panfrost/midgard: Document sign-extension/zero-extension bits (vector)
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .mod = (src->abs << 0) | (src->negate << 1),
258 .rep_low = 0,
259 .rep_high = 0,
260 .half = 0, /* TODO */
261 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
262 };
263
264 return alu_src;
265 }
266
267 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
268
269 static midgard_instruction
270 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
271 {
272 midgard_instruction ins = {
273 .type = TAG_ALU_4,
274 .ssa_args = {
275 .src0 = SSA_UNUSED_1,
276 .src1 = src,
277 .dest = dest,
278 },
279 .alu = {
280 .op = midgard_alu_op_fmov,
281 .reg_mode = midgard_reg_mode_full,
282 .dest_override = midgard_dest_override_none,
283 .mask = 0xFF,
284 .src1 = vector_alu_srco_unsigned(zero_alu_src),
285 .src2 = vector_alu_srco_unsigned(mod)
286 },
287 };
288
289 return ins;
290 }
291
292 /* load/store instructions have both 32-bit and 16-bit variants, depending on
293 * whether we are using vectors composed of highp or mediump. At the moment, we
294 * don't support half-floats -- this requires changes in other parts of the
295 * compiler -- therefore the 16-bit versions are commented out. */
296
297 //M_LOAD(load_attr_16);
298 M_LOAD(load_attr_32);
299 //M_LOAD(load_vary_16);
300 M_LOAD(load_vary_32);
301 //M_LOAD(load_uniform_16);
302 M_LOAD(load_uniform_32);
303 M_LOAD(load_color_buffer_8);
304 //M_STORE(store_vary_16);
305 M_STORE(store_vary_32);
306 M_STORE(store_cubemap_coords);
307
308 static midgard_instruction
309 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
310 {
311 midgard_branch_cond branch = {
312 .op = op,
313 .dest_tag = tag,
314 .offset = offset,
315 .cond = cond
316 };
317
318 uint16_t compact;
319 memcpy(&compact, &branch, sizeof(branch));
320
321 midgard_instruction ins = {
322 .type = TAG_ALU_4,
323 .unit = ALU_ENAB_BR_COMPACT,
324 .prepacked_branch = true,
325 .compact_branch = true,
326 .br_compact = compact
327 };
328
329 if (op == midgard_jmp_writeout_op_writeout)
330 ins.writeout = true;
331
332 return ins;
333 }
334
335 static midgard_instruction
336 v_branch(bool conditional, bool invert)
337 {
338 midgard_instruction ins = {
339 .type = TAG_ALU_4,
340 .unit = ALU_ENAB_BRANCH,
341 .compact_branch = true,
342 .branch = {
343 .conditional = conditional,
344 .invert_conditional = invert
345 }
346 };
347
348 return ins;
349 }
350
351 static midgard_branch_extended
352 midgard_create_branch_extended( midgard_condition cond,
353 midgard_jmp_writeout_op op,
354 unsigned dest_tag,
355 signed quadword_offset)
356 {
357 /* For unclear reasons, the condition code is repeated 8 times */
358 uint16_t duplicated_cond =
359 (cond << 14) |
360 (cond << 12) |
361 (cond << 10) |
362 (cond << 8) |
363 (cond << 6) |
364 (cond << 4) |
365 (cond << 2) |
366 (cond << 0);
367
368 midgard_branch_extended branch = {
369 .op = op,
370 .dest_tag = dest_tag,
371 .offset = quadword_offset,
372 .cond = duplicated_cond
373 };
374
375 return branch;
376 }
377
378 typedef struct midgard_bundle {
379 /* Tag for the overall bundle */
380 int tag;
381
382 /* Instructions contained by the bundle */
383 int instruction_count;
384 midgard_instruction instructions[5];
385
386 /* Bundle-wide ALU configuration */
387 int padding;
388 int control;
389 bool has_embedded_constants;
390 float constants[4];
391 bool has_blend_constant;
392
393 uint16_t register_words[8];
394 int register_words_count;
395
396 uint64_t body_words[8];
397 size_t body_size[8];
398 int body_words_count;
399 } midgard_bundle;
400
401 typedef struct compiler_context {
402 nir_shader *nir;
403 gl_shader_stage stage;
404
405 /* Is internally a blend shader? Depends on stage == FRAGMENT */
406 bool is_blend;
407
408 /* Tracking for blend constant patching */
409 int blend_constant_number;
410 int blend_constant_offset;
411
412 /* Current NIR function */
413 nir_function *func;
414
415 /* Unordered list of midgard_blocks */
416 int block_count;
417 struct list_head blocks;
418
419 midgard_block *initial_block;
420 midgard_block *previous_source_block;
421 midgard_block *final_block;
422
423 /* List of midgard_instructions emitted for the current block */
424 midgard_block *current_block;
425
426 /* The current "depth" of the loop, for disambiguating breaks/continues
427 * when using nested loops */
428 int current_loop_depth;
429
430 /* Constants which have been loaded, for later inlining */
431 struct hash_table_u64 *ssa_constants;
432
433 /* SSA indices to be outputted to corresponding varying offset */
434 struct hash_table_u64 *ssa_varyings;
435
436 /* SSA values / registers which have been aliased. Naively, these
437 * demand a fmov output; instead, we alias them in a later pass to
438 * avoid the wasted op.
439 *
440 * A note on encoding: to avoid dynamic memory management here, rather
441 * than ampping to a pointer, we map to the source index; the key
442 * itself is just the destination index. */
443
444 struct hash_table_u64 *ssa_to_alias;
445 struct set *leftover_ssa_to_alias;
446
447 /* Actual SSA-to-register for RA */
448 struct hash_table_u64 *ssa_to_register;
449
450 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
451 struct hash_table_u64 *hash_to_temp;
452 int temp_count;
453 int max_hash;
454
455 /* Just the count of the max register used. Higher count => higher
456 * register pressure */
457 int work_registers;
458
459 /* Used for cont/last hinting. Increase when a tex op is added.
460 * Decrease when a tex op is removed. */
461 int texture_op_count;
462
463 /* Mapping of texture register -> SSA index for unaliasing */
464 int texture_index[2];
465
466 /* If any path hits a discard instruction */
467 bool can_discard;
468
469 /* The number of uniforms allowable for the fast path */
470 int uniform_cutoff;
471
472 /* Count of instructions emitted from NIR overall, across all blocks */
473 int instruction_count;
474
475 /* Alpha ref value passed in */
476 float alpha_ref;
477
478 /* The index corresponding to the fragment output */
479 unsigned fragment_output;
480
481 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
482 unsigned sysvals[MAX_SYSVAL_COUNT];
483 unsigned sysval_count;
484 struct hash_table_u64 *sysval_to_id;
485 } compiler_context;
486
487 /* Append instruction to end of current block */
488
489 static midgard_instruction *
490 mir_upload_ins(struct midgard_instruction ins)
491 {
492 midgard_instruction *heap = malloc(sizeof(ins));
493 memcpy(heap, &ins, sizeof(ins));
494 return heap;
495 }
496
497 static void
498 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
499 {
500 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
501 }
502
503 static void
504 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
505 {
506 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
507 }
508
509 static void
510 mir_remove_instruction(struct midgard_instruction *ins)
511 {
512 list_del(&ins->link);
513 }
514
515 static midgard_instruction*
516 mir_prev_op(struct midgard_instruction *ins)
517 {
518 return list_last_entry(&(ins->link), midgard_instruction, link);
519 }
520
521 static midgard_instruction*
522 mir_next_op(struct midgard_instruction *ins)
523 {
524 return list_first_entry(&(ins->link), midgard_instruction, link);
525 }
526
527 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
528 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
529
530 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
531 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
532 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
533 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
534 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
535 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
536
537
538 static midgard_instruction *
539 mir_last_in_block(struct midgard_block *block)
540 {
541 return list_last_entry(&block->instructions, struct midgard_instruction, link);
542 }
543
544 static midgard_block *
545 mir_get_block(compiler_context *ctx, int idx)
546 {
547 struct list_head *lst = &ctx->blocks;
548
549 while ((idx--) + 1)
550 lst = lst->next;
551
552 return (struct midgard_block *) lst;
553 }
554
555 /* Pretty printer for internal Midgard IR */
556
557 static void
558 print_mir_source(int source)
559 {
560 if (source >= SSA_FIXED_MINIMUM) {
561 /* Specific register */
562 int reg = SSA_REG_FROM_FIXED(source);
563
564 /* TODO: Moving threshold */
565 if (reg > 16 && reg < 24)
566 printf("u%d", 23 - reg);
567 else
568 printf("r%d", reg);
569 } else {
570 printf("%d", source);
571 }
572 }
573
574 static void
575 print_mir_instruction(midgard_instruction *ins)
576 {
577 printf("\t");
578
579 switch (ins->type) {
580 case TAG_ALU_4: {
581 midgard_alu_op op = ins->alu.op;
582 const char *name = alu_opcode_names[op];
583
584 if (ins->unit)
585 printf("%d.", ins->unit);
586
587 printf("%s", name ? name : "??");
588 break;
589 }
590
591 case TAG_LOAD_STORE_4: {
592 midgard_load_store_op op = ins->load_store.op;
593 const char *name = load_store_opcode_names[op];
594
595 assert(name);
596 printf("%s", name);
597 break;
598 }
599
600 case TAG_TEXTURE_4: {
601 printf("texture");
602 break;
603 }
604
605 default:
606 assert(0);
607 }
608
609 ssa_args *args = &ins->ssa_args;
610
611 printf(" %d, ", args->dest);
612
613 print_mir_source(args->src0);
614 printf(", ");
615
616 if (args->inline_constant)
617 printf("#%d", ins->inline_constant);
618 else
619 print_mir_source(args->src1);
620
621 if (ins->has_constants)
622 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
623
624 printf("\n");
625 }
626
627 static void
628 print_mir_block(midgard_block *block)
629 {
630 printf("{\n");
631
632 mir_foreach_instr_in_block(block, ins) {
633 print_mir_instruction(ins);
634 }
635
636 printf("}\n");
637 }
638
639 static void
640 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
641 {
642 ins->has_constants = true;
643 memcpy(&ins->constants, constants, 16);
644
645 /* If this is the special blend constant, mark this instruction */
646
647 if (ctx->is_blend && ctx->blend_constant_number == name)
648 ins->has_blend_constant = true;
649 }
650
651 static int
652 glsl_type_size(const struct glsl_type *type, bool bindless)
653 {
654 return glsl_count_attribute_slots(type, false);
655 }
656
657 /* Lower fdot2 to a vector multiplication followed by channel addition */
658 static void
659 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
660 {
661 if (alu->op != nir_op_fdot2)
662 return;
663
664 b->cursor = nir_before_instr(&alu->instr);
665
666 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
667 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
668
669 nir_ssa_def *product = nir_fmul(b, src0, src1);
670
671 nir_ssa_def *sum = nir_fadd(b,
672 nir_channel(b, product, 0),
673 nir_channel(b, product, 1));
674
675 /* Replace the fdot2 with this sum */
676 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
677 }
678
679 static int
680 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
681 {
682 switch (instr->intrinsic) {
683 case nir_intrinsic_load_viewport_scale:
684 return PAN_SYSVAL_VIEWPORT_SCALE;
685 case nir_intrinsic_load_viewport_offset:
686 return PAN_SYSVAL_VIEWPORT_OFFSET;
687 default:
688 return -1;
689 }
690 }
691
692 static void
693 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
694 {
695 int sysval = -1;
696
697 if (instr->type == nir_instr_type_intrinsic) {
698 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
699 sysval = midgard_nir_sysval_for_intrinsic(intr);
700 }
701
702 if (sysval < 0)
703 return;
704
705 /* We have a sysval load; check if it's already been assigned */
706
707 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
708 return;
709
710 /* It hasn't -- so assign it now! */
711
712 unsigned id = ctx->sysval_count++;
713 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
714 ctx->sysvals[id] = sysval;
715 }
716
717 static void
718 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
719 {
720 ctx->sysval_count = 0;
721
722 nir_foreach_function(function, shader) {
723 if (!function->impl) continue;
724
725 nir_foreach_block(block, function->impl) {
726 nir_foreach_instr_safe(instr, block) {
727 midgard_nir_assign_sysval_body(ctx, instr);
728 }
729 }
730 }
731 }
732
733 static bool
734 midgard_nir_lower_fdot2(nir_shader *shader)
735 {
736 bool progress = false;
737
738 nir_foreach_function(function, shader) {
739 if (!function->impl) continue;
740
741 nir_builder _b;
742 nir_builder *b = &_b;
743 nir_builder_init(b, function->impl);
744
745 nir_foreach_block(block, function->impl) {
746 nir_foreach_instr_safe(instr, block) {
747 if (instr->type != nir_instr_type_alu) continue;
748
749 nir_alu_instr *alu = nir_instr_as_alu(instr);
750 midgard_nir_lower_fdot2_body(b, alu);
751
752 progress |= true;
753 }
754 }
755
756 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
757
758 }
759
760 return progress;
761 }
762
763 static void
764 optimise_nir(nir_shader *nir)
765 {
766 bool progress;
767
768 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
769 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
770
771 nir_lower_tex_options lower_tex_options = {
772 .lower_rect = true
773 };
774
775 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
776
777 do {
778 progress = false;
779
780 NIR_PASS(progress, nir, nir_lower_var_copies);
781 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
782
783 NIR_PASS(progress, nir, nir_copy_prop);
784 NIR_PASS(progress, nir, nir_opt_dce);
785 NIR_PASS(progress, nir, nir_opt_dead_cf);
786 NIR_PASS(progress, nir, nir_opt_cse);
787 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
788 NIR_PASS(progress, nir, nir_opt_algebraic);
789 NIR_PASS(progress, nir, nir_opt_constant_folding);
790 NIR_PASS(progress, nir, nir_opt_undef);
791 NIR_PASS(progress, nir, nir_opt_loop_unroll,
792 nir_var_shader_in |
793 nir_var_shader_out |
794 nir_var_function_temp);
795
796 /* TODO: Enable vectorize when merged upstream */
797 // NIR_PASS(progress, nir, nir_opt_vectorize);
798 } while (progress);
799
800 /* Must be run at the end to prevent creation of fsin/fcos ops */
801 NIR_PASS(progress, nir, midgard_nir_scale_trig);
802
803 do {
804 progress = false;
805
806 NIR_PASS(progress, nir, nir_opt_dce);
807 NIR_PASS(progress, nir, nir_opt_algebraic);
808 NIR_PASS(progress, nir, nir_opt_constant_folding);
809 NIR_PASS(progress, nir, nir_copy_prop);
810 } while (progress);
811
812 NIR_PASS(progress, nir, nir_opt_algebraic_late);
813 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
814
815 /* Lower mods for float ops only. Integer ops don't support modifiers
816 * (saturate doesn't make sense on integers, neg/abs require dedicated
817 * instructions) */
818
819 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
820 NIR_PASS(progress, nir, nir_copy_prop);
821 NIR_PASS(progress, nir, nir_opt_dce);
822
823 /* We implement booleans as 32-bit 0/~0 */
824 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
825
826 /* Take us out of SSA */
827 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
828 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
829
830 /* We are a vector architecture; write combine where possible */
831 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
832 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
833
834 NIR_PASS(progress, nir, nir_opt_dce);
835 }
836
837 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
838 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
839 * r0. See the comments in compiler_context */
840
841 static void
842 alias_ssa(compiler_context *ctx, int dest, int src)
843 {
844 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
845 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
846 }
847
848 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
849
850 static void
851 unalias_ssa(compiler_context *ctx, int dest)
852 {
853 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
854 /* TODO: Remove from leftover or no? */
855 }
856
857 static void
858 midgard_pin_output(compiler_context *ctx, int index, int reg)
859 {
860 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
861 }
862
863 static bool
864 midgard_is_pinned(compiler_context *ctx, int index)
865 {
866 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
867 }
868
869 /* Do not actually emit a load; instead, cache the constant for inlining */
870
871 static void
872 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
873 {
874 nir_ssa_def def = instr->def;
875
876 float *v = ralloc_array(NULL, float, 4);
877 nir_const_load_to_arr(v, instr, f32);
878 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
879 }
880
881 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
882 * do the inverse) */
883
884 static unsigned
885 expand_writemask(unsigned mask)
886 {
887 unsigned o = 0;
888
889 for (int i = 0; i < 4; ++i)
890 if (mask & (1 << i))
891 o |= (3 << (2 * i));
892
893 return o;
894 }
895
896 static unsigned
897 squeeze_writemask(unsigned mask)
898 {
899 unsigned o = 0;
900
901 for (int i = 0; i < 4; ++i)
902 if (mask & (3 << (2 * i)))
903 o |= (1 << i);
904
905 return o;
906
907 }
908
909 /* Determines effective writemask, taking quirks and expansion into account */
910 static unsigned
911 effective_writemask(midgard_vector_alu *alu)
912 {
913 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
914 * sense) */
915
916 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
917
918 /* If there is a fixed channel count, construct the appropriate mask */
919
920 if (channel_count)
921 return (1 << channel_count) - 1;
922
923 /* Otherwise, just squeeze the existing mask */
924 return squeeze_writemask(alu->mask);
925 }
926
927 static unsigned
928 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
929 {
930 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
931 return hash;
932
933 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
934
935 if (temp)
936 return temp - 1;
937
938 /* If no temp is find, allocate one */
939 temp = ctx->temp_count++;
940 ctx->max_hash = MAX2(ctx->max_hash, hash);
941
942 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
943
944 return temp;
945 }
946
947 static unsigned
948 nir_src_index(compiler_context *ctx, nir_src *src)
949 {
950 if (src->is_ssa)
951 return src->ssa->index;
952 else {
953 assert(!src->reg.indirect);
954 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
955 }
956 }
957
958 static unsigned
959 nir_dest_index(compiler_context *ctx, nir_dest *dst)
960 {
961 if (dst->is_ssa)
962 return dst->ssa.index;
963 else {
964 assert(!dst->reg.indirect);
965 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
966 }
967 }
968
969 static unsigned
970 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
971 {
972 return nir_src_index(ctx, &src->src);
973 }
974
975 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
976 * a conditional test) into that register */
977
978 static void
979 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
980 {
981 int condition = nir_src_index(ctx, src);
982
983 /* Source to swizzle the desired component into w */
984
985 const midgard_vector_alu_src alu_src = {
986 .swizzle = SWIZZLE(component, component, component, component),
987 };
988
989 /* There is no boolean move instruction. Instead, we simulate a move by
990 * ANDing the condition with itself to get it into r31.w */
991
992 midgard_instruction ins = {
993 .type = TAG_ALU_4,
994 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
995 .ssa_args = {
996 .src0 = condition,
997 .src1 = condition,
998 .dest = SSA_FIXED_REGISTER(31),
999 },
1000 .alu = {
1001 .op = midgard_alu_op_iand,
1002 .reg_mode = midgard_reg_mode_full,
1003 .dest_override = midgard_dest_override_none,
1004 .mask = (0x3 << 6), /* w */
1005 .src1 = vector_alu_srco_unsigned(alu_src),
1006 .src2 = vector_alu_srco_unsigned(alu_src)
1007 },
1008 };
1009
1010 emit_mir_instruction(ctx, ins);
1011 }
1012
1013 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1014 * pinning to eliminate this move in all known cases */
1015
1016 static void
1017 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1018 {
1019 int offset = nir_src_index(ctx, src);
1020
1021 midgard_instruction ins = {
1022 .type = TAG_ALU_4,
1023 .ssa_args = {
1024 .src0 = SSA_UNUSED_1,
1025 .src1 = offset,
1026 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1027 },
1028 .alu = {
1029 .op = midgard_alu_op_imov,
1030 .reg_mode = midgard_reg_mode_full,
1031 .dest_override = midgard_dest_override_none,
1032 .mask = (0x3 << 6), /* w */
1033 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1034 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1035 },
1036 };
1037
1038 emit_mir_instruction(ctx, ins);
1039 }
1040
1041 #define ALU_CASE(nir, _op) \
1042 case nir_op_##nir: \
1043 op = midgard_alu_op_##_op; \
1044 break;
1045
1046 static void
1047 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1048 {
1049 bool is_ssa = instr->dest.dest.is_ssa;
1050
1051 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1052 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1053 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1054
1055 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1056 * supported. A few do not and are commented for now. Also, there are a
1057 * number of NIR ops which Midgard does not support and need to be
1058 * lowered, also TODO. This switch block emits the opcode and calling
1059 * convention of the Midgard instruction; actual packing is done in
1060 * emit_alu below */
1061
1062 unsigned op;
1063
1064 switch (instr->op) {
1065 ALU_CASE(fadd, fadd);
1066 ALU_CASE(fmul, fmul);
1067 ALU_CASE(fmin, fmin);
1068 ALU_CASE(fmax, fmax);
1069 ALU_CASE(imin, imin);
1070 ALU_CASE(imax, imax);
1071 ALU_CASE(umin, umin);
1072 ALU_CASE(umax, umax);
1073 ALU_CASE(fmov, fmov);
1074 ALU_CASE(ffloor, ffloor);
1075 ALU_CASE(fround_even, froundeven);
1076 ALU_CASE(ftrunc, ftrunc);
1077 ALU_CASE(fceil, fceil);
1078 ALU_CASE(fdot3, fdot3);
1079 ALU_CASE(fdot4, fdot4);
1080 ALU_CASE(iadd, iadd);
1081 ALU_CASE(isub, isub);
1082 ALU_CASE(imul, imul);
1083 ALU_CASE(iabs, iabs);
1084
1085 /* XXX: Use fmov, not imov, since imov was causing major
1086 * issues with texture precision? XXX research */
1087 ALU_CASE(imov, imov);
1088
1089 ALU_CASE(feq32, feq);
1090 ALU_CASE(fne32, fne);
1091 ALU_CASE(flt32, flt);
1092 ALU_CASE(ieq32, ieq);
1093 ALU_CASE(ine32, ine);
1094 ALU_CASE(ilt32, ilt);
1095 ALU_CASE(ult32, ult);
1096
1097 /* We don't have a native b2f32 instruction. Instead, like many
1098 * GPUs, we exploit booleans as 0/~0 for false/true, and
1099 * correspondingly AND
1100 * by 1.0 to do the type conversion. For the moment, prime us
1101 * to emit:
1102 *
1103 * iand [whatever], #0
1104 *
1105 * At the end of emit_alu (as MIR), we'll fix-up the constant
1106 */
1107
1108 ALU_CASE(b2f32, iand);
1109 ALU_CASE(b2i32, iand);
1110
1111 /* Likewise, we don't have a dedicated f2b32 instruction, but
1112 * we can do a "not equal to 0.0" test. */
1113
1114 ALU_CASE(f2b32, fne);
1115 ALU_CASE(i2b32, ine);
1116
1117 ALU_CASE(frcp, frcp);
1118 ALU_CASE(frsq, frsqrt);
1119 ALU_CASE(fsqrt, fsqrt);
1120 ALU_CASE(fexp2, fexp2);
1121 ALU_CASE(flog2, flog2);
1122
1123 ALU_CASE(f2i32, f2i);
1124 ALU_CASE(f2u32, f2u);
1125 ALU_CASE(i2f32, i2f);
1126 ALU_CASE(u2f32, u2f);
1127
1128 ALU_CASE(fsin, fsin);
1129 ALU_CASE(fcos, fcos);
1130
1131 ALU_CASE(iand, iand);
1132 ALU_CASE(ior, ior);
1133 ALU_CASE(ixor, ixor);
1134 ALU_CASE(inot, inot);
1135 ALU_CASE(ishl, ishl);
1136 ALU_CASE(ishr, iasr);
1137 ALU_CASE(ushr, ilsr);
1138
1139 ALU_CASE(b32all_fequal2, fball_eq);
1140 ALU_CASE(b32all_fequal3, fball_eq);
1141 ALU_CASE(b32all_fequal4, fball_eq);
1142
1143 ALU_CASE(b32any_fnequal2, fbany_neq);
1144 ALU_CASE(b32any_fnequal3, fbany_neq);
1145 ALU_CASE(b32any_fnequal4, fbany_neq);
1146
1147 ALU_CASE(b32all_iequal2, iball_eq);
1148 ALU_CASE(b32all_iequal3, iball_eq);
1149 ALU_CASE(b32all_iequal4, iball_eq);
1150
1151 ALU_CASE(b32any_inequal2, ibany_neq);
1152 ALU_CASE(b32any_inequal3, ibany_neq);
1153 ALU_CASE(b32any_inequal4, ibany_neq);
1154
1155 /* For greater-or-equal, we lower to less-or-equal and flip the
1156 * arguments */
1157
1158 case nir_op_fge:
1159 case nir_op_fge32:
1160 case nir_op_ige32:
1161 case nir_op_uge32: {
1162 op =
1163 instr->op == nir_op_fge ? midgard_alu_op_fle :
1164 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1165 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1166 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1167 0;
1168
1169 /* Swap via temporary */
1170 nir_alu_src temp = instr->src[1];
1171 instr->src[1] = instr->src[0];
1172 instr->src[0] = temp;
1173
1174 break;
1175 }
1176
1177 case nir_op_b32csel: {
1178 op = midgard_alu_op_fcsel;
1179
1180 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1181 nr_inputs = 2;
1182
1183 /* Figure out which component the condition is in */
1184
1185 unsigned comp = instr->src[0].swizzle[0];
1186
1187 /* Make sure NIR isn't throwing a mixed condition at us */
1188
1189 for (unsigned c = 1; c < nr_components; ++c)
1190 assert(instr->src[0].swizzle[c] == comp);
1191
1192 /* Emit the condition into r31.w */
1193 emit_condition(ctx, &instr->src[0].src, false, comp);
1194
1195 /* The condition is the first argument; move the other
1196 * arguments up one to be a binary instruction for
1197 * Midgard */
1198
1199 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1200 break;
1201 }
1202
1203 default:
1204 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1205 assert(0);
1206 return;
1207 }
1208
1209 /* Fetch unit, quirks, etc information */
1210 unsigned opcode_props = alu_opcode_props[op];
1211 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1212
1213 /* Initialise fields common between scalar/vector instructions */
1214 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1215
1216 /* src0 will always exist afaik, but src1 will not for 1-argument
1217 * instructions. The latter can only be fetched if the instruction
1218 * needs it, or else we may segfault. */
1219
1220 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1221 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1222
1223 /* Rather than use the instruction generation helpers, we do it
1224 * ourselves here to avoid the mess */
1225
1226 midgard_instruction ins = {
1227 .type = TAG_ALU_4,
1228 .ssa_args = {
1229 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1230 .src1 = quirk_flipped_r24 ? src0 : src1,
1231 .dest = dest,
1232 }
1233 };
1234
1235 nir_alu_src *nirmods[2] = { NULL };
1236
1237 if (nr_inputs == 2) {
1238 nirmods[0] = &instr->src[0];
1239 nirmods[1] = &instr->src[1];
1240 } else if (nr_inputs == 1) {
1241 nirmods[quirk_flipped_r24] = &instr->src[0];
1242 } else {
1243 assert(0);
1244 }
1245
1246 midgard_vector_alu alu = {
1247 .op = op,
1248 .reg_mode = midgard_reg_mode_full,
1249 .dest_override = midgard_dest_override_none,
1250 .outmod = outmod,
1251
1252 /* Writemask only valid for non-SSA NIR */
1253 .mask = expand_writemask((1 << nr_components) - 1),
1254
1255 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1256 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1257 };
1258
1259 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1260
1261 if (!is_ssa)
1262 alu.mask &= expand_writemask(instr->dest.write_mask);
1263
1264 ins.alu = alu;
1265
1266 /* Late fixup for emulated instructions */
1267
1268 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1269 /* Presently, our second argument is an inline #0 constant.
1270 * Switch over to an embedded 1.0 constant (that can't fit
1271 * inline, since we're 32-bit, not 16-bit like the inline
1272 * constants) */
1273
1274 ins.ssa_args.inline_constant = false;
1275 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1276 ins.has_constants = true;
1277
1278 if (instr->op == nir_op_b2f32) {
1279 ins.constants[0] = 1.0f;
1280 } else {
1281 /* Type pun it into place */
1282 uint32_t one = 0x1;
1283 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1284 }
1285
1286 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1287 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1288 ins.ssa_args.inline_constant = false;
1289 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1290 ins.has_constants = true;
1291 ins.constants[0] = 0.0f;
1292 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1293 }
1294
1295 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1296 /* To avoid duplicating the lookup tables (probably), true LUT
1297 * instructions can only operate as if they were scalars. Lower
1298 * them here by changing the component. */
1299
1300 uint8_t original_swizzle[4];
1301 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1302
1303 for (int i = 0; i < nr_components; ++i) {
1304 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1305
1306 for (int j = 0; j < 4; ++j)
1307 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1308
1309 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1310 emit_mir_instruction(ctx, ins);
1311 }
1312 } else {
1313 emit_mir_instruction(ctx, ins);
1314 }
1315 }
1316
1317 #undef ALU_CASE
1318
1319 static void
1320 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1321 {
1322 /* TODO: half-floats */
1323
1324 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1325 /* Fast path: For the first 16 uniforms, direct accesses are
1326 * 0-cycle, since they're just a register fetch in the usual
1327 * case. So, we alias the registers while we're still in
1328 * SSA-space */
1329
1330 int reg_slot = 23 - offset;
1331 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1332 } else {
1333 /* Otherwise, read from the 'special' UBO to access
1334 * higher-indexed uniforms, at a performance cost. More
1335 * generally, we're emitting a UBO read instruction. */
1336
1337 midgard_instruction ins = m_load_uniform_32(dest, offset);
1338
1339 /* TODO: Don't split */
1340 ins.load_store.varying_parameters = (offset & 7) << 7;
1341 ins.load_store.address = offset >> 3;
1342
1343 if (indirect_offset) {
1344 emit_indirect_offset(ctx, indirect_offset);
1345 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1346 } else {
1347 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1348 }
1349
1350 emit_mir_instruction(ctx, ins);
1351 }
1352 }
1353
1354 static void
1355 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1356 {
1357 /* First, pull out the destination */
1358 unsigned dest = nir_dest_index(ctx, &instr->dest);
1359
1360 /* Now, figure out which uniform this is */
1361 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1362 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1363
1364 /* Sysvals are prefix uniforms */
1365 unsigned uniform = ((uintptr_t) val) - 1;
1366
1367 /* Emit the read itself -- this is never indirect */
1368 emit_uniform_read(ctx, dest, uniform, NULL);
1369 }
1370
1371 static void
1372 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1373 {
1374 unsigned offset, reg;
1375
1376 switch (instr->intrinsic) {
1377 case nir_intrinsic_discard_if:
1378 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1379
1380 /* fallthrough */
1381
1382 case nir_intrinsic_discard: {
1383 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1384 struct midgard_instruction discard = v_branch(conditional, false);
1385 discard.branch.target_type = TARGET_DISCARD;
1386 emit_mir_instruction(ctx, discard);
1387
1388 ctx->can_discard = true;
1389 break;
1390 }
1391
1392 case nir_intrinsic_load_uniform:
1393 case nir_intrinsic_load_input:
1394 offset = nir_intrinsic_base(instr);
1395
1396 bool direct = nir_src_is_const(instr->src[0]);
1397
1398 if (direct) {
1399 offset += nir_src_as_uint(instr->src[0]);
1400 }
1401
1402 reg = nir_dest_index(ctx, &instr->dest);
1403
1404 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1405 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1406 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1407 /* XXX: Half-floats? */
1408 /* TODO: swizzle, mask */
1409
1410 midgard_instruction ins = m_load_vary_32(reg, offset);
1411
1412 midgard_varying_parameter p = {
1413 .is_varying = 1,
1414 .interpolation = midgard_interp_default,
1415 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1416 };
1417
1418 unsigned u;
1419 memcpy(&u, &p, sizeof(p));
1420 ins.load_store.varying_parameters = u;
1421
1422 if (direct) {
1423 /* We have the offset totally ready */
1424 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1425 } else {
1426 /* We have it partially ready, but we need to
1427 * add in the dynamic index, moved to r27.w */
1428 emit_indirect_offset(ctx, &instr->src[0]);
1429 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1430 }
1431
1432 emit_mir_instruction(ctx, ins);
1433 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1434 /* Constant encoded as a pinned constant */
1435
1436 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1437 ins.has_constants = true;
1438 ins.has_blend_constant = true;
1439 emit_mir_instruction(ctx, ins);
1440 } else if (ctx->is_blend) {
1441 /* For blend shaders, a load might be
1442 * translated various ways depending on what
1443 * we're loading. Figure out how this is used */
1444
1445 nir_variable *out = NULL;
1446
1447 nir_foreach_variable(var, &ctx->nir->inputs) {
1448 int drvloc = var->data.driver_location;
1449
1450 if (nir_intrinsic_base(instr) == drvloc) {
1451 out = var;
1452 break;
1453 }
1454 }
1455
1456 assert(out);
1457
1458 if (out->data.location == VARYING_SLOT_COL0) {
1459 /* Source color preloaded to r0 */
1460
1461 midgard_pin_output(ctx, reg, 0);
1462 } else if (out->data.location == VARYING_SLOT_COL1) {
1463 /* Destination color must be read from framebuffer */
1464
1465 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1466 ins.load_store.swizzle = 0; /* xxxx */
1467
1468 /* Read each component sequentially */
1469
1470 for (int c = 0; c < 4; ++c) {
1471 ins.load_store.mask = (1 << c);
1472 ins.load_store.unknown = c;
1473 emit_mir_instruction(ctx, ins);
1474 }
1475
1476 /* vadd.u2f hr2, zext(hr2), #0 */
1477
1478 midgard_vector_alu_src alu_src = blank_alu_src;
1479 alu_src.mod = midgard_int_zero_extend;
1480 alu_src.half = true;
1481
1482 midgard_instruction u2f = {
1483 .type = TAG_ALU_4,
1484 .ssa_args = {
1485 .src0 = reg,
1486 .src1 = SSA_UNUSED_0,
1487 .dest = reg,
1488 .inline_constant = true
1489 },
1490 .alu = {
1491 .op = midgard_alu_op_u2f,
1492 .reg_mode = midgard_reg_mode_half,
1493 .dest_override = midgard_dest_override_none,
1494 .mask = 0xF,
1495 .src1 = vector_alu_srco_unsigned(alu_src),
1496 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1497 }
1498 };
1499
1500 emit_mir_instruction(ctx, u2f);
1501
1502 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1503
1504 alu_src.mod = 0;
1505
1506 midgard_instruction fmul = {
1507 .type = TAG_ALU_4,
1508 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1509 .ssa_args = {
1510 .src0 = reg,
1511 .dest = reg,
1512 .src1 = SSA_UNUSED_0,
1513 .inline_constant = true
1514 },
1515 .alu = {
1516 .op = midgard_alu_op_fmul,
1517 .reg_mode = midgard_reg_mode_full,
1518 .dest_override = midgard_dest_override_none,
1519 .outmod = midgard_outmod_sat,
1520 .mask = 0xFF,
1521 .src1 = vector_alu_srco_unsigned(alu_src),
1522 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1523 }
1524 };
1525
1526 emit_mir_instruction(ctx, fmul);
1527 } else {
1528 DBG("Unknown input in blend shader\n");
1529 assert(0);
1530 }
1531 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1532 midgard_instruction ins = m_load_attr_32(reg, offset);
1533 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1534 ins.load_store.mask = (1 << instr->num_components) - 1;
1535 emit_mir_instruction(ctx, ins);
1536 } else {
1537 DBG("Unknown load\n");
1538 assert(0);
1539 }
1540
1541 break;
1542
1543 case nir_intrinsic_store_output:
1544 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1545
1546 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1547
1548 reg = nir_src_index(ctx, &instr->src[0]);
1549
1550 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1551 /* gl_FragColor is not emitted with load/store
1552 * instructions. Instead, it gets plonked into
1553 * r0 at the end of the shader and we do the
1554 * framebuffer writeout dance. TODO: Defer
1555 * writes */
1556
1557 midgard_pin_output(ctx, reg, 0);
1558
1559 /* Save the index we're writing to for later reference
1560 * in the epilogue */
1561
1562 ctx->fragment_output = reg;
1563 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1564 /* Varyings are written into one of two special
1565 * varying register, r26 or r27. The register itself is selected as the register
1566 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1567 *
1568 * Normally emitting fmov's is frowned upon,
1569 * but due to unique constraints of
1570 * REGISTER_VARYING, fmov emission + a
1571 * dedicated cleanup pass is the only way to
1572 * guarantee correctness when considering some
1573 * (common) edge cases XXX: FIXME */
1574
1575 /* If this varying corresponds to a constant (why?!),
1576 * emit that now since it won't get picked up by
1577 * hoisting (since there is no corresponding move
1578 * emitted otherwise) */
1579
1580 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1581
1582 if (constant_value) {
1583 /* Special case: emit the varying write
1584 * directly to r26 (looks funny in asm but it's
1585 * fine) and emit the store _now_. Possibly
1586 * slightly slower, but this is a really stupid
1587 * special case anyway (why on earth would you
1588 * have a constant varying? Your own fault for
1589 * slightly worse perf :P) */
1590
1591 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1592 attach_constants(ctx, &ins, constant_value, reg + 1);
1593 emit_mir_instruction(ctx, ins);
1594
1595 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1596 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1597 emit_mir_instruction(ctx, st);
1598 } else {
1599 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1600
1601 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1602 }
1603 } else {
1604 DBG("Unknown store\n");
1605 assert(0);
1606 }
1607
1608 break;
1609
1610 case nir_intrinsic_load_alpha_ref_float:
1611 assert(instr->dest.is_ssa);
1612
1613 float ref_value = ctx->alpha_ref;
1614
1615 float *v = ralloc_array(NULL, float, 4);
1616 memcpy(v, &ref_value, sizeof(float));
1617 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1618 break;
1619
1620 case nir_intrinsic_load_viewport_scale:
1621 case nir_intrinsic_load_viewport_offset:
1622 emit_sysval_read(ctx, instr);
1623 break;
1624
1625 default:
1626 printf ("Unhandled intrinsic\n");
1627 assert(0);
1628 break;
1629 }
1630 }
1631
1632 static unsigned
1633 midgard_tex_format(enum glsl_sampler_dim dim)
1634 {
1635 switch (dim) {
1636 case GLSL_SAMPLER_DIM_2D:
1637 case GLSL_SAMPLER_DIM_EXTERNAL:
1638 return TEXTURE_2D;
1639
1640 case GLSL_SAMPLER_DIM_3D:
1641 return TEXTURE_3D;
1642
1643 case GLSL_SAMPLER_DIM_CUBE:
1644 return TEXTURE_CUBE;
1645
1646 default:
1647 DBG("Unknown sampler dim type\n");
1648 assert(0);
1649 return 0;
1650 }
1651 }
1652
1653 static void
1654 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1655 {
1656 /* TODO */
1657 //assert (!instr->sampler);
1658 //assert (!instr->texture_array_size);
1659 assert (instr->op == nir_texop_tex);
1660
1661 /* Allocate registers via a round robin scheme to alternate between the two registers */
1662 int reg = ctx->texture_op_count & 1;
1663 int in_reg = reg, out_reg = reg;
1664
1665 /* Make room for the reg */
1666
1667 if (ctx->texture_index[reg] > -1)
1668 unalias_ssa(ctx, ctx->texture_index[reg]);
1669
1670 int texture_index = instr->texture_index;
1671 int sampler_index = texture_index;
1672
1673 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1674 switch (instr->src[i].src_type) {
1675 case nir_tex_src_coord: {
1676 int index = nir_src_index(ctx, &instr->src[i].src);
1677
1678 midgard_vector_alu_src alu_src = blank_alu_src;
1679
1680 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1681
1682 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1683 /* For cubemaps, we need to load coords into
1684 * special r27, and then use a special ld/st op
1685 * to copy into the texture register */
1686
1687 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1688
1689 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1690 emit_mir_instruction(ctx, move);
1691
1692 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1693 st.load_store.unknown = 0x24; /* XXX: What is this? */
1694 st.load_store.mask = 0x3; /* xy? */
1695 st.load_store.swizzle = alu_src.swizzle;
1696 emit_mir_instruction(ctx, st);
1697
1698 } else {
1699 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1700
1701 midgard_instruction ins = v_fmov(index, alu_src, reg);
1702 emit_mir_instruction(ctx, ins);
1703 }
1704
1705 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1706
1707 break;
1708 }
1709
1710 default: {
1711 DBG("Unknown source type\n");
1712 //assert(0);
1713 break;
1714 }
1715 }
1716 }
1717
1718 /* No helper to build texture words -- we do it all here */
1719 midgard_instruction ins = {
1720 .type = TAG_TEXTURE_4,
1721 .texture = {
1722 .op = TEXTURE_OP_NORMAL,
1723 .format = midgard_tex_format(instr->sampler_dim),
1724 .texture_handle = texture_index,
1725 .sampler_handle = sampler_index,
1726
1727 /* TODO: Don't force xyzw */
1728 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1729 .mask = 0xF,
1730
1731 /* TODO: half */
1732 //.in_reg_full = 1,
1733 .out_full = 1,
1734
1735 .filter = 1,
1736
1737 /* Always 1 */
1738 .unknown7 = 1,
1739
1740 /* Assume we can continue; hint it out later */
1741 .cont = 1,
1742 }
1743 };
1744
1745 /* Set registers to read and write from the same place */
1746 ins.texture.in_reg_select = in_reg;
1747 ins.texture.out_reg_select = out_reg;
1748
1749 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1750 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1751 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1752 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1753 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1754 } else {
1755 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1756 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1757 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1758 }
1759
1760 emit_mir_instruction(ctx, ins);
1761
1762 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1763
1764 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1765 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1766 ctx->texture_index[reg] = o_index;
1767
1768 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1769 emit_mir_instruction(ctx, ins2);
1770
1771 /* Used for .cont and .last hinting */
1772 ctx->texture_op_count++;
1773 }
1774
1775 static void
1776 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1777 {
1778 switch (instr->type) {
1779 case nir_jump_break: {
1780 /* Emit a branch out of the loop */
1781 struct midgard_instruction br = v_branch(false, false);
1782 br.branch.target_type = TARGET_BREAK;
1783 br.branch.target_break = ctx->current_loop_depth;
1784 emit_mir_instruction(ctx, br);
1785
1786 DBG("break..\n");
1787 break;
1788 }
1789
1790 default:
1791 DBG("Unknown jump type %d\n", instr->type);
1792 break;
1793 }
1794 }
1795
1796 static void
1797 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1798 {
1799 switch (instr->type) {
1800 case nir_instr_type_load_const:
1801 emit_load_const(ctx, nir_instr_as_load_const(instr));
1802 break;
1803
1804 case nir_instr_type_intrinsic:
1805 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1806 break;
1807
1808 case nir_instr_type_alu:
1809 emit_alu(ctx, nir_instr_as_alu(instr));
1810 break;
1811
1812 case nir_instr_type_tex:
1813 emit_tex(ctx, nir_instr_as_tex(instr));
1814 break;
1815
1816 case nir_instr_type_jump:
1817 emit_jump(ctx, nir_instr_as_jump(instr));
1818 break;
1819
1820 case nir_instr_type_ssa_undef:
1821 /* Spurious */
1822 break;
1823
1824 default:
1825 DBG("Unhandled instruction type\n");
1826 break;
1827 }
1828 }
1829
1830 /* Determine the actual hardware from the index based on the RA results or special values */
1831
1832 static int
1833 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1834 {
1835 if (reg >= SSA_FIXED_MINIMUM)
1836 return SSA_REG_FROM_FIXED(reg);
1837
1838 if (reg >= 0) {
1839 assert(reg < maxreg);
1840 int r = ra_get_node_reg(g, reg);
1841 ctx->work_registers = MAX2(ctx->work_registers, r);
1842 return r;
1843 }
1844
1845 switch (reg) {
1846 /* fmov style unused */
1847 case SSA_UNUSED_0:
1848 return REGISTER_UNUSED;
1849
1850 /* lut style unused */
1851 case SSA_UNUSED_1:
1852 return REGISTER_UNUSED;
1853
1854 default:
1855 DBG("Unknown SSA register alias %d\n", reg);
1856 assert(0);
1857 return 31;
1858 }
1859 }
1860
1861 static unsigned int
1862 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1863 {
1864 /* Choose the first available register to minimise reported register pressure */
1865
1866 for (int i = 0; i < 16; ++i) {
1867 if (BITSET_TEST(regs, i)) {
1868 return i;
1869 }
1870 }
1871
1872 assert(0);
1873 return 0;
1874 }
1875
1876 static bool
1877 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1878 {
1879 if (ins->ssa_args.src0 == src) return true;
1880 if (ins->ssa_args.src1 == src) return true;
1881
1882 return false;
1883 }
1884
1885 /* Determine if a variable is live in the successors of a block */
1886 static bool
1887 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1888 {
1889 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1890 midgard_block *succ = bl->successors[i];
1891
1892 /* If we already visited, the value we're seeking
1893 * isn't down this path (or we would have short
1894 * circuited */
1895
1896 if (succ->visited) continue;
1897
1898 /* Otherwise (it's visited *now*), check the block */
1899
1900 succ->visited = true;
1901
1902 mir_foreach_instr_in_block(succ, ins) {
1903 if (midgard_is_live_in_instr(ins, src))
1904 return true;
1905 }
1906
1907 /* ...and also, check *its* successors */
1908 if (is_live_after_successors(ctx, succ, src))
1909 return true;
1910
1911 }
1912
1913 /* Welp. We're really not live. */
1914
1915 return false;
1916 }
1917
1918 static bool
1919 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1920 {
1921 /* Check the rest of the block for liveness */
1922
1923 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1924 if (midgard_is_live_in_instr(ins, src))
1925 return true;
1926 }
1927
1928 /* Check the rest of the blocks for liveness recursively */
1929
1930 bool succ = is_live_after_successors(ctx, block, src);
1931
1932 mir_foreach_block(ctx, block) {
1933 block->visited = false;
1934 }
1935
1936 return succ;
1937 }
1938
1939 static void
1940 allocate_registers(compiler_context *ctx)
1941 {
1942 /* First, initialize the RA */
1943 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1944
1945 /* Create a primary (general purpose) class, as well as special purpose
1946 * pipeline register classes */
1947
1948 int primary_class = ra_alloc_reg_class(regs);
1949 int varying_class = ra_alloc_reg_class(regs);
1950
1951 /* Add the full set of work registers */
1952 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1953 for (int i = 0; i < work_count; ++i)
1954 ra_class_add_reg(regs, primary_class, i);
1955
1956 /* Add special registers */
1957 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1958 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1959
1960 /* We're done setting up */
1961 ra_set_finalize(regs, NULL);
1962
1963 /* Transform the MIR into squeezed index form */
1964 mir_foreach_block(ctx, block) {
1965 mir_foreach_instr_in_block(block, ins) {
1966 if (ins->compact_branch) continue;
1967
1968 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1969 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1970 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1971 }
1972 if (midgard_debug & MIDGARD_DBG_SHADERS)
1973 print_mir_block(block);
1974 }
1975
1976 /* Let's actually do register allocation */
1977 int nodes = ctx->temp_count;
1978 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1979
1980 /* Set everything to the work register class, unless it has somewhere
1981 * special to go */
1982
1983 mir_foreach_block(ctx, block) {
1984 mir_foreach_instr_in_block(block, ins) {
1985 if (ins->compact_branch) continue;
1986
1987 if (ins->ssa_args.dest < 0) continue;
1988
1989 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1990
1991 int class = primary_class;
1992
1993 ra_set_node_class(g, ins->ssa_args.dest, class);
1994 }
1995 }
1996
1997 for (int index = 0; index <= ctx->max_hash; ++index) {
1998 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1999
2000 if (temp) {
2001 unsigned reg = temp - 1;
2002 int t = find_or_allocate_temp(ctx, index);
2003 ra_set_node_reg(g, t, reg);
2004 }
2005 }
2006
2007 /* Determine liveness */
2008
2009 int *live_start = malloc(nodes * sizeof(int));
2010 int *live_end = malloc(nodes * sizeof(int));
2011
2012 /* Initialize as non-existent */
2013
2014 for (int i = 0; i < nodes; ++i) {
2015 live_start[i] = live_end[i] = -1;
2016 }
2017
2018 int d = 0;
2019
2020 mir_foreach_block(ctx, block) {
2021 mir_foreach_instr_in_block(block, ins) {
2022 if (ins->compact_branch) continue;
2023
2024 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2025 /* If this destination is not yet live, it is now since we just wrote it */
2026
2027 int dest = ins->ssa_args.dest;
2028
2029 if (live_start[dest] == -1)
2030 live_start[dest] = d;
2031 }
2032
2033 /* Since we just used a source, the source might be
2034 * dead now. Scan the rest of the block for
2035 * invocations, and if there are none, the source dies
2036 * */
2037
2038 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2039
2040 for (int src = 0; src < 2; ++src) {
2041 int s = sources[src];
2042
2043 if (s < 0) continue;
2044
2045 if (s >= SSA_FIXED_MINIMUM) continue;
2046
2047 if (!is_live_after(ctx, block, ins, s)) {
2048 live_end[s] = d;
2049 }
2050 }
2051
2052 ++d;
2053 }
2054 }
2055
2056 /* If a node still hasn't been killed, kill it now */
2057
2058 for (int i = 0; i < nodes; ++i) {
2059 /* live_start == -1 most likely indicates a pinned output */
2060
2061 if (live_end[i] == -1)
2062 live_end[i] = d;
2063 }
2064
2065 /* Setup interference between nodes that are live at the same time */
2066
2067 for (int i = 0; i < nodes; ++i) {
2068 for (int j = i + 1; j < nodes; ++j) {
2069 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2070 ra_add_node_interference(g, i, j);
2071 }
2072 }
2073
2074 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2075
2076 if (!ra_allocate(g)) {
2077 DBG("Error allocating registers\n");
2078 assert(0);
2079 }
2080
2081 /* Cleanup */
2082 free(live_start);
2083 free(live_end);
2084
2085 mir_foreach_block(ctx, block) {
2086 mir_foreach_instr_in_block(block, ins) {
2087 if (ins->compact_branch) continue;
2088
2089 ssa_args args = ins->ssa_args;
2090
2091 switch (ins->type) {
2092 case TAG_ALU_4:
2093 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2094
2095 ins->registers.src2_imm = args.inline_constant;
2096
2097 if (args.inline_constant) {
2098 /* Encode inline 16-bit constant as a vector by default */
2099
2100 ins->registers.src2_reg = ins->inline_constant >> 11;
2101
2102 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2103
2104 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2105 ins->alu.src2 = imm << 2;
2106 } else {
2107 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2108 }
2109
2110 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2111
2112 break;
2113
2114 case TAG_LOAD_STORE_4: {
2115 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2116 /* TODO: use ssa_args for store_vary */
2117 ins->load_store.reg = 0;
2118 } else {
2119 bool has_dest = args.dest >= 0;
2120 int ssa_arg = has_dest ? args.dest : args.src0;
2121
2122 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2123 }
2124
2125 break;
2126 }
2127
2128 default:
2129 break;
2130 }
2131 }
2132 }
2133 }
2134
2135 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2136 * use scalar ALU instructions, for functional or performance reasons. To do
2137 * this, we just demote vector ALU payloads to scalar. */
2138
2139 static int
2140 component_from_mask(unsigned mask)
2141 {
2142 for (int c = 0; c < 4; ++c) {
2143 if (mask & (3 << (2 * c)))
2144 return c;
2145 }
2146
2147 assert(0);
2148 return 0;
2149 }
2150
2151 static bool
2152 is_single_component_mask(unsigned mask)
2153 {
2154 int components = 0;
2155
2156 for (int c = 0; c < 4; ++c)
2157 if (mask & (3 << (2 * c)))
2158 components++;
2159
2160 return components == 1;
2161 }
2162
2163 /* Create a mask of accessed components from a swizzle to figure out vector
2164 * dependencies */
2165
2166 static unsigned
2167 swizzle_to_access_mask(unsigned swizzle)
2168 {
2169 unsigned component_mask = 0;
2170
2171 for (int i = 0; i < 4; ++i) {
2172 unsigned c = (swizzle >> (2 * i)) & 3;
2173 component_mask |= (1 << c);
2174 }
2175
2176 return component_mask;
2177 }
2178
2179 static unsigned
2180 vector_to_scalar_source(unsigned u)
2181 {
2182 midgard_vector_alu_src v;
2183 memcpy(&v, &u, sizeof(v));
2184
2185 /* TODO: Integers */
2186
2187 midgard_scalar_alu_src s = {
2188 .abs = v.mod & MIDGARD_FLOAT_MOD_ABS,
2189 .negate = v.mod & MIDGARD_FLOAT_MOD_NEG,
2190 .full = !v.half,
2191 .component = (v.swizzle & 3) << 1
2192 };
2193
2194 unsigned o;
2195 memcpy(&o, &s, sizeof(s));
2196
2197 return o & ((1 << 6) - 1);
2198 }
2199
2200 static midgard_scalar_alu
2201 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2202 {
2203 /* The output component is from the mask */
2204 midgard_scalar_alu s = {
2205 .op = v.op,
2206 .src1 = vector_to_scalar_source(v.src1),
2207 .src2 = vector_to_scalar_source(v.src2),
2208 .unknown = 0,
2209 .outmod = v.outmod,
2210 .output_full = 1, /* TODO: Half */
2211 .output_component = component_from_mask(v.mask) << 1,
2212 };
2213
2214 /* Inline constant is passed along rather than trying to extract it
2215 * from v */
2216
2217 if (ins->ssa_args.inline_constant) {
2218 uint16_t imm = 0;
2219 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2220 imm |= (lower_11 >> 9) & 3;
2221 imm |= (lower_11 >> 6) & 4;
2222 imm |= (lower_11 >> 2) & 0x38;
2223 imm |= (lower_11 & 63) << 6;
2224
2225 s.src2 = imm;
2226 }
2227
2228 return s;
2229 }
2230
2231 /* Midgard prefetches instruction types, so during emission we need to
2232 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2233 * if this is the second to last and the last is an ALU, then it's also 1... */
2234
2235 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2236 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2237
2238 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2239 bytes_emitted += sizeof(type)
2240
2241 static void
2242 emit_binary_vector_instruction(midgard_instruction *ains,
2243 uint16_t *register_words, int *register_words_count,
2244 uint64_t *body_words, size_t *body_size, int *body_words_count,
2245 size_t *bytes_emitted)
2246 {
2247 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2248 *bytes_emitted += sizeof(midgard_reg_info);
2249
2250 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2251 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2252 *bytes_emitted += sizeof(midgard_vector_alu);
2253 }
2254
2255 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2256 * mind that we are a vector architecture and we can write to different
2257 * components simultaneously */
2258
2259 static bool
2260 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2261 {
2262 /* Each instruction reads some registers and writes to a register. See
2263 * where the first writes */
2264
2265 /* Figure out where exactly we wrote to */
2266 int source = first->ssa_args.dest;
2267 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2268
2269 /* As long as the second doesn't read from the first, we're okay */
2270 if (second->ssa_args.src0 == source) {
2271 if (first->type == TAG_ALU_4) {
2272 /* Figure out which components we just read from */
2273
2274 int q = second->alu.src1;
2275 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2276
2277 /* Check if there are components in common, and fail if so */
2278 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2279 return false;
2280 } else
2281 return false;
2282
2283 }
2284
2285 if (second->ssa_args.src1 == source)
2286 return false;
2287
2288 /* Otherwise, it's safe in that regard. Another data hazard is both
2289 * writing to the same place, of course */
2290
2291 if (second->ssa_args.dest == source) {
2292 /* ...but only if the components overlap */
2293 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2294
2295 if (dest_mask & source_mask)
2296 return false;
2297 }
2298
2299 /* ...That's it */
2300 return true;
2301 }
2302
2303 static bool
2304 midgard_has_hazard(
2305 midgard_instruction **segment, unsigned segment_size,
2306 midgard_instruction *ains)
2307 {
2308 for (int s = 0; s < segment_size; ++s)
2309 if (!can_run_concurrent_ssa(segment[s], ains))
2310 return true;
2311
2312 return false;
2313
2314
2315 }
2316
2317 /* Schedules, but does not emit, a single basic block. After scheduling, the
2318 * final tag and size of the block are known, which are necessary for branching
2319 * */
2320
2321 static midgard_bundle
2322 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2323 {
2324 int instructions_emitted = 0, instructions_consumed = -1;
2325 midgard_bundle bundle = { 0 };
2326
2327 uint8_t tag = ins->type;
2328
2329 /* Default to the instruction's tag */
2330 bundle.tag = tag;
2331
2332 switch (ins->type) {
2333 case TAG_ALU_4: {
2334 uint32_t control = 0;
2335 size_t bytes_emitted = sizeof(control);
2336
2337 /* TODO: Constant combining */
2338 int index = 0, last_unit = 0;
2339
2340 /* Previous instructions, for the purpose of parallelism */
2341 midgard_instruction *segment[4] = {0};
2342 int segment_size = 0;
2343
2344 instructions_emitted = -1;
2345 midgard_instruction *pins = ins;
2346
2347 for (;;) {
2348 midgard_instruction *ains = pins;
2349
2350 /* Advance instruction pointer */
2351 if (index) {
2352 ains = mir_next_op(pins);
2353 pins = ains;
2354 }
2355
2356 /* Out-of-work condition */
2357 if ((struct list_head *) ains == &block->instructions)
2358 break;
2359
2360 /* Ensure that the chain can continue */
2361 if (ains->type != TAG_ALU_4) break;
2362
2363 /* According to the presentation "The ARM
2364 * Mali-T880 Mobile GPU" from HotChips 27,
2365 * there are two pipeline stages. Branching
2366 * position determined experimentally. Lines
2367 * are executed in parallel:
2368 *
2369 * [ VMUL ] [ SADD ]
2370 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2371 *
2372 * Verify that there are no ordering dependencies here.
2373 *
2374 * TODO: Allow for parallelism!!!
2375 */
2376
2377 /* Pick a unit for it if it doesn't force a particular unit */
2378
2379 int unit = ains->unit;
2380
2381 if (!unit) {
2382 int op = ains->alu.op;
2383 int units = alu_opcode_props[op];
2384
2385 /* TODO: Promotion of scalars to vectors */
2386 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2387
2388 if (!vector)
2389 assert(units & UNITS_SCALAR);
2390
2391 if (vector) {
2392 if (last_unit >= UNIT_VADD) {
2393 if (units & UNIT_VLUT)
2394 unit = UNIT_VLUT;
2395 else
2396 break;
2397 } else {
2398 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2399 unit = UNIT_VMUL;
2400 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2401 unit = UNIT_VADD;
2402 else if (units & UNIT_VLUT)
2403 unit = UNIT_VLUT;
2404 else
2405 break;
2406 }
2407 } else {
2408 if (last_unit >= UNIT_VADD) {
2409 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2410 unit = UNIT_SMUL;
2411 else if (units & UNIT_VLUT)
2412 unit = UNIT_VLUT;
2413 else
2414 break;
2415 } else {
2416 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2417 unit = UNIT_SADD;
2418 else if (units & UNIT_SMUL)
2419 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2420 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2421 unit = UNIT_VADD;
2422 else
2423 break;
2424 }
2425 }
2426
2427 assert(unit & units);
2428 }
2429
2430 /* Late unit check, this time for encoding (not parallelism) */
2431 if (unit <= last_unit) break;
2432
2433 /* Clear the segment */
2434 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2435 segment_size = 0;
2436
2437 if (midgard_has_hazard(segment, segment_size, ains))
2438 break;
2439
2440 /* We're good to go -- emit the instruction */
2441 ains->unit = unit;
2442
2443 segment[segment_size++] = ains;
2444
2445 /* Only one set of embedded constants per
2446 * bundle possible; if we have more, we must
2447 * break the chain early, unfortunately */
2448
2449 if (ains->has_constants) {
2450 if (bundle.has_embedded_constants) {
2451 /* ...but if there are already
2452 * constants but these are the
2453 * *same* constants, we let it
2454 * through */
2455
2456 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2457 break;
2458 } else {
2459 bundle.has_embedded_constants = true;
2460 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2461
2462 /* If this is a blend shader special constant, track it for patching */
2463 if (ains->has_blend_constant)
2464 bundle.has_blend_constant = true;
2465 }
2466 }
2467
2468 if (ains->unit & UNITS_ANY_VECTOR) {
2469 emit_binary_vector_instruction(ains, bundle.register_words,
2470 &bundle.register_words_count, bundle.body_words,
2471 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2472 } else if (ains->compact_branch) {
2473 /* All of r0 has to be written out
2474 * along with the branch writeout.
2475 * (slow!) */
2476
2477 if (ains->writeout) {
2478 if (index == 0) {
2479 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2480 ins.unit = UNIT_VMUL;
2481
2482 control |= ins.unit;
2483
2484 emit_binary_vector_instruction(&ins, bundle.register_words,
2485 &bundle.register_words_count, bundle.body_words,
2486 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2487 } else {
2488 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2489 bool written_late = false;
2490 bool components[4] = { 0 };
2491 uint16_t register_dep_mask = 0;
2492 uint16_t written_mask = 0;
2493
2494 midgard_instruction *qins = ins;
2495 for (int t = 0; t < index; ++t) {
2496 if (qins->registers.out_reg != 0) {
2497 /* Mark down writes */
2498
2499 written_mask |= (1 << qins->registers.out_reg);
2500 } else {
2501 /* Mark down the register dependencies for errata check */
2502
2503 if (qins->registers.src1_reg < 16)
2504 register_dep_mask |= (1 << qins->registers.src1_reg);
2505
2506 if (qins->registers.src2_reg < 16)
2507 register_dep_mask |= (1 << qins->registers.src2_reg);
2508
2509 int mask = qins->alu.mask;
2510
2511 for (int c = 0; c < 4; ++c)
2512 if (mask & (0x3 << (2 * c)))
2513 components[c] = true;
2514
2515 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2516
2517 if (qins->unit == UNIT_VLUT)
2518 written_late = true;
2519 }
2520
2521 /* Advance instruction pointer */
2522 qins = mir_next_op(qins);
2523 }
2524
2525
2526 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2527 if (register_dep_mask & written_mask) {
2528 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2529 break;
2530 }
2531
2532 if (written_late)
2533 break;
2534
2535 /* If even a single component is not written, break it up (conservative check). */
2536 bool breakup = false;
2537
2538 for (int c = 0; c < 4; ++c)
2539 if (!components[c])
2540 breakup = true;
2541
2542 if (breakup)
2543 break;
2544
2545 /* Otherwise, we're free to proceed */
2546 }
2547 }
2548
2549 if (ains->unit == ALU_ENAB_BRANCH) {
2550 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2551 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2552 bytes_emitted += sizeof(midgard_branch_extended);
2553 } else {
2554 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2555 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2556 bytes_emitted += sizeof(ains->br_compact);
2557 }
2558 } else {
2559 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2560 bytes_emitted += sizeof(midgard_reg_info);
2561
2562 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2563 bundle.body_words_count++;
2564 bytes_emitted += sizeof(midgard_scalar_alu);
2565 }
2566
2567 /* Defer marking until after writing to allow for break */
2568 control |= ains->unit;
2569 last_unit = ains->unit;
2570 ++instructions_emitted;
2571 ++index;
2572 }
2573
2574 /* Bubble up the number of instructions for skipping */
2575 instructions_consumed = index - 1;
2576
2577 int padding = 0;
2578
2579 /* Pad ALU op to nearest word */
2580
2581 if (bytes_emitted & 15) {
2582 padding = 16 - (bytes_emitted & 15);
2583 bytes_emitted += padding;
2584 }
2585
2586 /* Constants must always be quadwords */
2587 if (bundle.has_embedded_constants)
2588 bytes_emitted += 16;
2589
2590 /* Size ALU instruction for tag */
2591 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2592 bundle.padding = padding;
2593 bundle.control = bundle.tag | control;
2594
2595 break;
2596 }
2597
2598 case TAG_LOAD_STORE_4: {
2599 /* Load store instructions have two words at once. If
2600 * we only have one queued up, we need to NOP pad.
2601 * Otherwise, we store both in succession to save space
2602 * and cycles -- letting them go in parallel -- skip
2603 * the next. The usefulness of this optimisation is
2604 * greatly dependent on the quality of the instruction
2605 * scheduler.
2606 */
2607
2608 midgard_instruction *next_op = mir_next_op(ins);
2609
2610 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2611 /* As the two operate concurrently, make sure
2612 * they are not dependent */
2613
2614 if (can_run_concurrent_ssa(ins, next_op) || true) {
2615 /* Skip ahead, since it's redundant with the pair */
2616 instructions_consumed = 1 + (instructions_emitted++);
2617 }
2618 }
2619
2620 break;
2621 }
2622
2623 default:
2624 /* Texture ops default to single-op-per-bundle scheduling */
2625 break;
2626 }
2627
2628 /* Copy the instructions into the bundle */
2629 bundle.instruction_count = instructions_emitted + 1;
2630
2631 int used_idx = 0;
2632
2633 midgard_instruction *uins = ins;
2634 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2635 bundle.instructions[used_idx++] = *uins;
2636 uins = mir_next_op(uins);
2637 }
2638
2639 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2640
2641 return bundle;
2642 }
2643
2644 static int
2645 quadword_size(int tag)
2646 {
2647 switch (tag) {
2648 case TAG_ALU_4:
2649 return 1;
2650
2651 case TAG_ALU_8:
2652 return 2;
2653
2654 case TAG_ALU_12:
2655 return 3;
2656
2657 case TAG_ALU_16:
2658 return 4;
2659
2660 case TAG_LOAD_STORE_4:
2661 return 1;
2662
2663 case TAG_TEXTURE_4:
2664 return 1;
2665
2666 default:
2667 assert(0);
2668 return 0;
2669 }
2670 }
2671
2672 /* Schedule a single block by iterating its instruction to create bundles.
2673 * While we go, tally about the bundle sizes to compute the block size. */
2674
2675 static void
2676 schedule_block(compiler_context *ctx, midgard_block *block)
2677 {
2678 util_dynarray_init(&block->bundles, NULL);
2679
2680 block->quadword_count = 0;
2681
2682 mir_foreach_instr_in_block(block, ins) {
2683 int skip;
2684 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2685 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2686
2687 if (bundle.has_blend_constant) {
2688 /* TODO: Multiblock? */
2689 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2690 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2691 }
2692
2693 while(skip--)
2694 ins = mir_next_op(ins);
2695
2696 block->quadword_count += quadword_size(bundle.tag);
2697 }
2698
2699 block->is_scheduled = true;
2700 }
2701
2702 static void
2703 schedule_program(compiler_context *ctx)
2704 {
2705 allocate_registers(ctx);
2706
2707 mir_foreach_block(ctx, block) {
2708 schedule_block(ctx, block);
2709 }
2710 }
2711
2712 /* After everything is scheduled, emit whole bundles at a time */
2713
2714 static void
2715 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2716 {
2717 int lookahead = next_tag << 4;
2718
2719 switch (bundle->tag) {
2720 case TAG_ALU_4:
2721 case TAG_ALU_8:
2722 case TAG_ALU_12:
2723 case TAG_ALU_16: {
2724 /* Actually emit each component */
2725 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2726
2727 for (int i = 0; i < bundle->register_words_count; ++i)
2728 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2729
2730 /* Emit body words based on the instructions bundled */
2731 for (int i = 0; i < bundle->instruction_count; ++i) {
2732 midgard_instruction *ins = &bundle->instructions[i];
2733
2734 if (ins->unit & UNITS_ANY_VECTOR) {
2735 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2736 } else if (ins->compact_branch) {
2737 /* Dummy move, XXX DRY */
2738 if ((i == 0) && ins->writeout) {
2739 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2740 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2741 }
2742
2743 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2744 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2745 } else {
2746 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2747 }
2748 } else {
2749 /* Scalar */
2750 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2751 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2752 }
2753 }
2754
2755 /* Emit padding (all zero) */
2756 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2757
2758 /* Tack on constants */
2759
2760 if (bundle->has_embedded_constants) {
2761 util_dynarray_append(emission, float, bundle->constants[0]);
2762 util_dynarray_append(emission, float, bundle->constants[1]);
2763 util_dynarray_append(emission, float, bundle->constants[2]);
2764 util_dynarray_append(emission, float, bundle->constants[3]);
2765 }
2766
2767 break;
2768 }
2769
2770 case TAG_LOAD_STORE_4: {
2771 /* One or two composing instructions */
2772
2773 uint64_t current64, next64 = LDST_NOP;
2774
2775 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2776
2777 if (bundle->instruction_count == 2)
2778 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2779
2780 midgard_load_store instruction = {
2781 .type = bundle->tag,
2782 .next_type = next_tag,
2783 .word1 = current64,
2784 .word2 = next64
2785 };
2786
2787 util_dynarray_append(emission, midgard_load_store, instruction);
2788
2789 break;
2790 }
2791
2792 case TAG_TEXTURE_4: {
2793 /* Texture instructions are easy, since there is no
2794 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2795
2796 midgard_instruction *ins = &bundle->instructions[0];
2797
2798 ins->texture.type = TAG_TEXTURE_4;
2799 ins->texture.next_type = next_tag;
2800
2801 ctx->texture_op_count--;
2802
2803 if (!ctx->texture_op_count) {
2804 ins->texture.cont = 0;
2805 ins->texture.last = 1;
2806 }
2807
2808 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2809 break;
2810 }
2811
2812 default:
2813 DBG("Unknown midgard instruction type\n");
2814 assert(0);
2815 break;
2816 }
2817 }
2818
2819
2820 /* ALU instructions can inline or embed constants, which decreases register
2821 * pressure and saves space. */
2822
2823 #define CONDITIONAL_ATTACH(src) { \
2824 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2825 \
2826 if (entry) { \
2827 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2828 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2829 } \
2830 }
2831
2832 static void
2833 inline_alu_constants(compiler_context *ctx)
2834 {
2835 mir_foreach_instr(ctx, alu) {
2836 /* Other instructions cannot inline constants */
2837 if (alu->type != TAG_ALU_4) continue;
2838
2839 /* If there is already a constant here, we can do nothing */
2840 if (alu->has_constants) continue;
2841
2842 /* It makes no sense to inline constants on a branch */
2843 if (alu->compact_branch || alu->prepacked_branch) continue;
2844
2845 CONDITIONAL_ATTACH(src0);
2846
2847 if (!alu->has_constants) {
2848 CONDITIONAL_ATTACH(src1)
2849 } else if (!alu->inline_constant) {
2850 /* Corner case: _two_ vec4 constants, for instance with a
2851 * csel. For this case, we can only use a constant
2852 * register for one, we'll have to emit a move for the
2853 * other. Note, if both arguments are constants, then
2854 * necessarily neither argument depends on the value of
2855 * any particular register. As the destination register
2856 * will be wiped, that means we can spill the constant
2857 * to the destination register.
2858 */
2859
2860 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2861 unsigned scratch = alu->ssa_args.dest;
2862
2863 if (entry) {
2864 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2865 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2866
2867 /* Force a break XXX Defer r31 writes */
2868 ins.unit = UNIT_VLUT;
2869
2870 /* Set the source */
2871 alu->ssa_args.src1 = scratch;
2872
2873 /* Inject us -before- the last instruction which set r31 */
2874 mir_insert_instruction_before(mir_prev_op(alu), ins);
2875 }
2876 }
2877 }
2878 }
2879
2880 /* Midgard supports two types of constants, embedded constants (128-bit) and
2881 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2882 * constants can be demoted to inline constants, for space savings and
2883 * sometimes a performance boost */
2884
2885 static void
2886 embedded_to_inline_constant(compiler_context *ctx)
2887 {
2888 mir_foreach_instr(ctx, ins) {
2889 if (!ins->has_constants) continue;
2890
2891 if (ins->ssa_args.inline_constant) continue;
2892
2893 /* Blend constants must not be inlined by definition */
2894 if (ins->has_blend_constant) continue;
2895
2896 /* src1 cannot be an inline constant due to encoding
2897 * restrictions. So, if possible we try to flip the arguments
2898 * in that case */
2899
2900 int op = ins->alu.op;
2901
2902 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2903 /* Flip based on op. Fallthrough intentional */
2904
2905 switch (op) {
2906 /* These ops require an operational change to flip their arguments TODO */
2907 case midgard_alu_op_flt:
2908 case midgard_alu_op_fle:
2909 case midgard_alu_op_ilt:
2910 case midgard_alu_op_ile:
2911 case midgard_alu_op_fcsel:
2912 case midgard_alu_op_icsel:
2913 case midgard_alu_op_isub:
2914 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2915 break;
2916
2917 /* These ops are commutative and Just Flip */
2918 case midgard_alu_op_fne:
2919 case midgard_alu_op_fadd:
2920 case midgard_alu_op_fmul:
2921 case midgard_alu_op_fmin:
2922 case midgard_alu_op_fmax:
2923 case midgard_alu_op_iadd:
2924 case midgard_alu_op_imul:
2925 case midgard_alu_op_feq:
2926 case midgard_alu_op_ieq:
2927 case midgard_alu_op_ine:
2928 case midgard_alu_op_iand:
2929 case midgard_alu_op_ior:
2930 case midgard_alu_op_ixor:
2931 /* Flip the SSA numbers */
2932 ins->ssa_args.src0 = ins->ssa_args.src1;
2933 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2934
2935 /* And flip the modifiers */
2936
2937 unsigned src_temp;
2938
2939 src_temp = ins->alu.src2;
2940 ins->alu.src2 = ins->alu.src1;
2941 ins->alu.src1 = src_temp;
2942
2943 default:
2944 break;
2945 }
2946 }
2947
2948 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2949 /* Extract the source information */
2950
2951 midgard_vector_alu_src *src;
2952 int q = ins->alu.src2;
2953 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2954 src = m;
2955
2956 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2957 int component = src->swizzle & 3;
2958
2959 /* Scale constant appropriately, if we can legally */
2960 uint16_t scaled_constant = 0;
2961
2962 /* XXX: Check legality */
2963 if (midgard_is_integer_op(op)) {
2964 /* TODO: Inline integer */
2965 continue;
2966
2967 unsigned int *iconstants = (unsigned int *) ins->constants;
2968 scaled_constant = (uint16_t) iconstants[component];
2969
2970 /* Constant overflow after resize */
2971 if (scaled_constant != iconstants[component])
2972 continue;
2973 } else {
2974 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2975 }
2976
2977 /* We don't know how to handle these with a constant */
2978
2979 if (src->mod || src->half || src->rep_low || src->rep_high) {
2980 DBG("Bailing inline constant...\n");
2981 continue;
2982 }
2983
2984 /* Make sure that the constant is not itself a
2985 * vector by checking if all accessed values
2986 * (by the swizzle) are the same. */
2987
2988 uint32_t *cons = (uint32_t *) ins->constants;
2989 uint32_t value = cons[component];
2990
2991 bool is_vector = false;
2992 unsigned mask = effective_writemask(&ins->alu);
2993
2994 for (int c = 1; c < 4; ++c) {
2995 /* We only care if this component is actually used */
2996 if (!(mask & (1 << c)))
2997 continue;
2998
2999 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3000
3001 if (test != value) {
3002 is_vector = true;
3003 break;
3004 }
3005 }
3006
3007 if (is_vector)
3008 continue;
3009
3010 /* Get rid of the embedded constant */
3011 ins->has_constants = false;
3012 ins->ssa_args.src1 = SSA_UNUSED_0;
3013 ins->ssa_args.inline_constant = true;
3014 ins->inline_constant = scaled_constant;
3015 }
3016 }
3017 }
3018
3019 /* Map normal SSA sources to other SSA sources / fixed registers (like
3020 * uniforms) */
3021
3022 static void
3023 map_ssa_to_alias(compiler_context *ctx, int *ref)
3024 {
3025 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3026
3027 if (alias) {
3028 /* Remove entry in leftovers to avoid a redunant fmov */
3029
3030 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3031
3032 if (leftover)
3033 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3034
3035 /* Assign the alias map */
3036 *ref = alias - 1;
3037 return;
3038 }
3039 }
3040
3041 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3042 * texture pipeline */
3043
3044 static void
3045 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3046 {
3047 mir_foreach_instr_in_block_safe(block, ins) {
3048 if (ins->type != TAG_ALU_4) continue;
3049 if (ins->compact_branch) continue;
3050
3051 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3052 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3053 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3054
3055 mir_remove_instruction(ins);
3056 }
3057 }
3058
3059 /* The following passes reorder MIR instructions to enable better scheduling */
3060
3061 static void
3062 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3063 {
3064 mir_foreach_instr_in_block_safe(block, ins) {
3065 if (ins->type != TAG_LOAD_STORE_4) continue;
3066
3067 /* We've found a load/store op. Check if next is also load/store. */
3068 midgard_instruction *next_op = mir_next_op(ins);
3069 if (&next_op->link != &block->instructions) {
3070 if (next_op->type == TAG_LOAD_STORE_4) {
3071 /* If so, we're done since we're a pair */
3072 ins = mir_next_op(ins);
3073 continue;
3074 }
3075
3076 /* Maximum search distance to pair, to avoid register pressure disasters */
3077 int search_distance = 8;
3078
3079 /* Otherwise, we have an orphaned load/store -- search for another load */
3080 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3081 /* Terminate search if necessary */
3082 if (!(search_distance--)) break;
3083
3084 if (c->type != TAG_LOAD_STORE_4) continue;
3085
3086 /* Stores cannot be reordered, since they have
3087 * dependencies. For the same reason, indirect
3088 * loads cannot be reordered as their index is
3089 * loaded in r27.w */
3090
3091 if (OP_IS_STORE(c->load_store.op)) continue;
3092
3093 /* It appears the 0x800 bit is set whenever a
3094 * load is direct, unset when it is indirect.
3095 * Skip indirect loads. */
3096
3097 if (!(c->load_store.unknown & 0x800)) continue;
3098
3099 /* We found one! Move it up to pair and remove it from the old location */
3100
3101 mir_insert_instruction_before(ins, *c);
3102 mir_remove_instruction(c);
3103
3104 break;
3105 }
3106 }
3107 }
3108 }
3109
3110 /* Emit varying stores late */
3111
3112 static void
3113 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3114 /* Iterate in reverse to get the final write, rather than the first */
3115
3116 mir_foreach_instr_in_block_safe_rev(block, ins) {
3117 /* Check if what we just wrote needs a store */
3118 int idx = ins->ssa_args.dest;
3119 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3120
3121 if (!varying) continue;
3122
3123 varying -= 1;
3124
3125 /* We need to store to the appropriate varying, so emit the
3126 * move/store */
3127
3128 /* TODO: Integrate with special purpose RA (and scheduler?) */
3129 bool high_varying_register = false;
3130
3131 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3132
3133 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3134 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3135
3136 mir_insert_instruction_before(mir_next_op(ins), st);
3137 mir_insert_instruction_before(mir_next_op(ins), mov);
3138
3139 /* We no longer need to store this varying */
3140 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3141 }
3142 }
3143
3144 /* If there are leftovers after the below pass, emit actual fmov
3145 * instructions for the slow-but-correct path */
3146
3147 static void
3148 emit_leftover_move(compiler_context *ctx)
3149 {
3150 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3151 int base = ((uintptr_t) leftover->key) - 1;
3152 int mapped = base;
3153
3154 map_ssa_to_alias(ctx, &mapped);
3155 EMIT(fmov, mapped, blank_alu_src, base);
3156 }
3157 }
3158
3159 static void
3160 actualise_ssa_to_alias(compiler_context *ctx)
3161 {
3162 mir_foreach_instr(ctx, ins) {
3163 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3164 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3165 }
3166
3167 emit_leftover_move(ctx);
3168 }
3169
3170 static void
3171 emit_fragment_epilogue(compiler_context *ctx)
3172 {
3173 /* Special case: writing out constants requires us to include the move
3174 * explicitly now, so shove it into r0 */
3175
3176 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3177
3178 if (constant_value) {
3179 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3180 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3181 emit_mir_instruction(ctx, ins);
3182 }
3183
3184 /* Perform the actual fragment writeout. We have two writeout/branch
3185 * instructions, forming a loop until writeout is successful as per the
3186 * docs. TODO: gl_FragDepth */
3187
3188 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3189 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3190 }
3191
3192 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3193 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3194 * with the int8 analogue to the fragment epilogue */
3195
3196 static void
3197 emit_blend_epilogue(compiler_context *ctx)
3198 {
3199 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3200
3201 midgard_instruction scale = {
3202 .type = TAG_ALU_4,
3203 .unit = UNIT_VMUL,
3204 .inline_constant = _mesa_float_to_half(255.0),
3205 .ssa_args = {
3206 .src0 = SSA_FIXED_REGISTER(0),
3207 .src1 = SSA_UNUSED_0,
3208 .dest = SSA_FIXED_REGISTER(24),
3209 .inline_constant = true
3210 },
3211 .alu = {
3212 .op = midgard_alu_op_fmul,
3213 .reg_mode = midgard_reg_mode_full,
3214 .dest_override = midgard_dest_override_lower,
3215 .mask = 0xFF,
3216 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3217 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3218 }
3219 };
3220
3221 emit_mir_instruction(ctx, scale);
3222
3223 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3224
3225 midgard_vector_alu_src alu_src = blank_alu_src;
3226 alu_src.half = true;
3227
3228 midgard_instruction f2u8 = {
3229 .type = TAG_ALU_4,
3230 .ssa_args = {
3231 .src0 = SSA_FIXED_REGISTER(24),
3232 .src1 = SSA_UNUSED_0,
3233 .dest = SSA_FIXED_REGISTER(0),
3234 .inline_constant = true
3235 },
3236 .alu = {
3237 .op = midgard_alu_op_f2u8,
3238 .reg_mode = midgard_reg_mode_half,
3239 .dest_override = midgard_dest_override_lower,
3240 .outmod = midgard_outmod_pos,
3241 .mask = 0xF,
3242 .src1 = vector_alu_srco_unsigned(alu_src),
3243 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3244 }
3245 };
3246
3247 emit_mir_instruction(ctx, f2u8);
3248
3249 /* vmul.imov.quarter r0, r0, r0 */
3250
3251 midgard_instruction imov_8 = {
3252 .type = TAG_ALU_4,
3253 .ssa_args = {
3254 .src0 = SSA_UNUSED_1,
3255 .src1 = SSA_FIXED_REGISTER(0),
3256 .dest = SSA_FIXED_REGISTER(0),
3257 },
3258 .alu = {
3259 .op = midgard_alu_op_imov,
3260 .reg_mode = midgard_reg_mode_quarter,
3261 .dest_override = midgard_dest_override_none,
3262 .mask = 0xFF,
3263 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3264 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3265 }
3266 };
3267
3268 /* Emit branch epilogue with the 8-bit move as the source */
3269
3270 emit_mir_instruction(ctx, imov_8);
3271 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3272
3273 emit_mir_instruction(ctx, imov_8);
3274 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3275 }
3276
3277 static midgard_block *
3278 emit_block(compiler_context *ctx, nir_block *block)
3279 {
3280 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3281 list_addtail(&this_block->link, &ctx->blocks);
3282
3283 this_block->is_scheduled = false;
3284 ++ctx->block_count;
3285
3286 ctx->texture_index[0] = -1;
3287 ctx->texture_index[1] = -1;
3288
3289 /* Add us as a successor to the block we are following */
3290 if (ctx->current_block)
3291 midgard_block_add_successor(ctx->current_block, this_block);
3292
3293 /* Set up current block */
3294 list_inithead(&this_block->instructions);
3295 ctx->current_block = this_block;
3296
3297 nir_foreach_instr(instr, block) {
3298 emit_instr(ctx, instr);
3299 ++ctx->instruction_count;
3300 }
3301
3302 inline_alu_constants(ctx);
3303 embedded_to_inline_constant(ctx);
3304
3305 /* Perform heavylifting for aliasing */
3306 actualise_ssa_to_alias(ctx);
3307
3308 midgard_emit_store(ctx, this_block);
3309 midgard_pair_load_store(ctx, this_block);
3310
3311 /* Append fragment shader epilogue (value writeout) */
3312 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3313 if (block == nir_impl_last_block(ctx->func->impl)) {
3314 if (ctx->is_blend)
3315 emit_blend_epilogue(ctx);
3316 else
3317 emit_fragment_epilogue(ctx);
3318 }
3319 }
3320
3321 if (block == nir_start_block(ctx->func->impl))
3322 ctx->initial_block = this_block;
3323
3324 if (block == nir_impl_last_block(ctx->func->impl))
3325 ctx->final_block = this_block;
3326
3327 /* Allow the next control flow to access us retroactively, for
3328 * branching etc */
3329 ctx->current_block = this_block;
3330
3331 /* Document the fallthrough chain */
3332 ctx->previous_source_block = this_block;
3333
3334 return this_block;
3335 }
3336
3337 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3338
3339 static void
3340 emit_if(struct compiler_context *ctx, nir_if *nif)
3341 {
3342 /* Conditional branches expect the condition in r31.w; emit a move for
3343 * that in the _previous_ block (which is the current block). */
3344 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3345
3346 /* Speculatively emit the branch, but we can't fill it in until later */
3347 EMIT(branch, true, true);
3348 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3349
3350 /* Emit the two subblocks */
3351 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3352
3353 /* Emit a jump from the end of the then block to the end of the else */
3354 EMIT(branch, false, false);
3355 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3356
3357 /* Emit second block, and check if it's empty */
3358
3359 int else_idx = ctx->block_count;
3360 int count_in = ctx->instruction_count;
3361 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3362 int after_else_idx = ctx->block_count;
3363
3364 /* Now that we have the subblocks emitted, fix up the branches */
3365
3366 assert(then_block);
3367 assert(else_block);
3368
3369 if (ctx->instruction_count == count_in) {
3370 /* The else block is empty, so don't emit an exit jump */
3371 mir_remove_instruction(then_exit);
3372 then_branch->branch.target_block = after_else_idx;
3373 } else {
3374 then_branch->branch.target_block = else_idx;
3375 then_exit->branch.target_block = after_else_idx;
3376 }
3377 }
3378
3379 static void
3380 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3381 {
3382 /* Remember where we are */
3383 midgard_block *start_block = ctx->current_block;
3384
3385 /* Allocate a loop number, growing the current inner loop depth */
3386 int loop_idx = ++ctx->current_loop_depth;
3387
3388 /* Get index from before the body so we can loop back later */
3389 int start_idx = ctx->block_count;
3390
3391 /* Emit the body itself */
3392 emit_cf_list(ctx, &nloop->body);
3393
3394 /* Branch back to loop back */
3395 struct midgard_instruction br_back = v_branch(false, false);
3396 br_back.branch.target_block = start_idx;
3397 emit_mir_instruction(ctx, br_back);
3398
3399 /* Mark down that branch in the graph. Note that we're really branching
3400 * to the block *after* we started in. TODO: Why doesn't the branch
3401 * itself have an off-by-one then...? */
3402 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3403
3404 /* Find the index of the block about to follow us (note: we don't add
3405 * one; blocks are 0-indexed so we get a fencepost problem) */
3406 int break_block_idx = ctx->block_count;
3407
3408 /* Fix up the break statements we emitted to point to the right place,
3409 * now that we can allocate a block number for them */
3410
3411 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3412 mir_foreach_instr_in_block(block, ins) {
3413 if (ins->type != TAG_ALU_4) continue;
3414 if (!ins->compact_branch) continue;
3415 if (ins->prepacked_branch) continue;
3416
3417 /* We found a branch -- check the type to see if we need to do anything */
3418 if (ins->branch.target_type != TARGET_BREAK) continue;
3419
3420 /* It's a break! Check if it's our break */
3421 if (ins->branch.target_break != loop_idx) continue;
3422
3423 /* Okay, cool, we're breaking out of this loop.
3424 * Rewrite from a break to a goto */
3425
3426 ins->branch.target_type = TARGET_GOTO;
3427 ins->branch.target_block = break_block_idx;
3428 }
3429 }
3430
3431 /* Now that we've finished emitting the loop, free up the depth again
3432 * so we play nice with recursion amid nested loops */
3433 --ctx->current_loop_depth;
3434 }
3435
3436 static midgard_block *
3437 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3438 {
3439 midgard_block *start_block = NULL;
3440
3441 foreach_list_typed(nir_cf_node, node, node, list) {
3442 switch (node->type) {
3443 case nir_cf_node_block: {
3444 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3445
3446 if (!start_block)
3447 start_block = block;
3448
3449 break;
3450 }
3451
3452 case nir_cf_node_if:
3453 emit_if(ctx, nir_cf_node_as_if(node));
3454 break;
3455
3456 case nir_cf_node_loop:
3457 emit_loop(ctx, nir_cf_node_as_loop(node));
3458 break;
3459
3460 case nir_cf_node_function:
3461 assert(0);
3462 break;
3463 }
3464 }
3465
3466 return start_block;
3467 }
3468
3469 /* Due to lookahead, we need to report the first tag executed in the command
3470 * stream and in branch targets. An initial block might be empty, so iterate
3471 * until we find one that 'works' */
3472
3473 static unsigned
3474 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3475 {
3476 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3477
3478 unsigned first_tag = 0;
3479
3480 do {
3481 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3482
3483 if (initial_bundle) {
3484 first_tag = initial_bundle->tag;
3485 break;
3486 }
3487
3488 /* Initial block is empty, try the next block */
3489 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3490 } while(initial_block != NULL);
3491
3492 assert(first_tag);
3493 return first_tag;
3494 }
3495
3496 int
3497 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3498 {
3499 struct util_dynarray *compiled = &program->compiled;
3500
3501 midgard_debug = debug_get_option_midgard_debug();
3502
3503 compiler_context ictx = {
3504 .nir = nir,
3505 .stage = nir->info.stage,
3506
3507 .is_blend = is_blend,
3508 .blend_constant_offset = -1,
3509
3510 .alpha_ref = program->alpha_ref
3511 };
3512
3513 compiler_context *ctx = &ictx;
3514
3515 /* TODO: Decide this at runtime */
3516 ctx->uniform_cutoff = 8;
3517
3518 /* Assign var locations early, so the epilogue can use them if necessary */
3519
3520 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3521 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3522 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3523
3524 /* Initialize at a global (not block) level hash tables */
3525
3526 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3527 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3528 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3529 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3530 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3531 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3532 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3533
3534 /* Record the varying mapping for the command stream's bookkeeping */
3535
3536 struct exec_list *varyings =
3537 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3538
3539 nir_foreach_variable(var, varyings) {
3540 unsigned loc = var->data.driver_location;
3541 unsigned sz = glsl_type_size(var->type, FALSE);
3542
3543 for (int c = 0; c < sz; ++c) {
3544 program->varyings[loc + c] = var->data.location;
3545 }
3546 }
3547
3548 /* Lower gl_Position pre-optimisation */
3549
3550 if (ctx->stage == MESA_SHADER_VERTEX)
3551 NIR_PASS_V(nir, nir_lower_viewport_transform);
3552
3553 NIR_PASS_V(nir, nir_lower_var_copies);
3554 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3555 NIR_PASS_V(nir, nir_split_var_copies);
3556 NIR_PASS_V(nir, nir_lower_var_copies);
3557 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3558 NIR_PASS_V(nir, nir_lower_var_copies);
3559 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3560
3561 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3562
3563 /* Optimisation passes */
3564
3565 optimise_nir(nir);
3566
3567 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3568 nir_print_shader(nir, stdout);
3569 }
3570
3571 /* Assign sysvals and counts, now that we're sure
3572 * (post-optimisation) */
3573
3574 midgard_nir_assign_sysvals(ctx, nir);
3575
3576 program->uniform_count = nir->num_uniforms;
3577 program->sysval_count = ctx->sysval_count;
3578 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3579
3580 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3581 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3582
3583 nir_foreach_function(func, nir) {
3584 if (!func->impl)
3585 continue;
3586
3587 list_inithead(&ctx->blocks);
3588 ctx->block_count = 0;
3589 ctx->func = func;
3590
3591 emit_cf_list(ctx, &func->impl->body);
3592 emit_block(ctx, func->impl->end_block);
3593
3594 break; /* TODO: Multi-function shaders */
3595 }
3596
3597 util_dynarray_init(compiled, NULL);
3598
3599 /* Peephole optimizations */
3600
3601 mir_foreach_block(ctx, block) {
3602 midgard_opt_dead_code_eliminate(ctx, block);
3603 }
3604
3605 /* Schedule! */
3606 schedule_program(ctx);
3607
3608 /* Now that all the bundles are scheduled and we can calculate block
3609 * sizes, emit actual branch instructions rather than placeholders */
3610
3611 int br_block_idx = 0;
3612
3613 mir_foreach_block(ctx, block) {
3614 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3615 for (int c = 0; c < bundle->instruction_count; ++c) {
3616 midgard_instruction *ins = &bundle->instructions[c];
3617
3618 if (!midgard_is_branch_unit(ins->unit)) continue;
3619
3620 if (ins->prepacked_branch) continue;
3621
3622 /* Parse some basic branch info */
3623 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3624 bool is_conditional = ins->branch.conditional;
3625 bool is_inverted = ins->branch.invert_conditional;
3626 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3627
3628 /* Determine the block we're jumping to */
3629 int target_number = ins->branch.target_block;
3630
3631 /* Report the destination tag. Discards don't need this */
3632 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3633
3634 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3635 int quadword_offset = 0;
3636
3637 if (is_discard) {
3638 /* Jump to the end of the shader. We
3639 * need to include not only the
3640 * following blocks, but also the
3641 * contents of our current block (since
3642 * discard can come in the middle of
3643 * the block) */
3644
3645 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3646
3647 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3648 quadword_offset += quadword_size(bun->tag);
3649 }
3650
3651 mir_foreach_block_from(ctx, blk, b) {
3652 quadword_offset += b->quadword_count;
3653 }
3654
3655 } else if (target_number > br_block_idx) {
3656 /* Jump forward */
3657
3658 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3659 midgard_block *blk = mir_get_block(ctx, idx);
3660 assert(blk);
3661
3662 quadword_offset += blk->quadword_count;
3663 }
3664 } else {
3665 /* Jump backwards */
3666
3667 for (int idx = br_block_idx; idx >= target_number; --idx) {
3668 midgard_block *blk = mir_get_block(ctx, idx);
3669 assert(blk);
3670
3671 quadword_offset -= blk->quadword_count;
3672 }
3673 }
3674
3675 /* Unconditional extended branches (far jumps)
3676 * have issues, so we always use a conditional
3677 * branch, setting the condition to always for
3678 * unconditional. For compact unconditional
3679 * branches, cond isn't used so it doesn't
3680 * matter what we pick. */
3681
3682 midgard_condition cond =
3683 !is_conditional ? midgard_condition_always :
3684 is_inverted ? midgard_condition_false :
3685 midgard_condition_true;
3686
3687 midgard_jmp_writeout_op op =
3688 is_discard ? midgard_jmp_writeout_op_discard :
3689 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3690 midgard_jmp_writeout_op_branch_cond;
3691
3692 if (!is_compact) {
3693 midgard_branch_extended branch =
3694 midgard_create_branch_extended(
3695 cond, op,
3696 dest_tag,
3697 quadword_offset);
3698
3699 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3700 } else if (is_conditional || is_discard) {
3701 midgard_branch_cond branch = {
3702 .op = op,
3703 .dest_tag = dest_tag,
3704 .offset = quadword_offset,
3705 .cond = cond
3706 };
3707
3708 assert(branch.offset == quadword_offset);
3709
3710 memcpy(&ins->br_compact, &branch, sizeof(branch));
3711 } else {
3712 assert(op == midgard_jmp_writeout_op_branch_uncond);
3713
3714 midgard_branch_uncond branch = {
3715 .op = op,
3716 .dest_tag = dest_tag,
3717 .offset = quadword_offset,
3718 .unknown = 1
3719 };
3720
3721 assert(branch.offset == quadword_offset);
3722
3723 memcpy(&ins->br_compact, &branch, sizeof(branch));
3724 }
3725 }
3726 }
3727
3728 ++br_block_idx;
3729 }
3730
3731 /* Emit flat binary from the instruction arrays. Iterate each block in
3732 * sequence. Save instruction boundaries such that lookahead tags can
3733 * be assigned easily */
3734
3735 /* Cache _all_ bundles in source order for lookahead across failed branches */
3736
3737 int bundle_count = 0;
3738 mir_foreach_block(ctx, block) {
3739 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3740 }
3741 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3742 int bundle_idx = 0;
3743 mir_foreach_block(ctx, block) {
3744 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3745 source_order_bundles[bundle_idx++] = bundle;
3746 }
3747 }
3748
3749 int current_bundle = 0;
3750
3751 mir_foreach_block(ctx, block) {
3752 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3753 int lookahead = 1;
3754
3755 if (current_bundle + 1 < bundle_count) {
3756 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3757
3758 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3759 lookahead = 1;
3760 } else {
3761 lookahead = next;
3762 }
3763 }
3764
3765 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3766 ++current_bundle;
3767 }
3768
3769 /* TODO: Free deeper */
3770 //util_dynarray_fini(&block->instructions);
3771 }
3772
3773 free(source_order_bundles);
3774
3775 /* Report the very first tag executed */
3776 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3777
3778 /* Deal with off-by-one related to the fencepost problem */
3779 program->work_register_count = ctx->work_registers + 1;
3780
3781 program->can_discard = ctx->can_discard;
3782 program->uniform_cutoff = ctx->uniform_cutoff;
3783
3784 program->blend_patch_offset = ctx->blend_constant_offset;
3785
3786 if (midgard_debug & MIDGARD_DBG_SHADERS)
3787 disassemble_midgard(program->compiled.data, program->compiled.size);
3788
3789 return 0;
3790 }