panfrost/midgard: Map more bany/ball opcodes
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751
752 /* Lower mods */
753 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
754 NIR_PASS(progress, nir, nir_copy_prop);
755 NIR_PASS(progress, nir, nir_opt_dce);
756
757 /* Take us out of SSA */
758 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
759 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
760
761 /* We are a vector architecture; write combine where possible */
762 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
763 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
764
765 NIR_PASS(progress, nir, nir_opt_dce);
766 }
767
768 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
769 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
770 * r0. See the comments in compiler_context */
771
772 static void
773 alias_ssa(compiler_context *ctx, int dest, int src)
774 {
775 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
776 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
777 }
778
779 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
780
781 static void
782 unalias_ssa(compiler_context *ctx, int dest)
783 {
784 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
785 /* TODO: Remove from leftover or no? */
786 }
787
788 static void
789 midgard_pin_output(compiler_context *ctx, int index, int reg)
790 {
791 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
792 }
793
794 static bool
795 midgard_is_pinned(compiler_context *ctx, int index)
796 {
797 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
798 }
799
800 /* Do not actually emit a load; instead, cache the constant for inlining */
801
802 static void
803 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
804 {
805 nir_ssa_def def = instr->def;
806
807 float *v = ralloc_array(NULL, float, 4);
808 memcpy(v, &instr->value.f32, 4 * sizeof(float));
809 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
810 }
811
812 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
813 * do the inverse) */
814
815 static unsigned
816 expand_writemask(unsigned mask)
817 {
818 unsigned o = 0;
819
820 for (int i = 0; i < 4; ++i)
821 if (mask & (1 << i))
822 o |= (3 << (2 * i));
823
824 return o;
825 }
826
827 static unsigned
828 squeeze_writemask(unsigned mask)
829 {
830 unsigned o = 0;
831
832 for (int i = 0; i < 4; ++i)
833 if (mask & (3 << (2 * i)))
834 o |= (1 << i);
835
836 return o;
837
838 }
839
840 /* Determines effective writemask, taking quirks and expansion into account */
841 static unsigned
842 effective_writemask(midgard_vector_alu *alu)
843 {
844 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
845 * sense) */
846
847 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
848
849 /* If there is a fixed channel count, construct the appropriate mask */
850
851 if (channel_count)
852 return (1 << channel_count) - 1;
853
854 /* Otherwise, just squeeze the existing mask */
855 return squeeze_writemask(alu->mask);
856 }
857
858 static unsigned
859 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
860 {
861 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
862 return hash;
863
864 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
865
866 if (temp)
867 return temp - 1;
868
869 /* If no temp is find, allocate one */
870 temp = ctx->temp_count++;
871 ctx->max_hash = MAX2(ctx->max_hash, hash);
872
873 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
874
875 return temp;
876 }
877
878 static unsigned
879 nir_src_index(compiler_context *ctx, nir_src *src)
880 {
881 if (src->is_ssa)
882 return src->ssa->index;
883 else
884 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
885 }
886
887 static unsigned
888 nir_dest_index(compiler_context *ctx, nir_dest *dst)
889 {
890 if (dst->is_ssa)
891 return dst->ssa.index;
892 else
893 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
894 }
895
896 static unsigned
897 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
898 {
899 return nir_src_index(ctx, &src->src);
900 }
901
902 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
903 * a conditional test) into that register */
904
905 static void
906 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
907 {
908 /* XXX: Force component correct */
909 int condition = nir_src_index(ctx, src);
910
911 /* There is no boolean move instruction. Instead, we simulate a move by
912 * ANDing the condition with itself to get it into r31.w */
913
914 midgard_instruction ins = {
915 .type = TAG_ALU_4,
916 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
917 .ssa_args = {
918 .src0 = condition,
919 .src1 = condition,
920 .dest = SSA_FIXED_REGISTER(31),
921 },
922 .alu = {
923 .op = midgard_alu_op_iand,
924 .reg_mode = midgard_reg_mode_full,
925 .dest_override = midgard_dest_override_none,
926 .mask = (0x3 << 6), /* w */
927 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
928 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
929 },
930 };
931
932 emit_mir_instruction(ctx, ins);
933 }
934
935 #define ALU_CASE(nir, _op) \
936 case nir_op_##nir: \
937 op = midgard_alu_op_##_op; \
938 break;
939
940 static void
941 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
942 {
943 bool is_ssa = instr->dest.dest.is_ssa;
944
945 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
946 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
947 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
948
949 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
950 * supported. A few do not and are commented for now. Also, there are a
951 * number of NIR ops which Midgard does not support and need to be
952 * lowered, also TODO. This switch block emits the opcode and calling
953 * convention of the Midgard instruction; actual packing is done in
954 * emit_alu below */
955
956 unsigned op;
957
958 switch (instr->op) {
959 ALU_CASE(fadd, fadd);
960 ALU_CASE(fmul, fmul);
961 ALU_CASE(fmin, fmin);
962 ALU_CASE(fmax, fmax);
963 ALU_CASE(imin, imin);
964 ALU_CASE(imax, imax);
965 ALU_CASE(fmov, fmov);
966 ALU_CASE(ffloor, ffloor);
967 ALU_CASE(fround_even, froundeven);
968 ALU_CASE(ftrunc, ftrunc);
969 ALU_CASE(fceil, fceil);
970 ALU_CASE(fdot3, fdot3);
971 ALU_CASE(fdot4, fdot4);
972 ALU_CASE(iadd, iadd);
973 ALU_CASE(isub, isub);
974 ALU_CASE(imul, imul);
975
976 /* XXX: Use fmov, not imov, since imov was causing major
977 * issues with texture precision? XXX research */
978 ALU_CASE(imov, fmov);
979
980 ALU_CASE(feq, feq);
981 ALU_CASE(fne, fne);
982 ALU_CASE(flt, flt);
983 ALU_CASE(ieq, ieq);
984 ALU_CASE(ine, ine);
985 ALU_CASE(ilt, ilt);
986
987 ALU_CASE(frcp, frcp);
988 ALU_CASE(frsq, frsqrt);
989 ALU_CASE(fsqrt, fsqrt);
990 ALU_CASE(fpow, fpow);
991 ALU_CASE(fexp2, fexp2);
992 ALU_CASE(flog2, flog2);
993
994 ALU_CASE(f2i32, f2i);
995 ALU_CASE(f2u32, f2u);
996 ALU_CASE(i2f32, i2f);
997 ALU_CASE(u2f32, u2f);
998
999 ALU_CASE(fsin, fsin);
1000 ALU_CASE(fcos, fcos);
1001
1002 ALU_CASE(iand, iand);
1003 ALU_CASE(ior, ior);
1004 ALU_CASE(ixor, ixor);
1005 ALU_CASE(inot, inot);
1006 ALU_CASE(ishl, ishl);
1007 ALU_CASE(ishr, iasr);
1008 ALU_CASE(ushr, ilsr);
1009
1010 ALU_CASE(ball_fequal2, fball_eq);
1011 ALU_CASE(ball_fequal3, fball_eq);
1012 ALU_CASE(ball_fequal4, fball_eq);
1013
1014 ALU_CASE(bany_fnequal2, fbany_neq);
1015 ALU_CASE(bany_fnequal3, fbany_neq);
1016 ALU_CASE(bany_fnequal4, fbany_neq);
1017
1018 ALU_CASE(ball_iequal2, iball_eq);
1019 ALU_CASE(ball_iequal3, iball_eq);
1020 ALU_CASE(ball_iequal4, iball_eq);
1021
1022 ALU_CASE(bany_inequal2, ibany_neq);
1023 ALU_CASE(bany_inequal3, ibany_neq);
1024 ALU_CASE(bany_inequal4, ibany_neq);
1025
1026 /* For greater-or-equal, we use less-or-equal and flip the
1027 * arguments */
1028
1029 case nir_op_ige: {
1030 op = midgard_alu_op_ile;
1031
1032 /* Swap via temporary */
1033 nir_alu_src temp = instr->src[1];
1034 instr->src[1] = instr->src[0];
1035 instr->src[0] = temp;
1036
1037 break;
1038 }
1039
1040 case nir_op_bcsel: {
1041 op = midgard_alu_op_fcsel;
1042
1043 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1044 nr_inputs = 2;
1045
1046 emit_condition(ctx, &instr->src[0].src, false);
1047
1048 /* The condition is the first argument; move the other
1049 * arguments up one to be a binary instruction for
1050 * Midgard */
1051
1052 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1053 break;
1054 }
1055
1056 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1057 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1058 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1059 *
1060 * iand [whatever], #0
1061 *
1062 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1063
1064 case nir_op_b2f32: {
1065 op = midgard_alu_op_iand;
1066 break;
1067 }
1068
1069 default:
1070 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1071 assert(0);
1072 return;
1073 }
1074
1075 /* Fetch unit, quirks, etc information */
1076 unsigned opcode_props = alu_opcode_props[op];
1077 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1078
1079 /* Initialise fields common between scalar/vector instructions */
1080 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1081
1082 /* src0 will always exist afaik, but src1 will not for 1-argument
1083 * instructions. The latter can only be fetched if the instruction
1084 * needs it, or else we may segfault. */
1085
1086 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1087 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1088
1089 /* Rather than use the instruction generation helpers, we do it
1090 * ourselves here to avoid the mess */
1091
1092 midgard_instruction ins = {
1093 .type = TAG_ALU_4,
1094 .ssa_args = {
1095 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1096 .src1 = quirk_flipped_r24 ? src0 : src1,
1097 .dest = dest,
1098 }
1099 };
1100
1101 nir_alu_src *nirmods[2] = { NULL };
1102
1103 if (nr_inputs == 2) {
1104 nirmods[0] = &instr->src[0];
1105 nirmods[1] = &instr->src[1];
1106 } else if (nr_inputs == 1) {
1107 nirmods[quirk_flipped_r24] = &instr->src[0];
1108 } else {
1109 assert(0);
1110 }
1111
1112 midgard_vector_alu alu = {
1113 .op = op,
1114 .reg_mode = midgard_reg_mode_full,
1115 .dest_override = midgard_dest_override_none,
1116 .outmod = outmod,
1117
1118 /* Writemask only valid for non-SSA NIR */
1119 .mask = expand_writemask((1 << nr_components) - 1),
1120
1121 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1122 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1123 };
1124
1125 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1126
1127 if (!is_ssa)
1128 alu.mask &= expand_writemask(instr->dest.write_mask);
1129
1130 ins.alu = alu;
1131
1132 /* Late fixup for emulated instructions */
1133
1134 if (instr->op == nir_op_b2f32) {
1135 /* Presently, our second argument is an inline #0 constant.
1136 * Switch over to an embedded 1.0 constant (that can't fit
1137 * inline, since we're 32-bit, not 16-bit like the inline
1138 * constants) */
1139
1140 ins.ssa_args.inline_constant = false;
1141 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1142 ins.has_constants = true;
1143 ins.constants[0] = 1.0;
1144
1145 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1146 }
1147
1148 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1149 /* To avoid duplicating the lookup tables (probably), true LUT
1150 * instructions can only operate as if they were scalars. Lower
1151 * them here by changing the component. */
1152
1153 uint8_t original_swizzle[4];
1154 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1155
1156 for (int i = 0; i < nr_components; ++i) {
1157 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1158
1159 for (int j = 0; j < 4; ++j)
1160 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1161
1162 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1163 emit_mir_instruction(ctx, ins);
1164 }
1165 } else {
1166 emit_mir_instruction(ctx, ins);
1167 }
1168 }
1169
1170 #undef ALU_CASE
1171
1172 static void
1173 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1174 {
1175 nir_const_value *const_offset;
1176 unsigned offset, reg;
1177
1178 switch (instr->intrinsic) {
1179 case nir_intrinsic_discard_if:
1180 emit_condition(ctx, &instr->src[0], true);
1181
1182 /* fallthrough */
1183
1184 case nir_intrinsic_discard: {
1185 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1186 struct midgard_instruction discard = v_branch(conditional, false);
1187 discard.branch.target_type = TARGET_DISCARD;
1188 emit_mir_instruction(ctx, discard);
1189
1190 ctx->can_discard = true;
1191 break;
1192 }
1193
1194 case nir_intrinsic_load_uniform:
1195 case nir_intrinsic_load_input:
1196 const_offset = nir_src_as_const_value(instr->src[0]);
1197 assert (const_offset && "no indirect inputs");
1198
1199 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1200
1201 reg = nir_dest_index(ctx, &instr->dest);
1202
1203 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1204 /* TODO: half-floats */
1205
1206 int uniform_offset = 0;
1207
1208 if (offset >= SPECIAL_UNIFORM_BASE) {
1209 /* XXX: Resolve which uniform */
1210 uniform_offset = 0;
1211 } else {
1212 /* Offset away from the special
1213 * uniform block */
1214
1215 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1216
1217 /* XXX */
1218 if (!entry) {
1219 DBG("WARNING: Unknown uniform %d\n", offset);
1220 break;
1221 }
1222
1223 uniform_offset = (uintptr_t) (entry) - 1;
1224 uniform_offset += ctx->special_uniforms;
1225 }
1226
1227 if (uniform_offset < ctx->uniform_cutoff) {
1228 /* Fast path: For the first 16 uniform,
1229 * accesses are 0-cycle, since they're
1230 * just a register fetch in the usual
1231 * case. So, we alias the registers
1232 * while we're still in SSA-space */
1233
1234 int reg_slot = 23 - uniform_offset;
1235 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1236 } else {
1237 /* Otherwise, read from the 'special'
1238 * UBO to access higher-indexed
1239 * uniforms, at a performance cost */
1240
1241 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1242
1243 /* TODO: Don't split */
1244 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1245 ins.load_store.address = uniform_offset >> 3;
1246
1247 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1248 emit_mir_instruction(ctx, ins);
1249 }
1250 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1251 /* XXX: Half-floats? */
1252 /* TODO: swizzle, mask */
1253
1254 midgard_instruction ins = m_load_vary_32(reg, offset);
1255
1256 midgard_varying_parameter p = {
1257 .is_varying = 1,
1258 .interpolation = midgard_interp_default,
1259 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1260 };
1261
1262 unsigned u;
1263 memcpy(&u, &p, sizeof(p));
1264 ins.load_store.varying_parameters = u;
1265
1266 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1267 emit_mir_instruction(ctx, ins);
1268 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1269 /* Constant encoded as a pinned constant */
1270
1271 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1272 ins.has_constants = true;
1273 ins.has_blend_constant = true;
1274 emit_mir_instruction(ctx, ins);
1275 } else if (ctx->is_blend) {
1276 /* For blend shaders, a load might be
1277 * translated various ways depending on what
1278 * we're loading. Figure out how this is used */
1279
1280 nir_variable *out = NULL;
1281
1282 nir_foreach_variable(var, &ctx->nir->inputs) {
1283 int drvloc = var->data.driver_location;
1284
1285 if (nir_intrinsic_base(instr) == drvloc) {
1286 out = var;
1287 break;
1288 }
1289 }
1290
1291 assert(out);
1292
1293 if (out->data.location == VARYING_SLOT_COL0) {
1294 /* Source color preloaded to r0 */
1295
1296 midgard_pin_output(ctx, reg, 0);
1297 } else if (out->data.location == VARYING_SLOT_COL1) {
1298 /* Destination color must be read from framebuffer */
1299
1300 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1301 ins.load_store.swizzle = 0; /* xxxx */
1302
1303 /* Read each component sequentially */
1304
1305 for (int c = 0; c < 4; ++c) {
1306 ins.load_store.mask = (1 << c);
1307 ins.load_store.unknown = c;
1308 emit_mir_instruction(ctx, ins);
1309 }
1310
1311 /* vadd.u2f hr2, abs(hr2), #0 */
1312
1313 midgard_vector_alu_src alu_src = blank_alu_src;
1314 alu_src.abs = true;
1315 alu_src.half = true;
1316
1317 midgard_instruction u2f = {
1318 .type = TAG_ALU_4,
1319 .ssa_args = {
1320 .src0 = reg,
1321 .src1 = SSA_UNUSED_0,
1322 .dest = reg,
1323 .inline_constant = true
1324 },
1325 .alu = {
1326 .op = midgard_alu_op_u2f,
1327 .reg_mode = midgard_reg_mode_half,
1328 .dest_override = midgard_dest_override_none,
1329 .mask = 0xF,
1330 .src1 = vector_alu_srco_unsigned(alu_src),
1331 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1332 }
1333 };
1334
1335 emit_mir_instruction(ctx, u2f);
1336
1337 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1338
1339 alu_src.abs = false;
1340
1341 midgard_instruction fmul = {
1342 .type = TAG_ALU_4,
1343 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1344 .ssa_args = {
1345 .src0 = reg,
1346 .dest = reg,
1347 .src1 = SSA_UNUSED_0,
1348 .inline_constant = true
1349 },
1350 .alu = {
1351 .op = midgard_alu_op_fmul,
1352 .reg_mode = midgard_reg_mode_full,
1353 .dest_override = midgard_dest_override_none,
1354 .outmod = midgard_outmod_sat,
1355 .mask = 0xFF,
1356 .src1 = vector_alu_srco_unsigned(alu_src),
1357 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1358 }
1359 };
1360
1361 emit_mir_instruction(ctx, fmul);
1362 } else {
1363 DBG("Unknown input in blend shader\n");
1364 assert(0);
1365 }
1366 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1367 midgard_instruction ins = m_load_attr_32(reg, offset);
1368 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1369 ins.load_store.mask = (1 << instr->num_components) - 1;
1370 emit_mir_instruction(ctx, ins);
1371 } else {
1372 DBG("Unknown load\n");
1373 assert(0);
1374 }
1375
1376 break;
1377
1378 case nir_intrinsic_store_output:
1379 const_offset = nir_src_as_const_value(instr->src[1]);
1380 assert(const_offset && "no indirect outputs");
1381
1382 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1383
1384 reg = nir_src_index(ctx, &instr->src[0]);
1385
1386 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1387 /* gl_FragColor is not emitted with load/store
1388 * instructions. Instead, it gets plonked into
1389 * r0 at the end of the shader and we do the
1390 * framebuffer writeout dance. TODO: Defer
1391 * writes */
1392
1393 midgard_pin_output(ctx, reg, 0);
1394
1395 /* Save the index we're writing to for later reference
1396 * in the epilogue */
1397
1398 ctx->fragment_output = reg;
1399 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1400 /* Varyings are written into one of two special
1401 * varying register, r26 or r27. The register itself is selected as the register
1402 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1403 *
1404 * Normally emitting fmov's is frowned upon,
1405 * but due to unique constraints of
1406 * REGISTER_VARYING, fmov emission + a
1407 * dedicated cleanup pass is the only way to
1408 * guarantee correctness when considering some
1409 * (common) edge cases XXX: FIXME */
1410
1411 /* If this varying corresponds to a constant (why?!),
1412 * emit that now since it won't get picked up by
1413 * hoisting (since there is no corresponding move
1414 * emitted otherwise) */
1415
1416 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1417
1418 if (constant_value) {
1419 /* Special case: emit the varying write
1420 * directly to r26 (looks funny in asm but it's
1421 * fine) and emit the store _now_. Possibly
1422 * slightly slower, but this is a really stupid
1423 * special case anyway (why on earth would you
1424 * have a constant varying? Your own fault for
1425 * slightly worse perf :P) */
1426
1427 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1428 attach_constants(ctx, &ins, constant_value, reg + 1);
1429 emit_mir_instruction(ctx, ins);
1430
1431 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1432 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1433 emit_mir_instruction(ctx, st);
1434 } else {
1435 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1436
1437 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1438 }
1439 } else {
1440 DBG("Unknown store\n");
1441 assert(0);
1442 }
1443
1444 break;
1445
1446 case nir_intrinsic_load_alpha_ref_float:
1447 assert(instr->dest.is_ssa);
1448
1449 float ref_value = ctx->alpha_ref;
1450
1451 float *v = ralloc_array(NULL, float, 4);
1452 memcpy(v, &ref_value, sizeof(float));
1453 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1454 break;
1455
1456
1457 default:
1458 printf ("Unhandled intrinsic\n");
1459 assert(0);
1460 break;
1461 }
1462 }
1463
1464 static unsigned
1465 midgard_tex_format(enum glsl_sampler_dim dim)
1466 {
1467 switch (dim) {
1468 case GLSL_SAMPLER_DIM_2D:
1469 case GLSL_SAMPLER_DIM_EXTERNAL:
1470 return TEXTURE_2D;
1471
1472 case GLSL_SAMPLER_DIM_3D:
1473 return TEXTURE_3D;
1474
1475 case GLSL_SAMPLER_DIM_CUBE:
1476 return TEXTURE_CUBE;
1477
1478 default:
1479 DBG("Unknown sampler dim type\n");
1480 assert(0);
1481 return 0;
1482 }
1483 }
1484
1485 static void
1486 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1487 {
1488 /* TODO */
1489 //assert (!instr->sampler);
1490 //assert (!instr->texture_array_size);
1491 assert (instr->op == nir_texop_tex);
1492
1493 /* Allocate registers via a round robin scheme to alternate between the two registers */
1494 int reg = ctx->texture_op_count & 1;
1495 int in_reg = reg, out_reg = reg;
1496
1497 /* Make room for the reg */
1498
1499 if (ctx->texture_index[reg] > -1)
1500 unalias_ssa(ctx, ctx->texture_index[reg]);
1501
1502 int texture_index = instr->texture_index;
1503 int sampler_index = texture_index;
1504
1505 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1506 switch (instr->src[i].src_type) {
1507 case nir_tex_src_coord: {
1508 int index = nir_src_index(ctx, &instr->src[i].src);
1509
1510 midgard_vector_alu_src alu_src = blank_alu_src;
1511 alu_src.swizzle = (COMPONENT_Y << 2);
1512
1513 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1514 emit_mir_instruction(ctx, ins);
1515
1516 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1517
1518 break;
1519 }
1520
1521 default: {
1522 DBG("Unknown source type\n");
1523 //assert(0);
1524 break;
1525 }
1526 }
1527 }
1528
1529 /* No helper to build texture words -- we do it all here */
1530 midgard_instruction ins = {
1531 .type = TAG_TEXTURE_4,
1532 .texture = {
1533 .op = TEXTURE_OP_NORMAL,
1534 .format = midgard_tex_format(instr->sampler_dim),
1535 .texture_handle = texture_index,
1536 .sampler_handle = sampler_index,
1537
1538 /* TODO: Don't force xyzw */
1539 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1540 .mask = 0xF,
1541
1542 /* TODO: half */
1543 //.in_reg_full = 1,
1544 .out_full = 1,
1545
1546 .filter = 1,
1547
1548 /* Always 1 */
1549 .unknown7 = 1,
1550
1551 /* Assume we can continue; hint it out later */
1552 .cont = 1,
1553 }
1554 };
1555
1556 /* Set registers to read and write from the same place */
1557 ins.texture.in_reg_select = in_reg;
1558 ins.texture.out_reg_select = out_reg;
1559
1560 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1561 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1562 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1563 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1564 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1565 } else {
1566 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1567 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1568 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1569 }
1570
1571 emit_mir_instruction(ctx, ins);
1572
1573 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1574
1575 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1576 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1577 ctx->texture_index[reg] = o_index;
1578
1579 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1580 emit_mir_instruction(ctx, ins2);
1581
1582 /* Used for .cont and .last hinting */
1583 ctx->texture_op_count++;
1584 }
1585
1586 static void
1587 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1588 {
1589 switch (instr->type) {
1590 case nir_jump_break: {
1591 /* Emit a branch out of the loop */
1592 struct midgard_instruction br = v_branch(false, false);
1593 br.branch.target_type = TARGET_BREAK;
1594 br.branch.target_break = ctx->current_loop;
1595 emit_mir_instruction(ctx, br);
1596
1597 DBG("break..\n");
1598 break;
1599 }
1600
1601 default:
1602 DBG("Unknown jump type %d\n", instr->type);
1603 break;
1604 }
1605 }
1606
1607 static void
1608 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1609 {
1610 switch (instr->type) {
1611 case nir_instr_type_load_const:
1612 emit_load_const(ctx, nir_instr_as_load_const(instr));
1613 break;
1614
1615 case nir_instr_type_intrinsic:
1616 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1617 break;
1618
1619 case nir_instr_type_alu:
1620 emit_alu(ctx, nir_instr_as_alu(instr));
1621 break;
1622
1623 case nir_instr_type_tex:
1624 emit_tex(ctx, nir_instr_as_tex(instr));
1625 break;
1626
1627 case nir_instr_type_jump:
1628 emit_jump(ctx, nir_instr_as_jump(instr));
1629 break;
1630
1631 case nir_instr_type_ssa_undef:
1632 /* Spurious */
1633 break;
1634
1635 default:
1636 DBG("Unhandled instruction type\n");
1637 break;
1638 }
1639 }
1640
1641 /* Determine the actual hardware from the index based on the RA results or special values */
1642
1643 static int
1644 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1645 {
1646 if (reg >= SSA_FIXED_MINIMUM)
1647 return SSA_REG_FROM_FIXED(reg);
1648
1649 if (reg >= 0) {
1650 assert(reg < maxreg);
1651 int r = ra_get_node_reg(g, reg);
1652 ctx->work_registers = MAX2(ctx->work_registers, r);
1653 return r;
1654 }
1655
1656 switch (reg) {
1657 /* fmov style unused */
1658 case SSA_UNUSED_0:
1659 return REGISTER_UNUSED;
1660
1661 /* lut style unused */
1662 case SSA_UNUSED_1:
1663 return REGISTER_UNUSED;
1664
1665 default:
1666 DBG("Unknown SSA register alias %d\n", reg);
1667 assert(0);
1668 return 31;
1669 }
1670 }
1671
1672 static unsigned int
1673 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1674 {
1675 /* Choose the first available register to minimise reported register pressure */
1676
1677 for (int i = 0; i < 16; ++i) {
1678 if (BITSET_TEST(regs, i)) {
1679 return i;
1680 }
1681 }
1682
1683 assert(0);
1684 return 0;
1685 }
1686
1687 static bool
1688 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1689 {
1690 if (ins->ssa_args.src0 == src) return true;
1691 if (ins->ssa_args.src1 == src) return true;
1692
1693 return false;
1694 }
1695
1696 static bool
1697 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1698 {
1699 /* Check the rest of the block for liveness */
1700 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1701 if (midgard_is_live_in_instr(ins, src))
1702 return true;
1703 }
1704
1705 /* Check the rest of the blocks for liveness */
1706 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1707 mir_foreach_instr_in_block(b, ins) {
1708 if (midgard_is_live_in_instr(ins, src))
1709 return true;
1710 }
1711 }
1712
1713 /* TODO: How does control flow interact in complex shaders? */
1714
1715 return false;
1716 }
1717
1718 static void
1719 allocate_registers(compiler_context *ctx)
1720 {
1721 /* First, initialize the RA */
1722 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1723
1724 /* Create a primary (general purpose) class, as well as special purpose
1725 * pipeline register classes */
1726
1727 int primary_class = ra_alloc_reg_class(regs);
1728 int varying_class = ra_alloc_reg_class(regs);
1729
1730 /* Add the full set of work registers */
1731 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1732 for (int i = 0; i < work_count; ++i)
1733 ra_class_add_reg(regs, primary_class, i);
1734
1735 /* Add special registers */
1736 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1737 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1738
1739 /* We're done setting up */
1740 ra_set_finalize(regs, NULL);
1741
1742 /* Transform the MIR into squeezed index form */
1743 mir_foreach_block(ctx, block) {
1744 mir_foreach_instr_in_block(block, ins) {
1745 if (ins->compact_branch) continue;
1746
1747 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1748 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1749 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1750 }
1751 if (midgard_debug & MIDGARD_DBG_SHADERS)
1752 print_mir_block(block);
1753 }
1754
1755 /* Let's actually do register allocation */
1756 int nodes = ctx->temp_count;
1757 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1758
1759 /* Set everything to the work register class, unless it has somewhere
1760 * special to go */
1761
1762 mir_foreach_block(ctx, block) {
1763 mir_foreach_instr_in_block(block, ins) {
1764 if (ins->compact_branch) continue;
1765
1766 if (ins->ssa_args.dest < 0) continue;
1767
1768 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1769
1770 int class = primary_class;
1771
1772 ra_set_node_class(g, ins->ssa_args.dest, class);
1773 }
1774 }
1775
1776 for (int index = 0; index <= ctx->max_hash; ++index) {
1777 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1778
1779 if (temp) {
1780 unsigned reg = temp - 1;
1781 int t = find_or_allocate_temp(ctx, index);
1782 ra_set_node_reg(g, t, reg);
1783 }
1784 }
1785
1786 /* Determine liveness */
1787
1788 int *live_start = malloc(nodes * sizeof(int));
1789 int *live_end = malloc(nodes * sizeof(int));
1790
1791 /* Initialize as non-existent */
1792
1793 for (int i = 0; i < nodes; ++i) {
1794 live_start[i] = live_end[i] = -1;
1795 }
1796
1797 int d = 0;
1798
1799 mir_foreach_block(ctx, block) {
1800 mir_foreach_instr_in_block(block, ins) {
1801 if (ins->compact_branch) continue;
1802
1803 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1804 /* If this destination is not yet live, it is now since we just wrote it */
1805
1806 int dest = ins->ssa_args.dest;
1807
1808 if (live_start[dest] == -1)
1809 live_start[dest] = d;
1810 }
1811
1812 /* Since we just used a source, the source might be
1813 * dead now. Scan the rest of the block for
1814 * invocations, and if there are none, the source dies
1815 * */
1816
1817 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1818
1819 for (int src = 0; src < 2; ++src) {
1820 int s = sources[src];
1821
1822 if (s < 0) continue;
1823
1824 if (s >= SSA_FIXED_MINIMUM) continue;
1825
1826 if (!is_live_after(ctx, block, ins, s)) {
1827 live_end[s] = d;
1828 }
1829 }
1830
1831 ++d;
1832 }
1833 }
1834
1835 /* If a node still hasn't been killed, kill it now */
1836
1837 for (int i = 0; i < nodes; ++i) {
1838 /* live_start == -1 most likely indicates a pinned output */
1839
1840 if (live_end[i] == -1)
1841 live_end[i] = d;
1842 }
1843
1844 /* Setup interference between nodes that are live at the same time */
1845
1846 for (int i = 0; i < nodes; ++i) {
1847 for (int j = i + 1; j < nodes; ++j) {
1848 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1849 ra_add_node_interference(g, i, j);
1850 }
1851 }
1852
1853 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1854
1855 if (!ra_allocate(g)) {
1856 DBG("Error allocating registers\n");
1857 assert(0);
1858 }
1859
1860 /* Cleanup */
1861 free(live_start);
1862 free(live_end);
1863
1864 mir_foreach_block(ctx, block) {
1865 mir_foreach_instr_in_block(block, ins) {
1866 if (ins->compact_branch) continue;
1867
1868 ssa_args args = ins->ssa_args;
1869
1870 switch (ins->type) {
1871 case TAG_ALU_4:
1872 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1873
1874 ins->registers.src2_imm = args.inline_constant;
1875
1876 if (args.inline_constant) {
1877 /* Encode inline 16-bit constant as a vector by default */
1878
1879 ins->registers.src2_reg = ins->inline_constant >> 11;
1880
1881 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1882
1883 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1884 ins->alu.src2 = imm << 2;
1885 } else {
1886 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1887 }
1888
1889 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1890
1891 break;
1892
1893 case TAG_LOAD_STORE_4: {
1894 if (OP_IS_STORE(ins->load_store.op)) {
1895 /* TODO: use ssa_args for store_vary */
1896 ins->load_store.reg = 0;
1897 } else {
1898 bool has_dest = args.dest >= 0;
1899 int ssa_arg = has_dest ? args.dest : args.src0;
1900
1901 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1902 }
1903
1904 break;
1905 }
1906
1907 default:
1908 break;
1909 }
1910 }
1911 }
1912 }
1913
1914 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1915 * use scalar ALU instructions, for functional or performance reasons. To do
1916 * this, we just demote vector ALU payloads to scalar. */
1917
1918 static int
1919 component_from_mask(unsigned mask)
1920 {
1921 for (int c = 0; c < 4; ++c) {
1922 if (mask & (3 << (2 * c)))
1923 return c;
1924 }
1925
1926 assert(0);
1927 return 0;
1928 }
1929
1930 static bool
1931 is_single_component_mask(unsigned mask)
1932 {
1933 int components = 0;
1934
1935 for (int c = 0; c < 4; ++c)
1936 if (mask & (3 << (2 * c)))
1937 components++;
1938
1939 return components == 1;
1940 }
1941
1942 /* Create a mask of accessed components from a swizzle to figure out vector
1943 * dependencies */
1944
1945 static unsigned
1946 swizzle_to_access_mask(unsigned swizzle)
1947 {
1948 unsigned component_mask = 0;
1949
1950 for (int i = 0; i < 4; ++i) {
1951 unsigned c = (swizzle >> (2 * i)) & 3;
1952 component_mask |= (1 << c);
1953 }
1954
1955 return component_mask;
1956 }
1957
1958 static unsigned
1959 vector_to_scalar_source(unsigned u)
1960 {
1961 midgard_vector_alu_src v;
1962 memcpy(&v, &u, sizeof(v));
1963
1964 midgard_scalar_alu_src s = {
1965 .abs = v.abs,
1966 .negate = v.negate,
1967 .full = !v.half,
1968 .component = (v.swizzle & 3) << 1
1969 };
1970
1971 unsigned o;
1972 memcpy(&o, &s, sizeof(s));
1973
1974 return o & ((1 << 6) - 1);
1975 }
1976
1977 static midgard_scalar_alu
1978 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1979 {
1980 /* The output component is from the mask */
1981 midgard_scalar_alu s = {
1982 .op = v.op,
1983 .src1 = vector_to_scalar_source(v.src1),
1984 .src2 = vector_to_scalar_source(v.src2),
1985 .unknown = 0,
1986 .outmod = v.outmod,
1987 .output_full = 1, /* TODO: Half */
1988 .output_component = component_from_mask(v.mask) << 1,
1989 };
1990
1991 /* Inline constant is passed along rather than trying to extract it
1992 * from v */
1993
1994 if (ins->ssa_args.inline_constant) {
1995 uint16_t imm = 0;
1996 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1997 imm |= (lower_11 >> 9) & 3;
1998 imm |= (lower_11 >> 6) & 4;
1999 imm |= (lower_11 >> 2) & 0x38;
2000 imm |= (lower_11 & 63) << 6;
2001
2002 s.src2 = imm;
2003 }
2004
2005 return s;
2006 }
2007
2008 /* Midgard prefetches instruction types, so during emission we need to
2009 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2010 * if this is the second to last and the last is an ALU, then it's also 1... */
2011
2012 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2013 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2014
2015 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2016 bytes_emitted += sizeof(type)
2017
2018 static void
2019 emit_binary_vector_instruction(midgard_instruction *ains,
2020 uint16_t *register_words, int *register_words_count,
2021 uint64_t *body_words, size_t *body_size, int *body_words_count,
2022 size_t *bytes_emitted)
2023 {
2024 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2025 *bytes_emitted += sizeof(midgard_reg_info);
2026
2027 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2028 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2029 *bytes_emitted += sizeof(midgard_vector_alu);
2030 }
2031
2032 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2033 * mind that we are a vector architecture and we can write to different
2034 * components simultaneously */
2035
2036 static bool
2037 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2038 {
2039 /* Each instruction reads some registers and writes to a register. See
2040 * where the first writes */
2041
2042 /* Figure out where exactly we wrote to */
2043 int source = first->ssa_args.dest;
2044 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2045
2046 /* As long as the second doesn't read from the first, we're okay */
2047 if (second->ssa_args.src0 == source) {
2048 if (first->type == TAG_ALU_4) {
2049 /* Figure out which components we just read from */
2050
2051 int q = second->alu.src1;
2052 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2053
2054 /* Check if there are components in common, and fail if so */
2055 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2056 return false;
2057 } else
2058 return false;
2059
2060 }
2061
2062 if (second->ssa_args.src1 == source)
2063 return false;
2064
2065 /* Otherwise, it's safe in that regard. Another data hazard is both
2066 * writing to the same place, of course */
2067
2068 if (second->ssa_args.dest == source) {
2069 /* ...but only if the components overlap */
2070 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2071
2072 if (dest_mask & source_mask)
2073 return false;
2074 }
2075
2076 /* ...That's it */
2077 return true;
2078 }
2079
2080 static bool
2081 midgard_has_hazard(
2082 midgard_instruction **segment, unsigned segment_size,
2083 midgard_instruction *ains)
2084 {
2085 for (int s = 0; s < segment_size; ++s)
2086 if (!can_run_concurrent_ssa(segment[s], ains))
2087 return true;
2088
2089 return false;
2090
2091
2092 }
2093
2094 /* Schedules, but does not emit, a single basic block. After scheduling, the
2095 * final tag and size of the block are known, which are necessary for branching
2096 * */
2097
2098 static midgard_bundle
2099 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2100 {
2101 int instructions_emitted = 0, instructions_consumed = -1;
2102 midgard_bundle bundle = { 0 };
2103
2104 uint8_t tag = ins->type;
2105
2106 /* Default to the instruction's tag */
2107 bundle.tag = tag;
2108
2109 switch (ins->type) {
2110 case TAG_ALU_4: {
2111 uint32_t control = 0;
2112 size_t bytes_emitted = sizeof(control);
2113
2114 /* TODO: Constant combining */
2115 int index = 0, last_unit = 0;
2116
2117 /* Previous instructions, for the purpose of parallelism */
2118 midgard_instruction *segment[4] = {0};
2119 int segment_size = 0;
2120
2121 instructions_emitted = -1;
2122 midgard_instruction *pins = ins;
2123
2124 for (;;) {
2125 midgard_instruction *ains = pins;
2126
2127 /* Advance instruction pointer */
2128 if (index) {
2129 ains = mir_next_op(pins);
2130 pins = ains;
2131 }
2132
2133 /* Out-of-work condition */
2134 if ((struct list_head *) ains == &block->instructions)
2135 break;
2136
2137 /* Ensure that the chain can continue */
2138 if (ains->type != TAG_ALU_4) break;
2139
2140 /* According to the presentation "The ARM
2141 * Mali-T880 Mobile GPU" from HotChips 27,
2142 * there are two pipeline stages. Branching
2143 * position determined experimentally. Lines
2144 * are executed in parallel:
2145 *
2146 * [ VMUL ] [ SADD ]
2147 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2148 *
2149 * Verify that there are no ordering dependencies here.
2150 *
2151 * TODO: Allow for parallelism!!!
2152 */
2153
2154 /* Pick a unit for it if it doesn't force a particular unit */
2155
2156 int unit = ains->unit;
2157
2158 if (!unit) {
2159 int op = ains->alu.op;
2160 int units = alu_opcode_props[op];
2161
2162 /* TODO: Promotion of scalars to vectors */
2163 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2164
2165 if (!vector)
2166 assert(units & UNITS_SCALAR);
2167
2168 if (vector) {
2169 if (last_unit >= UNIT_VADD) {
2170 if (units & UNIT_VLUT)
2171 unit = UNIT_VLUT;
2172 else
2173 break;
2174 } else {
2175 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2176 unit = UNIT_VMUL;
2177 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2178 unit = UNIT_VADD;
2179 else if (units & UNIT_VLUT)
2180 unit = UNIT_VLUT;
2181 else
2182 break;
2183 }
2184 } else {
2185 if (last_unit >= UNIT_VADD) {
2186 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2187 unit = UNIT_SMUL;
2188 else if (units & UNIT_VLUT)
2189 unit = UNIT_VLUT;
2190 else
2191 break;
2192 } else {
2193 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2194 unit = UNIT_SADD;
2195 else if (units & UNIT_SMUL)
2196 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2197 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2198 unit = UNIT_VADD;
2199 else
2200 break;
2201 }
2202 }
2203
2204 assert(unit & units);
2205 }
2206
2207 /* Late unit check, this time for encoding (not parallelism) */
2208 if (unit <= last_unit) break;
2209
2210 /* Clear the segment */
2211 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2212 segment_size = 0;
2213
2214 if (midgard_has_hazard(segment, segment_size, ains))
2215 break;
2216
2217 /* We're good to go -- emit the instruction */
2218 ains->unit = unit;
2219
2220 segment[segment_size++] = ains;
2221
2222 /* Only one set of embedded constants per
2223 * bundle possible; if we have more, we must
2224 * break the chain early, unfortunately */
2225
2226 if (ains->has_constants) {
2227 if (bundle.has_embedded_constants) {
2228 /* ...but if there are already
2229 * constants but these are the
2230 * *same* constants, we let it
2231 * through */
2232
2233 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2234 break;
2235 } else {
2236 bundle.has_embedded_constants = true;
2237 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2238
2239 /* If this is a blend shader special constant, track it for patching */
2240 if (ains->has_blend_constant)
2241 bundle.has_blend_constant = true;
2242 }
2243 }
2244
2245 if (ains->unit & UNITS_ANY_VECTOR) {
2246 emit_binary_vector_instruction(ains, bundle.register_words,
2247 &bundle.register_words_count, bundle.body_words,
2248 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2249 } else if (ains->compact_branch) {
2250 /* All of r0 has to be written out
2251 * along with the branch writeout.
2252 * (slow!) */
2253
2254 if (ains->writeout) {
2255 if (index == 0) {
2256 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2257 ins.unit = UNIT_VMUL;
2258
2259 control |= ins.unit;
2260
2261 emit_binary_vector_instruction(&ins, bundle.register_words,
2262 &bundle.register_words_count, bundle.body_words,
2263 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2264 } else {
2265 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2266 bool written_late = false;
2267 bool components[4] = { 0 };
2268 uint16_t register_dep_mask = 0;
2269 uint16_t written_mask = 0;
2270
2271 midgard_instruction *qins = ins;
2272 for (int t = 0; t < index; ++t) {
2273 if (qins->registers.out_reg != 0) {
2274 /* Mark down writes */
2275
2276 written_mask |= (1 << qins->registers.out_reg);
2277 } else {
2278 /* Mark down the register dependencies for errata check */
2279
2280 if (qins->registers.src1_reg < 16)
2281 register_dep_mask |= (1 << qins->registers.src1_reg);
2282
2283 if (qins->registers.src2_reg < 16)
2284 register_dep_mask |= (1 << qins->registers.src2_reg);
2285
2286 int mask = qins->alu.mask;
2287
2288 for (int c = 0; c < 4; ++c)
2289 if (mask & (0x3 << (2 * c)))
2290 components[c] = true;
2291
2292 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2293
2294 if (qins->unit == UNIT_VLUT)
2295 written_late = true;
2296 }
2297
2298 /* Advance instruction pointer */
2299 qins = mir_next_op(qins);
2300 }
2301
2302
2303 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2304 if (register_dep_mask & written_mask) {
2305 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2306 break;
2307 }
2308
2309 if (written_late)
2310 break;
2311
2312 /* If even a single component is not written, break it up (conservative check). */
2313 bool breakup = false;
2314
2315 for (int c = 0; c < 4; ++c)
2316 if (!components[c])
2317 breakup = true;
2318
2319 if (breakup)
2320 break;
2321
2322 /* Otherwise, we're free to proceed */
2323 }
2324 }
2325
2326 if (ains->unit == ALU_ENAB_BRANCH) {
2327 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2328 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2329 bytes_emitted += sizeof(midgard_branch_extended);
2330 } else {
2331 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2332 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2333 bytes_emitted += sizeof(ains->br_compact);
2334 }
2335 } else {
2336 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2337 bytes_emitted += sizeof(midgard_reg_info);
2338
2339 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2340 bundle.body_words_count++;
2341 bytes_emitted += sizeof(midgard_scalar_alu);
2342 }
2343
2344 /* Defer marking until after writing to allow for break */
2345 control |= ains->unit;
2346 last_unit = ains->unit;
2347 ++instructions_emitted;
2348 ++index;
2349 }
2350
2351 /* Bubble up the number of instructions for skipping */
2352 instructions_consumed = index - 1;
2353
2354 int padding = 0;
2355
2356 /* Pad ALU op to nearest word */
2357
2358 if (bytes_emitted & 15) {
2359 padding = 16 - (bytes_emitted & 15);
2360 bytes_emitted += padding;
2361 }
2362
2363 /* Constants must always be quadwords */
2364 if (bundle.has_embedded_constants)
2365 bytes_emitted += 16;
2366
2367 /* Size ALU instruction for tag */
2368 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2369 bundle.padding = padding;
2370 bundle.control = bundle.tag | control;
2371
2372 break;
2373 }
2374
2375 case TAG_LOAD_STORE_4: {
2376 /* Load store instructions have two words at once. If
2377 * we only have one queued up, we need to NOP pad.
2378 * Otherwise, we store both in succession to save space
2379 * and cycles -- letting them go in parallel -- skip
2380 * the next. The usefulness of this optimisation is
2381 * greatly dependent on the quality of the instruction
2382 * scheduler.
2383 */
2384
2385 midgard_instruction *next_op = mir_next_op(ins);
2386
2387 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2388 /* As the two operate concurrently, make sure
2389 * they are not dependent */
2390
2391 if (can_run_concurrent_ssa(ins, next_op) || true) {
2392 /* Skip ahead, since it's redundant with the pair */
2393 instructions_consumed = 1 + (instructions_emitted++);
2394 }
2395 }
2396
2397 break;
2398 }
2399
2400 default:
2401 /* Texture ops default to single-op-per-bundle scheduling */
2402 break;
2403 }
2404
2405 /* Copy the instructions into the bundle */
2406 bundle.instruction_count = instructions_emitted + 1;
2407
2408 int used_idx = 0;
2409
2410 midgard_instruction *uins = ins;
2411 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2412 bundle.instructions[used_idx++] = *uins;
2413 uins = mir_next_op(uins);
2414 }
2415
2416 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2417
2418 return bundle;
2419 }
2420
2421 static int
2422 quadword_size(int tag)
2423 {
2424 switch (tag) {
2425 case TAG_ALU_4:
2426 return 1;
2427
2428 case TAG_ALU_8:
2429 return 2;
2430
2431 case TAG_ALU_12:
2432 return 3;
2433
2434 case TAG_ALU_16:
2435 return 4;
2436
2437 case TAG_LOAD_STORE_4:
2438 return 1;
2439
2440 case TAG_TEXTURE_4:
2441 return 1;
2442
2443 default:
2444 assert(0);
2445 return 0;
2446 }
2447 }
2448
2449 /* Schedule a single block by iterating its instruction to create bundles.
2450 * While we go, tally about the bundle sizes to compute the block size. */
2451
2452 static void
2453 schedule_block(compiler_context *ctx, midgard_block *block)
2454 {
2455 util_dynarray_init(&block->bundles, NULL);
2456
2457 block->quadword_count = 0;
2458
2459 mir_foreach_instr_in_block(block, ins) {
2460 int skip;
2461 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2462 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2463
2464 if (bundle.has_blend_constant) {
2465 /* TODO: Multiblock? */
2466 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2467 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2468 }
2469
2470 while(skip--)
2471 ins = mir_next_op(ins);
2472
2473 block->quadword_count += quadword_size(bundle.tag);
2474 }
2475
2476 block->is_scheduled = true;
2477 }
2478
2479 static void
2480 schedule_program(compiler_context *ctx)
2481 {
2482 allocate_registers(ctx);
2483
2484 mir_foreach_block(ctx, block) {
2485 schedule_block(ctx, block);
2486 }
2487 }
2488
2489 /* After everything is scheduled, emit whole bundles at a time */
2490
2491 static void
2492 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2493 {
2494 int lookahead = next_tag << 4;
2495
2496 switch (bundle->tag) {
2497 case TAG_ALU_4:
2498 case TAG_ALU_8:
2499 case TAG_ALU_12:
2500 case TAG_ALU_16: {
2501 /* Actually emit each component */
2502 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2503
2504 for (int i = 0; i < bundle->register_words_count; ++i)
2505 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2506
2507 /* Emit body words based on the instructions bundled */
2508 for (int i = 0; i < bundle->instruction_count; ++i) {
2509 midgard_instruction *ins = &bundle->instructions[i];
2510
2511 if (ins->unit & UNITS_ANY_VECTOR) {
2512 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2513 } else if (ins->compact_branch) {
2514 /* Dummy move, XXX DRY */
2515 if ((i == 0) && ins->writeout) {
2516 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2517 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2518 }
2519
2520 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2521 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2522 } else {
2523 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2524 }
2525 } else {
2526 /* Scalar */
2527 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2528 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2529 }
2530 }
2531
2532 /* Emit padding (all zero) */
2533 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2534
2535 /* Tack on constants */
2536
2537 if (bundle->has_embedded_constants) {
2538 util_dynarray_append(emission, float, bundle->constants[0]);
2539 util_dynarray_append(emission, float, bundle->constants[1]);
2540 util_dynarray_append(emission, float, bundle->constants[2]);
2541 util_dynarray_append(emission, float, bundle->constants[3]);
2542 }
2543
2544 break;
2545 }
2546
2547 case TAG_LOAD_STORE_4: {
2548 /* One or two composing instructions */
2549
2550 uint64_t current64, next64 = LDST_NOP;
2551
2552 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2553
2554 if (bundle->instruction_count == 2)
2555 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2556
2557 midgard_load_store instruction = {
2558 .type = bundle->tag,
2559 .next_type = next_tag,
2560 .word1 = current64,
2561 .word2 = next64
2562 };
2563
2564 util_dynarray_append(emission, midgard_load_store, instruction);
2565
2566 break;
2567 }
2568
2569 case TAG_TEXTURE_4: {
2570 /* Texture instructions are easy, since there is no
2571 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2572
2573 midgard_instruction *ins = &bundle->instructions[0];
2574
2575 ins->texture.type = TAG_TEXTURE_4;
2576 ins->texture.next_type = next_tag;
2577
2578 ctx->texture_op_count--;
2579
2580 if (!ctx->texture_op_count) {
2581 ins->texture.cont = 0;
2582 ins->texture.last = 1;
2583 }
2584
2585 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2586 break;
2587 }
2588
2589 default:
2590 DBG("Unknown midgard instruction type\n");
2591 assert(0);
2592 break;
2593 }
2594 }
2595
2596
2597 /* ALU instructions can inline or embed constants, which decreases register
2598 * pressure and saves space. */
2599
2600 #define CONDITIONAL_ATTACH(src) { \
2601 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2602 \
2603 if (entry) { \
2604 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2605 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2606 } \
2607 }
2608
2609 static void
2610 inline_alu_constants(compiler_context *ctx)
2611 {
2612 mir_foreach_instr(ctx, alu) {
2613 /* Other instructions cannot inline constants */
2614 if (alu->type != TAG_ALU_4) continue;
2615
2616 /* If there is already a constant here, we can do nothing */
2617 if (alu->has_constants) continue;
2618
2619 CONDITIONAL_ATTACH(src0);
2620
2621 if (!alu->has_constants) {
2622 CONDITIONAL_ATTACH(src1)
2623 } else if (!alu->inline_constant) {
2624 /* Corner case: _two_ vec4 constants, for instance with a
2625 * csel. For this case, we can only use a constant
2626 * register for one, we'll have to emit a move for the
2627 * other. Note, if both arguments are constants, then
2628 * necessarily neither argument depends on the value of
2629 * any particular register. As the destination register
2630 * will be wiped, that means we can spill the constant
2631 * to the destination register.
2632 */
2633
2634 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2635 unsigned scratch = alu->ssa_args.dest;
2636
2637 if (entry) {
2638 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2639 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2640
2641 /* Force a break XXX Defer r31 writes */
2642 ins.unit = UNIT_VLUT;
2643
2644 /* Set the source */
2645 alu->ssa_args.src1 = scratch;
2646
2647 /* Inject us -before- the last instruction which set r31 */
2648 mir_insert_instruction_before(mir_prev_op(alu), ins);
2649 }
2650 }
2651 }
2652 }
2653
2654 /* Midgard supports two types of constants, embedded constants (128-bit) and
2655 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2656 * constants can be demoted to inline constants, for space savings and
2657 * sometimes a performance boost */
2658
2659 static void
2660 embedded_to_inline_constant(compiler_context *ctx)
2661 {
2662 mir_foreach_instr(ctx, ins) {
2663 if (!ins->has_constants) continue;
2664
2665 if (ins->ssa_args.inline_constant) continue;
2666
2667 /* Blend constants must not be inlined by definition */
2668 if (ins->has_blend_constant) continue;
2669
2670 /* src1 cannot be an inline constant due to encoding
2671 * restrictions. So, if possible we try to flip the arguments
2672 * in that case */
2673
2674 int op = ins->alu.op;
2675
2676 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2677 /* Flip based on op. Fallthrough intentional */
2678
2679 switch (op) {
2680 /* These ops require an operational change to flip their arguments TODO */
2681 case midgard_alu_op_flt:
2682 case midgard_alu_op_fle:
2683 case midgard_alu_op_ilt:
2684 case midgard_alu_op_ile:
2685 case midgard_alu_op_fcsel:
2686 case midgard_alu_op_icsel:
2687 case midgard_alu_op_isub:
2688 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2689 break;
2690
2691 /* These ops are commutative and Just Flip */
2692 case midgard_alu_op_fne:
2693 case midgard_alu_op_fadd:
2694 case midgard_alu_op_fmul:
2695 case midgard_alu_op_fmin:
2696 case midgard_alu_op_fmax:
2697 case midgard_alu_op_iadd:
2698 case midgard_alu_op_imul:
2699 case midgard_alu_op_feq:
2700 case midgard_alu_op_ieq:
2701 case midgard_alu_op_ine:
2702 case midgard_alu_op_iand:
2703 case midgard_alu_op_ior:
2704 case midgard_alu_op_ixor:
2705 /* Flip the SSA numbers */
2706 ins->ssa_args.src0 = ins->ssa_args.src1;
2707 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2708
2709 /* And flip the modifiers */
2710
2711 unsigned src_temp;
2712
2713 src_temp = ins->alu.src2;
2714 ins->alu.src2 = ins->alu.src1;
2715 ins->alu.src1 = src_temp;
2716
2717 default:
2718 break;
2719 }
2720 }
2721
2722 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2723 /* Extract the source information */
2724
2725 midgard_vector_alu_src *src;
2726 int q = ins->alu.src2;
2727 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2728 src = m;
2729
2730 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2731 int component = src->swizzle & 3;
2732
2733 /* Scale constant appropriately, if we can legally */
2734 uint16_t scaled_constant = 0;
2735
2736 /* XXX: Check legality */
2737 if (midgard_is_integer_op(op)) {
2738 /* TODO: Inline integer */
2739 continue;
2740
2741 unsigned int *iconstants = (unsigned int *) ins->constants;
2742 scaled_constant = (uint16_t) iconstants[component];
2743
2744 /* Constant overflow after resize */
2745 if (scaled_constant != iconstants[component])
2746 continue;
2747 } else {
2748 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2749 }
2750
2751 /* We don't know how to handle these with a constant */
2752
2753 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2754 DBG("Bailing inline constant...\n");
2755 continue;
2756 }
2757
2758 /* Make sure that the constant is not itself a
2759 * vector by checking if all accessed values
2760 * (by the swizzle) are the same. */
2761
2762 uint32_t *cons = (uint32_t *) ins->constants;
2763 uint32_t value = cons[component];
2764
2765 bool is_vector = false;
2766 unsigned mask = effective_writemask(&ins->alu);
2767
2768 for (int c = 1; c < 4; ++c) {
2769 /* We only care if this component is actually used */
2770 if (!(mask & (1 << c)))
2771 continue;
2772
2773 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2774
2775 if (test != value) {
2776 is_vector = true;
2777 break;
2778 }
2779 }
2780
2781 if (is_vector)
2782 continue;
2783
2784 /* Get rid of the embedded constant */
2785 ins->has_constants = false;
2786 ins->ssa_args.src1 = SSA_UNUSED_0;
2787 ins->ssa_args.inline_constant = true;
2788 ins->inline_constant = scaled_constant;
2789 }
2790 }
2791 }
2792
2793 /* Map normal SSA sources to other SSA sources / fixed registers (like
2794 * uniforms) */
2795
2796 static void
2797 map_ssa_to_alias(compiler_context *ctx, int *ref)
2798 {
2799 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2800
2801 if (alias) {
2802 /* Remove entry in leftovers to avoid a redunant fmov */
2803
2804 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2805
2806 if (leftover)
2807 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2808
2809 /* Assign the alias map */
2810 *ref = alias - 1;
2811 return;
2812 }
2813 }
2814
2815 #define AS_SRC(to, u) \
2816 int q##to = ins->alu.src2; \
2817 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2818
2819 /* Removing unused moves is necessary to clean up the texture pipeline results.
2820 *
2821 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2822
2823 static void
2824 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2825 {
2826 mir_foreach_instr_in_block_safe(block, ins) {
2827 if (ins->type != TAG_ALU_4) continue;
2828
2829 if (ins->alu.op != midgard_alu_op_fmov) continue;
2830
2831 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2832
2833 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2834
2835 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2836
2837 mir_remove_instruction(ins);
2838 }
2839 }
2840
2841 /* The following passes reorder MIR instructions to enable better scheduling */
2842
2843 static void
2844 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2845 {
2846 mir_foreach_instr_in_block_safe(block, ins) {
2847 if (ins->type != TAG_LOAD_STORE_4) continue;
2848
2849 /* We've found a load/store op. Check if next is also load/store. */
2850 midgard_instruction *next_op = mir_next_op(ins);
2851 if (&next_op->link != &block->instructions) {
2852 if (next_op->type == TAG_LOAD_STORE_4) {
2853 /* If so, we're done since we're a pair */
2854 ins = mir_next_op(ins);
2855 continue;
2856 }
2857
2858 /* Maximum search distance to pair, to avoid register pressure disasters */
2859 int search_distance = 8;
2860
2861 /* Otherwise, we have an orphaned load/store -- search for another load */
2862 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2863 /* Terminate search if necessary */
2864 if (!(search_distance--)) break;
2865
2866 if (c->type != TAG_LOAD_STORE_4) continue;
2867
2868 if (OP_IS_STORE(c->load_store.op)) continue;
2869
2870 /* We found one! Move it up to pair and remove it from the old location */
2871
2872 mir_insert_instruction_before(ins, *c);
2873 mir_remove_instruction(c);
2874
2875 break;
2876 }
2877 }
2878 }
2879 }
2880
2881 /* Emit varying stores late */
2882
2883 static void
2884 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2885 /* Iterate in reverse to get the final write, rather than the first */
2886
2887 mir_foreach_instr_in_block_safe_rev(block, ins) {
2888 /* Check if what we just wrote needs a store */
2889 int idx = ins->ssa_args.dest;
2890 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2891
2892 if (!varying) continue;
2893
2894 varying -= 1;
2895
2896 /* We need to store to the appropriate varying, so emit the
2897 * move/store */
2898
2899 /* TODO: Integrate with special purpose RA (and scheduler?) */
2900 bool high_varying_register = false;
2901
2902 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2903
2904 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2905 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2906
2907 mir_insert_instruction_before(mir_next_op(ins), st);
2908 mir_insert_instruction_before(mir_next_op(ins), mov);
2909
2910 /* We no longer need to store this varying */
2911 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2912 }
2913 }
2914
2915 /* If there are leftovers after the below pass, emit actual fmov
2916 * instructions for the slow-but-correct path */
2917
2918 static void
2919 emit_leftover_move(compiler_context *ctx)
2920 {
2921 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2922 int base = ((uintptr_t) leftover->key) - 1;
2923 int mapped = base;
2924
2925 map_ssa_to_alias(ctx, &mapped);
2926 EMIT(fmov, mapped, blank_alu_src, base);
2927 }
2928 }
2929
2930 static void
2931 actualise_ssa_to_alias(compiler_context *ctx)
2932 {
2933 mir_foreach_instr(ctx, ins) {
2934 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2935 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2936 }
2937
2938 emit_leftover_move(ctx);
2939 }
2940
2941 /* Vertex shaders do not write gl_Position as is; instead, they write a
2942 * transformed screen space position as a varying. See section 12.5 "Coordinate
2943 * Transformation" of the ES 3.2 full specification for details.
2944 *
2945 * This transformation occurs early on, as NIR and prior to optimisation, in
2946 * order to take advantage of NIR optimisation passes of the transform itself.
2947 * */
2948
2949 static void
2950 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2951 {
2952 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2953
2954 /* Get viewport from the uniforms */
2955 nir_intrinsic_instr *load;
2956 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2957 load->num_components = 4;
2958 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2959 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2960 nir_builder_instr_insert(b, &load->instr);
2961
2962 /* Formatted as <width, height, centerx, centery> */
2963 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2964 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2965 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2966 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2967
2968 /* XXX: From uniforms? */
2969 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2970 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2971
2972 /* World space to normalised device coordinates */
2973
2974 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2975 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2976
2977 /* Normalised device coordinates to screen space */
2978
2979 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2980 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2981
2982 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2983 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2984 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2985
2986 /* gl_Position will be written out in screenspace xyz, with w set to
2987 * the reciprocal we computed earlier. The transformed w component is
2988 * then used for perspective-correct varying interpolation. The
2989 * transformed w component must preserve its original sign; this is
2990 * used in depth clipping computations */
2991
2992 nir_ssa_def *screen_space = nir_vec4(b,
2993 nir_channel(b, viewport_xy, 0),
2994 nir_channel(b, viewport_xy, 1),
2995 screen_depth,
2996 w_recip);
2997
2998 /* Finally, write out the transformed values to the varying */
2999
3000 nir_intrinsic_instr *store;
3001 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3002 store->num_components = 4;
3003 nir_intrinsic_set_base(store, 0);
3004 nir_intrinsic_set_write_mask(store, 0xf);
3005 store->src[0].ssa = screen_space;
3006 store->src[0].is_ssa = true;
3007 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3008 nir_builder_instr_insert(b, &store->instr);
3009 }
3010
3011 static void
3012 transform_position_writes(nir_shader *shader)
3013 {
3014 nir_foreach_function(func, shader) {
3015 nir_foreach_block(block, func->impl) {
3016 nir_foreach_instr_safe(instr, block) {
3017 if (instr->type != nir_instr_type_intrinsic) continue;
3018
3019 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3020 nir_variable *out = NULL;
3021
3022 switch (intr->intrinsic) {
3023 case nir_intrinsic_store_output:
3024 /* already had i/o lowered.. lookup the matching output var: */
3025 nir_foreach_variable(var, &shader->outputs) {
3026 int drvloc = var->data.driver_location;
3027
3028 if (nir_intrinsic_base(intr) == drvloc) {
3029 out = var;
3030 break;
3031 }
3032 }
3033
3034 break;
3035
3036 default:
3037 break;
3038 }
3039
3040 if (!out) continue;
3041
3042 if (out->data.mode != nir_var_shader_out)
3043 continue;
3044
3045 if (out->data.location != VARYING_SLOT_POS)
3046 continue;
3047
3048 nir_builder b;
3049 nir_builder_init(&b, func->impl);
3050 b.cursor = nir_before_instr(instr);
3051
3052 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3053 nir_instr_remove(instr);
3054 }
3055 }
3056 }
3057 }
3058
3059 static void
3060 emit_fragment_epilogue(compiler_context *ctx)
3061 {
3062 /* Special case: writing out constants requires us to include the move
3063 * explicitly now, so shove it into r0 */
3064
3065 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3066
3067 if (constant_value) {
3068 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3069 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3070 emit_mir_instruction(ctx, ins);
3071 }
3072
3073 /* Perform the actual fragment writeout. We have two writeout/branch
3074 * instructions, forming a loop until writeout is successful as per the
3075 * docs. TODO: gl_FragDepth */
3076
3077 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3078 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3079 }
3080
3081 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3082 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3083 * with the int8 analogue to the fragment epilogue */
3084
3085 static void
3086 emit_blend_epilogue(compiler_context *ctx)
3087 {
3088 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3089
3090 midgard_instruction scale = {
3091 .type = TAG_ALU_4,
3092 .unit = UNIT_VMUL,
3093 .inline_constant = _mesa_float_to_half(255.0),
3094 .ssa_args = {
3095 .src0 = SSA_FIXED_REGISTER(0),
3096 .src1 = SSA_UNUSED_0,
3097 .dest = SSA_FIXED_REGISTER(24),
3098 .inline_constant = true
3099 },
3100 .alu = {
3101 .op = midgard_alu_op_fmul,
3102 .reg_mode = midgard_reg_mode_full,
3103 .dest_override = midgard_dest_override_lower,
3104 .mask = 0xFF,
3105 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3106 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3107 }
3108 };
3109
3110 emit_mir_instruction(ctx, scale);
3111
3112 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3113
3114 midgard_vector_alu_src alu_src = blank_alu_src;
3115 alu_src.half = true;
3116
3117 midgard_instruction f2u8 = {
3118 .type = TAG_ALU_4,
3119 .ssa_args = {
3120 .src0 = SSA_FIXED_REGISTER(24),
3121 .src1 = SSA_UNUSED_0,
3122 .dest = SSA_FIXED_REGISTER(0),
3123 .inline_constant = true
3124 },
3125 .alu = {
3126 .op = midgard_alu_op_f2u8,
3127 .reg_mode = midgard_reg_mode_half,
3128 .dest_override = midgard_dest_override_lower,
3129 .outmod = midgard_outmod_pos,
3130 .mask = 0xF,
3131 .src1 = vector_alu_srco_unsigned(alu_src),
3132 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3133 }
3134 };
3135
3136 emit_mir_instruction(ctx, f2u8);
3137
3138 /* vmul.imov.quarter r0, r0, r0 */
3139
3140 midgard_instruction imov_8 = {
3141 .type = TAG_ALU_4,
3142 .ssa_args = {
3143 .src0 = SSA_UNUSED_1,
3144 .src1 = SSA_FIXED_REGISTER(0),
3145 .dest = SSA_FIXED_REGISTER(0),
3146 },
3147 .alu = {
3148 .op = midgard_alu_op_imov,
3149 .reg_mode = midgard_reg_mode_quarter,
3150 .dest_override = midgard_dest_override_none,
3151 .mask = 0xFF,
3152 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3153 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3154 }
3155 };
3156
3157 /* Emit branch epilogue with the 8-bit move as the source */
3158
3159 emit_mir_instruction(ctx, imov_8);
3160 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3161
3162 emit_mir_instruction(ctx, imov_8);
3163 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3164 }
3165
3166 static midgard_block *
3167 emit_block(compiler_context *ctx, nir_block *block)
3168 {
3169 midgard_block *this_block = malloc(sizeof(midgard_block));
3170 list_addtail(&this_block->link, &ctx->blocks);
3171
3172 this_block->is_scheduled = false;
3173 ++ctx->block_count;
3174
3175 ctx->texture_index[0] = -1;
3176 ctx->texture_index[1] = -1;
3177
3178 /* Set up current block */
3179 list_inithead(&this_block->instructions);
3180 ctx->current_block = this_block;
3181
3182 nir_foreach_instr(instr, block) {
3183 emit_instr(ctx, instr);
3184 ++ctx->instruction_count;
3185 }
3186
3187 inline_alu_constants(ctx);
3188 embedded_to_inline_constant(ctx);
3189
3190 /* Perform heavylifting for aliasing */
3191 actualise_ssa_to_alias(ctx);
3192
3193 midgard_emit_store(ctx, this_block);
3194 midgard_eliminate_orphan_moves(ctx, this_block);
3195 midgard_pair_load_store(ctx, this_block);
3196
3197 /* Append fragment shader epilogue (value writeout) */
3198 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3199 if (block == nir_impl_last_block(ctx->func->impl)) {
3200 if (ctx->is_blend)
3201 emit_blend_epilogue(ctx);
3202 else
3203 emit_fragment_epilogue(ctx);
3204 }
3205 }
3206
3207 /* Fallthrough save */
3208 this_block->next_fallthrough = ctx->previous_source_block;
3209
3210 if (block == nir_start_block(ctx->func->impl))
3211 ctx->initial_block = this_block;
3212
3213 if (block == nir_impl_last_block(ctx->func->impl))
3214 ctx->final_block = this_block;
3215
3216 /* Allow the next control flow to access us retroactively, for
3217 * branching etc */
3218 ctx->current_block = this_block;
3219
3220 /* Document the fallthrough chain */
3221 ctx->previous_source_block = this_block;
3222
3223 return this_block;
3224 }
3225
3226 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3227
3228 static void
3229 emit_if(struct compiler_context *ctx, nir_if *nif)
3230 {
3231 /* Conditional branches expect the condition in r31.w; emit a move for
3232 * that in the _previous_ block (which is the current block). */
3233 emit_condition(ctx, &nif->condition, true);
3234
3235 /* Speculatively emit the branch, but we can't fill it in until later */
3236 EMIT(branch, true, true);
3237 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3238
3239 /* Emit the two subblocks */
3240 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3241
3242 /* Emit a jump from the end of the then block to the end of the else */
3243 EMIT(branch, false, false);
3244 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3245
3246 /* Emit second block, and check if it's empty */
3247
3248 int else_idx = ctx->block_count;
3249 int count_in = ctx->instruction_count;
3250 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3251 int after_else_idx = ctx->block_count;
3252
3253 /* Now that we have the subblocks emitted, fix up the branches */
3254
3255 assert(then_block);
3256 assert(else_block);
3257
3258 if (ctx->instruction_count == count_in) {
3259 /* The else block is empty, so don't emit an exit jump */
3260 mir_remove_instruction(then_exit);
3261 then_branch->branch.target_block = after_else_idx;
3262 } else {
3263 then_branch->branch.target_block = else_idx;
3264 then_exit->branch.target_block = after_else_idx;
3265 }
3266 }
3267
3268 static void
3269 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3270 {
3271 /* Remember where we are */
3272 midgard_block *start_block = ctx->current_block;
3273
3274 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3275 * single current_loop variable, maybe we need a stack */
3276
3277 int loop_idx = ++ctx->current_loop;
3278
3279 /* Get index from before the body so we can loop back later */
3280 int start_idx = ctx->block_count;
3281
3282 /* Emit the body itself */
3283 emit_cf_list(ctx, &nloop->body);
3284
3285 /* Branch back to loop back */
3286 struct midgard_instruction br_back = v_branch(false, false);
3287 br_back.branch.target_block = start_idx;
3288 emit_mir_instruction(ctx, br_back);
3289
3290 /* Find the index of the block about to follow us (note: we don't add
3291 * one; blocks are 0-indexed so we get a fencepost problem) */
3292 int break_block_idx = ctx->block_count;
3293
3294 /* Fix up the break statements we emitted to point to the right place,
3295 * now that we can allocate a block number for them */
3296
3297 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3298 if (midgard_debug & MIDGARD_DBG_SHADERS)
3299 print_mir_block(block);
3300 mir_foreach_instr_in_block(block, ins) {
3301 if (ins->type != TAG_ALU_4) continue;
3302 if (!ins->compact_branch) continue;
3303 if (ins->prepacked_branch) continue;
3304
3305 /* We found a branch -- check the type to see if we need to do anything */
3306 if (ins->branch.target_type != TARGET_BREAK) continue;
3307
3308 /* It's a break! Check if it's our break */
3309 if (ins->branch.target_break != loop_idx) continue;
3310
3311 /* Okay, cool, we're breaking out of this loop.
3312 * Rewrite from a break to a goto */
3313
3314 ins->branch.target_type = TARGET_GOTO;
3315 ins->branch.target_block = break_block_idx;
3316 }
3317 }
3318 }
3319
3320 static midgard_block *
3321 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3322 {
3323 midgard_block *start_block = NULL;
3324
3325 foreach_list_typed(nir_cf_node, node, node, list) {
3326 switch (node->type) {
3327 case nir_cf_node_block: {
3328 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3329
3330 if (!start_block)
3331 start_block = block;
3332
3333 break;
3334 }
3335
3336 case nir_cf_node_if:
3337 emit_if(ctx, nir_cf_node_as_if(node));
3338 break;
3339
3340 case nir_cf_node_loop:
3341 emit_loop(ctx, nir_cf_node_as_loop(node));
3342 break;
3343
3344 case nir_cf_node_function:
3345 assert(0);
3346 break;
3347 }
3348 }
3349
3350 return start_block;
3351 }
3352
3353 /* Due to lookahead, we need to report the first tag executed in the command
3354 * stream and in branch targets. An initial block might be empty, so iterate
3355 * until we find one that 'works' */
3356
3357 static unsigned
3358 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3359 {
3360 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3361
3362 unsigned first_tag = 0;
3363
3364 do {
3365 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3366
3367 if (initial_bundle) {
3368 first_tag = initial_bundle->tag;
3369 break;
3370 }
3371
3372 /* Initial block is empty, try the next block */
3373 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3374 } while(initial_block != NULL);
3375
3376 assert(first_tag);
3377 return first_tag;
3378 }
3379
3380 int
3381 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3382 {
3383 struct util_dynarray *compiled = &program->compiled;
3384
3385 midgard_debug = debug_get_option_midgard_debug();
3386
3387 compiler_context ictx = {
3388 .nir = nir,
3389 .stage = nir->info.stage,
3390
3391 .is_blend = is_blend,
3392 .blend_constant_offset = -1,
3393
3394 .alpha_ref = program->alpha_ref
3395 };
3396
3397 compiler_context *ctx = &ictx;
3398
3399 /* TODO: Decide this at runtime */
3400 ctx->uniform_cutoff = 8;
3401
3402 switch (ctx->stage) {
3403 case MESA_SHADER_VERTEX:
3404 ctx->special_uniforms = 1;
3405 break;
3406
3407 default:
3408 ctx->special_uniforms = 0;
3409 break;
3410 }
3411
3412 /* Append epilogue uniforms if necessary. The cmdstream depends on
3413 * these being at the -end-; see assign_var_locations. */
3414
3415 if (ctx->stage == MESA_SHADER_VERTEX) {
3416 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3417 }
3418
3419 /* Assign var locations early, so the epilogue can use them if necessary */
3420
3421 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3422 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3423 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3424
3425 /* Initialize at a global (not block) level hash tables */
3426
3427 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3428 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3429 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3430 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3431 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3432 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3433
3434 /* Assign actual uniform location, skipping over samplers */
3435
3436 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3437
3438 nir_foreach_variable(var, &nir->uniforms) {
3439 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3440
3441 unsigned length = glsl_get_aoa_size(var->type);
3442
3443 if (!length) {
3444 length = glsl_get_length(var->type);
3445 }
3446
3447 if (!length) {
3448 length = glsl_get_matrix_columns(var->type);
3449 }
3450
3451 for (int col = 0; col < length; ++col) {
3452 int id = ctx->uniform_count++;
3453 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3454 }
3455 }
3456
3457 /* Record the varying mapping for the command stream's bookkeeping */
3458
3459 struct exec_list *varyings =
3460 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3461
3462 nir_foreach_variable(var, varyings) {
3463 unsigned loc = var->data.driver_location;
3464 program->varyings[loc] = var->data.location;
3465 }
3466
3467 /* Lower vars -- not I/O -- before epilogue */
3468
3469 NIR_PASS_V(nir, nir_lower_var_copies);
3470 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3471 NIR_PASS_V(nir, nir_split_var_copies);
3472 NIR_PASS_V(nir, nir_lower_var_copies);
3473 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3474 NIR_PASS_V(nir, nir_lower_var_copies);
3475 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3476 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3477
3478 /* Append vertex epilogue before optimisation, so the epilogue itself
3479 * is optimised */
3480
3481 if (ctx->stage == MESA_SHADER_VERTEX)
3482 transform_position_writes(nir);
3483
3484 /* Optimisation passes */
3485
3486 optimise_nir(nir);
3487
3488 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3489 nir_print_shader(nir, stdout);
3490 }
3491
3492 /* Assign counts, now that we're sure (post-optimisation) */
3493 program->uniform_count = nir->num_uniforms;
3494
3495 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3496 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3497
3498
3499 nir_foreach_function(func, nir) {
3500 if (!func->impl)
3501 continue;
3502
3503 list_inithead(&ctx->blocks);
3504 ctx->block_count = 0;
3505 ctx->func = func;
3506
3507 emit_cf_list(ctx, &func->impl->body);
3508 emit_block(ctx, func->impl->end_block);
3509
3510 break; /* TODO: Multi-function shaders */
3511 }
3512
3513 util_dynarray_init(compiled, NULL);
3514
3515 /* Schedule! */
3516 schedule_program(ctx);
3517
3518 /* Now that all the bundles are scheduled and we can calculate block
3519 * sizes, emit actual branch instructions rather than placeholders */
3520
3521 int br_block_idx = 0;
3522
3523 mir_foreach_block(ctx, block) {
3524 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3525 for (int c = 0; c < bundle->instruction_count; ++c) {
3526 midgard_instruction *ins = &bundle->instructions[c];
3527
3528 if (!midgard_is_branch_unit(ins->unit)) continue;
3529
3530 if (ins->prepacked_branch) continue;
3531
3532 /* Parse some basic branch info */
3533 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3534 bool is_conditional = ins->branch.conditional;
3535 bool is_inverted = ins->branch.invert_conditional;
3536 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3537
3538 /* Determine the block we're jumping to */
3539 int target_number = ins->branch.target_block;
3540
3541 /* Report the destination tag. Discards don't need this */
3542 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3543
3544 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3545 int quadword_offset = 0;
3546
3547 if (is_discard) {
3548 /* Jump to the end of the shader. We
3549 * need to include not only the
3550 * following blocks, but also the
3551 * contents of our current block (since
3552 * discard can come in the middle of
3553 * the block) */
3554
3555 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3556
3557 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3558 quadword_offset += quadword_size(bun->tag);
3559 }
3560
3561 mir_foreach_block_from(ctx, blk, b) {
3562 quadword_offset += b->quadword_count;
3563 }
3564
3565 } else if (target_number > br_block_idx) {
3566 /* Jump forward */
3567
3568 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3569 midgard_block *blk = mir_get_block(ctx, idx);
3570 assert(blk);
3571
3572 quadword_offset += blk->quadword_count;
3573 }
3574 } else {
3575 /* Jump backwards */
3576
3577 for (int idx = br_block_idx; idx >= target_number; --idx) {
3578 midgard_block *blk = mir_get_block(ctx, idx);
3579 assert(blk);
3580
3581 quadword_offset -= blk->quadword_count;
3582 }
3583 }
3584
3585 /* Unconditional extended branches (far jumps)
3586 * have issues, so we always use a conditional
3587 * branch, setting the condition to always for
3588 * unconditional. For compact unconditional
3589 * branches, cond isn't used so it doesn't
3590 * matter what we pick. */
3591
3592 midgard_condition cond =
3593 !is_conditional ? midgard_condition_always :
3594 is_inverted ? midgard_condition_false :
3595 midgard_condition_true;
3596
3597 midgard_jmp_writeout_op op =
3598 is_discard ? midgard_jmp_writeout_op_discard :
3599 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3600 midgard_jmp_writeout_op_branch_cond;
3601
3602 if (!is_compact) {
3603 midgard_branch_extended branch =
3604 midgard_create_branch_extended(
3605 cond, op,
3606 dest_tag,
3607 quadword_offset);
3608
3609 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3610 } else if (is_conditional || is_discard) {
3611 midgard_branch_cond branch = {
3612 .op = op,
3613 .dest_tag = dest_tag,
3614 .offset = quadword_offset,
3615 .cond = cond
3616 };
3617
3618 assert(branch.offset == quadword_offset);
3619
3620 memcpy(&ins->br_compact, &branch, sizeof(branch));
3621 } else {
3622 assert(op == midgard_jmp_writeout_op_branch_uncond);
3623
3624 midgard_branch_uncond branch = {
3625 .op = op,
3626 .dest_tag = dest_tag,
3627 .offset = quadword_offset,
3628 .unknown = 1
3629 };
3630
3631 assert(branch.offset == quadword_offset);
3632
3633 memcpy(&ins->br_compact, &branch, sizeof(branch));
3634 }
3635 }
3636 }
3637
3638 ++br_block_idx;
3639 }
3640
3641 /* Emit flat binary from the instruction arrays. Iterate each block in
3642 * sequence. Save instruction boundaries such that lookahead tags can
3643 * be assigned easily */
3644
3645 /* Cache _all_ bundles in source order for lookahead across failed branches */
3646
3647 int bundle_count = 0;
3648 mir_foreach_block(ctx, block) {
3649 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3650 }
3651 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3652 int bundle_idx = 0;
3653 mir_foreach_block(ctx, block) {
3654 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3655 source_order_bundles[bundle_idx++] = bundle;
3656 }
3657 }
3658
3659 int current_bundle = 0;
3660
3661 mir_foreach_block(ctx, block) {
3662 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3663 int lookahead = 1;
3664
3665 if (current_bundle + 1 < bundle_count) {
3666 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3667
3668 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3669 lookahead = 1;
3670 } else {
3671 lookahead = next;
3672 }
3673 }
3674
3675 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3676 ++current_bundle;
3677 }
3678
3679 /* TODO: Free deeper */
3680 //util_dynarray_fini(&block->instructions);
3681 }
3682
3683 free(source_order_bundles);
3684
3685 /* Report the very first tag executed */
3686 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3687
3688 /* Deal with off-by-one related to the fencepost problem */
3689 program->work_register_count = ctx->work_registers + 1;
3690
3691 program->can_discard = ctx->can_discard;
3692 program->uniform_cutoff = ctx->uniform_cutoff;
3693
3694 program->blend_patch_offset = ctx->blend_constant_offset;
3695
3696 if (midgard_debug & MIDGARD_DBG_SHADERS)
3697 disassemble_midgard(program->compiled.data, program->compiled.size);
3698
3699 return 0;
3700 }