panfrost/midgard: Implement b2i; improve b2f/f2b
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751
752 /* Lower mods */
753 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
754 NIR_PASS(progress, nir, nir_copy_prop);
755 NIR_PASS(progress, nir, nir_opt_dce);
756
757 /* We implement booleans as 32-bit 0/~0 */
758 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
759
760 /* Take us out of SSA */
761 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
762 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
763
764 /* We are a vector architecture; write combine where possible */
765 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
766 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
767
768 NIR_PASS(progress, nir, nir_opt_dce);
769 }
770
771 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
772 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
773 * r0. See the comments in compiler_context */
774
775 static void
776 alias_ssa(compiler_context *ctx, int dest, int src)
777 {
778 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
779 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
780 }
781
782 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
783
784 static void
785 unalias_ssa(compiler_context *ctx, int dest)
786 {
787 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
788 /* TODO: Remove from leftover or no? */
789 }
790
791 static void
792 midgard_pin_output(compiler_context *ctx, int index, int reg)
793 {
794 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
795 }
796
797 static bool
798 midgard_is_pinned(compiler_context *ctx, int index)
799 {
800 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
801 }
802
803 /* Do not actually emit a load; instead, cache the constant for inlining */
804
805 static void
806 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
807 {
808 nir_ssa_def def = instr->def;
809
810 float *v = ralloc_array(NULL, float, 4);
811 memcpy(v, &instr->value.f32, 4 * sizeof(float));
812 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
813 }
814
815 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
816 * do the inverse) */
817
818 static unsigned
819 expand_writemask(unsigned mask)
820 {
821 unsigned o = 0;
822
823 for (int i = 0; i < 4; ++i)
824 if (mask & (1 << i))
825 o |= (3 << (2 * i));
826
827 return o;
828 }
829
830 static unsigned
831 squeeze_writemask(unsigned mask)
832 {
833 unsigned o = 0;
834
835 for (int i = 0; i < 4; ++i)
836 if (mask & (3 << (2 * i)))
837 o |= (1 << i);
838
839 return o;
840
841 }
842
843 /* Determines effective writemask, taking quirks and expansion into account */
844 static unsigned
845 effective_writemask(midgard_vector_alu *alu)
846 {
847 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
848 * sense) */
849
850 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
851
852 /* If there is a fixed channel count, construct the appropriate mask */
853
854 if (channel_count)
855 return (1 << channel_count) - 1;
856
857 /* Otherwise, just squeeze the existing mask */
858 return squeeze_writemask(alu->mask);
859 }
860
861 static unsigned
862 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
863 {
864 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
865 return hash;
866
867 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
868
869 if (temp)
870 return temp - 1;
871
872 /* If no temp is find, allocate one */
873 temp = ctx->temp_count++;
874 ctx->max_hash = MAX2(ctx->max_hash, hash);
875
876 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
877
878 return temp;
879 }
880
881 static unsigned
882 nir_src_index(compiler_context *ctx, nir_src *src)
883 {
884 if (src->is_ssa)
885 return src->ssa->index;
886 else
887 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
888 }
889
890 static unsigned
891 nir_dest_index(compiler_context *ctx, nir_dest *dst)
892 {
893 if (dst->is_ssa)
894 return dst->ssa.index;
895 else
896 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
897 }
898
899 static unsigned
900 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
901 {
902 return nir_src_index(ctx, &src->src);
903 }
904
905 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
906 * a conditional test) into that register */
907
908 static void
909 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
910 {
911 /* XXX: Force component correct */
912 int condition = nir_src_index(ctx, src);
913
914 /* There is no boolean move instruction. Instead, we simulate a move by
915 * ANDing the condition with itself to get it into r31.w */
916
917 midgard_instruction ins = {
918 .type = TAG_ALU_4,
919 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
920 .ssa_args = {
921 .src0 = condition,
922 .src1 = condition,
923 .dest = SSA_FIXED_REGISTER(31),
924 },
925 .alu = {
926 .op = midgard_alu_op_iand,
927 .reg_mode = midgard_reg_mode_full,
928 .dest_override = midgard_dest_override_none,
929 .mask = (0x3 << 6), /* w */
930 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
931 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
932 },
933 };
934
935 emit_mir_instruction(ctx, ins);
936 }
937
938 #define ALU_CASE(nir, _op) \
939 case nir_op_##nir: \
940 op = midgard_alu_op_##_op; \
941 break;
942
943 static void
944 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
945 {
946 bool is_ssa = instr->dest.dest.is_ssa;
947
948 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
949 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
950 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
951
952 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
953 * supported. A few do not and are commented for now. Also, there are a
954 * number of NIR ops which Midgard does not support and need to be
955 * lowered, also TODO. This switch block emits the opcode and calling
956 * convention of the Midgard instruction; actual packing is done in
957 * emit_alu below */
958
959 unsigned op;
960
961 switch (instr->op) {
962 ALU_CASE(fadd, fadd);
963 ALU_CASE(fmul, fmul);
964 ALU_CASE(fmin, fmin);
965 ALU_CASE(fmax, fmax);
966 ALU_CASE(imin, imin);
967 ALU_CASE(imax, imax);
968 ALU_CASE(fmov, fmov);
969 ALU_CASE(ffloor, ffloor);
970 ALU_CASE(fround_even, froundeven);
971 ALU_CASE(ftrunc, ftrunc);
972 ALU_CASE(fceil, fceil);
973 ALU_CASE(fdot3, fdot3);
974 ALU_CASE(fdot4, fdot4);
975 ALU_CASE(iadd, iadd);
976 ALU_CASE(isub, isub);
977 ALU_CASE(imul, imul);
978
979 /* XXX: Use fmov, not imov, since imov was causing major
980 * issues with texture precision? XXX research */
981 ALU_CASE(imov, fmov);
982
983 ALU_CASE(feq32, feq);
984 ALU_CASE(fne32, fne);
985 ALU_CASE(flt32, flt);
986 ALU_CASE(ieq32, ieq);
987 ALU_CASE(ine32, ine);
988 ALU_CASE(ilt32, ilt);
989
990 /* We don't have a native b2f32 instruction. Instead, like many
991 * GPUs, we exploit booleans as 0/~0 for false/true, and
992 * correspondingly AND
993 * by 1.0 to do the type conversion. For the moment, prime us
994 * to emit:
995 *
996 * iand [whatever], #0
997 *
998 * At the end of emit_alu (as MIR), we'll fix-up the constant
999 */
1000
1001 ALU_CASE(b2f32, iand);
1002 ALU_CASE(b2i32, iand);
1003
1004 /* Likewise, we don't have a dedicated f2b32 instruction, but
1005 * we can do a "not equal to 0.0" test. */
1006
1007 ALU_CASE(f2b32, fne);
1008 ALU_CASE(i2b32, ine);
1009
1010 ALU_CASE(frcp, frcp);
1011 ALU_CASE(frsq, frsqrt);
1012 ALU_CASE(fsqrt, fsqrt);
1013 ALU_CASE(fpow, fpow);
1014 ALU_CASE(fexp2, fexp2);
1015 ALU_CASE(flog2, flog2);
1016
1017 ALU_CASE(f2i32, f2i);
1018 ALU_CASE(f2u32, f2u);
1019 ALU_CASE(i2f32, i2f);
1020 ALU_CASE(u2f32, u2f);
1021
1022 ALU_CASE(fsin, fsin);
1023 ALU_CASE(fcos, fcos);
1024
1025 ALU_CASE(iand, iand);
1026 ALU_CASE(ior, ior);
1027 ALU_CASE(ixor, ixor);
1028 ALU_CASE(inot, inot);
1029 ALU_CASE(ishl, ishl);
1030 ALU_CASE(ishr, iasr);
1031 ALU_CASE(ushr, ilsr);
1032
1033 ALU_CASE(b32all_fequal2, fball_eq);
1034 ALU_CASE(b32all_fequal3, fball_eq);
1035 ALU_CASE(b32all_fequal4, fball_eq);
1036
1037 ALU_CASE(b32any_fnequal2, fbany_neq);
1038 ALU_CASE(b32any_fnequal3, fbany_neq);
1039 ALU_CASE(b32any_fnequal4, fbany_neq);
1040
1041 ALU_CASE(b32all_iequal2, iball_eq);
1042 ALU_CASE(b32all_iequal3, iball_eq);
1043 ALU_CASE(b32all_iequal4, iball_eq);
1044
1045 ALU_CASE(b32any_inequal2, ibany_neq);
1046 ALU_CASE(b32any_inequal3, ibany_neq);
1047 ALU_CASE(b32any_inequal4, ibany_neq);
1048
1049 /* For greater-or-equal, we use less-or-equal and flip the
1050 * arguments */
1051
1052 case nir_op_ige32: {
1053 op = midgard_alu_op_ile;
1054
1055 /* Swap via temporary */
1056 nir_alu_src temp = instr->src[1];
1057 instr->src[1] = instr->src[0];
1058 instr->src[0] = temp;
1059
1060 break;
1061 }
1062
1063 case nir_op_b32csel: {
1064 op = midgard_alu_op_fcsel;
1065
1066 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1067 nr_inputs = 2;
1068
1069 emit_condition(ctx, &instr->src[0].src, false);
1070
1071 /* The condition is the first argument; move the other
1072 * arguments up one to be a binary instruction for
1073 * Midgard */
1074
1075 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1076 break;
1077 }
1078
1079 default:
1080 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1081 assert(0);
1082 return;
1083 }
1084
1085 /* Fetch unit, quirks, etc information */
1086 unsigned opcode_props = alu_opcode_props[op];
1087 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1088
1089 /* Initialise fields common between scalar/vector instructions */
1090 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1091
1092 /* src0 will always exist afaik, but src1 will not for 1-argument
1093 * instructions. The latter can only be fetched if the instruction
1094 * needs it, or else we may segfault. */
1095
1096 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1097 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1098
1099 /* Rather than use the instruction generation helpers, we do it
1100 * ourselves here to avoid the mess */
1101
1102 midgard_instruction ins = {
1103 .type = TAG_ALU_4,
1104 .ssa_args = {
1105 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1106 .src1 = quirk_flipped_r24 ? src0 : src1,
1107 .dest = dest,
1108 }
1109 };
1110
1111 nir_alu_src *nirmods[2] = { NULL };
1112
1113 if (nr_inputs == 2) {
1114 nirmods[0] = &instr->src[0];
1115 nirmods[1] = &instr->src[1];
1116 } else if (nr_inputs == 1) {
1117 nirmods[quirk_flipped_r24] = &instr->src[0];
1118 } else {
1119 assert(0);
1120 }
1121
1122 midgard_vector_alu alu = {
1123 .op = op,
1124 .reg_mode = midgard_reg_mode_full,
1125 .dest_override = midgard_dest_override_none,
1126 .outmod = outmod,
1127
1128 /* Writemask only valid for non-SSA NIR */
1129 .mask = expand_writemask((1 << nr_components) - 1),
1130
1131 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1132 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1133 };
1134
1135 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1136
1137 if (!is_ssa)
1138 alu.mask &= expand_writemask(instr->dest.write_mask);
1139
1140 ins.alu = alu;
1141
1142 /* Late fixup for emulated instructions */
1143
1144 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1145 /* Presently, our second argument is an inline #0 constant.
1146 * Switch over to an embedded 1.0 constant (that can't fit
1147 * inline, since we're 32-bit, not 16-bit like the inline
1148 * constants) */
1149
1150 ins.ssa_args.inline_constant = false;
1151 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1152 ins.has_constants = true;
1153
1154 if (instr->op == nir_op_b2f32) {
1155 ins.constants[0] = 1.0f;
1156 } else {
1157 /* Type pun it into place */
1158 uint32_t one = 0x1;
1159 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1160 }
1161
1162 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1163 } else if (instr->op == nir_op_f2b32) {
1164 ins.ssa_args.inline_constant = false;
1165 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1166 ins.has_constants = true;
1167 ins.constants[0] = 0.0f;
1168 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1169 }
1170
1171 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1172 /* To avoid duplicating the lookup tables (probably), true LUT
1173 * instructions can only operate as if they were scalars. Lower
1174 * them here by changing the component. */
1175
1176 uint8_t original_swizzle[4];
1177 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1178
1179 for (int i = 0; i < nr_components; ++i) {
1180 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1181
1182 for (int j = 0; j < 4; ++j)
1183 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1184
1185 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1186 emit_mir_instruction(ctx, ins);
1187 }
1188 } else {
1189 emit_mir_instruction(ctx, ins);
1190 }
1191 }
1192
1193 #undef ALU_CASE
1194
1195 static void
1196 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1197 {
1198 nir_const_value *const_offset;
1199 unsigned offset, reg;
1200
1201 switch (instr->intrinsic) {
1202 case nir_intrinsic_discard_if:
1203 emit_condition(ctx, &instr->src[0], true);
1204
1205 /* fallthrough */
1206
1207 case nir_intrinsic_discard: {
1208 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1209 struct midgard_instruction discard = v_branch(conditional, false);
1210 discard.branch.target_type = TARGET_DISCARD;
1211 emit_mir_instruction(ctx, discard);
1212
1213 ctx->can_discard = true;
1214 break;
1215 }
1216
1217 case nir_intrinsic_load_uniform:
1218 case nir_intrinsic_load_input:
1219 const_offset = nir_src_as_const_value(instr->src[0]);
1220 assert (const_offset && "no indirect inputs");
1221
1222 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1223
1224 reg = nir_dest_index(ctx, &instr->dest);
1225
1226 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1227 /* TODO: half-floats */
1228
1229 int uniform_offset = 0;
1230
1231 if (offset >= SPECIAL_UNIFORM_BASE) {
1232 /* XXX: Resolve which uniform */
1233 uniform_offset = 0;
1234 } else {
1235 /* Offset away from the special
1236 * uniform block */
1237
1238 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1239
1240 /* XXX */
1241 if (!entry) {
1242 DBG("WARNING: Unknown uniform %d\n", offset);
1243 break;
1244 }
1245
1246 uniform_offset = (uintptr_t) (entry) - 1;
1247 uniform_offset += ctx->special_uniforms;
1248 }
1249
1250 if (uniform_offset < ctx->uniform_cutoff) {
1251 /* Fast path: For the first 16 uniform,
1252 * accesses are 0-cycle, since they're
1253 * just a register fetch in the usual
1254 * case. So, we alias the registers
1255 * while we're still in SSA-space */
1256
1257 int reg_slot = 23 - uniform_offset;
1258 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1259 } else {
1260 /* Otherwise, read from the 'special'
1261 * UBO to access higher-indexed
1262 * uniforms, at a performance cost */
1263
1264 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1265
1266 /* TODO: Don't split */
1267 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1268 ins.load_store.address = uniform_offset >> 3;
1269
1270 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1271 emit_mir_instruction(ctx, ins);
1272 }
1273 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1274 /* XXX: Half-floats? */
1275 /* TODO: swizzle, mask */
1276
1277 midgard_instruction ins = m_load_vary_32(reg, offset);
1278
1279 midgard_varying_parameter p = {
1280 .is_varying = 1,
1281 .interpolation = midgard_interp_default,
1282 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1283 };
1284
1285 unsigned u;
1286 memcpy(&u, &p, sizeof(p));
1287 ins.load_store.varying_parameters = u;
1288
1289 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1290 emit_mir_instruction(ctx, ins);
1291 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1292 /* Constant encoded as a pinned constant */
1293
1294 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1295 ins.has_constants = true;
1296 ins.has_blend_constant = true;
1297 emit_mir_instruction(ctx, ins);
1298 } else if (ctx->is_blend) {
1299 /* For blend shaders, a load might be
1300 * translated various ways depending on what
1301 * we're loading. Figure out how this is used */
1302
1303 nir_variable *out = NULL;
1304
1305 nir_foreach_variable(var, &ctx->nir->inputs) {
1306 int drvloc = var->data.driver_location;
1307
1308 if (nir_intrinsic_base(instr) == drvloc) {
1309 out = var;
1310 break;
1311 }
1312 }
1313
1314 assert(out);
1315
1316 if (out->data.location == VARYING_SLOT_COL0) {
1317 /* Source color preloaded to r0 */
1318
1319 midgard_pin_output(ctx, reg, 0);
1320 } else if (out->data.location == VARYING_SLOT_COL1) {
1321 /* Destination color must be read from framebuffer */
1322
1323 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1324 ins.load_store.swizzle = 0; /* xxxx */
1325
1326 /* Read each component sequentially */
1327
1328 for (int c = 0; c < 4; ++c) {
1329 ins.load_store.mask = (1 << c);
1330 ins.load_store.unknown = c;
1331 emit_mir_instruction(ctx, ins);
1332 }
1333
1334 /* vadd.u2f hr2, abs(hr2), #0 */
1335
1336 midgard_vector_alu_src alu_src = blank_alu_src;
1337 alu_src.abs = true;
1338 alu_src.half = true;
1339
1340 midgard_instruction u2f = {
1341 .type = TAG_ALU_4,
1342 .ssa_args = {
1343 .src0 = reg,
1344 .src1 = SSA_UNUSED_0,
1345 .dest = reg,
1346 .inline_constant = true
1347 },
1348 .alu = {
1349 .op = midgard_alu_op_u2f,
1350 .reg_mode = midgard_reg_mode_half,
1351 .dest_override = midgard_dest_override_none,
1352 .mask = 0xF,
1353 .src1 = vector_alu_srco_unsigned(alu_src),
1354 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1355 }
1356 };
1357
1358 emit_mir_instruction(ctx, u2f);
1359
1360 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1361
1362 alu_src.abs = false;
1363
1364 midgard_instruction fmul = {
1365 .type = TAG_ALU_4,
1366 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1367 .ssa_args = {
1368 .src0 = reg,
1369 .dest = reg,
1370 .src1 = SSA_UNUSED_0,
1371 .inline_constant = true
1372 },
1373 .alu = {
1374 .op = midgard_alu_op_fmul,
1375 .reg_mode = midgard_reg_mode_full,
1376 .dest_override = midgard_dest_override_none,
1377 .outmod = midgard_outmod_sat,
1378 .mask = 0xFF,
1379 .src1 = vector_alu_srco_unsigned(alu_src),
1380 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1381 }
1382 };
1383
1384 emit_mir_instruction(ctx, fmul);
1385 } else {
1386 DBG("Unknown input in blend shader\n");
1387 assert(0);
1388 }
1389 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1390 midgard_instruction ins = m_load_attr_32(reg, offset);
1391 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1392 ins.load_store.mask = (1 << instr->num_components) - 1;
1393 emit_mir_instruction(ctx, ins);
1394 } else {
1395 DBG("Unknown load\n");
1396 assert(0);
1397 }
1398
1399 break;
1400
1401 case nir_intrinsic_store_output:
1402 const_offset = nir_src_as_const_value(instr->src[1]);
1403 assert(const_offset && "no indirect outputs");
1404
1405 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1406
1407 reg = nir_src_index(ctx, &instr->src[0]);
1408
1409 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1410 /* gl_FragColor is not emitted with load/store
1411 * instructions. Instead, it gets plonked into
1412 * r0 at the end of the shader and we do the
1413 * framebuffer writeout dance. TODO: Defer
1414 * writes */
1415
1416 midgard_pin_output(ctx, reg, 0);
1417
1418 /* Save the index we're writing to for later reference
1419 * in the epilogue */
1420
1421 ctx->fragment_output = reg;
1422 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1423 /* Varyings are written into one of two special
1424 * varying register, r26 or r27. The register itself is selected as the register
1425 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1426 *
1427 * Normally emitting fmov's is frowned upon,
1428 * but due to unique constraints of
1429 * REGISTER_VARYING, fmov emission + a
1430 * dedicated cleanup pass is the only way to
1431 * guarantee correctness when considering some
1432 * (common) edge cases XXX: FIXME */
1433
1434 /* If this varying corresponds to a constant (why?!),
1435 * emit that now since it won't get picked up by
1436 * hoisting (since there is no corresponding move
1437 * emitted otherwise) */
1438
1439 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1440
1441 if (constant_value) {
1442 /* Special case: emit the varying write
1443 * directly to r26 (looks funny in asm but it's
1444 * fine) and emit the store _now_. Possibly
1445 * slightly slower, but this is a really stupid
1446 * special case anyway (why on earth would you
1447 * have a constant varying? Your own fault for
1448 * slightly worse perf :P) */
1449
1450 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1451 attach_constants(ctx, &ins, constant_value, reg + 1);
1452 emit_mir_instruction(ctx, ins);
1453
1454 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1455 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1456 emit_mir_instruction(ctx, st);
1457 } else {
1458 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1459
1460 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1461 }
1462 } else {
1463 DBG("Unknown store\n");
1464 assert(0);
1465 }
1466
1467 break;
1468
1469 case nir_intrinsic_load_alpha_ref_float:
1470 assert(instr->dest.is_ssa);
1471
1472 float ref_value = ctx->alpha_ref;
1473
1474 float *v = ralloc_array(NULL, float, 4);
1475 memcpy(v, &ref_value, sizeof(float));
1476 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1477 break;
1478
1479
1480 default:
1481 printf ("Unhandled intrinsic\n");
1482 assert(0);
1483 break;
1484 }
1485 }
1486
1487 static unsigned
1488 midgard_tex_format(enum glsl_sampler_dim dim)
1489 {
1490 switch (dim) {
1491 case GLSL_SAMPLER_DIM_2D:
1492 case GLSL_SAMPLER_DIM_EXTERNAL:
1493 return TEXTURE_2D;
1494
1495 case GLSL_SAMPLER_DIM_3D:
1496 return TEXTURE_3D;
1497
1498 case GLSL_SAMPLER_DIM_CUBE:
1499 return TEXTURE_CUBE;
1500
1501 default:
1502 DBG("Unknown sampler dim type\n");
1503 assert(0);
1504 return 0;
1505 }
1506 }
1507
1508 static void
1509 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1510 {
1511 /* TODO */
1512 //assert (!instr->sampler);
1513 //assert (!instr->texture_array_size);
1514 assert (instr->op == nir_texop_tex);
1515
1516 /* Allocate registers via a round robin scheme to alternate between the two registers */
1517 int reg = ctx->texture_op_count & 1;
1518 int in_reg = reg, out_reg = reg;
1519
1520 /* Make room for the reg */
1521
1522 if (ctx->texture_index[reg] > -1)
1523 unalias_ssa(ctx, ctx->texture_index[reg]);
1524
1525 int texture_index = instr->texture_index;
1526 int sampler_index = texture_index;
1527
1528 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1529 switch (instr->src[i].src_type) {
1530 case nir_tex_src_coord: {
1531 int index = nir_src_index(ctx, &instr->src[i].src);
1532
1533 midgard_vector_alu_src alu_src = blank_alu_src;
1534 alu_src.swizzle = (COMPONENT_Y << 2);
1535
1536 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1537 emit_mir_instruction(ctx, ins);
1538
1539 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1540
1541 break;
1542 }
1543
1544 default: {
1545 DBG("Unknown source type\n");
1546 //assert(0);
1547 break;
1548 }
1549 }
1550 }
1551
1552 /* No helper to build texture words -- we do it all here */
1553 midgard_instruction ins = {
1554 .type = TAG_TEXTURE_4,
1555 .texture = {
1556 .op = TEXTURE_OP_NORMAL,
1557 .format = midgard_tex_format(instr->sampler_dim),
1558 .texture_handle = texture_index,
1559 .sampler_handle = sampler_index,
1560
1561 /* TODO: Don't force xyzw */
1562 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1563 .mask = 0xF,
1564
1565 /* TODO: half */
1566 //.in_reg_full = 1,
1567 .out_full = 1,
1568
1569 .filter = 1,
1570
1571 /* Always 1 */
1572 .unknown7 = 1,
1573
1574 /* Assume we can continue; hint it out later */
1575 .cont = 1,
1576 }
1577 };
1578
1579 /* Set registers to read and write from the same place */
1580 ins.texture.in_reg_select = in_reg;
1581 ins.texture.out_reg_select = out_reg;
1582
1583 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1584 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1585 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1586 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1587 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1588 } else {
1589 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1590 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1591 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1592 }
1593
1594 emit_mir_instruction(ctx, ins);
1595
1596 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1597
1598 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1599 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1600 ctx->texture_index[reg] = o_index;
1601
1602 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1603 emit_mir_instruction(ctx, ins2);
1604
1605 /* Used for .cont and .last hinting */
1606 ctx->texture_op_count++;
1607 }
1608
1609 static void
1610 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1611 {
1612 switch (instr->type) {
1613 case nir_jump_break: {
1614 /* Emit a branch out of the loop */
1615 struct midgard_instruction br = v_branch(false, false);
1616 br.branch.target_type = TARGET_BREAK;
1617 br.branch.target_break = ctx->current_loop;
1618 emit_mir_instruction(ctx, br);
1619
1620 DBG("break..\n");
1621 break;
1622 }
1623
1624 default:
1625 DBG("Unknown jump type %d\n", instr->type);
1626 break;
1627 }
1628 }
1629
1630 static void
1631 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1632 {
1633 switch (instr->type) {
1634 case nir_instr_type_load_const:
1635 emit_load_const(ctx, nir_instr_as_load_const(instr));
1636 break;
1637
1638 case nir_instr_type_intrinsic:
1639 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1640 break;
1641
1642 case nir_instr_type_alu:
1643 emit_alu(ctx, nir_instr_as_alu(instr));
1644 break;
1645
1646 case nir_instr_type_tex:
1647 emit_tex(ctx, nir_instr_as_tex(instr));
1648 break;
1649
1650 case nir_instr_type_jump:
1651 emit_jump(ctx, nir_instr_as_jump(instr));
1652 break;
1653
1654 case nir_instr_type_ssa_undef:
1655 /* Spurious */
1656 break;
1657
1658 default:
1659 DBG("Unhandled instruction type\n");
1660 break;
1661 }
1662 }
1663
1664 /* Determine the actual hardware from the index based on the RA results or special values */
1665
1666 static int
1667 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1668 {
1669 if (reg >= SSA_FIXED_MINIMUM)
1670 return SSA_REG_FROM_FIXED(reg);
1671
1672 if (reg >= 0) {
1673 assert(reg < maxreg);
1674 int r = ra_get_node_reg(g, reg);
1675 ctx->work_registers = MAX2(ctx->work_registers, r);
1676 return r;
1677 }
1678
1679 switch (reg) {
1680 /* fmov style unused */
1681 case SSA_UNUSED_0:
1682 return REGISTER_UNUSED;
1683
1684 /* lut style unused */
1685 case SSA_UNUSED_1:
1686 return REGISTER_UNUSED;
1687
1688 default:
1689 DBG("Unknown SSA register alias %d\n", reg);
1690 assert(0);
1691 return 31;
1692 }
1693 }
1694
1695 static unsigned int
1696 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1697 {
1698 /* Choose the first available register to minimise reported register pressure */
1699
1700 for (int i = 0; i < 16; ++i) {
1701 if (BITSET_TEST(regs, i)) {
1702 return i;
1703 }
1704 }
1705
1706 assert(0);
1707 return 0;
1708 }
1709
1710 static bool
1711 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1712 {
1713 if (ins->ssa_args.src0 == src) return true;
1714 if (ins->ssa_args.src1 == src) return true;
1715
1716 return false;
1717 }
1718
1719 static bool
1720 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1721 {
1722 /* Check the rest of the block for liveness */
1723 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1724 if (midgard_is_live_in_instr(ins, src))
1725 return true;
1726 }
1727
1728 /* Check the rest of the blocks for liveness */
1729 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1730 mir_foreach_instr_in_block(b, ins) {
1731 if (midgard_is_live_in_instr(ins, src))
1732 return true;
1733 }
1734 }
1735
1736 /* TODO: How does control flow interact in complex shaders? */
1737
1738 return false;
1739 }
1740
1741 static void
1742 allocate_registers(compiler_context *ctx)
1743 {
1744 /* First, initialize the RA */
1745 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1746
1747 /* Create a primary (general purpose) class, as well as special purpose
1748 * pipeline register classes */
1749
1750 int primary_class = ra_alloc_reg_class(regs);
1751 int varying_class = ra_alloc_reg_class(regs);
1752
1753 /* Add the full set of work registers */
1754 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1755 for (int i = 0; i < work_count; ++i)
1756 ra_class_add_reg(regs, primary_class, i);
1757
1758 /* Add special registers */
1759 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1760 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1761
1762 /* We're done setting up */
1763 ra_set_finalize(regs, NULL);
1764
1765 /* Transform the MIR into squeezed index form */
1766 mir_foreach_block(ctx, block) {
1767 mir_foreach_instr_in_block(block, ins) {
1768 if (ins->compact_branch) continue;
1769
1770 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1771 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1772 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1773 }
1774 if (midgard_debug & MIDGARD_DBG_SHADERS)
1775 print_mir_block(block);
1776 }
1777
1778 /* Let's actually do register allocation */
1779 int nodes = ctx->temp_count;
1780 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1781
1782 /* Set everything to the work register class, unless it has somewhere
1783 * special to go */
1784
1785 mir_foreach_block(ctx, block) {
1786 mir_foreach_instr_in_block(block, ins) {
1787 if (ins->compact_branch) continue;
1788
1789 if (ins->ssa_args.dest < 0) continue;
1790
1791 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1792
1793 int class = primary_class;
1794
1795 ra_set_node_class(g, ins->ssa_args.dest, class);
1796 }
1797 }
1798
1799 for (int index = 0; index <= ctx->max_hash; ++index) {
1800 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1801
1802 if (temp) {
1803 unsigned reg = temp - 1;
1804 int t = find_or_allocate_temp(ctx, index);
1805 ra_set_node_reg(g, t, reg);
1806 }
1807 }
1808
1809 /* Determine liveness */
1810
1811 int *live_start = malloc(nodes * sizeof(int));
1812 int *live_end = malloc(nodes * sizeof(int));
1813
1814 /* Initialize as non-existent */
1815
1816 for (int i = 0; i < nodes; ++i) {
1817 live_start[i] = live_end[i] = -1;
1818 }
1819
1820 int d = 0;
1821
1822 mir_foreach_block(ctx, block) {
1823 mir_foreach_instr_in_block(block, ins) {
1824 if (ins->compact_branch) continue;
1825
1826 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1827 /* If this destination is not yet live, it is now since we just wrote it */
1828
1829 int dest = ins->ssa_args.dest;
1830
1831 if (live_start[dest] == -1)
1832 live_start[dest] = d;
1833 }
1834
1835 /* Since we just used a source, the source might be
1836 * dead now. Scan the rest of the block for
1837 * invocations, and if there are none, the source dies
1838 * */
1839
1840 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1841
1842 for (int src = 0; src < 2; ++src) {
1843 int s = sources[src];
1844
1845 if (s < 0) continue;
1846
1847 if (s >= SSA_FIXED_MINIMUM) continue;
1848
1849 if (!is_live_after(ctx, block, ins, s)) {
1850 live_end[s] = d;
1851 }
1852 }
1853
1854 ++d;
1855 }
1856 }
1857
1858 /* If a node still hasn't been killed, kill it now */
1859
1860 for (int i = 0; i < nodes; ++i) {
1861 /* live_start == -1 most likely indicates a pinned output */
1862
1863 if (live_end[i] == -1)
1864 live_end[i] = d;
1865 }
1866
1867 /* Setup interference between nodes that are live at the same time */
1868
1869 for (int i = 0; i < nodes; ++i) {
1870 for (int j = i + 1; j < nodes; ++j) {
1871 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1872 ra_add_node_interference(g, i, j);
1873 }
1874 }
1875
1876 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1877
1878 if (!ra_allocate(g)) {
1879 DBG("Error allocating registers\n");
1880 assert(0);
1881 }
1882
1883 /* Cleanup */
1884 free(live_start);
1885 free(live_end);
1886
1887 mir_foreach_block(ctx, block) {
1888 mir_foreach_instr_in_block(block, ins) {
1889 if (ins->compact_branch) continue;
1890
1891 ssa_args args = ins->ssa_args;
1892
1893 switch (ins->type) {
1894 case TAG_ALU_4:
1895 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1896
1897 ins->registers.src2_imm = args.inline_constant;
1898
1899 if (args.inline_constant) {
1900 /* Encode inline 16-bit constant as a vector by default */
1901
1902 ins->registers.src2_reg = ins->inline_constant >> 11;
1903
1904 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1905
1906 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1907 ins->alu.src2 = imm << 2;
1908 } else {
1909 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1910 }
1911
1912 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1913
1914 break;
1915
1916 case TAG_LOAD_STORE_4: {
1917 if (OP_IS_STORE(ins->load_store.op)) {
1918 /* TODO: use ssa_args for store_vary */
1919 ins->load_store.reg = 0;
1920 } else {
1921 bool has_dest = args.dest >= 0;
1922 int ssa_arg = has_dest ? args.dest : args.src0;
1923
1924 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1925 }
1926
1927 break;
1928 }
1929
1930 default:
1931 break;
1932 }
1933 }
1934 }
1935 }
1936
1937 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1938 * use scalar ALU instructions, for functional or performance reasons. To do
1939 * this, we just demote vector ALU payloads to scalar. */
1940
1941 static int
1942 component_from_mask(unsigned mask)
1943 {
1944 for (int c = 0; c < 4; ++c) {
1945 if (mask & (3 << (2 * c)))
1946 return c;
1947 }
1948
1949 assert(0);
1950 return 0;
1951 }
1952
1953 static bool
1954 is_single_component_mask(unsigned mask)
1955 {
1956 int components = 0;
1957
1958 for (int c = 0; c < 4; ++c)
1959 if (mask & (3 << (2 * c)))
1960 components++;
1961
1962 return components == 1;
1963 }
1964
1965 /* Create a mask of accessed components from a swizzle to figure out vector
1966 * dependencies */
1967
1968 static unsigned
1969 swizzle_to_access_mask(unsigned swizzle)
1970 {
1971 unsigned component_mask = 0;
1972
1973 for (int i = 0; i < 4; ++i) {
1974 unsigned c = (swizzle >> (2 * i)) & 3;
1975 component_mask |= (1 << c);
1976 }
1977
1978 return component_mask;
1979 }
1980
1981 static unsigned
1982 vector_to_scalar_source(unsigned u)
1983 {
1984 midgard_vector_alu_src v;
1985 memcpy(&v, &u, sizeof(v));
1986
1987 midgard_scalar_alu_src s = {
1988 .abs = v.abs,
1989 .negate = v.negate,
1990 .full = !v.half,
1991 .component = (v.swizzle & 3) << 1
1992 };
1993
1994 unsigned o;
1995 memcpy(&o, &s, sizeof(s));
1996
1997 return o & ((1 << 6) - 1);
1998 }
1999
2000 static midgard_scalar_alu
2001 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2002 {
2003 /* The output component is from the mask */
2004 midgard_scalar_alu s = {
2005 .op = v.op,
2006 .src1 = vector_to_scalar_source(v.src1),
2007 .src2 = vector_to_scalar_source(v.src2),
2008 .unknown = 0,
2009 .outmod = v.outmod,
2010 .output_full = 1, /* TODO: Half */
2011 .output_component = component_from_mask(v.mask) << 1,
2012 };
2013
2014 /* Inline constant is passed along rather than trying to extract it
2015 * from v */
2016
2017 if (ins->ssa_args.inline_constant) {
2018 uint16_t imm = 0;
2019 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2020 imm |= (lower_11 >> 9) & 3;
2021 imm |= (lower_11 >> 6) & 4;
2022 imm |= (lower_11 >> 2) & 0x38;
2023 imm |= (lower_11 & 63) << 6;
2024
2025 s.src2 = imm;
2026 }
2027
2028 return s;
2029 }
2030
2031 /* Midgard prefetches instruction types, so during emission we need to
2032 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2033 * if this is the second to last and the last is an ALU, then it's also 1... */
2034
2035 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2036 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2037
2038 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2039 bytes_emitted += sizeof(type)
2040
2041 static void
2042 emit_binary_vector_instruction(midgard_instruction *ains,
2043 uint16_t *register_words, int *register_words_count,
2044 uint64_t *body_words, size_t *body_size, int *body_words_count,
2045 size_t *bytes_emitted)
2046 {
2047 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2048 *bytes_emitted += sizeof(midgard_reg_info);
2049
2050 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2051 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2052 *bytes_emitted += sizeof(midgard_vector_alu);
2053 }
2054
2055 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2056 * mind that we are a vector architecture and we can write to different
2057 * components simultaneously */
2058
2059 static bool
2060 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2061 {
2062 /* Each instruction reads some registers and writes to a register. See
2063 * where the first writes */
2064
2065 /* Figure out where exactly we wrote to */
2066 int source = first->ssa_args.dest;
2067 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2068
2069 /* As long as the second doesn't read from the first, we're okay */
2070 if (second->ssa_args.src0 == source) {
2071 if (first->type == TAG_ALU_4) {
2072 /* Figure out which components we just read from */
2073
2074 int q = second->alu.src1;
2075 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2076
2077 /* Check if there are components in common, and fail if so */
2078 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2079 return false;
2080 } else
2081 return false;
2082
2083 }
2084
2085 if (second->ssa_args.src1 == source)
2086 return false;
2087
2088 /* Otherwise, it's safe in that regard. Another data hazard is both
2089 * writing to the same place, of course */
2090
2091 if (second->ssa_args.dest == source) {
2092 /* ...but only if the components overlap */
2093 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2094
2095 if (dest_mask & source_mask)
2096 return false;
2097 }
2098
2099 /* ...That's it */
2100 return true;
2101 }
2102
2103 static bool
2104 midgard_has_hazard(
2105 midgard_instruction **segment, unsigned segment_size,
2106 midgard_instruction *ains)
2107 {
2108 for (int s = 0; s < segment_size; ++s)
2109 if (!can_run_concurrent_ssa(segment[s], ains))
2110 return true;
2111
2112 return false;
2113
2114
2115 }
2116
2117 /* Schedules, but does not emit, a single basic block. After scheduling, the
2118 * final tag and size of the block are known, which are necessary for branching
2119 * */
2120
2121 static midgard_bundle
2122 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2123 {
2124 int instructions_emitted = 0, instructions_consumed = -1;
2125 midgard_bundle bundle = { 0 };
2126
2127 uint8_t tag = ins->type;
2128
2129 /* Default to the instruction's tag */
2130 bundle.tag = tag;
2131
2132 switch (ins->type) {
2133 case TAG_ALU_4: {
2134 uint32_t control = 0;
2135 size_t bytes_emitted = sizeof(control);
2136
2137 /* TODO: Constant combining */
2138 int index = 0, last_unit = 0;
2139
2140 /* Previous instructions, for the purpose of parallelism */
2141 midgard_instruction *segment[4] = {0};
2142 int segment_size = 0;
2143
2144 instructions_emitted = -1;
2145 midgard_instruction *pins = ins;
2146
2147 for (;;) {
2148 midgard_instruction *ains = pins;
2149
2150 /* Advance instruction pointer */
2151 if (index) {
2152 ains = mir_next_op(pins);
2153 pins = ains;
2154 }
2155
2156 /* Out-of-work condition */
2157 if ((struct list_head *) ains == &block->instructions)
2158 break;
2159
2160 /* Ensure that the chain can continue */
2161 if (ains->type != TAG_ALU_4) break;
2162
2163 /* According to the presentation "The ARM
2164 * Mali-T880 Mobile GPU" from HotChips 27,
2165 * there are two pipeline stages. Branching
2166 * position determined experimentally. Lines
2167 * are executed in parallel:
2168 *
2169 * [ VMUL ] [ SADD ]
2170 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2171 *
2172 * Verify that there are no ordering dependencies here.
2173 *
2174 * TODO: Allow for parallelism!!!
2175 */
2176
2177 /* Pick a unit for it if it doesn't force a particular unit */
2178
2179 int unit = ains->unit;
2180
2181 if (!unit) {
2182 int op = ains->alu.op;
2183 int units = alu_opcode_props[op];
2184
2185 /* TODO: Promotion of scalars to vectors */
2186 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2187
2188 if (!vector)
2189 assert(units & UNITS_SCALAR);
2190
2191 if (vector) {
2192 if (last_unit >= UNIT_VADD) {
2193 if (units & UNIT_VLUT)
2194 unit = UNIT_VLUT;
2195 else
2196 break;
2197 } else {
2198 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2199 unit = UNIT_VMUL;
2200 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2201 unit = UNIT_VADD;
2202 else if (units & UNIT_VLUT)
2203 unit = UNIT_VLUT;
2204 else
2205 break;
2206 }
2207 } else {
2208 if (last_unit >= UNIT_VADD) {
2209 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2210 unit = UNIT_SMUL;
2211 else if (units & UNIT_VLUT)
2212 unit = UNIT_VLUT;
2213 else
2214 break;
2215 } else {
2216 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2217 unit = UNIT_SADD;
2218 else if (units & UNIT_SMUL)
2219 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2220 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2221 unit = UNIT_VADD;
2222 else
2223 break;
2224 }
2225 }
2226
2227 assert(unit & units);
2228 }
2229
2230 /* Late unit check, this time for encoding (not parallelism) */
2231 if (unit <= last_unit) break;
2232
2233 /* Clear the segment */
2234 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2235 segment_size = 0;
2236
2237 if (midgard_has_hazard(segment, segment_size, ains))
2238 break;
2239
2240 /* We're good to go -- emit the instruction */
2241 ains->unit = unit;
2242
2243 segment[segment_size++] = ains;
2244
2245 /* Only one set of embedded constants per
2246 * bundle possible; if we have more, we must
2247 * break the chain early, unfortunately */
2248
2249 if (ains->has_constants) {
2250 if (bundle.has_embedded_constants) {
2251 /* ...but if there are already
2252 * constants but these are the
2253 * *same* constants, we let it
2254 * through */
2255
2256 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2257 break;
2258 } else {
2259 bundle.has_embedded_constants = true;
2260 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2261
2262 /* If this is a blend shader special constant, track it for patching */
2263 if (ains->has_blend_constant)
2264 bundle.has_blend_constant = true;
2265 }
2266 }
2267
2268 if (ains->unit & UNITS_ANY_VECTOR) {
2269 emit_binary_vector_instruction(ains, bundle.register_words,
2270 &bundle.register_words_count, bundle.body_words,
2271 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2272 } else if (ains->compact_branch) {
2273 /* All of r0 has to be written out
2274 * along with the branch writeout.
2275 * (slow!) */
2276
2277 if (ains->writeout) {
2278 if (index == 0) {
2279 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2280 ins.unit = UNIT_VMUL;
2281
2282 control |= ins.unit;
2283
2284 emit_binary_vector_instruction(&ins, bundle.register_words,
2285 &bundle.register_words_count, bundle.body_words,
2286 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2287 } else {
2288 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2289 bool written_late = false;
2290 bool components[4] = { 0 };
2291 uint16_t register_dep_mask = 0;
2292 uint16_t written_mask = 0;
2293
2294 midgard_instruction *qins = ins;
2295 for (int t = 0; t < index; ++t) {
2296 if (qins->registers.out_reg != 0) {
2297 /* Mark down writes */
2298
2299 written_mask |= (1 << qins->registers.out_reg);
2300 } else {
2301 /* Mark down the register dependencies for errata check */
2302
2303 if (qins->registers.src1_reg < 16)
2304 register_dep_mask |= (1 << qins->registers.src1_reg);
2305
2306 if (qins->registers.src2_reg < 16)
2307 register_dep_mask |= (1 << qins->registers.src2_reg);
2308
2309 int mask = qins->alu.mask;
2310
2311 for (int c = 0; c < 4; ++c)
2312 if (mask & (0x3 << (2 * c)))
2313 components[c] = true;
2314
2315 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2316
2317 if (qins->unit == UNIT_VLUT)
2318 written_late = true;
2319 }
2320
2321 /* Advance instruction pointer */
2322 qins = mir_next_op(qins);
2323 }
2324
2325
2326 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2327 if (register_dep_mask & written_mask) {
2328 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2329 break;
2330 }
2331
2332 if (written_late)
2333 break;
2334
2335 /* If even a single component is not written, break it up (conservative check). */
2336 bool breakup = false;
2337
2338 for (int c = 0; c < 4; ++c)
2339 if (!components[c])
2340 breakup = true;
2341
2342 if (breakup)
2343 break;
2344
2345 /* Otherwise, we're free to proceed */
2346 }
2347 }
2348
2349 if (ains->unit == ALU_ENAB_BRANCH) {
2350 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2351 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2352 bytes_emitted += sizeof(midgard_branch_extended);
2353 } else {
2354 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2355 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2356 bytes_emitted += sizeof(ains->br_compact);
2357 }
2358 } else {
2359 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2360 bytes_emitted += sizeof(midgard_reg_info);
2361
2362 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2363 bundle.body_words_count++;
2364 bytes_emitted += sizeof(midgard_scalar_alu);
2365 }
2366
2367 /* Defer marking until after writing to allow for break */
2368 control |= ains->unit;
2369 last_unit = ains->unit;
2370 ++instructions_emitted;
2371 ++index;
2372 }
2373
2374 /* Bubble up the number of instructions for skipping */
2375 instructions_consumed = index - 1;
2376
2377 int padding = 0;
2378
2379 /* Pad ALU op to nearest word */
2380
2381 if (bytes_emitted & 15) {
2382 padding = 16 - (bytes_emitted & 15);
2383 bytes_emitted += padding;
2384 }
2385
2386 /* Constants must always be quadwords */
2387 if (bundle.has_embedded_constants)
2388 bytes_emitted += 16;
2389
2390 /* Size ALU instruction for tag */
2391 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2392 bundle.padding = padding;
2393 bundle.control = bundle.tag | control;
2394
2395 break;
2396 }
2397
2398 case TAG_LOAD_STORE_4: {
2399 /* Load store instructions have two words at once. If
2400 * we only have one queued up, we need to NOP pad.
2401 * Otherwise, we store both in succession to save space
2402 * and cycles -- letting them go in parallel -- skip
2403 * the next. The usefulness of this optimisation is
2404 * greatly dependent on the quality of the instruction
2405 * scheduler.
2406 */
2407
2408 midgard_instruction *next_op = mir_next_op(ins);
2409
2410 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2411 /* As the two operate concurrently, make sure
2412 * they are not dependent */
2413
2414 if (can_run_concurrent_ssa(ins, next_op) || true) {
2415 /* Skip ahead, since it's redundant with the pair */
2416 instructions_consumed = 1 + (instructions_emitted++);
2417 }
2418 }
2419
2420 break;
2421 }
2422
2423 default:
2424 /* Texture ops default to single-op-per-bundle scheduling */
2425 break;
2426 }
2427
2428 /* Copy the instructions into the bundle */
2429 bundle.instruction_count = instructions_emitted + 1;
2430
2431 int used_idx = 0;
2432
2433 midgard_instruction *uins = ins;
2434 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2435 bundle.instructions[used_idx++] = *uins;
2436 uins = mir_next_op(uins);
2437 }
2438
2439 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2440
2441 return bundle;
2442 }
2443
2444 static int
2445 quadword_size(int tag)
2446 {
2447 switch (tag) {
2448 case TAG_ALU_4:
2449 return 1;
2450
2451 case TAG_ALU_8:
2452 return 2;
2453
2454 case TAG_ALU_12:
2455 return 3;
2456
2457 case TAG_ALU_16:
2458 return 4;
2459
2460 case TAG_LOAD_STORE_4:
2461 return 1;
2462
2463 case TAG_TEXTURE_4:
2464 return 1;
2465
2466 default:
2467 assert(0);
2468 return 0;
2469 }
2470 }
2471
2472 /* Schedule a single block by iterating its instruction to create bundles.
2473 * While we go, tally about the bundle sizes to compute the block size. */
2474
2475 static void
2476 schedule_block(compiler_context *ctx, midgard_block *block)
2477 {
2478 util_dynarray_init(&block->bundles, NULL);
2479
2480 block->quadword_count = 0;
2481
2482 mir_foreach_instr_in_block(block, ins) {
2483 int skip;
2484 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2485 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2486
2487 if (bundle.has_blend_constant) {
2488 /* TODO: Multiblock? */
2489 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2490 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2491 }
2492
2493 while(skip--)
2494 ins = mir_next_op(ins);
2495
2496 block->quadword_count += quadword_size(bundle.tag);
2497 }
2498
2499 block->is_scheduled = true;
2500 }
2501
2502 static void
2503 schedule_program(compiler_context *ctx)
2504 {
2505 allocate_registers(ctx);
2506
2507 mir_foreach_block(ctx, block) {
2508 schedule_block(ctx, block);
2509 }
2510 }
2511
2512 /* After everything is scheduled, emit whole bundles at a time */
2513
2514 static void
2515 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2516 {
2517 int lookahead = next_tag << 4;
2518
2519 switch (bundle->tag) {
2520 case TAG_ALU_4:
2521 case TAG_ALU_8:
2522 case TAG_ALU_12:
2523 case TAG_ALU_16: {
2524 /* Actually emit each component */
2525 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2526
2527 for (int i = 0; i < bundle->register_words_count; ++i)
2528 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2529
2530 /* Emit body words based on the instructions bundled */
2531 for (int i = 0; i < bundle->instruction_count; ++i) {
2532 midgard_instruction *ins = &bundle->instructions[i];
2533
2534 if (ins->unit & UNITS_ANY_VECTOR) {
2535 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2536 } else if (ins->compact_branch) {
2537 /* Dummy move, XXX DRY */
2538 if ((i == 0) && ins->writeout) {
2539 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2540 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2541 }
2542
2543 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2544 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2545 } else {
2546 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2547 }
2548 } else {
2549 /* Scalar */
2550 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2551 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2552 }
2553 }
2554
2555 /* Emit padding (all zero) */
2556 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2557
2558 /* Tack on constants */
2559
2560 if (bundle->has_embedded_constants) {
2561 util_dynarray_append(emission, float, bundle->constants[0]);
2562 util_dynarray_append(emission, float, bundle->constants[1]);
2563 util_dynarray_append(emission, float, bundle->constants[2]);
2564 util_dynarray_append(emission, float, bundle->constants[3]);
2565 }
2566
2567 break;
2568 }
2569
2570 case TAG_LOAD_STORE_4: {
2571 /* One or two composing instructions */
2572
2573 uint64_t current64, next64 = LDST_NOP;
2574
2575 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2576
2577 if (bundle->instruction_count == 2)
2578 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2579
2580 midgard_load_store instruction = {
2581 .type = bundle->tag,
2582 .next_type = next_tag,
2583 .word1 = current64,
2584 .word2 = next64
2585 };
2586
2587 util_dynarray_append(emission, midgard_load_store, instruction);
2588
2589 break;
2590 }
2591
2592 case TAG_TEXTURE_4: {
2593 /* Texture instructions are easy, since there is no
2594 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2595
2596 midgard_instruction *ins = &bundle->instructions[0];
2597
2598 ins->texture.type = TAG_TEXTURE_4;
2599 ins->texture.next_type = next_tag;
2600
2601 ctx->texture_op_count--;
2602
2603 if (!ctx->texture_op_count) {
2604 ins->texture.cont = 0;
2605 ins->texture.last = 1;
2606 }
2607
2608 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2609 break;
2610 }
2611
2612 default:
2613 DBG("Unknown midgard instruction type\n");
2614 assert(0);
2615 break;
2616 }
2617 }
2618
2619
2620 /* ALU instructions can inline or embed constants, which decreases register
2621 * pressure and saves space. */
2622
2623 #define CONDITIONAL_ATTACH(src) { \
2624 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2625 \
2626 if (entry) { \
2627 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2628 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2629 } \
2630 }
2631
2632 static void
2633 inline_alu_constants(compiler_context *ctx)
2634 {
2635 mir_foreach_instr(ctx, alu) {
2636 /* Other instructions cannot inline constants */
2637 if (alu->type != TAG_ALU_4) continue;
2638
2639 /* If there is already a constant here, we can do nothing */
2640 if (alu->has_constants) continue;
2641
2642 CONDITIONAL_ATTACH(src0);
2643
2644 if (!alu->has_constants) {
2645 CONDITIONAL_ATTACH(src1)
2646 } else if (!alu->inline_constant) {
2647 /* Corner case: _two_ vec4 constants, for instance with a
2648 * csel. For this case, we can only use a constant
2649 * register for one, we'll have to emit a move for the
2650 * other. Note, if both arguments are constants, then
2651 * necessarily neither argument depends on the value of
2652 * any particular register. As the destination register
2653 * will be wiped, that means we can spill the constant
2654 * to the destination register.
2655 */
2656
2657 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2658 unsigned scratch = alu->ssa_args.dest;
2659
2660 if (entry) {
2661 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2662 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2663
2664 /* Force a break XXX Defer r31 writes */
2665 ins.unit = UNIT_VLUT;
2666
2667 /* Set the source */
2668 alu->ssa_args.src1 = scratch;
2669
2670 /* Inject us -before- the last instruction which set r31 */
2671 mir_insert_instruction_before(mir_prev_op(alu), ins);
2672 }
2673 }
2674 }
2675 }
2676
2677 /* Midgard supports two types of constants, embedded constants (128-bit) and
2678 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2679 * constants can be demoted to inline constants, for space savings and
2680 * sometimes a performance boost */
2681
2682 static void
2683 embedded_to_inline_constant(compiler_context *ctx)
2684 {
2685 mir_foreach_instr(ctx, ins) {
2686 if (!ins->has_constants) continue;
2687
2688 if (ins->ssa_args.inline_constant) continue;
2689
2690 /* Blend constants must not be inlined by definition */
2691 if (ins->has_blend_constant) continue;
2692
2693 /* src1 cannot be an inline constant due to encoding
2694 * restrictions. So, if possible we try to flip the arguments
2695 * in that case */
2696
2697 int op = ins->alu.op;
2698
2699 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2700 /* Flip based on op. Fallthrough intentional */
2701
2702 switch (op) {
2703 /* These ops require an operational change to flip their arguments TODO */
2704 case midgard_alu_op_flt:
2705 case midgard_alu_op_fle:
2706 case midgard_alu_op_ilt:
2707 case midgard_alu_op_ile:
2708 case midgard_alu_op_fcsel:
2709 case midgard_alu_op_icsel:
2710 case midgard_alu_op_isub:
2711 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2712 break;
2713
2714 /* These ops are commutative and Just Flip */
2715 case midgard_alu_op_fne:
2716 case midgard_alu_op_fadd:
2717 case midgard_alu_op_fmul:
2718 case midgard_alu_op_fmin:
2719 case midgard_alu_op_fmax:
2720 case midgard_alu_op_iadd:
2721 case midgard_alu_op_imul:
2722 case midgard_alu_op_feq:
2723 case midgard_alu_op_ieq:
2724 case midgard_alu_op_ine:
2725 case midgard_alu_op_iand:
2726 case midgard_alu_op_ior:
2727 case midgard_alu_op_ixor:
2728 /* Flip the SSA numbers */
2729 ins->ssa_args.src0 = ins->ssa_args.src1;
2730 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2731
2732 /* And flip the modifiers */
2733
2734 unsigned src_temp;
2735
2736 src_temp = ins->alu.src2;
2737 ins->alu.src2 = ins->alu.src1;
2738 ins->alu.src1 = src_temp;
2739
2740 default:
2741 break;
2742 }
2743 }
2744
2745 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2746 /* Extract the source information */
2747
2748 midgard_vector_alu_src *src;
2749 int q = ins->alu.src2;
2750 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2751 src = m;
2752
2753 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2754 int component = src->swizzle & 3;
2755
2756 /* Scale constant appropriately, if we can legally */
2757 uint16_t scaled_constant = 0;
2758
2759 /* XXX: Check legality */
2760 if (midgard_is_integer_op(op)) {
2761 /* TODO: Inline integer */
2762 continue;
2763
2764 unsigned int *iconstants = (unsigned int *) ins->constants;
2765 scaled_constant = (uint16_t) iconstants[component];
2766
2767 /* Constant overflow after resize */
2768 if (scaled_constant != iconstants[component])
2769 continue;
2770 } else {
2771 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2772 }
2773
2774 /* We don't know how to handle these with a constant */
2775
2776 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2777 DBG("Bailing inline constant...\n");
2778 continue;
2779 }
2780
2781 /* Make sure that the constant is not itself a
2782 * vector by checking if all accessed values
2783 * (by the swizzle) are the same. */
2784
2785 uint32_t *cons = (uint32_t *) ins->constants;
2786 uint32_t value = cons[component];
2787
2788 bool is_vector = false;
2789 unsigned mask = effective_writemask(&ins->alu);
2790
2791 for (int c = 1; c < 4; ++c) {
2792 /* We only care if this component is actually used */
2793 if (!(mask & (1 << c)))
2794 continue;
2795
2796 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2797
2798 if (test != value) {
2799 is_vector = true;
2800 break;
2801 }
2802 }
2803
2804 if (is_vector)
2805 continue;
2806
2807 /* Get rid of the embedded constant */
2808 ins->has_constants = false;
2809 ins->ssa_args.src1 = SSA_UNUSED_0;
2810 ins->ssa_args.inline_constant = true;
2811 ins->inline_constant = scaled_constant;
2812 }
2813 }
2814 }
2815
2816 /* Map normal SSA sources to other SSA sources / fixed registers (like
2817 * uniforms) */
2818
2819 static void
2820 map_ssa_to_alias(compiler_context *ctx, int *ref)
2821 {
2822 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2823
2824 if (alias) {
2825 /* Remove entry in leftovers to avoid a redunant fmov */
2826
2827 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2828
2829 if (leftover)
2830 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2831
2832 /* Assign the alias map */
2833 *ref = alias - 1;
2834 return;
2835 }
2836 }
2837
2838 #define AS_SRC(to, u) \
2839 int q##to = ins->alu.src2; \
2840 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2841
2842 /* Removing unused moves is necessary to clean up the texture pipeline results.
2843 *
2844 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2845
2846 static void
2847 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2848 {
2849 mir_foreach_instr_in_block_safe(block, ins) {
2850 if (ins->type != TAG_ALU_4) continue;
2851
2852 if (ins->alu.op != midgard_alu_op_fmov) continue;
2853
2854 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2855
2856 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2857
2858 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2859
2860 mir_remove_instruction(ins);
2861 }
2862 }
2863
2864 /* The following passes reorder MIR instructions to enable better scheduling */
2865
2866 static void
2867 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2868 {
2869 mir_foreach_instr_in_block_safe(block, ins) {
2870 if (ins->type != TAG_LOAD_STORE_4) continue;
2871
2872 /* We've found a load/store op. Check if next is also load/store. */
2873 midgard_instruction *next_op = mir_next_op(ins);
2874 if (&next_op->link != &block->instructions) {
2875 if (next_op->type == TAG_LOAD_STORE_4) {
2876 /* If so, we're done since we're a pair */
2877 ins = mir_next_op(ins);
2878 continue;
2879 }
2880
2881 /* Maximum search distance to pair, to avoid register pressure disasters */
2882 int search_distance = 8;
2883
2884 /* Otherwise, we have an orphaned load/store -- search for another load */
2885 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2886 /* Terminate search if necessary */
2887 if (!(search_distance--)) break;
2888
2889 if (c->type != TAG_LOAD_STORE_4) continue;
2890
2891 if (OP_IS_STORE(c->load_store.op)) continue;
2892
2893 /* We found one! Move it up to pair and remove it from the old location */
2894
2895 mir_insert_instruction_before(ins, *c);
2896 mir_remove_instruction(c);
2897
2898 break;
2899 }
2900 }
2901 }
2902 }
2903
2904 /* Emit varying stores late */
2905
2906 static void
2907 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2908 /* Iterate in reverse to get the final write, rather than the first */
2909
2910 mir_foreach_instr_in_block_safe_rev(block, ins) {
2911 /* Check if what we just wrote needs a store */
2912 int idx = ins->ssa_args.dest;
2913 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2914
2915 if (!varying) continue;
2916
2917 varying -= 1;
2918
2919 /* We need to store to the appropriate varying, so emit the
2920 * move/store */
2921
2922 /* TODO: Integrate with special purpose RA (and scheduler?) */
2923 bool high_varying_register = false;
2924
2925 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2926
2927 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2928 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2929
2930 mir_insert_instruction_before(mir_next_op(ins), st);
2931 mir_insert_instruction_before(mir_next_op(ins), mov);
2932
2933 /* We no longer need to store this varying */
2934 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2935 }
2936 }
2937
2938 /* If there are leftovers after the below pass, emit actual fmov
2939 * instructions for the slow-but-correct path */
2940
2941 static void
2942 emit_leftover_move(compiler_context *ctx)
2943 {
2944 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2945 int base = ((uintptr_t) leftover->key) - 1;
2946 int mapped = base;
2947
2948 map_ssa_to_alias(ctx, &mapped);
2949 EMIT(fmov, mapped, blank_alu_src, base);
2950 }
2951 }
2952
2953 static void
2954 actualise_ssa_to_alias(compiler_context *ctx)
2955 {
2956 mir_foreach_instr(ctx, ins) {
2957 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2958 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2959 }
2960
2961 emit_leftover_move(ctx);
2962 }
2963
2964 /* Vertex shaders do not write gl_Position as is; instead, they write a
2965 * transformed screen space position as a varying. See section 12.5 "Coordinate
2966 * Transformation" of the ES 3.2 full specification for details.
2967 *
2968 * This transformation occurs early on, as NIR and prior to optimisation, in
2969 * order to take advantage of NIR optimisation passes of the transform itself.
2970 * */
2971
2972 static void
2973 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2974 {
2975 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2976
2977 /* Get viewport from the uniforms */
2978 nir_intrinsic_instr *load;
2979 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2980 load->num_components = 4;
2981 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2982 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2983 nir_builder_instr_insert(b, &load->instr);
2984
2985 /* Formatted as <width, height, centerx, centery> */
2986 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2987 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2988 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2989 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2990
2991 /* XXX: From uniforms? */
2992 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2993 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2994
2995 /* World space to normalised device coordinates */
2996
2997 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2998 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2999
3000 /* Normalised device coordinates to screen space */
3001
3002 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3003 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3004
3005 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3006 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3007 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3008
3009 /* gl_Position will be written out in screenspace xyz, with w set to
3010 * the reciprocal we computed earlier. The transformed w component is
3011 * then used for perspective-correct varying interpolation. The
3012 * transformed w component must preserve its original sign; this is
3013 * used in depth clipping computations */
3014
3015 nir_ssa_def *screen_space = nir_vec4(b,
3016 nir_channel(b, viewport_xy, 0),
3017 nir_channel(b, viewport_xy, 1),
3018 screen_depth,
3019 w_recip);
3020
3021 /* Finally, write out the transformed values to the varying */
3022
3023 nir_intrinsic_instr *store;
3024 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3025 store->num_components = 4;
3026 nir_intrinsic_set_base(store, 0);
3027 nir_intrinsic_set_write_mask(store, 0xf);
3028 store->src[0].ssa = screen_space;
3029 store->src[0].is_ssa = true;
3030 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3031 nir_builder_instr_insert(b, &store->instr);
3032 }
3033
3034 static void
3035 transform_position_writes(nir_shader *shader)
3036 {
3037 nir_foreach_function(func, shader) {
3038 nir_foreach_block(block, func->impl) {
3039 nir_foreach_instr_safe(instr, block) {
3040 if (instr->type != nir_instr_type_intrinsic) continue;
3041
3042 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3043 nir_variable *out = NULL;
3044
3045 switch (intr->intrinsic) {
3046 case nir_intrinsic_store_output:
3047 /* already had i/o lowered.. lookup the matching output var: */
3048 nir_foreach_variable(var, &shader->outputs) {
3049 int drvloc = var->data.driver_location;
3050
3051 if (nir_intrinsic_base(intr) == drvloc) {
3052 out = var;
3053 break;
3054 }
3055 }
3056
3057 break;
3058
3059 default:
3060 break;
3061 }
3062
3063 if (!out) continue;
3064
3065 if (out->data.mode != nir_var_shader_out)
3066 continue;
3067
3068 if (out->data.location != VARYING_SLOT_POS)
3069 continue;
3070
3071 nir_builder b;
3072 nir_builder_init(&b, func->impl);
3073 b.cursor = nir_before_instr(instr);
3074
3075 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3076 nir_instr_remove(instr);
3077 }
3078 }
3079 }
3080 }
3081
3082 static void
3083 emit_fragment_epilogue(compiler_context *ctx)
3084 {
3085 /* Special case: writing out constants requires us to include the move
3086 * explicitly now, so shove it into r0 */
3087
3088 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3089
3090 if (constant_value) {
3091 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3092 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3093 emit_mir_instruction(ctx, ins);
3094 }
3095
3096 /* Perform the actual fragment writeout. We have two writeout/branch
3097 * instructions, forming a loop until writeout is successful as per the
3098 * docs. TODO: gl_FragDepth */
3099
3100 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3101 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3102 }
3103
3104 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3105 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3106 * with the int8 analogue to the fragment epilogue */
3107
3108 static void
3109 emit_blend_epilogue(compiler_context *ctx)
3110 {
3111 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3112
3113 midgard_instruction scale = {
3114 .type = TAG_ALU_4,
3115 .unit = UNIT_VMUL,
3116 .inline_constant = _mesa_float_to_half(255.0),
3117 .ssa_args = {
3118 .src0 = SSA_FIXED_REGISTER(0),
3119 .src1 = SSA_UNUSED_0,
3120 .dest = SSA_FIXED_REGISTER(24),
3121 .inline_constant = true
3122 },
3123 .alu = {
3124 .op = midgard_alu_op_fmul,
3125 .reg_mode = midgard_reg_mode_full,
3126 .dest_override = midgard_dest_override_lower,
3127 .mask = 0xFF,
3128 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3129 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3130 }
3131 };
3132
3133 emit_mir_instruction(ctx, scale);
3134
3135 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3136
3137 midgard_vector_alu_src alu_src = blank_alu_src;
3138 alu_src.half = true;
3139
3140 midgard_instruction f2u8 = {
3141 .type = TAG_ALU_4,
3142 .ssa_args = {
3143 .src0 = SSA_FIXED_REGISTER(24),
3144 .src1 = SSA_UNUSED_0,
3145 .dest = SSA_FIXED_REGISTER(0),
3146 .inline_constant = true
3147 },
3148 .alu = {
3149 .op = midgard_alu_op_f2u8,
3150 .reg_mode = midgard_reg_mode_half,
3151 .dest_override = midgard_dest_override_lower,
3152 .outmod = midgard_outmod_pos,
3153 .mask = 0xF,
3154 .src1 = vector_alu_srco_unsigned(alu_src),
3155 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3156 }
3157 };
3158
3159 emit_mir_instruction(ctx, f2u8);
3160
3161 /* vmul.imov.quarter r0, r0, r0 */
3162
3163 midgard_instruction imov_8 = {
3164 .type = TAG_ALU_4,
3165 .ssa_args = {
3166 .src0 = SSA_UNUSED_1,
3167 .src1 = SSA_FIXED_REGISTER(0),
3168 .dest = SSA_FIXED_REGISTER(0),
3169 },
3170 .alu = {
3171 .op = midgard_alu_op_imov,
3172 .reg_mode = midgard_reg_mode_quarter,
3173 .dest_override = midgard_dest_override_none,
3174 .mask = 0xFF,
3175 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3176 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3177 }
3178 };
3179
3180 /* Emit branch epilogue with the 8-bit move as the source */
3181
3182 emit_mir_instruction(ctx, imov_8);
3183 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3184
3185 emit_mir_instruction(ctx, imov_8);
3186 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3187 }
3188
3189 static midgard_block *
3190 emit_block(compiler_context *ctx, nir_block *block)
3191 {
3192 midgard_block *this_block = malloc(sizeof(midgard_block));
3193 list_addtail(&this_block->link, &ctx->blocks);
3194
3195 this_block->is_scheduled = false;
3196 ++ctx->block_count;
3197
3198 ctx->texture_index[0] = -1;
3199 ctx->texture_index[1] = -1;
3200
3201 /* Set up current block */
3202 list_inithead(&this_block->instructions);
3203 ctx->current_block = this_block;
3204
3205 nir_foreach_instr(instr, block) {
3206 emit_instr(ctx, instr);
3207 ++ctx->instruction_count;
3208 }
3209
3210 inline_alu_constants(ctx);
3211 embedded_to_inline_constant(ctx);
3212
3213 /* Perform heavylifting for aliasing */
3214 actualise_ssa_to_alias(ctx);
3215
3216 midgard_emit_store(ctx, this_block);
3217 midgard_eliminate_orphan_moves(ctx, this_block);
3218 midgard_pair_load_store(ctx, this_block);
3219
3220 /* Append fragment shader epilogue (value writeout) */
3221 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3222 if (block == nir_impl_last_block(ctx->func->impl)) {
3223 if (ctx->is_blend)
3224 emit_blend_epilogue(ctx);
3225 else
3226 emit_fragment_epilogue(ctx);
3227 }
3228 }
3229
3230 /* Fallthrough save */
3231 this_block->next_fallthrough = ctx->previous_source_block;
3232
3233 if (block == nir_start_block(ctx->func->impl))
3234 ctx->initial_block = this_block;
3235
3236 if (block == nir_impl_last_block(ctx->func->impl))
3237 ctx->final_block = this_block;
3238
3239 /* Allow the next control flow to access us retroactively, for
3240 * branching etc */
3241 ctx->current_block = this_block;
3242
3243 /* Document the fallthrough chain */
3244 ctx->previous_source_block = this_block;
3245
3246 return this_block;
3247 }
3248
3249 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3250
3251 static void
3252 emit_if(struct compiler_context *ctx, nir_if *nif)
3253 {
3254 /* Conditional branches expect the condition in r31.w; emit a move for
3255 * that in the _previous_ block (which is the current block). */
3256 emit_condition(ctx, &nif->condition, true);
3257
3258 /* Speculatively emit the branch, but we can't fill it in until later */
3259 EMIT(branch, true, true);
3260 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3261
3262 /* Emit the two subblocks */
3263 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3264
3265 /* Emit a jump from the end of the then block to the end of the else */
3266 EMIT(branch, false, false);
3267 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3268
3269 /* Emit second block, and check if it's empty */
3270
3271 int else_idx = ctx->block_count;
3272 int count_in = ctx->instruction_count;
3273 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3274 int after_else_idx = ctx->block_count;
3275
3276 /* Now that we have the subblocks emitted, fix up the branches */
3277
3278 assert(then_block);
3279 assert(else_block);
3280
3281 if (ctx->instruction_count == count_in) {
3282 /* The else block is empty, so don't emit an exit jump */
3283 mir_remove_instruction(then_exit);
3284 then_branch->branch.target_block = after_else_idx;
3285 } else {
3286 then_branch->branch.target_block = else_idx;
3287 then_exit->branch.target_block = after_else_idx;
3288 }
3289 }
3290
3291 static void
3292 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3293 {
3294 /* Remember where we are */
3295 midgard_block *start_block = ctx->current_block;
3296
3297 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3298 * single current_loop variable, maybe we need a stack */
3299
3300 int loop_idx = ++ctx->current_loop;
3301
3302 /* Get index from before the body so we can loop back later */
3303 int start_idx = ctx->block_count;
3304
3305 /* Emit the body itself */
3306 emit_cf_list(ctx, &nloop->body);
3307
3308 /* Branch back to loop back */
3309 struct midgard_instruction br_back = v_branch(false, false);
3310 br_back.branch.target_block = start_idx;
3311 emit_mir_instruction(ctx, br_back);
3312
3313 /* Find the index of the block about to follow us (note: we don't add
3314 * one; blocks are 0-indexed so we get a fencepost problem) */
3315 int break_block_idx = ctx->block_count;
3316
3317 /* Fix up the break statements we emitted to point to the right place,
3318 * now that we can allocate a block number for them */
3319
3320 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3321 if (midgard_debug & MIDGARD_DBG_SHADERS)
3322 print_mir_block(block);
3323 mir_foreach_instr_in_block(block, ins) {
3324 if (ins->type != TAG_ALU_4) continue;
3325 if (!ins->compact_branch) continue;
3326 if (ins->prepacked_branch) continue;
3327
3328 /* We found a branch -- check the type to see if we need to do anything */
3329 if (ins->branch.target_type != TARGET_BREAK) continue;
3330
3331 /* It's a break! Check if it's our break */
3332 if (ins->branch.target_break != loop_idx) continue;
3333
3334 /* Okay, cool, we're breaking out of this loop.
3335 * Rewrite from a break to a goto */
3336
3337 ins->branch.target_type = TARGET_GOTO;
3338 ins->branch.target_block = break_block_idx;
3339 }
3340 }
3341 }
3342
3343 static midgard_block *
3344 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3345 {
3346 midgard_block *start_block = NULL;
3347
3348 foreach_list_typed(nir_cf_node, node, node, list) {
3349 switch (node->type) {
3350 case nir_cf_node_block: {
3351 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3352
3353 if (!start_block)
3354 start_block = block;
3355
3356 break;
3357 }
3358
3359 case nir_cf_node_if:
3360 emit_if(ctx, nir_cf_node_as_if(node));
3361 break;
3362
3363 case nir_cf_node_loop:
3364 emit_loop(ctx, nir_cf_node_as_loop(node));
3365 break;
3366
3367 case nir_cf_node_function:
3368 assert(0);
3369 break;
3370 }
3371 }
3372
3373 return start_block;
3374 }
3375
3376 /* Due to lookahead, we need to report the first tag executed in the command
3377 * stream and in branch targets. An initial block might be empty, so iterate
3378 * until we find one that 'works' */
3379
3380 static unsigned
3381 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3382 {
3383 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3384
3385 unsigned first_tag = 0;
3386
3387 do {
3388 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3389
3390 if (initial_bundle) {
3391 first_tag = initial_bundle->tag;
3392 break;
3393 }
3394
3395 /* Initial block is empty, try the next block */
3396 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3397 } while(initial_block != NULL);
3398
3399 assert(first_tag);
3400 return first_tag;
3401 }
3402
3403 int
3404 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3405 {
3406 struct util_dynarray *compiled = &program->compiled;
3407
3408 midgard_debug = debug_get_option_midgard_debug();
3409
3410 compiler_context ictx = {
3411 .nir = nir,
3412 .stage = nir->info.stage,
3413
3414 .is_blend = is_blend,
3415 .blend_constant_offset = -1,
3416
3417 .alpha_ref = program->alpha_ref
3418 };
3419
3420 compiler_context *ctx = &ictx;
3421
3422 /* TODO: Decide this at runtime */
3423 ctx->uniform_cutoff = 8;
3424
3425 switch (ctx->stage) {
3426 case MESA_SHADER_VERTEX:
3427 ctx->special_uniforms = 1;
3428 break;
3429
3430 default:
3431 ctx->special_uniforms = 0;
3432 break;
3433 }
3434
3435 /* Append epilogue uniforms if necessary. The cmdstream depends on
3436 * these being at the -end-; see assign_var_locations. */
3437
3438 if (ctx->stage == MESA_SHADER_VERTEX) {
3439 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3440 }
3441
3442 /* Assign var locations early, so the epilogue can use them if necessary */
3443
3444 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3445 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3446 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3447
3448 /* Initialize at a global (not block) level hash tables */
3449
3450 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3451 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3452 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3453 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3454 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3455 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3456
3457 /* Assign actual uniform location, skipping over samplers */
3458
3459 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3460
3461 nir_foreach_variable(var, &nir->uniforms) {
3462 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3463
3464 unsigned length = glsl_get_aoa_size(var->type);
3465
3466 if (!length) {
3467 length = glsl_get_length(var->type);
3468 }
3469
3470 if (!length) {
3471 length = glsl_get_matrix_columns(var->type);
3472 }
3473
3474 for (int col = 0; col < length; ++col) {
3475 int id = ctx->uniform_count++;
3476 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3477 }
3478 }
3479
3480 /* Record the varying mapping for the command stream's bookkeeping */
3481
3482 struct exec_list *varyings =
3483 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3484
3485 nir_foreach_variable(var, varyings) {
3486 unsigned loc = var->data.driver_location;
3487 program->varyings[loc] = var->data.location;
3488 }
3489
3490 /* Lower vars -- not I/O -- before epilogue */
3491
3492 NIR_PASS_V(nir, nir_lower_var_copies);
3493 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3494 NIR_PASS_V(nir, nir_split_var_copies);
3495 NIR_PASS_V(nir, nir_lower_var_copies);
3496 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3497 NIR_PASS_V(nir, nir_lower_var_copies);
3498 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3499 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3500
3501 /* Append vertex epilogue before optimisation, so the epilogue itself
3502 * is optimised */
3503
3504 if (ctx->stage == MESA_SHADER_VERTEX)
3505 transform_position_writes(nir);
3506
3507 /* Optimisation passes */
3508
3509 optimise_nir(nir);
3510
3511 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3512 nir_print_shader(nir, stdout);
3513 }
3514
3515 /* Assign counts, now that we're sure (post-optimisation) */
3516 program->uniform_count = nir->num_uniforms;
3517
3518 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3519 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3520
3521
3522 nir_foreach_function(func, nir) {
3523 if (!func->impl)
3524 continue;
3525
3526 list_inithead(&ctx->blocks);
3527 ctx->block_count = 0;
3528 ctx->func = func;
3529
3530 emit_cf_list(ctx, &func->impl->body);
3531 emit_block(ctx, func->impl->end_block);
3532
3533 break; /* TODO: Multi-function shaders */
3534 }
3535
3536 util_dynarray_init(compiled, NULL);
3537
3538 /* Schedule! */
3539 schedule_program(ctx);
3540
3541 /* Now that all the bundles are scheduled and we can calculate block
3542 * sizes, emit actual branch instructions rather than placeholders */
3543
3544 int br_block_idx = 0;
3545
3546 mir_foreach_block(ctx, block) {
3547 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3548 for (int c = 0; c < bundle->instruction_count; ++c) {
3549 midgard_instruction *ins = &bundle->instructions[c];
3550
3551 if (!midgard_is_branch_unit(ins->unit)) continue;
3552
3553 if (ins->prepacked_branch) continue;
3554
3555 /* Parse some basic branch info */
3556 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3557 bool is_conditional = ins->branch.conditional;
3558 bool is_inverted = ins->branch.invert_conditional;
3559 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3560
3561 /* Determine the block we're jumping to */
3562 int target_number = ins->branch.target_block;
3563
3564 /* Report the destination tag. Discards don't need this */
3565 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3566
3567 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3568 int quadword_offset = 0;
3569
3570 if (is_discard) {
3571 /* Jump to the end of the shader. We
3572 * need to include not only the
3573 * following blocks, but also the
3574 * contents of our current block (since
3575 * discard can come in the middle of
3576 * the block) */
3577
3578 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3579
3580 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3581 quadword_offset += quadword_size(bun->tag);
3582 }
3583
3584 mir_foreach_block_from(ctx, blk, b) {
3585 quadword_offset += b->quadword_count;
3586 }
3587
3588 } else if (target_number > br_block_idx) {
3589 /* Jump forward */
3590
3591 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3592 midgard_block *blk = mir_get_block(ctx, idx);
3593 assert(blk);
3594
3595 quadword_offset += blk->quadword_count;
3596 }
3597 } else {
3598 /* Jump backwards */
3599
3600 for (int idx = br_block_idx; idx >= target_number; --idx) {
3601 midgard_block *blk = mir_get_block(ctx, idx);
3602 assert(blk);
3603
3604 quadword_offset -= blk->quadword_count;
3605 }
3606 }
3607
3608 /* Unconditional extended branches (far jumps)
3609 * have issues, so we always use a conditional
3610 * branch, setting the condition to always for
3611 * unconditional. For compact unconditional
3612 * branches, cond isn't used so it doesn't
3613 * matter what we pick. */
3614
3615 midgard_condition cond =
3616 !is_conditional ? midgard_condition_always :
3617 is_inverted ? midgard_condition_false :
3618 midgard_condition_true;
3619
3620 midgard_jmp_writeout_op op =
3621 is_discard ? midgard_jmp_writeout_op_discard :
3622 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3623 midgard_jmp_writeout_op_branch_cond;
3624
3625 if (!is_compact) {
3626 midgard_branch_extended branch =
3627 midgard_create_branch_extended(
3628 cond, op,
3629 dest_tag,
3630 quadword_offset);
3631
3632 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3633 } else if (is_conditional || is_discard) {
3634 midgard_branch_cond branch = {
3635 .op = op,
3636 .dest_tag = dest_tag,
3637 .offset = quadword_offset,
3638 .cond = cond
3639 };
3640
3641 assert(branch.offset == quadword_offset);
3642
3643 memcpy(&ins->br_compact, &branch, sizeof(branch));
3644 } else {
3645 assert(op == midgard_jmp_writeout_op_branch_uncond);
3646
3647 midgard_branch_uncond branch = {
3648 .op = op,
3649 .dest_tag = dest_tag,
3650 .offset = quadword_offset,
3651 .unknown = 1
3652 };
3653
3654 assert(branch.offset == quadword_offset);
3655
3656 memcpy(&ins->br_compact, &branch, sizeof(branch));
3657 }
3658 }
3659 }
3660
3661 ++br_block_idx;
3662 }
3663
3664 /* Emit flat binary from the instruction arrays. Iterate each block in
3665 * sequence. Save instruction boundaries such that lookahead tags can
3666 * be assigned easily */
3667
3668 /* Cache _all_ bundles in source order for lookahead across failed branches */
3669
3670 int bundle_count = 0;
3671 mir_foreach_block(ctx, block) {
3672 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3673 }
3674 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3675 int bundle_idx = 0;
3676 mir_foreach_block(ctx, block) {
3677 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3678 source_order_bundles[bundle_idx++] = bundle;
3679 }
3680 }
3681
3682 int current_bundle = 0;
3683
3684 mir_foreach_block(ctx, block) {
3685 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3686 int lookahead = 1;
3687
3688 if (current_bundle + 1 < bundle_count) {
3689 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3690
3691 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3692 lookahead = 1;
3693 } else {
3694 lookahead = next;
3695 }
3696 }
3697
3698 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3699 ++current_bundle;
3700 }
3701
3702 /* TODO: Free deeper */
3703 //util_dynarray_fini(&block->instructions);
3704 }
3705
3706 free(source_order_bundles);
3707
3708 /* Report the very first tag executed */
3709 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3710
3711 /* Deal with off-by-one related to the fencepost problem */
3712 program->work_register_count = ctx->work_registers + 1;
3713
3714 program->can_discard = ctx->can_discard;
3715 program->uniform_cutoff = ctx->uniform_cutoff;
3716
3717 program->blend_patch_offset = ctx->blend_constant_offset;
3718
3719 if (midgard_debug & MIDGARD_DBG_SHADERS)
3720 disassemble_midgard(program->compiled.data, program->compiled.size);
3721
3722 return 0;
3723 }