar */
2988 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2989 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2990 }
2991 }
2992
2993 /* Emit padding (all zero) */
2994 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2995
2996 /* Tack on constants */
2997
2998 if (bundle->has_embedded_constants) {
2999 util_dynarray_append(emission, float, bundle->constants[0]);
3000 util_dynarray_append(emission, float, bundle->constants[1]);
3001 util_dynarray_append(emission, float, bundle->constants[2]);
3002 util_dynarray_append(emission, float, bundle->constants[3]);
3003 }
3004
3005 break;
3006 }
3007
3008 case TAG_LOAD_STORE_4: {
3009 /* One or two composing instructions */
3010
3011 uint64_t current64, next64 = LDST_NOP;
3012
3013 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
3014
3015 if (bundle->instruction_count == 2)
3016 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
3017
3018 midgard_load_store instruction = {
3019 .type = bundle->tag,
3020 .next_type = next_tag,
3021 .word1 = current64,
3022 .word2 = next64
3023 };
3024
3025 util_dynarray_append(emission, midgard_load_store, instruction);
3026
3027 break;
3028 }
3029
3030 case TAG_TEXTURE_4: {
3031 /* Texture instructions are easy, since there is no
3032 * pipelining nor VLIW to worry about. We may need to set the .last flag */
3033
3034 midgard_instruction *ins = &bundle->instructions[0];
3035
3036 ins->texture.type = TAG_TEXTURE_4;
3037 ins->texture.next_type = next_tag;
3038
3039 ctx->texture_op_count--;
3040
3041 if (!ctx->texture_op_count) {
3042 ins->texture.cont = 0;
3043 ins->texture.last = 1;
3044 }
3045
3046 util_dynarray_append(emission, midgard_texture_word, ins->texture);
3047 break;
3048 }
3049
3050 default:
3051 DBG("Unknown midgard instruction type\n");
3052 assert(0);
3053 break;
3054 }
3055 }
3056
3057
3058 /* ALU instructions can inline or embed constants, which decreases register
3059 * pressure and saves space. */
3060
3061 #define CONDITIONAL_ATTACH(src) { \
3062 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
3063 \
3064 if (entry) { \
3065 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
3066 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
3067 } \
3068 }
3069
3070 static void
3071 inline_alu_constants(compiler_context *ctx)
3072 {
3073 mir_foreach_instr(ctx, alu) {
3074 /* Other instructions cannot inline constants */
3075 if (alu->type != TAG_ALU_4) continue;
3076
3077 /* If there is already a constant here, we can do nothing */
3078 if (alu->has_constants) continue;
3079
3080 /* It makes no sense to inline constants on a branch */
3081 if (alu->compact_branch || alu->prepacked_branch) continue;
3082
3083 CONDITIONAL_ATTACH(src0);
3084
3085 if (!alu->has_constants) {
3086 CONDITIONAL_ATTACH(src1)
3087 } else if (!alu->inline_constant) {
3088 /* Corner case: _two_ vec4 constants, for instance with a
3089 * csel. For this case, we can only use a constant
3090 * register for one, we'll have to emit a move for the
3091 * other. Note, if both arguments are constants, then
3092 * necessarily neither argument depends on the value of
3093 * any particular register. As the destination register
3094 * will be wiped, that means we can spill the constant
3095 * to the destination register.
3096 */
3097
3098 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
3099 unsigned scratch = alu->ssa_args.dest;
3100
3101 if (entry) {
3102 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
3103 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
3104
3105 /* Force a break XXX Defer r31 writes */
3106 ins.unit = UNIT_VLUT;
3107
3108 /* Set the source */
3109 alu->ssa_args.src1 = scratch;
3110
3111 /* Inject us -before- the last instruction which set r31 */
3112 mir_insert_instruction_before(mir_prev_op(alu), ins);
3113 }
3114 }
3115 }
3116 }
3117
3118 /* Midgard supports two types of constants, embedded constants (128-bit) and
3119 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
3120 * constants can be demoted to inline constants, for space savings and
3121 * sometimes a performance boost */
3122
3123 static void
3124 embedded_to_inline_constant(compiler_context *ctx)
3125 {
3126 mir_foreach_instr(ctx, ins) {
3127 if (!ins->has_constants) continue;
3128
3129 if (ins->ssa_args.inline_constant) continue;
3130
3131 /* Blend constants must not be inlined by definition */
3132 if (ins->has_blend_constant) continue;
3133
3134 /* src1 cannot be an inline constant due to encoding
3135 * restrictions. So, if possible we try to flip the arguments
3136 * in that case */
3137
3138 int op = ins->alu.op;
3139
3140 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3141 switch (op) {
3142 /* These ops require an operational change to flip
3143 * their arguments TODO */
3144 case midgard_alu_op_flt:
3145 case midgard_alu_op_fle:
3146 case midgard_alu_op_ilt:
3147 case midgard_alu_op_ile:
3148 case midgard_alu_op_fcsel:
3149 case midgard_alu_op_icsel:
3150 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3151 default:
3152 break;
3153 }
3154
3155 if (alu_opcode_props[op].props & OP_COMMUTES) {
3156 /* Flip the SSA numbers */
3157 ins->ssa_args.src0 = ins->ssa_args.src1;
3158 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3159
3160 /* And flip the modifiers */
3161
3162 unsigned src_temp;
3163
3164 src_temp = ins->alu.src2;
3165 ins->alu.src2 = ins->alu.src1;
3166 ins->alu.src1 = src_temp;
3167 }
3168 }
3169
3170 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3171 /* Extract the source information */
3172
3173 midgard_vector_alu_src *src;
3174 int q = ins->alu.src2;
3175 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3176 src = m;
3177
3178 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3179 int component = src->swizzle & 3;
3180
3181 /* Scale constant appropriately, if we can legally */
3182 uint16_t scaled_constant = 0;
3183
3184 /* XXX: Check legality */
3185 if (midgard_is_integer_op(op)) {
3186 /* TODO: Inline integer */
3187 continue;
3188
3189 unsigned int *iconstants = (unsigned int *) ins->constants;
3190 scaled_constant = (uint16_t) iconstants[component];
3191
3192 /* Constant overflow after resize */
3193 if (scaled_constant != iconstants[component])
3194 continue;
3195 } else {
3196 float original = (float) ins->constants[component];
3197 scaled_constant = _mesa_float_to_half(original);
3198
3199 /* Check for loss of precision. If this is
3200 * mediump, we don't care, but for a highp
3201 * shader, we need to pay attention. NIR
3202 * doesn't yet tell us which mode we're in!
3203 * Practically this prevents most constants
3204 * from being inlined, sadly. */
3205
3206 float fp32 = _mesa_half_to_float(scaled_constant);
3207
3208 if (fp32 != original)
3209 continue;
3210 }
3211
3212 /* We don't know how to handle these with a constant */
3213
3214 if (src->mod || src->half || src->rep_low || src->rep_high) {
3215 DBG("Bailing inline constant...\n");
3216 continue;
3217 }
3218
3219 /* Make sure that the constant is not itself a
3220 * vector by checking if all accessed values
3221 * (by the swizzle) are the same. */
3222
3223 uint32_t *cons = (uint32_t *) ins->constants;
3224 uint32_t value = cons[component];
3225
3226 bool is_vector = false;
3227 unsigned mask = effective_writemask(&ins->alu);
3228
3229 for (int c = 1; c < 4; ++c) {
3230 /* We only care if this component is actually used */
3231 if (!(mask & (1 << c)))
3232 continue;
3233
3234 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3235
3236 if (test != value) {
3237 is_vector = true;
3238 break;
3239 }
3240 }
3241
3242 if (is_vector)
3243 continue;
3244
3245 /* Get rid of the embedded constant */
3246 ins->has_constants = false;
3247 ins->ssa_args.src1 = SSA_UNUSED_0;
3248 ins->ssa_args.inline_constant = true;
3249 ins->inline_constant = scaled_constant;
3250 }
3251 }
3252 }
3253
3254 /* Map normal SSA sources to other SSA sources / fixed registers (like
3255 * uniforms) */
3256
3257 static void
3258 map_ssa_to_alias(compiler_context *ctx, int *ref)
3259 {
3260 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3261
3262 if (alias) {
3263 /* Remove entry in leftovers to avoid a redunant fmov */
3264
3265 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3266
3267 if (leftover)
3268 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3269
3270 /* Assign the alias map */
3271 *ref = alias - 1;
3272 return;
3273 }
3274 }
3275
3276 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3277 * texture pipeline */
3278
3279 static bool
3280 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3281 {
3282 bool progress = false;
3283
3284 mir_foreach_instr_in_block_safe(block, ins) {
3285 if (ins->type != TAG_ALU_4) continue;
3286 if (ins->compact_branch) continue;
3287
3288 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3289 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3290 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3291
3292 mir_remove_instruction(ins);
3293 progress = true;
3294 }
3295
3296 return progress;
3297 }
3298
3299 static bool
3300 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3301 {
3302 bool progress = false;
3303
3304 mir_foreach_instr_in_block_safe(block, ins) {
3305 if (ins->type != TAG_ALU_4) continue;
3306 if (!OP_IS_MOVE(ins->alu.op)) continue;
3307
3308 unsigned from = ins->ssa_args.src1;
3309 unsigned to = ins->ssa_args.dest;
3310
3311 /* We only work on pure SSA */
3312
3313 if (to >= SSA_FIXED_MINIMUM) continue;
3314 if (from >= SSA_FIXED_MINIMUM) continue;
3315 if (to >= ctx->func->impl->ssa_alloc) continue;
3316 if (from >= ctx->func->impl->ssa_alloc) continue;
3317
3318 /* Also, if the move has side effects, we're helpless */
3319
3320 midgard_vector_alu_src src =
3321 vector_alu_from_unsigned(ins->alu.src2);
3322 unsigned mask = squeeze_writemask(ins->alu.mask);
3323 bool is_int = midgard_is_integer_op(ins->alu.op);
3324
3325 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3326 if (ins->alu.outmod != midgard_outmod_none) continue;
3327
3328 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3329 if (v->ssa_args.src0 == to) {
3330 v->ssa_args.src0 = from;
3331 progress = true;
3332 }
3333
3334 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3335 v->ssa_args.src1 = from;
3336 progress = true;
3337 }
3338 }
3339 }
3340
3341 return progress;
3342 }
3343
3344 static bool
3345 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3346 {
3347 bool progress = false;
3348
3349 mir_foreach_instr_in_block_safe(block, ins) {
3350 if (ins->type != TAG_ALU_4) continue;
3351 if (!OP_IS_MOVE(ins->alu.op)) continue;
3352
3353 unsigned from = ins->ssa_args.src1;
3354 unsigned to = ins->ssa_args.dest;
3355
3356 /* Make sure it's simple enough for us to handle */
3357
3358 if (from >= SSA_FIXED_MINIMUM) continue;
3359 if (from >= ctx->func->impl->ssa_alloc) continue;
3360 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3361 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3362
3363 bool eliminated = false;
3364
3365 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3366 /* The texture registers are not SSA so be careful.
3367 * Conservatively, just stop if we hit a texture op
3368 * (even if it may not write) to where we are */
3369
3370 if (v->type != TAG_ALU_4)
3371 break;
3372
3373 if (v->ssa_args.dest == from) {
3374 /* We don't want to track partial writes ... */
3375 if (v->alu.mask == 0xF) {
3376 v->ssa_args.dest = to;
3377 eliminated = true;
3378 }
3379
3380 break;
3381 }
3382 }
3383
3384 if (eliminated)
3385 mir_remove_instruction(ins);
3386
3387 progress |= eliminated;
3388 }
3389
3390 return progress;
3391 }
3392
3393 /* We don't really understand the imov/fmov split, so always use fmov (but let
3394 * it be imov in the IR so we don't do unsafe floating point "optimizations"
3395 * and break things */
3396
3397 static void
3398 midgard_imov_workaround(compiler_context *ctx, midgard_block *block)
3399 {
3400 mir_foreach_instr_in_block_safe(block, ins) {
3401 if (ins->type != TAG_ALU_4) continue;
3402 if (ins->alu.op != midgard_alu_op_imov) continue;
3403
3404 ins->alu.op = midgard_alu_op_fmov;
3405 ins->alu.outmod = midgard_outmod_none;
3406
3407 /* Remove flags that don't make sense */
3408
3409 midgard_vector_alu_src s =
3410 vector_alu_from_unsigned(ins->alu.src2);
3411
3412 s.mod = 0;
3413
3414 ins->alu.src2 = vector_alu_srco_unsigned(s);
3415 }
3416 }
3417
3418 /* The following passes reorder MIR instructions to enable better scheduling */
3419
3420 static void
3421 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3422 {
3423 mir_foreach_instr_in_block_safe(block, ins) {
3424 if (ins->type != TAG_LOAD_STORE_4) continue;
3425
3426 /* We've found a load/store op. Check if next is also load/store. */
3427 midgard_instruction *next_op = mir_next_op(ins);
3428 if (&next_op->link != &block->instructions) {
3429 if (next_op->type == TAG_LOAD_STORE_4) {
3430 /* If so, we're done since we're a pair */
3431 ins = mir_next_op(ins);
3432 continue;
3433 }
3434
3435 /* Maximum search distance to pair, to avoid register pressure disasters */
3436 int search_distance = 8;
3437
3438 /* Otherwise, we have an orphaned load/store -- search for another load */
3439 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3440 /* Terminate search if necessary */
3441 if (!(search_distance--)) break;
3442
3443 if (c->type != TAG_LOAD_STORE_4) continue;
3444
3445 /* Stores cannot be reordered, since they have
3446 * dependencies. For the same reason, indirect
3447 * loads cannot be reordered as their index is
3448 * loaded in r27.w */
3449
3450 if (OP_IS_STORE(c->load_store.op)) continue;
3451
3452 /* It appears the 0x800 bit is set whenever a
3453 * load is direct, unset when it is indirect.
3454 * Skip indirect loads. */
3455
3456 if (!(c->load_store.unknown & 0x800)) continue;
3457
3458 /* We found one! Move it up to pair and remove it from the old location */
3459
3460 mir_insert_instruction_before(ins, *c);
3461 mir_remove_instruction(c);
3462
3463 break;
3464 }
3465 }
3466 }
3467 }
3468
3469 /* Emit varying stores late */
3470
3471 static void
3472 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3473 /* Iterate in reverse to get the final write, rather than the first */
3474
3475 mir_foreach_instr_in_block_safe_rev(block, ins) {
3476 /* Check if what we just wrote needs a store */
3477 int idx = ins->ssa_args.dest;
3478 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3479
3480 if (!varying) continue;
3481
3482 varying -= 1;
3483
3484 /* We need to store to the appropriate varying, so emit the
3485 * move/store */
3486
3487 /* TODO: Integrate with special purpose RA (and scheduler?) */
3488 bool high_varying_register = false;
3489
3490 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3491
3492 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3493 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3494
3495 mir_insert_instruction_before(mir_next_op(ins), st);
3496 mir_insert_instruction_before(mir_next_op(ins), mov);
3497
3498 /* We no longer need to store this varying */
3499 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3500 }
3501 }
3502
3503 /* If there are leftovers after the below pass, emit actual fmov
3504 * instructions for the slow-but-correct path */
3505
3506 static void
3507 emit_leftover_move(compiler_context *ctx)
3508 {
3509 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3510 int base = ((uintptr_t) leftover->key) - 1;
3511 int mapped = base;
3512
3513 map_ssa_to_alias(ctx, &mapped);
3514 EMIT(fmov, mapped, blank_alu_src, base);
3515 }
3516 }
3517
3518 static void
3519 actualise_ssa_to_alias(compiler_context *ctx)
3520 {
3521 mir_foreach_instr(ctx, ins) {
3522 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3523 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3524 }
3525
3526 emit_leftover_move(ctx);
3527 }
3528
3529 static void
3530 emit_fragment_epilogue(compiler_context *ctx)
3531 {
3532 /* Special case: writing out constants requires us to include the move
3533 * explicitly now, so shove it into r0 */
3534
3535 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3536
3537 if (constant_value) {
3538 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3539 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3540 emit_mir_instruction(ctx, ins);
3541 }
3542
3543 /* Perform the actual fragment writeout. We have two writeout/branch
3544 * instructions, forming a loop until writeout is successful as per the
3545 * docs. TODO: gl_FragDepth */
3546
3547 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3548 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3549 }
3550
3551 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3552 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3553 * with the int8 analogue to the fragment epilogue */
3554
3555 static void
3556 emit_blend_epilogue(compiler_context *ctx)
3557 {
3558 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3559
3560 midgard_instruction scale = {
3561 .type = TAG_ALU_4,
3562 .unit = UNIT_VMUL,
3563 .inline_constant = _mesa_float_to_half(255.0),
3564 .ssa_args = {
3565 .src0 = SSA_FIXED_REGISTER(0),
3566 .src1 = SSA_UNUSED_0,
3567 .dest = SSA_FIXED_REGISTER(24),
3568 .inline_constant = true
3569 },
3570 .alu = {
3571 .op = midgard_alu_op_fmul,
3572 .reg_mode = midgard_reg_mode_32,
3573 .dest_override = midgard_dest_override_lower,
3574 .mask = 0xFF,
3575 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3576 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3577 }
3578 };
3579
3580 emit_mir_instruction(ctx, scale);
3581
3582 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3583
3584 midgard_vector_alu_src alu_src = blank_alu_src;
3585 alu_src.half = true;
3586
3587 midgard_instruction f2u8 = {
3588 .type = TAG_ALU_4,
3589 .ssa_args = {
3590 .src0 = SSA_FIXED_REGISTER(24),
3591 .src1 = SSA_UNUSED_0,
3592 .dest = SSA_FIXED_REGISTER(0),
3593 .inline_constant = true
3594 },
3595 .alu = {
3596 .op = midgard_alu_op_f2u8,
3597 .reg_mode = midgard_reg_mode_16,
3598 .dest_override = midgard_dest_override_lower,
3599 .outmod = midgard_outmod_pos,
3600 .mask = 0xF,
3601 .src1 = vector_alu_srco_unsigned(alu_src),
3602 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3603 }
3604 };
3605
3606 emit_mir_instruction(ctx, f2u8);
3607
3608 /* vmul.imov.quarter r0, r0, r0 */
3609
3610 midgard_instruction imov_8 = {
3611 .type = TAG_ALU_4,
3612 .ssa_args = {
3613 .src0 = SSA_UNUSED_1,
3614 .src1 = SSA_FIXED_REGISTER(0),
3615 .dest = SSA_FIXED_REGISTER(0),
3616 },
3617 .alu = {
3618 .op = midgard_alu_op_imov,
3619 .reg_mode = midgard_reg_mode_8,
3620 .dest_override = midgard_dest_override_none,
3621 .mask = 0xFF,
3622 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3623 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3624 }
3625 };
3626
3627 /* Emit branch epilogue with the 8-bit move as the source */
3628
3629 emit_mir_instruction(ctx, imov_8);
3630 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3631
3632 emit_mir_instruction(ctx, imov_8);
3633 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3634 }
3635
3636 static midgard_block *
3637 emit_block(compiler_context *ctx, nir_block *block)
3638 {
3639 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3640 list_addtail(&this_block->link, &ctx->blocks);
3641
3642 this_block->is_scheduled = false;
3643 ++ctx->block_count;
3644
3645 ctx->texture_index[0] = -1;
3646 ctx->texture_index[1] = -1;
3647
3648 /* Add us as a successor to the block we are following */
3649 if (ctx->current_block)
3650 midgard_block_add_successor(ctx->current_block, this_block);
3651
3652 /* Set up current block */
3653 list_inithead(&this_block->instructions);
3654 ctx->current_block = this_block;
3655
3656 nir_foreach_instr(instr, block) {
3657 emit_instr(ctx, instr);
3658 ++ctx->instruction_count;
3659 }
3660
3661 inline_alu_constants(ctx);
3662 embedded_to_inline_constant(ctx);
3663
3664 /* Perform heavylifting for aliasing */
3665 actualise_ssa_to_alias(ctx);
3666
3667 midgard_emit_store(ctx, this_block);
3668 midgard_pair_load_store(ctx, this_block);
3669 midgard_imov_workaround(ctx, this_block);
3670
3671 /* Append fragment shader epilogue (value writeout) */
3672 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3673 if (block == nir_impl_last_block(ctx->func->impl)) {
3674 if (ctx->is_blend)
3675 emit_blend_epilogue(ctx);
3676 else
3677 emit_fragment_epilogue(ctx);
3678 }
3679 }
3680
3681 if (block == nir_start_block(ctx->func->impl))
3682 ctx->initial_block = this_block;
3683
3684 if (block == nir_impl_last_block(ctx->func->impl))
3685 ctx->final_block = this_block;
3686
3687 /* Allow the next control flow to access us retroactively, for
3688 * branching etc */
3689 ctx->current_block = this_block;
3690
3691 /* Document the fallthrough chain */
3692 ctx->previous_source_block = this_block;
3693
3694 return this_block;
3695 }
3696
3697 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3698
3699 static void
3700 emit_if(struct compiler_context *ctx, nir_if *nif)
3701 {
3702 /* Conditional branches expect the condition in r31.w; emit a move for
3703 * that in the _previous_ block (which is the current block). */
3704 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3705
3706 /* Speculatively emit the branch, but we can't fill it in until later */
3707 EMIT(branch, true, true);
3708 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3709
3710 /* Emit the two subblocks */
3711 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3712
3713 /* Emit a jump from the end of the then block to the end of the else */
3714 EMIT(branch, false, false);
3715 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3716
3717 /* Emit second block, and check if it's empty */
3718
3719 int else_idx = ctx->block_count;
3720 int count_in = ctx->instruction_count;
3721 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3722 int after_else_idx = ctx->block_count;
3723
3724 /* Now that we have the subblocks emitted, fix up the branches */
3725
3726 assert(then_block);
3727 assert(else_block);
3728
3729 if (ctx->instruction_count == count_in) {
3730 /* The else block is empty, so don't emit an exit jump */
3731 mir_remove_instruction(then_exit);
3732 then_branch->branch.target_block = after_else_idx;
3733 } else {
3734 then_branch->branch.target_block = else_idx;
3735 then_exit->branch.target_block = after_else_idx;
3736 }
3737 }
3738
3739 static void
3740 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3741 {
3742 /* Remember where we are */
3743 midgard_block *start_block = ctx->current_block;
3744
3745 /* Allocate a loop number, growing the current inner loop depth */
3746 int loop_idx = ++ctx->current_loop_depth;
3747
3748 /* Get index from before the body so we can loop back later */
3749 int start_idx = ctx->block_count;
3750
3751 /* Emit the body itself */
3752 emit_cf_list(ctx, &nloop->body);
3753
3754 /* Branch back to loop back */
3755 struct midgard_instruction br_back = v_branch(false, false);
3756 br_back.branch.target_block = start_idx;
3757 emit_mir_instruction(ctx, br_back);
3758
3759 /* Mark down that branch in the graph. Note that we're really branching
3760 * to the block *after* we started in. TODO: Why doesn't the branch
3761 * itself have an off-by-one then...? */
3762 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3763
3764 /* Find the index of the block about to follow us (note: we don't add
3765 * one; blocks are 0-indexed so we get a fencepost problem) */
3766 int break_block_idx = ctx->block_count;
3767
3768 /* Fix up the break statements we emitted to point to the right place,
3769 * now that we can allocate a block number for them */
3770
3771 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3772 mir_foreach_instr_in_block(block, ins) {
3773 if (ins->type != TAG_ALU_4) continue;
3774 if (!ins->compact_branch) continue;
3775 if (ins->prepacked_branch) continue;
3776
3777 /* We found a branch -- check the type to see if we need to do anything */
3778 if (ins->branch.target_type != TARGET_BREAK) continue;
3779
3780 /* It's a break! Check if it's our break */
3781 if (ins->branch.target_break != loop_idx) continue;
3782
3783 /* Okay, cool, we're breaking out of this loop.
3784 * Rewrite from a break to a goto */
3785
3786 ins->branch.target_type = TARGET_GOTO;
3787 ins->branch.target_block = break_block_idx;
3788 }
3789 }
3790
3791 /* Now that we've finished emitting the loop, free up the depth again
3792 * so we play nice with recursion amid nested loops */
3793 --ctx->current_loop_depth;
3794 }
3795
3796 static midgard_block *
3797 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3798 {
3799 midgard_block *start_block = NULL;
3800
3801 foreach_list_typed(nir_cf_node, node, node, list) {
3802 switch (node->type) {
3803 case nir_cf_node_block: {
3804 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3805
3806 if (!start_block)
3807 start_block = block;
3808
3809 break;
3810 }
3811
3812 case nir_cf_node_if:
3813 emit_if(ctx, nir_cf_node_as_if(node));
3814 break;
3815
3816 case nir_cf_node_loop:
3817 emit_loop(ctx, nir_cf_node_as_loop(node));
3818 break;
3819
3820 case nir_cf_node_function:
3821 assert(0);
3822 break;
3823 }
3824 }
3825
3826 return start_block;
3827 }
3828
3829 /* Due to lookahead, we need to report the first tag executed in the command
3830 * stream and in branch targets. An initial block might be empty, so iterate
3831 * until we find one that 'works' */
3832
3833 static unsigned
3834 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3835 {
3836 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3837
3838 unsigned first_tag = 0;
3839
3840 do {
3841 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3842
3843 if (initial_bundle) {
3844 first_tag = initial_bundle->tag;
3845 break;
3846 }
3847
3848 /* Initial block is empty, try the next block */
3849 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3850 } while(initial_block != NULL);
3851
3852 assert(first_tag);
3853 return first_tag;
3854 }
3855
3856 int
3857 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3858 {
3859 struct util_dynarray *compiled = &program->compiled;
3860
3861 midgard_debug = debug_get_option_midgard_debug();
3862
3863 compiler_context ictx = {
3864 .nir = nir,
3865 .stage = nir->info.stage,
3866
3867 .is_blend = is_blend,
3868 .blend_constant_offset = -1,
3869
3870 .alpha_ref = program->alpha_ref
3871 };
3872
3873 compiler_context *ctx = &ictx;
3874
3875 /* TODO: Decide this at runtime */
3876 ctx->uniform_cutoff = 8;
3877
3878 /* Assign var locations early, so the epilogue can use them if necessary */
3879
3880 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3881 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3882 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3883
3884 /* Initialize at a global (not block) level hash tables */
3885
3886 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3887 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3888 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3889 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3890 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3891 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3892 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3893
3894 /* Record the varying mapping for the command stream's bookkeeping */
3895
3896 struct exec_list *varyings =
3897 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3898
3899 nir_foreach_variable(var, varyings) {
3900 unsigned loc = var->data.driver_location;
3901 unsigned sz = glsl_type_size(var->type, FALSE);
3902
3903 for (int c = 0; c < sz; ++c) {
3904 program->varyings[loc + c] = var->data.location;
3905 }
3906 }
3907
3908 /* Lower gl_Position pre-optimisation */
3909
3910 if (ctx->stage == MESA_SHADER_VERTEX)
3911 NIR_PASS_V(nir, nir_lower_viewport_transform);
3912
3913 NIR_PASS_V(nir, nir_lower_var_copies);
3914 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3915 NIR_PASS_V(nir, nir_split_var_copies);
3916 NIR_PASS_V(nir, nir_lower_var_copies);
3917 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3918 NIR_PASS_V(nir, nir_lower_var_copies);
3919 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3920
3921 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3922
3923 /* Optimisation passes */
3924
3925 optimise_nir(nir);
3926
3927 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3928 nir_print_shader(nir, stdout);
3929 }
3930
3931 /* Assign sysvals and counts, now that we're sure
3932 * (post-optimisation) */
3933
3934 midgard_nir_assign_sysvals(ctx, nir);
3935
3936 program->uniform_count = nir->num_uniforms;
3937 program->sysval_count = ctx->sysval_count;
3938 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3939
3940 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3941 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3942
3943 nir_foreach_function(func, nir) {
3944 if (!func->impl)
3945 continue;
3946
3947 list_inithead(&ctx->blocks);
3948 ctx->block_count = 0;
3949 ctx->func = func;
3950
3951 emit_cf_list(ctx, &func->impl->body);
3952 emit_block(ctx, func->impl->end_block);
3953
3954 break; /* TODO: Multi-function shaders */
3955 }
3956
3957 util_dynarray_init(compiled, NULL);
3958
3959 /* MIR-level optimizations */
3960
3961 bool progress = false;
3962
3963 do {
3964 progress = false;
3965
3966 mir_foreach_block(ctx, block) {
3967 progress |= midgard_opt_copy_prop(ctx, block);
3968 progress |= midgard_opt_copy_prop_tex(ctx, block);
3969 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3970 }
3971 } while (progress);
3972
3973 /* Schedule! */
3974 schedule_program(ctx);
3975
3976 /* Now that all the bundles are scheduled and we can calculate block
3977 * sizes, emit actual branch instructions rather than placeholders */
3978
3979 int br_block_idx = 0;
3980
3981 mir_foreach_block(ctx, block) {
3982 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3983 for (int c = 0; c < bundle->instruction_count; ++c) {
3984 midgard_instruction *ins = &bundle->instructions[c];
3985
3986 if (!midgard_is_branch_unit(ins->unit)) continue;
3987
3988 if (ins->prepacked_branch) continue;
3989
3990 /* Parse some basic branch info */
3991 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3992 bool is_conditional = ins->branch.conditional;
3993 bool is_inverted = ins->branch.invert_conditional;
3994 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3995
3996 /* Determine the block we're jumping to */
3997 int target_number = ins->branch.target_block;
3998
3999 /* Report the destination tag. Discards don't need this */
4000 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
4001
4002 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
4003 int quadword_offset = 0;
4004
4005 if (is_discard) {
4006 /* Jump to the end of the shader. We
4007 * need to include not only the
4008 * following blocks, but also the
4009 * contents of our current block (since
4010 * discard can come in the middle of
4011 * the block) */
4012
4013 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
4014
4015 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
4016 quadword_offset += quadword_size(bun->tag);
4017 }
4018
4019 mir_foreach_block_from(ctx, blk, b) {
4020 quadword_offset += b->quadword_count;
4021 }
4022
4023 } else if (target_number > br_block_idx) {
4024 /* Jump forward */
4025
4026 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
4027 midgard_block *blk = mir_get_block(ctx, idx);
4028 assert(blk);
4029
4030 quadword_offset += blk->quadword_count;
4031 }
4032 } else {
4033 /* Jump backwards */
4034
4035 for (int idx = br_block_idx; idx >= target_number; --idx) {
4036 midgard_block *blk = mir_get_block(ctx, idx);
4037 assert(blk);
4038
4039 quadword_offset -= blk->quadword_count;
4040 }
4041 }
4042
4043 /* Unconditional extended branches (far jumps)
4044 * have issues, so we always use a conditional
4045 * branch, setting the condition to always for
4046 * unconditional. For compact unconditional
4047 * branches, cond isn't used so it doesn't
4048 * matter what we pick. */
4049
4050 midgard_condition cond =
4051 !is_conditional ? midgard_condition_always :
4052 is_inverted ? midgard_condition_false :
4053 midgard_condition_true;
4054
4055 midgard_jmp_writeout_op op =
4056 is_discard ? midgard_jmp_writeout_op_discard :
4057 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
4058 midgard_jmp_writeout_op_branch_cond;
4059
4060 if (!is_compact) {
4061 midgard_branch_extended branch =
4062 midgard_create_branch_extended(
4063 cond, op,
4064 dest_tag,
4065 quadword_offset);
4066
4067 memcpy(&ins->branch_extended, &branch, sizeof(branch));
4068 } else if (is_conditional || is_discard) {
4069 midgard_branch_cond branch = {
4070 .op = op,
4071 .dest_tag = dest_tag,
4072 .offset = quadword_offset,
4073 .cond = cond
4074 };
4075
4076 assert(branch.offset == quadword_offset);
4077
4078 memcpy(&ins->br_compact, &branch, sizeof(branch));
4079 } else {
4080 assert(op == midgard_jmp_writeout_op_branch_uncond);
4081
4082 midgard_branch_uncond branch = {
4083 .op = op,
4084 .dest_tag = dest_tag,
4085 .offset = quadword_offset,
4086 .unknown = 1
4087 };
4088
4089 assert(branch.offset == quadword_offset);
4090
4091 memcpy(&ins->br_compact, &branch, sizeof(branch));
4092 }
4093 }
4094 }
4095
4096 ++br_block_idx;
4097 }
4098
4099 /* Emit flat binary from the instruction arrays. Iterate each block in
4100 * sequence. Save instruction boundaries such that lookahead tags can
4101 * be assigned easily */
4102
4103 /* Cache _all_ bundles in source order for lookahead across failed branches */
4104
4105 int bundle_count = 0;
4106 mir_foreach_block(ctx, block) {
4107 bundle_count += block->bundles.size / sizeof(midgard_bundle);
4108 }
4109 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
4110 int bundle_idx = 0;
4111 mir_foreach_block(ctx, block) {
4112 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4113 source_order_bundles[bundle_idx++] = bundle;
4114 }
4115 }
4116
4117 int current_bundle = 0;
4118
4119 mir_foreach_block(ctx, block) {
4120 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4121 int lookahead = 1;
4122
4123 if (current_bundle + 1 < bundle_count) {
4124 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
4125
4126 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
4127 lookahead = 1;
4128 } else {
4129 lookahead = next;
4130 }
4131 }
4132
4133 emit_binary_bundle(ctx, bundle, compiled, lookahead);
4134 ++current_bundle;
4135 }
4136
4137 /* TODO: Free deeper */
4138 //util_dynarray_fini(&block->instructions);
4139 }
4140
4141 free(source_order_bundles);
4142
4143 /* Report the very first tag executed */
4144 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
4145
4146 /* Deal with off-by-one related to the fencepost problem */
4147 program->work_register_count = ctx->work_registers + 1;
4148
4149 program->can_discard = ctx->can_discard;
4150 program->uniform_cutoff = ctx->uniform_cutoff;
4151
4152 program->blend_patch_offset = ctx->blend_constant_offset;
4153
4154 if (midgard_debug & MIDGARD_DBG_SHADERS)
4155 disassemble_midgard(program->compiled.data, program->compiled.size);
4156
4157 return 0;
4158 }