panfrost/midgard: Optimize csel involving 0
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137
1138 /* XXX: Use fmov, not imov, since imov was causing major
1139 * issues with texture precision? XXX research */
1140 ALU_CASE(imov, imov);
1141
1142 ALU_CASE(feq32, feq);
1143 ALU_CASE(fne32, fne);
1144 ALU_CASE(flt32, flt);
1145 ALU_CASE(ieq32, ieq);
1146 ALU_CASE(ine32, ine);
1147 ALU_CASE(ilt32, ilt);
1148 ALU_CASE(ult32, ult);
1149
1150 /* We don't have a native b2f32 instruction. Instead, like many
1151 * GPUs, we exploit booleans as 0/~0 for false/true, and
1152 * correspondingly AND
1153 * by 1.0 to do the type conversion. For the moment, prime us
1154 * to emit:
1155 *
1156 * iand [whatever], #0
1157 *
1158 * At the end of emit_alu (as MIR), we'll fix-up the constant
1159 */
1160
1161 ALU_CASE(b2f32, iand);
1162 ALU_CASE(b2i32, iand);
1163
1164 /* Likewise, we don't have a dedicated f2b32 instruction, but
1165 * we can do a "not equal to 0.0" test. */
1166
1167 ALU_CASE(f2b32, fne);
1168 ALU_CASE(i2b32, ine);
1169
1170 ALU_CASE(frcp, frcp);
1171 ALU_CASE(frsq, frsqrt);
1172 ALU_CASE(fsqrt, fsqrt);
1173 ALU_CASE(fexp2, fexp2);
1174 ALU_CASE(flog2, flog2);
1175
1176 ALU_CASE(f2i32, f2i);
1177 ALU_CASE(f2u32, f2u);
1178 ALU_CASE(i2f32, i2f);
1179 ALU_CASE(u2f32, u2f);
1180
1181 ALU_CASE(fsin, fsin);
1182 ALU_CASE(fcos, fcos);
1183
1184 ALU_CASE(iand, iand);
1185 ALU_CASE(ior, ior);
1186 ALU_CASE(ixor, ixor);
1187 ALU_CASE(inot, inot);
1188 ALU_CASE(ishl, ishl);
1189 ALU_CASE(ishr, iasr);
1190 ALU_CASE(ushr, ilsr);
1191
1192 ALU_CASE(b32all_fequal2, fball_eq);
1193 ALU_CASE(b32all_fequal3, fball_eq);
1194 ALU_CASE(b32all_fequal4, fball_eq);
1195
1196 ALU_CASE(b32any_fnequal2, fbany_neq);
1197 ALU_CASE(b32any_fnequal3, fbany_neq);
1198 ALU_CASE(b32any_fnequal4, fbany_neq);
1199
1200 ALU_CASE(b32all_iequal2, iball_eq);
1201 ALU_CASE(b32all_iequal3, iball_eq);
1202 ALU_CASE(b32all_iequal4, iball_eq);
1203
1204 ALU_CASE(b32any_inequal2, ibany_neq);
1205 ALU_CASE(b32any_inequal3, ibany_neq);
1206 ALU_CASE(b32any_inequal4, ibany_neq);
1207
1208 /* For greater-or-equal, we lower to less-or-equal and flip the
1209 * arguments */
1210
1211 case nir_op_fge:
1212 case nir_op_fge32:
1213 case nir_op_ige32:
1214 case nir_op_uge32: {
1215 op =
1216 instr->op == nir_op_fge ? midgard_alu_op_fle :
1217 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1218 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1219 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1220 0;
1221
1222 /* Swap via temporary */
1223 nir_alu_src temp = instr->src[1];
1224 instr->src[1] = instr->src[0];
1225 instr->src[0] = temp;
1226
1227 break;
1228 }
1229
1230 /* For a few special csel cases not handled by NIR, we can opt to
1231 * bitwise. Otherwise, we emit the condition and do a real csel */
1232
1233 case nir_op_b32csel: {
1234 if (nir_is_fzero_constant(instr->src[2].src)) {
1235 /* (b ? v : 0) = (b & v) */
1236 op = midgard_alu_op_iand;
1237 nr_inputs = 2;
1238 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1239 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1240 op = midgard_alu_op_iandnot;
1241 nr_inputs = 2;
1242 instr->src[1] = instr->src[0];
1243 instr->src[0] = instr->src[2];
1244 } else {
1245 op = midgard_alu_op_fcsel;
1246
1247 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1248 nr_inputs = 2;
1249
1250 /* Figure out which component the condition is in */
1251
1252 unsigned comp = instr->src[0].swizzle[0];
1253
1254 /* Make sure NIR isn't throwing a mixed condition at us */
1255
1256 for (unsigned c = 1; c < nr_components; ++c)
1257 assert(instr->src[0].swizzle[c] == comp);
1258
1259 /* Emit the condition into r31.w */
1260 emit_condition(ctx, &instr->src[0].src, false, comp);
1261
1262 /* The condition is the first argument; move the other
1263 * arguments up one to be a binary instruction for
1264 * Midgard */
1265
1266 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1267 }
1268 break;
1269 }
1270
1271 default:
1272 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1273 assert(0);
1274 return;
1275 }
1276
1277 /* Midgard can perform certain modifiers on output ofa n ALU op */
1278 midgard_outmod outmod =
1279 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1280
1281 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1282
1283 if (instr->op == nir_op_fmax) {
1284 if (nir_is_fzero_constant(instr->src[0].src)) {
1285 op = midgard_alu_op_fmov;
1286 nr_inputs = 1;
1287 outmod = midgard_outmod_pos;
1288 instr->src[0] = instr->src[1];
1289 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1290 op = midgard_alu_op_fmov;
1291 nr_inputs = 1;
1292 outmod = midgard_outmod_pos;
1293 }
1294 }
1295
1296 /* Fetch unit, quirks, etc information */
1297 unsigned opcode_props = alu_opcode_props[op].props;
1298 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1299
1300 /* src0 will always exist afaik, but src1 will not for 1-argument
1301 * instructions. The latter can only be fetched if the instruction
1302 * needs it, or else we may segfault. */
1303
1304 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1305 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1306
1307 /* Rather than use the instruction generation helpers, we do it
1308 * ourselves here to avoid the mess */
1309
1310 midgard_instruction ins = {
1311 .type = TAG_ALU_4,
1312 .ssa_args = {
1313 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1314 .src1 = quirk_flipped_r24 ? src0 : src1,
1315 .dest = dest,
1316 }
1317 };
1318
1319 nir_alu_src *nirmods[2] = { NULL };
1320
1321 if (nr_inputs == 2) {
1322 nirmods[0] = &instr->src[0];
1323 nirmods[1] = &instr->src[1];
1324 } else if (nr_inputs == 1) {
1325 nirmods[quirk_flipped_r24] = &instr->src[0];
1326 } else {
1327 assert(0);
1328 }
1329
1330 bool is_int = midgard_is_integer_op(op);
1331
1332 midgard_vector_alu alu = {
1333 .op = op,
1334 .reg_mode = midgard_reg_mode_full,
1335 .dest_override = midgard_dest_override_none,
1336 .outmod = outmod,
1337
1338 /* Writemask only valid for non-SSA NIR */
1339 .mask = expand_writemask((1 << nr_components) - 1),
1340
1341 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1342 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1343 };
1344
1345 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1346
1347 if (!is_ssa)
1348 alu.mask &= expand_writemask(instr->dest.write_mask);
1349
1350 ins.alu = alu;
1351
1352 /* Late fixup for emulated instructions */
1353
1354 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1355 /* Presently, our second argument is an inline #0 constant.
1356 * Switch over to an embedded 1.0 constant (that can't fit
1357 * inline, since we're 32-bit, not 16-bit like the inline
1358 * constants) */
1359
1360 ins.ssa_args.inline_constant = false;
1361 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1362 ins.has_constants = true;
1363
1364 if (instr->op == nir_op_b2f32) {
1365 ins.constants[0] = 1.0f;
1366 } else {
1367 /* Type pun it into place */
1368 uint32_t one = 0x1;
1369 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1370 }
1371
1372 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1373 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1374 ins.ssa_args.inline_constant = false;
1375 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1376 ins.has_constants = true;
1377 ins.constants[0] = 0.0f;
1378 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1379 }
1380
1381 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1382 /* To avoid duplicating the lookup tables (probably), true LUT
1383 * instructions can only operate as if they were scalars. Lower
1384 * them here by changing the component. */
1385
1386 uint8_t original_swizzle[4];
1387 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1388
1389 for (int i = 0; i < nr_components; ++i) {
1390 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1391
1392 for (int j = 0; j < 4; ++j)
1393 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1394
1395 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1396 emit_mir_instruction(ctx, ins);
1397 }
1398 } else {
1399 emit_mir_instruction(ctx, ins);
1400 }
1401 }
1402
1403 #undef ALU_CASE
1404
1405 static void
1406 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1407 {
1408 /* TODO: half-floats */
1409
1410 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1411 /* Fast path: For the first 16 uniforms, direct accesses are
1412 * 0-cycle, since they're just a register fetch in the usual
1413 * case. So, we alias the registers while we're still in
1414 * SSA-space */
1415
1416 int reg_slot = 23 - offset;
1417 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1418 } else {
1419 /* Otherwise, read from the 'special' UBO to access
1420 * higher-indexed uniforms, at a performance cost. More
1421 * generally, we're emitting a UBO read instruction. */
1422
1423 midgard_instruction ins = m_load_uniform_32(dest, offset);
1424
1425 /* TODO: Don't split */
1426 ins.load_store.varying_parameters = (offset & 7) << 7;
1427 ins.load_store.address = offset >> 3;
1428
1429 if (indirect_offset) {
1430 emit_indirect_offset(ctx, indirect_offset);
1431 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1432 } else {
1433 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1434 }
1435
1436 emit_mir_instruction(ctx, ins);
1437 }
1438 }
1439
1440 static void
1441 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1442 {
1443 /* First, pull out the destination */
1444 unsigned dest = nir_dest_index(ctx, &instr->dest);
1445
1446 /* Now, figure out which uniform this is */
1447 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1448 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1449
1450 /* Sysvals are prefix uniforms */
1451 unsigned uniform = ((uintptr_t) val) - 1;
1452
1453 /* Emit the read itself -- this is never indirect */
1454 emit_uniform_read(ctx, dest, uniform, NULL);
1455 }
1456
1457 static void
1458 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1459 {
1460 unsigned offset, reg;
1461
1462 switch (instr->intrinsic) {
1463 case nir_intrinsic_discard_if:
1464 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1465
1466 /* fallthrough */
1467
1468 case nir_intrinsic_discard: {
1469 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1470 struct midgard_instruction discard = v_branch(conditional, false);
1471 discard.branch.target_type = TARGET_DISCARD;
1472 emit_mir_instruction(ctx, discard);
1473
1474 ctx->can_discard = true;
1475 break;
1476 }
1477
1478 case nir_intrinsic_load_uniform:
1479 case nir_intrinsic_load_input:
1480 offset = nir_intrinsic_base(instr);
1481
1482 bool direct = nir_src_is_const(instr->src[0]);
1483
1484 if (direct) {
1485 offset += nir_src_as_uint(instr->src[0]);
1486 }
1487
1488 reg = nir_dest_index(ctx, &instr->dest);
1489
1490 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1491 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1492 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1493 /* XXX: Half-floats? */
1494 /* TODO: swizzle, mask */
1495
1496 midgard_instruction ins = m_load_vary_32(reg, offset);
1497
1498 midgard_varying_parameter p = {
1499 .is_varying = 1,
1500 .interpolation = midgard_interp_default,
1501 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1502 };
1503
1504 unsigned u;
1505 memcpy(&u, &p, sizeof(p));
1506 ins.load_store.varying_parameters = u;
1507
1508 if (direct) {
1509 /* We have the offset totally ready */
1510 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1511 } else {
1512 /* We have it partially ready, but we need to
1513 * add in the dynamic index, moved to r27.w */
1514 emit_indirect_offset(ctx, &instr->src[0]);
1515 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1516 }
1517
1518 emit_mir_instruction(ctx, ins);
1519 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1520 /* Constant encoded as a pinned constant */
1521
1522 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1523 ins.has_constants = true;
1524 ins.has_blend_constant = true;
1525 emit_mir_instruction(ctx, ins);
1526 } else if (ctx->is_blend) {
1527 /* For blend shaders, a load might be
1528 * translated various ways depending on what
1529 * we're loading. Figure out how this is used */
1530
1531 nir_variable *out = NULL;
1532
1533 nir_foreach_variable(var, &ctx->nir->inputs) {
1534 int drvloc = var->data.driver_location;
1535
1536 if (nir_intrinsic_base(instr) == drvloc) {
1537 out = var;
1538 break;
1539 }
1540 }
1541
1542 assert(out);
1543
1544 if (out->data.location == VARYING_SLOT_COL0) {
1545 /* Source color preloaded to r0 */
1546
1547 midgard_pin_output(ctx, reg, 0);
1548 } else if (out->data.location == VARYING_SLOT_COL1) {
1549 /* Destination color must be read from framebuffer */
1550
1551 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1552 ins.load_store.swizzle = 0; /* xxxx */
1553
1554 /* Read each component sequentially */
1555
1556 for (int c = 0; c < 4; ++c) {
1557 ins.load_store.mask = (1 << c);
1558 ins.load_store.unknown = c;
1559 emit_mir_instruction(ctx, ins);
1560 }
1561
1562 /* vadd.u2f hr2, zext(hr2), #0 */
1563
1564 midgard_vector_alu_src alu_src = blank_alu_src;
1565 alu_src.mod = midgard_int_zero_extend;
1566 alu_src.half = true;
1567
1568 midgard_instruction u2f = {
1569 .type = TAG_ALU_4,
1570 .ssa_args = {
1571 .src0 = reg,
1572 .src1 = SSA_UNUSED_0,
1573 .dest = reg,
1574 .inline_constant = true
1575 },
1576 .alu = {
1577 .op = midgard_alu_op_u2f,
1578 .reg_mode = midgard_reg_mode_half,
1579 .dest_override = midgard_dest_override_none,
1580 .mask = 0xF,
1581 .src1 = vector_alu_srco_unsigned(alu_src),
1582 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1583 }
1584 };
1585
1586 emit_mir_instruction(ctx, u2f);
1587
1588 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1589
1590 alu_src.mod = 0;
1591
1592 midgard_instruction fmul = {
1593 .type = TAG_ALU_4,
1594 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1595 .ssa_args = {
1596 .src0 = reg,
1597 .dest = reg,
1598 .src1 = SSA_UNUSED_0,
1599 .inline_constant = true
1600 },
1601 .alu = {
1602 .op = midgard_alu_op_fmul,
1603 .reg_mode = midgard_reg_mode_full,
1604 .dest_override = midgard_dest_override_none,
1605 .outmod = midgard_outmod_sat,
1606 .mask = 0xFF,
1607 .src1 = vector_alu_srco_unsigned(alu_src),
1608 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1609 }
1610 };
1611
1612 emit_mir_instruction(ctx, fmul);
1613 } else {
1614 DBG("Unknown input in blend shader\n");
1615 assert(0);
1616 }
1617 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1618 midgard_instruction ins = m_load_attr_32(reg, offset);
1619 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1620 ins.load_store.mask = (1 << instr->num_components) - 1;
1621 emit_mir_instruction(ctx, ins);
1622 } else {
1623 DBG("Unknown load\n");
1624 assert(0);
1625 }
1626
1627 break;
1628
1629 case nir_intrinsic_store_output:
1630 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1631
1632 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1633
1634 reg = nir_src_index(ctx, &instr->src[0]);
1635
1636 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1637 /* gl_FragColor is not emitted with load/store
1638 * instructions. Instead, it gets plonked into
1639 * r0 at the end of the shader and we do the
1640 * framebuffer writeout dance. TODO: Defer
1641 * writes */
1642
1643 midgard_pin_output(ctx, reg, 0);
1644
1645 /* Save the index we're writing to for later reference
1646 * in the epilogue */
1647
1648 ctx->fragment_output = reg;
1649 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1650 /* Varyings are written into one of two special
1651 * varying register, r26 or r27. The register itself is selected as the register
1652 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1653 *
1654 * Normally emitting fmov's is frowned upon,
1655 * but due to unique constraints of
1656 * REGISTER_VARYING, fmov emission + a
1657 * dedicated cleanup pass is the only way to
1658 * guarantee correctness when considering some
1659 * (common) edge cases XXX: FIXME */
1660
1661 /* If this varying corresponds to a constant (why?!),
1662 * emit that now since it won't get picked up by
1663 * hoisting (since there is no corresponding move
1664 * emitted otherwise) */
1665
1666 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1667
1668 if (constant_value) {
1669 /* Special case: emit the varying write
1670 * directly to r26 (looks funny in asm but it's
1671 * fine) and emit the store _now_. Possibly
1672 * slightly slower, but this is a really stupid
1673 * special case anyway (why on earth would you
1674 * have a constant varying? Your own fault for
1675 * slightly worse perf :P) */
1676
1677 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1678 attach_constants(ctx, &ins, constant_value, reg + 1);
1679 emit_mir_instruction(ctx, ins);
1680
1681 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1682 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1683 emit_mir_instruction(ctx, st);
1684 } else {
1685 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1686
1687 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1688 }
1689 } else {
1690 DBG("Unknown store\n");
1691 assert(0);
1692 }
1693
1694 break;
1695
1696 case nir_intrinsic_load_alpha_ref_float:
1697 assert(instr->dest.is_ssa);
1698
1699 float ref_value = ctx->alpha_ref;
1700
1701 float *v = ralloc_array(NULL, float, 4);
1702 memcpy(v, &ref_value, sizeof(float));
1703 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1704 break;
1705
1706 case nir_intrinsic_load_viewport_scale:
1707 case nir_intrinsic_load_viewport_offset:
1708 emit_sysval_read(ctx, instr);
1709 break;
1710
1711 default:
1712 printf ("Unhandled intrinsic\n");
1713 assert(0);
1714 break;
1715 }
1716 }
1717
1718 static unsigned
1719 midgard_tex_format(enum glsl_sampler_dim dim)
1720 {
1721 switch (dim) {
1722 case GLSL_SAMPLER_DIM_2D:
1723 case GLSL_SAMPLER_DIM_EXTERNAL:
1724 return TEXTURE_2D;
1725
1726 case GLSL_SAMPLER_DIM_3D:
1727 return TEXTURE_3D;
1728
1729 case GLSL_SAMPLER_DIM_CUBE:
1730 return TEXTURE_CUBE;
1731
1732 default:
1733 DBG("Unknown sampler dim type\n");
1734 assert(0);
1735 return 0;
1736 }
1737 }
1738
1739 static void
1740 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1741 {
1742 /* TODO */
1743 //assert (!instr->sampler);
1744 //assert (!instr->texture_array_size);
1745 assert (instr->op == nir_texop_tex);
1746
1747 /* Allocate registers via a round robin scheme to alternate between the two registers */
1748 int reg = ctx->texture_op_count & 1;
1749 int in_reg = reg, out_reg = reg;
1750
1751 /* Make room for the reg */
1752
1753 if (ctx->texture_index[reg] > -1)
1754 unalias_ssa(ctx, ctx->texture_index[reg]);
1755
1756 int texture_index = instr->texture_index;
1757 int sampler_index = texture_index;
1758
1759 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1760 switch (instr->src[i].src_type) {
1761 case nir_tex_src_coord: {
1762 int index = nir_src_index(ctx, &instr->src[i].src);
1763
1764 midgard_vector_alu_src alu_src = blank_alu_src;
1765
1766 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1767
1768 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1769 /* For cubemaps, we need to load coords into
1770 * special r27, and then use a special ld/st op
1771 * to copy into the texture register */
1772
1773 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1774
1775 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1776 emit_mir_instruction(ctx, move);
1777
1778 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1779 st.load_store.unknown = 0x24; /* XXX: What is this? */
1780 st.load_store.mask = 0x3; /* xy? */
1781 st.load_store.swizzle = alu_src.swizzle;
1782 emit_mir_instruction(ctx, st);
1783
1784 } else {
1785 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1786
1787 midgard_instruction ins = v_fmov(index, alu_src, reg);
1788 emit_mir_instruction(ctx, ins);
1789 }
1790
1791 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1792
1793 break;
1794 }
1795
1796 default: {
1797 DBG("Unknown source type\n");
1798 //assert(0);
1799 break;
1800 }
1801 }
1802 }
1803
1804 /* No helper to build texture words -- we do it all here */
1805 midgard_instruction ins = {
1806 .type = TAG_TEXTURE_4,
1807 .texture = {
1808 .op = TEXTURE_OP_NORMAL,
1809 .format = midgard_tex_format(instr->sampler_dim),
1810 .texture_handle = texture_index,
1811 .sampler_handle = sampler_index,
1812
1813 /* TODO: Don't force xyzw */
1814 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1815 .mask = 0xF,
1816
1817 /* TODO: half */
1818 //.in_reg_full = 1,
1819 .out_full = 1,
1820
1821 .filter = 1,
1822
1823 /* Always 1 */
1824 .unknown7 = 1,
1825
1826 /* Assume we can continue; hint it out later */
1827 .cont = 1,
1828 }
1829 };
1830
1831 /* Set registers to read and write from the same place */
1832 ins.texture.in_reg_select = in_reg;
1833 ins.texture.out_reg_select = out_reg;
1834
1835 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1836 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1837 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1838 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1839 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1840 } else {
1841 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1842 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1843 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1844 }
1845
1846 emit_mir_instruction(ctx, ins);
1847
1848 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1849
1850 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1851 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1852 ctx->texture_index[reg] = o_index;
1853
1854 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1855 emit_mir_instruction(ctx, ins2);
1856
1857 /* Used for .cont and .last hinting */
1858 ctx->texture_op_count++;
1859 }
1860
1861 static void
1862 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1863 {
1864 switch (instr->type) {
1865 case nir_jump_break: {
1866 /* Emit a branch out of the loop */
1867 struct midgard_instruction br = v_branch(false, false);
1868 br.branch.target_type = TARGET_BREAK;
1869 br.branch.target_break = ctx->current_loop_depth;
1870 emit_mir_instruction(ctx, br);
1871
1872 DBG("break..\n");
1873 break;
1874 }
1875
1876 default:
1877 DBG("Unknown jump type %d\n", instr->type);
1878 break;
1879 }
1880 }
1881
1882 static void
1883 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1884 {
1885 switch (instr->type) {
1886 case nir_instr_type_load_const:
1887 emit_load_const(ctx, nir_instr_as_load_const(instr));
1888 break;
1889
1890 case nir_instr_type_intrinsic:
1891 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1892 break;
1893
1894 case nir_instr_type_alu:
1895 emit_alu(ctx, nir_instr_as_alu(instr));
1896 break;
1897
1898 case nir_instr_type_tex:
1899 emit_tex(ctx, nir_instr_as_tex(instr));
1900 break;
1901
1902 case nir_instr_type_jump:
1903 emit_jump(ctx, nir_instr_as_jump(instr));
1904 break;
1905
1906 case nir_instr_type_ssa_undef:
1907 /* Spurious */
1908 break;
1909
1910 default:
1911 DBG("Unhandled instruction type\n");
1912 break;
1913 }
1914 }
1915
1916 /* Determine the actual hardware from the index based on the RA results or special values */
1917
1918 static int
1919 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1920 {
1921 if (reg >= SSA_FIXED_MINIMUM)
1922 return SSA_REG_FROM_FIXED(reg);
1923
1924 if (reg >= 0) {
1925 assert(reg < maxreg);
1926 int r = ra_get_node_reg(g, reg);
1927 ctx->work_registers = MAX2(ctx->work_registers, r);
1928 return r;
1929 }
1930
1931 switch (reg) {
1932 /* fmov style unused */
1933 case SSA_UNUSED_0:
1934 return REGISTER_UNUSED;
1935
1936 /* lut style unused */
1937 case SSA_UNUSED_1:
1938 return REGISTER_UNUSED;
1939
1940 default:
1941 DBG("Unknown SSA register alias %d\n", reg);
1942 assert(0);
1943 return 31;
1944 }
1945 }
1946
1947 static unsigned int
1948 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1949 {
1950 /* Choose the first available register to minimise reported register pressure */
1951
1952 for (int i = 0; i < 16; ++i) {
1953 if (BITSET_TEST(regs, i)) {
1954 return i;
1955 }
1956 }
1957
1958 assert(0);
1959 return 0;
1960 }
1961
1962 static bool
1963 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1964 {
1965 if (ins->ssa_args.src0 == src) return true;
1966 if (ins->ssa_args.src1 == src) return true;
1967
1968 return false;
1969 }
1970
1971 /* Determine if a variable is live in the successors of a block */
1972 static bool
1973 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1974 {
1975 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1976 midgard_block *succ = bl->successors[i];
1977
1978 /* If we already visited, the value we're seeking
1979 * isn't down this path (or we would have short
1980 * circuited */
1981
1982 if (succ->visited) continue;
1983
1984 /* Otherwise (it's visited *now*), check the block */
1985
1986 succ->visited = true;
1987
1988 mir_foreach_instr_in_block(succ, ins) {
1989 if (midgard_is_live_in_instr(ins, src))
1990 return true;
1991 }
1992
1993 /* ...and also, check *its* successors */
1994 if (is_live_after_successors(ctx, succ, src))
1995 return true;
1996
1997 }
1998
1999 /* Welp. We're really not live. */
2000
2001 return false;
2002 }
2003
2004 static bool
2005 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2006 {
2007 /* Check the rest of the block for liveness */
2008
2009 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2010 if (midgard_is_live_in_instr(ins, src))
2011 return true;
2012 }
2013
2014 /* Check the rest of the blocks for liveness recursively */
2015
2016 bool succ = is_live_after_successors(ctx, block, src);
2017
2018 mir_foreach_block(ctx, block) {
2019 block->visited = false;
2020 }
2021
2022 return succ;
2023 }
2024
2025 static void
2026 allocate_registers(compiler_context *ctx)
2027 {
2028 /* First, initialize the RA */
2029 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2030
2031 /* Create a primary (general purpose) class, as well as special purpose
2032 * pipeline register classes */
2033
2034 int primary_class = ra_alloc_reg_class(regs);
2035 int varying_class = ra_alloc_reg_class(regs);
2036
2037 /* Add the full set of work registers */
2038 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2039 for (int i = 0; i < work_count; ++i)
2040 ra_class_add_reg(regs, primary_class, i);
2041
2042 /* Add special registers */
2043 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2044 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2045
2046 /* We're done setting up */
2047 ra_set_finalize(regs, NULL);
2048
2049 /* Transform the MIR into squeezed index form */
2050 mir_foreach_block(ctx, block) {
2051 mir_foreach_instr_in_block(block, ins) {
2052 if (ins->compact_branch) continue;
2053
2054 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2055 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2056 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2057 }
2058 if (midgard_debug & MIDGARD_DBG_SHADERS)
2059 print_mir_block(block);
2060 }
2061
2062 /* Let's actually do register allocation */
2063 int nodes = ctx->temp_count;
2064 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2065
2066 /* Set everything to the work register class, unless it has somewhere
2067 * special to go */
2068
2069 mir_foreach_block(ctx, block) {
2070 mir_foreach_instr_in_block(block, ins) {
2071 if (ins->compact_branch) continue;
2072
2073 if (ins->ssa_args.dest < 0) continue;
2074
2075 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2076
2077 int class = primary_class;
2078
2079 ra_set_node_class(g, ins->ssa_args.dest, class);
2080 }
2081 }
2082
2083 for (int index = 0; index <= ctx->max_hash; ++index) {
2084 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2085
2086 if (temp) {
2087 unsigned reg = temp - 1;
2088 int t = find_or_allocate_temp(ctx, index);
2089 ra_set_node_reg(g, t, reg);
2090 }
2091 }
2092
2093 /* Determine liveness */
2094
2095 int *live_start = malloc(nodes * sizeof(int));
2096 int *live_end = malloc(nodes * sizeof(int));
2097
2098 /* Initialize as non-existent */
2099
2100 for (int i = 0; i < nodes; ++i) {
2101 live_start[i] = live_end[i] = -1;
2102 }
2103
2104 int d = 0;
2105
2106 mir_foreach_block(ctx, block) {
2107 mir_foreach_instr_in_block(block, ins) {
2108 if (ins->compact_branch) continue;
2109
2110 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2111 /* If this destination is not yet live, it is now since we just wrote it */
2112
2113 int dest = ins->ssa_args.dest;
2114
2115 if (live_start[dest] == -1)
2116 live_start[dest] = d;
2117 }
2118
2119 /* Since we just used a source, the source might be
2120 * dead now. Scan the rest of the block for
2121 * invocations, and if there are none, the source dies
2122 * */
2123
2124 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2125
2126 for (int src = 0; src < 2; ++src) {
2127 int s = sources[src];
2128
2129 if (s < 0) continue;
2130
2131 if (s >= SSA_FIXED_MINIMUM) continue;
2132
2133 if (!is_live_after(ctx, block, ins, s)) {
2134 live_end[s] = d;
2135 }
2136 }
2137
2138 ++d;
2139 }
2140 }
2141
2142 /* If a node still hasn't been killed, kill it now */
2143
2144 for (int i = 0; i < nodes; ++i) {
2145 /* live_start == -1 most likely indicates a pinned output */
2146
2147 if (live_end[i] == -1)
2148 live_end[i] = d;
2149 }
2150
2151 /* Setup interference between nodes that are live at the same time */
2152
2153 for (int i = 0; i < nodes; ++i) {
2154 for (int j = i + 1; j < nodes; ++j) {
2155 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2156 ra_add_node_interference(g, i, j);
2157 }
2158 }
2159
2160 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2161
2162 if (!ra_allocate(g)) {
2163 DBG("Error allocating registers\n");
2164 assert(0);
2165 }
2166
2167 /* Cleanup */
2168 free(live_start);
2169 free(live_end);
2170
2171 mir_foreach_block(ctx, block) {
2172 mir_foreach_instr_in_block(block, ins) {
2173 if (ins->compact_branch) continue;
2174
2175 ssa_args args = ins->ssa_args;
2176
2177 switch (ins->type) {
2178 case TAG_ALU_4:
2179 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2180
2181 ins->registers.src2_imm = args.inline_constant;
2182
2183 if (args.inline_constant) {
2184 /* Encode inline 16-bit constant as a vector by default */
2185
2186 ins->registers.src2_reg = ins->inline_constant >> 11;
2187
2188 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2189
2190 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2191 ins->alu.src2 = imm << 2;
2192 } else {
2193 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2194 }
2195
2196 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2197
2198 break;
2199
2200 case TAG_LOAD_STORE_4: {
2201 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2202 /* TODO: use ssa_args for store_vary */
2203 ins->load_store.reg = 0;
2204 } else {
2205 bool has_dest = args.dest >= 0;
2206 int ssa_arg = has_dest ? args.dest : args.src0;
2207
2208 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2209 }
2210
2211 break;
2212 }
2213
2214 default:
2215 break;
2216 }
2217 }
2218 }
2219 }
2220
2221 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2222 * use scalar ALU instructions, for functional or performance reasons. To do
2223 * this, we just demote vector ALU payloads to scalar. */
2224
2225 static int
2226 component_from_mask(unsigned mask)
2227 {
2228 for (int c = 0; c < 4; ++c) {
2229 if (mask & (3 << (2 * c)))
2230 return c;
2231 }
2232
2233 assert(0);
2234 return 0;
2235 }
2236
2237 static bool
2238 is_single_component_mask(unsigned mask)
2239 {
2240 int components = 0;
2241
2242 for (int c = 0; c < 4; ++c)
2243 if (mask & (3 << (2 * c)))
2244 components++;
2245
2246 return components == 1;
2247 }
2248
2249 /* Create a mask of accessed components from a swizzle to figure out vector
2250 * dependencies */
2251
2252 static unsigned
2253 swizzle_to_access_mask(unsigned swizzle)
2254 {
2255 unsigned component_mask = 0;
2256
2257 for (int i = 0; i < 4; ++i) {
2258 unsigned c = (swizzle >> (2 * i)) & 3;
2259 component_mask |= (1 << c);
2260 }
2261
2262 return component_mask;
2263 }
2264
2265 static unsigned
2266 vector_to_scalar_source(unsigned u, bool is_int)
2267 {
2268 midgard_vector_alu_src v;
2269 memcpy(&v, &u, sizeof(v));
2270
2271 /* TODO: Integers */
2272
2273 midgard_scalar_alu_src s = {
2274 .full = !v.half,
2275 .component = (v.swizzle & 3) << 1
2276 };
2277
2278 if (is_int) {
2279 /* TODO */
2280 } else {
2281 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2282 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2283 }
2284
2285 unsigned o;
2286 memcpy(&o, &s, sizeof(s));
2287
2288 return o & ((1 << 6) - 1);
2289 }
2290
2291 static midgard_scalar_alu
2292 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2293 {
2294 bool is_int = midgard_is_integer_op(v.op);
2295
2296 /* The output component is from the mask */
2297 midgard_scalar_alu s = {
2298 .op = v.op,
2299 .src1 = vector_to_scalar_source(v.src1, is_int),
2300 .src2 = vector_to_scalar_source(v.src2, is_int),
2301 .unknown = 0,
2302 .outmod = v.outmod,
2303 .output_full = 1, /* TODO: Half */
2304 .output_component = component_from_mask(v.mask) << 1,
2305 };
2306
2307 /* Inline constant is passed along rather than trying to extract it
2308 * from v */
2309
2310 if (ins->ssa_args.inline_constant) {
2311 uint16_t imm = 0;
2312 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2313 imm |= (lower_11 >> 9) & 3;
2314 imm |= (lower_11 >> 6) & 4;
2315 imm |= (lower_11 >> 2) & 0x38;
2316 imm |= (lower_11 & 63) << 6;
2317
2318 s.src2 = imm;
2319 }
2320
2321 return s;
2322 }
2323
2324 /* Midgard prefetches instruction types, so during emission we need to
2325 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2326 * if this is the second to last and the last is an ALU, then it's also 1... */
2327
2328 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2329 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2330
2331 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2332 bytes_emitted += sizeof(type)
2333
2334 static void
2335 emit_binary_vector_instruction(midgard_instruction *ains,
2336 uint16_t *register_words, int *register_words_count,
2337 uint64_t *body_words, size_t *body_size, int *body_words_count,
2338 size_t *bytes_emitted)
2339 {
2340 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2341 *bytes_emitted += sizeof(midgard_reg_info);
2342
2343 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2344 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2345 *bytes_emitted += sizeof(midgard_vector_alu);
2346 }
2347
2348 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2349 * mind that we are a vector architecture and we can write to different
2350 * components simultaneously */
2351
2352 static bool
2353 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2354 {
2355 /* Each instruction reads some registers and writes to a register. See
2356 * where the first writes */
2357
2358 /* Figure out where exactly we wrote to */
2359 int source = first->ssa_args.dest;
2360 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2361
2362 /* As long as the second doesn't read from the first, we're okay */
2363 if (second->ssa_args.src0 == source) {
2364 if (first->type == TAG_ALU_4) {
2365 /* Figure out which components we just read from */
2366
2367 int q = second->alu.src1;
2368 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2369
2370 /* Check if there are components in common, and fail if so */
2371 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2372 return false;
2373 } else
2374 return false;
2375
2376 }
2377
2378 if (second->ssa_args.src1 == source)
2379 return false;
2380
2381 /* Otherwise, it's safe in that regard. Another data hazard is both
2382 * writing to the same place, of course */
2383
2384 if (second->ssa_args.dest == source) {
2385 /* ...but only if the components overlap */
2386 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2387
2388 if (dest_mask & source_mask)
2389 return false;
2390 }
2391
2392 /* ...That's it */
2393 return true;
2394 }
2395
2396 static bool
2397 midgard_has_hazard(
2398 midgard_instruction **segment, unsigned segment_size,
2399 midgard_instruction *ains)
2400 {
2401 for (int s = 0; s < segment_size; ++s)
2402 if (!can_run_concurrent_ssa(segment[s], ains))
2403 return true;
2404
2405 return false;
2406
2407
2408 }
2409
2410 /* Schedules, but does not emit, a single basic block. After scheduling, the
2411 * final tag and size of the block are known, which are necessary for branching
2412 * */
2413
2414 static midgard_bundle
2415 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2416 {
2417 int instructions_emitted = 0, instructions_consumed = -1;
2418 midgard_bundle bundle = { 0 };
2419
2420 uint8_t tag = ins->type;
2421
2422 /* Default to the instruction's tag */
2423 bundle.tag = tag;
2424
2425 switch (ins->type) {
2426 case TAG_ALU_4: {
2427 uint32_t control = 0;
2428 size_t bytes_emitted = sizeof(control);
2429
2430 /* TODO: Constant combining */
2431 int index = 0, last_unit = 0;
2432
2433 /* Previous instructions, for the purpose of parallelism */
2434 midgard_instruction *segment[4] = {0};
2435 int segment_size = 0;
2436
2437 instructions_emitted = -1;
2438 midgard_instruction *pins = ins;
2439
2440 for (;;) {
2441 midgard_instruction *ains = pins;
2442
2443 /* Advance instruction pointer */
2444 if (index) {
2445 ains = mir_next_op(pins);
2446 pins = ains;
2447 }
2448
2449 /* Out-of-work condition */
2450 if ((struct list_head *) ains == &block->instructions)
2451 break;
2452
2453 /* Ensure that the chain can continue */
2454 if (ains->type != TAG_ALU_4) break;
2455
2456 /* According to the presentation "The ARM
2457 * Mali-T880 Mobile GPU" from HotChips 27,
2458 * there are two pipeline stages. Branching
2459 * position determined experimentally. Lines
2460 * are executed in parallel:
2461 *
2462 * [ VMUL ] [ SADD ]
2463 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2464 *
2465 * Verify that there are no ordering dependencies here.
2466 *
2467 * TODO: Allow for parallelism!!!
2468 */
2469
2470 /* Pick a unit for it if it doesn't force a particular unit */
2471
2472 int unit = ains->unit;
2473
2474 if (!unit) {
2475 int op = ains->alu.op;
2476 int units = alu_opcode_props[op].props;
2477
2478 /* TODO: Promotion of scalars to vectors */
2479 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2480
2481 if (!vector)
2482 assert(units & UNITS_SCALAR);
2483
2484 if (vector) {
2485 if (last_unit >= UNIT_VADD) {
2486 if (units & UNIT_VLUT)
2487 unit = UNIT_VLUT;
2488 else
2489 break;
2490 } else {
2491 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2492 unit = UNIT_VMUL;
2493 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2494 unit = UNIT_VADD;
2495 else if (units & UNIT_VLUT)
2496 unit = UNIT_VLUT;
2497 else
2498 break;
2499 }
2500 } else {
2501 if (last_unit >= UNIT_VADD) {
2502 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2503 unit = UNIT_SMUL;
2504 else if (units & UNIT_VLUT)
2505 unit = UNIT_VLUT;
2506 else
2507 break;
2508 } else {
2509 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2510 unit = UNIT_SADD;
2511 else if (units & UNIT_SMUL)
2512 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2513 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2514 unit = UNIT_VADD;
2515 else
2516 break;
2517 }
2518 }
2519
2520 assert(unit & units);
2521 }
2522
2523 /* Late unit check, this time for encoding (not parallelism) */
2524 if (unit <= last_unit) break;
2525
2526 /* Clear the segment */
2527 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2528 segment_size = 0;
2529
2530 if (midgard_has_hazard(segment, segment_size, ains))
2531 break;
2532
2533 /* We're good to go -- emit the instruction */
2534 ains->unit = unit;
2535
2536 segment[segment_size++] = ains;
2537
2538 /* Only one set of embedded constants per
2539 * bundle possible; if we have more, we must
2540 * break the chain early, unfortunately */
2541
2542 if (ains->has_constants) {
2543 if (bundle.has_embedded_constants) {
2544 /* ...but if there are already
2545 * constants but these are the
2546 * *same* constants, we let it
2547 * through */
2548
2549 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2550 break;
2551 } else {
2552 bundle.has_embedded_constants = true;
2553 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2554
2555 /* If this is a blend shader special constant, track it for patching */
2556 if (ains->has_blend_constant)
2557 bundle.has_blend_constant = true;
2558 }
2559 }
2560
2561 if (ains->unit & UNITS_ANY_VECTOR) {
2562 emit_binary_vector_instruction(ains, bundle.register_words,
2563 &bundle.register_words_count, bundle.body_words,
2564 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2565 } else if (ains->compact_branch) {
2566 /* All of r0 has to be written out
2567 * along with the branch writeout.
2568 * (slow!) */
2569
2570 if (ains->writeout) {
2571 if (index == 0) {
2572 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2573 ins.unit = UNIT_VMUL;
2574
2575 control |= ins.unit;
2576
2577 emit_binary_vector_instruction(&ins, bundle.register_words,
2578 &bundle.register_words_count, bundle.body_words,
2579 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2580 } else {
2581 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2582 bool written_late = false;
2583 bool components[4] = { 0 };
2584 uint16_t register_dep_mask = 0;
2585 uint16_t written_mask = 0;
2586
2587 midgard_instruction *qins = ins;
2588 for (int t = 0; t < index; ++t) {
2589 if (qins->registers.out_reg != 0) {
2590 /* Mark down writes */
2591
2592 written_mask |= (1 << qins->registers.out_reg);
2593 } else {
2594 /* Mark down the register dependencies for errata check */
2595
2596 if (qins->registers.src1_reg < 16)
2597 register_dep_mask |= (1 << qins->registers.src1_reg);
2598
2599 if (qins->registers.src2_reg < 16)
2600 register_dep_mask |= (1 << qins->registers.src2_reg);
2601
2602 int mask = qins->alu.mask;
2603
2604 for (int c = 0; c < 4; ++c)
2605 if (mask & (0x3 << (2 * c)))
2606 components[c] = true;
2607
2608 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2609
2610 if (qins->unit == UNIT_VLUT)
2611 written_late = true;
2612 }
2613
2614 /* Advance instruction pointer */
2615 qins = mir_next_op(qins);
2616 }
2617
2618
2619 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2620 if (register_dep_mask & written_mask) {
2621 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2622 break;
2623 }
2624
2625 if (written_late)
2626 break;
2627
2628 /* If even a single component is not written, break it up (conservative check). */
2629 bool breakup = false;
2630
2631 for (int c = 0; c < 4; ++c)
2632 if (!components[c])
2633 breakup = true;
2634
2635 if (breakup)
2636 break;
2637
2638 /* Otherwise, we're free to proceed */
2639 }
2640 }
2641
2642 if (ains->unit == ALU_ENAB_BRANCH) {
2643 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2644 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2645 bytes_emitted += sizeof(midgard_branch_extended);
2646 } else {
2647 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2648 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2649 bytes_emitted += sizeof(ains->br_compact);
2650 }
2651 } else {
2652 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2653 bytes_emitted += sizeof(midgard_reg_info);
2654
2655 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2656 bundle.body_words_count++;
2657 bytes_emitted += sizeof(midgard_scalar_alu);
2658 }
2659
2660 /* Defer marking until after writing to allow for break */
2661 control |= ains->unit;
2662 last_unit = ains->unit;
2663 ++instructions_emitted;
2664 ++index;
2665 }
2666
2667 /* Bubble up the number of instructions for skipping */
2668 instructions_consumed = index - 1;
2669
2670 int padding = 0;
2671
2672 /* Pad ALU op to nearest word */
2673
2674 if (bytes_emitted & 15) {
2675 padding = 16 - (bytes_emitted & 15);
2676 bytes_emitted += padding;
2677 }
2678
2679 /* Constants must always be quadwords */
2680 if (bundle.has_embedded_constants)
2681 bytes_emitted += 16;
2682
2683 /* Size ALU instruction for tag */
2684 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2685 bundle.padding = padding;
2686 bundle.control = bundle.tag | control;
2687
2688 break;
2689 }
2690
2691 case TAG_LOAD_STORE_4: {
2692 /* Load store instructions have two words at once. If
2693 * we only have one queued up, we need to NOP pad.
2694 * Otherwise, we store both in succession to save space
2695 * and cycles -- letting them go in parallel -- skip
2696 * the next. The usefulness of this optimisation is
2697 * greatly dependent on the quality of the instruction
2698 * scheduler.
2699 */
2700
2701 midgard_instruction *next_op = mir_next_op(ins);
2702
2703 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2704 /* As the two operate concurrently, make sure
2705 * they are not dependent */
2706
2707 if (can_run_concurrent_ssa(ins, next_op) || true) {
2708 /* Skip ahead, since it's redundant with the pair */
2709 instructions_consumed = 1 + (instructions_emitted++);
2710 }
2711 }
2712
2713 break;
2714 }
2715
2716 default:
2717 /* Texture ops default to single-op-per-bundle scheduling */
2718 break;
2719 }
2720
2721 /* Copy the instructions into the bundle */
2722 bundle.instruction_count = instructions_emitted + 1;
2723
2724 int used_idx = 0;
2725
2726 midgard_instruction *uins = ins;
2727 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2728 bundle.instructions[used_idx++] = *uins;
2729 uins = mir_next_op(uins);
2730 }
2731
2732 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2733
2734 return bundle;
2735 }
2736
2737 static int
2738 quadword_size(int tag)
2739 {
2740 switch (tag) {
2741 case TAG_ALU_4:
2742 return 1;
2743
2744 case TAG_ALU_8:
2745 return 2;
2746
2747 case TAG_ALU_12:
2748 return 3;
2749
2750 case TAG_ALU_16:
2751 return 4;
2752
2753 case TAG_LOAD_STORE_4:
2754 return 1;
2755
2756 case TAG_TEXTURE_4:
2757 return 1;
2758
2759 default:
2760 assert(0);
2761 return 0;
2762 }
2763 }
2764
2765 /* Schedule a single block by iterating its instruction to create bundles.
2766 * While we go, tally about the bundle sizes to compute the block size. */
2767
2768 static void
2769 schedule_block(compiler_context *ctx, midgard_block *block)
2770 {
2771 util_dynarray_init(&block->bundles, NULL);
2772
2773 block->quadword_count = 0;
2774
2775 mir_foreach_instr_in_block(block, ins) {
2776 int skip;
2777 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2778 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2779
2780 if (bundle.has_blend_constant) {
2781 /* TODO: Multiblock? */
2782 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2783 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2784 }
2785
2786 while(skip--)
2787 ins = mir_next_op(ins);
2788
2789 block->quadword_count += quadword_size(bundle.tag);
2790 }
2791
2792 block->is_scheduled = true;
2793 }
2794
2795 static void
2796 schedule_program(compiler_context *ctx)
2797 {
2798 allocate_registers(ctx);
2799
2800 mir_foreach_block(ctx, block) {
2801 schedule_block(ctx, block);
2802 }
2803 }
2804
2805 /* After everything is scheduled, emit whole bundles at a time */
2806
2807 static void
2808 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2809 {
2810 int lookahead = next_tag << 4;
2811
2812 switch (bundle->tag) {
2813 case TAG_ALU_4:
2814 case TAG_ALU_8:
2815 case TAG_ALU_12:
2816 case TAG_ALU_16: {
2817 /* Actually emit each component */
2818 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2819
2820 for (int i = 0; i < bundle->register_words_count; ++i)
2821 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2822
2823 /* Emit body words based on the instructions bundled */
2824 for (int i = 0; i < bundle->instruction_count; ++i) {
2825 midgard_instruction *ins = &bundle->instructions[i];
2826
2827 if (ins->unit & UNITS_ANY_VECTOR) {
2828 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2829 } else if (ins->compact_branch) {
2830 /* Dummy move, XXX DRY */
2831 if ((i == 0) && ins->writeout) {
2832 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2833 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2834 }
2835
2836 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2837 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2838 } else {
2839 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2840 }
2841 } else {
2842 /* Scalar */
2843 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2844 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2845 }
2846 }
2847
2848 /* Emit padding (all zero) */
2849 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2850
2851 /* Tack on constants */
2852
2853 if (bundle->has_embedded_constants) {
2854 util_dynarray_append(emission, float, bundle->constants[0]);
2855 util_dynarray_append(emission, float, bundle->constants[1]);
2856 util_dynarray_append(emission, float, bundle->constants[2]);
2857 util_dynarray_append(emission, float, bundle->constants[3]);
2858 }
2859
2860 break;
2861 }
2862
2863 case TAG_LOAD_STORE_4: {
2864 /* One or two composing instructions */
2865
2866 uint64_t current64, next64 = LDST_NOP;
2867
2868 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2869
2870 if (bundle->instruction_count == 2)
2871 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2872
2873 midgard_load_store instruction = {
2874 .type = bundle->tag,
2875 .next_type = next_tag,
2876 .word1 = current64,
2877 .word2 = next64
2878 };
2879
2880 util_dynarray_append(emission, midgard_load_store, instruction);
2881
2882 break;
2883 }
2884
2885 case TAG_TEXTURE_4: {
2886 /* Texture instructions are easy, since there is no
2887 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2888
2889 midgard_instruction *ins = &bundle->instructions[0];
2890
2891 ins->texture.type = TAG_TEXTURE_4;
2892 ins->texture.next_type = next_tag;
2893
2894 ctx->texture_op_count--;
2895
2896 if (!ctx->texture_op_count) {
2897 ins->texture.cont = 0;
2898 ins->texture.last = 1;
2899 }
2900
2901 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2902 break;
2903 }
2904
2905 default:
2906 DBG("Unknown midgard instruction type\n");
2907 assert(0);
2908 break;
2909 }
2910 }
2911
2912
2913 /* ALU instructions can inline or embed constants, which decreases register
2914 * pressure and saves space. */
2915
2916 #define CONDITIONAL_ATTACH(src) { \
2917 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2918 \
2919 if (entry) { \
2920 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2921 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2922 } \
2923 }
2924
2925 static void
2926 inline_alu_constants(compiler_context *ctx)
2927 {
2928 mir_foreach_instr(ctx, alu) {
2929 /* Other instructions cannot inline constants */
2930 if (alu->type != TAG_ALU_4) continue;
2931
2932 /* If there is already a constant here, we can do nothing */
2933 if (alu->has_constants) continue;
2934
2935 /* It makes no sense to inline constants on a branch */
2936 if (alu->compact_branch || alu->prepacked_branch) continue;
2937
2938 CONDITIONAL_ATTACH(src0);
2939
2940 if (!alu->has_constants) {
2941 CONDITIONAL_ATTACH(src1)
2942 } else if (!alu->inline_constant) {
2943 /* Corner case: _two_ vec4 constants, for instance with a
2944 * csel. For this case, we can only use a constant
2945 * register for one, we'll have to emit a move for the
2946 * other. Note, if both arguments are constants, then
2947 * necessarily neither argument depends on the value of
2948 * any particular register. As the destination register
2949 * will be wiped, that means we can spill the constant
2950 * to the destination register.
2951 */
2952
2953 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2954 unsigned scratch = alu->ssa_args.dest;
2955
2956 if (entry) {
2957 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2958 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2959
2960 /* Force a break XXX Defer r31 writes */
2961 ins.unit = UNIT_VLUT;
2962
2963 /* Set the source */
2964 alu->ssa_args.src1 = scratch;
2965
2966 /* Inject us -before- the last instruction which set r31 */
2967 mir_insert_instruction_before(mir_prev_op(alu), ins);
2968 }
2969 }
2970 }
2971 }
2972
2973 /* Midgard supports two types of constants, embedded constants (128-bit) and
2974 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2975 * constants can be demoted to inline constants, for space savings and
2976 * sometimes a performance boost */
2977
2978 static void
2979 embedded_to_inline_constant(compiler_context *ctx)
2980 {
2981 mir_foreach_instr(ctx, ins) {
2982 if (!ins->has_constants) continue;
2983
2984 if (ins->ssa_args.inline_constant) continue;
2985
2986 /* Blend constants must not be inlined by definition */
2987 if (ins->has_blend_constant) continue;
2988
2989 /* src1 cannot be an inline constant due to encoding
2990 * restrictions. So, if possible we try to flip the arguments
2991 * in that case */
2992
2993 int op = ins->alu.op;
2994
2995 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2996 switch (op) {
2997 /* These ops require an operational change to flip
2998 * their arguments TODO */
2999 case midgard_alu_op_flt:
3000 case midgard_alu_op_fle:
3001 case midgard_alu_op_ilt:
3002 case midgard_alu_op_ile:
3003 case midgard_alu_op_fcsel:
3004 case midgard_alu_op_icsel:
3005 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3006 default:
3007 break;
3008 }
3009
3010 if (alu_opcode_props[op].props & OP_COMMUTES) {
3011 /* Flip the SSA numbers */
3012 ins->ssa_args.src0 = ins->ssa_args.src1;
3013 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3014
3015 /* And flip the modifiers */
3016
3017 unsigned src_temp;
3018
3019 src_temp = ins->alu.src2;
3020 ins->alu.src2 = ins->alu.src1;
3021 ins->alu.src1 = src_temp;
3022 }
3023 }
3024
3025 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3026 /* Extract the source information */
3027
3028 midgard_vector_alu_src *src;
3029 int q = ins->alu.src2;
3030 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3031 src = m;
3032
3033 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3034 int component = src->swizzle & 3;
3035
3036 /* Scale constant appropriately, if we can legally */
3037 uint16_t scaled_constant = 0;
3038
3039 /* XXX: Check legality */
3040 if (midgard_is_integer_op(op)) {
3041 /* TODO: Inline integer */
3042 continue;
3043
3044 unsigned int *iconstants = (unsigned int *) ins->constants;
3045 scaled_constant = (uint16_t) iconstants[component];
3046
3047 /* Constant overflow after resize */
3048 if (scaled_constant != iconstants[component])
3049 continue;
3050 } else {
3051 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3052 }
3053
3054 /* We don't know how to handle these with a constant */
3055
3056 if (src->mod || src->half || src->rep_low || src->rep_high) {
3057 DBG("Bailing inline constant...\n");
3058 continue;
3059 }
3060
3061 /* Make sure that the constant is not itself a
3062 * vector by checking if all accessed values
3063 * (by the swizzle) are the same. */
3064
3065 uint32_t *cons = (uint32_t *) ins->constants;
3066 uint32_t value = cons[component];
3067
3068 bool is_vector = false;
3069 unsigned mask = effective_writemask(&ins->alu);
3070
3071 for (int c = 1; c < 4; ++c) {
3072 /* We only care if this component is actually used */
3073 if (!(mask & (1 << c)))
3074 continue;
3075
3076 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3077
3078 if (test != value) {
3079 is_vector = true;
3080 break;
3081 }
3082 }
3083
3084 if (is_vector)
3085 continue;
3086
3087 /* Get rid of the embedded constant */
3088 ins->has_constants = false;
3089 ins->ssa_args.src1 = SSA_UNUSED_0;
3090 ins->ssa_args.inline_constant = true;
3091 ins->inline_constant = scaled_constant;
3092 }
3093 }
3094 }
3095
3096 /* Map normal SSA sources to other SSA sources / fixed registers (like
3097 * uniforms) */
3098
3099 static void
3100 map_ssa_to_alias(compiler_context *ctx, int *ref)
3101 {
3102 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3103
3104 if (alias) {
3105 /* Remove entry in leftovers to avoid a redunant fmov */
3106
3107 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3108
3109 if (leftover)
3110 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3111
3112 /* Assign the alias map */
3113 *ref = alias - 1;
3114 return;
3115 }
3116 }
3117
3118 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3119 * texture pipeline */
3120
3121 static bool
3122 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3123 {
3124 bool progress = false;
3125
3126 mir_foreach_instr_in_block_safe(block, ins) {
3127 if (ins->type != TAG_ALU_4) continue;
3128 if (ins->compact_branch) continue;
3129
3130 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3131 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3132 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3133
3134 mir_remove_instruction(ins);
3135 progress = true;
3136 }
3137
3138 return progress;
3139 }
3140
3141 /* Combines the two outmods if possible. Returns whether the combination was
3142 * successful */
3143
3144 static bool
3145 midgard_combine_outmod(midgard_outmod *main, midgard_outmod overlay)
3146 {
3147 if (overlay == midgard_outmod_none)
3148 return true;
3149
3150 if (*main == overlay)
3151 return true;
3152
3153 if (*main == midgard_outmod_none) {
3154 *main = overlay;
3155 return true;
3156 }
3157
3158 if (*main == midgard_outmod_pos && overlay == midgard_outmod_sat) {
3159 *main = midgard_outmod_sat;
3160 return true;
3161 }
3162
3163 if (overlay == midgard_outmod_pos && *main == midgard_outmod_sat) {
3164 *main = midgard_outmod_sat;
3165 return true;
3166 }
3167
3168 return false;
3169 }
3170
3171 static bool
3172 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3173 {
3174 bool progress = false;
3175
3176 mir_foreach_instr_in_block_safe(block, ins) {
3177 if (ins->type != TAG_ALU_4) continue;
3178 if (!OP_IS_MOVE(ins->alu.op)) continue;
3179
3180 unsigned from = ins->ssa_args.src1;
3181 unsigned to = ins->ssa_args.dest;
3182
3183 /* We only work on pure SSA */
3184
3185 if (to >= SSA_FIXED_MINIMUM) continue;
3186 if (from >= SSA_FIXED_MINIMUM) continue;
3187 if (to >= ctx->func->impl->ssa_alloc) continue;
3188 if (from >= ctx->func->impl->ssa_alloc) continue;
3189
3190 /* Also, if the move has source side effects, we're not sure
3191 * what to do. Destination side effects we can handle, though.
3192 */
3193
3194 midgard_vector_alu_src src =
3195 vector_alu_from_unsigned(ins->alu.src2);
3196 unsigned mask = squeeze_writemask(ins->alu.mask);
3197 bool is_int = midgard_is_integer_op(ins->alu.op);
3198
3199 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3200
3201 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3202 if (v->ssa_args.dest == from) {
3203 if (v->type == TAG_ALU_4) {
3204 midgard_outmod final = v->alu.outmod;
3205
3206 if (!midgard_combine_outmod(&final, ins->alu.outmod))
3207 continue;
3208
3209 v->alu.outmod = final;
3210 }
3211
3212 v->ssa_args.dest = to;
3213 progress = true;
3214 }
3215 }
3216
3217 mir_remove_instruction(ins);
3218 }
3219
3220 return progress;
3221 }
3222
3223 /* The following passes reorder MIR instructions to enable better scheduling */
3224
3225 static void
3226 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3227 {
3228 mir_foreach_instr_in_block_safe(block, ins) {
3229 if (ins->type != TAG_LOAD_STORE_4) continue;
3230
3231 /* We've found a load/store op. Check if next is also load/store. */
3232 midgard_instruction *next_op = mir_next_op(ins);
3233 if (&next_op->link != &block->instructions) {
3234 if (next_op->type == TAG_LOAD_STORE_4) {
3235 /* If so, we're done since we're a pair */
3236 ins = mir_next_op(ins);
3237 continue;
3238 }
3239
3240 /* Maximum search distance to pair, to avoid register pressure disasters */
3241 int search_distance = 8;
3242
3243 /* Otherwise, we have an orphaned load/store -- search for another load */
3244 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3245 /* Terminate search if necessary */
3246 if (!(search_distance--)) break;
3247
3248 if (c->type != TAG_LOAD_STORE_4) continue;
3249
3250 /* Stores cannot be reordered, since they have
3251 * dependencies. For the same reason, indirect
3252 * loads cannot be reordered as their index is
3253 * loaded in r27.w */
3254
3255 if (OP_IS_STORE(c->load_store.op)) continue;
3256
3257 /* It appears the 0x800 bit is set whenever a
3258 * load is direct, unset when it is indirect.
3259 * Skip indirect loads. */
3260
3261 if (!(c->load_store.unknown & 0x800)) continue;
3262
3263 /* We found one! Move it up to pair and remove it from the old location */
3264
3265 mir_insert_instruction_before(ins, *c);
3266 mir_remove_instruction(c);
3267
3268 break;
3269 }
3270 }
3271 }
3272 }
3273
3274 /* Emit varying stores late */
3275
3276 static void
3277 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3278 /* Iterate in reverse to get the final write, rather than the first */
3279
3280 mir_foreach_instr_in_block_safe_rev(block, ins) {
3281 /* Check if what we just wrote needs a store */
3282 int idx = ins->ssa_args.dest;
3283 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3284
3285 if (!varying) continue;
3286
3287 varying -= 1;
3288
3289 /* We need to store to the appropriate varying, so emit the
3290 * move/store */
3291
3292 /* TODO: Integrate with special purpose RA (and scheduler?) */
3293 bool high_varying_register = false;
3294
3295 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3296
3297 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3298 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3299
3300 mir_insert_instruction_before(mir_next_op(ins), st);
3301 mir_insert_instruction_before(mir_next_op(ins), mov);
3302
3303 /* We no longer need to store this varying */
3304 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3305 }
3306 }
3307
3308 /* If there are leftovers after the below pass, emit actual fmov
3309 * instructions for the slow-but-correct path */
3310
3311 static void
3312 emit_leftover_move(compiler_context *ctx)
3313 {
3314 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3315 int base = ((uintptr_t) leftover->key) - 1;
3316 int mapped = base;
3317
3318 map_ssa_to_alias(ctx, &mapped);
3319 EMIT(fmov, mapped, blank_alu_src, base);
3320 }
3321 }
3322
3323 static void
3324 actualise_ssa_to_alias(compiler_context *ctx)
3325 {
3326 mir_foreach_instr(ctx, ins) {
3327 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3328 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3329 }
3330
3331 emit_leftover_move(ctx);
3332 }
3333
3334 static void
3335 emit_fragment_epilogue(compiler_context *ctx)
3336 {
3337 /* Special case: writing out constants requires us to include the move
3338 * explicitly now, so shove it into r0 */
3339
3340 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3341
3342 if (constant_value) {
3343 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3344 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3345 emit_mir_instruction(ctx, ins);
3346 }
3347
3348 /* Perform the actual fragment writeout. We have two writeout/branch
3349 * instructions, forming a loop until writeout is successful as per the
3350 * docs. TODO: gl_FragDepth */
3351
3352 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3353 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3354 }
3355
3356 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3357 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3358 * with the int8 analogue to the fragment epilogue */
3359
3360 static void
3361 emit_blend_epilogue(compiler_context *ctx)
3362 {
3363 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3364
3365 midgard_instruction scale = {
3366 .type = TAG_ALU_4,
3367 .unit = UNIT_VMUL,
3368 .inline_constant = _mesa_float_to_half(255.0),
3369 .ssa_args = {
3370 .src0 = SSA_FIXED_REGISTER(0),
3371 .src1 = SSA_UNUSED_0,
3372 .dest = SSA_FIXED_REGISTER(24),
3373 .inline_constant = true
3374 },
3375 .alu = {
3376 .op = midgard_alu_op_fmul,
3377 .reg_mode = midgard_reg_mode_full,
3378 .dest_override = midgard_dest_override_lower,
3379 .mask = 0xFF,
3380 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3381 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3382 }
3383 };
3384
3385 emit_mir_instruction(ctx, scale);
3386
3387 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3388
3389 midgard_vector_alu_src alu_src = blank_alu_src;
3390 alu_src.half = true;
3391
3392 midgard_instruction f2u8 = {
3393 .type = TAG_ALU_4,
3394 .ssa_args = {
3395 .src0 = SSA_FIXED_REGISTER(24),
3396 .src1 = SSA_UNUSED_0,
3397 .dest = SSA_FIXED_REGISTER(0),
3398 .inline_constant = true
3399 },
3400 .alu = {
3401 .op = midgard_alu_op_f2u8,
3402 .reg_mode = midgard_reg_mode_half,
3403 .dest_override = midgard_dest_override_lower,
3404 .outmod = midgard_outmod_pos,
3405 .mask = 0xF,
3406 .src1 = vector_alu_srco_unsigned(alu_src),
3407 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3408 }
3409 };
3410
3411 emit_mir_instruction(ctx, f2u8);
3412
3413 /* vmul.imov.quarter r0, r0, r0 */
3414
3415 midgard_instruction imov_8 = {
3416 .type = TAG_ALU_4,
3417 .ssa_args = {
3418 .src0 = SSA_UNUSED_1,
3419 .src1 = SSA_FIXED_REGISTER(0),
3420 .dest = SSA_FIXED_REGISTER(0),
3421 },
3422 .alu = {
3423 .op = midgard_alu_op_imov,
3424 .reg_mode = midgard_reg_mode_quarter,
3425 .dest_override = midgard_dest_override_none,
3426 .mask = 0xFF,
3427 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3428 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3429 }
3430 };
3431
3432 /* Emit branch epilogue with the 8-bit move as the source */
3433
3434 emit_mir_instruction(ctx, imov_8);
3435 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3436
3437 emit_mir_instruction(ctx, imov_8);
3438 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3439 }
3440
3441 static midgard_block *
3442 emit_block(compiler_context *ctx, nir_block *block)
3443 {
3444 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3445 list_addtail(&this_block->link, &ctx->blocks);
3446
3447 this_block->is_scheduled = false;
3448 ++ctx->block_count;
3449
3450 ctx->texture_index[0] = -1;
3451 ctx->texture_index[1] = -1;
3452
3453 /* Add us as a successor to the block we are following */
3454 if (ctx->current_block)
3455 midgard_block_add_successor(ctx->current_block, this_block);
3456
3457 /* Set up current block */
3458 list_inithead(&this_block->instructions);
3459 ctx->current_block = this_block;
3460
3461 nir_foreach_instr(instr, block) {
3462 emit_instr(ctx, instr);
3463 ++ctx->instruction_count;
3464 }
3465
3466 inline_alu_constants(ctx);
3467 embedded_to_inline_constant(ctx);
3468
3469 /* Perform heavylifting for aliasing */
3470 actualise_ssa_to_alias(ctx);
3471
3472 midgard_emit_store(ctx, this_block);
3473 midgard_pair_load_store(ctx, this_block);
3474
3475 /* Append fragment shader epilogue (value writeout) */
3476 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3477 if (block == nir_impl_last_block(ctx->func->impl)) {
3478 if (ctx->is_blend)
3479 emit_blend_epilogue(ctx);
3480 else
3481 emit_fragment_epilogue(ctx);
3482 }
3483 }
3484
3485 if (block == nir_start_block(ctx->func->impl))
3486 ctx->initial_block = this_block;
3487
3488 if (block == nir_impl_last_block(ctx->func->impl))
3489 ctx->final_block = this_block;
3490
3491 /* Allow the next control flow to access us retroactively, for
3492 * branching etc */
3493 ctx->current_block = this_block;
3494
3495 /* Document the fallthrough chain */
3496 ctx->previous_source_block = this_block;
3497
3498 return this_block;
3499 }
3500
3501 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3502
3503 static void
3504 emit_if(struct compiler_context *ctx, nir_if *nif)
3505 {
3506 /* Conditional branches expect the condition in r31.w; emit a move for
3507 * that in the _previous_ block (which is the current block). */
3508 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3509
3510 /* Speculatively emit the branch, but we can't fill it in until later */
3511 EMIT(branch, true, true);
3512 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3513
3514 /* Emit the two subblocks */
3515 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3516
3517 /* Emit a jump from the end of the then block to the end of the else */
3518 EMIT(branch, false, false);
3519 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3520
3521 /* Emit second block, and check if it's empty */
3522
3523 int else_idx = ctx->block_count;
3524 int count_in = ctx->instruction_count;
3525 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3526 int after_else_idx = ctx->block_count;
3527
3528 /* Now that we have the subblocks emitted, fix up the branches */
3529
3530 assert(then_block);
3531 assert(else_block);
3532
3533 if (ctx->instruction_count == count_in) {
3534 /* The else block is empty, so don't emit an exit jump */
3535 mir_remove_instruction(then_exit);
3536 then_branch->branch.target_block = after_else_idx;
3537 } else {
3538 then_branch->branch.target_block = else_idx;
3539 then_exit->branch.target_block = after_else_idx;
3540 }
3541 }
3542
3543 static void
3544 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3545 {
3546 /* Remember where we are */
3547 midgard_block *start_block = ctx->current_block;
3548
3549 /* Allocate a loop number, growing the current inner loop depth */
3550 int loop_idx = ++ctx->current_loop_depth;
3551
3552 /* Get index from before the body so we can loop back later */
3553 int start_idx = ctx->block_count;
3554
3555 /* Emit the body itself */
3556 emit_cf_list(ctx, &nloop->body);
3557
3558 /* Branch back to loop back */
3559 struct midgard_instruction br_back = v_branch(false, false);
3560 br_back.branch.target_block = start_idx;
3561 emit_mir_instruction(ctx, br_back);
3562
3563 /* Mark down that branch in the graph. Note that we're really branching
3564 * to the block *after* we started in. TODO: Why doesn't the branch
3565 * itself have an off-by-one then...? */
3566 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3567
3568 /* Find the index of the block about to follow us (note: we don't add
3569 * one; blocks are 0-indexed so we get a fencepost problem) */
3570 int break_block_idx = ctx->block_count;
3571
3572 /* Fix up the break statements we emitted to point to the right place,
3573 * now that we can allocate a block number for them */
3574
3575 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3576 mir_foreach_instr_in_block(block, ins) {
3577 if (ins->type != TAG_ALU_4) continue;
3578 if (!ins->compact_branch) continue;
3579 if (ins->prepacked_branch) continue;
3580
3581 /* We found a branch -- check the type to see if we need to do anything */
3582 if (ins->branch.target_type != TARGET_BREAK) continue;
3583
3584 /* It's a break! Check if it's our break */
3585 if (ins->branch.target_break != loop_idx) continue;
3586
3587 /* Okay, cool, we're breaking out of this loop.
3588 * Rewrite from a break to a goto */
3589
3590 ins->branch.target_type = TARGET_GOTO;
3591 ins->branch.target_block = break_block_idx;
3592 }
3593 }
3594
3595 /* Now that we've finished emitting the loop, free up the depth again
3596 * so we play nice with recursion amid nested loops */
3597 --ctx->current_loop_depth;
3598 }
3599
3600 static midgard_block *
3601 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3602 {
3603 midgard_block *start_block = NULL;
3604
3605 foreach_list_typed(nir_cf_node, node, node, list) {
3606 switch (node->type) {
3607 case nir_cf_node_block: {
3608 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3609
3610 if (!start_block)
3611 start_block = block;
3612
3613 break;
3614 }
3615
3616 case nir_cf_node_if:
3617 emit_if(ctx, nir_cf_node_as_if(node));
3618 break;
3619
3620 case nir_cf_node_loop:
3621 emit_loop(ctx, nir_cf_node_as_loop(node));
3622 break;
3623
3624 case nir_cf_node_function:
3625 assert(0);
3626 break;
3627 }
3628 }
3629
3630 return start_block;
3631 }
3632
3633 /* Due to lookahead, we need to report the first tag executed in the command
3634 * stream and in branch targets. An initial block might be empty, so iterate
3635 * until we find one that 'works' */
3636
3637 static unsigned
3638 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3639 {
3640 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3641
3642 unsigned first_tag = 0;
3643
3644 do {
3645 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3646
3647 if (initial_bundle) {
3648 first_tag = initial_bundle->tag;
3649 break;
3650 }
3651
3652 /* Initial block is empty, try the next block */
3653 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3654 } while(initial_block != NULL);
3655
3656 assert(first_tag);
3657 return first_tag;
3658 }
3659
3660 int
3661 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3662 {
3663 struct util_dynarray *compiled = &program->compiled;
3664
3665 midgard_debug = debug_get_option_midgard_debug();
3666
3667 compiler_context ictx = {
3668 .nir = nir,
3669 .stage = nir->info.stage,
3670
3671 .is_blend = is_blend,
3672 .blend_constant_offset = -1,
3673
3674 .alpha_ref = program->alpha_ref
3675 };
3676
3677 compiler_context *ctx = &ictx;
3678
3679 /* TODO: Decide this at runtime */
3680 ctx->uniform_cutoff = 8;
3681
3682 /* Assign var locations early, so the epilogue can use them if necessary */
3683
3684 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3685 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3686 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3687
3688 /* Initialize at a global (not block) level hash tables */
3689
3690 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3691 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3692 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3693 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3694 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3695 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3696 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3697
3698 /* Record the varying mapping for the command stream's bookkeeping */
3699
3700 struct exec_list *varyings =
3701 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3702
3703 nir_foreach_variable(var, varyings) {
3704 unsigned loc = var->data.driver_location;
3705 unsigned sz = glsl_type_size(var->type, FALSE);
3706
3707 for (int c = 0; c < sz; ++c) {
3708 program->varyings[loc + c] = var->data.location;
3709 }
3710 }
3711
3712 /* Lower gl_Position pre-optimisation */
3713
3714 if (ctx->stage == MESA_SHADER_VERTEX)
3715 NIR_PASS_V(nir, nir_lower_viewport_transform);
3716
3717 NIR_PASS_V(nir, nir_lower_var_copies);
3718 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3719 NIR_PASS_V(nir, nir_split_var_copies);
3720 NIR_PASS_V(nir, nir_lower_var_copies);
3721 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3722 NIR_PASS_V(nir, nir_lower_var_copies);
3723 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3724
3725 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3726
3727 /* Optimisation passes */
3728
3729 optimise_nir(nir);
3730
3731 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3732 nir_print_shader(nir, stdout);
3733 }
3734
3735 /* Assign sysvals and counts, now that we're sure
3736 * (post-optimisation) */
3737
3738 midgard_nir_assign_sysvals(ctx, nir);
3739
3740 program->uniform_count = nir->num_uniforms;
3741 program->sysval_count = ctx->sysval_count;
3742 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3743
3744 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3745 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3746
3747 nir_foreach_function(func, nir) {
3748 if (!func->impl)
3749 continue;
3750
3751 list_inithead(&ctx->blocks);
3752 ctx->block_count = 0;
3753 ctx->func = func;
3754
3755 emit_cf_list(ctx, &func->impl->body);
3756 emit_block(ctx, func->impl->end_block);
3757
3758 break; /* TODO: Multi-function shaders */
3759 }
3760
3761 util_dynarray_init(compiled, NULL);
3762
3763 /* MIR-level optimizations */
3764
3765 bool progress = false;
3766
3767 do {
3768 progress = false;
3769
3770 mir_foreach_block(ctx, block) {
3771 progress |= midgard_opt_copy_prop(ctx, block);
3772 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3773 }
3774 } while (progress);
3775
3776 /* Schedule! */
3777 schedule_program(ctx);
3778
3779 /* Now that all the bundles are scheduled and we can calculate block
3780 * sizes, emit actual branch instructions rather than placeholders */
3781
3782 int br_block_idx = 0;
3783
3784 mir_foreach_block(ctx, block) {
3785 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3786 for (int c = 0; c < bundle->instruction_count; ++c) {
3787 midgard_instruction *ins = &bundle->instructions[c];
3788
3789 if (!midgard_is_branch_unit(ins->unit)) continue;
3790
3791 if (ins->prepacked_branch) continue;
3792
3793 /* Parse some basic branch info */
3794 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3795 bool is_conditional = ins->branch.conditional;
3796 bool is_inverted = ins->branch.invert_conditional;
3797 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3798
3799 /* Determine the block we're jumping to */
3800 int target_number = ins->branch.target_block;
3801
3802 /* Report the destination tag. Discards don't need this */
3803 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3804
3805 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3806 int quadword_offset = 0;
3807
3808 if (is_discard) {
3809 /* Jump to the end of the shader. We
3810 * need to include not only the
3811 * following blocks, but also the
3812 * contents of our current block (since
3813 * discard can come in the middle of
3814 * the block) */
3815
3816 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3817
3818 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3819 quadword_offset += quadword_size(bun->tag);
3820 }
3821
3822 mir_foreach_block_from(ctx, blk, b) {
3823 quadword_offset += b->quadword_count;
3824 }
3825
3826 } else if (target_number > br_block_idx) {
3827 /* Jump forward */
3828
3829 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3830 midgard_block *blk = mir_get_block(ctx, idx);
3831 assert(blk);
3832
3833 quadword_offset += blk->quadword_count;
3834 }
3835 } else {
3836 /* Jump backwards */
3837
3838 for (int idx = br_block_idx; idx >= target_number; --idx) {
3839 midgard_block *blk = mir_get_block(ctx, idx);
3840 assert(blk);
3841
3842 quadword_offset -= blk->quadword_count;
3843 }
3844 }
3845
3846 /* Unconditional extended branches (far jumps)
3847 * have issues, so we always use a conditional
3848 * branch, setting the condition to always for
3849 * unconditional. For compact unconditional
3850 * branches, cond isn't used so it doesn't
3851 * matter what we pick. */
3852
3853 midgard_condition cond =
3854 !is_conditional ? midgard_condition_always :
3855 is_inverted ? midgard_condition_false :
3856 midgard_condition_true;
3857
3858 midgard_jmp_writeout_op op =
3859 is_discard ? midgard_jmp_writeout_op_discard :
3860 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3861 midgard_jmp_writeout_op_branch_cond;
3862
3863 if (!is_compact) {
3864 midgard_branch_extended branch =
3865 midgard_create_branch_extended(
3866 cond, op,
3867 dest_tag,
3868 quadword_offset);
3869
3870 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3871 } else if (is_conditional || is_discard) {
3872 midgard_branch_cond branch = {
3873 .op = op,
3874 .dest_tag = dest_tag,
3875 .offset = quadword_offset,
3876 .cond = cond
3877 };
3878
3879 assert(branch.offset == quadword_offset);
3880
3881 memcpy(&ins->br_compact, &branch, sizeof(branch));
3882 } else {
3883 assert(op == midgard_jmp_writeout_op_branch_uncond);
3884
3885 midgard_branch_uncond branch = {
3886 .op = op,
3887 .dest_tag = dest_tag,
3888 .offset = quadword_offset,
3889 .unknown = 1
3890 };
3891
3892 assert(branch.offset == quadword_offset);
3893
3894 memcpy(&ins->br_compact, &branch, sizeof(branch));
3895 }
3896 }
3897 }
3898
3899 ++br_block_idx;
3900 }
3901
3902 /* Emit flat binary from the instruction arrays. Iterate each block in
3903 * sequence. Save instruction boundaries such that lookahead tags can
3904 * be assigned easily */
3905
3906 /* Cache _all_ bundles in source order for lookahead across failed branches */
3907
3908 int bundle_count = 0;
3909 mir_foreach_block(ctx, block) {
3910 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3911 }
3912 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3913 int bundle_idx = 0;
3914 mir_foreach_block(ctx, block) {
3915 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3916 source_order_bundles[bundle_idx++] = bundle;
3917 }
3918 }
3919
3920 int current_bundle = 0;
3921
3922 mir_foreach_block(ctx, block) {
3923 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3924 int lookahead = 1;
3925
3926 if (current_bundle + 1 < bundle_count) {
3927 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3928
3929 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3930 lookahead = 1;
3931 } else {
3932 lookahead = next;
3933 }
3934 }
3935
3936 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3937 ++current_bundle;
3938 }
3939
3940 /* TODO: Free deeper */
3941 //util_dynarray_fini(&block->instructions);
3942 }
3943
3944 free(source_order_bundles);
3945
3946 /* Report the very first tag executed */
3947 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3948
3949 /* Deal with off-by-one related to the fencepost problem */
3950 program->work_register_count = ctx->work_registers + 1;
3951
3952 program->can_discard = ctx->can_discard;
3953 program->uniform_cutoff = ctx->uniform_cutoff;
3954
3955 program->blend_patch_offset = ctx->blend_constant_offset;
3956
3957 if (midgard_debug & MIDGARD_DBG_SHADERS)
3958 disassemble_midgard(program->compiled.data, program->compiled.size);
3959
3960 return 0;
3961 }