panfrost/midgard: Fix integer selection
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_32,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_32,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_32,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137 ALU_CASE(imov, imov);
1138
1139 ALU_CASE(feq32, feq);
1140 ALU_CASE(fne32, fne);
1141 ALU_CASE(flt32, flt);
1142 ALU_CASE(ieq32, ieq);
1143 ALU_CASE(ine32, ine);
1144 ALU_CASE(ilt32, ilt);
1145 ALU_CASE(ult32, ult);
1146
1147 /* We don't have a native b2f32 instruction. Instead, like many
1148 * GPUs, we exploit booleans as 0/~0 for false/true, and
1149 * correspondingly AND
1150 * by 1.0 to do the type conversion. For the moment, prime us
1151 * to emit:
1152 *
1153 * iand [whatever], #0
1154 *
1155 * At the end of emit_alu (as MIR), we'll fix-up the constant
1156 */
1157
1158 ALU_CASE(b2f32, iand);
1159 ALU_CASE(b2i32, iand);
1160
1161 /* Likewise, we don't have a dedicated f2b32 instruction, but
1162 * we can do a "not equal to 0.0" test. */
1163
1164 ALU_CASE(f2b32, fne);
1165 ALU_CASE(i2b32, ine);
1166
1167 ALU_CASE(frcp, frcp);
1168 ALU_CASE(frsq, frsqrt);
1169 ALU_CASE(fsqrt, fsqrt);
1170 ALU_CASE(fexp2, fexp2);
1171 ALU_CASE(flog2, flog2);
1172
1173 ALU_CASE(f2i32, f2i);
1174 ALU_CASE(f2u32, f2u);
1175 ALU_CASE(i2f32, i2f);
1176 ALU_CASE(u2f32, u2f);
1177
1178 ALU_CASE(fsin, fsin);
1179 ALU_CASE(fcos, fcos);
1180
1181 ALU_CASE(iand, iand);
1182 ALU_CASE(ior, ior);
1183 ALU_CASE(ixor, ixor);
1184 ALU_CASE(inot, inand);
1185 ALU_CASE(ishl, ishl);
1186 ALU_CASE(ishr, iasr);
1187 ALU_CASE(ushr, ilsr);
1188
1189 ALU_CASE(b32all_fequal2, fball_eq);
1190 ALU_CASE(b32all_fequal3, fball_eq);
1191 ALU_CASE(b32all_fequal4, fball_eq);
1192
1193 ALU_CASE(b32any_fnequal2, fbany_neq);
1194 ALU_CASE(b32any_fnequal3, fbany_neq);
1195 ALU_CASE(b32any_fnequal4, fbany_neq);
1196
1197 ALU_CASE(b32all_iequal2, iball_eq);
1198 ALU_CASE(b32all_iequal3, iball_eq);
1199 ALU_CASE(b32all_iequal4, iball_eq);
1200
1201 ALU_CASE(b32any_inequal2, ibany_neq);
1202 ALU_CASE(b32any_inequal3, ibany_neq);
1203 ALU_CASE(b32any_inequal4, ibany_neq);
1204
1205 /* For greater-or-equal, we lower to less-or-equal and flip the
1206 * arguments */
1207
1208 case nir_op_fge:
1209 case nir_op_fge32:
1210 case nir_op_ige32:
1211 case nir_op_uge32: {
1212 op =
1213 instr->op == nir_op_fge ? midgard_alu_op_fle :
1214 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1215 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1216 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1217 0;
1218
1219 /* Swap via temporary */
1220 nir_alu_src temp = instr->src[1];
1221 instr->src[1] = instr->src[0];
1222 instr->src[0] = temp;
1223
1224 break;
1225 }
1226
1227 /* For a few special csel cases not handled by NIR, we can opt to
1228 * bitwise. Otherwise, we emit the condition and do a real csel */
1229
1230 case nir_op_b32csel: {
1231 if (nir_is_fzero_constant(instr->src[2].src)) {
1232 /* (b ? v : 0) = (b & v) */
1233 op = midgard_alu_op_iand;
1234 nr_inputs = 2;
1235 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1236 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1237 op = midgard_alu_op_iandnot;
1238 nr_inputs = 2;
1239 instr->src[1] = instr->src[0];
1240 instr->src[0] = instr->src[2];
1241 } else {
1242 /* Midgard features both fcsel and icsel, depending on
1243 * the type of the arguments/output. However, as long
1244 * as we're careful we can _always_ use icsel and
1245 * _never_ need fcsel, since the latter does additional
1246 * floating-point-specific processing whereas the
1247 * former just moves bits on the wire. It's not obvious
1248 * why these are separate opcodes, save for the ability
1249 * to do things like sat/pos/abs/neg for free */
1250
1251 op = midgard_alu_op_icsel;
1252
1253 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1254 nr_inputs = 2;
1255
1256 /* Figure out which component the condition is in */
1257
1258 unsigned comp = instr->src[0].swizzle[0];
1259
1260 /* Make sure NIR isn't throwing a mixed condition at us */
1261
1262 for (unsigned c = 1; c < nr_components; ++c)
1263 assert(instr->src[0].swizzle[c] == comp);
1264
1265 /* Emit the condition into r31.w */
1266 emit_condition(ctx, &instr->src[0].src, false, comp);
1267
1268 /* The condition is the first argument; move the other
1269 * arguments up one to be a binary instruction for
1270 * Midgard */
1271
1272 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1273 }
1274 break;
1275 }
1276
1277 default:
1278 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1279 assert(0);
1280 return;
1281 }
1282
1283 /* Midgard can perform certain modifiers on output ofa n ALU op */
1284 midgard_outmod outmod =
1285 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1286
1287 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1288
1289 if (instr->op == nir_op_fmax) {
1290 if (nir_is_fzero_constant(instr->src[0].src)) {
1291 op = midgard_alu_op_fmov;
1292 nr_inputs = 1;
1293 outmod = midgard_outmod_pos;
1294 instr->src[0] = instr->src[1];
1295 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1296 op = midgard_alu_op_fmov;
1297 nr_inputs = 1;
1298 outmod = midgard_outmod_pos;
1299 }
1300 }
1301
1302 /* Fetch unit, quirks, etc information */
1303 unsigned opcode_props = alu_opcode_props[op].props;
1304 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1305
1306 /* src0 will always exist afaik, but src1 will not for 1-argument
1307 * instructions. The latter can only be fetched if the instruction
1308 * needs it, or else we may segfault. */
1309
1310 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1311 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1312
1313 /* Rather than use the instruction generation helpers, we do it
1314 * ourselves here to avoid the mess */
1315
1316 midgard_instruction ins = {
1317 .type = TAG_ALU_4,
1318 .ssa_args = {
1319 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1320 .src1 = quirk_flipped_r24 ? src0 : src1,
1321 .dest = dest,
1322 }
1323 };
1324
1325 nir_alu_src *nirmods[2] = { NULL };
1326
1327 if (nr_inputs == 2) {
1328 nirmods[0] = &instr->src[0];
1329 nirmods[1] = &instr->src[1];
1330 } else if (nr_inputs == 1) {
1331 nirmods[quirk_flipped_r24] = &instr->src[0];
1332 } else {
1333 assert(0);
1334 }
1335
1336 bool is_int = midgard_is_integer_op(op);
1337
1338 midgard_vector_alu alu = {
1339 .op = op,
1340 .reg_mode = midgard_reg_mode_32,
1341 .dest_override = midgard_dest_override_none,
1342 .outmod = outmod,
1343
1344 /* Writemask only valid for non-SSA NIR */
1345 .mask = expand_writemask((1 << nr_components) - 1),
1346
1347 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1348 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1349 };
1350
1351 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1352
1353 if (!is_ssa)
1354 alu.mask &= expand_writemask(instr->dest.write_mask);
1355
1356 ins.alu = alu;
1357
1358 /* Late fixup for emulated instructions */
1359
1360 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1361 /* Presently, our second argument is an inline #0 constant.
1362 * Switch over to an embedded 1.0 constant (that can't fit
1363 * inline, since we're 32-bit, not 16-bit like the inline
1364 * constants) */
1365
1366 ins.ssa_args.inline_constant = false;
1367 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1368 ins.has_constants = true;
1369
1370 if (instr->op == nir_op_b2f32) {
1371 ins.constants[0] = 1.0f;
1372 } else {
1373 /* Type pun it into place */
1374 uint32_t one = 0x1;
1375 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1376 }
1377
1378 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1379 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1380 ins.ssa_args.inline_constant = false;
1381 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1382 ins.has_constants = true;
1383 ins.constants[0] = 0.0f;
1384 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1385 } else if (instr->op == nir_op_inot) {
1386 /* ~b = ~(b & b), so duplicate the source */
1387 ins.ssa_args.src1 = ins.ssa_args.src0;
1388 ins.alu.src2 = ins.alu.src1;
1389 }
1390
1391 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1392 /* To avoid duplicating the lookup tables (probably), true LUT
1393 * instructions can only operate as if they were scalars. Lower
1394 * them here by changing the component. */
1395
1396 uint8_t original_swizzle[4];
1397 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1398
1399 for (int i = 0; i < nr_components; ++i) {
1400 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1401
1402 for (int j = 0; j < 4; ++j)
1403 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1404
1405 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1406 emit_mir_instruction(ctx, ins);
1407 }
1408 } else {
1409 emit_mir_instruction(ctx, ins);
1410 }
1411 }
1412
1413 #undef ALU_CASE
1414
1415 static void
1416 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1417 {
1418 /* TODO: half-floats */
1419
1420 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1421 /* Fast path: For the first 16 uniforms, direct accesses are
1422 * 0-cycle, since they're just a register fetch in the usual
1423 * case. So, we alias the registers while we're still in
1424 * SSA-space */
1425
1426 int reg_slot = 23 - offset;
1427 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1428 } else {
1429 /* Otherwise, read from the 'special' UBO to access
1430 * higher-indexed uniforms, at a performance cost. More
1431 * generally, we're emitting a UBO read instruction. */
1432
1433 midgard_instruction ins = m_load_uniform_32(dest, offset);
1434
1435 /* TODO: Don't split */
1436 ins.load_store.varying_parameters = (offset & 7) << 7;
1437 ins.load_store.address = offset >> 3;
1438
1439 if (indirect_offset) {
1440 emit_indirect_offset(ctx, indirect_offset);
1441 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1442 } else {
1443 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1444 }
1445
1446 emit_mir_instruction(ctx, ins);
1447 }
1448 }
1449
1450 static void
1451 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1452 {
1453 /* First, pull out the destination */
1454 unsigned dest = nir_dest_index(ctx, &instr->dest);
1455
1456 /* Now, figure out which uniform this is */
1457 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1458 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1459
1460 /* Sysvals are prefix uniforms */
1461 unsigned uniform = ((uintptr_t) val) - 1;
1462
1463 /* Emit the read itself -- this is never indirect */
1464 emit_uniform_read(ctx, dest, uniform, NULL);
1465 }
1466
1467 static void
1468 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1469 {
1470 unsigned offset, reg;
1471
1472 switch (instr->intrinsic) {
1473 case nir_intrinsic_discard_if:
1474 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1475
1476 /* fallthrough */
1477
1478 case nir_intrinsic_discard: {
1479 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1480 struct midgard_instruction discard = v_branch(conditional, false);
1481 discard.branch.target_type = TARGET_DISCARD;
1482 emit_mir_instruction(ctx, discard);
1483
1484 ctx->can_discard = true;
1485 break;
1486 }
1487
1488 case nir_intrinsic_load_uniform:
1489 case nir_intrinsic_load_input:
1490 offset = nir_intrinsic_base(instr);
1491
1492 bool direct = nir_src_is_const(instr->src[0]);
1493
1494 if (direct) {
1495 offset += nir_src_as_uint(instr->src[0]);
1496 }
1497
1498 reg = nir_dest_index(ctx, &instr->dest);
1499
1500 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1501 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1502 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1503 /* XXX: Half-floats? */
1504 /* TODO: swizzle, mask */
1505
1506 midgard_instruction ins = m_load_vary_32(reg, offset);
1507
1508 midgard_varying_parameter p = {
1509 .is_varying = 1,
1510 .interpolation = midgard_interp_default,
1511 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1512 };
1513
1514 unsigned u;
1515 memcpy(&u, &p, sizeof(p));
1516 ins.load_store.varying_parameters = u;
1517
1518 if (direct) {
1519 /* We have the offset totally ready */
1520 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1521 } else {
1522 /* We have it partially ready, but we need to
1523 * add in the dynamic index, moved to r27.w */
1524 emit_indirect_offset(ctx, &instr->src[0]);
1525 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1526 }
1527
1528 emit_mir_instruction(ctx, ins);
1529 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1530 /* Constant encoded as a pinned constant */
1531
1532 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1533 ins.has_constants = true;
1534 ins.has_blend_constant = true;
1535 emit_mir_instruction(ctx, ins);
1536 } else if (ctx->is_blend) {
1537 /* For blend shaders, a load might be
1538 * translated various ways depending on what
1539 * we're loading. Figure out how this is used */
1540
1541 nir_variable *out = NULL;
1542
1543 nir_foreach_variable(var, &ctx->nir->inputs) {
1544 int drvloc = var->data.driver_location;
1545
1546 if (nir_intrinsic_base(instr) == drvloc) {
1547 out = var;
1548 break;
1549 }
1550 }
1551
1552 assert(out);
1553
1554 if (out->data.location == VARYING_SLOT_COL0) {
1555 /* Source color preloaded to r0 */
1556
1557 midgard_pin_output(ctx, reg, 0);
1558 } else if (out->data.location == VARYING_SLOT_COL1) {
1559 /* Destination color must be read from framebuffer */
1560
1561 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1562 ins.load_store.swizzle = 0; /* xxxx */
1563
1564 /* Read each component sequentially */
1565
1566 for (int c = 0; c < 4; ++c) {
1567 ins.load_store.mask = (1 << c);
1568 ins.load_store.unknown = c;
1569 emit_mir_instruction(ctx, ins);
1570 }
1571
1572 /* vadd.u2f hr2, zext(hr2), #0 */
1573
1574 midgard_vector_alu_src alu_src = blank_alu_src;
1575 alu_src.mod = midgard_int_zero_extend;
1576 alu_src.half = true;
1577
1578 midgard_instruction u2f = {
1579 .type = TAG_ALU_4,
1580 .ssa_args = {
1581 .src0 = reg,
1582 .src1 = SSA_UNUSED_0,
1583 .dest = reg,
1584 .inline_constant = true
1585 },
1586 .alu = {
1587 .op = midgard_alu_op_u2f,
1588 .reg_mode = midgard_reg_mode_16,
1589 .dest_override = midgard_dest_override_none,
1590 .mask = 0xF,
1591 .src1 = vector_alu_srco_unsigned(alu_src),
1592 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1593 }
1594 };
1595
1596 emit_mir_instruction(ctx, u2f);
1597
1598 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1599
1600 alu_src.mod = 0;
1601
1602 midgard_instruction fmul = {
1603 .type = TAG_ALU_4,
1604 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1605 .ssa_args = {
1606 .src0 = reg,
1607 .dest = reg,
1608 .src1 = SSA_UNUSED_0,
1609 .inline_constant = true
1610 },
1611 .alu = {
1612 .op = midgard_alu_op_fmul,
1613 .reg_mode = midgard_reg_mode_32,
1614 .dest_override = midgard_dest_override_none,
1615 .outmod = midgard_outmod_sat,
1616 .mask = 0xFF,
1617 .src1 = vector_alu_srco_unsigned(alu_src),
1618 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1619 }
1620 };
1621
1622 emit_mir_instruction(ctx, fmul);
1623 } else {
1624 DBG("Unknown input in blend shader\n");
1625 assert(0);
1626 }
1627 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1628 midgard_instruction ins = m_load_attr_32(reg, offset);
1629 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1630 ins.load_store.mask = (1 << instr->num_components) - 1;
1631 emit_mir_instruction(ctx, ins);
1632 } else {
1633 DBG("Unknown load\n");
1634 assert(0);
1635 }
1636
1637 break;
1638
1639 case nir_intrinsic_store_output:
1640 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1641
1642 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1643
1644 reg = nir_src_index(ctx, &instr->src[0]);
1645
1646 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1647 /* gl_FragColor is not emitted with load/store
1648 * instructions. Instead, it gets plonked into
1649 * r0 at the end of the shader and we do the
1650 * framebuffer writeout dance. TODO: Defer
1651 * writes */
1652
1653 midgard_pin_output(ctx, reg, 0);
1654
1655 /* Save the index we're writing to for later reference
1656 * in the epilogue */
1657
1658 ctx->fragment_output = reg;
1659 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1660 /* Varyings are written into one of two special
1661 * varying register, r26 or r27. The register itself is selected as the register
1662 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1663 *
1664 * Normally emitting fmov's is frowned upon,
1665 * but due to unique constraints of
1666 * REGISTER_VARYING, fmov emission + a
1667 * dedicated cleanup pass is the only way to
1668 * guarantee correctness when considering some
1669 * (common) edge cases XXX: FIXME */
1670
1671 /* If this varying corresponds to a constant (why?!),
1672 * emit that now since it won't get picked up by
1673 * hoisting (since there is no corresponding move
1674 * emitted otherwise) */
1675
1676 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1677
1678 if (constant_value) {
1679 /* Special case: emit the varying write
1680 * directly to r26 (looks funny in asm but it's
1681 * fine) and emit the store _now_. Possibly
1682 * slightly slower, but this is a really stupid
1683 * special case anyway (why on earth would you
1684 * have a constant varying? Your own fault for
1685 * slightly worse perf :P) */
1686
1687 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1688 attach_constants(ctx, &ins, constant_value, reg + 1);
1689 emit_mir_instruction(ctx, ins);
1690
1691 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1692 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1693 emit_mir_instruction(ctx, st);
1694 } else {
1695 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1696
1697 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1698 }
1699 } else {
1700 DBG("Unknown store\n");
1701 assert(0);
1702 }
1703
1704 break;
1705
1706 case nir_intrinsic_load_alpha_ref_float:
1707 assert(instr->dest.is_ssa);
1708
1709 float ref_value = ctx->alpha_ref;
1710
1711 float *v = ralloc_array(NULL, float, 4);
1712 memcpy(v, &ref_value, sizeof(float));
1713 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1714 break;
1715
1716 case nir_intrinsic_load_viewport_scale:
1717 case nir_intrinsic_load_viewport_offset:
1718 emit_sysval_read(ctx, instr);
1719 break;
1720
1721 default:
1722 printf ("Unhandled intrinsic\n");
1723 assert(0);
1724 break;
1725 }
1726 }
1727
1728 static unsigned
1729 midgard_tex_format(enum glsl_sampler_dim dim)
1730 {
1731 switch (dim) {
1732 case GLSL_SAMPLER_DIM_2D:
1733 case GLSL_SAMPLER_DIM_EXTERNAL:
1734 return TEXTURE_2D;
1735
1736 case GLSL_SAMPLER_DIM_3D:
1737 return TEXTURE_3D;
1738
1739 case GLSL_SAMPLER_DIM_CUBE:
1740 return TEXTURE_CUBE;
1741
1742 default:
1743 DBG("Unknown sampler dim type\n");
1744 assert(0);
1745 return 0;
1746 }
1747 }
1748
1749 static void
1750 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1751 {
1752 /* TODO */
1753 //assert (!instr->sampler);
1754 //assert (!instr->texture_array_size);
1755 assert (instr->op == nir_texop_tex);
1756
1757 /* Allocate registers via a round robin scheme to alternate between the two registers */
1758 int reg = ctx->texture_op_count & 1;
1759 int in_reg = reg, out_reg = reg;
1760
1761 /* Make room for the reg */
1762
1763 if (ctx->texture_index[reg] > -1)
1764 unalias_ssa(ctx, ctx->texture_index[reg]);
1765
1766 int texture_index = instr->texture_index;
1767 int sampler_index = texture_index;
1768
1769 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1770 switch (instr->src[i].src_type) {
1771 case nir_tex_src_coord: {
1772 int index = nir_src_index(ctx, &instr->src[i].src);
1773
1774 midgard_vector_alu_src alu_src = blank_alu_src;
1775
1776 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1777
1778 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1779 /* For cubemaps, we need to load coords into
1780 * special r27, and then use a special ld/st op
1781 * to copy into the texture register */
1782
1783 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1784
1785 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1786 emit_mir_instruction(ctx, move);
1787
1788 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1789 st.load_store.unknown = 0x24; /* XXX: What is this? */
1790 st.load_store.mask = 0x3; /* xy? */
1791 st.load_store.swizzle = alu_src.swizzle;
1792 emit_mir_instruction(ctx, st);
1793
1794 } else {
1795 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1796
1797 midgard_instruction ins = v_fmov(index, alu_src, reg);
1798 emit_mir_instruction(ctx, ins);
1799 }
1800
1801 break;
1802 }
1803
1804 default: {
1805 DBG("Unknown source type\n");
1806 //assert(0);
1807 break;
1808 }
1809 }
1810 }
1811
1812 /* No helper to build texture words -- we do it all here */
1813 midgard_instruction ins = {
1814 .type = TAG_TEXTURE_4,
1815 .texture = {
1816 .op = TEXTURE_OP_NORMAL,
1817 .format = midgard_tex_format(instr->sampler_dim),
1818 .texture_handle = texture_index,
1819 .sampler_handle = sampler_index,
1820
1821 /* TODO: Don't force xyzw */
1822 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1823 .mask = 0xF,
1824
1825 /* TODO: half */
1826 //.in_reg_full = 1,
1827 .out_full = 1,
1828
1829 .filter = 1,
1830
1831 /* Always 1 */
1832 .unknown7 = 1,
1833
1834 /* Assume we can continue; hint it out later */
1835 .cont = 1,
1836 }
1837 };
1838
1839 /* Set registers to read and write from the same place */
1840 ins.texture.in_reg_select = in_reg;
1841 ins.texture.out_reg_select = out_reg;
1842
1843 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1844 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1845 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1846 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1847 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1848 } else {
1849 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1850 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1851 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1852 }
1853
1854 emit_mir_instruction(ctx, ins);
1855
1856 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1857
1858 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1859 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1860 ctx->texture_index[reg] = o_index;
1861
1862 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1863 emit_mir_instruction(ctx, ins2);
1864
1865 /* Used for .cont and .last hinting */
1866 ctx->texture_op_count++;
1867 }
1868
1869 static void
1870 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1871 {
1872 switch (instr->type) {
1873 case nir_jump_break: {
1874 /* Emit a branch out of the loop */
1875 struct midgard_instruction br = v_branch(false, false);
1876 br.branch.target_type = TARGET_BREAK;
1877 br.branch.target_break = ctx->current_loop_depth;
1878 emit_mir_instruction(ctx, br);
1879
1880 DBG("break..\n");
1881 break;
1882 }
1883
1884 default:
1885 DBG("Unknown jump type %d\n", instr->type);
1886 break;
1887 }
1888 }
1889
1890 static void
1891 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1892 {
1893 switch (instr->type) {
1894 case nir_instr_type_load_const:
1895 emit_load_const(ctx, nir_instr_as_load_const(instr));
1896 break;
1897
1898 case nir_instr_type_intrinsic:
1899 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1900 break;
1901
1902 case nir_instr_type_alu:
1903 emit_alu(ctx, nir_instr_as_alu(instr));
1904 break;
1905
1906 case nir_instr_type_tex:
1907 emit_tex(ctx, nir_instr_as_tex(instr));
1908 break;
1909
1910 case nir_instr_type_jump:
1911 emit_jump(ctx, nir_instr_as_jump(instr));
1912 break;
1913
1914 case nir_instr_type_ssa_undef:
1915 /* Spurious */
1916 break;
1917
1918 default:
1919 DBG("Unhandled instruction type\n");
1920 break;
1921 }
1922 }
1923
1924 /* Determine the actual hardware from the index based on the RA results or special values */
1925
1926 static int
1927 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1928 {
1929 if (reg >= SSA_FIXED_MINIMUM)
1930 return SSA_REG_FROM_FIXED(reg);
1931
1932 if (reg >= 0) {
1933 assert(reg < maxreg);
1934 int r = ra_get_node_reg(g, reg);
1935 ctx->work_registers = MAX2(ctx->work_registers, r);
1936 return r;
1937 }
1938
1939 switch (reg) {
1940 /* fmov style unused */
1941 case SSA_UNUSED_0:
1942 return REGISTER_UNUSED;
1943
1944 /* lut style unused */
1945 case SSA_UNUSED_1:
1946 return REGISTER_UNUSED;
1947
1948 default:
1949 DBG("Unknown SSA register alias %d\n", reg);
1950 assert(0);
1951 return 31;
1952 }
1953 }
1954
1955 static unsigned int
1956 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1957 {
1958 /* Choose the first available register to minimise reported register pressure */
1959
1960 for (int i = 0; i < 16; ++i) {
1961 if (BITSET_TEST(regs, i)) {
1962 return i;
1963 }
1964 }
1965
1966 assert(0);
1967 return 0;
1968 }
1969
1970 static bool
1971 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1972 {
1973 if (ins->ssa_args.src0 == src) return true;
1974 if (ins->ssa_args.src1 == src) return true;
1975
1976 return false;
1977 }
1978
1979 /* Determine if a variable is live in the successors of a block */
1980 static bool
1981 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1982 {
1983 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1984 midgard_block *succ = bl->successors[i];
1985
1986 /* If we already visited, the value we're seeking
1987 * isn't down this path (or we would have short
1988 * circuited */
1989
1990 if (succ->visited) continue;
1991
1992 /* Otherwise (it's visited *now*), check the block */
1993
1994 succ->visited = true;
1995
1996 mir_foreach_instr_in_block(succ, ins) {
1997 if (midgard_is_live_in_instr(ins, src))
1998 return true;
1999 }
2000
2001 /* ...and also, check *its* successors */
2002 if (is_live_after_successors(ctx, succ, src))
2003 return true;
2004
2005 }
2006
2007 /* Welp. We're really not live. */
2008
2009 return false;
2010 }
2011
2012 static bool
2013 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2014 {
2015 /* Check the rest of the block for liveness */
2016
2017 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2018 if (midgard_is_live_in_instr(ins, src))
2019 return true;
2020 }
2021
2022 /* Check the rest of the blocks for liveness recursively */
2023
2024 bool succ = is_live_after_successors(ctx, block, src);
2025
2026 mir_foreach_block(ctx, block) {
2027 block->visited = false;
2028 }
2029
2030 return succ;
2031 }
2032
2033 static void
2034 allocate_registers(compiler_context *ctx)
2035 {
2036 /* First, initialize the RA */
2037 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2038
2039 /* Create a primary (general purpose) class, as well as special purpose
2040 * pipeline register classes */
2041
2042 int primary_class = ra_alloc_reg_class(regs);
2043 int varying_class = ra_alloc_reg_class(regs);
2044
2045 /* Add the full set of work registers */
2046 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2047 for (int i = 0; i < work_count; ++i)
2048 ra_class_add_reg(regs, primary_class, i);
2049
2050 /* Add special registers */
2051 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2052 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2053
2054 /* We're done setting up */
2055 ra_set_finalize(regs, NULL);
2056
2057 /* Transform the MIR into squeezed index form */
2058 mir_foreach_block(ctx, block) {
2059 mir_foreach_instr_in_block(block, ins) {
2060 if (ins->compact_branch) continue;
2061
2062 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2063 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2064 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2065 }
2066 if (midgard_debug & MIDGARD_DBG_SHADERS)
2067 print_mir_block(block);
2068 }
2069
2070 if (!ctx->temp_count)
2071 return;
2072
2073 /* Let's actually do register allocation */
2074 int nodes = ctx->temp_count;
2075 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2076
2077 /* Set everything to the work register class, unless it has somewhere
2078 * special to go */
2079
2080 mir_foreach_block(ctx, block) {
2081 mir_foreach_instr_in_block(block, ins) {
2082 if (ins->compact_branch) continue;
2083
2084 if (ins->ssa_args.dest < 0) continue;
2085
2086 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2087
2088 int class = primary_class;
2089
2090 ra_set_node_class(g, ins->ssa_args.dest, class);
2091 }
2092 }
2093
2094 for (int index = 0; index <= ctx->max_hash; ++index) {
2095 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2096
2097 if (temp) {
2098 unsigned reg = temp - 1;
2099 int t = find_or_allocate_temp(ctx, index);
2100 ra_set_node_reg(g, t, reg);
2101 }
2102 }
2103
2104 /* Determine liveness */
2105
2106 int *live_start = malloc(nodes * sizeof(int));
2107 int *live_end = malloc(nodes * sizeof(int));
2108
2109 /* Initialize as non-existent */
2110
2111 for (int i = 0; i < nodes; ++i) {
2112 live_start[i] = live_end[i] = -1;
2113 }
2114
2115 int d = 0;
2116
2117 mir_foreach_block(ctx, block) {
2118 mir_foreach_instr_in_block(block, ins) {
2119 if (ins->compact_branch) continue;
2120
2121 /* Dest is < 0 for store_vary instructions, which break
2122 * the usual SSA conventions. Liveness analysis doesn't
2123 * make sense on these instructions, so skip them to
2124 * avoid memory corruption */
2125
2126 if (ins->ssa_args.dest < 0) continue;
2127
2128 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2129 /* If this destination is not yet live, it is now since we just wrote it */
2130
2131 int dest = ins->ssa_args.dest;
2132
2133 if (live_start[dest] == -1)
2134 live_start[dest] = d;
2135 }
2136
2137 /* Since we just used a source, the source might be
2138 * dead now. Scan the rest of the block for
2139 * invocations, and if there are none, the source dies
2140 * */
2141
2142 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2143
2144 for (int src = 0; src < 2; ++src) {
2145 int s = sources[src];
2146
2147 if (s < 0) continue;
2148
2149 if (s >= SSA_FIXED_MINIMUM) continue;
2150
2151 if (!is_live_after(ctx, block, ins, s)) {
2152 live_end[s] = d;
2153 }
2154 }
2155
2156 ++d;
2157 }
2158 }
2159
2160 /* If a node still hasn't been killed, kill it now */
2161
2162 for (int i = 0; i < nodes; ++i) {
2163 /* live_start == -1 most likely indicates a pinned output */
2164
2165 if (live_end[i] == -1)
2166 live_end[i] = d;
2167 }
2168
2169 /* Setup interference between nodes that are live at the same time */
2170
2171 for (int i = 0; i < nodes; ++i) {
2172 for (int j = i + 1; j < nodes; ++j) {
2173 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2174 ra_add_node_interference(g, i, j);
2175 }
2176 }
2177
2178 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2179
2180 if (!ra_allocate(g)) {
2181 DBG("Error allocating registers\n");
2182 assert(0);
2183 }
2184
2185 /* Cleanup */
2186 free(live_start);
2187 free(live_end);
2188
2189 mir_foreach_block(ctx, block) {
2190 mir_foreach_instr_in_block(block, ins) {
2191 if (ins->compact_branch) continue;
2192
2193 ssa_args args = ins->ssa_args;
2194
2195 switch (ins->type) {
2196 case TAG_ALU_4:
2197 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2198
2199 ins->registers.src2_imm = args.inline_constant;
2200
2201 if (args.inline_constant) {
2202 /* Encode inline 16-bit constant as a vector by default */
2203
2204 ins->registers.src2_reg = ins->inline_constant >> 11;
2205
2206 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2207
2208 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2209 ins->alu.src2 = imm << 2;
2210 } else {
2211 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2212 }
2213
2214 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2215
2216 break;
2217
2218 case TAG_LOAD_STORE_4: {
2219 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2220 /* TODO: use ssa_args for store_vary */
2221 ins->load_store.reg = 0;
2222 } else {
2223 bool has_dest = args.dest >= 0;
2224 int ssa_arg = has_dest ? args.dest : args.src0;
2225
2226 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2227 }
2228
2229 break;
2230 }
2231
2232 default:
2233 break;
2234 }
2235 }
2236 }
2237 }
2238
2239 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2240 * use scalar ALU instructions, for functional or performance reasons. To do
2241 * this, we just demote vector ALU payloads to scalar. */
2242
2243 static int
2244 component_from_mask(unsigned mask)
2245 {
2246 for (int c = 0; c < 4; ++c) {
2247 if (mask & (3 << (2 * c)))
2248 return c;
2249 }
2250
2251 assert(0);
2252 return 0;
2253 }
2254
2255 static bool
2256 is_single_component_mask(unsigned mask)
2257 {
2258 int components = 0;
2259
2260 for (int c = 0; c < 4; ++c)
2261 if (mask & (3 << (2 * c)))
2262 components++;
2263
2264 return components == 1;
2265 }
2266
2267 /* Create a mask of accessed components from a swizzle to figure out vector
2268 * dependencies */
2269
2270 static unsigned
2271 swizzle_to_access_mask(unsigned swizzle)
2272 {
2273 unsigned component_mask = 0;
2274
2275 for (int i = 0; i < 4; ++i) {
2276 unsigned c = (swizzle >> (2 * i)) & 3;
2277 component_mask |= (1 << c);
2278 }
2279
2280 return component_mask;
2281 }
2282
2283 static unsigned
2284 vector_to_scalar_source(unsigned u, bool is_int)
2285 {
2286 midgard_vector_alu_src v;
2287 memcpy(&v, &u, sizeof(v));
2288
2289 /* TODO: Integers */
2290
2291 midgard_scalar_alu_src s = {
2292 .full = !v.half,
2293 .component = (v.swizzle & 3) << 1
2294 };
2295
2296 if (is_int) {
2297 /* TODO */
2298 } else {
2299 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2300 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2301 }
2302
2303 unsigned o;
2304 memcpy(&o, &s, sizeof(s));
2305
2306 return o & ((1 << 6) - 1);
2307 }
2308
2309 static midgard_scalar_alu
2310 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2311 {
2312 bool is_int = midgard_is_integer_op(v.op);
2313
2314 /* The output component is from the mask */
2315 midgard_scalar_alu s = {
2316 .op = v.op,
2317 .src1 = vector_to_scalar_source(v.src1, is_int),
2318 .src2 = vector_to_scalar_source(v.src2, is_int),
2319 .unknown = 0,
2320 .outmod = v.outmod,
2321 .output_full = 1, /* TODO: Half */
2322 .output_component = component_from_mask(v.mask) << 1,
2323 };
2324
2325 /* Inline constant is passed along rather than trying to extract it
2326 * from v */
2327
2328 if (ins->ssa_args.inline_constant) {
2329 uint16_t imm = 0;
2330 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2331 imm |= (lower_11 >> 9) & 3;
2332 imm |= (lower_11 >> 6) & 4;
2333 imm |= (lower_11 >> 2) & 0x38;
2334 imm |= (lower_11 & 63) << 6;
2335
2336 s.src2 = imm;
2337 }
2338
2339 return s;
2340 }
2341
2342 /* Midgard prefetches instruction types, so during emission we need to
2343 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2344 * if this is the second to last and the last is an ALU, then it's also 1... */
2345
2346 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2347 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2348
2349 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2350 bytes_emitted += sizeof(type)
2351
2352 static void
2353 emit_binary_vector_instruction(midgard_instruction *ains,
2354 uint16_t *register_words, int *register_words_count,
2355 uint64_t *body_words, size_t *body_size, int *body_words_count,
2356 size_t *bytes_emitted)
2357 {
2358 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2359 *bytes_emitted += sizeof(midgard_reg_info);
2360
2361 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2362 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2363 *bytes_emitted += sizeof(midgard_vector_alu);
2364 }
2365
2366 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2367 * mind that we are a vector architecture and we can write to different
2368 * components simultaneously */
2369
2370 static bool
2371 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2372 {
2373 /* Each instruction reads some registers and writes to a register. See
2374 * where the first writes */
2375
2376 /* Figure out where exactly we wrote to */
2377 int source = first->ssa_args.dest;
2378 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2379
2380 /* As long as the second doesn't read from the first, we're okay */
2381 if (second->ssa_args.src0 == source) {
2382 if (first->type == TAG_ALU_4) {
2383 /* Figure out which components we just read from */
2384
2385 int q = second->alu.src1;
2386 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2387
2388 /* Check if there are components in common, and fail if so */
2389 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2390 return false;
2391 } else
2392 return false;
2393
2394 }
2395
2396 if (second->ssa_args.src1 == source)
2397 return false;
2398
2399 /* Otherwise, it's safe in that regard. Another data hazard is both
2400 * writing to the same place, of course */
2401
2402 if (second->ssa_args.dest == source) {
2403 /* ...but only if the components overlap */
2404 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2405
2406 if (dest_mask & source_mask)
2407 return false;
2408 }
2409
2410 /* ...That's it */
2411 return true;
2412 }
2413
2414 static bool
2415 midgard_has_hazard(
2416 midgard_instruction **segment, unsigned segment_size,
2417 midgard_instruction *ains)
2418 {
2419 for (int s = 0; s < segment_size; ++s)
2420 if (!can_run_concurrent_ssa(segment[s], ains))
2421 return true;
2422
2423 return false;
2424
2425
2426 }
2427
2428 /* Schedules, but does not emit, a single basic block. After scheduling, the
2429 * final tag and size of the block are known, which are necessary for branching
2430 * */
2431
2432 static midgard_bundle
2433 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2434 {
2435 int instructions_emitted = 0, instructions_consumed = -1;
2436 midgard_bundle bundle = { 0 };
2437
2438 uint8_t tag = ins->type;
2439
2440 /* Default to the instruction's tag */
2441 bundle.tag = tag;
2442
2443 switch (ins->type) {
2444 case TAG_ALU_4: {
2445 uint32_t control = 0;
2446 size_t bytes_emitted = sizeof(control);
2447
2448 /* TODO: Constant combining */
2449 int index = 0, last_unit = 0;
2450
2451 /* Previous instructions, for the purpose of parallelism */
2452 midgard_instruction *segment[4] = {0};
2453 int segment_size = 0;
2454
2455 instructions_emitted = -1;
2456 midgard_instruction *pins = ins;
2457
2458 for (;;) {
2459 midgard_instruction *ains = pins;
2460
2461 /* Advance instruction pointer */
2462 if (index) {
2463 ains = mir_next_op(pins);
2464 pins = ains;
2465 }
2466
2467 /* Out-of-work condition */
2468 if ((struct list_head *) ains == &block->instructions)
2469 break;
2470
2471 /* Ensure that the chain can continue */
2472 if (ains->type != TAG_ALU_4) break;
2473
2474 /* According to the presentation "The ARM
2475 * Mali-T880 Mobile GPU" from HotChips 27,
2476 * there are two pipeline stages. Branching
2477 * position determined experimentally. Lines
2478 * are executed in parallel:
2479 *
2480 * [ VMUL ] [ SADD ]
2481 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2482 *
2483 * Verify that there are no ordering dependencies here.
2484 *
2485 * TODO: Allow for parallelism!!!
2486 */
2487
2488 /* Pick a unit for it if it doesn't force a particular unit */
2489
2490 int unit = ains->unit;
2491
2492 if (!unit) {
2493 int op = ains->alu.op;
2494 int units = alu_opcode_props[op].props;
2495
2496 /* TODO: Promotion of scalars to vectors */
2497 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2498
2499 if (!vector)
2500 assert(units & UNITS_SCALAR);
2501
2502 if (vector) {
2503 if (last_unit >= UNIT_VADD) {
2504 if (units & UNIT_VLUT)
2505 unit = UNIT_VLUT;
2506 else
2507 break;
2508 } else {
2509 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2510 unit = UNIT_VMUL;
2511 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2512 unit = UNIT_VADD;
2513 else if (units & UNIT_VLUT)
2514 unit = UNIT_VLUT;
2515 else
2516 break;
2517 }
2518 } else {
2519 if (last_unit >= UNIT_VADD) {
2520 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2521 unit = UNIT_SMUL;
2522 else if (units & UNIT_VLUT)
2523 unit = UNIT_VLUT;
2524 else
2525 break;
2526 } else {
2527 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2528 unit = UNIT_SADD;
2529 else if (units & UNIT_SMUL)
2530 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2531 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2532 unit = UNIT_VADD;
2533 else
2534 break;
2535 }
2536 }
2537
2538 assert(unit & units);
2539 }
2540
2541 /* Late unit check, this time for encoding (not parallelism) */
2542 if (unit <= last_unit) break;
2543
2544 /* Clear the segment */
2545 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2546 segment_size = 0;
2547
2548 if (midgard_has_hazard(segment, segment_size, ains))
2549 break;
2550
2551 /* We're good to go -- emit the instruction */
2552 ains->unit = unit;
2553
2554 segment[segment_size++] = ains;
2555
2556 /* Only one set of embedded constants per
2557 * bundle possible; if we have more, we must
2558 * break the chain early, unfortunately */
2559
2560 if (ains->has_constants) {
2561 if (bundle.has_embedded_constants) {
2562 /* ...but if there are already
2563 * constants but these are the
2564 * *same* constants, we let it
2565 * through */
2566
2567 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2568 break;
2569 } else {
2570 bundle.has_embedded_constants = true;
2571 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2572
2573 /* If this is a blend shader special constant, track it for patching */
2574 if (ains->has_blend_constant)
2575 bundle.has_blend_constant = true;
2576 }
2577 }
2578
2579 if (ains->unit & UNITS_ANY_VECTOR) {
2580 emit_binary_vector_instruction(ains, bundle.register_words,
2581 &bundle.register_words_count, bundle.body_words,
2582 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2583 } else if (ains->compact_branch) {
2584 /* All of r0 has to be written out
2585 * along with the branch writeout.
2586 * (slow!) */
2587
2588 if (ains->writeout) {
2589 if (index == 0) {
2590 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2591 ins.unit = UNIT_VMUL;
2592
2593 control |= ins.unit;
2594
2595 emit_binary_vector_instruction(&ins, bundle.register_words,
2596 &bundle.register_words_count, bundle.body_words,
2597 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2598 } else {
2599 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2600 bool written_late = false;
2601 bool components[4] = { 0 };
2602 uint16_t register_dep_mask = 0;
2603 uint16_t written_mask = 0;
2604
2605 midgard_instruction *qins = ins;
2606 for (int t = 0; t < index; ++t) {
2607 if (qins->registers.out_reg != 0) {
2608 /* Mark down writes */
2609
2610 written_mask |= (1 << qins->registers.out_reg);
2611 } else {
2612 /* Mark down the register dependencies for errata check */
2613
2614 if (qins->registers.src1_reg < 16)
2615 register_dep_mask |= (1 << qins->registers.src1_reg);
2616
2617 if (qins->registers.src2_reg < 16)
2618 register_dep_mask |= (1 << qins->registers.src2_reg);
2619
2620 int mask = qins->alu.mask;
2621
2622 for (int c = 0; c < 4; ++c)
2623 if (mask & (0x3 << (2 * c)))
2624 components[c] = true;
2625
2626 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2627
2628 if (qins->unit == UNIT_VLUT)
2629 written_late = true;
2630 }
2631
2632 /* Advance instruction pointer */
2633 qins = mir_next_op(qins);
2634 }
2635
2636
2637 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2638 if (register_dep_mask & written_mask) {
2639 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2640 break;
2641 }
2642
2643 if (written_late)
2644 break;
2645
2646 /* If even a single component is not written, break it up (conservative check). */
2647 bool breakup = false;
2648
2649 for (int c = 0; c < 4; ++c)
2650 if (!components[c])
2651 breakup = true;
2652
2653 if (breakup)
2654 break;
2655
2656 /* Otherwise, we're free to proceed */
2657 }
2658 }
2659
2660 if (ains->unit == ALU_ENAB_BRANCH) {
2661 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2662 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2663 bytes_emitted += sizeof(midgard_branch_extended);
2664 } else {
2665 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2666 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2667 bytes_emitted += sizeof(ains->br_compact);
2668 }
2669 } else {
2670 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2671 bytes_emitted += sizeof(midgard_reg_info);
2672
2673 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2674 bundle.body_words_count++;
2675 bytes_emitted += sizeof(midgard_scalar_alu);
2676 }
2677
2678 /* Defer marking until after writing to allow for break */
2679 control |= ains->unit;
2680 last_unit = ains->unit;
2681 ++instructions_emitted;
2682 ++index;
2683 }
2684
2685 /* Bubble up the number of instructions for skipping */
2686 instructions_consumed = index - 1;
2687
2688 int padding = 0;
2689
2690 /* Pad ALU op to nearest word */
2691
2692 if (bytes_emitted & 15) {
2693 padding = 16 - (bytes_emitted & 15);
2694 bytes_emitted += padding;
2695 }
2696
2697 /* Constants must always be quadwords */
2698 if (bundle.has_embedded_constants)
2699 bytes_emitted += 16;
2700
2701 /* Size ALU instruction for tag */
2702 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2703 bundle.padding = padding;
2704 bundle.control = bundle.tag | control;
2705
2706 break;
2707 }
2708
2709 case TAG_LOAD_STORE_4: {
2710 /* Load store instructions have two words at once. If
2711 * we only have one queued up, we need to NOP pad.
2712 * Otherwise, we store both in succession to save space
2713 * and cycles -- letting them go in parallel -- skip
2714 * the next. The usefulness of this optimisation is
2715 * greatly dependent on the quality of the instruction
2716 * scheduler.
2717 */
2718
2719 midgard_instruction *next_op = mir_next_op(ins);
2720
2721 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2722 /* As the two operate concurrently, make sure
2723 * they are not dependent */
2724
2725 if (can_run_concurrent_ssa(ins, next_op) || true) {
2726 /* Skip ahead, since it's redundant with the pair */
2727 instructions_consumed = 1 + (instructions_emitted++);
2728 }
2729 }
2730
2731 break;
2732 }
2733
2734 default:
2735 /* Texture ops default to single-op-per-bundle scheduling */
2736 break;
2737 }
2738
2739 /* Copy the instructions into the bundle */
2740 bundle.instruction_count = instructions_emitted + 1;
2741
2742 int used_idx = 0;
2743
2744 midgard_instruction *uins = ins;
2745 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2746 bundle.instructions[used_idx++] = *uins;
2747 uins = mir_next_op(uins);
2748 }
2749
2750 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2751
2752 return bundle;
2753 }
2754
2755 static int
2756 quadword_size(int tag)
2757 {
2758 switch (tag) {
2759 case TAG_ALU_4:
2760 return 1;
2761
2762 case TAG_ALU_8:
2763 return 2;
2764
2765 case TAG_ALU_12:
2766 return 3;
2767
2768 case TAG_ALU_16:
2769 return 4;
2770
2771 case TAG_LOAD_STORE_4:
2772 return 1;
2773
2774 case TAG_TEXTURE_4:
2775 return 1;
2776
2777 default:
2778 assert(0);
2779 return 0;
2780 }
2781 }
2782
2783 /* Schedule a single block by iterating its instruction to create bundles.
2784 * While we go, tally about the bundle sizes to compute the block size. */
2785
2786 static void
2787 schedule_block(compiler_context *ctx, midgard_block *block)
2788 {
2789 util_dynarray_init(&block->bundles, NULL);
2790
2791 block->quadword_count = 0;
2792
2793 mir_foreach_instr_in_block(block, ins) {
2794 int skip;
2795 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2796 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2797
2798 if (bundle.has_blend_constant) {
2799 /* TODO: Multiblock? */
2800 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2801 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2802 }
2803
2804 while(skip--)
2805 ins = mir_next_op(ins);
2806
2807 block->quadword_count += quadword_size(bundle.tag);
2808 }
2809
2810 block->is_scheduled = true;
2811 }
2812
2813 static void
2814 schedule_program(compiler_context *ctx)
2815 {
2816 allocate_registers(ctx);
2817
2818 mir_foreach_block(ctx, block) {
2819 schedule_block(ctx, block);
2820 }
2821 }
2822
2823 /* After everything is scheduled, emit whole bundles at a time */
2824
2825 static void
2826 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2827 {
2828 int lookahead = next_tag << 4;
2829
2830 switch (bundle->tag) {
2831 case TAG_ALU_4:
2832 case TAG_ALU_8:
2833 case TAG_ALU_12:
2834 case TAG_ALU_16: {
2835 /* Actually emit each component */
2836 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2837
2838 for (int i = 0; i < bundle->register_words_count; ++i)
2839 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2840
2841 /* Emit body words based on the instructions bundled */
2842 for (int i = 0; i < bundle->instruction_count; ++i) {
2843 midgard_instruction *ins = &bundle->instructions[i];
2844
2845 if (ins->unit & UNITS_ANY_VECTOR) {
2846 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2847 } else if (ins->compact_branch) {
2848 /* Dummy move, XXX DRY */
2849 if ((i == 0) && ins->writeout) {
2850 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2851 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2852 }
2853
2854 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2855 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2856 } else {
2857 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2858 }
2859 } else {
2860 /* Scalar */
2861 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2862 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2863 }
2864 }
2865
2866 /* Emit padding (all zero) */
2867 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2868
2869 /* Tack on constants */
2870
2871 if (bundle->has_embedded_constants) {
2872 util_dynarray_append(emission, float, bundle->constants[0]);
2873 util_dynarray_append(emission, float, bundle->constants[1]);
2874 util_dynarray_append(emission, float, bundle->constants[2]);
2875 util_dynarray_append(emission, float, bundle->constants[3]);
2876 }
2877
2878 break;
2879 }
2880
2881 case TAG_LOAD_STORE_4: {
2882 /* One or two composing instructions */
2883
2884 uint64_t current64, next64 = LDST_NOP;
2885
2886 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2887
2888 if (bundle->instruction_count == 2)
2889 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2890
2891 midgard_load_store instruction = {
2892 .type = bundle->tag,
2893 .next_type = next_tag,
2894 .word1 = current64,
2895 .word2 = next64
2896 };
2897
2898 util_dynarray_append(emission, midgard_load_store, instruction);
2899
2900 break;
2901 }
2902
2903 case TAG_TEXTURE_4: {
2904 /* Texture instructions are easy, since there is no
2905 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2906
2907 midgard_instruction *ins = &bundle->instructions[0];
2908
2909 ins->texture.type = TAG_TEXTURE_4;
2910 ins->texture.next_type = next_tag;
2911
2912 ctx->texture_op_count--;
2913
2914 if (!ctx->texture_op_count) {
2915 ins->texture.cont = 0;
2916 ins->texture.last = 1;
2917 }
2918
2919 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2920 break;
2921 }
2922
2923 default:
2924 DBG("Unknown midgard instruction type\n");
2925 assert(0);
2926 break;
2927 }
2928 }
2929
2930
2931 /* ALU instructions can inline or embed constants, which decreases register
2932 * pressure and saves space. */
2933
2934 #define CONDITIONAL_ATTACH(src) { \
2935 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2936 \
2937 if (entry) { \
2938 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2939 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2940 } \
2941 }
2942
2943 static void
2944 inline_alu_constants(compiler_context *ctx)
2945 {
2946 mir_foreach_instr(ctx, alu) {
2947 /* Other instructions cannot inline constants */
2948 if (alu->type != TAG_ALU_4) continue;
2949
2950 /* If there is already a constant here, we can do nothing */
2951 if (alu->has_constants) continue;
2952
2953 /* It makes no sense to inline constants on a branch */
2954 if (alu->compact_branch || alu->prepacked_branch) continue;
2955
2956 CONDITIONAL_ATTACH(src0);
2957
2958 if (!alu->has_constants) {
2959 CONDITIONAL_ATTACH(src1)
2960 } else if (!alu->inline_constant) {
2961 /* Corner case: _two_ vec4 constants, for instance with a
2962 * csel. For this case, we can only use a constant
2963 * register for one, we'll have to emit a move for the
2964 * other. Note, if both arguments are constants, then
2965 * necessarily neither argument depends on the value of
2966 * any particular register. As the destination register
2967 * will be wiped, that means we can spill the constant
2968 * to the destination register.
2969 */
2970
2971 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2972 unsigned scratch = alu->ssa_args.dest;
2973
2974 if (entry) {
2975 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2976 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2977
2978 /* Force a break XXX Defer r31 writes */
2979 ins.unit = UNIT_VLUT;
2980
2981 /* Set the source */
2982 alu->ssa_args.src1 = scratch;
2983
2984 /* Inject us -before- the last instruction which set r31 */
2985 mir_insert_instruction_before(mir_prev_op(alu), ins);
2986 }
2987 }
2988 }
2989 }
2990
2991 /* Midgard supports two types of constants, embedded constants (128-bit) and
2992 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2993 * constants can be demoted to inline constants, for space savings and
2994 * sometimes a performance boost */
2995
2996 static void
2997 embedded_to_inline_constant(compiler_context *ctx)
2998 {
2999 mir_foreach_instr(ctx, ins) {
3000 if (!ins->has_constants) continue;
3001
3002 if (ins->ssa_args.inline_constant) continue;
3003
3004 /* Blend constants must not be inlined by definition */
3005 if (ins->has_blend_constant) continue;
3006
3007 /* src1 cannot be an inline constant due to encoding
3008 * restrictions. So, if possible we try to flip the arguments
3009 * in that case */
3010
3011 int op = ins->alu.op;
3012
3013 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3014 switch (op) {
3015 /* These ops require an operational change to flip
3016 * their arguments TODO */
3017 case midgard_alu_op_flt:
3018 case midgard_alu_op_fle:
3019 case midgard_alu_op_ilt:
3020 case midgard_alu_op_ile:
3021 case midgard_alu_op_fcsel:
3022 case midgard_alu_op_icsel:
3023 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3024 default:
3025 break;
3026 }
3027
3028 if (alu_opcode_props[op].props & OP_COMMUTES) {
3029 /* Flip the SSA numbers */
3030 ins->ssa_args.src0 = ins->ssa_args.src1;
3031 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3032
3033 /* And flip the modifiers */
3034
3035 unsigned src_temp;
3036
3037 src_temp = ins->alu.src2;
3038 ins->alu.src2 = ins->alu.src1;
3039 ins->alu.src1 = src_temp;
3040 }
3041 }
3042
3043 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3044 /* Extract the source information */
3045
3046 midgard_vector_alu_src *src;
3047 int q = ins->alu.src2;
3048 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3049 src = m;
3050
3051 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3052 int component = src->swizzle & 3;
3053
3054 /* Scale constant appropriately, if we can legally */
3055 uint16_t scaled_constant = 0;
3056
3057 /* XXX: Check legality */
3058 if (midgard_is_integer_op(op)) {
3059 /* TODO: Inline integer */
3060 continue;
3061
3062 unsigned int *iconstants = (unsigned int *) ins->constants;
3063 scaled_constant = (uint16_t) iconstants[component];
3064
3065 /* Constant overflow after resize */
3066 if (scaled_constant != iconstants[component])
3067 continue;
3068 } else {
3069 float original = (float) ins->constants[component];
3070 scaled_constant = _mesa_float_to_half(original);
3071
3072 /* Check for loss of precision. If this is
3073 * mediump, we don't care, but for a highp
3074 * shader, we need to pay attention. NIR
3075 * doesn't yet tell us which mode we're in!
3076 * Practically this prevents most constants
3077 * from being inlined, sadly. */
3078
3079 float fp32 = _mesa_half_to_float(scaled_constant);
3080
3081 if (fp32 != original)
3082 continue;
3083 }
3084
3085 /* We don't know how to handle these with a constant */
3086
3087 if (src->mod || src->half || src->rep_low || src->rep_high) {
3088 DBG("Bailing inline constant...\n");
3089 continue;
3090 }
3091
3092 /* Make sure that the constant is not itself a
3093 * vector by checking if all accessed values
3094 * (by the swizzle) are the same. */
3095
3096 uint32_t *cons = (uint32_t *) ins->constants;
3097 uint32_t value = cons[component];
3098
3099 bool is_vector = false;
3100 unsigned mask = effective_writemask(&ins->alu);
3101
3102 for (int c = 1; c < 4; ++c) {
3103 /* We only care if this component is actually used */
3104 if (!(mask & (1 << c)))
3105 continue;
3106
3107 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3108
3109 if (test != value) {
3110 is_vector = true;
3111 break;
3112 }
3113 }
3114
3115 if (is_vector)
3116 continue;
3117
3118 /* Get rid of the embedded constant */
3119 ins->has_constants = false;
3120 ins->ssa_args.src1 = SSA_UNUSED_0;
3121 ins->ssa_args.inline_constant = true;
3122 ins->inline_constant = scaled_constant;
3123 }
3124 }
3125 }
3126
3127 /* Map normal SSA sources to other SSA sources / fixed registers (like
3128 * uniforms) */
3129
3130 static void
3131 map_ssa_to_alias(compiler_context *ctx, int *ref)
3132 {
3133 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3134
3135 if (alias) {
3136 /* Remove entry in leftovers to avoid a redunant fmov */
3137
3138 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3139
3140 if (leftover)
3141 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3142
3143 /* Assign the alias map */
3144 *ref = alias - 1;
3145 return;
3146 }
3147 }
3148
3149 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3150 * texture pipeline */
3151
3152 static bool
3153 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3154 {
3155 bool progress = false;
3156
3157 mir_foreach_instr_in_block_safe(block, ins) {
3158 if (ins->type != TAG_ALU_4) continue;
3159 if (ins->compact_branch) continue;
3160
3161 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3162 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3163 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3164
3165 mir_remove_instruction(ins);
3166 progress = true;
3167 }
3168
3169 return progress;
3170 }
3171
3172 static bool
3173 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3174 {
3175 bool progress = false;
3176
3177 mir_foreach_instr_in_block_safe(block, ins) {
3178 if (ins->type != TAG_ALU_4) continue;
3179 if (!OP_IS_MOVE(ins->alu.op)) continue;
3180
3181 unsigned from = ins->ssa_args.src1;
3182 unsigned to = ins->ssa_args.dest;
3183
3184 /* We only work on pure SSA */
3185
3186 if (to >= SSA_FIXED_MINIMUM) continue;
3187 if (from >= SSA_FIXED_MINIMUM) continue;
3188 if (to >= ctx->func->impl->ssa_alloc) continue;
3189 if (from >= ctx->func->impl->ssa_alloc) continue;
3190
3191 /* Also, if the move has side effects, we're helpless */
3192
3193 midgard_vector_alu_src src =
3194 vector_alu_from_unsigned(ins->alu.src2);
3195 unsigned mask = squeeze_writemask(ins->alu.mask);
3196 bool is_int = midgard_is_integer_op(ins->alu.op);
3197
3198 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3199 if (ins->alu.outmod != midgard_outmod_none) continue;
3200
3201 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3202 if (v->ssa_args.src0 == to) {
3203 v->ssa_args.src0 = from;
3204 progress = true;
3205 }
3206
3207 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3208 v->ssa_args.src1 = from;
3209 progress = true;
3210 }
3211 }
3212 }
3213
3214 return progress;
3215 }
3216
3217 static bool
3218 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3219 {
3220 bool progress = false;
3221
3222 mir_foreach_instr_in_block_safe(block, ins) {
3223 if (ins->type != TAG_ALU_4) continue;
3224 if (!OP_IS_MOVE(ins->alu.op)) continue;
3225
3226 unsigned from = ins->ssa_args.src1;
3227 unsigned to = ins->ssa_args.dest;
3228
3229 /* Make sure it's simple enough for us to handle */
3230
3231 if (from >= SSA_FIXED_MINIMUM) continue;
3232 if (from >= ctx->func->impl->ssa_alloc) continue;
3233 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3234 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3235
3236 bool eliminated = false;
3237
3238 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3239 /* The texture registers are not SSA so be careful.
3240 * Conservatively, just stop if we hit a texture op
3241 * (even if it may not write) to where we are */
3242
3243 if (v->type != TAG_ALU_4)
3244 break;
3245
3246 if (v->ssa_args.dest == from) {
3247 /* We don't want to track partial writes ... */
3248 if (v->alu.mask == 0xF) {
3249 v->ssa_args.dest = to;
3250 eliminated = true;
3251 }
3252
3253 break;
3254 }
3255 }
3256
3257 if (eliminated)
3258 mir_remove_instruction(ins);
3259
3260 progress |= eliminated;
3261 }
3262
3263 return progress;
3264 }
3265
3266 /* We don't really understand the imov/fmov split, so always use fmov (but let
3267 * it be imov in the IR so we don't do unsafe floating point "optimizations"
3268 * and break things */
3269
3270 static void
3271 midgard_imov_workaround(compiler_context *ctx, midgard_block *block)
3272 {
3273 mir_foreach_instr_in_block_safe(block, ins) {
3274 if (ins->type != TAG_ALU_4) continue;
3275 if (ins->alu.op != midgard_alu_op_imov) continue;
3276
3277 ins->alu.op = midgard_alu_op_fmov;
3278 ins->alu.outmod = midgard_outmod_none;
3279
3280 /* Remove flags that don't make sense */
3281
3282 midgard_vector_alu_src s =
3283 vector_alu_from_unsigned(ins->alu.src2);
3284
3285 s.mod = 0;
3286
3287 ins->alu.src2 = vector_alu_srco_unsigned(s);
3288 }
3289 }
3290
3291 /* The following passes reorder MIR instructions to enable better scheduling */
3292
3293 static void
3294 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3295 {
3296 mir_foreach_instr_in_block_safe(block, ins) {
3297 if (ins->type != TAG_LOAD_STORE_4) continue;
3298
3299 /* We've found a load/store op. Check if next is also load/store. */
3300 midgard_instruction *next_op = mir_next_op(ins);
3301 if (&next_op->link != &block->instructions) {
3302 if (next_op->type == TAG_LOAD_STORE_4) {
3303 /* If so, we're done since we're a pair */
3304 ins = mir_next_op(ins);
3305 continue;
3306 }
3307
3308 /* Maximum search distance to pair, to avoid register pressure disasters */
3309 int search_distance = 8;
3310
3311 /* Otherwise, we have an orphaned load/store -- search for another load */
3312 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3313 /* Terminate search if necessary */
3314 if (!(search_distance--)) break;
3315
3316 if (c->type != TAG_LOAD_STORE_4) continue;
3317
3318 /* Stores cannot be reordered, since they have
3319 * dependencies. For the same reason, indirect
3320 * loads cannot be reordered as their index is
3321 * loaded in r27.w */
3322
3323 if (OP_IS_STORE(c->load_store.op)) continue;
3324
3325 /* It appears the 0x800 bit is set whenever a
3326 * load is direct, unset when it is indirect.
3327 * Skip indirect loads. */
3328
3329 if (!(c->load_store.unknown & 0x800)) continue;
3330
3331 /* We found one! Move it up to pair and remove it from the old location */
3332
3333 mir_insert_instruction_before(ins, *c);
3334 mir_remove_instruction(c);
3335
3336 break;
3337 }
3338 }
3339 }
3340 }
3341
3342 /* Emit varying stores late */
3343
3344 static void
3345 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3346 /* Iterate in reverse to get the final write, rather than the first */
3347
3348 mir_foreach_instr_in_block_safe_rev(block, ins) {
3349 /* Check if what we just wrote needs a store */
3350 int idx = ins->ssa_args.dest;
3351 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3352
3353 if (!varying) continue;
3354
3355 varying -= 1;
3356
3357 /* We need to store to the appropriate varying, so emit the
3358 * move/store */
3359
3360 /* TODO: Integrate with special purpose RA (and scheduler?) */
3361 bool high_varying_register = false;
3362
3363 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3364
3365 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3366 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3367
3368 mir_insert_instruction_before(mir_next_op(ins), st);
3369 mir_insert_instruction_before(mir_next_op(ins), mov);
3370
3371 /* We no longer need to store this varying */
3372 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3373 }
3374 }
3375
3376 /* If there are leftovers after the below pass, emit actual fmov
3377 * instructions for the slow-but-correct path */
3378
3379 static void
3380 emit_leftover_move(compiler_context *ctx)
3381 {
3382 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3383 int base = ((uintptr_t) leftover->key) - 1;
3384 int mapped = base;
3385
3386 map_ssa_to_alias(ctx, &mapped);
3387 EMIT(fmov, mapped, blank_alu_src, base);
3388 }
3389 }
3390
3391 static void
3392 actualise_ssa_to_alias(compiler_context *ctx)
3393 {
3394 mir_foreach_instr(ctx, ins) {
3395 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3396 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3397 }
3398
3399 emit_leftover_move(ctx);
3400 }
3401
3402 static void
3403 emit_fragment_epilogue(compiler_context *ctx)
3404 {
3405 /* Special case: writing out constants requires us to include the move
3406 * explicitly now, so shove it into r0 */
3407
3408 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3409
3410 if (constant_value) {
3411 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3412 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3413 emit_mir_instruction(ctx, ins);
3414 }
3415
3416 /* Perform the actual fragment writeout. We have two writeout/branch
3417 * instructions, forming a loop until writeout is successful as per the
3418 * docs. TODO: gl_FragDepth */
3419
3420 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3421 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3422 }
3423
3424 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3425 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3426 * with the int8 analogue to the fragment epilogue */
3427
3428 static void
3429 emit_blend_epilogue(compiler_context *ctx)
3430 {
3431 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3432
3433 midgard_instruction scale = {
3434 .type = TAG_ALU_4,
3435 .unit = UNIT_VMUL,
3436 .inline_constant = _mesa_float_to_half(255.0),
3437 .ssa_args = {
3438 .src0 = SSA_FIXED_REGISTER(0),
3439 .src1 = SSA_UNUSED_0,
3440 .dest = SSA_FIXED_REGISTER(24),
3441 .inline_constant = true
3442 },
3443 .alu = {
3444 .op = midgard_alu_op_fmul,
3445 .reg_mode = midgard_reg_mode_32,
3446 .dest_override = midgard_dest_override_lower,
3447 .mask = 0xFF,
3448 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3449 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3450 }
3451 };
3452
3453 emit_mir_instruction(ctx, scale);
3454
3455 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3456
3457 midgard_vector_alu_src alu_src = blank_alu_src;
3458 alu_src.half = true;
3459
3460 midgard_instruction f2u8 = {
3461 .type = TAG_ALU_4,
3462 .ssa_args = {
3463 .src0 = SSA_FIXED_REGISTER(24),
3464 .src1 = SSA_UNUSED_0,
3465 .dest = SSA_FIXED_REGISTER(0),
3466 .inline_constant = true
3467 },
3468 .alu = {
3469 .op = midgard_alu_op_f2u8,
3470 .reg_mode = midgard_reg_mode_16,
3471 .dest_override = midgard_dest_override_lower,
3472 .outmod = midgard_outmod_pos,
3473 .mask = 0xF,
3474 .src1 = vector_alu_srco_unsigned(alu_src),
3475 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3476 }
3477 };
3478
3479 emit_mir_instruction(ctx, f2u8);
3480
3481 /* vmul.imov.quarter r0, r0, r0 */
3482
3483 midgard_instruction imov_8 = {
3484 .type = TAG_ALU_4,
3485 .ssa_args = {
3486 .src0 = SSA_UNUSED_1,
3487 .src1 = SSA_FIXED_REGISTER(0),
3488 .dest = SSA_FIXED_REGISTER(0),
3489 },
3490 .alu = {
3491 .op = midgard_alu_op_imov,
3492 .reg_mode = midgard_reg_mode_8,
3493 .dest_override = midgard_dest_override_none,
3494 .mask = 0xFF,
3495 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3496 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3497 }
3498 };
3499
3500 /* Emit branch epilogue with the 8-bit move as the source */
3501
3502 emit_mir_instruction(ctx, imov_8);
3503 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3504
3505 emit_mir_instruction(ctx, imov_8);
3506 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3507 }
3508
3509 static midgard_block *
3510 emit_block(compiler_context *ctx, nir_block *block)
3511 {
3512 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3513 list_addtail(&this_block->link, &ctx->blocks);
3514
3515 this_block->is_scheduled = false;
3516 ++ctx->block_count;
3517
3518 ctx->texture_index[0] = -1;
3519 ctx->texture_index[1] = -1;
3520
3521 /* Add us as a successor to the block we are following */
3522 if (ctx->current_block)
3523 midgard_block_add_successor(ctx->current_block, this_block);
3524
3525 /* Set up current block */
3526 list_inithead(&this_block->instructions);
3527 ctx->current_block = this_block;
3528
3529 nir_foreach_instr(instr, block) {
3530 emit_instr(ctx, instr);
3531 ++ctx->instruction_count;
3532 }
3533
3534 inline_alu_constants(ctx);
3535 embedded_to_inline_constant(ctx);
3536
3537 /* Perform heavylifting for aliasing */
3538 actualise_ssa_to_alias(ctx);
3539
3540 midgard_emit_store(ctx, this_block);
3541 midgard_pair_load_store(ctx, this_block);
3542 midgard_imov_workaround(ctx, this_block);
3543
3544 /* Append fragment shader epilogue (value writeout) */
3545 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3546 if (block == nir_impl_last_block(ctx->func->impl)) {
3547 if (ctx->is_blend)
3548 emit_blend_epilogue(ctx);
3549 else
3550 emit_fragment_epilogue(ctx);
3551 }
3552 }
3553
3554 if (block == nir_start_block(ctx->func->impl))
3555 ctx->initial_block = this_block;
3556
3557 if (block == nir_impl_last_block(ctx->func->impl))
3558 ctx->final_block = this_block;
3559
3560 /* Allow the next control flow to access us retroactively, for
3561 * branching etc */
3562 ctx->current_block = this_block;
3563
3564 /* Document the fallthrough chain */
3565 ctx->previous_source_block = this_block;
3566
3567 return this_block;
3568 }
3569
3570 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3571
3572 static void
3573 emit_if(struct compiler_context *ctx, nir_if *nif)
3574 {
3575 /* Conditional branches expect the condition in r31.w; emit a move for
3576 * that in the _previous_ block (which is the current block). */
3577 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3578
3579 /* Speculatively emit the branch, but we can't fill it in until later */
3580 EMIT(branch, true, true);
3581 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3582
3583 /* Emit the two subblocks */
3584 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3585
3586 /* Emit a jump from the end of the then block to the end of the else */
3587 EMIT(branch, false, false);
3588 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3589
3590 /* Emit second block, and check if it's empty */
3591
3592 int else_idx = ctx->block_count;
3593 int count_in = ctx->instruction_count;
3594 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3595 int after_else_idx = ctx->block_count;
3596
3597 /* Now that we have the subblocks emitted, fix up the branches */
3598
3599 assert(then_block);
3600 assert(else_block);
3601
3602 if (ctx->instruction_count == count_in) {
3603 /* The else block is empty, so don't emit an exit jump */
3604 mir_remove_instruction(then_exit);
3605 then_branch->branch.target_block = after_else_idx;
3606 } else {
3607 then_branch->branch.target_block = else_idx;
3608 then_exit->branch.target_block = after_else_idx;
3609 }
3610 }
3611
3612 static void
3613 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3614 {
3615 /* Remember where we are */
3616 midgard_block *start_block = ctx->current_block;
3617
3618 /* Allocate a loop number, growing the current inner loop depth */
3619 int loop_idx = ++ctx->current_loop_depth;
3620
3621 /* Get index from before the body so we can loop back later */
3622 int start_idx = ctx->block_count;
3623
3624 /* Emit the body itself */
3625 emit_cf_list(ctx, &nloop->body);
3626
3627 /* Branch back to loop back */
3628 struct midgard_instruction br_back = v_branch(false, false);
3629 br_back.branch.target_block = start_idx;
3630 emit_mir_instruction(ctx, br_back);
3631
3632 /* Mark down that branch in the graph. Note that we're really branching
3633 * to the block *after* we started in. TODO: Why doesn't the branch
3634 * itself have an off-by-one then...? */
3635 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3636
3637 /* Find the index of the block about to follow us (note: we don't add
3638 * one; blocks are 0-indexed so we get a fencepost problem) */
3639 int break_block_idx = ctx->block_count;
3640
3641 /* Fix up the break statements we emitted to point to the right place,
3642 * now that we can allocate a block number for them */
3643
3644 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3645 mir_foreach_instr_in_block(block, ins) {
3646 if (ins->type != TAG_ALU_4) continue;
3647 if (!ins->compact_branch) continue;
3648 if (ins->prepacked_branch) continue;
3649
3650 /* We found a branch -- check the type to see if we need to do anything */
3651 if (ins->branch.target_type != TARGET_BREAK) continue;
3652
3653 /* It's a break! Check if it's our break */
3654 if (ins->branch.target_break != loop_idx) continue;
3655
3656 /* Okay, cool, we're breaking out of this loop.
3657 * Rewrite from a break to a goto */
3658
3659 ins->branch.target_type = TARGET_GOTO;
3660 ins->branch.target_block = break_block_idx;
3661 }
3662 }
3663
3664 /* Now that we've finished emitting the loop, free up the depth again
3665 * so we play nice with recursion amid nested loops */
3666 --ctx->current_loop_depth;
3667 }
3668
3669 static midgard_block *
3670 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3671 {
3672 midgard_block *start_block = NULL;
3673
3674 foreach_list_typed(nir_cf_node, node, node, list) {
3675 switch (node->type) {
3676 case nir_cf_node_block: {
3677 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3678
3679 if (!start_block)
3680 start_block = block;
3681
3682 break;
3683 }
3684
3685 case nir_cf_node_if:
3686 emit_if(ctx, nir_cf_node_as_if(node));
3687 break;
3688
3689 case nir_cf_node_loop:
3690 emit_loop(ctx, nir_cf_node_as_loop(node));
3691 break;
3692
3693 case nir_cf_node_function:
3694 assert(0);
3695 break;
3696 }
3697 }
3698
3699 return start_block;
3700 }
3701
3702 /* Due to lookahead, we need to report the first tag executed in the command
3703 * stream and in branch targets. An initial block might be empty, so iterate
3704 * until we find one that 'works' */
3705
3706 static unsigned
3707 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3708 {
3709 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3710
3711 unsigned first_tag = 0;
3712
3713 do {
3714 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3715
3716 if (initial_bundle) {
3717 first_tag = initial_bundle->tag;
3718 break;
3719 }
3720
3721 /* Initial block is empty, try the next block */
3722 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3723 } while(initial_block != NULL);
3724
3725 assert(first_tag);
3726 return first_tag;
3727 }
3728
3729 int
3730 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3731 {
3732 struct util_dynarray *compiled = &program->compiled;
3733
3734 midgard_debug = debug_get_option_midgard_debug();
3735
3736 compiler_context ictx = {
3737 .nir = nir,
3738 .stage = nir->info.stage,
3739
3740 .is_blend = is_blend,
3741 .blend_constant_offset = -1,
3742
3743 .alpha_ref = program->alpha_ref
3744 };
3745
3746 compiler_context *ctx = &ictx;
3747
3748 /* TODO: Decide this at runtime */
3749 ctx->uniform_cutoff = 8;
3750
3751 /* Assign var locations early, so the epilogue can use them if necessary */
3752
3753 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3754 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3755 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3756
3757 /* Initialize at a global (not block) level hash tables */
3758
3759 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3760 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3761 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3762 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3763 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3764 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3765 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3766
3767 /* Record the varying mapping for the command stream's bookkeeping */
3768
3769 struct exec_list *varyings =
3770 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3771
3772 nir_foreach_variable(var, varyings) {
3773 unsigned loc = var->data.driver_location;
3774 unsigned sz = glsl_type_size(var->type, FALSE);
3775
3776 for (int c = 0; c < sz; ++c) {
3777 program->varyings[loc + c] = var->data.location;
3778 }
3779 }
3780
3781 /* Lower gl_Position pre-optimisation */
3782
3783 if (ctx->stage == MESA_SHADER_VERTEX)
3784 NIR_PASS_V(nir, nir_lower_viewport_transform);
3785
3786 NIR_PASS_V(nir, nir_lower_var_copies);
3787 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3788 NIR_PASS_V(nir, nir_split_var_copies);
3789 NIR_PASS_V(nir, nir_lower_var_copies);
3790 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3791 NIR_PASS_V(nir, nir_lower_var_copies);
3792 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3793
3794 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3795
3796 /* Optimisation passes */
3797
3798 optimise_nir(nir);
3799
3800 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3801 nir_print_shader(nir, stdout);
3802 }
3803
3804 /* Assign sysvals and counts, now that we're sure
3805 * (post-optimisation) */
3806
3807 midgard_nir_assign_sysvals(ctx, nir);
3808
3809 program->uniform_count = nir->num_uniforms;
3810 program->sysval_count = ctx->sysval_count;
3811 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3812
3813 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3814 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3815
3816 nir_foreach_function(func, nir) {
3817 if (!func->impl)
3818 continue;
3819
3820 list_inithead(&ctx->blocks);
3821 ctx->block_count = 0;
3822 ctx->func = func;
3823
3824 emit_cf_list(ctx, &func->impl->body);
3825 emit_block(ctx, func->impl->end_block);
3826
3827 break; /* TODO: Multi-function shaders */
3828 }
3829
3830 util_dynarray_init(compiled, NULL);
3831
3832 /* MIR-level optimizations */
3833
3834 bool progress = false;
3835
3836 do {
3837 progress = false;
3838
3839 mir_foreach_block(ctx, block) {
3840 progress |= midgard_opt_copy_prop(ctx, block);
3841 progress |= midgard_opt_copy_prop_tex(ctx, block);
3842 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3843 }
3844 } while (progress);
3845
3846 /* Schedule! */
3847 schedule_program(ctx);
3848
3849 /* Now that all the bundles are scheduled and we can calculate block
3850 * sizes, emit actual branch instructions rather than placeholders */
3851
3852 int br_block_idx = 0;
3853
3854 mir_foreach_block(ctx, block) {
3855 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3856 for (int c = 0; c < bundle->instruction_count; ++c) {
3857 midgard_instruction *ins = &bundle->instructions[c];
3858
3859 if (!midgard_is_branch_unit(ins->unit)) continue;
3860
3861 if (ins->prepacked_branch) continue;
3862
3863 /* Parse some basic branch info */
3864 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3865 bool is_conditional = ins->branch.conditional;
3866 bool is_inverted = ins->branch.invert_conditional;
3867 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3868
3869 /* Determine the block we're jumping to */
3870 int target_number = ins->branch.target_block;
3871
3872 /* Report the destination tag. Discards don't need this */
3873 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3874
3875 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3876 int quadword_offset = 0;
3877
3878 if (is_discard) {
3879 /* Jump to the end of the shader. We
3880 * need to include not only the
3881 * following blocks, but also the
3882 * contents of our current block (since
3883 * discard can come in the middle of
3884 * the block) */
3885
3886 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3887
3888 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3889 quadword_offset += quadword_size(bun->tag);
3890 }
3891
3892 mir_foreach_block_from(ctx, blk, b) {
3893 quadword_offset += b->quadword_count;
3894 }
3895
3896 } else if (target_number > br_block_idx) {
3897 /* Jump forward */
3898
3899 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3900 midgard_block *blk = mir_get_block(ctx, idx);
3901 assert(blk);
3902
3903 quadword_offset += blk->quadword_count;
3904 }
3905 } else {
3906 /* Jump backwards */
3907
3908 for (int idx = br_block_idx; idx >= target_number; --idx) {
3909 midgard_block *blk = mir_get_block(ctx, idx);
3910 assert(blk);
3911
3912 quadword_offset -= blk->quadword_count;
3913 }
3914 }
3915
3916 /* Unconditional extended branches (far jumps)
3917 * have issues, so we always use a conditional
3918 * branch, setting the condition to always for
3919 * unconditional. For compact unconditional
3920 * branches, cond isn't used so it doesn't
3921 * matter what we pick. */
3922
3923 midgard_condition cond =
3924 !is_conditional ? midgard_condition_always :
3925 is_inverted ? midgard_condition_false :
3926 midgard_condition_true;
3927
3928 midgard_jmp_writeout_op op =
3929 is_discard ? midgard_jmp_writeout_op_discard :
3930 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3931 midgard_jmp_writeout_op_branch_cond;
3932
3933 if (!is_compact) {
3934 midgard_branch_extended branch =
3935 midgard_create_branch_extended(
3936 cond, op,
3937 dest_tag,
3938 quadword_offset);
3939
3940 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3941 } else if (is_conditional || is_discard) {
3942 midgard_branch_cond branch = {
3943 .op = op,
3944 .dest_tag = dest_tag,
3945 .offset = quadword_offset,
3946 .cond = cond
3947 };
3948
3949 assert(branch.offset == quadword_offset);
3950
3951 memcpy(&ins->br_compact, &branch, sizeof(branch));
3952 } else {
3953 assert(op == midgard_jmp_writeout_op_branch_uncond);
3954
3955 midgard_branch_uncond branch = {
3956 .op = op,
3957 .dest_tag = dest_tag,
3958 .offset = quadword_offset,
3959 .unknown = 1
3960 };
3961
3962 assert(branch.offset == quadword_offset);
3963
3964 memcpy(&ins->br_compact, &branch, sizeof(branch));
3965 }
3966 }
3967 }
3968
3969 ++br_block_idx;
3970 }
3971
3972 /* Emit flat binary from the instruction arrays. Iterate each block in
3973 * sequence. Save instruction boundaries such that lookahead tags can
3974 * be assigned easily */
3975
3976 /* Cache _all_ bundles in source order for lookahead across failed branches */
3977
3978 int bundle_count = 0;
3979 mir_foreach_block(ctx, block) {
3980 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3981 }
3982 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3983 int bundle_idx = 0;
3984 mir_foreach_block(ctx, block) {
3985 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3986 source_order_bundles[bundle_idx++] = bundle;
3987 }
3988 }
3989
3990 int current_bundle = 0;
3991
3992 mir_foreach_block(ctx, block) {
3993 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3994 int lookahead = 1;
3995
3996 if (current_bundle + 1 < bundle_count) {
3997 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3998
3999 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
4000 lookahead = 1;
4001 } else {
4002 lookahead = next;
4003 }
4004 }
4005
4006 emit_binary_bundle(ctx, bundle, compiled, lookahead);
4007 ++current_bundle;
4008 }
4009
4010 /* TODO: Free deeper */
4011 //util_dynarray_fini(&block->instructions);
4012 }
4013
4014 free(source_order_bundles);
4015
4016 /* Report the very first tag executed */
4017 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
4018
4019 /* Deal with off-by-one related to the fencepost problem */
4020 program->work_register_count = ctx->work_registers + 1;
4021
4022 program->can_discard = ctx->can_discard;
4023 program->uniform_cutoff = ctx->uniform_cutoff;
4024
4025 program->blend_patch_offset = ctx->blend_constant_offset;
4026
4027 if (midgard_debug & MIDGARD_DBG_SHADERS)
4028 disassemble_midgard(program->compiled.data, program->compiled.size);
4029
4030 return 0;
4031 }