panfrost/midgard: Refactor opcode tables
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static void
1086 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1087 {
1088 bool is_ssa = instr->dest.dest.is_ssa;
1089
1090 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1091 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1092 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1093
1094 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1095 * supported. A few do not and are commented for now. Also, there are a
1096 * number of NIR ops which Midgard does not support and need to be
1097 * lowered, also TODO. This switch block emits the opcode and calling
1098 * convention of the Midgard instruction; actual packing is done in
1099 * emit_alu below */
1100
1101 unsigned op;
1102
1103 switch (instr->op) {
1104 ALU_CASE(fadd, fadd);
1105 ALU_CASE(fmul, fmul);
1106 ALU_CASE(fmin, fmin);
1107 ALU_CASE(fmax, fmax);
1108 ALU_CASE(imin, imin);
1109 ALU_CASE(imax, imax);
1110 ALU_CASE(umin, umin);
1111 ALU_CASE(umax, umax);
1112 ALU_CASE(fmov, fmov);
1113 ALU_CASE(ffloor, ffloor);
1114 ALU_CASE(fround_even, froundeven);
1115 ALU_CASE(ftrunc, ftrunc);
1116 ALU_CASE(fceil, fceil);
1117 ALU_CASE(fdot3, fdot3);
1118 ALU_CASE(fdot4, fdot4);
1119 ALU_CASE(iadd, iadd);
1120 ALU_CASE(isub, isub);
1121 ALU_CASE(imul, imul);
1122 ALU_CASE(iabs, iabs);
1123
1124 /* XXX: Use fmov, not imov, since imov was causing major
1125 * issues with texture precision? XXX research */
1126 ALU_CASE(imov, imov);
1127
1128 ALU_CASE(feq32, feq);
1129 ALU_CASE(fne32, fne);
1130 ALU_CASE(flt32, flt);
1131 ALU_CASE(ieq32, ieq);
1132 ALU_CASE(ine32, ine);
1133 ALU_CASE(ilt32, ilt);
1134 ALU_CASE(ult32, ult);
1135
1136 /* We don't have a native b2f32 instruction. Instead, like many
1137 * GPUs, we exploit booleans as 0/~0 for false/true, and
1138 * correspondingly AND
1139 * by 1.0 to do the type conversion. For the moment, prime us
1140 * to emit:
1141 *
1142 * iand [whatever], #0
1143 *
1144 * At the end of emit_alu (as MIR), we'll fix-up the constant
1145 */
1146
1147 ALU_CASE(b2f32, iand);
1148 ALU_CASE(b2i32, iand);
1149
1150 /* Likewise, we don't have a dedicated f2b32 instruction, but
1151 * we can do a "not equal to 0.0" test. */
1152
1153 ALU_CASE(f2b32, fne);
1154 ALU_CASE(i2b32, ine);
1155
1156 ALU_CASE(frcp, frcp);
1157 ALU_CASE(frsq, frsqrt);
1158 ALU_CASE(fsqrt, fsqrt);
1159 ALU_CASE(fexp2, fexp2);
1160 ALU_CASE(flog2, flog2);
1161
1162 ALU_CASE(f2i32, f2i);
1163 ALU_CASE(f2u32, f2u);
1164 ALU_CASE(i2f32, i2f);
1165 ALU_CASE(u2f32, u2f);
1166
1167 ALU_CASE(fsin, fsin);
1168 ALU_CASE(fcos, fcos);
1169
1170 ALU_CASE(iand, iand);
1171 ALU_CASE(ior, ior);
1172 ALU_CASE(ixor, ixor);
1173 ALU_CASE(inot, inot);
1174 ALU_CASE(ishl, ishl);
1175 ALU_CASE(ishr, iasr);
1176 ALU_CASE(ushr, ilsr);
1177
1178 ALU_CASE(b32all_fequal2, fball_eq);
1179 ALU_CASE(b32all_fequal3, fball_eq);
1180 ALU_CASE(b32all_fequal4, fball_eq);
1181
1182 ALU_CASE(b32any_fnequal2, fbany_neq);
1183 ALU_CASE(b32any_fnequal3, fbany_neq);
1184 ALU_CASE(b32any_fnequal4, fbany_neq);
1185
1186 ALU_CASE(b32all_iequal2, iball_eq);
1187 ALU_CASE(b32all_iequal3, iball_eq);
1188 ALU_CASE(b32all_iequal4, iball_eq);
1189
1190 ALU_CASE(b32any_inequal2, ibany_neq);
1191 ALU_CASE(b32any_inequal3, ibany_neq);
1192 ALU_CASE(b32any_inequal4, ibany_neq);
1193
1194 /* For greater-or-equal, we lower to less-or-equal and flip the
1195 * arguments */
1196
1197 case nir_op_fge:
1198 case nir_op_fge32:
1199 case nir_op_ige32:
1200 case nir_op_uge32: {
1201 op =
1202 instr->op == nir_op_fge ? midgard_alu_op_fle :
1203 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1204 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1205 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1206 0;
1207
1208 /* Swap via temporary */
1209 nir_alu_src temp = instr->src[1];
1210 instr->src[1] = instr->src[0];
1211 instr->src[0] = temp;
1212
1213 break;
1214 }
1215
1216 case nir_op_b32csel: {
1217 op = midgard_alu_op_fcsel;
1218
1219 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1220 nr_inputs = 2;
1221
1222 /* Figure out which component the condition is in */
1223
1224 unsigned comp = instr->src[0].swizzle[0];
1225
1226 /* Make sure NIR isn't throwing a mixed condition at us */
1227
1228 for (unsigned c = 1; c < nr_components; ++c)
1229 assert(instr->src[0].swizzle[c] == comp);
1230
1231 /* Emit the condition into r31.w */
1232 emit_condition(ctx, &instr->src[0].src, false, comp);
1233
1234 /* The condition is the first argument; move the other
1235 * arguments up one to be a binary instruction for
1236 * Midgard */
1237
1238 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1239 break;
1240 }
1241
1242 default:
1243 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1244 assert(0);
1245 return;
1246 }
1247
1248 /* Fetch unit, quirks, etc information */
1249 unsigned opcode_props = alu_opcode_props[op].props;
1250 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1251
1252 /* Initialise fields common between scalar/vector instructions */
1253 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1254
1255 /* src0 will always exist afaik, but src1 will not for 1-argument
1256 * instructions. The latter can only be fetched if the instruction
1257 * needs it, or else we may segfault. */
1258
1259 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1260 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1261
1262 /* Rather than use the instruction generation helpers, we do it
1263 * ourselves here to avoid the mess */
1264
1265 midgard_instruction ins = {
1266 .type = TAG_ALU_4,
1267 .ssa_args = {
1268 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1269 .src1 = quirk_flipped_r24 ? src0 : src1,
1270 .dest = dest,
1271 }
1272 };
1273
1274 nir_alu_src *nirmods[2] = { NULL };
1275
1276 if (nr_inputs == 2) {
1277 nirmods[0] = &instr->src[0];
1278 nirmods[1] = &instr->src[1];
1279 } else if (nr_inputs == 1) {
1280 nirmods[quirk_flipped_r24] = &instr->src[0];
1281 } else {
1282 assert(0);
1283 }
1284
1285 bool is_int = midgard_is_integer_op(op);
1286
1287 midgard_vector_alu alu = {
1288 .op = op,
1289 .reg_mode = midgard_reg_mode_full,
1290 .dest_override = midgard_dest_override_none,
1291 .outmod = outmod,
1292
1293 /* Writemask only valid for non-SSA NIR */
1294 .mask = expand_writemask((1 << nr_components) - 1),
1295
1296 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1297 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1298 };
1299
1300 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1301
1302 if (!is_ssa)
1303 alu.mask &= expand_writemask(instr->dest.write_mask);
1304
1305 ins.alu = alu;
1306
1307 /* Late fixup for emulated instructions */
1308
1309 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1310 /* Presently, our second argument is an inline #0 constant.
1311 * Switch over to an embedded 1.0 constant (that can't fit
1312 * inline, since we're 32-bit, not 16-bit like the inline
1313 * constants) */
1314
1315 ins.ssa_args.inline_constant = false;
1316 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1317 ins.has_constants = true;
1318
1319 if (instr->op == nir_op_b2f32) {
1320 ins.constants[0] = 1.0f;
1321 } else {
1322 /* Type pun it into place */
1323 uint32_t one = 0x1;
1324 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1325 }
1326
1327 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1328 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1329 ins.ssa_args.inline_constant = false;
1330 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1331 ins.has_constants = true;
1332 ins.constants[0] = 0.0f;
1333 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1334 }
1335
1336 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1337 /* To avoid duplicating the lookup tables (probably), true LUT
1338 * instructions can only operate as if they were scalars. Lower
1339 * them here by changing the component. */
1340
1341 uint8_t original_swizzle[4];
1342 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1343
1344 for (int i = 0; i < nr_components; ++i) {
1345 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1346
1347 for (int j = 0; j < 4; ++j)
1348 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1349
1350 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1351 emit_mir_instruction(ctx, ins);
1352 }
1353 } else {
1354 emit_mir_instruction(ctx, ins);
1355 }
1356 }
1357
1358 #undef ALU_CASE
1359
1360 static void
1361 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1362 {
1363 /* TODO: half-floats */
1364
1365 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1366 /* Fast path: For the first 16 uniforms, direct accesses are
1367 * 0-cycle, since they're just a register fetch in the usual
1368 * case. So, we alias the registers while we're still in
1369 * SSA-space */
1370
1371 int reg_slot = 23 - offset;
1372 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1373 } else {
1374 /* Otherwise, read from the 'special' UBO to access
1375 * higher-indexed uniforms, at a performance cost. More
1376 * generally, we're emitting a UBO read instruction. */
1377
1378 midgard_instruction ins = m_load_uniform_32(dest, offset);
1379
1380 /* TODO: Don't split */
1381 ins.load_store.varying_parameters = (offset & 7) << 7;
1382 ins.load_store.address = offset >> 3;
1383
1384 if (indirect_offset) {
1385 emit_indirect_offset(ctx, indirect_offset);
1386 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1387 } else {
1388 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1389 }
1390
1391 emit_mir_instruction(ctx, ins);
1392 }
1393 }
1394
1395 static void
1396 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1397 {
1398 /* First, pull out the destination */
1399 unsigned dest = nir_dest_index(ctx, &instr->dest);
1400
1401 /* Now, figure out which uniform this is */
1402 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1403 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1404
1405 /* Sysvals are prefix uniforms */
1406 unsigned uniform = ((uintptr_t) val) - 1;
1407
1408 /* Emit the read itself -- this is never indirect */
1409 emit_uniform_read(ctx, dest, uniform, NULL);
1410 }
1411
1412 static void
1413 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1414 {
1415 unsigned offset, reg;
1416
1417 switch (instr->intrinsic) {
1418 case nir_intrinsic_discard_if:
1419 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1420
1421 /* fallthrough */
1422
1423 case nir_intrinsic_discard: {
1424 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1425 struct midgard_instruction discard = v_branch(conditional, false);
1426 discard.branch.target_type = TARGET_DISCARD;
1427 emit_mir_instruction(ctx, discard);
1428
1429 ctx->can_discard = true;
1430 break;
1431 }
1432
1433 case nir_intrinsic_load_uniform:
1434 case nir_intrinsic_load_input:
1435 offset = nir_intrinsic_base(instr);
1436
1437 bool direct = nir_src_is_const(instr->src[0]);
1438
1439 if (direct) {
1440 offset += nir_src_as_uint(instr->src[0]);
1441 }
1442
1443 reg = nir_dest_index(ctx, &instr->dest);
1444
1445 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1446 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1447 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1448 /* XXX: Half-floats? */
1449 /* TODO: swizzle, mask */
1450
1451 midgard_instruction ins = m_load_vary_32(reg, offset);
1452
1453 midgard_varying_parameter p = {
1454 .is_varying = 1,
1455 .interpolation = midgard_interp_default,
1456 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1457 };
1458
1459 unsigned u;
1460 memcpy(&u, &p, sizeof(p));
1461 ins.load_store.varying_parameters = u;
1462
1463 if (direct) {
1464 /* We have the offset totally ready */
1465 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1466 } else {
1467 /* We have it partially ready, but we need to
1468 * add in the dynamic index, moved to r27.w */
1469 emit_indirect_offset(ctx, &instr->src[0]);
1470 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1471 }
1472
1473 emit_mir_instruction(ctx, ins);
1474 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1475 /* Constant encoded as a pinned constant */
1476
1477 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1478 ins.has_constants = true;
1479 ins.has_blend_constant = true;
1480 emit_mir_instruction(ctx, ins);
1481 } else if (ctx->is_blend) {
1482 /* For blend shaders, a load might be
1483 * translated various ways depending on what
1484 * we're loading. Figure out how this is used */
1485
1486 nir_variable *out = NULL;
1487
1488 nir_foreach_variable(var, &ctx->nir->inputs) {
1489 int drvloc = var->data.driver_location;
1490
1491 if (nir_intrinsic_base(instr) == drvloc) {
1492 out = var;
1493 break;
1494 }
1495 }
1496
1497 assert(out);
1498
1499 if (out->data.location == VARYING_SLOT_COL0) {
1500 /* Source color preloaded to r0 */
1501
1502 midgard_pin_output(ctx, reg, 0);
1503 } else if (out->data.location == VARYING_SLOT_COL1) {
1504 /* Destination color must be read from framebuffer */
1505
1506 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1507 ins.load_store.swizzle = 0; /* xxxx */
1508
1509 /* Read each component sequentially */
1510
1511 for (int c = 0; c < 4; ++c) {
1512 ins.load_store.mask = (1 << c);
1513 ins.load_store.unknown = c;
1514 emit_mir_instruction(ctx, ins);
1515 }
1516
1517 /* vadd.u2f hr2, zext(hr2), #0 */
1518
1519 midgard_vector_alu_src alu_src = blank_alu_src;
1520 alu_src.mod = midgard_int_zero_extend;
1521 alu_src.half = true;
1522
1523 midgard_instruction u2f = {
1524 .type = TAG_ALU_4,
1525 .ssa_args = {
1526 .src0 = reg,
1527 .src1 = SSA_UNUSED_0,
1528 .dest = reg,
1529 .inline_constant = true
1530 },
1531 .alu = {
1532 .op = midgard_alu_op_u2f,
1533 .reg_mode = midgard_reg_mode_half,
1534 .dest_override = midgard_dest_override_none,
1535 .mask = 0xF,
1536 .src1 = vector_alu_srco_unsigned(alu_src),
1537 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1538 }
1539 };
1540
1541 emit_mir_instruction(ctx, u2f);
1542
1543 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1544
1545 alu_src.mod = 0;
1546
1547 midgard_instruction fmul = {
1548 .type = TAG_ALU_4,
1549 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1550 .ssa_args = {
1551 .src0 = reg,
1552 .dest = reg,
1553 .src1 = SSA_UNUSED_0,
1554 .inline_constant = true
1555 },
1556 .alu = {
1557 .op = midgard_alu_op_fmul,
1558 .reg_mode = midgard_reg_mode_full,
1559 .dest_override = midgard_dest_override_none,
1560 .outmod = midgard_outmod_sat,
1561 .mask = 0xFF,
1562 .src1 = vector_alu_srco_unsigned(alu_src),
1563 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1564 }
1565 };
1566
1567 emit_mir_instruction(ctx, fmul);
1568 } else {
1569 DBG("Unknown input in blend shader\n");
1570 assert(0);
1571 }
1572 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1573 midgard_instruction ins = m_load_attr_32(reg, offset);
1574 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1575 ins.load_store.mask = (1 << instr->num_components) - 1;
1576 emit_mir_instruction(ctx, ins);
1577 } else {
1578 DBG("Unknown load\n");
1579 assert(0);
1580 }
1581
1582 break;
1583
1584 case nir_intrinsic_store_output:
1585 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1586
1587 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1588
1589 reg = nir_src_index(ctx, &instr->src[0]);
1590
1591 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1592 /* gl_FragColor is not emitted with load/store
1593 * instructions. Instead, it gets plonked into
1594 * r0 at the end of the shader and we do the
1595 * framebuffer writeout dance. TODO: Defer
1596 * writes */
1597
1598 midgard_pin_output(ctx, reg, 0);
1599
1600 /* Save the index we're writing to for later reference
1601 * in the epilogue */
1602
1603 ctx->fragment_output = reg;
1604 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1605 /* Varyings are written into one of two special
1606 * varying register, r26 or r27. The register itself is selected as the register
1607 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1608 *
1609 * Normally emitting fmov's is frowned upon,
1610 * but due to unique constraints of
1611 * REGISTER_VARYING, fmov emission + a
1612 * dedicated cleanup pass is the only way to
1613 * guarantee correctness when considering some
1614 * (common) edge cases XXX: FIXME */
1615
1616 /* If this varying corresponds to a constant (why?!),
1617 * emit that now since it won't get picked up by
1618 * hoisting (since there is no corresponding move
1619 * emitted otherwise) */
1620
1621 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1622
1623 if (constant_value) {
1624 /* Special case: emit the varying write
1625 * directly to r26 (looks funny in asm but it's
1626 * fine) and emit the store _now_. Possibly
1627 * slightly slower, but this is a really stupid
1628 * special case anyway (why on earth would you
1629 * have a constant varying? Your own fault for
1630 * slightly worse perf :P) */
1631
1632 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1633 attach_constants(ctx, &ins, constant_value, reg + 1);
1634 emit_mir_instruction(ctx, ins);
1635
1636 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1637 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1638 emit_mir_instruction(ctx, st);
1639 } else {
1640 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1641
1642 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1643 }
1644 } else {
1645 DBG("Unknown store\n");
1646 assert(0);
1647 }
1648
1649 break;
1650
1651 case nir_intrinsic_load_alpha_ref_float:
1652 assert(instr->dest.is_ssa);
1653
1654 float ref_value = ctx->alpha_ref;
1655
1656 float *v = ralloc_array(NULL, float, 4);
1657 memcpy(v, &ref_value, sizeof(float));
1658 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1659 break;
1660
1661 case nir_intrinsic_load_viewport_scale:
1662 case nir_intrinsic_load_viewport_offset:
1663 emit_sysval_read(ctx, instr);
1664 break;
1665
1666 default:
1667 printf ("Unhandled intrinsic\n");
1668 assert(0);
1669 break;
1670 }
1671 }
1672
1673 static unsigned
1674 midgard_tex_format(enum glsl_sampler_dim dim)
1675 {
1676 switch (dim) {
1677 case GLSL_SAMPLER_DIM_2D:
1678 case GLSL_SAMPLER_DIM_EXTERNAL:
1679 return TEXTURE_2D;
1680
1681 case GLSL_SAMPLER_DIM_3D:
1682 return TEXTURE_3D;
1683
1684 case GLSL_SAMPLER_DIM_CUBE:
1685 return TEXTURE_CUBE;
1686
1687 default:
1688 DBG("Unknown sampler dim type\n");
1689 assert(0);
1690 return 0;
1691 }
1692 }
1693
1694 static void
1695 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1696 {
1697 /* TODO */
1698 //assert (!instr->sampler);
1699 //assert (!instr->texture_array_size);
1700 assert (instr->op == nir_texop_tex);
1701
1702 /* Allocate registers via a round robin scheme to alternate between the two registers */
1703 int reg = ctx->texture_op_count & 1;
1704 int in_reg = reg, out_reg = reg;
1705
1706 /* Make room for the reg */
1707
1708 if (ctx->texture_index[reg] > -1)
1709 unalias_ssa(ctx, ctx->texture_index[reg]);
1710
1711 int texture_index = instr->texture_index;
1712 int sampler_index = texture_index;
1713
1714 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1715 switch (instr->src[i].src_type) {
1716 case nir_tex_src_coord: {
1717 int index = nir_src_index(ctx, &instr->src[i].src);
1718
1719 midgard_vector_alu_src alu_src = blank_alu_src;
1720
1721 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1722
1723 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1724 /* For cubemaps, we need to load coords into
1725 * special r27, and then use a special ld/st op
1726 * to copy into the texture register */
1727
1728 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1729
1730 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1731 emit_mir_instruction(ctx, move);
1732
1733 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1734 st.load_store.unknown = 0x24; /* XXX: What is this? */
1735 st.load_store.mask = 0x3; /* xy? */
1736 st.load_store.swizzle = alu_src.swizzle;
1737 emit_mir_instruction(ctx, st);
1738
1739 } else {
1740 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1741
1742 midgard_instruction ins = v_fmov(index, alu_src, reg);
1743 emit_mir_instruction(ctx, ins);
1744 }
1745
1746 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1747
1748 break;
1749 }
1750
1751 default: {
1752 DBG("Unknown source type\n");
1753 //assert(0);
1754 break;
1755 }
1756 }
1757 }
1758
1759 /* No helper to build texture words -- we do it all here */
1760 midgard_instruction ins = {
1761 .type = TAG_TEXTURE_4,
1762 .texture = {
1763 .op = TEXTURE_OP_NORMAL,
1764 .format = midgard_tex_format(instr->sampler_dim),
1765 .texture_handle = texture_index,
1766 .sampler_handle = sampler_index,
1767
1768 /* TODO: Don't force xyzw */
1769 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1770 .mask = 0xF,
1771
1772 /* TODO: half */
1773 //.in_reg_full = 1,
1774 .out_full = 1,
1775
1776 .filter = 1,
1777
1778 /* Always 1 */
1779 .unknown7 = 1,
1780
1781 /* Assume we can continue; hint it out later */
1782 .cont = 1,
1783 }
1784 };
1785
1786 /* Set registers to read and write from the same place */
1787 ins.texture.in_reg_select = in_reg;
1788 ins.texture.out_reg_select = out_reg;
1789
1790 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1791 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1792 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1793 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1794 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1795 } else {
1796 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1797 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1798 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1799 }
1800
1801 emit_mir_instruction(ctx, ins);
1802
1803 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1804
1805 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1806 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1807 ctx->texture_index[reg] = o_index;
1808
1809 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1810 emit_mir_instruction(ctx, ins2);
1811
1812 /* Used for .cont and .last hinting */
1813 ctx->texture_op_count++;
1814 }
1815
1816 static void
1817 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1818 {
1819 switch (instr->type) {
1820 case nir_jump_break: {
1821 /* Emit a branch out of the loop */
1822 struct midgard_instruction br = v_branch(false, false);
1823 br.branch.target_type = TARGET_BREAK;
1824 br.branch.target_break = ctx->current_loop_depth;
1825 emit_mir_instruction(ctx, br);
1826
1827 DBG("break..\n");
1828 break;
1829 }
1830
1831 default:
1832 DBG("Unknown jump type %d\n", instr->type);
1833 break;
1834 }
1835 }
1836
1837 static void
1838 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1839 {
1840 switch (instr->type) {
1841 case nir_instr_type_load_const:
1842 emit_load_const(ctx, nir_instr_as_load_const(instr));
1843 break;
1844
1845 case nir_instr_type_intrinsic:
1846 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1847 break;
1848
1849 case nir_instr_type_alu:
1850 emit_alu(ctx, nir_instr_as_alu(instr));
1851 break;
1852
1853 case nir_instr_type_tex:
1854 emit_tex(ctx, nir_instr_as_tex(instr));
1855 break;
1856
1857 case nir_instr_type_jump:
1858 emit_jump(ctx, nir_instr_as_jump(instr));
1859 break;
1860
1861 case nir_instr_type_ssa_undef:
1862 /* Spurious */
1863 break;
1864
1865 default:
1866 DBG("Unhandled instruction type\n");
1867 break;
1868 }
1869 }
1870
1871 /* Determine the actual hardware from the index based on the RA results or special values */
1872
1873 static int
1874 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1875 {
1876 if (reg >= SSA_FIXED_MINIMUM)
1877 return SSA_REG_FROM_FIXED(reg);
1878
1879 if (reg >= 0) {
1880 assert(reg < maxreg);
1881 int r = ra_get_node_reg(g, reg);
1882 ctx->work_registers = MAX2(ctx->work_registers, r);
1883 return r;
1884 }
1885
1886 switch (reg) {
1887 /* fmov style unused */
1888 case SSA_UNUSED_0:
1889 return REGISTER_UNUSED;
1890
1891 /* lut style unused */
1892 case SSA_UNUSED_1:
1893 return REGISTER_UNUSED;
1894
1895 default:
1896 DBG("Unknown SSA register alias %d\n", reg);
1897 assert(0);
1898 return 31;
1899 }
1900 }
1901
1902 static unsigned int
1903 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1904 {
1905 /* Choose the first available register to minimise reported register pressure */
1906
1907 for (int i = 0; i < 16; ++i) {
1908 if (BITSET_TEST(regs, i)) {
1909 return i;
1910 }
1911 }
1912
1913 assert(0);
1914 return 0;
1915 }
1916
1917 static bool
1918 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1919 {
1920 if (ins->ssa_args.src0 == src) return true;
1921 if (ins->ssa_args.src1 == src) return true;
1922
1923 return false;
1924 }
1925
1926 /* Determine if a variable is live in the successors of a block */
1927 static bool
1928 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1929 {
1930 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1931 midgard_block *succ = bl->successors[i];
1932
1933 /* If we already visited, the value we're seeking
1934 * isn't down this path (or we would have short
1935 * circuited */
1936
1937 if (succ->visited) continue;
1938
1939 /* Otherwise (it's visited *now*), check the block */
1940
1941 succ->visited = true;
1942
1943 mir_foreach_instr_in_block(succ, ins) {
1944 if (midgard_is_live_in_instr(ins, src))
1945 return true;
1946 }
1947
1948 /* ...and also, check *its* successors */
1949 if (is_live_after_successors(ctx, succ, src))
1950 return true;
1951
1952 }
1953
1954 /* Welp. We're really not live. */
1955
1956 return false;
1957 }
1958
1959 static bool
1960 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1961 {
1962 /* Check the rest of the block for liveness */
1963
1964 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1965 if (midgard_is_live_in_instr(ins, src))
1966 return true;
1967 }
1968
1969 /* Check the rest of the blocks for liveness recursively */
1970
1971 bool succ = is_live_after_successors(ctx, block, src);
1972
1973 mir_foreach_block(ctx, block) {
1974 block->visited = false;
1975 }
1976
1977 return succ;
1978 }
1979
1980 static void
1981 allocate_registers(compiler_context *ctx)
1982 {
1983 /* First, initialize the RA */
1984 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1985
1986 /* Create a primary (general purpose) class, as well as special purpose
1987 * pipeline register classes */
1988
1989 int primary_class = ra_alloc_reg_class(regs);
1990 int varying_class = ra_alloc_reg_class(regs);
1991
1992 /* Add the full set of work registers */
1993 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1994 for (int i = 0; i < work_count; ++i)
1995 ra_class_add_reg(regs, primary_class, i);
1996
1997 /* Add special registers */
1998 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1999 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2000
2001 /* We're done setting up */
2002 ra_set_finalize(regs, NULL);
2003
2004 /* Transform the MIR into squeezed index form */
2005 mir_foreach_block(ctx, block) {
2006 mir_foreach_instr_in_block(block, ins) {
2007 if (ins->compact_branch) continue;
2008
2009 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2010 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2011 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2012 }
2013 if (midgard_debug & MIDGARD_DBG_SHADERS)
2014 print_mir_block(block);
2015 }
2016
2017 /* Let's actually do register allocation */
2018 int nodes = ctx->temp_count;
2019 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2020
2021 /* Set everything to the work register class, unless it has somewhere
2022 * special to go */
2023
2024 mir_foreach_block(ctx, block) {
2025 mir_foreach_instr_in_block(block, ins) {
2026 if (ins->compact_branch) continue;
2027
2028 if (ins->ssa_args.dest < 0) continue;
2029
2030 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2031
2032 int class = primary_class;
2033
2034 ra_set_node_class(g, ins->ssa_args.dest, class);
2035 }
2036 }
2037
2038 for (int index = 0; index <= ctx->max_hash; ++index) {
2039 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2040
2041 if (temp) {
2042 unsigned reg = temp - 1;
2043 int t = find_or_allocate_temp(ctx, index);
2044 ra_set_node_reg(g, t, reg);
2045 }
2046 }
2047
2048 /* Determine liveness */
2049
2050 int *live_start = malloc(nodes * sizeof(int));
2051 int *live_end = malloc(nodes * sizeof(int));
2052
2053 /* Initialize as non-existent */
2054
2055 for (int i = 0; i < nodes; ++i) {
2056 live_start[i] = live_end[i] = -1;
2057 }
2058
2059 int d = 0;
2060
2061 mir_foreach_block(ctx, block) {
2062 mir_foreach_instr_in_block(block, ins) {
2063 if (ins->compact_branch) continue;
2064
2065 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2066 /* If this destination is not yet live, it is now since we just wrote it */
2067
2068 int dest = ins->ssa_args.dest;
2069
2070 if (live_start[dest] == -1)
2071 live_start[dest] = d;
2072 }
2073
2074 /* Since we just used a source, the source might be
2075 * dead now. Scan the rest of the block for
2076 * invocations, and if there are none, the source dies
2077 * */
2078
2079 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2080
2081 for (int src = 0; src < 2; ++src) {
2082 int s = sources[src];
2083
2084 if (s < 0) continue;
2085
2086 if (s >= SSA_FIXED_MINIMUM) continue;
2087
2088 if (!is_live_after(ctx, block, ins, s)) {
2089 live_end[s] = d;
2090 }
2091 }
2092
2093 ++d;
2094 }
2095 }
2096
2097 /* If a node still hasn't been killed, kill it now */
2098
2099 for (int i = 0; i < nodes; ++i) {
2100 /* live_start == -1 most likely indicates a pinned output */
2101
2102 if (live_end[i] == -1)
2103 live_end[i] = d;
2104 }
2105
2106 /* Setup interference between nodes that are live at the same time */
2107
2108 for (int i = 0; i < nodes; ++i) {
2109 for (int j = i + 1; j < nodes; ++j) {
2110 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2111 ra_add_node_interference(g, i, j);
2112 }
2113 }
2114
2115 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2116
2117 if (!ra_allocate(g)) {
2118 DBG("Error allocating registers\n");
2119 assert(0);
2120 }
2121
2122 /* Cleanup */
2123 free(live_start);
2124 free(live_end);
2125
2126 mir_foreach_block(ctx, block) {
2127 mir_foreach_instr_in_block(block, ins) {
2128 if (ins->compact_branch) continue;
2129
2130 ssa_args args = ins->ssa_args;
2131
2132 switch (ins->type) {
2133 case TAG_ALU_4:
2134 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2135
2136 ins->registers.src2_imm = args.inline_constant;
2137
2138 if (args.inline_constant) {
2139 /* Encode inline 16-bit constant as a vector by default */
2140
2141 ins->registers.src2_reg = ins->inline_constant >> 11;
2142
2143 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2144
2145 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2146 ins->alu.src2 = imm << 2;
2147 } else {
2148 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2149 }
2150
2151 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2152
2153 break;
2154
2155 case TAG_LOAD_STORE_4: {
2156 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2157 /* TODO: use ssa_args for store_vary */
2158 ins->load_store.reg = 0;
2159 } else {
2160 bool has_dest = args.dest >= 0;
2161 int ssa_arg = has_dest ? args.dest : args.src0;
2162
2163 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2164 }
2165
2166 break;
2167 }
2168
2169 default:
2170 break;
2171 }
2172 }
2173 }
2174 }
2175
2176 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2177 * use scalar ALU instructions, for functional or performance reasons. To do
2178 * this, we just demote vector ALU payloads to scalar. */
2179
2180 static int
2181 component_from_mask(unsigned mask)
2182 {
2183 for (int c = 0; c < 4; ++c) {
2184 if (mask & (3 << (2 * c)))
2185 return c;
2186 }
2187
2188 assert(0);
2189 return 0;
2190 }
2191
2192 static bool
2193 is_single_component_mask(unsigned mask)
2194 {
2195 int components = 0;
2196
2197 for (int c = 0; c < 4; ++c)
2198 if (mask & (3 << (2 * c)))
2199 components++;
2200
2201 return components == 1;
2202 }
2203
2204 /* Create a mask of accessed components from a swizzle to figure out vector
2205 * dependencies */
2206
2207 static unsigned
2208 swizzle_to_access_mask(unsigned swizzle)
2209 {
2210 unsigned component_mask = 0;
2211
2212 for (int i = 0; i < 4; ++i) {
2213 unsigned c = (swizzle >> (2 * i)) & 3;
2214 component_mask |= (1 << c);
2215 }
2216
2217 return component_mask;
2218 }
2219
2220 static unsigned
2221 vector_to_scalar_source(unsigned u, bool is_int)
2222 {
2223 midgard_vector_alu_src v;
2224 memcpy(&v, &u, sizeof(v));
2225
2226 /* TODO: Integers */
2227
2228 midgard_scalar_alu_src s = {
2229 .full = !v.half,
2230 .component = (v.swizzle & 3) << 1
2231 };
2232
2233 if (is_int) {
2234 /* TODO */
2235 } else {
2236 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2237 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2238 }
2239
2240 unsigned o;
2241 memcpy(&o, &s, sizeof(s));
2242
2243 return o & ((1 << 6) - 1);
2244 }
2245
2246 static midgard_scalar_alu
2247 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2248 {
2249 bool is_int = midgard_is_integer_op(v.op);
2250
2251 /* The output component is from the mask */
2252 midgard_scalar_alu s = {
2253 .op = v.op,
2254 .src1 = vector_to_scalar_source(v.src1, is_int),
2255 .src2 = vector_to_scalar_source(v.src2, is_int),
2256 .unknown = 0,
2257 .outmod = v.outmod,
2258 .output_full = 1, /* TODO: Half */
2259 .output_component = component_from_mask(v.mask) << 1,
2260 };
2261
2262 /* Inline constant is passed along rather than trying to extract it
2263 * from v */
2264
2265 if (ins->ssa_args.inline_constant) {
2266 uint16_t imm = 0;
2267 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2268 imm |= (lower_11 >> 9) & 3;
2269 imm |= (lower_11 >> 6) & 4;
2270 imm |= (lower_11 >> 2) & 0x38;
2271 imm |= (lower_11 & 63) << 6;
2272
2273 s.src2 = imm;
2274 }
2275
2276 return s;
2277 }
2278
2279 /* Midgard prefetches instruction types, so during emission we need to
2280 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2281 * if this is the second to last and the last is an ALU, then it's also 1... */
2282
2283 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2284 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2285
2286 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2287 bytes_emitted += sizeof(type)
2288
2289 static void
2290 emit_binary_vector_instruction(midgard_instruction *ains,
2291 uint16_t *register_words, int *register_words_count,
2292 uint64_t *body_words, size_t *body_size, int *body_words_count,
2293 size_t *bytes_emitted)
2294 {
2295 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2296 *bytes_emitted += sizeof(midgard_reg_info);
2297
2298 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2299 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2300 *bytes_emitted += sizeof(midgard_vector_alu);
2301 }
2302
2303 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2304 * mind that we are a vector architecture and we can write to different
2305 * components simultaneously */
2306
2307 static bool
2308 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2309 {
2310 /* Each instruction reads some registers and writes to a register. See
2311 * where the first writes */
2312
2313 /* Figure out where exactly we wrote to */
2314 int source = first->ssa_args.dest;
2315 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2316
2317 /* As long as the second doesn't read from the first, we're okay */
2318 if (second->ssa_args.src0 == source) {
2319 if (first->type == TAG_ALU_4) {
2320 /* Figure out which components we just read from */
2321
2322 int q = second->alu.src1;
2323 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2324
2325 /* Check if there are components in common, and fail if so */
2326 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2327 return false;
2328 } else
2329 return false;
2330
2331 }
2332
2333 if (second->ssa_args.src1 == source)
2334 return false;
2335
2336 /* Otherwise, it's safe in that regard. Another data hazard is both
2337 * writing to the same place, of course */
2338
2339 if (second->ssa_args.dest == source) {
2340 /* ...but only if the components overlap */
2341 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2342
2343 if (dest_mask & source_mask)
2344 return false;
2345 }
2346
2347 /* ...That's it */
2348 return true;
2349 }
2350
2351 static bool
2352 midgard_has_hazard(
2353 midgard_instruction **segment, unsigned segment_size,
2354 midgard_instruction *ains)
2355 {
2356 for (int s = 0; s < segment_size; ++s)
2357 if (!can_run_concurrent_ssa(segment[s], ains))
2358 return true;
2359
2360 return false;
2361
2362
2363 }
2364
2365 /* Schedules, but does not emit, a single basic block. After scheduling, the
2366 * final tag and size of the block are known, which are necessary for branching
2367 * */
2368
2369 static midgard_bundle
2370 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2371 {
2372 int instructions_emitted = 0, instructions_consumed = -1;
2373 midgard_bundle bundle = { 0 };
2374
2375 uint8_t tag = ins->type;
2376
2377 /* Default to the instruction's tag */
2378 bundle.tag = tag;
2379
2380 switch (ins->type) {
2381 case TAG_ALU_4: {
2382 uint32_t control = 0;
2383 size_t bytes_emitted = sizeof(control);
2384
2385 /* TODO: Constant combining */
2386 int index = 0, last_unit = 0;
2387
2388 /* Previous instructions, for the purpose of parallelism */
2389 midgard_instruction *segment[4] = {0};
2390 int segment_size = 0;
2391
2392 instructions_emitted = -1;
2393 midgard_instruction *pins = ins;
2394
2395 for (;;) {
2396 midgard_instruction *ains = pins;
2397
2398 /* Advance instruction pointer */
2399 if (index) {
2400 ains = mir_next_op(pins);
2401 pins = ains;
2402 }
2403
2404 /* Out-of-work condition */
2405 if ((struct list_head *) ains == &block->instructions)
2406 break;
2407
2408 /* Ensure that the chain can continue */
2409 if (ains->type != TAG_ALU_4) break;
2410
2411 /* According to the presentation "The ARM
2412 * Mali-T880 Mobile GPU" from HotChips 27,
2413 * there are two pipeline stages. Branching
2414 * position determined experimentally. Lines
2415 * are executed in parallel:
2416 *
2417 * [ VMUL ] [ SADD ]
2418 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2419 *
2420 * Verify that there are no ordering dependencies here.
2421 *
2422 * TODO: Allow for parallelism!!!
2423 */
2424
2425 /* Pick a unit for it if it doesn't force a particular unit */
2426
2427 int unit = ains->unit;
2428
2429 if (!unit) {
2430 int op = ains->alu.op;
2431 int units = alu_opcode_props[op].props;
2432
2433 /* TODO: Promotion of scalars to vectors */
2434 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2435
2436 if (!vector)
2437 assert(units & UNITS_SCALAR);
2438
2439 if (vector) {
2440 if (last_unit >= UNIT_VADD) {
2441 if (units & UNIT_VLUT)
2442 unit = UNIT_VLUT;
2443 else
2444 break;
2445 } else {
2446 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2447 unit = UNIT_VMUL;
2448 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2449 unit = UNIT_VADD;
2450 else if (units & UNIT_VLUT)
2451 unit = UNIT_VLUT;
2452 else
2453 break;
2454 }
2455 } else {
2456 if (last_unit >= UNIT_VADD) {
2457 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2458 unit = UNIT_SMUL;
2459 else if (units & UNIT_VLUT)
2460 unit = UNIT_VLUT;
2461 else
2462 break;
2463 } else {
2464 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2465 unit = UNIT_SADD;
2466 else if (units & UNIT_SMUL)
2467 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2468 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2469 unit = UNIT_VADD;
2470 else
2471 break;
2472 }
2473 }
2474
2475 assert(unit & units);
2476 }
2477
2478 /* Late unit check, this time for encoding (not parallelism) */
2479 if (unit <= last_unit) break;
2480
2481 /* Clear the segment */
2482 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2483 segment_size = 0;
2484
2485 if (midgard_has_hazard(segment, segment_size, ains))
2486 break;
2487
2488 /* We're good to go -- emit the instruction */
2489 ains->unit = unit;
2490
2491 segment[segment_size++] = ains;
2492
2493 /* Only one set of embedded constants per
2494 * bundle possible; if we have more, we must
2495 * break the chain early, unfortunately */
2496
2497 if (ains->has_constants) {
2498 if (bundle.has_embedded_constants) {
2499 /* ...but if there are already
2500 * constants but these are the
2501 * *same* constants, we let it
2502 * through */
2503
2504 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2505 break;
2506 } else {
2507 bundle.has_embedded_constants = true;
2508 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2509
2510 /* If this is a blend shader special constant, track it for patching */
2511 if (ains->has_blend_constant)
2512 bundle.has_blend_constant = true;
2513 }
2514 }
2515
2516 if (ains->unit & UNITS_ANY_VECTOR) {
2517 emit_binary_vector_instruction(ains, bundle.register_words,
2518 &bundle.register_words_count, bundle.body_words,
2519 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2520 } else if (ains->compact_branch) {
2521 /* All of r0 has to be written out
2522 * along with the branch writeout.
2523 * (slow!) */
2524
2525 if (ains->writeout) {
2526 if (index == 0) {
2527 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2528 ins.unit = UNIT_VMUL;
2529
2530 control |= ins.unit;
2531
2532 emit_binary_vector_instruction(&ins, bundle.register_words,
2533 &bundle.register_words_count, bundle.body_words,
2534 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2535 } else {
2536 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2537 bool written_late = false;
2538 bool components[4] = { 0 };
2539 uint16_t register_dep_mask = 0;
2540 uint16_t written_mask = 0;
2541
2542 midgard_instruction *qins = ins;
2543 for (int t = 0; t < index; ++t) {
2544 if (qins->registers.out_reg != 0) {
2545 /* Mark down writes */
2546
2547 written_mask |= (1 << qins->registers.out_reg);
2548 } else {
2549 /* Mark down the register dependencies for errata check */
2550
2551 if (qins->registers.src1_reg < 16)
2552 register_dep_mask |= (1 << qins->registers.src1_reg);
2553
2554 if (qins->registers.src2_reg < 16)
2555 register_dep_mask |= (1 << qins->registers.src2_reg);
2556
2557 int mask = qins->alu.mask;
2558
2559 for (int c = 0; c < 4; ++c)
2560 if (mask & (0x3 << (2 * c)))
2561 components[c] = true;
2562
2563 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2564
2565 if (qins->unit == UNIT_VLUT)
2566 written_late = true;
2567 }
2568
2569 /* Advance instruction pointer */
2570 qins = mir_next_op(qins);
2571 }
2572
2573
2574 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2575 if (register_dep_mask & written_mask) {
2576 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2577 break;
2578 }
2579
2580 if (written_late)
2581 break;
2582
2583 /* If even a single component is not written, break it up (conservative check). */
2584 bool breakup = false;
2585
2586 for (int c = 0; c < 4; ++c)
2587 if (!components[c])
2588 breakup = true;
2589
2590 if (breakup)
2591 break;
2592
2593 /* Otherwise, we're free to proceed */
2594 }
2595 }
2596
2597 if (ains->unit == ALU_ENAB_BRANCH) {
2598 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2599 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2600 bytes_emitted += sizeof(midgard_branch_extended);
2601 } else {
2602 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2603 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2604 bytes_emitted += sizeof(ains->br_compact);
2605 }
2606 } else {
2607 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2608 bytes_emitted += sizeof(midgard_reg_info);
2609
2610 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2611 bundle.body_words_count++;
2612 bytes_emitted += sizeof(midgard_scalar_alu);
2613 }
2614
2615 /* Defer marking until after writing to allow for break */
2616 control |= ains->unit;
2617 last_unit = ains->unit;
2618 ++instructions_emitted;
2619 ++index;
2620 }
2621
2622 /* Bubble up the number of instructions for skipping */
2623 instructions_consumed = index - 1;
2624
2625 int padding = 0;
2626
2627 /* Pad ALU op to nearest word */
2628
2629 if (bytes_emitted & 15) {
2630 padding = 16 - (bytes_emitted & 15);
2631 bytes_emitted += padding;
2632 }
2633
2634 /* Constants must always be quadwords */
2635 if (bundle.has_embedded_constants)
2636 bytes_emitted += 16;
2637
2638 /* Size ALU instruction for tag */
2639 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2640 bundle.padding = padding;
2641 bundle.control = bundle.tag | control;
2642
2643 break;
2644 }
2645
2646 case TAG_LOAD_STORE_4: {
2647 /* Load store instructions have two words at once. If
2648 * we only have one queued up, we need to NOP pad.
2649 * Otherwise, we store both in succession to save space
2650 * and cycles -- letting them go in parallel -- skip
2651 * the next. The usefulness of this optimisation is
2652 * greatly dependent on the quality of the instruction
2653 * scheduler.
2654 */
2655
2656 midgard_instruction *next_op = mir_next_op(ins);
2657
2658 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2659 /* As the two operate concurrently, make sure
2660 * they are not dependent */
2661
2662 if (can_run_concurrent_ssa(ins, next_op) || true) {
2663 /* Skip ahead, since it's redundant with the pair */
2664 instructions_consumed = 1 + (instructions_emitted++);
2665 }
2666 }
2667
2668 break;
2669 }
2670
2671 default:
2672 /* Texture ops default to single-op-per-bundle scheduling */
2673 break;
2674 }
2675
2676 /* Copy the instructions into the bundle */
2677 bundle.instruction_count = instructions_emitted + 1;
2678
2679 int used_idx = 0;
2680
2681 midgard_instruction *uins = ins;
2682 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2683 bundle.instructions[used_idx++] = *uins;
2684 uins = mir_next_op(uins);
2685 }
2686
2687 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2688
2689 return bundle;
2690 }
2691
2692 static int
2693 quadword_size(int tag)
2694 {
2695 switch (tag) {
2696 case TAG_ALU_4:
2697 return 1;
2698
2699 case TAG_ALU_8:
2700 return 2;
2701
2702 case TAG_ALU_12:
2703 return 3;
2704
2705 case TAG_ALU_16:
2706 return 4;
2707
2708 case TAG_LOAD_STORE_4:
2709 return 1;
2710
2711 case TAG_TEXTURE_4:
2712 return 1;
2713
2714 default:
2715 assert(0);
2716 return 0;
2717 }
2718 }
2719
2720 /* Schedule a single block by iterating its instruction to create bundles.
2721 * While we go, tally about the bundle sizes to compute the block size. */
2722
2723 static void
2724 schedule_block(compiler_context *ctx, midgard_block *block)
2725 {
2726 util_dynarray_init(&block->bundles, NULL);
2727
2728 block->quadword_count = 0;
2729
2730 mir_foreach_instr_in_block(block, ins) {
2731 int skip;
2732 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2733 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2734
2735 if (bundle.has_blend_constant) {
2736 /* TODO: Multiblock? */
2737 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2738 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2739 }
2740
2741 while(skip--)
2742 ins = mir_next_op(ins);
2743
2744 block->quadword_count += quadword_size(bundle.tag);
2745 }
2746
2747 block->is_scheduled = true;
2748 }
2749
2750 static void
2751 schedule_program(compiler_context *ctx)
2752 {
2753 allocate_registers(ctx);
2754
2755 mir_foreach_block(ctx, block) {
2756 schedule_block(ctx, block);
2757 }
2758 }
2759
2760 /* After everything is scheduled, emit whole bundles at a time */
2761
2762 static void
2763 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2764 {
2765 int lookahead = next_tag << 4;
2766
2767 switch (bundle->tag) {
2768 case TAG_ALU_4:
2769 case TAG_ALU_8:
2770 case TAG_ALU_12:
2771 case TAG_ALU_16: {
2772 /* Actually emit each component */
2773 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2774
2775 for (int i = 0; i < bundle->register_words_count; ++i)
2776 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2777
2778 /* Emit body words based on the instructions bundled */
2779 for (int i = 0; i < bundle->instruction_count; ++i) {
2780 midgard_instruction *ins = &bundle->instructions[i];
2781
2782 if (ins->unit & UNITS_ANY_VECTOR) {
2783 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2784 } else if (ins->compact_branch) {
2785 /* Dummy move, XXX DRY */
2786 if ((i == 0) && ins->writeout) {
2787 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2788 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2789 }
2790
2791 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2792 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2793 } else {
2794 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2795 }
2796 } else {
2797 /* Scalar */
2798 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2799 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2800 }
2801 }
2802
2803 /* Emit padding (all zero) */
2804 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2805
2806 /* Tack on constants */
2807
2808 if (bundle->has_embedded_constants) {
2809 util_dynarray_append(emission, float, bundle->constants[0]);
2810 util_dynarray_append(emission, float, bundle->constants[1]);
2811 util_dynarray_append(emission, float, bundle->constants[2]);
2812 util_dynarray_append(emission, float, bundle->constants[3]);
2813 }
2814
2815 break;
2816 }
2817
2818 case TAG_LOAD_STORE_4: {
2819 /* One or two composing instructions */
2820
2821 uint64_t current64, next64 = LDST_NOP;
2822
2823 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2824
2825 if (bundle->instruction_count == 2)
2826 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2827
2828 midgard_load_store instruction = {
2829 .type = bundle->tag,
2830 .next_type = next_tag,
2831 .word1 = current64,
2832 .word2 = next64
2833 };
2834
2835 util_dynarray_append(emission, midgard_load_store, instruction);
2836
2837 break;
2838 }
2839
2840 case TAG_TEXTURE_4: {
2841 /* Texture instructions are easy, since there is no
2842 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2843
2844 midgard_instruction *ins = &bundle->instructions[0];
2845
2846 ins->texture.type = TAG_TEXTURE_4;
2847 ins->texture.next_type = next_tag;
2848
2849 ctx->texture_op_count--;
2850
2851 if (!ctx->texture_op_count) {
2852 ins->texture.cont = 0;
2853 ins->texture.last = 1;
2854 }
2855
2856 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2857 break;
2858 }
2859
2860 default:
2861 DBG("Unknown midgard instruction type\n");
2862 assert(0);
2863 break;
2864 }
2865 }
2866
2867
2868 /* ALU instructions can inline or embed constants, which decreases register
2869 * pressure and saves space. */
2870
2871 #define CONDITIONAL_ATTACH(src) { \
2872 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2873 \
2874 if (entry) { \
2875 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2876 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2877 } \
2878 }
2879
2880 static void
2881 inline_alu_constants(compiler_context *ctx)
2882 {
2883 mir_foreach_instr(ctx, alu) {
2884 /* Other instructions cannot inline constants */
2885 if (alu->type != TAG_ALU_4) continue;
2886
2887 /* If there is already a constant here, we can do nothing */
2888 if (alu->has_constants) continue;
2889
2890 /* It makes no sense to inline constants on a branch */
2891 if (alu->compact_branch || alu->prepacked_branch) continue;
2892
2893 CONDITIONAL_ATTACH(src0);
2894
2895 if (!alu->has_constants) {
2896 CONDITIONAL_ATTACH(src1)
2897 } else if (!alu->inline_constant) {
2898 /* Corner case: _two_ vec4 constants, for instance with a
2899 * csel. For this case, we can only use a constant
2900 * register for one, we'll have to emit a move for the
2901 * other. Note, if both arguments are constants, then
2902 * necessarily neither argument depends on the value of
2903 * any particular register. As the destination register
2904 * will be wiped, that means we can spill the constant
2905 * to the destination register.
2906 */
2907
2908 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2909 unsigned scratch = alu->ssa_args.dest;
2910
2911 if (entry) {
2912 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2913 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2914
2915 /* Force a break XXX Defer r31 writes */
2916 ins.unit = UNIT_VLUT;
2917
2918 /* Set the source */
2919 alu->ssa_args.src1 = scratch;
2920
2921 /* Inject us -before- the last instruction which set r31 */
2922 mir_insert_instruction_before(mir_prev_op(alu), ins);
2923 }
2924 }
2925 }
2926 }
2927
2928 /* Midgard supports two types of constants, embedded constants (128-bit) and
2929 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2930 * constants can be demoted to inline constants, for space savings and
2931 * sometimes a performance boost */
2932
2933 static void
2934 embedded_to_inline_constant(compiler_context *ctx)
2935 {
2936 mir_foreach_instr(ctx, ins) {
2937 if (!ins->has_constants) continue;
2938
2939 if (ins->ssa_args.inline_constant) continue;
2940
2941 /* Blend constants must not be inlined by definition */
2942 if (ins->has_blend_constant) continue;
2943
2944 /* src1 cannot be an inline constant due to encoding
2945 * restrictions. So, if possible we try to flip the arguments
2946 * in that case */
2947
2948 int op = ins->alu.op;
2949
2950 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2951 /* Flip based on op. Fallthrough intentional */
2952
2953 switch (op) {
2954 /* These ops require an operational change to flip their arguments TODO */
2955 case midgard_alu_op_flt:
2956 case midgard_alu_op_fle:
2957 case midgard_alu_op_ilt:
2958 case midgard_alu_op_ile:
2959 case midgard_alu_op_fcsel:
2960 case midgard_alu_op_icsel:
2961 case midgard_alu_op_isub:
2962 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2963 break;
2964
2965 /* These ops are commutative and Just Flip */
2966 case midgard_alu_op_fne:
2967 case midgard_alu_op_fadd:
2968 case midgard_alu_op_fmul:
2969 case midgard_alu_op_fmin:
2970 case midgard_alu_op_fmax:
2971 case midgard_alu_op_iadd:
2972 case midgard_alu_op_imul:
2973 case midgard_alu_op_feq:
2974 case midgard_alu_op_ieq:
2975 case midgard_alu_op_ine:
2976 case midgard_alu_op_iand:
2977 case midgard_alu_op_ior:
2978 case midgard_alu_op_ixor:
2979 /* Flip the SSA numbers */
2980 ins->ssa_args.src0 = ins->ssa_args.src1;
2981 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2982
2983 /* And flip the modifiers */
2984
2985 unsigned src_temp;
2986
2987 src_temp = ins->alu.src2;
2988 ins->alu.src2 = ins->alu.src1;
2989 ins->alu.src1 = src_temp;
2990
2991 default:
2992 break;
2993 }
2994 }
2995
2996 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2997 /* Extract the source information */
2998
2999 midgard_vector_alu_src *src;
3000 int q = ins->alu.src2;
3001 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3002 src = m;
3003
3004 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3005 int component = src->swizzle & 3;
3006
3007 /* Scale constant appropriately, if we can legally */
3008 uint16_t scaled_constant = 0;
3009
3010 /* XXX: Check legality */
3011 if (midgard_is_integer_op(op)) {
3012 /* TODO: Inline integer */
3013 continue;
3014
3015 unsigned int *iconstants = (unsigned int *) ins->constants;
3016 scaled_constant = (uint16_t) iconstants[component];
3017
3018 /* Constant overflow after resize */
3019 if (scaled_constant != iconstants[component])
3020 continue;
3021 } else {
3022 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3023 }
3024
3025 /* We don't know how to handle these with a constant */
3026
3027 if (src->mod || src->half || src->rep_low || src->rep_high) {
3028 DBG("Bailing inline constant...\n");
3029 continue;
3030 }
3031
3032 /* Make sure that the constant is not itself a
3033 * vector by checking if all accessed values
3034 * (by the swizzle) are the same. */
3035
3036 uint32_t *cons = (uint32_t *) ins->constants;
3037 uint32_t value = cons[component];
3038
3039 bool is_vector = false;
3040 unsigned mask = effective_writemask(&ins->alu);
3041
3042 for (int c = 1; c < 4; ++c) {
3043 /* We only care if this component is actually used */
3044 if (!(mask & (1 << c)))
3045 continue;
3046
3047 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3048
3049 if (test != value) {
3050 is_vector = true;
3051 break;
3052 }
3053 }
3054
3055 if (is_vector)
3056 continue;
3057
3058 /* Get rid of the embedded constant */
3059 ins->has_constants = false;
3060 ins->ssa_args.src1 = SSA_UNUSED_0;
3061 ins->ssa_args.inline_constant = true;
3062 ins->inline_constant = scaled_constant;
3063 }
3064 }
3065 }
3066
3067 /* Map normal SSA sources to other SSA sources / fixed registers (like
3068 * uniforms) */
3069
3070 static void
3071 map_ssa_to_alias(compiler_context *ctx, int *ref)
3072 {
3073 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3074
3075 if (alias) {
3076 /* Remove entry in leftovers to avoid a redunant fmov */
3077
3078 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3079
3080 if (leftover)
3081 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3082
3083 /* Assign the alias map */
3084 *ref = alias - 1;
3085 return;
3086 }
3087 }
3088
3089 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3090 * texture pipeline */
3091
3092 static bool
3093 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3094 {
3095 bool progress = false;
3096
3097 mir_foreach_instr_in_block_safe(block, ins) {
3098 if (ins->type != TAG_ALU_4) continue;
3099 if (ins->compact_branch) continue;
3100
3101 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3102 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3103 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3104
3105 mir_remove_instruction(ins);
3106 progress = true;
3107 }
3108
3109 return progress;
3110 }
3111
3112 static bool
3113 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3114 {
3115 bool progress = false;
3116
3117 mir_foreach_instr_in_block_safe(block, ins) {
3118 if (ins->type != TAG_ALU_4) continue;
3119 if (!OP_IS_MOVE(ins->alu.op)) continue;
3120
3121 unsigned from = ins->ssa_args.src1;
3122 unsigned to = ins->ssa_args.dest;
3123
3124 /* We only work on pure SSA */
3125
3126 if (to >= SSA_FIXED_MINIMUM) continue;
3127 if (from >= SSA_FIXED_MINIMUM) continue;
3128
3129 /* Also, if the move has side effects, we're helpless */
3130
3131 midgard_vector_alu_src src =
3132 vector_alu_from_unsigned(ins->alu.src2);
3133 unsigned mask = squeeze_writemask(ins->alu.mask);
3134 bool is_int = midgard_is_integer_op(ins->alu.op);
3135
3136 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3137
3138 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3139 if (v->ssa_args.src0 == to) {
3140 v->ssa_args.src0 = from;
3141 progress = true;
3142 }
3143
3144 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3145 v->ssa_args.src1 = from;
3146 progress = true;
3147 }
3148 }
3149 }
3150
3151 return progress;
3152 }
3153
3154 /* The following passes reorder MIR instructions to enable better scheduling */
3155
3156 static void
3157 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3158 {
3159 mir_foreach_instr_in_block_safe(block, ins) {
3160 if (ins->type != TAG_LOAD_STORE_4) continue;
3161
3162 /* We've found a load/store op. Check if next is also load/store. */
3163 midgard_instruction *next_op = mir_next_op(ins);
3164 if (&next_op->link != &block->instructions) {
3165 if (next_op->type == TAG_LOAD_STORE_4) {
3166 /* If so, we're done since we're a pair */
3167 ins = mir_next_op(ins);
3168 continue;
3169 }
3170
3171 /* Maximum search distance to pair, to avoid register pressure disasters */
3172 int search_distance = 8;
3173
3174 /* Otherwise, we have an orphaned load/store -- search for another load */
3175 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3176 /* Terminate search if necessary */
3177 if (!(search_distance--)) break;
3178
3179 if (c->type != TAG_LOAD_STORE_4) continue;
3180
3181 /* Stores cannot be reordered, since they have
3182 * dependencies. For the same reason, indirect
3183 * loads cannot be reordered as their index is
3184 * loaded in r27.w */
3185
3186 if (OP_IS_STORE(c->load_store.op)) continue;
3187
3188 /* It appears the 0x800 bit is set whenever a
3189 * load is direct, unset when it is indirect.
3190 * Skip indirect loads. */
3191
3192 if (!(c->load_store.unknown & 0x800)) continue;
3193
3194 /* We found one! Move it up to pair and remove it from the old location */
3195
3196 mir_insert_instruction_before(ins, *c);
3197 mir_remove_instruction(c);
3198
3199 break;
3200 }
3201 }
3202 }
3203 }
3204
3205 /* Emit varying stores late */
3206
3207 static void
3208 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3209 /* Iterate in reverse to get the final write, rather than the first */
3210
3211 mir_foreach_instr_in_block_safe_rev(block, ins) {
3212 /* Check if what we just wrote needs a store */
3213 int idx = ins->ssa_args.dest;
3214 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3215
3216 if (!varying) continue;
3217
3218 varying -= 1;
3219
3220 /* We need to store to the appropriate varying, so emit the
3221 * move/store */
3222
3223 /* TODO: Integrate with special purpose RA (and scheduler?) */
3224 bool high_varying_register = false;
3225
3226 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3227
3228 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3229 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3230
3231 mir_insert_instruction_before(mir_next_op(ins), st);
3232 mir_insert_instruction_before(mir_next_op(ins), mov);
3233
3234 /* We no longer need to store this varying */
3235 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3236 }
3237 }
3238
3239 /* If there are leftovers after the below pass, emit actual fmov
3240 * instructions for the slow-but-correct path */
3241
3242 static void
3243 emit_leftover_move(compiler_context *ctx)
3244 {
3245 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3246 int base = ((uintptr_t) leftover->key) - 1;
3247 int mapped = base;
3248
3249 map_ssa_to_alias(ctx, &mapped);
3250 EMIT(fmov, mapped, blank_alu_src, base);
3251 }
3252 }
3253
3254 static void
3255 actualise_ssa_to_alias(compiler_context *ctx)
3256 {
3257 mir_foreach_instr(ctx, ins) {
3258 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3259 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3260 }
3261
3262 emit_leftover_move(ctx);
3263 }
3264
3265 static void
3266 emit_fragment_epilogue(compiler_context *ctx)
3267 {
3268 /* Special case: writing out constants requires us to include the move
3269 * explicitly now, so shove it into r0 */
3270
3271 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3272
3273 if (constant_value) {
3274 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3275 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3276 emit_mir_instruction(ctx, ins);
3277 }
3278
3279 /* Perform the actual fragment writeout. We have two writeout/branch
3280 * instructions, forming a loop until writeout is successful as per the
3281 * docs. TODO: gl_FragDepth */
3282
3283 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3284 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3285 }
3286
3287 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3288 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3289 * with the int8 analogue to the fragment epilogue */
3290
3291 static void
3292 emit_blend_epilogue(compiler_context *ctx)
3293 {
3294 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3295
3296 midgard_instruction scale = {
3297 .type = TAG_ALU_4,
3298 .unit = UNIT_VMUL,
3299 .inline_constant = _mesa_float_to_half(255.0),
3300 .ssa_args = {
3301 .src0 = SSA_FIXED_REGISTER(0),
3302 .src1 = SSA_UNUSED_0,
3303 .dest = SSA_FIXED_REGISTER(24),
3304 .inline_constant = true
3305 },
3306 .alu = {
3307 .op = midgard_alu_op_fmul,
3308 .reg_mode = midgard_reg_mode_full,
3309 .dest_override = midgard_dest_override_lower,
3310 .mask = 0xFF,
3311 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3312 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3313 }
3314 };
3315
3316 emit_mir_instruction(ctx, scale);
3317
3318 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3319
3320 midgard_vector_alu_src alu_src = blank_alu_src;
3321 alu_src.half = true;
3322
3323 midgard_instruction f2u8 = {
3324 .type = TAG_ALU_4,
3325 .ssa_args = {
3326 .src0 = SSA_FIXED_REGISTER(24),
3327 .src1 = SSA_UNUSED_0,
3328 .dest = SSA_FIXED_REGISTER(0),
3329 .inline_constant = true
3330 },
3331 .alu = {
3332 .op = midgard_alu_op_f2u8,
3333 .reg_mode = midgard_reg_mode_half,
3334 .dest_override = midgard_dest_override_lower,
3335 .outmod = midgard_outmod_pos,
3336 .mask = 0xF,
3337 .src1 = vector_alu_srco_unsigned(alu_src),
3338 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3339 }
3340 };
3341
3342 emit_mir_instruction(ctx, f2u8);
3343
3344 /* vmul.imov.quarter r0, r0, r0 */
3345
3346 midgard_instruction imov_8 = {
3347 .type = TAG_ALU_4,
3348 .ssa_args = {
3349 .src0 = SSA_UNUSED_1,
3350 .src1 = SSA_FIXED_REGISTER(0),
3351 .dest = SSA_FIXED_REGISTER(0),
3352 },
3353 .alu = {
3354 .op = midgard_alu_op_imov,
3355 .reg_mode = midgard_reg_mode_quarter,
3356 .dest_override = midgard_dest_override_none,
3357 .mask = 0xFF,
3358 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3359 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3360 }
3361 };
3362
3363 /* Emit branch epilogue with the 8-bit move as the source */
3364
3365 emit_mir_instruction(ctx, imov_8);
3366 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3367
3368 emit_mir_instruction(ctx, imov_8);
3369 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3370 }
3371
3372 static midgard_block *
3373 emit_block(compiler_context *ctx, nir_block *block)
3374 {
3375 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3376 list_addtail(&this_block->link, &ctx->blocks);
3377
3378 this_block->is_scheduled = false;
3379 ++ctx->block_count;
3380
3381 ctx->texture_index[0] = -1;
3382 ctx->texture_index[1] = -1;
3383
3384 /* Add us as a successor to the block we are following */
3385 if (ctx->current_block)
3386 midgard_block_add_successor(ctx->current_block, this_block);
3387
3388 /* Set up current block */
3389 list_inithead(&this_block->instructions);
3390 ctx->current_block = this_block;
3391
3392 nir_foreach_instr(instr, block) {
3393 emit_instr(ctx, instr);
3394 ++ctx->instruction_count;
3395 }
3396
3397 inline_alu_constants(ctx);
3398 embedded_to_inline_constant(ctx);
3399
3400 /* Perform heavylifting for aliasing */
3401 actualise_ssa_to_alias(ctx);
3402
3403 midgard_emit_store(ctx, this_block);
3404 midgard_pair_load_store(ctx, this_block);
3405
3406 /* Append fragment shader epilogue (value writeout) */
3407 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3408 if (block == nir_impl_last_block(ctx->func->impl)) {
3409 if (ctx->is_blend)
3410 emit_blend_epilogue(ctx);
3411 else
3412 emit_fragment_epilogue(ctx);
3413 }
3414 }
3415
3416 if (block == nir_start_block(ctx->func->impl))
3417 ctx->initial_block = this_block;
3418
3419 if (block == nir_impl_last_block(ctx->func->impl))
3420 ctx->final_block = this_block;
3421
3422 /* Allow the next control flow to access us retroactively, for
3423 * branching etc */
3424 ctx->current_block = this_block;
3425
3426 /* Document the fallthrough chain */
3427 ctx->previous_source_block = this_block;
3428
3429 return this_block;
3430 }
3431
3432 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3433
3434 static void
3435 emit_if(struct compiler_context *ctx, nir_if *nif)
3436 {
3437 /* Conditional branches expect the condition in r31.w; emit a move for
3438 * that in the _previous_ block (which is the current block). */
3439 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3440
3441 /* Speculatively emit the branch, but we can't fill it in until later */
3442 EMIT(branch, true, true);
3443 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3444
3445 /* Emit the two subblocks */
3446 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3447
3448 /* Emit a jump from the end of the then block to the end of the else */
3449 EMIT(branch, false, false);
3450 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3451
3452 /* Emit second block, and check if it's empty */
3453
3454 int else_idx = ctx->block_count;
3455 int count_in = ctx->instruction_count;
3456 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3457 int after_else_idx = ctx->block_count;
3458
3459 /* Now that we have the subblocks emitted, fix up the branches */
3460
3461 assert(then_block);
3462 assert(else_block);
3463
3464 if (ctx->instruction_count == count_in) {
3465 /* The else block is empty, so don't emit an exit jump */
3466 mir_remove_instruction(then_exit);
3467 then_branch->branch.target_block = after_else_idx;
3468 } else {
3469 then_branch->branch.target_block = else_idx;
3470 then_exit->branch.target_block = after_else_idx;
3471 }
3472 }
3473
3474 static void
3475 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3476 {
3477 /* Remember where we are */
3478 midgard_block *start_block = ctx->current_block;
3479
3480 /* Allocate a loop number, growing the current inner loop depth */
3481 int loop_idx = ++ctx->current_loop_depth;
3482
3483 /* Get index from before the body so we can loop back later */
3484 int start_idx = ctx->block_count;
3485
3486 /* Emit the body itself */
3487 emit_cf_list(ctx, &nloop->body);
3488
3489 /* Branch back to loop back */
3490 struct midgard_instruction br_back = v_branch(false, false);
3491 br_back.branch.target_block = start_idx;
3492 emit_mir_instruction(ctx, br_back);
3493
3494 /* Mark down that branch in the graph. Note that we're really branching
3495 * to the block *after* we started in. TODO: Why doesn't the branch
3496 * itself have an off-by-one then...? */
3497 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3498
3499 /* Find the index of the block about to follow us (note: we don't add
3500 * one; blocks are 0-indexed so we get a fencepost problem) */
3501 int break_block_idx = ctx->block_count;
3502
3503 /* Fix up the break statements we emitted to point to the right place,
3504 * now that we can allocate a block number for them */
3505
3506 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3507 mir_foreach_instr_in_block(block, ins) {
3508 if (ins->type != TAG_ALU_4) continue;
3509 if (!ins->compact_branch) continue;
3510 if (ins->prepacked_branch) continue;
3511
3512 /* We found a branch -- check the type to see if we need to do anything */
3513 if (ins->branch.target_type != TARGET_BREAK) continue;
3514
3515 /* It's a break! Check if it's our break */
3516 if (ins->branch.target_break != loop_idx) continue;
3517
3518 /* Okay, cool, we're breaking out of this loop.
3519 * Rewrite from a break to a goto */
3520
3521 ins->branch.target_type = TARGET_GOTO;
3522 ins->branch.target_block = break_block_idx;
3523 }
3524 }
3525
3526 /* Now that we've finished emitting the loop, free up the depth again
3527 * so we play nice with recursion amid nested loops */
3528 --ctx->current_loop_depth;
3529 }
3530
3531 static midgard_block *
3532 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3533 {
3534 midgard_block *start_block = NULL;
3535
3536 foreach_list_typed(nir_cf_node, node, node, list) {
3537 switch (node->type) {
3538 case nir_cf_node_block: {
3539 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3540
3541 if (!start_block)
3542 start_block = block;
3543
3544 break;
3545 }
3546
3547 case nir_cf_node_if:
3548 emit_if(ctx, nir_cf_node_as_if(node));
3549 break;
3550
3551 case nir_cf_node_loop:
3552 emit_loop(ctx, nir_cf_node_as_loop(node));
3553 break;
3554
3555 case nir_cf_node_function:
3556 assert(0);
3557 break;
3558 }
3559 }
3560
3561 return start_block;
3562 }
3563
3564 /* Due to lookahead, we need to report the first tag executed in the command
3565 * stream and in branch targets. An initial block might be empty, so iterate
3566 * until we find one that 'works' */
3567
3568 static unsigned
3569 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3570 {
3571 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3572
3573 unsigned first_tag = 0;
3574
3575 do {
3576 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3577
3578 if (initial_bundle) {
3579 first_tag = initial_bundle->tag;
3580 break;
3581 }
3582
3583 /* Initial block is empty, try the next block */
3584 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3585 } while(initial_block != NULL);
3586
3587 assert(first_tag);
3588 return first_tag;
3589 }
3590
3591 int
3592 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3593 {
3594 struct util_dynarray *compiled = &program->compiled;
3595
3596 midgard_debug = debug_get_option_midgard_debug();
3597
3598 compiler_context ictx = {
3599 .nir = nir,
3600 .stage = nir->info.stage,
3601
3602 .is_blend = is_blend,
3603 .blend_constant_offset = -1,
3604
3605 .alpha_ref = program->alpha_ref
3606 };
3607
3608 compiler_context *ctx = &ictx;
3609
3610 /* TODO: Decide this at runtime */
3611 ctx->uniform_cutoff = 8;
3612
3613 /* Assign var locations early, so the epilogue can use them if necessary */
3614
3615 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3616 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3617 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3618
3619 /* Initialize at a global (not block) level hash tables */
3620
3621 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3622 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3623 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3624 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3625 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3626 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3627 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3628
3629 /* Record the varying mapping for the command stream's bookkeeping */
3630
3631 struct exec_list *varyings =
3632 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3633
3634 nir_foreach_variable(var, varyings) {
3635 unsigned loc = var->data.driver_location;
3636 unsigned sz = glsl_type_size(var->type, FALSE);
3637
3638 for (int c = 0; c < sz; ++c) {
3639 program->varyings[loc + c] = var->data.location;
3640 }
3641 }
3642
3643 /* Lower gl_Position pre-optimisation */
3644
3645 if (ctx->stage == MESA_SHADER_VERTEX)
3646 NIR_PASS_V(nir, nir_lower_viewport_transform);
3647
3648 NIR_PASS_V(nir, nir_lower_var_copies);
3649 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3650 NIR_PASS_V(nir, nir_split_var_copies);
3651 NIR_PASS_V(nir, nir_lower_var_copies);
3652 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3653 NIR_PASS_V(nir, nir_lower_var_copies);
3654 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3655
3656 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3657
3658 /* Optimisation passes */
3659
3660 optimise_nir(nir);
3661
3662 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3663 nir_print_shader(nir, stdout);
3664 }
3665
3666 /* Assign sysvals and counts, now that we're sure
3667 * (post-optimisation) */
3668
3669 midgard_nir_assign_sysvals(ctx, nir);
3670
3671 program->uniform_count = nir->num_uniforms;
3672 program->sysval_count = ctx->sysval_count;
3673 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3674
3675 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3676 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3677
3678 nir_foreach_function(func, nir) {
3679 if (!func->impl)
3680 continue;
3681
3682 list_inithead(&ctx->blocks);
3683 ctx->block_count = 0;
3684 ctx->func = func;
3685
3686 emit_cf_list(ctx, &func->impl->body);
3687 emit_block(ctx, func->impl->end_block);
3688
3689 break; /* TODO: Multi-function shaders */
3690 }
3691
3692 util_dynarray_init(compiled, NULL);
3693
3694 /* MIR-level optimizations */
3695
3696 bool progress = false;
3697
3698 do {
3699 progress = false;
3700
3701 mir_foreach_block(ctx, block) {
3702 progress |= midgard_opt_copy_prop(ctx, block);
3703 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3704 }
3705 } while (progress);
3706
3707 /* Schedule! */
3708 schedule_program(ctx);
3709
3710 /* Now that all the bundles are scheduled and we can calculate block
3711 * sizes, emit actual branch instructions rather than placeholders */
3712
3713 int br_block_idx = 0;
3714
3715 mir_foreach_block(ctx, block) {
3716 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3717 for (int c = 0; c < bundle->instruction_count; ++c) {
3718 midgard_instruction *ins = &bundle->instructions[c];
3719
3720 if (!midgard_is_branch_unit(ins->unit)) continue;
3721
3722 if (ins->prepacked_branch) continue;
3723
3724 /* Parse some basic branch info */
3725 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3726 bool is_conditional = ins->branch.conditional;
3727 bool is_inverted = ins->branch.invert_conditional;
3728 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3729
3730 /* Determine the block we're jumping to */
3731 int target_number = ins->branch.target_block;
3732
3733 /* Report the destination tag. Discards don't need this */
3734 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3735
3736 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3737 int quadword_offset = 0;
3738
3739 if (is_discard) {
3740 /* Jump to the end of the shader. We
3741 * need to include not only the
3742 * following blocks, but also the
3743 * contents of our current block (since
3744 * discard can come in the middle of
3745 * the block) */
3746
3747 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3748
3749 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3750 quadword_offset += quadword_size(bun->tag);
3751 }
3752
3753 mir_foreach_block_from(ctx, blk, b) {
3754 quadword_offset += b->quadword_count;
3755 }
3756
3757 } else if (target_number > br_block_idx) {
3758 /* Jump forward */
3759
3760 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3761 midgard_block *blk = mir_get_block(ctx, idx);
3762 assert(blk);
3763
3764 quadword_offset += blk->quadword_count;
3765 }
3766 } else {
3767 /* Jump backwards */
3768
3769 for (int idx = br_block_idx; idx >= target_number; --idx) {
3770 midgard_block *blk = mir_get_block(ctx, idx);
3771 assert(blk);
3772
3773 quadword_offset -= blk->quadword_count;
3774 }
3775 }
3776
3777 /* Unconditional extended branches (far jumps)
3778 * have issues, so we always use a conditional
3779 * branch, setting the condition to always for
3780 * unconditional. For compact unconditional
3781 * branches, cond isn't used so it doesn't
3782 * matter what we pick. */
3783
3784 midgard_condition cond =
3785 !is_conditional ? midgard_condition_always :
3786 is_inverted ? midgard_condition_false :
3787 midgard_condition_true;
3788
3789 midgard_jmp_writeout_op op =
3790 is_discard ? midgard_jmp_writeout_op_discard :
3791 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3792 midgard_jmp_writeout_op_branch_cond;
3793
3794 if (!is_compact) {
3795 midgard_branch_extended branch =
3796 midgard_create_branch_extended(
3797 cond, op,
3798 dest_tag,
3799 quadword_offset);
3800
3801 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3802 } else if (is_conditional || is_discard) {
3803 midgard_branch_cond branch = {
3804 .op = op,
3805 .dest_tag = dest_tag,
3806 .offset = quadword_offset,
3807 .cond = cond
3808 };
3809
3810 assert(branch.offset == quadword_offset);
3811
3812 memcpy(&ins->br_compact, &branch, sizeof(branch));
3813 } else {
3814 assert(op == midgard_jmp_writeout_op_branch_uncond);
3815
3816 midgard_branch_uncond branch = {
3817 .op = op,
3818 .dest_tag = dest_tag,
3819 .offset = quadword_offset,
3820 .unknown = 1
3821 };
3822
3823 assert(branch.offset == quadword_offset);
3824
3825 memcpy(&ins->br_compact, &branch, sizeof(branch));
3826 }
3827 }
3828 }
3829
3830 ++br_block_idx;
3831 }
3832
3833 /* Emit flat binary from the instruction arrays. Iterate each block in
3834 * sequence. Save instruction boundaries such that lookahead tags can
3835 * be assigned easily */
3836
3837 /* Cache _all_ bundles in source order for lookahead across failed branches */
3838
3839 int bundle_count = 0;
3840 mir_foreach_block(ctx, block) {
3841 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3842 }
3843 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3844 int bundle_idx = 0;
3845 mir_foreach_block(ctx, block) {
3846 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3847 source_order_bundles[bundle_idx++] = bundle;
3848 }
3849 }
3850
3851 int current_bundle = 0;
3852
3853 mir_foreach_block(ctx, block) {
3854 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3855 int lookahead = 1;
3856
3857 if (current_bundle + 1 < bundle_count) {
3858 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3859
3860 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3861 lookahead = 1;
3862 } else {
3863 lookahead = next;
3864 }
3865 }
3866
3867 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3868 ++current_bundle;
3869 }
3870
3871 /* TODO: Free deeper */
3872 //util_dynarray_fini(&block->instructions);
3873 }
3874
3875 free(source_order_bundles);
3876
3877 /* Report the very first tag executed */
3878 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3879
3880 /* Deal with off-by-one related to the fencepost problem */
3881 program->work_register_count = ctx->work_registers + 1;
3882
3883 program->can_discard = ctx->can_discard;
3884 program->uniform_cutoff = ctx->uniform_cutoff;
3885
3886 program->blend_patch_offset = ctx->blend_constant_offset;
3887
3888 if (midgard_debug & MIDGARD_DBG_SHADERS)
3889 disassemble_midgard(program->compiled.data, program->compiled.size);
3890
3891 return 0;
3892 }