panfrost/midgard: Route new blending intrinsics
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 /* When emitting bundle, should this instruction have a break forced
142 * before it? Used for r31 writes which are valid only within a single
143 * bundle and *need* to happen as early as possible... this is a hack,
144 * TODO remove when we have a scheduler */
145 bool precede_break;
146
147 bool has_constants;
148 float constants[4];
149 uint16_t inline_constant;
150 bool has_blend_constant;
151
152 bool compact_branch;
153 bool writeout;
154 bool prepacked_branch;
155
156 union {
157 midgard_load_store_word load_store;
158 midgard_vector_alu alu;
159 midgard_texture_word texture;
160 midgard_branch_extended branch_extended;
161 uint16_t br_compact;
162
163 /* General branch, rather than packed br_compact. Higher level
164 * than the other components */
165 midgard_branch branch;
166 };
167 } midgard_instruction;
168
169 typedef struct midgard_block {
170 /* Link to next block. Must be first for mir_get_block */
171 struct list_head link;
172
173 /* List of midgard_instructions emitted for the current block */
174 struct list_head instructions;
175
176 bool is_scheduled;
177
178 /* List of midgard_bundles emitted (after the scheduler has run) */
179 struct util_dynarray bundles;
180
181 /* Number of quadwords _actually_ emitted, as determined after scheduling */
182 unsigned quadword_count;
183
184 /* Successors: always one forward (the block after us), maybe
185 * one backwards (for a backward branch). No need for a second
186 * forward, since graph traversal would get there eventually
187 * anyway */
188 struct midgard_block *successors[2];
189 unsigned nr_successors;
190
191 /* The successors pointer form a graph, and in the case of
192 * complex control flow, this graph has a cycles. To aid
193 * traversal during liveness analysis, we have a visited?
194 * boolean for passes to use as they see fit, provided they
195 * clean up later */
196 bool visited;
197 } midgard_block;
198
199 static void
200 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
201 {
202 block->successors[block->nr_successors++] = successor;
203 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
204 }
205
206 /* Helpers to generate midgard_instruction's using macro magic, since every
207 * driver seems to do it that way */
208
209 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
210 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
211
212 #define M_LOAD_STORE(name, rname, uname) \
213 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
214 midgard_instruction i = { \
215 .type = TAG_LOAD_STORE_4, \
216 .ssa_args = { \
217 .rname = ssa, \
218 .uname = -1, \
219 .src1 = -1 \
220 }, \
221 .load_store = { \
222 .op = midgard_op_##name, \
223 .mask = 0xF, \
224 .swizzle = SWIZZLE_XYZW, \
225 .address = address \
226 } \
227 }; \
228 \
229 return i; \
230 }
231
232 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
233 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
234
235 const midgard_vector_alu_src blank_alu_src = {
236 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
237 };
238
239 const midgard_vector_alu_src blank_alu_src_xxxx = {
240 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
241 };
242
243 const midgard_scalar_alu_src blank_scalar_alu_src = {
244 .full = true
245 };
246
247 /* Used for encoding the unused source of 1-op instructions */
248 const midgard_vector_alu_src zero_alu_src = { 0 };
249
250 /* Coerce structs to integer */
251
252 static unsigned
253 vector_alu_srco_unsigned(midgard_vector_alu_src src)
254 {
255 unsigned u;
256 memcpy(&u, &src, sizeof(src));
257 return u;
258 }
259
260 static midgard_vector_alu_src
261 vector_alu_from_unsigned(unsigned u)
262 {
263 midgard_vector_alu_src s;
264 memcpy(&s, &u, sizeof(s));
265 return s;
266 }
267
268 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
269 * the corresponding Midgard source */
270
271 static midgard_vector_alu_src
272 vector_alu_modifiers(nir_alu_src *src, bool is_int)
273 {
274 if (!src) return blank_alu_src;
275
276 midgard_vector_alu_src alu_src = {
277 .rep_low = 0,
278 .rep_high = 0,
279 .half = 0, /* TODO */
280 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
281 };
282
283 if (is_int) {
284 /* TODO: sign-extend/zero-extend */
285 alu_src.mod = midgard_int_normal;
286
287 /* These should have been lowered away */
288 assert(!(src->abs || src->negate));
289 } else {
290 alu_src.mod = (src->abs << 0) | (src->negate << 1);
291 }
292
293 return alu_src;
294 }
295
296 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
297
298 static midgard_instruction
299 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
300 {
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .ssa_args = {
304 .src0 = SSA_UNUSED_1,
305 .src1 = src,
306 .dest = dest,
307 },
308 .alu = {
309 .op = midgard_alu_op_fmov,
310 .reg_mode = midgard_reg_mode_32,
311 .dest_override = midgard_dest_override_none,
312 .mask = 0xFF,
313 .src1 = vector_alu_srco_unsigned(zero_alu_src),
314 .src2 = vector_alu_srco_unsigned(mod)
315 },
316 };
317
318 return ins;
319 }
320
321 /* load/store instructions have both 32-bit and 16-bit variants, depending on
322 * whether we are using vectors composed of highp or mediump. At the moment, we
323 * don't support half-floats -- this requires changes in other parts of the
324 * compiler -- therefore the 16-bit versions are commented out. */
325
326 //M_LOAD(ld_attr_16);
327 M_LOAD(ld_attr_32);
328 //M_LOAD(ld_vary_16);
329 M_LOAD(ld_vary_32);
330 //M_LOAD(ld_uniform_16);
331 M_LOAD(ld_uniform_32);
332 M_LOAD(ld_color_buffer_8);
333 //M_STORE(st_vary_16);
334 M_STORE(st_vary_32);
335 M_STORE(st_cubemap_coords);
336
337 static midgard_instruction
338 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
339 {
340 midgard_branch_cond branch = {
341 .op = op,
342 .dest_tag = tag,
343 .offset = offset,
344 .cond = cond
345 };
346
347 uint16_t compact;
348 memcpy(&compact, &branch, sizeof(branch));
349
350 midgard_instruction ins = {
351 .type = TAG_ALU_4,
352 .unit = ALU_ENAB_BR_COMPACT,
353 .prepacked_branch = true,
354 .compact_branch = true,
355 .br_compact = compact
356 };
357
358 if (op == midgard_jmp_writeout_op_writeout)
359 ins.writeout = true;
360
361 return ins;
362 }
363
364 static midgard_instruction
365 v_branch(bool conditional, bool invert)
366 {
367 midgard_instruction ins = {
368 .type = TAG_ALU_4,
369 .unit = ALU_ENAB_BRANCH,
370 .compact_branch = true,
371 .branch = {
372 .conditional = conditional,
373 .invert_conditional = invert
374 }
375 };
376
377 return ins;
378 }
379
380 static midgard_branch_extended
381 midgard_create_branch_extended( midgard_condition cond,
382 midgard_jmp_writeout_op op,
383 unsigned dest_tag,
384 signed quadword_offset)
385 {
386 /* For unclear reasons, the condition code is repeated 8 times */
387 uint16_t duplicated_cond =
388 (cond << 14) |
389 (cond << 12) |
390 (cond << 10) |
391 (cond << 8) |
392 (cond << 6) |
393 (cond << 4) |
394 (cond << 2) |
395 (cond << 0);
396
397 midgard_branch_extended branch = {
398 .op = op,
399 .dest_tag = dest_tag,
400 .offset = quadword_offset,
401 .cond = duplicated_cond
402 };
403
404 return branch;
405 }
406
407 typedef struct midgard_bundle {
408 /* Tag for the overall bundle */
409 int tag;
410
411 /* Instructions contained by the bundle */
412 int instruction_count;
413 midgard_instruction instructions[5];
414
415 /* Bundle-wide ALU configuration */
416 int padding;
417 int control;
418 bool has_embedded_constants;
419 float constants[4];
420 bool has_blend_constant;
421
422 uint16_t register_words[8];
423 int register_words_count;
424
425 uint64_t body_words[8];
426 size_t body_size[8];
427 int body_words_count;
428 } midgard_bundle;
429
430 typedef struct compiler_context {
431 nir_shader *nir;
432 gl_shader_stage stage;
433
434 /* Is internally a blend shader? Depends on stage == FRAGMENT */
435 bool is_blend;
436
437 /* Tracking for blend constant patching */
438 int blend_constant_offset;
439
440 /* Current NIR function */
441 nir_function *func;
442
443 /* Unordered list of midgard_blocks */
444 int block_count;
445 struct list_head blocks;
446
447 midgard_block *initial_block;
448 midgard_block *previous_source_block;
449 midgard_block *final_block;
450
451 /* List of midgard_instructions emitted for the current block */
452 midgard_block *current_block;
453
454 /* The current "depth" of the loop, for disambiguating breaks/continues
455 * when using nested loops */
456 int current_loop_depth;
457
458 /* Constants which have been loaded, for later inlining */
459 struct hash_table_u64 *ssa_constants;
460
461 /* SSA indices to be outputted to corresponding varying offset */
462 struct hash_table_u64 *ssa_varyings;
463
464 /* SSA values / registers which have been aliased. Naively, these
465 * demand a fmov output; instead, we alias them in a later pass to
466 * avoid the wasted op.
467 *
468 * A note on encoding: to avoid dynamic memory management here, rather
469 * than ampping to a pointer, we map to the source index; the key
470 * itself is just the destination index. */
471
472 struct hash_table_u64 *ssa_to_alias;
473 struct set *leftover_ssa_to_alias;
474
475 /* Actual SSA-to-register for RA */
476 struct hash_table_u64 *ssa_to_register;
477
478 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
479 struct hash_table_u64 *hash_to_temp;
480 int temp_count;
481 int max_hash;
482
483 /* Just the count of the max register used. Higher count => higher
484 * register pressure */
485 int work_registers;
486
487 /* Used for cont/last hinting. Increase when a tex op is added.
488 * Decrease when a tex op is removed. */
489 int texture_op_count;
490
491 /* Mapping of texture register -> SSA index for unaliasing */
492 int texture_index[2];
493
494 /* If any path hits a discard instruction */
495 bool can_discard;
496
497 /* The number of uniforms allowable for the fast path */
498 int uniform_cutoff;
499
500 /* Count of instructions emitted from NIR overall, across all blocks */
501 int instruction_count;
502
503 /* Alpha ref value passed in */
504 float alpha_ref;
505
506 /* The index corresponding to the fragment output */
507 unsigned fragment_output;
508
509 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
510 unsigned sysvals[MAX_SYSVAL_COUNT];
511 unsigned sysval_count;
512 struct hash_table_u64 *sysval_to_id;
513 } compiler_context;
514
515 /* Append instruction to end of current block */
516
517 static midgard_instruction *
518 mir_upload_ins(struct midgard_instruction ins)
519 {
520 midgard_instruction *heap = malloc(sizeof(ins));
521 memcpy(heap, &ins, sizeof(ins));
522 return heap;
523 }
524
525 static void
526 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
527 {
528 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
529 }
530
531 static void
532 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
533 {
534 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
535 }
536
537 static void
538 mir_remove_instruction(struct midgard_instruction *ins)
539 {
540 list_del(&ins->link);
541 }
542
543 static midgard_instruction*
544 mir_prev_op(struct midgard_instruction *ins)
545 {
546 return list_last_entry(&(ins->link), midgard_instruction, link);
547 }
548
549 static midgard_instruction*
550 mir_next_op(struct midgard_instruction *ins)
551 {
552 return list_first_entry(&(ins->link), midgard_instruction, link);
553 }
554
555 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
556 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
557
558 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
559 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
560 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
561 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
562 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
563 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
564 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
565
566
567 static midgard_instruction *
568 mir_last_in_block(struct midgard_block *block)
569 {
570 return list_last_entry(&block->instructions, struct midgard_instruction, link);
571 }
572
573 static midgard_block *
574 mir_get_block(compiler_context *ctx, int idx)
575 {
576 struct list_head *lst = &ctx->blocks;
577
578 while ((idx--) + 1)
579 lst = lst->next;
580
581 return (struct midgard_block *) lst;
582 }
583
584 /* Pretty printer for internal Midgard IR */
585
586 static void
587 print_mir_source(int source)
588 {
589 if (source >= SSA_FIXED_MINIMUM) {
590 /* Specific register */
591 int reg = SSA_REG_FROM_FIXED(source);
592
593 /* TODO: Moving threshold */
594 if (reg > 16 && reg < 24)
595 printf("u%d", 23 - reg);
596 else
597 printf("r%d", reg);
598 } else {
599 printf("%d", source);
600 }
601 }
602
603 static void
604 print_mir_instruction(midgard_instruction *ins)
605 {
606 printf("\t");
607
608 switch (ins->type) {
609 case TAG_ALU_4: {
610 midgard_alu_op op = ins->alu.op;
611 const char *name = alu_opcode_props[op].name;
612
613 if (ins->unit)
614 printf("%d.", ins->unit);
615
616 printf("%s", name ? name : "??");
617 break;
618 }
619
620 case TAG_LOAD_STORE_4: {
621 midgard_load_store_op op = ins->load_store.op;
622 const char *name = load_store_opcode_names[op];
623
624 assert(name);
625 printf("%s", name);
626 break;
627 }
628
629 case TAG_TEXTURE_4: {
630 printf("texture");
631 break;
632 }
633
634 default:
635 assert(0);
636 }
637
638 ssa_args *args = &ins->ssa_args;
639
640 printf(" %d, ", args->dest);
641
642 print_mir_source(args->src0);
643 printf(", ");
644
645 if (args->inline_constant)
646 printf("#%d", ins->inline_constant);
647 else
648 print_mir_source(args->src1);
649
650 if (ins->has_constants)
651 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
652
653 printf("\n");
654 }
655
656 static void
657 print_mir_block(midgard_block *block)
658 {
659 printf("{\n");
660
661 mir_foreach_instr_in_block(block, ins) {
662 print_mir_instruction(ins);
663 }
664
665 printf("}\n");
666 }
667
668 static void
669 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
670 {
671 ins->has_constants = true;
672 memcpy(&ins->constants, constants, 16);
673 }
674
675 static int
676 glsl_type_size(const struct glsl_type *type, bool bindless)
677 {
678 return glsl_count_attribute_slots(type, false);
679 }
680
681 /* Lower fdot2 to a vector multiplication followed by channel addition */
682 static void
683 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
684 {
685 if (alu->op != nir_op_fdot2)
686 return;
687
688 b->cursor = nir_before_instr(&alu->instr);
689
690 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
691 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
692
693 nir_ssa_def *product = nir_fmul(b, src0, src1);
694
695 nir_ssa_def *sum = nir_fadd(b,
696 nir_channel(b, product, 0),
697 nir_channel(b, product, 1));
698
699 /* Replace the fdot2 with this sum */
700 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
701 }
702
703 static int
704 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
705 {
706 switch (instr->intrinsic) {
707 case nir_intrinsic_load_viewport_scale:
708 return PAN_SYSVAL_VIEWPORT_SCALE;
709 case nir_intrinsic_load_viewport_offset:
710 return PAN_SYSVAL_VIEWPORT_OFFSET;
711 default:
712 return -1;
713 }
714 }
715
716 static void
717 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
718 {
719 int sysval = -1;
720
721 if (instr->type == nir_instr_type_intrinsic) {
722 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
723 sysval = midgard_nir_sysval_for_intrinsic(intr);
724 }
725
726 if (sysval < 0)
727 return;
728
729 /* We have a sysval load; check if it's already been assigned */
730
731 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
732 return;
733
734 /* It hasn't -- so assign it now! */
735
736 unsigned id = ctx->sysval_count++;
737 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
738 ctx->sysvals[id] = sysval;
739 }
740
741 static void
742 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
743 {
744 ctx->sysval_count = 0;
745
746 nir_foreach_function(function, shader) {
747 if (!function->impl) continue;
748
749 nir_foreach_block(block, function->impl) {
750 nir_foreach_instr_safe(instr, block) {
751 midgard_nir_assign_sysval_body(ctx, instr);
752 }
753 }
754 }
755 }
756
757 static bool
758 midgard_nir_lower_fdot2(nir_shader *shader)
759 {
760 bool progress = false;
761
762 nir_foreach_function(function, shader) {
763 if (!function->impl) continue;
764
765 nir_builder _b;
766 nir_builder *b = &_b;
767 nir_builder_init(b, function->impl);
768
769 nir_foreach_block(block, function->impl) {
770 nir_foreach_instr_safe(instr, block) {
771 if (instr->type != nir_instr_type_alu) continue;
772
773 nir_alu_instr *alu = nir_instr_as_alu(instr);
774 midgard_nir_lower_fdot2_body(b, alu);
775
776 progress |= true;
777 }
778 }
779
780 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
781
782 }
783
784 return progress;
785 }
786
787 static void
788 optimise_nir(nir_shader *nir)
789 {
790 bool progress;
791 unsigned lower_flrp =
792 (nir->options->lower_flrp16 ? 16 : 0) |
793 (nir->options->lower_flrp32 ? 32 : 0) |
794 (nir->options->lower_flrp64 ? 64 : 0);
795
796 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
797 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
798
799 nir_lower_tex_options lower_tex_options = {
800 .lower_rect = true
801 };
802
803 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
804
805 do {
806 progress = false;
807
808 NIR_PASS(progress, nir, nir_lower_var_copies);
809 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
810
811 NIR_PASS(progress, nir, nir_copy_prop);
812 NIR_PASS(progress, nir, nir_opt_dce);
813 NIR_PASS(progress, nir, nir_opt_dead_cf);
814 NIR_PASS(progress, nir, nir_opt_cse);
815 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
816 NIR_PASS(progress, nir, nir_opt_algebraic);
817 NIR_PASS(progress, nir, nir_opt_constant_folding);
818
819 if (lower_flrp != 0) {
820 bool lower_flrp_progress = false;
821 NIR_PASS(lower_flrp_progress,
822 nir,
823 nir_lower_flrp,
824 lower_flrp,
825 false /* always_precise */,
826 nir->options->lower_ffma);
827 if (lower_flrp_progress) {
828 NIR_PASS(progress, nir,
829 nir_opt_constant_folding);
830 progress = true;
831 }
832
833 /* Nothing should rematerialize any flrps, so we only
834 * need to do this lowering once.
835 */
836 lower_flrp = 0;
837 }
838
839 NIR_PASS(progress, nir, nir_opt_undef);
840 NIR_PASS(progress, nir, nir_opt_loop_unroll,
841 nir_var_shader_in |
842 nir_var_shader_out |
843 nir_var_function_temp);
844
845 /* TODO: Enable vectorize when merged upstream */
846 // NIR_PASS(progress, nir, nir_opt_vectorize);
847 } while (progress);
848
849 /* Must be run at the end to prevent creation of fsin/fcos ops */
850 NIR_PASS(progress, nir, midgard_nir_scale_trig);
851
852 do {
853 progress = false;
854
855 NIR_PASS(progress, nir, nir_opt_dce);
856 NIR_PASS(progress, nir, nir_opt_algebraic);
857 NIR_PASS(progress, nir, nir_opt_constant_folding);
858 NIR_PASS(progress, nir, nir_copy_prop);
859 } while (progress);
860
861 NIR_PASS(progress, nir, nir_opt_algebraic_late);
862
863 /* We implement booleans as 32-bit 0/~0 */
864 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
865
866 /* Now that booleans are lowered, we can run out late opts */
867 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
868
869 /* Lower mods for float ops only. Integer ops don't support modifiers
870 * (saturate doesn't make sense on integers, neg/abs require dedicated
871 * instructions) */
872
873 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
874 NIR_PASS(progress, nir, nir_copy_prop);
875 NIR_PASS(progress, nir, nir_opt_dce);
876
877 /* Take us out of SSA */
878 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
879 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
880
881 /* We are a vector architecture; write combine where possible */
882 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
883 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
884
885 NIR_PASS(progress, nir, nir_opt_dce);
886 }
887
888 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
889 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
890 * r0. See the comments in compiler_context */
891
892 static void
893 alias_ssa(compiler_context *ctx, int dest, int src)
894 {
895 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
896 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
897 }
898
899 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
900
901 static void
902 unalias_ssa(compiler_context *ctx, int dest)
903 {
904 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
905 /* TODO: Remove from leftover or no? */
906 }
907
908 static void
909 midgard_pin_output(compiler_context *ctx, int index, int reg)
910 {
911 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
912 }
913
914 static bool
915 midgard_is_pinned(compiler_context *ctx, int index)
916 {
917 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
918 }
919
920 /* Do not actually emit a load; instead, cache the constant for inlining */
921
922 static void
923 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
924 {
925 nir_ssa_def def = instr->def;
926
927 float *v = rzalloc_array(NULL, float, 4);
928 nir_const_load_to_arr(v, instr, f32);
929 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
930 }
931
932 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
933 * do the inverse) */
934
935 static unsigned
936 expand_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (1 << i))
942 o |= (3 << (2 * i));
943
944 return o;
945 }
946
947 static unsigned
948 squeeze_writemask(unsigned mask)
949 {
950 unsigned o = 0;
951
952 for (int i = 0; i < 4; ++i)
953 if (mask & (3 << (2 * i)))
954 o |= (1 << i);
955
956 return o;
957
958 }
959
960 /* Determines effective writemask, taking quirks and expansion into account */
961 static unsigned
962 effective_writemask(midgard_vector_alu *alu)
963 {
964 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
965 * sense) */
966
967 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
968
969 /* If there is a fixed channel count, construct the appropriate mask */
970
971 if (channel_count)
972 return (1 << channel_count) - 1;
973
974 /* Otherwise, just squeeze the existing mask */
975 return squeeze_writemask(alu->mask);
976 }
977
978 static unsigned
979 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
980 {
981 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
982 return hash;
983
984 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
985
986 if (temp)
987 return temp - 1;
988
989 /* If no temp is find, allocate one */
990 temp = ctx->temp_count++;
991 ctx->max_hash = MAX2(ctx->max_hash, hash);
992
993 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
994
995 return temp;
996 }
997
998 static unsigned
999 nir_src_index(compiler_context *ctx, nir_src *src)
1000 {
1001 if (src->is_ssa)
1002 return src->ssa->index;
1003 else {
1004 assert(!src->reg.indirect);
1005 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
1006 }
1007 }
1008
1009 static unsigned
1010 nir_dest_index(compiler_context *ctx, nir_dest *dst)
1011 {
1012 if (dst->is_ssa)
1013 return dst->ssa.index;
1014 else {
1015 assert(!dst->reg.indirect);
1016 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1017 }
1018 }
1019
1020 static unsigned
1021 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1022 {
1023 return nir_src_index(ctx, &src->src);
1024 }
1025
1026 static bool
1027 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
1028 {
1029 unsigned comp = src->swizzle[0];
1030
1031 for (unsigned c = 1; c < nr_components; ++c) {
1032 if (src->swizzle[c] != comp)
1033 return true;
1034 }
1035
1036 return false;
1037 }
1038
1039 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
1040 * output of a conditional test) into that register */
1041
1042 static void
1043 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1044 {
1045 int condition = nir_src_index(ctx, src);
1046
1047 /* Source to swizzle the desired component into w */
1048
1049 const midgard_vector_alu_src alu_src = {
1050 .swizzle = SWIZZLE(component, component, component, component),
1051 };
1052
1053 /* There is no boolean move instruction. Instead, we simulate a move by
1054 * ANDing the condition with itself to get it into r31.w */
1055
1056 midgard_instruction ins = {
1057 .type = TAG_ALU_4,
1058
1059 /* We need to set the conditional as close as possible */
1060 .precede_break = true,
1061 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
1062
1063 .ssa_args = {
1064
1065 .src0 = condition,
1066 .src1 = condition,
1067 .dest = SSA_FIXED_REGISTER(31),
1068 },
1069 .alu = {
1070 .op = midgard_alu_op_iand,
1071 .reg_mode = midgard_reg_mode_32,
1072 .dest_override = midgard_dest_override_none,
1073 .mask = (0x3 << 6), /* w */
1074 .src1 = vector_alu_srco_unsigned(alu_src),
1075 .src2 = vector_alu_srco_unsigned(alu_src)
1076 },
1077 };
1078
1079 emit_mir_instruction(ctx, ins);
1080 }
1081
1082 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
1083 * r31 instead */
1084
1085 static void
1086 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
1087 {
1088 int condition = nir_src_index(ctx, &src->src);
1089
1090 /* Source to swizzle the desired component into w */
1091
1092 const midgard_vector_alu_src alu_src = {
1093 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
1094 };
1095
1096 /* There is no boolean move instruction. Instead, we simulate a move by
1097 * ANDing the condition with itself to get it into r31.w */
1098
1099 midgard_instruction ins = {
1100 .type = TAG_ALU_4,
1101 .precede_break = true,
1102 .ssa_args = {
1103 .src0 = condition,
1104 .src1 = condition,
1105 .dest = SSA_FIXED_REGISTER(31),
1106 },
1107 .alu = {
1108 .op = midgard_alu_op_iand,
1109 .reg_mode = midgard_reg_mode_32,
1110 .dest_override = midgard_dest_override_none,
1111 .mask = expand_writemask((1 << nr_comp) - 1),
1112 .src1 = vector_alu_srco_unsigned(alu_src),
1113 .src2 = vector_alu_srco_unsigned(alu_src)
1114 },
1115 };
1116
1117 emit_mir_instruction(ctx, ins);
1118 }
1119
1120
1121
1122 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1123 * pinning to eliminate this move in all known cases */
1124
1125 static void
1126 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1127 {
1128 int offset = nir_src_index(ctx, src);
1129
1130 midgard_instruction ins = {
1131 .type = TAG_ALU_4,
1132 .ssa_args = {
1133 .src0 = SSA_UNUSED_1,
1134 .src1 = offset,
1135 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1136 },
1137 .alu = {
1138 .op = midgard_alu_op_imov,
1139 .reg_mode = midgard_reg_mode_32,
1140 .dest_override = midgard_dest_override_none,
1141 .mask = (0x3 << 6), /* w */
1142 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1143 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1144 },
1145 };
1146
1147 emit_mir_instruction(ctx, ins);
1148 }
1149
1150 #define ALU_CASE(nir, _op) \
1151 case nir_op_##nir: \
1152 op = midgard_alu_op_##_op; \
1153 break;
1154 static bool
1155 nir_is_fzero_constant(nir_src src)
1156 {
1157 if (!nir_src_is_const(src))
1158 return false;
1159
1160 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1161 if (nir_src_comp_as_float(src, c) != 0.0)
1162 return false;
1163 }
1164
1165 return true;
1166 }
1167
1168 static void
1169 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1170 {
1171 bool is_ssa = instr->dest.dest.is_ssa;
1172
1173 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1174 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1175 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1176
1177 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1178 * supported. A few do not and are commented for now. Also, there are a
1179 * number of NIR ops which Midgard does not support and need to be
1180 * lowered, also TODO. This switch block emits the opcode and calling
1181 * convention of the Midgard instruction; actual packing is done in
1182 * emit_alu below */
1183
1184 unsigned op;
1185
1186 switch (instr->op) {
1187 ALU_CASE(fadd, fadd);
1188 ALU_CASE(fmul, fmul);
1189 ALU_CASE(fmin, fmin);
1190 ALU_CASE(fmax, fmax);
1191 ALU_CASE(imin, imin);
1192 ALU_CASE(imax, imax);
1193 ALU_CASE(umin, umin);
1194 ALU_CASE(umax, umax);
1195 ALU_CASE(fmov, fmov);
1196 ALU_CASE(ffloor, ffloor);
1197 ALU_CASE(fround_even, froundeven);
1198 ALU_CASE(ftrunc, ftrunc);
1199 ALU_CASE(fceil, fceil);
1200 ALU_CASE(fdot3, fdot3);
1201 ALU_CASE(fdot4, fdot4);
1202 ALU_CASE(iadd, iadd);
1203 ALU_CASE(isub, isub);
1204 ALU_CASE(imul, imul);
1205 ALU_CASE(iabs, iabs);
1206 ALU_CASE(imov, imov);
1207
1208 ALU_CASE(feq32, feq);
1209 ALU_CASE(fne32, fne);
1210 ALU_CASE(flt32, flt);
1211 ALU_CASE(ieq32, ieq);
1212 ALU_CASE(ine32, ine);
1213 ALU_CASE(ilt32, ilt);
1214 ALU_CASE(ult32, ult);
1215
1216 /* We don't have a native b2f32 instruction. Instead, like many
1217 * GPUs, we exploit booleans as 0/~0 for false/true, and
1218 * correspondingly AND
1219 * by 1.0 to do the type conversion. For the moment, prime us
1220 * to emit:
1221 *
1222 * iand [whatever], #0
1223 *
1224 * At the end of emit_alu (as MIR), we'll fix-up the constant
1225 */
1226
1227 ALU_CASE(b2f32, iand);
1228 ALU_CASE(b2i32, iand);
1229
1230 /* Likewise, we don't have a dedicated f2b32 instruction, but
1231 * we can do a "not equal to 0.0" test. */
1232
1233 ALU_CASE(f2b32, fne);
1234 ALU_CASE(i2b32, ine);
1235
1236 ALU_CASE(frcp, frcp);
1237 ALU_CASE(frsq, frsqrt);
1238 ALU_CASE(fsqrt, fsqrt);
1239 ALU_CASE(fexp2, fexp2);
1240 ALU_CASE(flog2, flog2);
1241
1242 ALU_CASE(f2i32, f2i);
1243 ALU_CASE(f2u32, f2u);
1244 ALU_CASE(i2f32, i2f);
1245 ALU_CASE(u2f32, u2f);
1246
1247 ALU_CASE(fsin, fsin);
1248 ALU_CASE(fcos, fcos);
1249
1250 ALU_CASE(iand, iand);
1251 ALU_CASE(ior, ior);
1252 ALU_CASE(ixor, ixor);
1253 ALU_CASE(inot, inand);
1254 ALU_CASE(ishl, ishl);
1255 ALU_CASE(ishr, iasr);
1256 ALU_CASE(ushr, ilsr);
1257
1258 ALU_CASE(b32all_fequal2, fball_eq);
1259 ALU_CASE(b32all_fequal3, fball_eq);
1260 ALU_CASE(b32all_fequal4, fball_eq);
1261
1262 ALU_CASE(b32any_fnequal2, fbany_neq);
1263 ALU_CASE(b32any_fnequal3, fbany_neq);
1264 ALU_CASE(b32any_fnequal4, fbany_neq);
1265
1266 ALU_CASE(b32all_iequal2, iball_eq);
1267 ALU_CASE(b32all_iequal3, iball_eq);
1268 ALU_CASE(b32all_iequal4, iball_eq);
1269
1270 ALU_CASE(b32any_inequal2, ibany_neq);
1271 ALU_CASE(b32any_inequal3, ibany_neq);
1272 ALU_CASE(b32any_inequal4, ibany_neq);
1273
1274 /* For greater-or-equal, we lower to less-or-equal and flip the
1275 * arguments */
1276
1277 case nir_op_fge:
1278 case nir_op_fge32:
1279 case nir_op_ige32:
1280 case nir_op_uge32: {
1281 op =
1282 instr->op == nir_op_fge ? midgard_alu_op_fle :
1283 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1284 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1285 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1286 0;
1287
1288 /* Swap via temporary */
1289 nir_alu_src temp = instr->src[1];
1290 instr->src[1] = instr->src[0];
1291 instr->src[0] = temp;
1292
1293 break;
1294 }
1295
1296 case nir_op_b32csel: {
1297 /* Midgard features both fcsel and icsel, depending on
1298 * the type of the arguments/output. However, as long
1299 * as we're careful we can _always_ use icsel and
1300 * _never_ need fcsel, since the latter does additional
1301 * floating-point-specific processing whereas the
1302 * former just moves bits on the wire. It's not obvious
1303 * why these are separate opcodes, save for the ability
1304 * to do things like sat/pos/abs/neg for free */
1305
1306 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
1307 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
1308
1309 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1310 nr_inputs = 2;
1311
1312 /* Emit the condition into r31 */
1313
1314 if (mixed)
1315 emit_condition_mixed(ctx, &instr->src[0], nr_components);
1316 else
1317 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
1318
1319 /* The condition is the first argument; move the other
1320 * arguments up one to be a binary instruction for
1321 * Midgard */
1322
1323 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1324 break;
1325 }
1326
1327 default:
1328 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1329 assert(0);
1330 return;
1331 }
1332
1333 /* Midgard can perform certain modifiers on output of an ALU op */
1334 midgard_outmod outmod =
1335 midgard_is_integer_out_op(op) ? midgard_outmod_int :
1336 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1337
1338 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1339
1340 if (instr->op == nir_op_fmax) {
1341 if (nir_is_fzero_constant(instr->src[0].src)) {
1342 op = midgard_alu_op_fmov;
1343 nr_inputs = 1;
1344 outmod = midgard_outmod_pos;
1345 instr->src[0] = instr->src[1];
1346 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1347 op = midgard_alu_op_fmov;
1348 nr_inputs = 1;
1349 outmod = midgard_outmod_pos;
1350 }
1351 }
1352
1353 /* Fetch unit, quirks, etc information */
1354 unsigned opcode_props = alu_opcode_props[op].props;
1355 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1356
1357 /* src0 will always exist afaik, but src1 will not for 1-argument
1358 * instructions. The latter can only be fetched if the instruction
1359 * needs it, or else we may segfault. */
1360
1361 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1362 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1363
1364 /* Rather than use the instruction generation helpers, we do it
1365 * ourselves here to avoid the mess */
1366
1367 midgard_instruction ins = {
1368 .type = TAG_ALU_4,
1369 .ssa_args = {
1370 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1371 .src1 = quirk_flipped_r24 ? src0 : src1,
1372 .dest = dest,
1373 }
1374 };
1375
1376 nir_alu_src *nirmods[2] = { NULL };
1377
1378 if (nr_inputs == 2) {
1379 nirmods[0] = &instr->src[0];
1380 nirmods[1] = &instr->src[1];
1381 } else if (nr_inputs == 1) {
1382 nirmods[quirk_flipped_r24] = &instr->src[0];
1383 } else {
1384 assert(0);
1385 }
1386
1387 bool is_int = midgard_is_integer_op(op);
1388
1389 midgard_vector_alu alu = {
1390 .op = op,
1391 .reg_mode = midgard_reg_mode_32,
1392 .dest_override = midgard_dest_override_none,
1393 .outmod = outmod,
1394
1395 /* Writemask only valid for non-SSA NIR */
1396 .mask = expand_writemask((1 << nr_components) - 1),
1397
1398 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1399 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1400 };
1401
1402 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1403
1404 if (!is_ssa)
1405 alu.mask &= expand_writemask(instr->dest.write_mask);
1406
1407 ins.alu = alu;
1408
1409 /* Late fixup for emulated instructions */
1410
1411 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1412 /* Presently, our second argument is an inline #0 constant.
1413 * Switch over to an embedded 1.0 constant (that can't fit
1414 * inline, since we're 32-bit, not 16-bit like the inline
1415 * constants) */
1416
1417 ins.ssa_args.inline_constant = false;
1418 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1419 ins.has_constants = true;
1420
1421 if (instr->op == nir_op_b2f32) {
1422 ins.constants[0] = 1.0f;
1423 } else {
1424 /* Type pun it into place */
1425 uint32_t one = 0x1;
1426 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1427 }
1428
1429 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1430 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1431 ins.ssa_args.inline_constant = false;
1432 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1433 ins.has_constants = true;
1434 ins.constants[0] = 0.0f;
1435 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1436 } else if (instr->op == nir_op_inot) {
1437 /* ~b = ~(b & b), so duplicate the source */
1438 ins.ssa_args.src1 = ins.ssa_args.src0;
1439 ins.alu.src2 = ins.alu.src1;
1440 }
1441
1442 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1443 /* To avoid duplicating the lookup tables (probably), true LUT
1444 * instructions can only operate as if they were scalars. Lower
1445 * them here by changing the component. */
1446
1447 uint8_t original_swizzle[4];
1448 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1449
1450 for (int i = 0; i < nr_components; ++i) {
1451 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1452
1453 for (int j = 0; j < 4; ++j)
1454 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1455
1456 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1457 emit_mir_instruction(ctx, ins);
1458 }
1459 } else {
1460 emit_mir_instruction(ctx, ins);
1461 }
1462 }
1463
1464 #undef ALU_CASE
1465
1466 static void
1467 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1468 {
1469 /* TODO: half-floats */
1470
1471 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1472 /* Fast path: For the first 16 uniforms, direct accesses are
1473 * 0-cycle, since they're just a register fetch in the usual
1474 * case. So, we alias the registers while we're still in
1475 * SSA-space */
1476
1477 int reg_slot = 23 - offset;
1478 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1479 } else {
1480 /* Otherwise, read from the 'special' UBO to access
1481 * higher-indexed uniforms, at a performance cost. More
1482 * generally, we're emitting a UBO read instruction. */
1483
1484 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1485
1486 /* TODO: Don't split */
1487 ins.load_store.varying_parameters = (offset & 7) << 7;
1488 ins.load_store.address = offset >> 3;
1489
1490 if (indirect_offset) {
1491 emit_indirect_offset(ctx, indirect_offset);
1492 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1493 } else {
1494 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1495 }
1496
1497 emit_mir_instruction(ctx, ins);
1498 }
1499 }
1500
1501 static void
1502 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1503 {
1504 /* First, pull out the destination */
1505 unsigned dest = nir_dest_index(ctx, &instr->dest);
1506
1507 /* Now, figure out which uniform this is */
1508 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1509 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1510
1511 /* Sysvals are prefix uniforms */
1512 unsigned uniform = ((uintptr_t) val) - 1;
1513
1514 /* Emit the read itself -- this is never indirect */
1515 emit_uniform_read(ctx, dest, uniform, NULL);
1516 }
1517
1518 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1519 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1520 * generations have faster vectorized reads. This operation is for blend
1521 * shaders in particular; reading the tilebuffer from the fragment shader
1522 * remains an open problem. */
1523
1524 static void
1525 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1526 {
1527 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1528 ins.load_store.swizzle = 0; /* xxxx */
1529
1530 /* Read each component sequentially */
1531
1532 for (unsigned c = 0; c < 4; ++c) {
1533 ins.load_store.mask = (1 << c);
1534 ins.load_store.unknown = c;
1535 emit_mir_instruction(ctx, ins);
1536 }
1537
1538 /* vadd.u2f hr2, zext(hr2), #0 */
1539
1540 midgard_vector_alu_src alu_src = blank_alu_src;
1541 alu_src.mod = midgard_int_zero_extend;
1542 alu_src.half = true;
1543
1544 midgard_instruction u2f = {
1545 .type = TAG_ALU_4,
1546 .ssa_args = {
1547 .src0 = reg,
1548 .src1 = SSA_UNUSED_0,
1549 .dest = reg,
1550 .inline_constant = true
1551 },
1552 .alu = {
1553 .op = midgard_alu_op_u2f,
1554 .reg_mode = midgard_reg_mode_16,
1555 .dest_override = midgard_dest_override_none,
1556 .mask = 0xF,
1557 .src1 = vector_alu_srco_unsigned(alu_src),
1558 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1559 }
1560 };
1561
1562 emit_mir_instruction(ctx, u2f);
1563
1564 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1565
1566 alu_src.mod = 0;
1567
1568 midgard_instruction fmul = {
1569 .type = TAG_ALU_4,
1570 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1571 .ssa_args = {
1572 .src0 = reg,
1573 .dest = reg,
1574 .src1 = SSA_UNUSED_0,
1575 .inline_constant = true
1576 },
1577 .alu = {
1578 .op = midgard_alu_op_fmul,
1579 .reg_mode = midgard_reg_mode_32,
1580 .dest_override = midgard_dest_override_none,
1581 .outmod = midgard_outmod_sat,
1582 .mask = 0xFF,
1583 .src1 = vector_alu_srco_unsigned(alu_src),
1584 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1585 }
1586 };
1587
1588 emit_mir_instruction(ctx, fmul);
1589 }
1590
1591 static void
1592 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1593 {
1594 unsigned offset, reg;
1595
1596 switch (instr->intrinsic) {
1597 case nir_intrinsic_discard_if:
1598 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1599
1600 /* fallthrough */
1601
1602 case nir_intrinsic_discard: {
1603 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1604 struct midgard_instruction discard = v_branch(conditional, false);
1605 discard.branch.target_type = TARGET_DISCARD;
1606 emit_mir_instruction(ctx, discard);
1607
1608 ctx->can_discard = true;
1609 break;
1610 }
1611
1612 case nir_intrinsic_load_uniform:
1613 case nir_intrinsic_load_input:
1614 offset = nir_intrinsic_base(instr);
1615
1616 bool direct = nir_src_is_const(instr->src[0]);
1617
1618 if (direct) {
1619 offset += nir_src_as_uint(instr->src[0]);
1620 }
1621
1622 reg = nir_dest_index(ctx, &instr->dest);
1623
1624 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1625 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1626 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1627 /* XXX: Half-floats? */
1628 /* TODO: swizzle, mask */
1629
1630 midgard_instruction ins = m_ld_vary_32(reg, offset);
1631
1632 midgard_varying_parameter p = {
1633 .is_varying = 1,
1634 .interpolation = midgard_interp_default,
1635 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1636 };
1637
1638 unsigned u;
1639 memcpy(&u, &p, sizeof(p));
1640 ins.load_store.varying_parameters = u;
1641
1642 if (direct) {
1643 /* We have the offset totally ready */
1644 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1645 } else {
1646 /* We have it partially ready, but we need to
1647 * add in the dynamic index, moved to r27.w */
1648 emit_indirect_offset(ctx, &instr->src[0]);
1649 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1650 }
1651
1652 emit_mir_instruction(ctx, ins);
1653 } else if (ctx->is_blend) {
1654 /* For blend shaders, load the input color, which is
1655 * preloaded to r0 */
1656
1657 midgard_pin_output(ctx, reg, 0);
1658 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1659 midgard_instruction ins = m_ld_attr_32(reg, offset);
1660 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1661 ins.load_store.mask = (1 << instr->num_components) - 1;
1662 emit_mir_instruction(ctx, ins);
1663 } else {
1664 DBG("Unknown load\n");
1665 assert(0);
1666 }
1667
1668 break;
1669
1670 case nir_intrinsic_load_output:
1671 assert(nir_src_is_const(instr->src[0]));
1672 reg = nir_dest_index(ctx, &instr->dest);
1673
1674 if (ctx->is_blend) {
1675 /* TODO: MRT */
1676 emit_fb_read_blend_scalar(ctx, reg);
1677 } else {
1678 DBG("Unknown output load\n");
1679 assert(0);
1680 }
1681
1682 break;
1683
1684 case nir_intrinsic_load_blend_const_color_rgba: {
1685 assert(ctx->is_blend);
1686 reg = nir_dest_index(ctx, &instr->dest);
1687
1688 /* Blend constants are embedded directly in the shader and
1689 * patched in, so we use some magic routing */
1690
1691 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1692 ins.has_constants = true;
1693 ins.has_blend_constant = true;
1694 emit_mir_instruction(ctx, ins);
1695 break;
1696 }
1697
1698 case nir_intrinsic_store_output:
1699 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1700
1701 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1702
1703 reg = nir_src_index(ctx, &instr->src[0]);
1704
1705 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1706 /* gl_FragColor is not emitted with load/store
1707 * instructions. Instead, it gets plonked into
1708 * r0 at the end of the shader and we do the
1709 * framebuffer writeout dance. TODO: Defer
1710 * writes */
1711
1712 midgard_instruction move = v_fmov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1713 emit_mir_instruction(ctx, move);
1714
1715 //midgard_pin_output(ctx, reg, 0);
1716
1717 /* Save the index we're writing to for later reference
1718 * in the epilogue */
1719
1720 ctx->fragment_output = reg;
1721 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1722 /* Varyings are written into one of two special
1723 * varying register, r26 or r27. The register itself is selected as the register
1724 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1725 *
1726 * Normally emitting fmov's is frowned upon,
1727 * but due to unique constraints of
1728 * REGISTER_VARYING, fmov emission + a
1729 * dedicated cleanup pass is the only way to
1730 * guarantee correctness when considering some
1731 * (common) edge cases XXX: FIXME */
1732
1733 /* If this varying corresponds to a constant (why?!),
1734 * emit that now since it won't get picked up by
1735 * hoisting (since there is no corresponding move
1736 * emitted otherwise) */
1737
1738 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1739
1740 if (constant_value) {
1741 /* Special case: emit the varying write
1742 * directly to r26 (looks funny in asm but it's
1743 * fine) and emit the store _now_. Possibly
1744 * slightly slower, but this is a really stupid
1745 * special case anyway (why on earth would you
1746 * have a constant varying? Your own fault for
1747 * slightly worse perf :P) */
1748
1749 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1750 attach_constants(ctx, &ins, constant_value, reg + 1);
1751 emit_mir_instruction(ctx, ins);
1752
1753 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1754 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1755 emit_mir_instruction(ctx, st);
1756 } else {
1757 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1758
1759 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1760 }
1761 } else {
1762 DBG("Unknown store\n");
1763 assert(0);
1764 }
1765
1766 break;
1767
1768 case nir_intrinsic_load_alpha_ref_float:
1769 assert(instr->dest.is_ssa);
1770
1771 float ref_value = ctx->alpha_ref;
1772
1773 float *v = ralloc_array(NULL, float, 4);
1774 memcpy(v, &ref_value, sizeof(float));
1775 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1776 break;
1777
1778 case nir_intrinsic_load_viewport_scale:
1779 case nir_intrinsic_load_viewport_offset:
1780 emit_sysval_read(ctx, instr);
1781 break;
1782
1783 default:
1784 printf ("Unhandled intrinsic\n");
1785 assert(0);
1786 break;
1787 }
1788 }
1789
1790 static unsigned
1791 midgard_tex_format(enum glsl_sampler_dim dim)
1792 {
1793 switch (dim) {
1794 case GLSL_SAMPLER_DIM_2D:
1795 case GLSL_SAMPLER_DIM_EXTERNAL:
1796 return TEXTURE_2D;
1797
1798 case GLSL_SAMPLER_DIM_3D:
1799 return TEXTURE_3D;
1800
1801 case GLSL_SAMPLER_DIM_CUBE:
1802 return TEXTURE_CUBE;
1803
1804 default:
1805 DBG("Unknown sampler dim type\n");
1806 assert(0);
1807 return 0;
1808 }
1809 }
1810
1811 static void
1812 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1813 {
1814 /* TODO */
1815 //assert (!instr->sampler);
1816 //assert (!instr->texture_array_size);
1817 assert (instr->op == nir_texop_tex);
1818
1819 /* Allocate registers via a round robin scheme to alternate between the two registers */
1820 int reg = ctx->texture_op_count & 1;
1821 int in_reg = reg, out_reg = reg;
1822
1823 /* Make room for the reg */
1824
1825 if (ctx->texture_index[reg] > -1)
1826 unalias_ssa(ctx, ctx->texture_index[reg]);
1827
1828 int texture_index = instr->texture_index;
1829 int sampler_index = texture_index;
1830
1831 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1832 switch (instr->src[i].src_type) {
1833 case nir_tex_src_coord: {
1834 int index = nir_src_index(ctx, &instr->src[i].src);
1835
1836 midgard_vector_alu_src alu_src = blank_alu_src;
1837
1838 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1839
1840 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1841 /* For cubemaps, we need to load coords into
1842 * special r27, and then use a special ld/st op
1843 * to copy into the texture register */
1844
1845 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1846
1847 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1848 emit_mir_instruction(ctx, move);
1849
1850 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1851 st.load_store.unknown = 0x24; /* XXX: What is this? */
1852 st.load_store.mask = 0x3; /* xy? */
1853 st.load_store.swizzle = alu_src.swizzle;
1854 emit_mir_instruction(ctx, st);
1855
1856 } else {
1857 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1858
1859 midgard_instruction ins = v_fmov(index, alu_src, reg);
1860 emit_mir_instruction(ctx, ins);
1861 }
1862
1863 break;
1864 }
1865
1866 default: {
1867 DBG("Unknown source type\n");
1868 //assert(0);
1869 break;
1870 }
1871 }
1872 }
1873
1874 /* No helper to build texture words -- we do it all here */
1875 midgard_instruction ins = {
1876 .type = TAG_TEXTURE_4,
1877 .texture = {
1878 .op = TEXTURE_OP_NORMAL,
1879 .format = midgard_tex_format(instr->sampler_dim),
1880 .texture_handle = texture_index,
1881 .sampler_handle = sampler_index,
1882
1883 /* TODO: Don't force xyzw */
1884 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1885 .mask = 0xF,
1886
1887 /* TODO: half */
1888 //.in_reg_full = 1,
1889 .out_full = 1,
1890
1891 .filter = 1,
1892
1893 /* Always 1 */
1894 .unknown7 = 1,
1895
1896 /* Assume we can continue; hint it out later */
1897 .cont = 1,
1898 }
1899 };
1900
1901 /* Set registers to read and write from the same place */
1902 ins.texture.in_reg_select = in_reg;
1903 ins.texture.out_reg_select = out_reg;
1904
1905 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1906 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1907 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1908 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1909 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1910 } else {
1911 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1912 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1913 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1914 }
1915
1916 emit_mir_instruction(ctx, ins);
1917
1918 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1919
1920 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1921 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1922 ctx->texture_index[reg] = o_index;
1923
1924 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1925 emit_mir_instruction(ctx, ins2);
1926
1927 /* Used for .cont and .last hinting */
1928 ctx->texture_op_count++;
1929 }
1930
1931 static void
1932 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1933 {
1934 switch (instr->type) {
1935 case nir_jump_break: {
1936 /* Emit a branch out of the loop */
1937 struct midgard_instruction br = v_branch(false, false);
1938 br.branch.target_type = TARGET_BREAK;
1939 br.branch.target_break = ctx->current_loop_depth;
1940 emit_mir_instruction(ctx, br);
1941
1942 DBG("break..\n");
1943 break;
1944 }
1945
1946 default:
1947 DBG("Unknown jump type %d\n", instr->type);
1948 break;
1949 }
1950 }
1951
1952 static void
1953 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1954 {
1955 switch (instr->type) {
1956 case nir_instr_type_load_const:
1957 emit_load_const(ctx, nir_instr_as_load_const(instr));
1958 break;
1959
1960 case nir_instr_type_intrinsic:
1961 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1962 break;
1963
1964 case nir_instr_type_alu:
1965 emit_alu(ctx, nir_instr_as_alu(instr));
1966 break;
1967
1968 case nir_instr_type_tex:
1969 emit_tex(ctx, nir_instr_as_tex(instr));
1970 break;
1971
1972 case nir_instr_type_jump:
1973 emit_jump(ctx, nir_instr_as_jump(instr));
1974 break;
1975
1976 case nir_instr_type_ssa_undef:
1977 /* Spurious */
1978 break;
1979
1980 default:
1981 DBG("Unhandled instruction type\n");
1982 break;
1983 }
1984 }
1985
1986 /* Determine the actual hardware from the index based on the RA results or special values */
1987
1988 static int
1989 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1990 {
1991 if (reg >= SSA_FIXED_MINIMUM)
1992 return SSA_REG_FROM_FIXED(reg);
1993
1994 if (reg >= 0) {
1995 assert(reg < maxreg);
1996 assert(g);
1997 int r = ra_get_node_reg(g, reg);
1998 ctx->work_registers = MAX2(ctx->work_registers, r);
1999 return r;
2000 }
2001
2002 switch (reg) {
2003 /* fmov style unused */
2004 case SSA_UNUSED_0:
2005 return REGISTER_UNUSED;
2006
2007 /* lut style unused */
2008 case SSA_UNUSED_1:
2009 return REGISTER_UNUSED;
2010
2011 default:
2012 DBG("Unknown SSA register alias %d\n", reg);
2013 assert(0);
2014 return 31;
2015 }
2016 }
2017
2018 static unsigned int
2019 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
2020 {
2021 /* Choose the first available register to minimise reported register pressure */
2022
2023 for (int i = 0; i < 16; ++i) {
2024 if (BITSET_TEST(regs, i)) {
2025 return i;
2026 }
2027 }
2028
2029 assert(0);
2030 return 0;
2031 }
2032
2033 static bool
2034 midgard_is_live_in_instr(midgard_instruction *ins, int src)
2035 {
2036 if (ins->ssa_args.src0 == src) return true;
2037 if (ins->ssa_args.src1 == src) return true;
2038
2039 return false;
2040 }
2041
2042 /* Determine if a variable is live in the successors of a block */
2043 static bool
2044 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
2045 {
2046 for (unsigned i = 0; i < bl->nr_successors; ++i) {
2047 midgard_block *succ = bl->successors[i];
2048
2049 /* If we already visited, the value we're seeking
2050 * isn't down this path (or we would have short
2051 * circuited */
2052
2053 if (succ->visited) continue;
2054
2055 /* Otherwise (it's visited *now*), check the block */
2056
2057 succ->visited = true;
2058
2059 mir_foreach_instr_in_block(succ, ins) {
2060 if (midgard_is_live_in_instr(ins, src))
2061 return true;
2062 }
2063
2064 /* ...and also, check *its* successors */
2065 if (is_live_after_successors(ctx, succ, src))
2066 return true;
2067
2068 }
2069
2070 /* Welp. We're really not live. */
2071
2072 return false;
2073 }
2074
2075 static bool
2076 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2077 {
2078 /* Check the rest of the block for liveness */
2079
2080 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2081 if (midgard_is_live_in_instr(ins, src))
2082 return true;
2083 }
2084
2085 /* Check the rest of the blocks for liveness recursively */
2086
2087 bool succ = is_live_after_successors(ctx, block, src);
2088
2089 mir_foreach_block(ctx, block) {
2090 block->visited = false;
2091 }
2092
2093 return succ;
2094 }
2095
2096 /* Once registers have been decided via register allocation
2097 * (allocate_registers), we need to rewrite the MIR to use registers instead of
2098 * SSA */
2099
2100 static void
2101 install_registers(compiler_context *ctx, struct ra_graph *g)
2102 {
2103 mir_foreach_block(ctx, block) {
2104 mir_foreach_instr_in_block(block, ins) {
2105 if (ins->compact_branch) continue;
2106
2107 ssa_args args = ins->ssa_args;
2108
2109 switch (ins->type) {
2110 case TAG_ALU_4:
2111 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, ctx->temp_count);
2112
2113 ins->registers.src2_imm = args.inline_constant;
2114
2115 if (args.inline_constant) {
2116 /* Encode inline 16-bit constant as a vector by default */
2117
2118 ins->registers.src2_reg = ins->inline_constant >> 11;
2119
2120 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2121
2122 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2123 ins->alu.src2 = imm << 2;
2124 } else {
2125 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, ctx->temp_count);
2126 }
2127
2128 ins->registers.out_reg = dealias_register(ctx, g, args.dest, ctx->temp_count);
2129
2130 break;
2131
2132 case TAG_LOAD_STORE_4: {
2133 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2134 /* TODO: use ssa_args for st_vary */
2135 ins->load_store.reg = 0;
2136 } else {
2137 bool has_dest = args.dest >= 0;
2138 int ssa_arg = has_dest ? args.dest : args.src0;
2139
2140 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, ctx->temp_count);
2141 }
2142
2143 break;
2144 }
2145
2146 default:
2147 break;
2148 }
2149 }
2150 }
2151
2152 }
2153
2154 /* This routine performs the actual register allocation. It should be succeeded
2155 * by install_registers */
2156
2157 static struct ra_graph *
2158 allocate_registers(compiler_context *ctx)
2159 {
2160 /* First, initialize the RA */
2161 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2162
2163 /* Create a primary (general purpose) class, as well as special purpose
2164 * pipeline register classes */
2165
2166 int primary_class = ra_alloc_reg_class(regs);
2167 int varying_class = ra_alloc_reg_class(regs);
2168
2169 /* Add the full set of work registers */
2170 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2171 for (int i = 0; i < work_count; ++i)
2172 ra_class_add_reg(regs, primary_class, i);
2173
2174 /* Add special registers */
2175 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2176 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2177
2178 /* We're done setting up */
2179 ra_set_finalize(regs, NULL);
2180
2181 /* Transform the MIR into squeezed index form */
2182 mir_foreach_block(ctx, block) {
2183 mir_foreach_instr_in_block(block, ins) {
2184 if (ins->compact_branch) continue;
2185
2186 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2187 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2188 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2189 }
2190 if (midgard_debug & MIDGARD_DBG_SHADERS)
2191 print_mir_block(block);
2192 }
2193
2194 /* No register allocation to do with no SSA */
2195
2196 if (!ctx->temp_count)
2197 return NULL;
2198
2199 /* Let's actually do register allocation */
2200 int nodes = ctx->temp_count;
2201 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2202
2203 /* Set everything to the work register class, unless it has somewhere
2204 * special to go */
2205
2206 mir_foreach_block(ctx, block) {
2207 mir_foreach_instr_in_block(block, ins) {
2208 if (ins->compact_branch) continue;
2209
2210 if (ins->ssa_args.dest < 0) continue;
2211
2212 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2213
2214 int class = primary_class;
2215
2216 ra_set_node_class(g, ins->ssa_args.dest, class);
2217 }
2218 }
2219
2220 for (int index = 0; index <= ctx->max_hash; ++index) {
2221 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2222
2223 if (temp) {
2224 unsigned reg = temp - 1;
2225 int t = find_or_allocate_temp(ctx, index);
2226 ra_set_node_reg(g, t, reg);
2227 }
2228 }
2229
2230 /* Determine liveness */
2231
2232 int *live_start = malloc(nodes * sizeof(int));
2233 int *live_end = malloc(nodes * sizeof(int));
2234
2235 /* Initialize as non-existent */
2236
2237 for (int i = 0; i < nodes; ++i) {
2238 live_start[i] = live_end[i] = -1;
2239 }
2240
2241 int d = 0;
2242
2243 mir_foreach_block(ctx, block) {
2244 mir_foreach_instr_in_block(block, ins) {
2245 if (ins->compact_branch) continue;
2246
2247 /* Dest is < 0 for st_vary instructions, which break
2248 * the usual SSA conventions. Liveness analysis doesn't
2249 * make sense on these instructions, so skip them to
2250 * avoid memory corruption */
2251
2252 if (ins->ssa_args.dest < 0) continue;
2253
2254 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2255 /* If this destination is not yet live, it is now since we just wrote it */
2256
2257 int dest = ins->ssa_args.dest;
2258
2259 if (live_start[dest] == -1)
2260 live_start[dest] = d;
2261 }
2262
2263 /* Since we just used a source, the source might be
2264 * dead now. Scan the rest of the block for
2265 * invocations, and if there are none, the source dies
2266 * */
2267
2268 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2269
2270 for (int src = 0; src < 2; ++src) {
2271 int s = sources[src];
2272
2273 if (s < 0) continue;
2274
2275 if (s >= SSA_FIXED_MINIMUM) continue;
2276
2277 if (!is_live_after(ctx, block, ins, s)) {
2278 live_end[s] = d;
2279 }
2280 }
2281
2282 ++d;
2283 }
2284 }
2285
2286 /* If a node still hasn't been killed, kill it now */
2287
2288 for (int i = 0; i < nodes; ++i) {
2289 /* live_start == -1 most likely indicates a pinned output */
2290
2291 if (live_end[i] == -1)
2292 live_end[i] = d;
2293 }
2294
2295 /* Setup interference between nodes that are live at the same time */
2296
2297 for (int i = 0; i < nodes; ++i) {
2298 for (int j = i + 1; j < nodes; ++j) {
2299 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2300 ra_add_node_interference(g, i, j);
2301 }
2302 }
2303
2304 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2305
2306 if (!ra_allocate(g)) {
2307 DBG("Error allocating registers\n");
2308 assert(0);
2309 }
2310
2311 /* Cleanup */
2312 free(live_start);
2313 free(live_end);
2314
2315 return g;
2316 }
2317
2318 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2319 * use scalar ALU instructions, for functional or performance reasons. To do
2320 * this, we just demote vector ALU payloads to scalar. */
2321
2322 static int
2323 component_from_mask(unsigned mask)
2324 {
2325 for (int c = 0; c < 4; ++c) {
2326 if (mask & (3 << (2 * c)))
2327 return c;
2328 }
2329
2330 assert(0);
2331 return 0;
2332 }
2333
2334 static bool
2335 is_single_component_mask(unsigned mask)
2336 {
2337 int components = 0;
2338
2339 for (int c = 0; c < 4; ++c)
2340 if (mask & (3 << (2 * c)))
2341 components++;
2342
2343 return components == 1;
2344 }
2345
2346 /* Create a mask of accessed components from a swizzle to figure out vector
2347 * dependencies */
2348
2349 static unsigned
2350 swizzle_to_access_mask(unsigned swizzle)
2351 {
2352 unsigned component_mask = 0;
2353
2354 for (int i = 0; i < 4; ++i) {
2355 unsigned c = (swizzle >> (2 * i)) & 3;
2356 component_mask |= (1 << c);
2357 }
2358
2359 return component_mask;
2360 }
2361
2362 static unsigned
2363 vector_to_scalar_source(unsigned u, bool is_int)
2364 {
2365 midgard_vector_alu_src v;
2366 memcpy(&v, &u, sizeof(v));
2367
2368 /* TODO: Integers */
2369
2370 midgard_scalar_alu_src s = {
2371 .full = !v.half,
2372 .component = (v.swizzle & 3) << 1
2373 };
2374
2375 if (is_int) {
2376 /* TODO */
2377 } else {
2378 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2379 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2380 }
2381
2382 unsigned o;
2383 memcpy(&o, &s, sizeof(s));
2384
2385 return o & ((1 << 6) - 1);
2386 }
2387
2388 static midgard_scalar_alu
2389 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2390 {
2391 bool is_int = midgard_is_integer_op(v.op);
2392
2393 /* The output component is from the mask */
2394 midgard_scalar_alu s = {
2395 .op = v.op,
2396 .src1 = vector_to_scalar_source(v.src1, is_int),
2397 .src2 = vector_to_scalar_source(v.src2, is_int),
2398 .unknown = 0,
2399 .outmod = v.outmod,
2400 .output_full = 1, /* TODO: Half */
2401 .output_component = component_from_mask(v.mask) << 1,
2402 };
2403
2404 /* Inline constant is passed along rather than trying to extract it
2405 * from v */
2406
2407 if (ins->ssa_args.inline_constant) {
2408 uint16_t imm = 0;
2409 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2410 imm |= (lower_11 >> 9) & 3;
2411 imm |= (lower_11 >> 6) & 4;
2412 imm |= (lower_11 >> 2) & 0x38;
2413 imm |= (lower_11 & 63) << 6;
2414
2415 s.src2 = imm;
2416 }
2417
2418 return s;
2419 }
2420
2421 /* Midgard prefetches instruction types, so during emission we need to
2422 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2423 * if this is the second to last and the last is an ALU, then it's also 1... */
2424
2425 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2426 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2427
2428 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2429 bytes_emitted += sizeof(type)
2430
2431 static void
2432 emit_binary_vector_instruction(midgard_instruction *ains,
2433 uint16_t *register_words, int *register_words_count,
2434 uint64_t *body_words, size_t *body_size, int *body_words_count,
2435 size_t *bytes_emitted)
2436 {
2437 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2438 *bytes_emitted += sizeof(midgard_reg_info);
2439
2440 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2441 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2442 *bytes_emitted += sizeof(midgard_vector_alu);
2443 }
2444
2445 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2446 * mind that we are a vector architecture and we can write to different
2447 * components simultaneously */
2448
2449 static bool
2450 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2451 {
2452 /* Each instruction reads some registers and writes to a register. See
2453 * where the first writes */
2454
2455 /* Figure out where exactly we wrote to */
2456 int source = first->ssa_args.dest;
2457 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2458
2459 /* As long as the second doesn't read from the first, we're okay */
2460 if (second->ssa_args.src0 == source) {
2461 if (first->type == TAG_ALU_4) {
2462 /* Figure out which components we just read from */
2463
2464 int q = second->alu.src1;
2465 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2466
2467 /* Check if there are components in common, and fail if so */
2468 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2469 return false;
2470 } else
2471 return false;
2472
2473 }
2474
2475 if (second->ssa_args.src1 == source)
2476 return false;
2477
2478 /* Otherwise, it's safe in that regard. Another data hazard is both
2479 * writing to the same place, of course */
2480
2481 if (second->ssa_args.dest == source) {
2482 /* ...but only if the components overlap */
2483 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2484
2485 if (dest_mask & source_mask)
2486 return false;
2487 }
2488
2489 /* ...That's it */
2490 return true;
2491 }
2492
2493 static bool
2494 midgard_has_hazard(
2495 midgard_instruction **segment, unsigned segment_size,
2496 midgard_instruction *ains)
2497 {
2498 for (int s = 0; s < segment_size; ++s)
2499 if (!can_run_concurrent_ssa(segment[s], ains))
2500 return true;
2501
2502 return false;
2503
2504
2505 }
2506
2507 /* Schedules, but does not emit, a single basic block. After scheduling, the
2508 * final tag and size of the block are known, which are necessary for branching
2509 * */
2510
2511 static midgard_bundle
2512 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2513 {
2514 int instructions_emitted = 0, instructions_consumed = -1;
2515 midgard_bundle bundle = { 0 };
2516
2517 uint8_t tag = ins->type;
2518
2519 /* Default to the instruction's tag */
2520 bundle.tag = tag;
2521
2522 switch (ins->type) {
2523 case TAG_ALU_4: {
2524 uint32_t control = 0;
2525 size_t bytes_emitted = sizeof(control);
2526
2527 /* TODO: Constant combining */
2528 int index = 0, last_unit = 0;
2529
2530 /* Previous instructions, for the purpose of parallelism */
2531 midgard_instruction *segment[4] = {0};
2532 int segment_size = 0;
2533
2534 instructions_emitted = -1;
2535 midgard_instruction *pins = ins;
2536
2537 for (;;) {
2538 midgard_instruction *ains = pins;
2539
2540 /* Advance instruction pointer */
2541 if (index) {
2542 ains = mir_next_op(pins);
2543 pins = ains;
2544 }
2545
2546 /* Out-of-work condition */
2547 if ((struct list_head *) ains == &block->instructions)
2548 break;
2549
2550 /* Ensure that the chain can continue */
2551 if (ains->type != TAG_ALU_4) break;
2552
2553 /* If there's already something in the bundle and we
2554 * have weird scheduler constraints, break now */
2555 if (ains->precede_break && index) break;
2556
2557 /* According to the presentation "The ARM
2558 * Mali-T880 Mobile GPU" from HotChips 27,
2559 * there are two pipeline stages. Branching
2560 * position determined experimentally. Lines
2561 * are executed in parallel:
2562 *
2563 * [ VMUL ] [ SADD ]
2564 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2565 *
2566 * Verify that there are no ordering dependencies here.
2567 *
2568 * TODO: Allow for parallelism!!!
2569 */
2570
2571 /* Pick a unit for it if it doesn't force a particular unit */
2572
2573 int unit = ains->unit;
2574
2575 if (!unit) {
2576 int op = ains->alu.op;
2577 int units = alu_opcode_props[op].props;
2578
2579 /* TODO: Promotion of scalars to vectors */
2580 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2581
2582 if (!vector)
2583 assert(units & UNITS_SCALAR);
2584
2585 if (vector) {
2586 if (last_unit >= UNIT_VADD) {
2587 if (units & UNIT_VLUT)
2588 unit = UNIT_VLUT;
2589 else
2590 break;
2591 } else {
2592 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2593 unit = UNIT_VMUL;
2594 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2595 unit = UNIT_VADD;
2596 else if (units & UNIT_VLUT)
2597 unit = UNIT_VLUT;
2598 else
2599 break;
2600 }
2601 } else {
2602 if (last_unit >= UNIT_VADD) {
2603 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2604 unit = UNIT_SMUL;
2605 else if (units & UNIT_VLUT)
2606 unit = UNIT_VLUT;
2607 else
2608 break;
2609 } else {
2610 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2611 unit = UNIT_SADD;
2612 else if (units & UNIT_SMUL)
2613 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2614 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2615 unit = UNIT_VADD;
2616 else
2617 break;
2618 }
2619 }
2620
2621 assert(unit & units);
2622 }
2623
2624 /* Late unit check, this time for encoding (not parallelism) */
2625 if (unit <= last_unit) break;
2626
2627 /* Clear the segment */
2628 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2629 segment_size = 0;
2630
2631 if (midgard_has_hazard(segment, segment_size, ains))
2632 break;
2633
2634 /* We're good to go -- emit the instruction */
2635 ains->unit = unit;
2636
2637 segment[segment_size++] = ains;
2638
2639 /* Only one set of embedded constants per
2640 * bundle possible; if we have more, we must
2641 * break the chain early, unfortunately */
2642
2643 if (ains->has_constants) {
2644 if (bundle.has_embedded_constants) {
2645 /* The blend constant needs to be
2646 * alone, since it conflicts with
2647 * everything by definition*/
2648
2649 if (ains->has_blend_constant || bundle.has_blend_constant)
2650 break;
2651
2652 /* ...but if there are already
2653 * constants but these are the
2654 * *same* constants, we let it
2655 * through */
2656
2657 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2658 break;
2659 } else {
2660 bundle.has_embedded_constants = true;
2661 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2662
2663 /* If this is a blend shader special constant, track it for patching */
2664 bundle.has_blend_constant |= ains->has_blend_constant;
2665 }
2666 }
2667
2668 if (ains->unit & UNITS_ANY_VECTOR) {
2669 emit_binary_vector_instruction(ains, bundle.register_words,
2670 &bundle.register_words_count, bundle.body_words,
2671 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2672 } else if (ains->compact_branch) {
2673 /* All of r0 has to be written out
2674 * along with the branch writeout.
2675 * (slow!) */
2676
2677 if (ains->writeout) {
2678 if (index == 0) {
2679 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2680 ins.unit = UNIT_VMUL;
2681
2682 control |= ins.unit;
2683
2684 emit_binary_vector_instruction(&ins, bundle.register_words,
2685 &bundle.register_words_count, bundle.body_words,
2686 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2687 } else {
2688 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2689 bool written_late = false;
2690 bool components[4] = { 0 };
2691 uint16_t register_dep_mask = 0;
2692 uint16_t written_mask = 0;
2693
2694 midgard_instruction *qins = ins;
2695 for (int t = 0; t < index; ++t) {
2696 if (qins->registers.out_reg != 0) {
2697 /* Mark down writes */
2698
2699 written_mask |= (1 << qins->registers.out_reg);
2700 } else {
2701 /* Mark down the register dependencies for errata check */
2702
2703 if (qins->registers.src1_reg < 16)
2704 register_dep_mask |= (1 << qins->registers.src1_reg);
2705
2706 if (qins->registers.src2_reg < 16)
2707 register_dep_mask |= (1 << qins->registers.src2_reg);
2708
2709 int mask = qins->alu.mask;
2710
2711 for (int c = 0; c < 4; ++c)
2712 if (mask & (0x3 << (2 * c)))
2713 components[c] = true;
2714
2715 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2716
2717 if (qins->unit == UNIT_VLUT)
2718 written_late = true;
2719 }
2720
2721 /* Advance instruction pointer */
2722 qins = mir_next_op(qins);
2723 }
2724
2725
2726 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2727 if (register_dep_mask & written_mask) {
2728 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2729 break;
2730 }
2731
2732 if (written_late)
2733 break;
2734
2735 /* If even a single component is not written, break it up (conservative check). */
2736 bool breakup = false;
2737
2738 for (int c = 0; c < 4; ++c)
2739 if (!components[c])
2740 breakup = true;
2741
2742 if (breakup)
2743 break;
2744
2745 /* Otherwise, we're free to proceed */
2746 }
2747 }
2748
2749 if (ains->unit == ALU_ENAB_BRANCH) {
2750 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2751 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2752 bytes_emitted += sizeof(midgard_branch_extended);
2753 } else {
2754 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2755 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2756 bytes_emitted += sizeof(ains->br_compact);
2757 }
2758 } else {
2759 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2760 bytes_emitted += sizeof(midgard_reg_info);
2761
2762 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2763 bundle.body_words_count++;
2764 bytes_emitted += sizeof(midgard_scalar_alu);
2765 }
2766
2767 /* Defer marking until after writing to allow for break */
2768 control |= ains->unit;
2769 last_unit = ains->unit;
2770 ++instructions_emitted;
2771 ++index;
2772 }
2773
2774 /* Bubble up the number of instructions for skipping */
2775 instructions_consumed = index - 1;
2776
2777 int padding = 0;
2778
2779 /* Pad ALU op to nearest word */
2780
2781 if (bytes_emitted & 15) {
2782 padding = 16 - (bytes_emitted & 15);
2783 bytes_emitted += padding;
2784 }
2785
2786 /* Constants must always be quadwords */
2787 if (bundle.has_embedded_constants)
2788 bytes_emitted += 16;
2789
2790 /* Size ALU instruction for tag */
2791 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2792 bundle.padding = padding;
2793 bundle.control = bundle.tag | control;
2794
2795 break;
2796 }
2797
2798 case TAG_LOAD_STORE_4: {
2799 /* Load store instructions have two words at once. If
2800 * we only have one queued up, we need to NOP pad.
2801 * Otherwise, we store both in succession to save space
2802 * and cycles -- letting them go in parallel -- skip
2803 * the next. The usefulness of this optimisation is
2804 * greatly dependent on the quality of the instruction
2805 * scheduler.
2806 */
2807
2808 midgard_instruction *next_op = mir_next_op(ins);
2809
2810 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2811 /* As the two operate concurrently, make sure
2812 * they are not dependent */
2813
2814 if (can_run_concurrent_ssa(ins, next_op) || true) {
2815 /* Skip ahead, since it's redundant with the pair */
2816 instructions_consumed = 1 + (instructions_emitted++);
2817 }
2818 }
2819
2820 break;
2821 }
2822
2823 default:
2824 /* Texture ops default to single-op-per-bundle scheduling */
2825 break;
2826 }
2827
2828 /* Copy the instructions into the bundle */
2829 bundle.instruction_count = instructions_emitted + 1;
2830
2831 int used_idx = 0;
2832
2833 midgard_instruction *uins = ins;
2834 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2835 bundle.instructions[used_idx++] = *uins;
2836 uins = mir_next_op(uins);
2837 }
2838
2839 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2840
2841 return bundle;
2842 }
2843
2844 static int
2845 quadword_size(int tag)
2846 {
2847 switch (tag) {
2848 case TAG_ALU_4:
2849 return 1;
2850
2851 case TAG_ALU_8:
2852 return 2;
2853
2854 case TAG_ALU_12:
2855 return 3;
2856
2857 case TAG_ALU_16:
2858 return 4;
2859
2860 case TAG_LOAD_STORE_4:
2861 return 1;
2862
2863 case TAG_TEXTURE_4:
2864 return 1;
2865
2866 default:
2867 assert(0);
2868 return 0;
2869 }
2870 }
2871
2872 /* Schedule a single block by iterating its instruction to create bundles.
2873 * While we go, tally about the bundle sizes to compute the block size. */
2874
2875 static void
2876 schedule_block(compiler_context *ctx, midgard_block *block)
2877 {
2878 util_dynarray_init(&block->bundles, NULL);
2879
2880 block->quadword_count = 0;
2881
2882 mir_foreach_instr_in_block(block, ins) {
2883 int skip;
2884 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2885 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2886
2887 if (bundle.has_blend_constant) {
2888 /* TODO: Multiblock? */
2889 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2890 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2891 }
2892
2893 while(skip--)
2894 ins = mir_next_op(ins);
2895
2896 block->quadword_count += quadword_size(bundle.tag);
2897 }
2898
2899 block->is_scheduled = true;
2900 }
2901
2902 static void
2903 schedule_program(compiler_context *ctx)
2904 {
2905 /* We run RA prior to scheduling */
2906 struct ra_graph *g = allocate_registers(ctx);
2907 install_registers(ctx, g);
2908
2909 mir_foreach_block(ctx, block) {
2910 schedule_block(ctx, block);
2911 }
2912 }
2913
2914 /* After everything is scheduled, emit whole bundles at a time */
2915
2916 static void
2917 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2918 {
2919 int lookahead = next_tag << 4;
2920
2921 switch (bundle->tag) {
2922 case TAG_ALU_4:
2923 case TAG_ALU_8:
2924 case TAG_ALU_12:
2925 case TAG_ALU_16: {
2926 /* Actually emit each component */
2927 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2928
2929 for (int i = 0; i < bundle->register_words_count; ++i)
2930 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2931
2932 /* Emit body words based on the instructions bundled */
2933 for (int i = 0; i < bundle->instruction_count; ++i) {
2934 midgard_instruction *ins = &bundle->instructions[i];
2935
2936 if (ins->unit & UNITS_ANY_VECTOR) {
2937 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2938 } else if (ins->compact_branch) {
2939 /* Dummy move, XXX DRY */
2940 if ((i == 0) && ins->writeout) {
2941 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2942 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2943 }
2944
2945 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2946 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2947 } else {
2948 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2949 }
2950 } else {
2951 /* Scalar */
2952 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2953 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2954 }
2955 }
2956
2957 /* Emit padding (all zero) */
2958 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2959
2960 /* Tack on constants */
2961
2962 if (bundle->has_embedded_constants) {
2963 util_dynarray_append(emission, float, bundle->constants[0]);
2964 util_dynarray_append(emission, float, bundle->constants[1]);
2965 util_dynarray_append(emission, float, bundle->constants[2]);
2966 util_dynarray_append(emission, float, bundle->constants[3]);
2967 }
2968
2969 break;
2970 }
2971
2972 case TAG_LOAD_STORE_4: {
2973 /* One or two composing instructions */
2974
2975 uint64_t current64, next64 = LDST_NOP;
2976
2977 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2978
2979 if (bundle->instruction_count == 2)
2980 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2981
2982 midgard_load_store instruction = {
2983 .type = bundle->tag,
2984 .next_type = next_tag,
2985 .word1 = current64,
2986 .word2 = next64
2987 };
2988
2989 util_dynarray_append(emission, midgard_load_store, instruction);
2990
2991 break;
2992 }
2993
2994 case TAG_TEXTURE_4: {
2995 /* Texture instructions are easy, since there is no
2996 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2997
2998 midgard_instruction *ins = &bundle->instructions[0];
2999
3000 ins->texture.type = TAG_TEXTURE_4;
3001 ins->texture.next_type = next_tag;
3002
3003 ctx->texture_op_count--;
3004
3005 if (!ctx->texture_op_count) {
3006 ins->texture.cont = 0;
3007 ins->texture.last = 1;
3008 }
3009
3010 util_dynarray_append(emission, midgard_texture_word, ins->texture);
3011 break;
3012 }
3013
3014 default:
3015 DBG("Unknown midgard instruction type\n");
3016 assert(0);
3017 break;
3018 }
3019 }
3020
3021
3022 /* ALU instructions can inline or embed constants, which decreases register
3023 * pressure and saves space. */
3024
3025 #define CONDITIONAL_ATTACH(src) { \
3026 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
3027 \
3028 if (entry) { \
3029 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
3030 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
3031 } \
3032 }
3033
3034 static void
3035 inline_alu_constants(compiler_context *ctx)
3036 {
3037 mir_foreach_instr(ctx, alu) {
3038 /* Other instructions cannot inline constants */
3039 if (alu->type != TAG_ALU_4) continue;
3040
3041 /* If there is already a constant here, we can do nothing */
3042 if (alu->has_constants) continue;
3043
3044 /* It makes no sense to inline constants on a branch */
3045 if (alu->compact_branch || alu->prepacked_branch) continue;
3046
3047 CONDITIONAL_ATTACH(src0);
3048
3049 if (!alu->has_constants) {
3050 CONDITIONAL_ATTACH(src1)
3051 } else if (!alu->inline_constant) {
3052 /* Corner case: _two_ vec4 constants, for instance with a
3053 * csel. For this case, we can only use a constant
3054 * register for one, we'll have to emit a move for the
3055 * other. Note, if both arguments are constants, then
3056 * necessarily neither argument depends on the value of
3057 * any particular register. As the destination register
3058 * will be wiped, that means we can spill the constant
3059 * to the destination register.
3060 */
3061
3062 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
3063 unsigned scratch = alu->ssa_args.dest;
3064
3065 if (entry) {
3066 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
3067 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
3068
3069 /* Force a break XXX Defer r31 writes */
3070 ins.unit = UNIT_VLUT;
3071
3072 /* Set the source */
3073 alu->ssa_args.src1 = scratch;
3074
3075 /* Inject us -before- the last instruction which set r31 */
3076 mir_insert_instruction_before(mir_prev_op(alu), ins);
3077 }
3078 }
3079 }
3080 }
3081
3082 /* Midgard supports two types of constants, embedded constants (128-bit) and
3083 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
3084 * constants can be demoted to inline constants, for space savings and
3085 * sometimes a performance boost */
3086
3087 static void
3088 embedded_to_inline_constant(compiler_context *ctx)
3089 {
3090 mir_foreach_instr(ctx, ins) {
3091 if (!ins->has_constants) continue;
3092
3093 if (ins->ssa_args.inline_constant) continue;
3094
3095 /* Blend constants must not be inlined by definition */
3096 if (ins->has_blend_constant) continue;
3097
3098 /* src1 cannot be an inline constant due to encoding
3099 * restrictions. So, if possible we try to flip the arguments
3100 * in that case */
3101
3102 int op = ins->alu.op;
3103
3104 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3105 switch (op) {
3106 /* These ops require an operational change to flip
3107 * their arguments TODO */
3108 case midgard_alu_op_flt:
3109 case midgard_alu_op_fle:
3110 case midgard_alu_op_ilt:
3111 case midgard_alu_op_ile:
3112 case midgard_alu_op_fcsel:
3113 case midgard_alu_op_icsel:
3114 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3115 default:
3116 break;
3117 }
3118
3119 if (alu_opcode_props[op].props & OP_COMMUTES) {
3120 /* Flip the SSA numbers */
3121 ins->ssa_args.src0 = ins->ssa_args.src1;
3122 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3123
3124 /* And flip the modifiers */
3125
3126 unsigned src_temp;
3127
3128 src_temp = ins->alu.src2;
3129 ins->alu.src2 = ins->alu.src1;
3130 ins->alu.src1 = src_temp;
3131 }
3132 }
3133
3134 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3135 /* Extract the source information */
3136
3137 midgard_vector_alu_src *src;
3138 int q = ins->alu.src2;
3139 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3140 src = m;
3141
3142 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3143 int component = src->swizzle & 3;
3144
3145 /* Scale constant appropriately, if we can legally */
3146 uint16_t scaled_constant = 0;
3147
3148 if (midgard_is_integer_op(op)) {
3149 unsigned int *iconstants = (unsigned int *) ins->constants;
3150 scaled_constant = (uint16_t) iconstants[component];
3151
3152 /* Constant overflow after resize */
3153 if (scaled_constant != iconstants[component])
3154 continue;
3155 } else {
3156 float original = (float) ins->constants[component];
3157 scaled_constant = _mesa_float_to_half(original);
3158
3159 /* Check for loss of precision. If this is
3160 * mediump, we don't care, but for a highp
3161 * shader, we need to pay attention. NIR
3162 * doesn't yet tell us which mode we're in!
3163 * Practically this prevents most constants
3164 * from being inlined, sadly. */
3165
3166 float fp32 = _mesa_half_to_float(scaled_constant);
3167
3168 if (fp32 != original)
3169 continue;
3170 }
3171
3172 /* We don't know how to handle these with a constant */
3173
3174 if (src->mod || src->half || src->rep_low || src->rep_high) {
3175 DBG("Bailing inline constant...\n");
3176 continue;
3177 }
3178
3179 /* Make sure that the constant is not itself a
3180 * vector by checking if all accessed values
3181 * (by the swizzle) are the same. */
3182
3183 uint32_t *cons = (uint32_t *) ins->constants;
3184 uint32_t value = cons[component];
3185
3186 bool is_vector = false;
3187 unsigned mask = effective_writemask(&ins->alu);
3188
3189 for (int c = 1; c < 4; ++c) {
3190 /* We only care if this component is actually used */
3191 if (!(mask & (1 << c)))
3192 continue;
3193
3194 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3195
3196 if (test != value) {
3197 is_vector = true;
3198 break;
3199 }
3200 }
3201
3202 if (is_vector)
3203 continue;
3204
3205 /* Get rid of the embedded constant */
3206 ins->has_constants = false;
3207 ins->ssa_args.src1 = SSA_UNUSED_0;
3208 ins->ssa_args.inline_constant = true;
3209 ins->inline_constant = scaled_constant;
3210 }
3211 }
3212 }
3213
3214 /* Map normal SSA sources to other SSA sources / fixed registers (like
3215 * uniforms) */
3216
3217 static void
3218 map_ssa_to_alias(compiler_context *ctx, int *ref)
3219 {
3220 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3221
3222 if (alias) {
3223 /* Remove entry in leftovers to avoid a redunant fmov */
3224
3225 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3226
3227 if (leftover)
3228 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3229
3230 /* Assign the alias map */
3231 *ref = alias - 1;
3232 return;
3233 }
3234 }
3235
3236 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3237 * texture pipeline */
3238
3239 static bool
3240 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3241 {
3242 bool progress = false;
3243
3244 mir_foreach_instr_in_block_safe(block, ins) {
3245 if (ins->type != TAG_ALU_4) continue;
3246 if (ins->compact_branch) continue;
3247
3248 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3249 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3250 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3251
3252 mir_remove_instruction(ins);
3253 progress = true;
3254 }
3255
3256 return progress;
3257 }
3258
3259 static bool
3260 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
3261 {
3262 /* abs or neg */
3263 if (!is_int && src.mod) return true;
3264
3265 /* swizzle */
3266 for (unsigned c = 0; c < 4; ++c) {
3267 if (!(mask & (1 << c))) continue;
3268 if (((src.swizzle >> (2*c)) & 3) != c) return true;
3269 }
3270
3271 return false;
3272 }
3273
3274 static bool
3275 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3276 {
3277 bool progress = false;
3278
3279 mir_foreach_instr_in_block_safe(block, ins) {
3280 if (ins->type != TAG_ALU_4) continue;
3281 if (!OP_IS_MOVE(ins->alu.op)) continue;
3282
3283 unsigned from = ins->ssa_args.src1;
3284 unsigned to = ins->ssa_args.dest;
3285
3286 /* We only work on pure SSA */
3287
3288 if (to >= SSA_FIXED_MINIMUM) continue;
3289 if (from >= SSA_FIXED_MINIMUM) continue;
3290 if (to >= ctx->func->impl->ssa_alloc) continue;
3291 if (from >= ctx->func->impl->ssa_alloc) continue;
3292
3293 /* Constant propagation is not handled here, either */
3294 if (ins->ssa_args.inline_constant) continue;
3295 if (ins->has_constants) continue;
3296
3297 /* Also, if the move has side effects, we're helpless */
3298
3299 midgard_vector_alu_src src =
3300 vector_alu_from_unsigned(ins->alu.src2);
3301 unsigned mask = squeeze_writemask(ins->alu.mask);
3302 bool is_int = midgard_is_integer_op(ins->alu.op);
3303
3304 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3305 if (ins->alu.outmod != midgard_outmod_none) continue;
3306
3307 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3308 if (v->ssa_args.src0 == to) {
3309 v->ssa_args.src0 = from;
3310 progress = true;
3311 }
3312
3313 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3314 v->ssa_args.src1 = from;
3315 progress = true;
3316 }
3317 }
3318 }
3319
3320 return progress;
3321 }
3322
3323 static bool
3324 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3325 {
3326 bool progress = false;
3327
3328 mir_foreach_instr_in_block_safe(block, ins) {
3329 if (ins->type != TAG_ALU_4) continue;
3330 if (!OP_IS_MOVE(ins->alu.op)) continue;
3331
3332 unsigned from = ins->ssa_args.src1;
3333 unsigned to = ins->ssa_args.dest;
3334
3335 /* Make sure it's simple enough for us to handle */
3336
3337 if (from >= SSA_FIXED_MINIMUM) continue;
3338 if (from >= ctx->func->impl->ssa_alloc) continue;
3339 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3340 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3341
3342 bool eliminated = false;
3343
3344 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3345 /* The texture registers are not SSA so be careful.
3346 * Conservatively, just stop if we hit a texture op
3347 * (even if it may not write) to where we are */
3348
3349 if (v->type != TAG_ALU_4)
3350 break;
3351
3352 if (v->ssa_args.dest == from) {
3353 /* We don't want to track partial writes ... */
3354 if (v->alu.mask == 0xF) {
3355 v->ssa_args.dest = to;
3356 eliminated = true;
3357 }
3358
3359 break;
3360 }
3361 }
3362
3363 if (eliminated)
3364 mir_remove_instruction(ins);
3365
3366 progress |= eliminated;
3367 }
3368
3369 return progress;
3370 }
3371
3372 /* The following passes reorder MIR instructions to enable better scheduling */
3373
3374 static void
3375 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3376 {
3377 mir_foreach_instr_in_block_safe(block, ins) {
3378 if (ins->type != TAG_LOAD_STORE_4) continue;
3379
3380 /* We've found a load/store op. Check if next is also load/store. */
3381 midgard_instruction *next_op = mir_next_op(ins);
3382 if (&next_op->link != &block->instructions) {
3383 if (next_op->type == TAG_LOAD_STORE_4) {
3384 /* If so, we're done since we're a pair */
3385 ins = mir_next_op(ins);
3386 continue;
3387 }
3388
3389 /* Maximum search distance to pair, to avoid register pressure disasters */
3390 int search_distance = 8;
3391
3392 /* Otherwise, we have an orphaned load/store -- search for another load */
3393 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3394 /* Terminate search if necessary */
3395 if (!(search_distance--)) break;
3396
3397 if (c->type != TAG_LOAD_STORE_4) continue;
3398
3399 /* Stores cannot be reordered, since they have
3400 * dependencies. For the same reason, indirect
3401 * loads cannot be reordered as their index is
3402 * loaded in r27.w */
3403
3404 if (OP_IS_STORE(c->load_store.op)) continue;
3405
3406 /* It appears the 0x800 bit is set whenever a
3407 * load is direct, unset when it is indirect.
3408 * Skip indirect loads. */
3409
3410 if (!(c->load_store.unknown & 0x800)) continue;
3411
3412 /* We found one! Move it up to pair and remove it from the old location */
3413
3414 mir_insert_instruction_before(ins, *c);
3415 mir_remove_instruction(c);
3416
3417 break;
3418 }
3419 }
3420 }
3421 }
3422
3423 /* Emit varying stores late */
3424
3425 static void
3426 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3427 /* Iterate in reverse to get the final write, rather than the first */
3428
3429 mir_foreach_instr_in_block_safe_rev(block, ins) {
3430 /* Check if what we just wrote needs a store */
3431 int idx = ins->ssa_args.dest;
3432 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3433
3434 if (!varying) continue;
3435
3436 varying -= 1;
3437
3438 /* We need to store to the appropriate varying, so emit the
3439 * move/store */
3440
3441 /* TODO: Integrate with special purpose RA (and scheduler?) */
3442 bool high_varying_register = false;
3443
3444 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3445
3446 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3447 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3448
3449 mir_insert_instruction_before(mir_next_op(ins), st);
3450 mir_insert_instruction_before(mir_next_op(ins), mov);
3451
3452 /* We no longer need to store this varying */
3453 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3454 }
3455 }
3456
3457 /* If there are leftovers after the below pass, emit actual fmov
3458 * instructions for the slow-but-correct path */
3459
3460 static void
3461 emit_leftover_move(compiler_context *ctx)
3462 {
3463 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3464 int base = ((uintptr_t) leftover->key) - 1;
3465 int mapped = base;
3466
3467 map_ssa_to_alias(ctx, &mapped);
3468 EMIT(fmov, mapped, blank_alu_src, base);
3469 }
3470 }
3471
3472 static void
3473 actualise_ssa_to_alias(compiler_context *ctx)
3474 {
3475 mir_foreach_instr(ctx, ins) {
3476 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3477 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3478 }
3479
3480 emit_leftover_move(ctx);
3481 }
3482
3483 static void
3484 emit_fragment_epilogue(compiler_context *ctx)
3485 {
3486 /* Special case: writing out constants requires us to include the move
3487 * explicitly now, so shove it into r0 */
3488
3489 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3490
3491 if (constant_value) {
3492 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3493 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3494 emit_mir_instruction(ctx, ins);
3495 }
3496
3497 /* Perform the actual fragment writeout. We have two writeout/branch
3498 * instructions, forming a loop until writeout is successful as per the
3499 * docs. TODO: gl_FragDepth */
3500
3501 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3502 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3503 }
3504
3505 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3506 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3507 * with the int8 analogue to the fragment epilogue */
3508
3509 static void
3510 emit_blend_epilogue(compiler_context *ctx)
3511 {
3512 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3513
3514 midgard_instruction scale = {
3515 .type = TAG_ALU_4,
3516 .unit = UNIT_VMUL,
3517 .inline_constant = _mesa_float_to_half(255.0),
3518 .ssa_args = {
3519 .src0 = SSA_FIXED_REGISTER(0),
3520 .src1 = SSA_UNUSED_0,
3521 .dest = SSA_FIXED_REGISTER(24),
3522 .inline_constant = true
3523 },
3524 .alu = {
3525 .op = midgard_alu_op_fmul,
3526 .reg_mode = midgard_reg_mode_32,
3527 .dest_override = midgard_dest_override_lower,
3528 .mask = 0xFF,
3529 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3530 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3531 }
3532 };
3533
3534 emit_mir_instruction(ctx, scale);
3535
3536 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3537
3538 midgard_vector_alu_src alu_src = blank_alu_src;
3539 alu_src.half = true;
3540
3541 midgard_instruction f2u8 = {
3542 .type = TAG_ALU_4,
3543 .ssa_args = {
3544 .src0 = SSA_FIXED_REGISTER(24),
3545 .src1 = SSA_UNUSED_0,
3546 .dest = SSA_FIXED_REGISTER(0),
3547 .inline_constant = true
3548 },
3549 .alu = {
3550 .op = midgard_alu_op_f2u8,
3551 .reg_mode = midgard_reg_mode_16,
3552 .dest_override = midgard_dest_override_lower,
3553 .outmod = midgard_outmod_pos,
3554 .mask = 0xF,
3555 .src1 = vector_alu_srco_unsigned(alu_src),
3556 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3557 }
3558 };
3559
3560 emit_mir_instruction(ctx, f2u8);
3561
3562 /* vmul.imov.quarter r0, r0, r0 */
3563
3564 midgard_instruction imov_8 = {
3565 .type = TAG_ALU_4,
3566 .ssa_args = {
3567 .src0 = SSA_UNUSED_1,
3568 .src1 = SSA_FIXED_REGISTER(0),
3569 .dest = SSA_FIXED_REGISTER(0),
3570 },
3571 .alu = {
3572 .op = midgard_alu_op_imov,
3573 .reg_mode = midgard_reg_mode_8,
3574 .dest_override = midgard_dest_override_none,
3575 .mask = 0xFF,
3576 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3577 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3578 }
3579 };
3580
3581 /* Emit branch epilogue with the 8-bit move as the source */
3582
3583 emit_mir_instruction(ctx, imov_8);
3584 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3585
3586 emit_mir_instruction(ctx, imov_8);
3587 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3588 }
3589
3590 static midgard_block *
3591 emit_block(compiler_context *ctx, nir_block *block)
3592 {
3593 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3594 list_addtail(&this_block->link, &ctx->blocks);
3595
3596 this_block->is_scheduled = false;
3597 ++ctx->block_count;
3598
3599 ctx->texture_index[0] = -1;
3600 ctx->texture_index[1] = -1;
3601
3602 /* Add us as a successor to the block we are following */
3603 if (ctx->current_block)
3604 midgard_block_add_successor(ctx->current_block, this_block);
3605
3606 /* Set up current block */
3607 list_inithead(&this_block->instructions);
3608 ctx->current_block = this_block;
3609
3610 nir_foreach_instr(instr, block) {
3611 emit_instr(ctx, instr);
3612 ++ctx->instruction_count;
3613 }
3614
3615 inline_alu_constants(ctx);
3616 embedded_to_inline_constant(ctx);
3617
3618 /* Perform heavylifting for aliasing */
3619 actualise_ssa_to_alias(ctx);
3620
3621 midgard_emit_store(ctx, this_block);
3622 midgard_pair_load_store(ctx, this_block);
3623
3624 /* Append fragment shader epilogue (value writeout) */
3625 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3626 if (block == nir_impl_last_block(ctx->func->impl)) {
3627 if (ctx->is_blend)
3628 emit_blend_epilogue(ctx);
3629 else
3630 emit_fragment_epilogue(ctx);
3631 }
3632 }
3633
3634 if (block == nir_start_block(ctx->func->impl))
3635 ctx->initial_block = this_block;
3636
3637 if (block == nir_impl_last_block(ctx->func->impl))
3638 ctx->final_block = this_block;
3639
3640 /* Allow the next control flow to access us retroactively, for
3641 * branching etc */
3642 ctx->current_block = this_block;
3643
3644 /* Document the fallthrough chain */
3645 ctx->previous_source_block = this_block;
3646
3647 return this_block;
3648 }
3649
3650 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3651
3652 static void
3653 emit_if(struct compiler_context *ctx, nir_if *nif)
3654 {
3655 /* Conditional branches expect the condition in r31.w; emit a move for
3656 * that in the _previous_ block (which is the current block). */
3657 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3658
3659 /* Speculatively emit the branch, but we can't fill it in until later */
3660 EMIT(branch, true, true);
3661 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3662
3663 /* Emit the two subblocks */
3664 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3665
3666 /* Emit a jump from the end of the then block to the end of the else */
3667 EMIT(branch, false, false);
3668 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3669
3670 /* Emit second block, and check if it's empty */
3671
3672 int else_idx = ctx->block_count;
3673 int count_in = ctx->instruction_count;
3674 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3675 int after_else_idx = ctx->block_count;
3676
3677 /* Now that we have the subblocks emitted, fix up the branches */
3678
3679 assert(then_block);
3680 assert(else_block);
3681
3682 if (ctx->instruction_count == count_in) {
3683 /* The else block is empty, so don't emit an exit jump */
3684 mir_remove_instruction(then_exit);
3685 then_branch->branch.target_block = after_else_idx;
3686 } else {
3687 then_branch->branch.target_block = else_idx;
3688 then_exit->branch.target_block = after_else_idx;
3689 }
3690 }
3691
3692 static void
3693 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3694 {
3695 /* Remember where we are */
3696 midgard_block *start_block = ctx->current_block;
3697
3698 /* Allocate a loop number, growing the current inner loop depth */
3699 int loop_idx = ++ctx->current_loop_depth;
3700
3701 /* Get index from before the body so we can loop back later */
3702 int start_idx = ctx->block_count;
3703
3704 /* Emit the body itself */
3705 emit_cf_list(ctx, &nloop->body);
3706
3707 /* Branch back to loop back */
3708 struct midgard_instruction br_back = v_branch(false, false);
3709 br_back.branch.target_block = start_idx;
3710 emit_mir_instruction(ctx, br_back);
3711
3712 /* Mark down that branch in the graph. Note that we're really branching
3713 * to the block *after* we started in. TODO: Why doesn't the branch
3714 * itself have an off-by-one then...? */
3715 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3716
3717 /* Find the index of the block about to follow us (note: we don't add
3718 * one; blocks are 0-indexed so we get a fencepost problem) */
3719 int break_block_idx = ctx->block_count;
3720
3721 /* Fix up the break statements we emitted to point to the right place,
3722 * now that we can allocate a block number for them */
3723
3724 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3725 mir_foreach_instr_in_block(block, ins) {
3726 if (ins->type != TAG_ALU_4) continue;
3727 if (!ins->compact_branch) continue;
3728 if (ins->prepacked_branch) continue;
3729
3730 /* We found a branch -- check the type to see if we need to do anything */
3731 if (ins->branch.target_type != TARGET_BREAK) continue;
3732
3733 /* It's a break! Check if it's our break */
3734 if (ins->branch.target_break != loop_idx) continue;
3735
3736 /* Okay, cool, we're breaking out of this loop.
3737 * Rewrite from a break to a goto */
3738
3739 ins->branch.target_type = TARGET_GOTO;
3740 ins->branch.target_block = break_block_idx;
3741 }
3742 }
3743
3744 /* Now that we've finished emitting the loop, free up the depth again
3745 * so we play nice with recursion amid nested loops */
3746 --ctx->current_loop_depth;
3747 }
3748
3749 static midgard_block *
3750 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3751 {
3752 midgard_block *start_block = NULL;
3753
3754 foreach_list_typed(nir_cf_node, node, node, list) {
3755 switch (node->type) {
3756 case nir_cf_node_block: {
3757 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3758
3759 if (!start_block)
3760 start_block = block;
3761
3762 break;
3763 }
3764
3765 case nir_cf_node_if:
3766 emit_if(ctx, nir_cf_node_as_if(node));
3767 break;
3768
3769 case nir_cf_node_loop:
3770 emit_loop(ctx, nir_cf_node_as_loop(node));
3771 break;
3772
3773 case nir_cf_node_function:
3774 assert(0);
3775 break;
3776 }
3777 }
3778
3779 return start_block;
3780 }
3781
3782 /* Due to lookahead, we need to report the first tag executed in the command
3783 * stream and in branch targets. An initial block might be empty, so iterate
3784 * until we find one that 'works' */
3785
3786 static unsigned
3787 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3788 {
3789 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3790
3791 unsigned first_tag = 0;
3792
3793 do {
3794 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3795
3796 if (initial_bundle) {
3797 first_tag = initial_bundle->tag;
3798 break;
3799 }
3800
3801 /* Initial block is empty, try the next block */
3802 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3803 } while(initial_block != NULL);
3804
3805 assert(first_tag);
3806 return first_tag;
3807 }
3808
3809 int
3810 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3811 {
3812 struct util_dynarray *compiled = &program->compiled;
3813
3814 midgard_debug = debug_get_option_midgard_debug();
3815
3816 compiler_context ictx = {
3817 .nir = nir,
3818 .stage = nir->info.stage,
3819
3820 .is_blend = is_blend,
3821 .blend_constant_offset = -1,
3822
3823 .alpha_ref = program->alpha_ref
3824 };
3825
3826 compiler_context *ctx = &ictx;
3827
3828 /* TODO: Decide this at runtime */
3829 ctx->uniform_cutoff = 8;
3830
3831 /* Assign var locations early, so the epilogue can use them if necessary */
3832
3833 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3834 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3835 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3836
3837 /* Initialize at a global (not block) level hash tables */
3838
3839 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3840 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3841 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3842 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3843 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3844 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3845 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3846
3847 /* Record the varying mapping for the command stream's bookkeeping */
3848
3849 struct exec_list *varyings =
3850 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3851
3852 nir_foreach_variable(var, varyings) {
3853 unsigned loc = var->data.driver_location;
3854 unsigned sz = glsl_type_size(var->type, FALSE);
3855
3856 for (int c = 0; c < sz; ++c) {
3857 program->varyings[loc + c] = var->data.location;
3858 }
3859 }
3860
3861 /* Lower gl_Position pre-optimisation */
3862
3863 if (ctx->stage == MESA_SHADER_VERTEX)
3864 NIR_PASS_V(nir, nir_lower_viewport_transform);
3865
3866 NIR_PASS_V(nir, nir_lower_var_copies);
3867 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3868 NIR_PASS_V(nir, nir_split_var_copies);
3869 NIR_PASS_V(nir, nir_lower_var_copies);
3870 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3871 NIR_PASS_V(nir, nir_lower_var_copies);
3872 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3873
3874 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3875
3876 /* Optimisation passes */
3877
3878 optimise_nir(nir);
3879
3880 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3881 nir_print_shader(nir, stdout);
3882 }
3883
3884 /* Assign sysvals and counts, now that we're sure
3885 * (post-optimisation) */
3886
3887 midgard_nir_assign_sysvals(ctx, nir);
3888
3889 program->uniform_count = nir->num_uniforms;
3890 program->sysval_count = ctx->sysval_count;
3891 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3892
3893 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3894 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3895
3896 nir_foreach_function(func, nir) {
3897 if (!func->impl)
3898 continue;
3899
3900 list_inithead(&ctx->blocks);
3901 ctx->block_count = 0;
3902 ctx->func = func;
3903
3904 emit_cf_list(ctx, &func->impl->body);
3905 emit_block(ctx, func->impl->end_block);
3906
3907 break; /* TODO: Multi-function shaders */
3908 }
3909
3910 util_dynarray_init(compiled, NULL);
3911
3912 /* MIR-level optimizations */
3913
3914 bool progress = false;
3915
3916 do {
3917 progress = false;
3918
3919 mir_foreach_block(ctx, block) {
3920 progress |= midgard_opt_copy_prop(ctx, block);
3921 progress |= midgard_opt_copy_prop_tex(ctx, block);
3922 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3923 }
3924 } while (progress);
3925
3926 /* Schedule! */
3927 schedule_program(ctx);
3928
3929 /* Now that all the bundles are scheduled and we can calculate block
3930 * sizes, emit actual branch instructions rather than placeholders */
3931
3932 int br_block_idx = 0;
3933
3934 mir_foreach_block(ctx, block) {
3935 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3936 for (int c = 0; c < bundle->instruction_count; ++c) {
3937 midgard_instruction *ins = &bundle->instructions[c];
3938
3939 if (!midgard_is_branch_unit(ins->unit)) continue;
3940
3941 if (ins->prepacked_branch) continue;
3942
3943 /* Parse some basic branch info */
3944 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3945 bool is_conditional = ins->branch.conditional;
3946 bool is_inverted = ins->branch.invert_conditional;
3947 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3948
3949 /* Determine the block we're jumping to */
3950 int target_number = ins->branch.target_block;
3951
3952 /* Report the destination tag. Discards don't need this */
3953 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3954
3955 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3956 int quadword_offset = 0;
3957
3958 if (is_discard) {
3959 /* Jump to the end of the shader. We
3960 * need to include not only the
3961 * following blocks, but also the
3962 * contents of our current block (since
3963 * discard can come in the middle of
3964 * the block) */
3965
3966 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3967
3968 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3969 quadword_offset += quadword_size(bun->tag);
3970 }
3971
3972 mir_foreach_block_from(ctx, blk, b) {
3973 quadword_offset += b->quadword_count;
3974 }
3975
3976 } else if (target_number > br_block_idx) {
3977 /* Jump forward */
3978
3979 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3980 midgard_block *blk = mir_get_block(ctx, idx);
3981 assert(blk);
3982
3983 quadword_offset += blk->quadword_count;
3984 }
3985 } else {
3986 /* Jump backwards */
3987
3988 for (int idx = br_block_idx; idx >= target_number; --idx) {
3989 midgard_block *blk = mir_get_block(ctx, idx);
3990 assert(blk);
3991
3992 quadword_offset -= blk->quadword_count;
3993 }
3994 }
3995
3996 /* Unconditional extended branches (far jumps)
3997 * have issues, so we always use a conditional
3998 * branch, setting the condition to always for
3999 * unconditional. For compact unconditional
4000 * branches, cond isn't used so it doesn't
4001 * matter what we pick. */
4002
4003 midgard_condition cond =
4004 !is_conditional ? midgard_condition_always :
4005 is_inverted ? midgard_condition_false :
4006 midgard_condition_true;
4007
4008 midgard_jmp_writeout_op op =
4009 is_discard ? midgard_jmp_writeout_op_discard :
4010 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
4011 midgard_jmp_writeout_op_branch_cond;
4012
4013 if (!is_compact) {
4014 midgard_branch_extended branch =
4015 midgard_create_branch_extended(
4016 cond, op,
4017 dest_tag,
4018 quadword_offset);
4019
4020 memcpy(&ins->branch_extended, &branch, sizeof(branch));
4021 } else if (is_conditional || is_discard) {
4022 midgard_branch_cond branch = {
4023 .op = op,
4024 .dest_tag = dest_tag,
4025 .offset = quadword_offset,
4026 .cond = cond
4027 };
4028
4029 assert(branch.offset == quadword_offset);
4030
4031 memcpy(&ins->br_compact, &branch, sizeof(branch));
4032 } else {
4033 assert(op == midgard_jmp_writeout_op_branch_uncond);
4034
4035 midgard_branch_uncond branch = {
4036 .op = op,
4037 .dest_tag = dest_tag,
4038 .offset = quadword_offset,
4039 .unknown = 1
4040 };
4041
4042 assert(branch.offset == quadword_offset);
4043
4044 memcpy(&ins->br_compact, &branch, sizeof(branch));
4045 }
4046 }
4047 }
4048
4049 ++br_block_idx;
4050 }
4051
4052 /* Emit flat binary from the instruction arrays. Iterate each block in
4053 * sequence. Save instruction boundaries such that lookahead tags can
4054 * be assigned easily */
4055
4056 /* Cache _all_ bundles in source order for lookahead across failed branches */
4057
4058 int bundle_count = 0;
4059 mir_foreach_block(ctx, block) {
4060 bundle_count += block->bundles.size / sizeof(midgard_bundle);
4061 }
4062 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
4063 int bundle_idx = 0;
4064 mir_foreach_block(ctx, block) {
4065 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4066 source_order_bundles[bundle_idx++] = bundle;
4067 }
4068 }
4069
4070 int current_bundle = 0;
4071
4072 mir_foreach_block(ctx, block) {
4073 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
4074 int lookahead = 1;
4075
4076 if (current_bundle + 1 < bundle_count) {
4077 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
4078
4079 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
4080 lookahead = 1;
4081 } else {
4082 lookahead = next;
4083 }
4084 }
4085
4086 emit_binary_bundle(ctx, bundle, compiled, lookahead);
4087 ++current_bundle;
4088 }
4089
4090 /* TODO: Free deeper */
4091 //util_dynarray_fini(&block->instructions);
4092 }
4093
4094 free(source_order_bundles);
4095
4096 /* Report the very first tag executed */
4097 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
4098
4099 /* Deal with off-by-one related to the fencepost problem */
4100 program->work_register_count = ctx->work_registers + 1;
4101
4102 program->can_discard = ctx->can_discard;
4103 program->uniform_cutoff = ctx->uniform_cutoff;
4104
4105 program->blend_patch_offset = ctx->blend_constant_offset;
4106
4107 if (midgard_debug & MIDGARD_DBG_SHADERS)
4108 disassemble_midgard(program->compiled.data, program->compiled.size);
4109
4110 return 0;
4111 }