panfrost/midgard: Track loop depth
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .abs = src->abs,
258 .negate = src->negate,
259 .rep_low = 0,
260 .rep_high = 0,
261 .half = 0, /* TODO */
262 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
263 };
264
265 return alu_src;
266 }
267
268 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
269
270 static midgard_instruction
271 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
272 {
273 midgard_instruction ins = {
274 .type = TAG_ALU_4,
275 .ssa_args = {
276 .src0 = SSA_UNUSED_1,
277 .src1 = src,
278 .dest = dest,
279 },
280 .alu = {
281 .op = midgard_alu_op_fmov,
282 .reg_mode = midgard_reg_mode_full,
283 .dest_override = midgard_dest_override_none,
284 .mask = 0xFF,
285 .src1 = vector_alu_srco_unsigned(zero_alu_src),
286 .src2 = vector_alu_srco_unsigned(mod)
287 },
288 };
289
290 return ins;
291 }
292
293 /* load/store instructions have both 32-bit and 16-bit variants, depending on
294 * whether we are using vectors composed of highp or mediump. At the moment, we
295 * don't support half-floats -- this requires changes in other parts of the
296 * compiler -- therefore the 16-bit versions are commented out. */
297
298 //M_LOAD(load_attr_16);
299 M_LOAD(load_attr_32);
300 //M_LOAD(load_vary_16);
301 M_LOAD(load_vary_32);
302 //M_LOAD(load_uniform_16);
303 M_LOAD(load_uniform_32);
304 M_LOAD(load_color_buffer_8);
305 //M_STORE(store_vary_16);
306 M_STORE(store_vary_32);
307 M_STORE(store_cubemap_coords);
308
309 static midgard_instruction
310 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
311 {
312 midgard_branch_cond branch = {
313 .op = op,
314 .dest_tag = tag,
315 .offset = offset,
316 .cond = cond
317 };
318
319 uint16_t compact;
320 memcpy(&compact, &branch, sizeof(branch));
321
322 midgard_instruction ins = {
323 .type = TAG_ALU_4,
324 .unit = ALU_ENAB_BR_COMPACT,
325 .prepacked_branch = true,
326 .compact_branch = true,
327 .br_compact = compact
328 };
329
330 if (op == midgard_jmp_writeout_op_writeout)
331 ins.writeout = true;
332
333 return ins;
334 }
335
336 static midgard_instruction
337 v_branch(bool conditional, bool invert)
338 {
339 midgard_instruction ins = {
340 .type = TAG_ALU_4,
341 .unit = ALU_ENAB_BRANCH,
342 .compact_branch = true,
343 .branch = {
344 .conditional = conditional,
345 .invert_conditional = invert
346 }
347 };
348
349 return ins;
350 }
351
352 static midgard_branch_extended
353 midgard_create_branch_extended( midgard_condition cond,
354 midgard_jmp_writeout_op op,
355 unsigned dest_tag,
356 signed quadword_offset)
357 {
358 /* For unclear reasons, the condition code is repeated 8 times */
359 uint16_t duplicated_cond =
360 (cond << 14) |
361 (cond << 12) |
362 (cond << 10) |
363 (cond << 8) |
364 (cond << 6) |
365 (cond << 4) |
366 (cond << 2) |
367 (cond << 0);
368
369 midgard_branch_extended branch = {
370 .op = op,
371 .dest_tag = dest_tag,
372 .offset = quadword_offset,
373 .cond = duplicated_cond
374 };
375
376 return branch;
377 }
378
379 typedef struct midgard_bundle {
380 /* Tag for the overall bundle */
381 int tag;
382
383 /* Instructions contained by the bundle */
384 int instruction_count;
385 midgard_instruction instructions[5];
386
387 /* Bundle-wide ALU configuration */
388 int padding;
389 int control;
390 bool has_embedded_constants;
391 float constants[4];
392 bool has_blend_constant;
393
394 uint16_t register_words[8];
395 int register_words_count;
396
397 uint64_t body_words[8];
398 size_t body_size[8];
399 int body_words_count;
400 } midgard_bundle;
401
402 typedef struct compiler_context {
403 nir_shader *nir;
404 gl_shader_stage stage;
405
406 /* Is internally a blend shader? Depends on stage == FRAGMENT */
407 bool is_blend;
408
409 /* Tracking for blend constant patching */
410 int blend_constant_number;
411 int blend_constant_offset;
412
413 /* Current NIR function */
414 nir_function *func;
415
416 /* Unordered list of midgard_blocks */
417 int block_count;
418 struct list_head blocks;
419
420 midgard_block *initial_block;
421 midgard_block *previous_source_block;
422 midgard_block *final_block;
423
424 /* List of midgard_instructions emitted for the current block */
425 midgard_block *current_block;
426
427 /* The current "depth" of the loop, for disambiguating breaks/continues
428 * when using nested loops */
429 int current_loop_depth;
430
431 /* Constants which have been loaded, for later inlining */
432 struct hash_table_u64 *ssa_constants;
433
434 /* SSA indices to be outputted to corresponding varying offset */
435 struct hash_table_u64 *ssa_varyings;
436
437 /* SSA values / registers which have been aliased. Naively, these
438 * demand a fmov output; instead, we alias them in a later pass to
439 * avoid the wasted op.
440 *
441 * A note on encoding: to avoid dynamic memory management here, rather
442 * than ampping to a pointer, we map to the source index; the key
443 * itself is just the destination index. */
444
445 struct hash_table_u64 *ssa_to_alias;
446 struct set *leftover_ssa_to_alias;
447
448 /* Actual SSA-to-register for RA */
449 struct hash_table_u64 *ssa_to_register;
450
451 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
452 struct hash_table_u64 *hash_to_temp;
453 int temp_count;
454 int max_hash;
455
456 /* Just the count of the max register used. Higher count => higher
457 * register pressure */
458 int work_registers;
459
460 /* Used for cont/last hinting. Increase when a tex op is added.
461 * Decrease when a tex op is removed. */
462 int texture_op_count;
463
464 /* Mapping of texture register -> SSA index for unaliasing */
465 int texture_index[2];
466
467 /* If any path hits a discard instruction */
468 bool can_discard;
469
470 /* The number of uniforms allowable for the fast path */
471 int uniform_cutoff;
472
473 /* Count of instructions emitted from NIR overall, across all blocks */
474 int instruction_count;
475
476 /* Alpha ref value passed in */
477 float alpha_ref;
478
479 /* The index corresponding to the fragment output */
480 unsigned fragment_output;
481
482 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
483 unsigned sysvals[MAX_SYSVAL_COUNT];
484 unsigned sysval_count;
485 struct hash_table_u64 *sysval_to_id;
486 } compiler_context;
487
488 /* Append instruction to end of current block */
489
490 static midgard_instruction *
491 mir_upload_ins(struct midgard_instruction ins)
492 {
493 midgard_instruction *heap = malloc(sizeof(ins));
494 memcpy(heap, &ins, sizeof(ins));
495 return heap;
496 }
497
498 static void
499 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
500 {
501 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
502 }
503
504 static void
505 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
506 {
507 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
508 }
509
510 static void
511 mir_remove_instruction(struct midgard_instruction *ins)
512 {
513 list_del(&ins->link);
514 }
515
516 static midgard_instruction*
517 mir_prev_op(struct midgard_instruction *ins)
518 {
519 return list_last_entry(&(ins->link), midgard_instruction, link);
520 }
521
522 static midgard_instruction*
523 mir_next_op(struct midgard_instruction *ins)
524 {
525 return list_first_entry(&(ins->link), midgard_instruction, link);
526 }
527
528 static midgard_block *
529 mir_next_block(struct midgard_block *blk)
530 {
531 return list_first_entry(&(blk->link), midgard_block, link);
532 }
533
534
535 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
536 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
537
538 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
539 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
540 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
541 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
542 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
543 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
544
545
546 static midgard_instruction *
547 mir_last_in_block(struct midgard_block *block)
548 {
549 return list_last_entry(&block->instructions, struct midgard_instruction, link);
550 }
551
552 static midgard_block *
553 mir_get_block(compiler_context *ctx, int idx)
554 {
555 struct list_head *lst = &ctx->blocks;
556
557 while ((idx--) + 1)
558 lst = lst->next;
559
560 return (struct midgard_block *) lst;
561 }
562
563 /* Pretty printer for internal Midgard IR */
564
565 static void
566 print_mir_source(int source)
567 {
568 if (source >= SSA_FIXED_MINIMUM) {
569 /* Specific register */
570 int reg = SSA_REG_FROM_FIXED(source);
571
572 /* TODO: Moving threshold */
573 if (reg > 16 && reg < 24)
574 printf("u%d", 23 - reg);
575 else
576 printf("r%d", reg);
577 } else {
578 printf("%d", source);
579 }
580 }
581
582 static void
583 print_mir_instruction(midgard_instruction *ins)
584 {
585 printf("\t");
586
587 switch (ins->type) {
588 case TAG_ALU_4: {
589 midgard_alu_op op = ins->alu.op;
590 const char *name = alu_opcode_names[op];
591
592 if (ins->unit)
593 printf("%d.", ins->unit);
594
595 printf("%s", name ? name : "??");
596 break;
597 }
598
599 case TAG_LOAD_STORE_4: {
600 midgard_load_store_op op = ins->load_store.op;
601 const char *name = load_store_opcode_names[op];
602
603 assert(name);
604 printf("%s", name);
605 break;
606 }
607
608 case TAG_TEXTURE_4: {
609 printf("texture");
610 break;
611 }
612
613 default:
614 assert(0);
615 }
616
617 ssa_args *args = &ins->ssa_args;
618
619 printf(" %d, ", args->dest);
620
621 print_mir_source(args->src0);
622 printf(", ");
623
624 if (args->inline_constant)
625 printf("#%d", ins->inline_constant);
626 else
627 print_mir_source(args->src1);
628
629 if (ins->has_constants)
630 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
631
632 printf("\n");
633 }
634
635 static void
636 print_mir_block(midgard_block *block)
637 {
638 printf("{\n");
639
640 mir_foreach_instr_in_block(block, ins) {
641 print_mir_instruction(ins);
642 }
643
644 printf("}\n");
645 }
646
647 static void
648 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
649 {
650 ins->has_constants = true;
651 memcpy(&ins->constants, constants, 16);
652
653 /* If this is the special blend constant, mark this instruction */
654
655 if (ctx->is_blend && ctx->blend_constant_number == name)
656 ins->has_blend_constant = true;
657 }
658
659 static int
660 glsl_type_size(const struct glsl_type *type, bool bindless)
661 {
662 return glsl_count_attribute_slots(type, false);
663 }
664
665 /* Lower fdot2 to a vector multiplication followed by channel addition */
666 static void
667 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
668 {
669 if (alu->op != nir_op_fdot2)
670 return;
671
672 b->cursor = nir_before_instr(&alu->instr);
673
674 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
675 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
676
677 nir_ssa_def *product = nir_fmul(b, src0, src1);
678
679 nir_ssa_def *sum = nir_fadd(b,
680 nir_channel(b, product, 0),
681 nir_channel(b, product, 1));
682
683 /* Replace the fdot2 with this sum */
684 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
685 }
686
687 static int
688 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
689 {
690 switch (instr->intrinsic) {
691 case nir_intrinsic_load_viewport_scale:
692 return PAN_SYSVAL_VIEWPORT_SCALE;
693 case nir_intrinsic_load_viewport_offset:
694 return PAN_SYSVAL_VIEWPORT_OFFSET;
695 default:
696 return -1;
697 }
698 }
699
700 static void
701 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
702 {
703 int sysval = -1;
704
705 if (instr->type == nir_instr_type_intrinsic) {
706 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
707 sysval = midgard_nir_sysval_for_intrinsic(intr);
708 }
709
710 if (sysval < 0)
711 return;
712
713 /* We have a sysval load; check if it's already been assigned */
714
715 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
716 return;
717
718 /* It hasn't -- so assign it now! */
719
720 unsigned id = ctx->sysval_count++;
721 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
722 ctx->sysvals[id] = sysval;
723 }
724
725 static void
726 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
727 {
728 ctx->sysval_count = 0;
729
730 nir_foreach_function(function, shader) {
731 if (!function->impl) continue;
732
733 nir_foreach_block(block, function->impl) {
734 nir_foreach_instr_safe(instr, block) {
735 midgard_nir_assign_sysval_body(ctx, instr);
736 }
737 }
738 }
739 }
740
741 static bool
742 midgard_nir_lower_fdot2(nir_shader *shader)
743 {
744 bool progress = false;
745
746 nir_foreach_function(function, shader) {
747 if (!function->impl) continue;
748
749 nir_builder _b;
750 nir_builder *b = &_b;
751 nir_builder_init(b, function->impl);
752
753 nir_foreach_block(block, function->impl) {
754 nir_foreach_instr_safe(instr, block) {
755 if (instr->type != nir_instr_type_alu) continue;
756
757 nir_alu_instr *alu = nir_instr_as_alu(instr);
758 midgard_nir_lower_fdot2_body(b, alu);
759
760 progress |= true;
761 }
762 }
763
764 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
765
766 }
767
768 return progress;
769 }
770
771 static void
772 optimise_nir(nir_shader *nir)
773 {
774 bool progress;
775
776 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
777 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
778
779 nir_lower_tex_options lower_tex_options = {
780 .lower_rect = true
781 };
782
783 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
784
785 do {
786 progress = false;
787
788 NIR_PASS(progress, nir, nir_lower_var_copies);
789 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
790
791 NIR_PASS(progress, nir, nir_copy_prop);
792 NIR_PASS(progress, nir, nir_opt_dce);
793 NIR_PASS(progress, nir, nir_opt_dead_cf);
794 NIR_PASS(progress, nir, nir_opt_cse);
795 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
796 NIR_PASS(progress, nir, nir_opt_algebraic);
797 NIR_PASS(progress, nir, nir_opt_constant_folding);
798 NIR_PASS(progress, nir, nir_opt_undef);
799 NIR_PASS(progress, nir, nir_opt_loop_unroll,
800 nir_var_shader_in |
801 nir_var_shader_out |
802 nir_var_function_temp);
803
804 /* TODO: Enable vectorize when merged upstream */
805 // NIR_PASS(progress, nir, nir_opt_vectorize);
806 } while (progress);
807
808 /* Must be run at the end to prevent creation of fsin/fcos ops */
809 NIR_PASS(progress, nir, midgard_nir_scale_trig);
810
811 do {
812 progress = false;
813
814 NIR_PASS(progress, nir, nir_opt_dce);
815 NIR_PASS(progress, nir, nir_opt_algebraic);
816 NIR_PASS(progress, nir, nir_opt_constant_folding);
817 NIR_PASS(progress, nir, nir_copy_prop);
818 } while (progress);
819
820 NIR_PASS(progress, nir, nir_opt_algebraic_late);
821 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
822
823 /* Lower mods for float ops only. Integer ops don't support modifiers
824 * (saturate doesn't make sense on integers, neg/abs require dedicated
825 * instructions) */
826
827 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
828 NIR_PASS(progress, nir, nir_copy_prop);
829 NIR_PASS(progress, nir, nir_opt_dce);
830
831 /* We implement booleans as 32-bit 0/~0 */
832 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
833
834 /* Take us out of SSA */
835 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
836 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
837
838 /* We are a vector architecture; write combine where possible */
839 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
840 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
841
842 NIR_PASS(progress, nir, nir_opt_dce);
843 }
844
845 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
846 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
847 * r0. See the comments in compiler_context */
848
849 static void
850 alias_ssa(compiler_context *ctx, int dest, int src)
851 {
852 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
853 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
854 }
855
856 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
857
858 static void
859 unalias_ssa(compiler_context *ctx, int dest)
860 {
861 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
862 /* TODO: Remove from leftover or no? */
863 }
864
865 static void
866 midgard_pin_output(compiler_context *ctx, int index, int reg)
867 {
868 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
869 }
870
871 static bool
872 midgard_is_pinned(compiler_context *ctx, int index)
873 {
874 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
875 }
876
877 /* Do not actually emit a load; instead, cache the constant for inlining */
878
879 static void
880 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
881 {
882 nir_ssa_def def = instr->def;
883
884 float *v = ralloc_array(NULL, float, 4);
885 nir_const_load_to_arr(v, instr, f32);
886 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
887 }
888
889 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
890 * do the inverse) */
891
892 static unsigned
893 expand_writemask(unsigned mask)
894 {
895 unsigned o = 0;
896
897 for (int i = 0; i < 4; ++i)
898 if (mask & (1 << i))
899 o |= (3 << (2 * i));
900
901 return o;
902 }
903
904 static unsigned
905 squeeze_writemask(unsigned mask)
906 {
907 unsigned o = 0;
908
909 for (int i = 0; i < 4; ++i)
910 if (mask & (3 << (2 * i)))
911 o |= (1 << i);
912
913 return o;
914
915 }
916
917 /* Determines effective writemask, taking quirks and expansion into account */
918 static unsigned
919 effective_writemask(midgard_vector_alu *alu)
920 {
921 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
922 * sense) */
923
924 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
925
926 /* If there is a fixed channel count, construct the appropriate mask */
927
928 if (channel_count)
929 return (1 << channel_count) - 1;
930
931 /* Otherwise, just squeeze the existing mask */
932 return squeeze_writemask(alu->mask);
933 }
934
935 static unsigned
936 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
937 {
938 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
939 return hash;
940
941 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
942
943 if (temp)
944 return temp - 1;
945
946 /* If no temp is find, allocate one */
947 temp = ctx->temp_count++;
948 ctx->max_hash = MAX2(ctx->max_hash, hash);
949
950 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
951
952 return temp;
953 }
954
955 static unsigned
956 nir_src_index(compiler_context *ctx, nir_src *src)
957 {
958 if (src->is_ssa)
959 return src->ssa->index;
960 else {
961 assert(!src->reg.indirect);
962 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
963 }
964 }
965
966 static unsigned
967 nir_dest_index(compiler_context *ctx, nir_dest *dst)
968 {
969 if (dst->is_ssa)
970 return dst->ssa.index;
971 else {
972 assert(!dst->reg.indirect);
973 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
974 }
975 }
976
977 static unsigned
978 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
979 {
980 return nir_src_index(ctx, &src->src);
981 }
982
983 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
984 * a conditional test) into that register */
985
986 static void
987 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
988 {
989 int condition = nir_src_index(ctx, src);
990
991 /* Source to swizzle the desired component into w */
992
993 const midgard_vector_alu_src alu_src = {
994 .swizzle = SWIZZLE(component, component, component, component),
995 };
996
997 /* There is no boolean move instruction. Instead, we simulate a move by
998 * ANDing the condition with itself to get it into r31.w */
999
1000 midgard_instruction ins = {
1001 .type = TAG_ALU_4,
1002 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1003 .ssa_args = {
1004 .src0 = condition,
1005 .src1 = condition,
1006 .dest = SSA_FIXED_REGISTER(31),
1007 },
1008 .alu = {
1009 .op = midgard_alu_op_iand,
1010 .reg_mode = midgard_reg_mode_full,
1011 .dest_override = midgard_dest_override_none,
1012 .mask = (0x3 << 6), /* w */
1013 .src1 = vector_alu_srco_unsigned(alu_src),
1014 .src2 = vector_alu_srco_unsigned(alu_src)
1015 },
1016 };
1017
1018 emit_mir_instruction(ctx, ins);
1019 }
1020
1021 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1022 * pinning to eliminate this move in all known cases */
1023
1024 static void
1025 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1026 {
1027 int offset = nir_src_index(ctx, src);
1028
1029 midgard_instruction ins = {
1030 .type = TAG_ALU_4,
1031 .ssa_args = {
1032 .src0 = SSA_UNUSED_1,
1033 .src1 = offset,
1034 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1035 },
1036 .alu = {
1037 .op = midgard_alu_op_imov,
1038 .reg_mode = midgard_reg_mode_full,
1039 .dest_override = midgard_dest_override_none,
1040 .mask = (0x3 << 6), /* w */
1041 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1042 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1043 },
1044 };
1045
1046 emit_mir_instruction(ctx, ins);
1047 }
1048
1049 #define ALU_CASE(nir, _op) \
1050 case nir_op_##nir: \
1051 op = midgard_alu_op_##_op; \
1052 break;
1053
1054 static void
1055 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1056 {
1057 bool is_ssa = instr->dest.dest.is_ssa;
1058
1059 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1060 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1061 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1062
1063 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1064 * supported. A few do not and are commented for now. Also, there are a
1065 * number of NIR ops which Midgard does not support and need to be
1066 * lowered, also TODO. This switch block emits the opcode and calling
1067 * convention of the Midgard instruction; actual packing is done in
1068 * emit_alu below */
1069
1070 unsigned op;
1071
1072 switch (instr->op) {
1073 ALU_CASE(fadd, fadd);
1074 ALU_CASE(fmul, fmul);
1075 ALU_CASE(fmin, fmin);
1076 ALU_CASE(fmax, fmax);
1077 ALU_CASE(imin, imin);
1078 ALU_CASE(imax, imax);
1079 ALU_CASE(umin, umin);
1080 ALU_CASE(umax, umax);
1081 ALU_CASE(fmov, fmov);
1082 ALU_CASE(ffloor, ffloor);
1083 ALU_CASE(fround_even, froundeven);
1084 ALU_CASE(ftrunc, ftrunc);
1085 ALU_CASE(fceil, fceil);
1086 ALU_CASE(fdot3, fdot3);
1087 ALU_CASE(fdot4, fdot4);
1088 ALU_CASE(iadd, iadd);
1089 ALU_CASE(isub, isub);
1090 ALU_CASE(imul, imul);
1091 ALU_CASE(iabs, iabs);
1092
1093 /* XXX: Use fmov, not imov, since imov was causing major
1094 * issues with texture precision? XXX research */
1095 ALU_CASE(imov, imov);
1096
1097 ALU_CASE(feq32, feq);
1098 ALU_CASE(fne32, fne);
1099 ALU_CASE(flt32, flt);
1100 ALU_CASE(ieq32, ieq);
1101 ALU_CASE(ine32, ine);
1102 ALU_CASE(ilt32, ilt);
1103 ALU_CASE(ult32, ult);
1104
1105 /* We don't have a native b2f32 instruction. Instead, like many
1106 * GPUs, we exploit booleans as 0/~0 for false/true, and
1107 * correspondingly AND
1108 * by 1.0 to do the type conversion. For the moment, prime us
1109 * to emit:
1110 *
1111 * iand [whatever], #0
1112 *
1113 * At the end of emit_alu (as MIR), we'll fix-up the constant
1114 */
1115
1116 ALU_CASE(b2f32, iand);
1117 ALU_CASE(b2i32, iand);
1118
1119 /* Likewise, we don't have a dedicated f2b32 instruction, but
1120 * we can do a "not equal to 0.0" test. */
1121
1122 ALU_CASE(f2b32, fne);
1123 ALU_CASE(i2b32, ine);
1124
1125 ALU_CASE(frcp, frcp);
1126 ALU_CASE(frsq, frsqrt);
1127 ALU_CASE(fsqrt, fsqrt);
1128 ALU_CASE(fexp2, fexp2);
1129 ALU_CASE(flog2, flog2);
1130
1131 ALU_CASE(f2i32, f2i);
1132 ALU_CASE(f2u32, f2u);
1133 ALU_CASE(i2f32, i2f);
1134 ALU_CASE(u2f32, u2f);
1135
1136 ALU_CASE(fsin, fsin);
1137 ALU_CASE(fcos, fcos);
1138
1139 ALU_CASE(iand, iand);
1140 ALU_CASE(ior, ior);
1141 ALU_CASE(ixor, ixor);
1142 ALU_CASE(inot, inot);
1143 ALU_CASE(ishl, ishl);
1144 ALU_CASE(ishr, iasr);
1145 ALU_CASE(ushr, ilsr);
1146
1147 ALU_CASE(b32all_fequal2, fball_eq);
1148 ALU_CASE(b32all_fequal3, fball_eq);
1149 ALU_CASE(b32all_fequal4, fball_eq);
1150
1151 ALU_CASE(b32any_fnequal2, fbany_neq);
1152 ALU_CASE(b32any_fnequal3, fbany_neq);
1153 ALU_CASE(b32any_fnequal4, fbany_neq);
1154
1155 ALU_CASE(b32all_iequal2, iball_eq);
1156 ALU_CASE(b32all_iequal3, iball_eq);
1157 ALU_CASE(b32all_iequal4, iball_eq);
1158
1159 ALU_CASE(b32any_inequal2, ibany_neq);
1160 ALU_CASE(b32any_inequal3, ibany_neq);
1161 ALU_CASE(b32any_inequal4, ibany_neq);
1162
1163 /* For greater-or-equal, we lower to less-or-equal and flip the
1164 * arguments */
1165
1166 case nir_op_fge:
1167 case nir_op_fge32:
1168 case nir_op_ige32:
1169 case nir_op_uge32: {
1170 op =
1171 instr->op == nir_op_fge ? midgard_alu_op_fle :
1172 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1173 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1174 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1175 0;
1176
1177 /* Swap via temporary */
1178 nir_alu_src temp = instr->src[1];
1179 instr->src[1] = instr->src[0];
1180 instr->src[0] = temp;
1181
1182 break;
1183 }
1184
1185 case nir_op_b32csel: {
1186 op = midgard_alu_op_fcsel;
1187
1188 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1189 nr_inputs = 2;
1190
1191 /* Figure out which component the condition is in */
1192
1193 unsigned comp = instr->src[0].swizzle[0];
1194
1195 /* Make sure NIR isn't throwing a mixed condition at us */
1196
1197 for (unsigned c = 1; c < nr_components; ++c)
1198 assert(instr->src[0].swizzle[c] == comp);
1199
1200 /* Emit the condition into r31.w */
1201 emit_condition(ctx, &instr->src[0].src, false, comp);
1202
1203 /* The condition is the first argument; move the other
1204 * arguments up one to be a binary instruction for
1205 * Midgard */
1206
1207 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1208 break;
1209 }
1210
1211 default:
1212 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1213 assert(0);
1214 return;
1215 }
1216
1217 /* Fetch unit, quirks, etc information */
1218 unsigned opcode_props = alu_opcode_props[op];
1219 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1220
1221 /* Initialise fields common between scalar/vector instructions */
1222 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1223
1224 /* src0 will always exist afaik, but src1 will not for 1-argument
1225 * instructions. The latter can only be fetched if the instruction
1226 * needs it, or else we may segfault. */
1227
1228 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1229 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1230
1231 /* Rather than use the instruction generation helpers, we do it
1232 * ourselves here to avoid the mess */
1233
1234 midgard_instruction ins = {
1235 .type = TAG_ALU_4,
1236 .ssa_args = {
1237 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1238 .src1 = quirk_flipped_r24 ? src0 : src1,
1239 .dest = dest,
1240 }
1241 };
1242
1243 nir_alu_src *nirmods[2] = { NULL };
1244
1245 if (nr_inputs == 2) {
1246 nirmods[0] = &instr->src[0];
1247 nirmods[1] = &instr->src[1];
1248 } else if (nr_inputs == 1) {
1249 nirmods[quirk_flipped_r24] = &instr->src[0];
1250 } else {
1251 assert(0);
1252 }
1253
1254 midgard_vector_alu alu = {
1255 .op = op,
1256 .reg_mode = midgard_reg_mode_full,
1257 .dest_override = midgard_dest_override_none,
1258 .outmod = outmod,
1259
1260 /* Writemask only valid for non-SSA NIR */
1261 .mask = expand_writemask((1 << nr_components) - 1),
1262
1263 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1264 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1265 };
1266
1267 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1268
1269 if (!is_ssa)
1270 alu.mask &= expand_writemask(instr->dest.write_mask);
1271
1272 ins.alu = alu;
1273
1274 /* Late fixup for emulated instructions */
1275
1276 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1277 /* Presently, our second argument is an inline #0 constant.
1278 * Switch over to an embedded 1.0 constant (that can't fit
1279 * inline, since we're 32-bit, not 16-bit like the inline
1280 * constants) */
1281
1282 ins.ssa_args.inline_constant = false;
1283 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1284 ins.has_constants = true;
1285
1286 if (instr->op == nir_op_b2f32) {
1287 ins.constants[0] = 1.0f;
1288 } else {
1289 /* Type pun it into place */
1290 uint32_t one = 0x1;
1291 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1292 }
1293
1294 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1295 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1296 ins.ssa_args.inline_constant = false;
1297 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1298 ins.has_constants = true;
1299 ins.constants[0] = 0.0f;
1300 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1301 }
1302
1303 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1304 /* To avoid duplicating the lookup tables (probably), true LUT
1305 * instructions can only operate as if they were scalars. Lower
1306 * them here by changing the component. */
1307
1308 uint8_t original_swizzle[4];
1309 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1310
1311 for (int i = 0; i < nr_components; ++i) {
1312 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1313
1314 for (int j = 0; j < 4; ++j)
1315 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1316
1317 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1318 emit_mir_instruction(ctx, ins);
1319 }
1320 } else {
1321 emit_mir_instruction(ctx, ins);
1322 }
1323 }
1324
1325 #undef ALU_CASE
1326
1327 static void
1328 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1329 {
1330 /* TODO: half-floats */
1331
1332 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1333 /* Fast path: For the first 16 uniforms, direct accesses are
1334 * 0-cycle, since they're just a register fetch in the usual
1335 * case. So, we alias the registers while we're still in
1336 * SSA-space */
1337
1338 int reg_slot = 23 - offset;
1339 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1340 } else {
1341 /* Otherwise, read from the 'special' UBO to access
1342 * higher-indexed uniforms, at a performance cost. More
1343 * generally, we're emitting a UBO read instruction. */
1344
1345 midgard_instruction ins = m_load_uniform_32(dest, offset);
1346
1347 /* TODO: Don't split */
1348 ins.load_store.varying_parameters = (offset & 7) << 7;
1349 ins.load_store.address = offset >> 3;
1350
1351 if (indirect_offset) {
1352 emit_indirect_offset(ctx, indirect_offset);
1353 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1354 } else {
1355 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1356 }
1357
1358 emit_mir_instruction(ctx, ins);
1359 }
1360 }
1361
1362 static void
1363 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1364 {
1365 /* First, pull out the destination */
1366 unsigned dest = nir_dest_index(ctx, &instr->dest);
1367
1368 /* Now, figure out which uniform this is */
1369 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1370 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1371
1372 /* Sysvals are prefix uniforms */
1373 unsigned uniform = ((uintptr_t) val) - 1;
1374
1375 /* Emit the read itself -- this is never indirect */
1376 emit_uniform_read(ctx, dest, uniform, NULL);
1377 }
1378
1379 static void
1380 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1381 {
1382 unsigned offset, reg;
1383
1384 switch (instr->intrinsic) {
1385 case nir_intrinsic_discard_if:
1386 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1387
1388 /* fallthrough */
1389
1390 case nir_intrinsic_discard: {
1391 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1392 struct midgard_instruction discard = v_branch(conditional, false);
1393 discard.branch.target_type = TARGET_DISCARD;
1394 emit_mir_instruction(ctx, discard);
1395
1396 ctx->can_discard = true;
1397 break;
1398 }
1399
1400 case nir_intrinsic_load_uniform:
1401 case nir_intrinsic_load_input:
1402 offset = nir_intrinsic_base(instr);
1403
1404 bool direct = nir_src_is_const(instr->src[0]);
1405
1406 if (direct) {
1407 offset += nir_src_as_uint(instr->src[0]);
1408 }
1409
1410 reg = nir_dest_index(ctx, &instr->dest);
1411
1412 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1413 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1414 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1415 /* XXX: Half-floats? */
1416 /* TODO: swizzle, mask */
1417
1418 midgard_instruction ins = m_load_vary_32(reg, offset);
1419
1420 midgard_varying_parameter p = {
1421 .is_varying = 1,
1422 .interpolation = midgard_interp_default,
1423 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1424 };
1425
1426 unsigned u;
1427 memcpy(&u, &p, sizeof(p));
1428 ins.load_store.varying_parameters = u;
1429
1430 if (direct) {
1431 /* We have the offset totally ready */
1432 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1433 } else {
1434 /* We have it partially ready, but we need to
1435 * add in the dynamic index, moved to r27.w */
1436 emit_indirect_offset(ctx, &instr->src[0]);
1437 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1438 }
1439
1440 emit_mir_instruction(ctx, ins);
1441 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1442 /* Constant encoded as a pinned constant */
1443
1444 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1445 ins.has_constants = true;
1446 ins.has_blend_constant = true;
1447 emit_mir_instruction(ctx, ins);
1448 } else if (ctx->is_blend) {
1449 /* For blend shaders, a load might be
1450 * translated various ways depending on what
1451 * we're loading. Figure out how this is used */
1452
1453 nir_variable *out = NULL;
1454
1455 nir_foreach_variable(var, &ctx->nir->inputs) {
1456 int drvloc = var->data.driver_location;
1457
1458 if (nir_intrinsic_base(instr) == drvloc) {
1459 out = var;
1460 break;
1461 }
1462 }
1463
1464 assert(out);
1465
1466 if (out->data.location == VARYING_SLOT_COL0) {
1467 /* Source color preloaded to r0 */
1468
1469 midgard_pin_output(ctx, reg, 0);
1470 } else if (out->data.location == VARYING_SLOT_COL1) {
1471 /* Destination color must be read from framebuffer */
1472
1473 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1474 ins.load_store.swizzle = 0; /* xxxx */
1475
1476 /* Read each component sequentially */
1477
1478 for (int c = 0; c < 4; ++c) {
1479 ins.load_store.mask = (1 << c);
1480 ins.load_store.unknown = c;
1481 emit_mir_instruction(ctx, ins);
1482 }
1483
1484 /* vadd.u2f hr2, abs(hr2), #0 */
1485
1486 midgard_vector_alu_src alu_src = blank_alu_src;
1487 alu_src.abs = true;
1488 alu_src.half = true;
1489
1490 midgard_instruction u2f = {
1491 .type = TAG_ALU_4,
1492 .ssa_args = {
1493 .src0 = reg,
1494 .src1 = SSA_UNUSED_0,
1495 .dest = reg,
1496 .inline_constant = true
1497 },
1498 .alu = {
1499 .op = midgard_alu_op_u2f,
1500 .reg_mode = midgard_reg_mode_half,
1501 .dest_override = midgard_dest_override_none,
1502 .mask = 0xF,
1503 .src1 = vector_alu_srco_unsigned(alu_src),
1504 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1505 }
1506 };
1507
1508 emit_mir_instruction(ctx, u2f);
1509
1510 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1511
1512 alu_src.abs = false;
1513
1514 midgard_instruction fmul = {
1515 .type = TAG_ALU_4,
1516 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1517 .ssa_args = {
1518 .src0 = reg,
1519 .dest = reg,
1520 .src1 = SSA_UNUSED_0,
1521 .inline_constant = true
1522 },
1523 .alu = {
1524 .op = midgard_alu_op_fmul,
1525 .reg_mode = midgard_reg_mode_full,
1526 .dest_override = midgard_dest_override_none,
1527 .outmod = midgard_outmod_sat,
1528 .mask = 0xFF,
1529 .src1 = vector_alu_srco_unsigned(alu_src),
1530 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1531 }
1532 };
1533
1534 emit_mir_instruction(ctx, fmul);
1535 } else {
1536 DBG("Unknown input in blend shader\n");
1537 assert(0);
1538 }
1539 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1540 midgard_instruction ins = m_load_attr_32(reg, offset);
1541 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1542 ins.load_store.mask = (1 << instr->num_components) - 1;
1543 emit_mir_instruction(ctx, ins);
1544 } else {
1545 DBG("Unknown load\n");
1546 assert(0);
1547 }
1548
1549 break;
1550
1551 case nir_intrinsic_store_output:
1552 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1553
1554 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1555
1556 reg = nir_src_index(ctx, &instr->src[0]);
1557
1558 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1559 /* gl_FragColor is not emitted with load/store
1560 * instructions. Instead, it gets plonked into
1561 * r0 at the end of the shader and we do the
1562 * framebuffer writeout dance. TODO: Defer
1563 * writes */
1564
1565 midgard_pin_output(ctx, reg, 0);
1566
1567 /* Save the index we're writing to for later reference
1568 * in the epilogue */
1569
1570 ctx->fragment_output = reg;
1571 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1572 /* Varyings are written into one of two special
1573 * varying register, r26 or r27. The register itself is selected as the register
1574 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1575 *
1576 * Normally emitting fmov's is frowned upon,
1577 * but due to unique constraints of
1578 * REGISTER_VARYING, fmov emission + a
1579 * dedicated cleanup pass is the only way to
1580 * guarantee correctness when considering some
1581 * (common) edge cases XXX: FIXME */
1582
1583 /* If this varying corresponds to a constant (why?!),
1584 * emit that now since it won't get picked up by
1585 * hoisting (since there is no corresponding move
1586 * emitted otherwise) */
1587
1588 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1589
1590 if (constant_value) {
1591 /* Special case: emit the varying write
1592 * directly to r26 (looks funny in asm but it's
1593 * fine) and emit the store _now_. Possibly
1594 * slightly slower, but this is a really stupid
1595 * special case anyway (why on earth would you
1596 * have a constant varying? Your own fault for
1597 * slightly worse perf :P) */
1598
1599 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1600 attach_constants(ctx, &ins, constant_value, reg + 1);
1601 emit_mir_instruction(ctx, ins);
1602
1603 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1604 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1605 emit_mir_instruction(ctx, st);
1606 } else {
1607 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1608
1609 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1610 }
1611 } else {
1612 DBG("Unknown store\n");
1613 assert(0);
1614 }
1615
1616 break;
1617
1618 case nir_intrinsic_load_alpha_ref_float:
1619 assert(instr->dest.is_ssa);
1620
1621 float ref_value = ctx->alpha_ref;
1622
1623 float *v = ralloc_array(NULL, float, 4);
1624 memcpy(v, &ref_value, sizeof(float));
1625 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1626 break;
1627
1628 case nir_intrinsic_load_viewport_scale:
1629 case nir_intrinsic_load_viewport_offset:
1630 emit_sysval_read(ctx, instr);
1631 break;
1632
1633 default:
1634 printf ("Unhandled intrinsic\n");
1635 assert(0);
1636 break;
1637 }
1638 }
1639
1640 static unsigned
1641 midgard_tex_format(enum glsl_sampler_dim dim)
1642 {
1643 switch (dim) {
1644 case GLSL_SAMPLER_DIM_2D:
1645 case GLSL_SAMPLER_DIM_EXTERNAL:
1646 return TEXTURE_2D;
1647
1648 case GLSL_SAMPLER_DIM_3D:
1649 return TEXTURE_3D;
1650
1651 case GLSL_SAMPLER_DIM_CUBE:
1652 return TEXTURE_CUBE;
1653
1654 default:
1655 DBG("Unknown sampler dim type\n");
1656 assert(0);
1657 return 0;
1658 }
1659 }
1660
1661 static void
1662 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1663 {
1664 /* TODO */
1665 //assert (!instr->sampler);
1666 //assert (!instr->texture_array_size);
1667 assert (instr->op == nir_texop_tex);
1668
1669 /* Allocate registers via a round robin scheme to alternate between the two registers */
1670 int reg = ctx->texture_op_count & 1;
1671 int in_reg = reg, out_reg = reg;
1672
1673 /* Make room for the reg */
1674
1675 if (ctx->texture_index[reg] > -1)
1676 unalias_ssa(ctx, ctx->texture_index[reg]);
1677
1678 int texture_index = instr->texture_index;
1679 int sampler_index = texture_index;
1680
1681 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1682 switch (instr->src[i].src_type) {
1683 case nir_tex_src_coord: {
1684 int index = nir_src_index(ctx, &instr->src[i].src);
1685
1686 midgard_vector_alu_src alu_src = blank_alu_src;
1687
1688 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1689
1690 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1691 /* For cubemaps, we need to load coords into
1692 * special r27, and then use a special ld/st op
1693 * to copy into the texture register */
1694
1695 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1696
1697 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1698 emit_mir_instruction(ctx, move);
1699
1700 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1701 st.load_store.unknown = 0x24; /* XXX: What is this? */
1702 st.load_store.mask = 0x3; /* xy? */
1703 st.load_store.swizzle = alu_src.swizzle;
1704 emit_mir_instruction(ctx, st);
1705
1706 } else {
1707 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1708
1709 midgard_instruction ins = v_fmov(index, alu_src, reg);
1710 emit_mir_instruction(ctx, ins);
1711 }
1712
1713 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1714
1715 break;
1716 }
1717
1718 default: {
1719 DBG("Unknown source type\n");
1720 //assert(0);
1721 break;
1722 }
1723 }
1724 }
1725
1726 /* No helper to build texture words -- we do it all here */
1727 midgard_instruction ins = {
1728 .type = TAG_TEXTURE_4,
1729 .texture = {
1730 .op = TEXTURE_OP_NORMAL,
1731 .format = midgard_tex_format(instr->sampler_dim),
1732 .texture_handle = texture_index,
1733 .sampler_handle = sampler_index,
1734
1735 /* TODO: Don't force xyzw */
1736 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1737 .mask = 0xF,
1738
1739 /* TODO: half */
1740 //.in_reg_full = 1,
1741 .out_full = 1,
1742
1743 .filter = 1,
1744
1745 /* Always 1 */
1746 .unknown7 = 1,
1747
1748 /* Assume we can continue; hint it out later */
1749 .cont = 1,
1750 }
1751 };
1752
1753 /* Set registers to read and write from the same place */
1754 ins.texture.in_reg_select = in_reg;
1755 ins.texture.out_reg_select = out_reg;
1756
1757 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1758 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1759 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1760 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1761 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1762 } else {
1763 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1764 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1765 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1766 }
1767
1768 emit_mir_instruction(ctx, ins);
1769
1770 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1771
1772 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1773 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1774 ctx->texture_index[reg] = o_index;
1775
1776 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1777 emit_mir_instruction(ctx, ins2);
1778
1779 /* Used for .cont and .last hinting */
1780 ctx->texture_op_count++;
1781 }
1782
1783 static void
1784 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1785 {
1786 switch (instr->type) {
1787 case nir_jump_break: {
1788 /* Emit a branch out of the loop */
1789 struct midgard_instruction br = v_branch(false, false);
1790 br.branch.target_type = TARGET_BREAK;
1791 br.branch.target_break = ctx->current_loop_depth;
1792 emit_mir_instruction(ctx, br);
1793
1794 DBG("break..\n");
1795 break;
1796 }
1797
1798 default:
1799 DBG("Unknown jump type %d\n", instr->type);
1800 break;
1801 }
1802 }
1803
1804 static void
1805 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1806 {
1807 switch (instr->type) {
1808 case nir_instr_type_load_const:
1809 emit_load_const(ctx, nir_instr_as_load_const(instr));
1810 break;
1811
1812 case nir_instr_type_intrinsic:
1813 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1814 break;
1815
1816 case nir_instr_type_alu:
1817 emit_alu(ctx, nir_instr_as_alu(instr));
1818 break;
1819
1820 case nir_instr_type_tex:
1821 emit_tex(ctx, nir_instr_as_tex(instr));
1822 break;
1823
1824 case nir_instr_type_jump:
1825 emit_jump(ctx, nir_instr_as_jump(instr));
1826 break;
1827
1828 case nir_instr_type_ssa_undef:
1829 /* Spurious */
1830 break;
1831
1832 default:
1833 DBG("Unhandled instruction type\n");
1834 break;
1835 }
1836 }
1837
1838 /* Determine the actual hardware from the index based on the RA results or special values */
1839
1840 static int
1841 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1842 {
1843 if (reg >= SSA_FIXED_MINIMUM)
1844 return SSA_REG_FROM_FIXED(reg);
1845
1846 if (reg >= 0) {
1847 assert(reg < maxreg);
1848 int r = ra_get_node_reg(g, reg);
1849 ctx->work_registers = MAX2(ctx->work_registers, r);
1850 return r;
1851 }
1852
1853 switch (reg) {
1854 /* fmov style unused */
1855 case SSA_UNUSED_0:
1856 return REGISTER_UNUSED;
1857
1858 /* lut style unused */
1859 case SSA_UNUSED_1:
1860 return REGISTER_UNUSED;
1861
1862 default:
1863 DBG("Unknown SSA register alias %d\n", reg);
1864 assert(0);
1865 return 31;
1866 }
1867 }
1868
1869 static unsigned int
1870 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1871 {
1872 /* Choose the first available register to minimise reported register pressure */
1873
1874 for (int i = 0; i < 16; ++i) {
1875 if (BITSET_TEST(regs, i)) {
1876 return i;
1877 }
1878 }
1879
1880 assert(0);
1881 return 0;
1882 }
1883
1884 static bool
1885 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1886 {
1887 if (ins->ssa_args.src0 == src) return true;
1888 if (ins->ssa_args.src1 == src) return true;
1889
1890 return false;
1891 }
1892
1893 /* Determine if a variable is live in the successors of a block */
1894 static bool
1895 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1896 {
1897 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1898 midgard_block *succ = bl->successors[i];
1899
1900 /* If we already visited, the value we're seeking
1901 * isn't down this path (or we would have short
1902 * circuited */
1903
1904 if (succ->visited) continue;
1905
1906 /* Otherwise (it's visited *now*), check the block */
1907
1908 succ->visited = true;
1909
1910 mir_foreach_instr_in_block(succ, ins) {
1911 if (midgard_is_live_in_instr(ins, src))
1912 return true;
1913 }
1914
1915 /* ...and also, check *its* successors */
1916 if (is_live_after_successors(ctx, succ, src))
1917 return true;
1918
1919 }
1920
1921 /* Welp. We're really not live. */
1922
1923 return false;
1924 }
1925
1926 static bool
1927 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1928 {
1929 /* Check the rest of the block for liveness */
1930
1931 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1932 if (midgard_is_live_in_instr(ins, src))
1933 return true;
1934 }
1935
1936 /* Check the rest of the blocks for liveness recursively */
1937
1938 bool succ = is_live_after_successors(ctx, block, src);
1939
1940 mir_foreach_block(ctx, block) {
1941 block->visited = false;
1942 }
1943
1944 return succ;
1945 }
1946
1947 static void
1948 allocate_registers(compiler_context *ctx)
1949 {
1950 /* First, initialize the RA */
1951 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1952
1953 /* Create a primary (general purpose) class, as well as special purpose
1954 * pipeline register classes */
1955
1956 int primary_class = ra_alloc_reg_class(regs);
1957 int varying_class = ra_alloc_reg_class(regs);
1958
1959 /* Add the full set of work registers */
1960 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1961 for (int i = 0; i < work_count; ++i)
1962 ra_class_add_reg(regs, primary_class, i);
1963
1964 /* Add special registers */
1965 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1966 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1967
1968 /* We're done setting up */
1969 ra_set_finalize(regs, NULL);
1970
1971 /* Transform the MIR into squeezed index form */
1972 mir_foreach_block(ctx, block) {
1973 mir_foreach_instr_in_block(block, ins) {
1974 if (ins->compact_branch) continue;
1975
1976 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1977 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1978 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1979 }
1980 if (midgard_debug & MIDGARD_DBG_SHADERS)
1981 print_mir_block(block);
1982 }
1983
1984 /* Let's actually do register allocation */
1985 int nodes = ctx->temp_count;
1986 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1987
1988 /* Set everything to the work register class, unless it has somewhere
1989 * special to go */
1990
1991 mir_foreach_block(ctx, block) {
1992 mir_foreach_instr_in_block(block, ins) {
1993 if (ins->compact_branch) continue;
1994
1995 if (ins->ssa_args.dest < 0) continue;
1996
1997 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1998
1999 int class = primary_class;
2000
2001 ra_set_node_class(g, ins->ssa_args.dest, class);
2002 }
2003 }
2004
2005 for (int index = 0; index <= ctx->max_hash; ++index) {
2006 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2007
2008 if (temp) {
2009 unsigned reg = temp - 1;
2010 int t = find_or_allocate_temp(ctx, index);
2011 ra_set_node_reg(g, t, reg);
2012 }
2013 }
2014
2015 /* Determine liveness */
2016
2017 int *live_start = malloc(nodes * sizeof(int));
2018 int *live_end = malloc(nodes * sizeof(int));
2019
2020 /* Initialize as non-existent */
2021
2022 for (int i = 0; i < nodes; ++i) {
2023 live_start[i] = live_end[i] = -1;
2024 }
2025
2026 int d = 0;
2027
2028 mir_foreach_block(ctx, block) {
2029 mir_foreach_instr_in_block(block, ins) {
2030 if (ins->compact_branch) continue;
2031
2032 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2033 /* If this destination is not yet live, it is now since we just wrote it */
2034
2035 int dest = ins->ssa_args.dest;
2036
2037 if (live_start[dest] == -1)
2038 live_start[dest] = d;
2039 }
2040
2041 /* Since we just used a source, the source might be
2042 * dead now. Scan the rest of the block for
2043 * invocations, and if there are none, the source dies
2044 * */
2045
2046 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2047
2048 for (int src = 0; src < 2; ++src) {
2049 int s = sources[src];
2050
2051 if (s < 0) continue;
2052
2053 if (s >= SSA_FIXED_MINIMUM) continue;
2054
2055 if (!is_live_after(ctx, block, ins, s)) {
2056 live_end[s] = d;
2057 }
2058 }
2059
2060 ++d;
2061 }
2062 }
2063
2064 /* If a node still hasn't been killed, kill it now */
2065
2066 for (int i = 0; i < nodes; ++i) {
2067 /* live_start == -1 most likely indicates a pinned output */
2068
2069 if (live_end[i] == -1)
2070 live_end[i] = d;
2071 }
2072
2073 /* Setup interference between nodes that are live at the same time */
2074
2075 for (int i = 0; i < nodes; ++i) {
2076 for (int j = i + 1; j < nodes; ++j) {
2077 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2078 ra_add_node_interference(g, i, j);
2079 }
2080 }
2081
2082 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2083
2084 if (!ra_allocate(g)) {
2085 DBG("Error allocating registers\n");
2086 assert(0);
2087 }
2088
2089 /* Cleanup */
2090 free(live_start);
2091 free(live_end);
2092
2093 mir_foreach_block(ctx, block) {
2094 mir_foreach_instr_in_block(block, ins) {
2095 if (ins->compact_branch) continue;
2096
2097 ssa_args args = ins->ssa_args;
2098
2099 switch (ins->type) {
2100 case TAG_ALU_4:
2101 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2102
2103 ins->registers.src2_imm = args.inline_constant;
2104
2105 if (args.inline_constant) {
2106 /* Encode inline 16-bit constant as a vector by default */
2107
2108 ins->registers.src2_reg = ins->inline_constant >> 11;
2109
2110 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2111
2112 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2113 ins->alu.src2 = imm << 2;
2114 } else {
2115 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2116 }
2117
2118 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2119
2120 break;
2121
2122 case TAG_LOAD_STORE_4: {
2123 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2124 /* TODO: use ssa_args for store_vary */
2125 ins->load_store.reg = 0;
2126 } else {
2127 bool has_dest = args.dest >= 0;
2128 int ssa_arg = has_dest ? args.dest : args.src0;
2129
2130 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2131 }
2132
2133 break;
2134 }
2135
2136 default:
2137 break;
2138 }
2139 }
2140 }
2141 }
2142
2143 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2144 * use scalar ALU instructions, for functional or performance reasons. To do
2145 * this, we just demote vector ALU payloads to scalar. */
2146
2147 static int
2148 component_from_mask(unsigned mask)
2149 {
2150 for (int c = 0; c < 4; ++c) {
2151 if (mask & (3 << (2 * c)))
2152 return c;
2153 }
2154
2155 assert(0);
2156 return 0;
2157 }
2158
2159 static bool
2160 is_single_component_mask(unsigned mask)
2161 {
2162 int components = 0;
2163
2164 for (int c = 0; c < 4; ++c)
2165 if (mask & (3 << (2 * c)))
2166 components++;
2167
2168 return components == 1;
2169 }
2170
2171 /* Create a mask of accessed components from a swizzle to figure out vector
2172 * dependencies */
2173
2174 static unsigned
2175 swizzle_to_access_mask(unsigned swizzle)
2176 {
2177 unsigned component_mask = 0;
2178
2179 for (int i = 0; i < 4; ++i) {
2180 unsigned c = (swizzle >> (2 * i)) & 3;
2181 component_mask |= (1 << c);
2182 }
2183
2184 return component_mask;
2185 }
2186
2187 static unsigned
2188 vector_to_scalar_source(unsigned u)
2189 {
2190 midgard_vector_alu_src v;
2191 memcpy(&v, &u, sizeof(v));
2192
2193 midgard_scalar_alu_src s = {
2194 .abs = v.abs,
2195 .negate = v.negate,
2196 .full = !v.half,
2197 .component = (v.swizzle & 3) << 1
2198 };
2199
2200 unsigned o;
2201 memcpy(&o, &s, sizeof(s));
2202
2203 return o & ((1 << 6) - 1);
2204 }
2205
2206 static midgard_scalar_alu
2207 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2208 {
2209 /* The output component is from the mask */
2210 midgard_scalar_alu s = {
2211 .op = v.op,
2212 .src1 = vector_to_scalar_source(v.src1),
2213 .src2 = vector_to_scalar_source(v.src2),
2214 .unknown = 0,
2215 .outmod = v.outmod,
2216 .output_full = 1, /* TODO: Half */
2217 .output_component = component_from_mask(v.mask) << 1,
2218 };
2219
2220 /* Inline constant is passed along rather than trying to extract it
2221 * from v */
2222
2223 if (ins->ssa_args.inline_constant) {
2224 uint16_t imm = 0;
2225 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2226 imm |= (lower_11 >> 9) & 3;
2227 imm |= (lower_11 >> 6) & 4;
2228 imm |= (lower_11 >> 2) & 0x38;
2229 imm |= (lower_11 & 63) << 6;
2230
2231 s.src2 = imm;
2232 }
2233
2234 return s;
2235 }
2236
2237 /* Midgard prefetches instruction types, so during emission we need to
2238 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2239 * if this is the second to last and the last is an ALU, then it's also 1... */
2240
2241 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2242 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2243
2244 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2245 bytes_emitted += sizeof(type)
2246
2247 static void
2248 emit_binary_vector_instruction(midgard_instruction *ains,
2249 uint16_t *register_words, int *register_words_count,
2250 uint64_t *body_words, size_t *body_size, int *body_words_count,
2251 size_t *bytes_emitted)
2252 {
2253 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2254 *bytes_emitted += sizeof(midgard_reg_info);
2255
2256 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2257 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2258 *bytes_emitted += sizeof(midgard_vector_alu);
2259 }
2260
2261 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2262 * mind that we are a vector architecture and we can write to different
2263 * components simultaneously */
2264
2265 static bool
2266 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2267 {
2268 /* Each instruction reads some registers and writes to a register. See
2269 * where the first writes */
2270
2271 /* Figure out where exactly we wrote to */
2272 int source = first->ssa_args.dest;
2273 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2274
2275 /* As long as the second doesn't read from the first, we're okay */
2276 if (second->ssa_args.src0 == source) {
2277 if (first->type == TAG_ALU_4) {
2278 /* Figure out which components we just read from */
2279
2280 int q = second->alu.src1;
2281 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2282
2283 /* Check if there are components in common, and fail if so */
2284 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2285 return false;
2286 } else
2287 return false;
2288
2289 }
2290
2291 if (second->ssa_args.src1 == source)
2292 return false;
2293
2294 /* Otherwise, it's safe in that regard. Another data hazard is both
2295 * writing to the same place, of course */
2296
2297 if (second->ssa_args.dest == source) {
2298 /* ...but only if the components overlap */
2299 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2300
2301 if (dest_mask & source_mask)
2302 return false;
2303 }
2304
2305 /* ...That's it */
2306 return true;
2307 }
2308
2309 static bool
2310 midgard_has_hazard(
2311 midgard_instruction **segment, unsigned segment_size,
2312 midgard_instruction *ains)
2313 {
2314 for (int s = 0; s < segment_size; ++s)
2315 if (!can_run_concurrent_ssa(segment[s], ains))
2316 return true;
2317
2318 return false;
2319
2320
2321 }
2322
2323 /* Schedules, but does not emit, a single basic block. After scheduling, the
2324 * final tag and size of the block are known, which are necessary for branching
2325 * */
2326
2327 static midgard_bundle
2328 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2329 {
2330 int instructions_emitted = 0, instructions_consumed = -1;
2331 midgard_bundle bundle = { 0 };
2332
2333 uint8_t tag = ins->type;
2334
2335 /* Default to the instruction's tag */
2336 bundle.tag = tag;
2337
2338 switch (ins->type) {
2339 case TAG_ALU_4: {
2340 uint32_t control = 0;
2341 size_t bytes_emitted = sizeof(control);
2342
2343 /* TODO: Constant combining */
2344 int index = 0, last_unit = 0;
2345
2346 /* Previous instructions, for the purpose of parallelism */
2347 midgard_instruction *segment[4] = {0};
2348 int segment_size = 0;
2349
2350 instructions_emitted = -1;
2351 midgard_instruction *pins = ins;
2352
2353 for (;;) {
2354 midgard_instruction *ains = pins;
2355
2356 /* Advance instruction pointer */
2357 if (index) {
2358 ains = mir_next_op(pins);
2359 pins = ains;
2360 }
2361
2362 /* Out-of-work condition */
2363 if ((struct list_head *) ains == &block->instructions)
2364 break;
2365
2366 /* Ensure that the chain can continue */
2367 if (ains->type != TAG_ALU_4) break;
2368
2369 /* According to the presentation "The ARM
2370 * Mali-T880 Mobile GPU" from HotChips 27,
2371 * there are two pipeline stages. Branching
2372 * position determined experimentally. Lines
2373 * are executed in parallel:
2374 *
2375 * [ VMUL ] [ SADD ]
2376 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2377 *
2378 * Verify that there are no ordering dependencies here.
2379 *
2380 * TODO: Allow for parallelism!!!
2381 */
2382
2383 /* Pick a unit for it if it doesn't force a particular unit */
2384
2385 int unit = ains->unit;
2386
2387 if (!unit) {
2388 int op = ains->alu.op;
2389 int units = alu_opcode_props[op];
2390
2391 /* TODO: Promotion of scalars to vectors */
2392 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2393
2394 if (!vector)
2395 assert(units & UNITS_SCALAR);
2396
2397 if (vector) {
2398 if (last_unit >= UNIT_VADD) {
2399 if (units & UNIT_VLUT)
2400 unit = UNIT_VLUT;
2401 else
2402 break;
2403 } else {
2404 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2405 unit = UNIT_VMUL;
2406 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2407 unit = UNIT_VADD;
2408 else if (units & UNIT_VLUT)
2409 unit = UNIT_VLUT;
2410 else
2411 break;
2412 }
2413 } else {
2414 if (last_unit >= UNIT_VADD) {
2415 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2416 unit = UNIT_SMUL;
2417 else if (units & UNIT_VLUT)
2418 unit = UNIT_VLUT;
2419 else
2420 break;
2421 } else {
2422 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2423 unit = UNIT_SADD;
2424 else if (units & UNIT_SMUL)
2425 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2426 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2427 unit = UNIT_VADD;
2428 else
2429 break;
2430 }
2431 }
2432
2433 assert(unit & units);
2434 }
2435
2436 /* Late unit check, this time for encoding (not parallelism) */
2437 if (unit <= last_unit) break;
2438
2439 /* Clear the segment */
2440 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2441 segment_size = 0;
2442
2443 if (midgard_has_hazard(segment, segment_size, ains))
2444 break;
2445
2446 /* We're good to go -- emit the instruction */
2447 ains->unit = unit;
2448
2449 segment[segment_size++] = ains;
2450
2451 /* Only one set of embedded constants per
2452 * bundle possible; if we have more, we must
2453 * break the chain early, unfortunately */
2454
2455 if (ains->has_constants) {
2456 if (bundle.has_embedded_constants) {
2457 /* ...but if there are already
2458 * constants but these are the
2459 * *same* constants, we let it
2460 * through */
2461
2462 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2463 break;
2464 } else {
2465 bundle.has_embedded_constants = true;
2466 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2467
2468 /* If this is a blend shader special constant, track it for patching */
2469 if (ains->has_blend_constant)
2470 bundle.has_blend_constant = true;
2471 }
2472 }
2473
2474 if (ains->unit & UNITS_ANY_VECTOR) {
2475 emit_binary_vector_instruction(ains, bundle.register_words,
2476 &bundle.register_words_count, bundle.body_words,
2477 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2478 } else if (ains->compact_branch) {
2479 /* All of r0 has to be written out
2480 * along with the branch writeout.
2481 * (slow!) */
2482
2483 if (ains->writeout) {
2484 if (index == 0) {
2485 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2486 ins.unit = UNIT_VMUL;
2487
2488 control |= ins.unit;
2489
2490 emit_binary_vector_instruction(&ins, bundle.register_words,
2491 &bundle.register_words_count, bundle.body_words,
2492 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2493 } else {
2494 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2495 bool written_late = false;
2496 bool components[4] = { 0 };
2497 uint16_t register_dep_mask = 0;
2498 uint16_t written_mask = 0;
2499
2500 midgard_instruction *qins = ins;
2501 for (int t = 0; t < index; ++t) {
2502 if (qins->registers.out_reg != 0) {
2503 /* Mark down writes */
2504
2505 written_mask |= (1 << qins->registers.out_reg);
2506 } else {
2507 /* Mark down the register dependencies for errata check */
2508
2509 if (qins->registers.src1_reg < 16)
2510 register_dep_mask |= (1 << qins->registers.src1_reg);
2511
2512 if (qins->registers.src2_reg < 16)
2513 register_dep_mask |= (1 << qins->registers.src2_reg);
2514
2515 int mask = qins->alu.mask;
2516
2517 for (int c = 0; c < 4; ++c)
2518 if (mask & (0x3 << (2 * c)))
2519 components[c] = true;
2520
2521 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2522
2523 if (qins->unit == UNIT_VLUT)
2524 written_late = true;
2525 }
2526
2527 /* Advance instruction pointer */
2528 qins = mir_next_op(qins);
2529 }
2530
2531
2532 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2533 if (register_dep_mask & written_mask) {
2534 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2535 break;
2536 }
2537
2538 if (written_late)
2539 break;
2540
2541 /* If even a single component is not written, break it up (conservative check). */
2542 bool breakup = false;
2543
2544 for (int c = 0; c < 4; ++c)
2545 if (!components[c])
2546 breakup = true;
2547
2548 if (breakup)
2549 break;
2550
2551 /* Otherwise, we're free to proceed */
2552 }
2553 }
2554
2555 if (ains->unit == ALU_ENAB_BRANCH) {
2556 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2557 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2558 bytes_emitted += sizeof(midgard_branch_extended);
2559 } else {
2560 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2561 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2562 bytes_emitted += sizeof(ains->br_compact);
2563 }
2564 } else {
2565 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2566 bytes_emitted += sizeof(midgard_reg_info);
2567
2568 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2569 bundle.body_words_count++;
2570 bytes_emitted += sizeof(midgard_scalar_alu);
2571 }
2572
2573 /* Defer marking until after writing to allow for break */
2574 control |= ains->unit;
2575 last_unit = ains->unit;
2576 ++instructions_emitted;
2577 ++index;
2578 }
2579
2580 /* Bubble up the number of instructions for skipping */
2581 instructions_consumed = index - 1;
2582
2583 int padding = 0;
2584
2585 /* Pad ALU op to nearest word */
2586
2587 if (bytes_emitted & 15) {
2588 padding = 16 - (bytes_emitted & 15);
2589 bytes_emitted += padding;
2590 }
2591
2592 /* Constants must always be quadwords */
2593 if (bundle.has_embedded_constants)
2594 bytes_emitted += 16;
2595
2596 /* Size ALU instruction for tag */
2597 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2598 bundle.padding = padding;
2599 bundle.control = bundle.tag | control;
2600
2601 break;
2602 }
2603
2604 case TAG_LOAD_STORE_4: {
2605 /* Load store instructions have two words at once. If
2606 * we only have one queued up, we need to NOP pad.
2607 * Otherwise, we store both in succession to save space
2608 * and cycles -- letting them go in parallel -- skip
2609 * the next. The usefulness of this optimisation is
2610 * greatly dependent on the quality of the instruction
2611 * scheduler.
2612 */
2613
2614 midgard_instruction *next_op = mir_next_op(ins);
2615
2616 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2617 /* As the two operate concurrently, make sure
2618 * they are not dependent */
2619
2620 if (can_run_concurrent_ssa(ins, next_op) || true) {
2621 /* Skip ahead, since it's redundant with the pair */
2622 instructions_consumed = 1 + (instructions_emitted++);
2623 }
2624 }
2625
2626 break;
2627 }
2628
2629 default:
2630 /* Texture ops default to single-op-per-bundle scheduling */
2631 break;
2632 }
2633
2634 /* Copy the instructions into the bundle */
2635 bundle.instruction_count = instructions_emitted + 1;
2636
2637 int used_idx = 0;
2638
2639 midgard_instruction *uins = ins;
2640 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2641 bundle.instructions[used_idx++] = *uins;
2642 uins = mir_next_op(uins);
2643 }
2644
2645 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2646
2647 return bundle;
2648 }
2649
2650 static int
2651 quadword_size(int tag)
2652 {
2653 switch (tag) {
2654 case TAG_ALU_4:
2655 return 1;
2656
2657 case TAG_ALU_8:
2658 return 2;
2659
2660 case TAG_ALU_12:
2661 return 3;
2662
2663 case TAG_ALU_16:
2664 return 4;
2665
2666 case TAG_LOAD_STORE_4:
2667 return 1;
2668
2669 case TAG_TEXTURE_4:
2670 return 1;
2671
2672 default:
2673 assert(0);
2674 return 0;
2675 }
2676 }
2677
2678 /* Schedule a single block by iterating its instruction to create bundles.
2679 * While we go, tally about the bundle sizes to compute the block size. */
2680
2681 static void
2682 schedule_block(compiler_context *ctx, midgard_block *block)
2683 {
2684 util_dynarray_init(&block->bundles, NULL);
2685
2686 block->quadword_count = 0;
2687
2688 mir_foreach_instr_in_block(block, ins) {
2689 int skip;
2690 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2691 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2692
2693 if (bundle.has_blend_constant) {
2694 /* TODO: Multiblock? */
2695 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2696 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2697 }
2698
2699 while(skip--)
2700 ins = mir_next_op(ins);
2701
2702 block->quadword_count += quadword_size(bundle.tag);
2703 }
2704
2705 block->is_scheduled = true;
2706 }
2707
2708 static void
2709 schedule_program(compiler_context *ctx)
2710 {
2711 allocate_registers(ctx);
2712
2713 mir_foreach_block(ctx, block) {
2714 schedule_block(ctx, block);
2715 }
2716 }
2717
2718 /* After everything is scheduled, emit whole bundles at a time */
2719
2720 static void
2721 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2722 {
2723 int lookahead = next_tag << 4;
2724
2725 switch (bundle->tag) {
2726 case TAG_ALU_4:
2727 case TAG_ALU_8:
2728 case TAG_ALU_12:
2729 case TAG_ALU_16: {
2730 /* Actually emit each component */
2731 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2732
2733 for (int i = 0; i < bundle->register_words_count; ++i)
2734 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2735
2736 /* Emit body words based on the instructions bundled */
2737 for (int i = 0; i < bundle->instruction_count; ++i) {
2738 midgard_instruction *ins = &bundle->instructions[i];
2739
2740 if (ins->unit & UNITS_ANY_VECTOR) {
2741 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2742 } else if (ins->compact_branch) {
2743 /* Dummy move, XXX DRY */
2744 if ((i == 0) && ins->writeout) {
2745 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2746 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2747 }
2748
2749 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2750 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2751 } else {
2752 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2753 }
2754 } else {
2755 /* Scalar */
2756 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2757 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2758 }
2759 }
2760
2761 /* Emit padding (all zero) */
2762 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2763
2764 /* Tack on constants */
2765
2766 if (bundle->has_embedded_constants) {
2767 util_dynarray_append(emission, float, bundle->constants[0]);
2768 util_dynarray_append(emission, float, bundle->constants[1]);
2769 util_dynarray_append(emission, float, bundle->constants[2]);
2770 util_dynarray_append(emission, float, bundle->constants[3]);
2771 }
2772
2773 break;
2774 }
2775
2776 case TAG_LOAD_STORE_4: {
2777 /* One or two composing instructions */
2778
2779 uint64_t current64, next64 = LDST_NOP;
2780
2781 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2782
2783 if (bundle->instruction_count == 2)
2784 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2785
2786 midgard_load_store instruction = {
2787 .type = bundle->tag,
2788 .next_type = next_tag,
2789 .word1 = current64,
2790 .word2 = next64
2791 };
2792
2793 util_dynarray_append(emission, midgard_load_store, instruction);
2794
2795 break;
2796 }
2797
2798 case TAG_TEXTURE_4: {
2799 /* Texture instructions are easy, since there is no
2800 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2801
2802 midgard_instruction *ins = &bundle->instructions[0];
2803
2804 ins->texture.type = TAG_TEXTURE_4;
2805 ins->texture.next_type = next_tag;
2806
2807 ctx->texture_op_count--;
2808
2809 if (!ctx->texture_op_count) {
2810 ins->texture.cont = 0;
2811 ins->texture.last = 1;
2812 }
2813
2814 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2815 break;
2816 }
2817
2818 default:
2819 DBG("Unknown midgard instruction type\n");
2820 assert(0);
2821 break;
2822 }
2823 }
2824
2825
2826 /* ALU instructions can inline or embed constants, which decreases register
2827 * pressure and saves space. */
2828
2829 #define CONDITIONAL_ATTACH(src) { \
2830 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2831 \
2832 if (entry) { \
2833 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2834 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2835 } \
2836 }
2837
2838 static void
2839 inline_alu_constants(compiler_context *ctx)
2840 {
2841 mir_foreach_instr(ctx, alu) {
2842 /* Other instructions cannot inline constants */
2843 if (alu->type != TAG_ALU_4) continue;
2844
2845 /* If there is already a constant here, we can do nothing */
2846 if (alu->has_constants) continue;
2847
2848 /* It makes no sense to inline constants on a branch */
2849 if (alu->compact_branch || alu->prepacked_branch) continue;
2850
2851 CONDITIONAL_ATTACH(src0);
2852
2853 if (!alu->has_constants) {
2854 CONDITIONAL_ATTACH(src1)
2855 } else if (!alu->inline_constant) {
2856 /* Corner case: _two_ vec4 constants, for instance with a
2857 * csel. For this case, we can only use a constant
2858 * register for one, we'll have to emit a move for the
2859 * other. Note, if both arguments are constants, then
2860 * necessarily neither argument depends on the value of
2861 * any particular register. As the destination register
2862 * will be wiped, that means we can spill the constant
2863 * to the destination register.
2864 */
2865
2866 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2867 unsigned scratch = alu->ssa_args.dest;
2868
2869 if (entry) {
2870 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2871 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2872
2873 /* Force a break XXX Defer r31 writes */
2874 ins.unit = UNIT_VLUT;
2875
2876 /* Set the source */
2877 alu->ssa_args.src1 = scratch;
2878
2879 /* Inject us -before- the last instruction which set r31 */
2880 mir_insert_instruction_before(mir_prev_op(alu), ins);
2881 }
2882 }
2883 }
2884 }
2885
2886 /* Midgard supports two types of constants, embedded constants (128-bit) and
2887 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2888 * constants can be demoted to inline constants, for space savings and
2889 * sometimes a performance boost */
2890
2891 static void
2892 embedded_to_inline_constant(compiler_context *ctx)
2893 {
2894 mir_foreach_instr(ctx, ins) {
2895 if (!ins->has_constants) continue;
2896
2897 if (ins->ssa_args.inline_constant) continue;
2898
2899 /* Blend constants must not be inlined by definition */
2900 if (ins->has_blend_constant) continue;
2901
2902 /* src1 cannot be an inline constant due to encoding
2903 * restrictions. So, if possible we try to flip the arguments
2904 * in that case */
2905
2906 int op = ins->alu.op;
2907
2908 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2909 /* Flip based on op. Fallthrough intentional */
2910
2911 switch (op) {
2912 /* These ops require an operational change to flip their arguments TODO */
2913 case midgard_alu_op_flt:
2914 case midgard_alu_op_fle:
2915 case midgard_alu_op_ilt:
2916 case midgard_alu_op_ile:
2917 case midgard_alu_op_fcsel:
2918 case midgard_alu_op_icsel:
2919 case midgard_alu_op_isub:
2920 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2921 break;
2922
2923 /* These ops are commutative and Just Flip */
2924 case midgard_alu_op_fne:
2925 case midgard_alu_op_fadd:
2926 case midgard_alu_op_fmul:
2927 case midgard_alu_op_fmin:
2928 case midgard_alu_op_fmax:
2929 case midgard_alu_op_iadd:
2930 case midgard_alu_op_imul:
2931 case midgard_alu_op_feq:
2932 case midgard_alu_op_ieq:
2933 case midgard_alu_op_ine:
2934 case midgard_alu_op_iand:
2935 case midgard_alu_op_ior:
2936 case midgard_alu_op_ixor:
2937 /* Flip the SSA numbers */
2938 ins->ssa_args.src0 = ins->ssa_args.src1;
2939 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2940
2941 /* And flip the modifiers */
2942
2943 unsigned src_temp;
2944
2945 src_temp = ins->alu.src2;
2946 ins->alu.src2 = ins->alu.src1;
2947 ins->alu.src1 = src_temp;
2948
2949 default:
2950 break;
2951 }
2952 }
2953
2954 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2955 /* Extract the source information */
2956
2957 midgard_vector_alu_src *src;
2958 int q = ins->alu.src2;
2959 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2960 src = m;
2961
2962 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2963 int component = src->swizzle & 3;
2964
2965 /* Scale constant appropriately, if we can legally */
2966 uint16_t scaled_constant = 0;
2967
2968 /* XXX: Check legality */
2969 if (midgard_is_integer_op(op)) {
2970 /* TODO: Inline integer */
2971 continue;
2972
2973 unsigned int *iconstants = (unsigned int *) ins->constants;
2974 scaled_constant = (uint16_t) iconstants[component];
2975
2976 /* Constant overflow after resize */
2977 if (scaled_constant != iconstants[component])
2978 continue;
2979 } else {
2980 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2981 }
2982
2983 /* We don't know how to handle these with a constant */
2984
2985 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2986 DBG("Bailing inline constant...\n");
2987 continue;
2988 }
2989
2990 /* Make sure that the constant is not itself a
2991 * vector by checking if all accessed values
2992 * (by the swizzle) are the same. */
2993
2994 uint32_t *cons = (uint32_t *) ins->constants;
2995 uint32_t value = cons[component];
2996
2997 bool is_vector = false;
2998 unsigned mask = effective_writemask(&ins->alu);
2999
3000 for (int c = 1; c < 4; ++c) {
3001 /* We only care if this component is actually used */
3002 if (!(mask & (1 << c)))
3003 continue;
3004
3005 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3006
3007 if (test != value) {
3008 is_vector = true;
3009 break;
3010 }
3011 }
3012
3013 if (is_vector)
3014 continue;
3015
3016 /* Get rid of the embedded constant */
3017 ins->has_constants = false;
3018 ins->ssa_args.src1 = SSA_UNUSED_0;
3019 ins->ssa_args.inline_constant = true;
3020 ins->inline_constant = scaled_constant;
3021 }
3022 }
3023 }
3024
3025 /* Map normal SSA sources to other SSA sources / fixed registers (like
3026 * uniforms) */
3027
3028 static void
3029 map_ssa_to_alias(compiler_context *ctx, int *ref)
3030 {
3031 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3032
3033 if (alias) {
3034 /* Remove entry in leftovers to avoid a redunant fmov */
3035
3036 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3037
3038 if (leftover)
3039 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3040
3041 /* Assign the alias map */
3042 *ref = alias - 1;
3043 return;
3044 }
3045 }
3046
3047 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3048 * texture pipeline */
3049
3050 static void
3051 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3052 {
3053 mir_foreach_instr_in_block_safe(block, ins) {
3054 if (ins->type != TAG_ALU_4) continue;
3055 if (ins->compact_branch) continue;
3056
3057 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3058 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3059 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3060
3061 mir_remove_instruction(ins);
3062 }
3063 }
3064
3065 /* The following passes reorder MIR instructions to enable better scheduling */
3066
3067 static void
3068 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3069 {
3070 mir_foreach_instr_in_block_safe(block, ins) {
3071 if (ins->type != TAG_LOAD_STORE_4) continue;
3072
3073 /* We've found a load/store op. Check if next is also load/store. */
3074 midgard_instruction *next_op = mir_next_op(ins);
3075 if (&next_op->link != &block->instructions) {
3076 if (next_op->type == TAG_LOAD_STORE_4) {
3077 /* If so, we're done since we're a pair */
3078 ins = mir_next_op(ins);
3079 continue;
3080 }
3081
3082 /* Maximum search distance to pair, to avoid register pressure disasters */
3083 int search_distance = 8;
3084
3085 /* Otherwise, we have an orphaned load/store -- search for another load */
3086 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3087 /* Terminate search if necessary */
3088 if (!(search_distance--)) break;
3089
3090 if (c->type != TAG_LOAD_STORE_4) continue;
3091
3092 /* Stores cannot be reordered, since they have
3093 * dependencies. For the same reason, indirect
3094 * loads cannot be reordered as their index is
3095 * loaded in r27.w */
3096
3097 if (OP_IS_STORE(c->load_store.op)) continue;
3098
3099 /* It appears the 0x800 bit is set whenever a
3100 * load is direct, unset when it is indirect.
3101 * Skip indirect loads. */
3102
3103 if (!(c->load_store.unknown & 0x800)) continue;
3104
3105 /* We found one! Move it up to pair and remove it from the old location */
3106
3107 mir_insert_instruction_before(ins, *c);
3108 mir_remove_instruction(c);
3109
3110 break;
3111 }
3112 }
3113 }
3114 }
3115
3116 /* Emit varying stores late */
3117
3118 static void
3119 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3120 /* Iterate in reverse to get the final write, rather than the first */
3121
3122 mir_foreach_instr_in_block_safe_rev(block, ins) {
3123 /* Check if what we just wrote needs a store */
3124 int idx = ins->ssa_args.dest;
3125 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3126
3127 if (!varying) continue;
3128
3129 varying -= 1;
3130
3131 /* We need to store to the appropriate varying, so emit the
3132 * move/store */
3133
3134 /* TODO: Integrate with special purpose RA (and scheduler?) */
3135 bool high_varying_register = false;
3136
3137 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3138
3139 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3140 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3141
3142 mir_insert_instruction_before(mir_next_op(ins), st);
3143 mir_insert_instruction_before(mir_next_op(ins), mov);
3144
3145 /* We no longer need to store this varying */
3146 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3147 }
3148 }
3149
3150 /* If there are leftovers after the below pass, emit actual fmov
3151 * instructions for the slow-but-correct path */
3152
3153 static void
3154 emit_leftover_move(compiler_context *ctx)
3155 {
3156 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3157 int base = ((uintptr_t) leftover->key) - 1;
3158 int mapped = base;
3159
3160 map_ssa_to_alias(ctx, &mapped);
3161 EMIT(fmov, mapped, blank_alu_src, base);
3162 }
3163 }
3164
3165 static void
3166 actualise_ssa_to_alias(compiler_context *ctx)
3167 {
3168 mir_foreach_instr(ctx, ins) {
3169 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3170 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3171 }
3172
3173 emit_leftover_move(ctx);
3174 }
3175
3176 static void
3177 emit_fragment_epilogue(compiler_context *ctx)
3178 {
3179 /* Special case: writing out constants requires us to include the move
3180 * explicitly now, so shove it into r0 */
3181
3182 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3183
3184 if (constant_value) {
3185 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3186 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3187 emit_mir_instruction(ctx, ins);
3188 }
3189
3190 /* Perform the actual fragment writeout. We have two writeout/branch
3191 * instructions, forming a loop until writeout is successful as per the
3192 * docs. TODO: gl_FragDepth */
3193
3194 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3195 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3196 }
3197
3198 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3199 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3200 * with the int8 analogue to the fragment epilogue */
3201
3202 static void
3203 emit_blend_epilogue(compiler_context *ctx)
3204 {
3205 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3206
3207 midgard_instruction scale = {
3208 .type = TAG_ALU_4,
3209 .unit = UNIT_VMUL,
3210 .inline_constant = _mesa_float_to_half(255.0),
3211 .ssa_args = {
3212 .src0 = SSA_FIXED_REGISTER(0),
3213 .src1 = SSA_UNUSED_0,
3214 .dest = SSA_FIXED_REGISTER(24),
3215 .inline_constant = true
3216 },
3217 .alu = {
3218 .op = midgard_alu_op_fmul,
3219 .reg_mode = midgard_reg_mode_full,
3220 .dest_override = midgard_dest_override_lower,
3221 .mask = 0xFF,
3222 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3223 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3224 }
3225 };
3226
3227 emit_mir_instruction(ctx, scale);
3228
3229 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3230
3231 midgard_vector_alu_src alu_src = blank_alu_src;
3232 alu_src.half = true;
3233
3234 midgard_instruction f2u8 = {
3235 .type = TAG_ALU_4,
3236 .ssa_args = {
3237 .src0 = SSA_FIXED_REGISTER(24),
3238 .src1 = SSA_UNUSED_0,
3239 .dest = SSA_FIXED_REGISTER(0),
3240 .inline_constant = true
3241 },
3242 .alu = {
3243 .op = midgard_alu_op_f2u8,
3244 .reg_mode = midgard_reg_mode_half,
3245 .dest_override = midgard_dest_override_lower,
3246 .outmod = midgard_outmod_pos,
3247 .mask = 0xF,
3248 .src1 = vector_alu_srco_unsigned(alu_src),
3249 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3250 }
3251 };
3252
3253 emit_mir_instruction(ctx, f2u8);
3254
3255 /* vmul.imov.quarter r0, r0, r0 */
3256
3257 midgard_instruction imov_8 = {
3258 .type = TAG_ALU_4,
3259 .ssa_args = {
3260 .src0 = SSA_UNUSED_1,
3261 .src1 = SSA_FIXED_REGISTER(0),
3262 .dest = SSA_FIXED_REGISTER(0),
3263 },
3264 .alu = {
3265 .op = midgard_alu_op_imov,
3266 .reg_mode = midgard_reg_mode_quarter,
3267 .dest_override = midgard_dest_override_none,
3268 .mask = 0xFF,
3269 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3270 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3271 }
3272 };
3273
3274 /* Emit branch epilogue with the 8-bit move as the source */
3275
3276 emit_mir_instruction(ctx, imov_8);
3277 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3278
3279 emit_mir_instruction(ctx, imov_8);
3280 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3281 }
3282
3283 static midgard_block *
3284 emit_block(compiler_context *ctx, nir_block *block)
3285 {
3286 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3287 list_addtail(&this_block->link, &ctx->blocks);
3288
3289 this_block->is_scheduled = false;
3290 ++ctx->block_count;
3291
3292 ctx->texture_index[0] = -1;
3293 ctx->texture_index[1] = -1;
3294
3295 /* Add us as a successor to the block we are following */
3296 if (ctx->current_block)
3297 midgard_block_add_successor(ctx->current_block, this_block);
3298
3299 /* Set up current block */
3300 list_inithead(&this_block->instructions);
3301 ctx->current_block = this_block;
3302
3303 nir_foreach_instr(instr, block) {
3304 emit_instr(ctx, instr);
3305 ++ctx->instruction_count;
3306 }
3307
3308 inline_alu_constants(ctx);
3309 embedded_to_inline_constant(ctx);
3310
3311 /* Perform heavylifting for aliasing */
3312 actualise_ssa_to_alias(ctx);
3313
3314 midgard_emit_store(ctx, this_block);
3315 midgard_pair_load_store(ctx, this_block);
3316
3317 /* Append fragment shader epilogue (value writeout) */
3318 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3319 if (block == nir_impl_last_block(ctx->func->impl)) {
3320 if (ctx->is_blend)
3321 emit_blend_epilogue(ctx);
3322 else
3323 emit_fragment_epilogue(ctx);
3324 }
3325 }
3326
3327 if (block == nir_start_block(ctx->func->impl))
3328 ctx->initial_block = this_block;
3329
3330 if (block == nir_impl_last_block(ctx->func->impl))
3331 ctx->final_block = this_block;
3332
3333 /* Allow the next control flow to access us retroactively, for
3334 * branching etc */
3335 ctx->current_block = this_block;
3336
3337 /* Document the fallthrough chain */
3338 ctx->previous_source_block = this_block;
3339
3340 return this_block;
3341 }
3342
3343 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3344
3345 static void
3346 emit_if(struct compiler_context *ctx, nir_if *nif)
3347 {
3348 /* Conditional branches expect the condition in r31.w; emit a move for
3349 * that in the _previous_ block (which is the current block). */
3350 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3351
3352 /* Speculatively emit the branch, but we can't fill it in until later */
3353 EMIT(branch, true, true);
3354 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3355
3356 /* Emit the two subblocks */
3357 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3358
3359 /* Emit a jump from the end of the then block to the end of the else */
3360 EMIT(branch, false, false);
3361 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3362
3363 /* Emit second block, and check if it's empty */
3364
3365 int else_idx = ctx->block_count;
3366 int count_in = ctx->instruction_count;
3367 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3368 int after_else_idx = ctx->block_count;
3369
3370 /* Now that we have the subblocks emitted, fix up the branches */
3371
3372 assert(then_block);
3373 assert(else_block);
3374
3375 if (ctx->instruction_count == count_in) {
3376 /* The else block is empty, so don't emit an exit jump */
3377 mir_remove_instruction(then_exit);
3378 then_branch->branch.target_block = after_else_idx;
3379 } else {
3380 then_branch->branch.target_block = else_idx;
3381 then_exit->branch.target_block = after_else_idx;
3382 }
3383 }
3384
3385 static void
3386 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3387 {
3388 /* Remember where we are */
3389 midgard_block *start_block = ctx->current_block;
3390
3391 /* Allocate a loop number, growing the current inner loop depth */
3392 int loop_idx = ++ctx->current_loop_depth;
3393
3394 /* Get index from before the body so we can loop back later */
3395 int start_idx = ctx->block_count;
3396
3397 /* Emit the body itself */
3398 emit_cf_list(ctx, &nloop->body);
3399
3400 /* Branch back to loop back */
3401 struct midgard_instruction br_back = v_branch(false, false);
3402 br_back.branch.target_block = start_idx;
3403 emit_mir_instruction(ctx, br_back);
3404
3405 /* Mark down that branch in the graph */
3406 midgard_block_add_successor(ctx->current_block, start_block);
3407
3408 /* Find the index of the block about to follow us (note: we don't add
3409 * one; blocks are 0-indexed so we get a fencepost problem) */
3410 int break_block_idx = ctx->block_count;
3411
3412 /* Fix up the break statements we emitted to point to the right place,
3413 * now that we can allocate a block number for them */
3414
3415 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3416 mir_foreach_instr_in_block(block, ins) {
3417 if (ins->type != TAG_ALU_4) continue;
3418 if (!ins->compact_branch) continue;
3419 if (ins->prepacked_branch) continue;
3420
3421 /* We found a branch -- check the type to see if we need to do anything */
3422 if (ins->branch.target_type != TARGET_BREAK) continue;
3423
3424 /* It's a break! Check if it's our break */
3425 if (ins->branch.target_break != loop_idx) continue;
3426
3427 /* Okay, cool, we're breaking out of this loop.
3428 * Rewrite from a break to a goto */
3429
3430 ins->branch.target_type = TARGET_GOTO;
3431 ins->branch.target_block = break_block_idx;
3432 }
3433 }
3434
3435 /* Now that we've finished emitting the loop, free up the depth again
3436 * so we play nice with recursion amid nested loops */
3437 --ctx->current_loop_depth;
3438 }
3439
3440 static midgard_block *
3441 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3442 {
3443 midgard_block *start_block = NULL;
3444
3445 foreach_list_typed(nir_cf_node, node, node, list) {
3446 switch (node->type) {
3447 case nir_cf_node_block: {
3448 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3449
3450 if (!start_block)
3451 start_block = block;
3452
3453 break;
3454 }
3455
3456 case nir_cf_node_if:
3457 emit_if(ctx, nir_cf_node_as_if(node));
3458 break;
3459
3460 case nir_cf_node_loop:
3461 emit_loop(ctx, nir_cf_node_as_loop(node));
3462 break;
3463
3464 case nir_cf_node_function:
3465 assert(0);
3466 break;
3467 }
3468 }
3469
3470 return start_block;
3471 }
3472
3473 /* Due to lookahead, we need to report the first tag executed in the command
3474 * stream and in branch targets. An initial block might be empty, so iterate
3475 * until we find one that 'works' */
3476
3477 static unsigned
3478 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3479 {
3480 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3481
3482 unsigned first_tag = 0;
3483
3484 do {
3485 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3486
3487 if (initial_bundle) {
3488 first_tag = initial_bundle->tag;
3489 break;
3490 }
3491
3492 /* Initial block is empty, try the next block */
3493 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3494 } while(initial_block != NULL);
3495
3496 assert(first_tag);
3497 return first_tag;
3498 }
3499
3500 int
3501 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3502 {
3503 struct util_dynarray *compiled = &program->compiled;
3504
3505 midgard_debug = debug_get_option_midgard_debug();
3506
3507 compiler_context ictx = {
3508 .nir = nir,
3509 .stage = nir->info.stage,
3510
3511 .is_blend = is_blend,
3512 .blend_constant_offset = -1,
3513
3514 .alpha_ref = program->alpha_ref
3515 };
3516
3517 compiler_context *ctx = &ictx;
3518
3519 /* TODO: Decide this at runtime */
3520 ctx->uniform_cutoff = 8;
3521
3522 /* Assign var locations early, so the epilogue can use them if necessary */
3523
3524 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3525 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3526 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3527
3528 /* Initialize at a global (not block) level hash tables */
3529
3530 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3531 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3532 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3533 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3534 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3535 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3536 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3537
3538 /* Record the varying mapping for the command stream's bookkeeping */
3539
3540 struct exec_list *varyings =
3541 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3542
3543 nir_foreach_variable(var, varyings) {
3544 unsigned loc = var->data.driver_location;
3545 unsigned sz = glsl_type_size(var->type, FALSE);
3546
3547 for (int c = 0; c < sz; ++c) {
3548 program->varyings[loc + c] = var->data.location;
3549 }
3550 }
3551
3552 /* Lower gl_Position pre-optimisation */
3553
3554 if (ctx->stage == MESA_SHADER_VERTEX)
3555 NIR_PASS_V(nir, nir_lower_viewport_transform);
3556
3557 NIR_PASS_V(nir, nir_lower_var_copies);
3558 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3559 NIR_PASS_V(nir, nir_split_var_copies);
3560 NIR_PASS_V(nir, nir_lower_var_copies);
3561 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3562 NIR_PASS_V(nir, nir_lower_var_copies);
3563 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3564
3565 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3566
3567 /* Optimisation passes */
3568
3569 optimise_nir(nir);
3570
3571 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3572 nir_print_shader(nir, stdout);
3573 }
3574
3575 /* Assign sysvals and counts, now that we're sure
3576 * (post-optimisation) */
3577
3578 midgard_nir_assign_sysvals(ctx, nir);
3579
3580 program->uniform_count = nir->num_uniforms;
3581 program->sysval_count = ctx->sysval_count;
3582 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3583
3584 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3585 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3586
3587 nir_foreach_function(func, nir) {
3588 if (!func->impl)
3589 continue;
3590
3591 list_inithead(&ctx->blocks);
3592 ctx->block_count = 0;
3593 ctx->func = func;
3594
3595 emit_cf_list(ctx, &func->impl->body);
3596 emit_block(ctx, func->impl->end_block);
3597
3598 break; /* TODO: Multi-function shaders */
3599 }
3600
3601 util_dynarray_init(compiled, NULL);
3602
3603 /* Peephole optimizations */
3604
3605 mir_foreach_block(ctx, block) {
3606 midgard_opt_dead_code_eliminate(ctx, block);
3607 }
3608
3609 /* Schedule! */
3610 schedule_program(ctx);
3611
3612 /* Now that all the bundles are scheduled and we can calculate block
3613 * sizes, emit actual branch instructions rather than placeholders */
3614
3615 int br_block_idx = 0;
3616
3617 mir_foreach_block(ctx, block) {
3618 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3619 for (int c = 0; c < bundle->instruction_count; ++c) {
3620 midgard_instruction *ins = &bundle->instructions[c];
3621
3622 if (!midgard_is_branch_unit(ins->unit)) continue;
3623
3624 if (ins->prepacked_branch) continue;
3625
3626 /* Parse some basic branch info */
3627 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3628 bool is_conditional = ins->branch.conditional;
3629 bool is_inverted = ins->branch.invert_conditional;
3630 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3631
3632 /* Determine the block we're jumping to */
3633 int target_number = ins->branch.target_block;
3634
3635 /* Report the destination tag. Discards don't need this */
3636 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3637
3638 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3639 int quadword_offset = 0;
3640
3641 if (is_discard) {
3642 /* Jump to the end of the shader. We
3643 * need to include not only the
3644 * following blocks, but also the
3645 * contents of our current block (since
3646 * discard can come in the middle of
3647 * the block) */
3648
3649 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3650
3651 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3652 quadword_offset += quadword_size(bun->tag);
3653 }
3654
3655 mir_foreach_block_from(ctx, blk, b) {
3656 quadword_offset += b->quadword_count;
3657 }
3658
3659 } else if (target_number > br_block_idx) {
3660 /* Jump forward */
3661
3662 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3663 midgard_block *blk = mir_get_block(ctx, idx);
3664 assert(blk);
3665
3666 quadword_offset += blk->quadword_count;
3667 }
3668 } else {
3669 /* Jump backwards */
3670
3671 for (int idx = br_block_idx; idx >= target_number; --idx) {
3672 midgard_block *blk = mir_get_block(ctx, idx);
3673 assert(blk);
3674
3675 quadword_offset -= blk->quadword_count;
3676 }
3677 }
3678
3679 /* Unconditional extended branches (far jumps)
3680 * have issues, so we always use a conditional
3681 * branch, setting the condition to always for
3682 * unconditional. For compact unconditional
3683 * branches, cond isn't used so it doesn't
3684 * matter what we pick. */
3685
3686 midgard_condition cond =
3687 !is_conditional ? midgard_condition_always :
3688 is_inverted ? midgard_condition_false :
3689 midgard_condition_true;
3690
3691 midgard_jmp_writeout_op op =
3692 is_discard ? midgard_jmp_writeout_op_discard :
3693 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3694 midgard_jmp_writeout_op_branch_cond;
3695
3696 if (!is_compact) {
3697 midgard_branch_extended branch =
3698 midgard_create_branch_extended(
3699 cond, op,
3700 dest_tag,
3701 quadword_offset);
3702
3703 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3704 } else if (is_conditional || is_discard) {
3705 midgard_branch_cond branch = {
3706 .op = op,
3707 .dest_tag = dest_tag,
3708 .offset = quadword_offset,
3709 .cond = cond
3710 };
3711
3712 assert(branch.offset == quadword_offset);
3713
3714 memcpy(&ins->br_compact, &branch, sizeof(branch));
3715 } else {
3716 assert(op == midgard_jmp_writeout_op_branch_uncond);
3717
3718 midgard_branch_uncond branch = {
3719 .op = op,
3720 .dest_tag = dest_tag,
3721 .offset = quadword_offset,
3722 .unknown = 1
3723 };
3724
3725 assert(branch.offset == quadword_offset);
3726
3727 memcpy(&ins->br_compact, &branch, sizeof(branch));
3728 }
3729 }
3730 }
3731
3732 ++br_block_idx;
3733 }
3734
3735 /* Emit flat binary from the instruction arrays. Iterate each block in
3736 * sequence. Save instruction boundaries such that lookahead tags can
3737 * be assigned easily */
3738
3739 /* Cache _all_ bundles in source order for lookahead across failed branches */
3740
3741 int bundle_count = 0;
3742 mir_foreach_block(ctx, block) {
3743 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3744 }
3745 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3746 int bundle_idx = 0;
3747 mir_foreach_block(ctx, block) {
3748 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3749 source_order_bundles[bundle_idx++] = bundle;
3750 }
3751 }
3752
3753 int current_bundle = 0;
3754
3755 mir_foreach_block(ctx, block) {
3756 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3757 int lookahead = 1;
3758
3759 if (current_bundle + 1 < bundle_count) {
3760 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3761
3762 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3763 lookahead = 1;
3764 } else {
3765 lookahead = next;
3766 }
3767 }
3768
3769 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3770 ++current_bundle;
3771 }
3772
3773 /* TODO: Free deeper */
3774 //util_dynarray_fini(&block->instructions);
3775 }
3776
3777 free(source_order_bundles);
3778
3779 /* Report the very first tag executed */
3780 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3781
3782 /* Deal with off-by-one related to the fencepost problem */
3783 program->work_register_count = ctx->work_registers + 1;
3784
3785 program->can_discard = ctx->can_discard;
3786 program->uniform_cutoff = ctx->uniform_cutoff;
3787
3788 program->blend_patch_offset = ctx->blend_constant_offset;
3789
3790 if (midgard_debug & MIDGARD_DBG_SHADERS)
3791 disassemble_midgard(program->compiled.data, program->compiled.size);
3792
3793 return 0;
3794 }