panfrost/midgard: Emit extended branches
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "compiler/glsl/glsl_to_nir.h"
34 #include "compiler/nir_types.h"
35 #include "main/imports.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/register_allocate.h"
39 #include "util/u_dynarray.h"
40 #include "util/list.h"
41 #include "main/mtypes.h"
42
43 #include "midgard.h"
44 #include "midgard_nir.h"
45 #include "midgard_compile.h"
46 #include "helpers.h"
47
48 #include "disassemble.h"
49
50 /* Instruction arguments represented as block-local SSA indices, rather than
51 * registers. Negative values mean unused. */
52
53 typedef struct {
54 int src0;
55 int src1;
56 int dest;
57
58 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
59 * in. Only valid for ALU ops. */
60 bool inline_constant;
61 } ssa_args;
62
63 /* Forward declare so midgard_branch can reference */
64 struct midgard_block;
65
66 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
67 * the hardware), hence why that must be zero */
68
69 #define TARGET_GOTO 0
70 #define TARGET_BREAK 1
71 #define TARGET_CONTINUE 2
72
73 typedef struct midgard_branch {
74 /* If conditional, the condition is specified in r31.w */
75 bool conditional;
76
77 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
78 bool invert_conditional;
79
80 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
81 unsigned target_type;
82
83 /* The actual target */
84 union {
85 int target_block;
86 int target_break;
87 int target_continue;
88 };
89 } midgard_branch;
90
91 /* Generic in-memory data type repesenting a single logical instruction, rather
92 * than a single instruction group. This is the preferred form for code gen.
93 * Multiple midgard_insturctions will later be combined during scheduling,
94 * though this is not represented in this structure. Its format bridges
95 * the low-level binary representation with the higher level semantic meaning.
96 *
97 * Notably, it allows registers to be specified as block local SSA, for code
98 * emitted before the register allocation pass.
99 */
100
101 typedef struct midgard_instruction {
102 /* Must be first for casting */
103 struct list_head link;
104
105 unsigned type; /* ALU, load/store, texture */
106
107 /* If the register allocator has not run yet... */
108 ssa_args ssa_args;
109
110 /* Special fields for an ALU instruction */
111 midgard_reg_info registers;
112
113 /* I.e. (1 << alu_bit) */
114 int unit;
115
116 bool has_constants;
117 float constants[4];
118 uint16_t inline_constant;
119 bool has_blend_constant;
120
121 bool compact_branch;
122 bool writeout;
123 bool prepacked_branch;
124
125 union {
126 midgard_load_store_word load_store;
127 midgard_vector_alu alu;
128 midgard_texture_word texture;
129 midgard_branch_extended branch_extended;
130 uint16_t br_compact;
131
132 /* General branch, rather than packed br_compact. Higher level
133 * than the other components */
134 midgard_branch branch;
135 };
136 } midgard_instruction;
137
138 typedef struct midgard_block {
139 /* Link to next block. Must be first for mir_get_block */
140 struct list_head link;
141
142 /* List of midgard_instructions emitted for the current block */
143 struct list_head instructions;
144
145 bool is_scheduled;
146
147 /* List of midgard_bundles emitted (after the scheduler has run) */
148 struct util_dynarray bundles;
149
150 /* Number of quadwords _actually_ emitted, as determined after scheduling */
151 unsigned quadword_count;
152
153 struct midgard_block *next_fallthrough;
154 } midgard_block;
155
156 /* Helpers to generate midgard_instruction's using macro magic, since every
157 * driver seems to do it that way */
158
159 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
160
161 #define M_LOAD_STORE(name, rname, uname) \
162 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
163 midgard_instruction i = { \
164 .type = TAG_LOAD_STORE_4, \
165 .ssa_args = { \
166 .rname = ssa, \
167 .uname = -1, \
168 .src1 = -1 \
169 }, \
170 .load_store = { \
171 .op = midgard_op_##name, \
172 .mask = 0xF, \
173 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
174 .address = address \
175 } \
176 }; \
177 \
178 return i; \
179 }
180
181 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
182 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
183
184 const midgard_vector_alu_src blank_alu_src = {
185 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
186 };
187
188 const midgard_scalar_alu_src blank_scalar_alu_src = {
189 .full = true
190 };
191
192 /* Used for encoding the unused source of 1-op instructions */
193 const midgard_vector_alu_src zero_alu_src = { 0 };
194
195 /* Coerce structs to integer */
196
197 static unsigned
198 vector_alu_srco_unsigned(midgard_vector_alu_src src)
199 {
200 unsigned u;
201 memcpy(&u, &src, sizeof(src));
202 return u;
203 }
204
205 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
206 * the corresponding Midgard source */
207
208 static midgard_vector_alu_src
209 vector_alu_modifiers(nir_alu_src *src)
210 {
211 if (!src) return blank_alu_src;
212
213 midgard_vector_alu_src alu_src = {
214 .abs = src->abs,
215 .negate = src->negate,
216 .rep_low = 0,
217 .rep_high = 0,
218 .half = 0, /* TODO */
219 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
220 };
221
222 return alu_src;
223 }
224
225 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
226
227 static midgard_instruction
228 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
229 {
230 midgard_instruction ins = {
231 .type = TAG_ALU_4,
232 .ssa_args = {
233 .src0 = SSA_UNUSED_1,
234 .src1 = src,
235 .dest = dest,
236 },
237 .alu = {
238 .op = midgard_alu_op_fmov,
239 .reg_mode = midgard_reg_mode_full,
240 .dest_override = midgard_dest_override_none,
241 .mask = 0xFF,
242 .src1 = vector_alu_srco_unsigned(zero_alu_src),
243 .src2 = vector_alu_srco_unsigned(mod)
244 },
245 };
246
247 return ins;
248 }
249
250 /* load/store instructions have both 32-bit and 16-bit variants, depending on
251 * whether we are using vectors composed of highp or mediump. At the moment, we
252 * don't support half-floats -- this requires changes in other parts of the
253 * compiler -- therefore the 16-bit versions are commented out. */
254
255 //M_LOAD(load_attr_16);
256 M_LOAD(load_attr_32);
257 //M_LOAD(load_vary_16);
258 M_LOAD(load_vary_32);
259 //M_LOAD(load_uniform_16);
260 M_LOAD(load_uniform_32);
261 M_LOAD(load_color_buffer_8);
262 //M_STORE(store_vary_16);
263 M_STORE(store_vary_32);
264
265 static midgard_instruction
266 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
267 {
268 midgard_branch_cond branch = {
269 .op = op,
270 .dest_tag = tag,
271 .offset = offset,
272 .cond = cond
273 };
274
275 uint16_t compact;
276 memcpy(&compact, &branch, sizeof(branch));
277
278 midgard_instruction ins = {
279 .type = TAG_ALU_4,
280 .unit = ALU_ENAB_BR_COMPACT,
281 .prepacked_branch = true,
282 .compact_branch = true,
283 .br_compact = compact
284 };
285
286 if (op == midgard_jmp_writeout_op_writeout)
287 ins.writeout = true;
288
289 return ins;
290 }
291
292 static midgard_instruction
293 v_branch(bool conditional, bool invert)
294 {
295 midgard_instruction ins = {
296 .type = TAG_ALU_4,
297 .unit = ALU_ENAB_BRANCH,
298 .compact_branch = true,
299 .branch = {
300 .conditional = conditional,
301 .invert_conditional = invert
302 }
303 };
304
305 return ins;
306 }
307
308 static midgard_branch_extended
309 midgard_create_branch_extended( midgard_condition cond,
310 midgard_jmp_writeout_op op,
311 unsigned dest_tag,
312 signed quadword_offset)
313 {
314 /* For unclear reasons, the condition code is repeated 8 times */
315 uint16_t duplicated_cond =
316 (cond << 14) |
317 (cond << 12) |
318 (cond << 10) |
319 (cond << 8) |
320 (cond << 6) |
321 (cond << 4) |
322 (cond << 2) |
323 (cond << 0);
324
325 midgard_branch_extended branch = {
326 .op = midgard_jmp_writeout_op_branch_cond,
327 .dest_tag = dest_tag,
328 .offset = quadword_offset,
329 .cond = duplicated_cond
330 };
331
332 return branch;
333 }
334
335 typedef struct midgard_bundle {
336 /* Tag for the overall bundle */
337 int tag;
338
339 /* Instructions contained by the bundle */
340 int instruction_count;
341 midgard_instruction instructions[5];
342
343 /* Bundle-wide ALU configuration */
344 int padding;
345 int control;
346 bool has_embedded_constants;
347 float constants[4];
348 bool has_blend_constant;
349
350 uint16_t register_words[8];
351 int register_words_count;
352
353 uint64_t body_words[8];
354 size_t body_size[8];
355 int body_words_count;
356 } midgard_bundle;
357
358 typedef struct compiler_context {
359 nir_shader *nir;
360 gl_shader_stage stage;
361
362 /* Is internally a blend shader? Depends on stage == FRAGMENT */
363 bool is_blend;
364
365 /* Tracking for blend constant patching */
366 int blend_constant_number;
367 int blend_constant_offset;
368
369 /* Current NIR function */
370 nir_function *func;
371
372 /* Unordered list of midgard_blocks */
373 int block_count;
374 struct list_head blocks;
375
376 midgard_block *initial_block;
377 midgard_block *previous_source_block;
378 midgard_block *final_block;
379
380 /* List of midgard_instructions emitted for the current block */
381 midgard_block *current_block;
382
383 /* The index corresponding to the current loop, e.g. for breaks/contineus */
384 int current_loop;
385
386 /* Constants which have been loaded, for later inlining */
387 struct hash_table_u64 *ssa_constants;
388
389 /* SSA indices to be outputted to corresponding varying offset */
390 struct hash_table_u64 *ssa_varyings;
391
392 /* SSA values / registers which have been aliased. Naively, these
393 * demand a fmov output; instead, we alias them in a later pass to
394 * avoid the wasted op.
395 *
396 * A note on encoding: to avoid dynamic memory management here, rather
397 * than ampping to a pointer, we map to the source index; the key
398 * itself is just the destination index. */
399
400 struct hash_table_u64 *ssa_to_alias;
401 struct set *leftover_ssa_to_alias;
402
403 /* Actual SSA-to-register for RA */
404 struct hash_table_u64 *ssa_to_register;
405
406 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
407 struct hash_table_u64 *hash_to_temp;
408 int temp_count;
409 int max_hash;
410
411 /* Uniform IDs for mdg */
412 struct hash_table_u64 *uniform_nir_to_mdg;
413 int uniform_count;
414
415 struct hash_table_u64 *varying_nir_to_mdg;
416 int varying_count;
417
418 /* Just the count of the max register used. Higher count => higher
419 * register pressure */
420 int work_registers;
421
422 /* Used for cont/last hinting. Increase when a tex op is added.
423 * Decrease when a tex op is removed. */
424 int texture_op_count;
425
426 /* Mapping of texture register -> SSA index for unaliasing */
427 int texture_index[2];
428
429 /* Count of special uniforms (viewport, etc) in vec4 units */
430 int special_uniforms;
431
432 /* If any path hits a discard instruction */
433 bool can_discard;
434
435 /* The number of uniforms allowable for the fast path */
436 int uniform_cutoff;
437
438 /* Count of instructions emitted from NIR overall, across all blocks */
439 int instruction_count;
440
441 /* Alpha ref value passed in */
442 float alpha_ref;
443
444 /* The index corresponding to the fragment output */
445 unsigned fragment_output;
446 } compiler_context;
447
448 /* Append instruction to end of current block */
449
450 static midgard_instruction *
451 mir_upload_ins(struct midgard_instruction ins)
452 {
453 midgard_instruction *heap = malloc(sizeof(ins));
454 memcpy(heap, &ins, sizeof(ins));
455 return heap;
456 }
457
458 static void
459 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
460 {
461 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
462 }
463
464 static void
465 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
466 {
467 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
468 }
469
470 static void
471 mir_remove_instruction(struct midgard_instruction *ins)
472 {
473 list_del(&ins->link);
474 }
475
476 static midgard_instruction*
477 mir_prev_op(struct midgard_instruction *ins)
478 {
479 return list_last_entry(&(ins->link), midgard_instruction, link);
480 }
481
482 static midgard_instruction*
483 mir_next_op(struct midgard_instruction *ins)
484 {
485 return list_first_entry(&(ins->link), midgard_instruction, link);
486 }
487
488 static midgard_block *
489 mir_next_block(struct midgard_block *blk)
490 {
491 return list_first_entry(&(blk->link), midgard_block, link);
492 }
493
494
495 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
496 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
497
498 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
499 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
500 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
501 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
502 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
503 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
504
505
506 static midgard_instruction *
507 mir_last_in_block(struct midgard_block *block)
508 {
509 return list_last_entry(&block->instructions, struct midgard_instruction, link);
510 }
511
512 static midgard_block *
513 mir_get_block(compiler_context *ctx, int idx)
514 {
515 struct list_head *lst = &ctx->blocks;
516
517 while ((idx--) + 1)
518 lst = lst->next;
519
520 return (struct midgard_block *) lst;
521 }
522
523 /* Pretty printer for internal Midgard IR */
524
525 static void
526 print_mir_source(int source)
527 {
528 if (source >= SSA_FIXED_MINIMUM) {
529 /* Specific register */
530 int reg = SSA_REG_FROM_FIXED(source);
531
532 /* TODO: Moving threshold */
533 if (reg > 16 && reg < 24)
534 printf("u%d", 23 - reg);
535 else
536 printf("r%d", reg);
537 } else {
538 printf("%d", source);
539 }
540 }
541
542 static void
543 print_mir_instruction(midgard_instruction *ins)
544 {
545 printf("\t");
546
547 switch (ins->type) {
548 case TAG_ALU_4: {
549 midgard_alu_op op = ins->alu.op;
550 const char *name = alu_opcode_names[op];
551
552 if (ins->unit)
553 printf("%d.", ins->unit);
554
555 printf("%s", name ? name : "??");
556 break;
557 }
558
559 case TAG_LOAD_STORE_4: {
560 midgard_load_store_op op = ins->load_store.op;
561 const char *name = load_store_opcode_names[op];
562
563 assert(name);
564 printf("%s", name);
565 break;
566 }
567
568 case TAG_TEXTURE_4: {
569 printf("texture");
570 break;
571 }
572
573 default:
574 assert(0);
575 }
576
577 ssa_args *args = &ins->ssa_args;
578
579 printf(" %d, ", args->dest);
580
581 print_mir_source(args->src0);
582 printf(", ");
583
584 if (args->inline_constant)
585 printf("#%d", ins->inline_constant);
586 else
587 print_mir_source(args->src1);
588
589 if (ins->has_constants)
590 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
591
592 printf("\n");
593 }
594
595 static void
596 print_mir_block(midgard_block *block)
597 {
598 printf("{\n");
599
600 mir_foreach_instr_in_block(block, ins) {
601 print_mir_instruction(ins);
602 }
603
604 printf("}\n");
605 }
606
607
608
609 static void
610 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
611 {
612 ins->has_constants = true;
613 memcpy(&ins->constants, constants, 16);
614
615 /* If this is the special blend constant, mark this instruction */
616
617 if (ctx->is_blend && ctx->blend_constant_number == name)
618 ins->has_blend_constant = true;
619 }
620
621 static int
622 glsl_type_size(const struct glsl_type *type)
623 {
624 return glsl_count_attribute_slots(type, false);
625 }
626
627 /* Lower fdot2 to a vector multiplication followed by channel addition */
628 static void
629 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
630 {
631 if (alu->op != nir_op_fdot2)
632 return;
633
634 b->cursor = nir_before_instr(&alu->instr);
635
636 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
637 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
638
639 nir_ssa_def *product = nir_fmul(b, src0, src1);
640
641 nir_ssa_def *sum = nir_fadd(b,
642 nir_channel(b, product, 0),
643 nir_channel(b, product, 1));
644
645 /* Replace the fdot2 with this sum */
646 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
647 }
648
649 static bool
650 midgard_nir_lower_fdot2(nir_shader *shader)
651 {
652 bool progress = false;
653
654 nir_foreach_function(function, shader) {
655 if (!function->impl) continue;
656
657 nir_builder _b;
658 nir_builder *b = &_b;
659 nir_builder_init(b, function->impl);
660
661 nir_foreach_block(block, function->impl) {
662 nir_foreach_instr_safe(instr, block) {
663 if (instr->type != nir_instr_type_alu) continue;
664
665 nir_alu_instr *alu = nir_instr_as_alu(instr);
666 midgard_nir_lower_fdot2_body(b, alu);
667
668 progress |= true;
669 }
670 }
671
672 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
673
674 }
675
676 return progress;
677 }
678
679 static void
680 optimise_nir(nir_shader *nir)
681 {
682 bool progress;
683
684 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
685 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
686
687 nir_lower_tex_options lower_tex_options = {
688 .lower_rect = true
689 };
690
691 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
692
693 do {
694 progress = false;
695
696 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
697 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
698 NIR_PASS(progress, nir, nir_lower_var_copies);
699 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
700
701 NIR_PASS(progress, nir, nir_copy_prop);
702 NIR_PASS(progress, nir, nir_opt_dce);
703 NIR_PASS(progress, nir, nir_opt_dead_cf);
704 NIR_PASS(progress, nir, nir_opt_cse);
705 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
706 NIR_PASS(progress, nir, nir_opt_algebraic);
707 NIR_PASS(progress, nir, nir_opt_constant_folding);
708 NIR_PASS(progress, nir, nir_opt_undef);
709 NIR_PASS(progress, nir, nir_opt_loop_unroll,
710 nir_var_shader_in |
711 nir_var_shader_out |
712 nir_var_function_temp);
713
714 /* TODO: Enable vectorize when merged upstream */
715 // NIR_PASS(progress, nir, nir_opt_vectorize);
716 } while (progress);
717
718 /* Must be run at the end to prevent creation of fsin/fcos ops */
719 NIR_PASS(progress, nir, midgard_nir_scale_trig);
720
721 do {
722 progress = false;
723
724 NIR_PASS(progress, nir, nir_opt_dce);
725 NIR_PASS(progress, nir, nir_opt_algebraic);
726 NIR_PASS(progress, nir, nir_opt_constant_folding);
727 NIR_PASS(progress, nir, nir_copy_prop);
728 } while (progress);
729
730 NIR_PASS(progress, nir, nir_opt_algebraic_late);
731
732 /* Lower mods */
733 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
734 NIR_PASS(progress, nir, nir_copy_prop);
735 NIR_PASS(progress, nir, nir_opt_dce);
736
737 /* Take us out of SSA */
738 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
739 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
740
741 /* We are a vector architecture; write combine where possible */
742 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
743 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
744
745 NIR_PASS(progress, nir, nir_opt_dce);
746 }
747
748 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
749 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
750 * r0. See the comments in compiler_context */
751
752 static void
753 alias_ssa(compiler_context *ctx, int dest, int src)
754 {
755 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
756 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
757 }
758
759 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
760
761 static void
762 unalias_ssa(compiler_context *ctx, int dest)
763 {
764 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
765 /* TODO: Remove from leftover or no? */
766 }
767
768 static void
769 midgard_pin_output(compiler_context *ctx, int index, int reg)
770 {
771 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
772 }
773
774 static bool
775 midgard_is_pinned(compiler_context *ctx, int index)
776 {
777 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
778 }
779
780 /* Do not actually emit a load; instead, cache the constant for inlining */
781
782 static void
783 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
784 {
785 nir_ssa_def def = instr->def;
786
787 float *v = ralloc_array(NULL, float, 4);
788 memcpy(v, &instr->value.f32, 4 * sizeof(float));
789 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
790 }
791
792 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
793 * do the inverse) */
794
795 static unsigned
796 expand_writemask(unsigned mask)
797 {
798 unsigned o = 0;
799
800 for (int i = 0; i < 4; ++i)
801 if (mask & (1 << i))
802 o |= (3 << (2 * i));
803
804 return o;
805 }
806
807 static unsigned
808 squeeze_writemask(unsigned mask)
809 {
810 unsigned o = 0;
811
812 for (int i = 0; i < 4; ++i)
813 if (mask & (3 << (2 * i)))
814 o |= (1 << i);
815
816 return o;
817
818 }
819
820 /* Determines effective writemask, taking quirks and expansion into account */
821 static unsigned
822 effective_writemask(midgard_vector_alu *alu)
823 {
824 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
825 * sense) */
826
827 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
828
829 /* If there is a fixed channel count, construct the appropriate mask */
830
831 if (channel_count)
832 return (1 << channel_count) - 1;
833
834 /* Otherwise, just squeeze the existing mask */
835 return squeeze_writemask(alu->mask);
836 }
837
838 static unsigned
839 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
840 {
841 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
842 return hash;
843
844 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
845
846 if (temp)
847 return temp - 1;
848
849 /* If no temp is find, allocate one */
850 temp = ctx->temp_count++;
851 ctx->max_hash = MAX2(ctx->max_hash, hash);
852
853 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
854
855 return temp;
856 }
857
858 static unsigned
859 nir_src_index(compiler_context *ctx, nir_src *src)
860 {
861 if (src->is_ssa)
862 return src->ssa->index;
863 else
864 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
865 }
866
867 static unsigned
868 nir_dest_index(compiler_context *ctx, nir_dest *dst)
869 {
870 if (dst->is_ssa)
871 return dst->ssa.index;
872 else
873 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
874 }
875
876 static unsigned
877 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
878 {
879 return nir_src_index(ctx, &src->src);
880 }
881
882 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
883 * a conditional test) into that register */
884
885 static void
886 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
887 {
888 /* XXX: Force component correct */
889 int condition = nir_src_index(ctx, src);
890
891 const midgard_vector_alu_src alu_src = {
892 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
893 };
894
895 /* There is no boolean move instruction. Instead, we simulate a move by
896 * ANDing the condition with itself to get it into r31.w */
897
898 midgard_instruction ins = {
899 .type = TAG_ALU_4,
900 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
901 .ssa_args = {
902 .src0 = condition,
903 .src1 = condition,
904 .dest = SSA_FIXED_REGISTER(31),
905 },
906 .alu = {
907 .op = midgard_alu_op_iand,
908 .reg_mode = midgard_reg_mode_full,
909 .dest_override = midgard_dest_override_none,
910 .mask = (0x3 << 6), /* w */
911 .src1 = vector_alu_srco_unsigned(alu_src),
912 .src2 = vector_alu_srco_unsigned(alu_src)
913 },
914 };
915
916 emit_mir_instruction(ctx, ins);
917 }
918
919 #define ALU_CASE(nir, _op) \
920 case nir_op_##nir: \
921 op = midgard_alu_op_##_op; \
922 break;
923
924 static void
925 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
926 {
927 bool is_ssa = instr->dest.dest.is_ssa;
928
929 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
930 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
931 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
932
933 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
934 * supported. A few do not and are commented for now. Also, there are a
935 * number of NIR ops which Midgard does not support and need to be
936 * lowered, also TODO. This switch block emits the opcode and calling
937 * convention of the Midgard instruction; actual packing is done in
938 * emit_alu below */
939
940 unsigned op;
941
942 switch (instr->op) {
943 ALU_CASE(fadd, fadd);
944 ALU_CASE(fmul, fmul);
945 ALU_CASE(fmin, fmin);
946 ALU_CASE(fmax, fmax);
947 ALU_CASE(imin, imin);
948 ALU_CASE(imax, imax);
949 ALU_CASE(fmov, fmov);
950 ALU_CASE(ffloor, ffloor);
951 ALU_CASE(fceil, fceil);
952 ALU_CASE(fdot3, fdot3);
953 ALU_CASE(fdot4, fdot4);
954 ALU_CASE(iadd, iadd);
955 ALU_CASE(isub, isub);
956 ALU_CASE(imul, imul);
957
958 /* XXX: Use fmov, not imov, since imov was causing major
959 * issues with texture precision? XXX research */
960 ALU_CASE(imov, fmov);
961
962 ALU_CASE(feq, feq);
963 ALU_CASE(fne, fne);
964 ALU_CASE(flt, flt);
965 ALU_CASE(ieq, ieq);
966 ALU_CASE(ine, ine);
967 ALU_CASE(ilt, ilt);
968
969 ALU_CASE(frcp, frcp);
970 ALU_CASE(frsq, frsqrt);
971 ALU_CASE(fsqrt, fsqrt);
972 ALU_CASE(fexp2, fexp2);
973 ALU_CASE(flog2, flog2);
974
975 ALU_CASE(f2i32, f2i);
976 ALU_CASE(f2u32, f2u);
977 ALU_CASE(i2f32, i2f);
978 ALU_CASE(u2f32, u2f);
979
980 ALU_CASE(fsin, fsin);
981 ALU_CASE(fcos, fcos);
982
983 ALU_CASE(iand, iand);
984 ALU_CASE(ior, ior);
985 ALU_CASE(ixor, ixor);
986 ALU_CASE(inot, inot);
987 ALU_CASE(ishl, ishl);
988 ALU_CASE(ishr, iasr);
989 ALU_CASE(ushr, ilsr);
990
991 ALU_CASE(ball_fequal4, fball_eq);
992 ALU_CASE(bany_fnequal4, fbany_neq);
993 ALU_CASE(ball_iequal4, iball_eq);
994 ALU_CASE(bany_inequal4, ibany_neq);
995
996 /* For greater-or-equal, we use less-or-equal and flip the
997 * arguments */
998
999 case nir_op_ige: {
1000 op = midgard_alu_op_ile;
1001
1002 /* Swap via temporary */
1003 nir_alu_src temp = instr->src[1];
1004 instr->src[1] = instr->src[0];
1005 instr->src[0] = temp;
1006
1007 break;
1008 }
1009
1010 case nir_op_bcsel: {
1011 op = midgard_alu_op_fcsel;
1012
1013 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1014 nr_inputs = 2;
1015
1016 emit_condition(ctx, &instr->src[0].src, false);
1017
1018 /* The condition is the first argument; move the other
1019 * arguments up one to be a binary instruction for
1020 * Midgard */
1021
1022 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1023 break;
1024 }
1025
1026 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1027 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1028 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1029 *
1030 * iand [whatever], #0
1031 *
1032 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1033
1034 case nir_op_b2f32: {
1035 op = midgard_alu_op_iand;
1036 break;
1037 }
1038
1039 default:
1040 printf("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1041 assert(0);
1042 return;
1043 }
1044
1045 /* Fetch unit, quirks, etc information */
1046 unsigned opcode_props = alu_opcode_props[op];
1047 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1048
1049 /* Initialise fields common between scalar/vector instructions */
1050 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1051
1052 /* src0 will always exist afaik, but src1 will not for 1-argument
1053 * instructions. The latter can only be fetched if the instruction
1054 * needs it, or else we may segfault. */
1055
1056 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1057 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1058
1059 /* Rather than use the instruction generation helpers, we do it
1060 * ourselves here to avoid the mess */
1061
1062 midgard_instruction ins = {
1063 .type = TAG_ALU_4,
1064 .ssa_args = {
1065 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1066 .src1 = quirk_flipped_r24 ? src0 : src1,
1067 .dest = dest,
1068 .inline_constant = (nr_inputs == 1) && !quirk_flipped_r24
1069 }
1070 };
1071
1072 nir_alu_src *nirmods[2] = { NULL };
1073
1074 if (nr_inputs == 2) {
1075 nirmods[0] = &instr->src[0];
1076 nirmods[1] = &instr->src[1];
1077 } else if (nr_inputs == 1) {
1078 nirmods[quirk_flipped_r24] = &instr->src[0];
1079 } else {
1080 assert(0);
1081 }
1082
1083 midgard_vector_alu alu = {
1084 .op = op,
1085 .reg_mode = midgard_reg_mode_full,
1086 .dest_override = midgard_dest_override_none,
1087 .outmod = outmod,
1088
1089 /* Writemask only valid for non-SSA NIR */
1090 .mask = expand_writemask((1 << nr_components) - 1),
1091
1092 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1093 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1094 };
1095
1096 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1097
1098 if (!is_ssa)
1099 alu.mask &= expand_writemask(instr->dest.write_mask);
1100
1101 ins.alu = alu;
1102
1103 /* Late fixup for emulated instructions */
1104
1105 if (instr->op == nir_op_b2f32) {
1106 /* Presently, our second argument is an inline #0 constant.
1107 * Switch over to an embedded 1.0 constant (that can't fit
1108 * inline, since we're 32-bit, not 16-bit like the inline
1109 * constants) */
1110
1111 ins.ssa_args.inline_constant = false;
1112 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1113 ins.has_constants = true;
1114 ins.constants[0] = 1.0;
1115 }
1116
1117 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1118 /* To avoid duplicating the lookup tables (probably), true LUT
1119 * instructions can only operate as if they were scalars. Lower
1120 * them here by changing the component. */
1121
1122 uint8_t original_swizzle[4];
1123 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1124
1125 for (int i = 0; i < nr_components; ++i) {
1126 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1127
1128 for (int j = 0; j < 4; ++j)
1129 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1130
1131 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1132 emit_mir_instruction(ctx, ins);
1133 }
1134 } else {
1135 emit_mir_instruction(ctx, ins);
1136 }
1137 }
1138
1139 #undef ALU_CASE
1140
1141 static void
1142 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1143 {
1144 nir_const_value *const_offset;
1145 unsigned offset, reg;
1146
1147 switch (instr->intrinsic) {
1148 case nir_intrinsic_discard_if:
1149 emit_condition(ctx, &instr->src[0], true);
1150
1151 /* fallthrough */
1152
1153 case nir_intrinsic_discard: {
1154 midgard_condition cond = instr->intrinsic == nir_intrinsic_discard_if ?
1155 midgard_condition_true : midgard_condition_always;
1156
1157 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_discard, 0, 2, cond);
1158 ctx->can_discard = true;
1159 break;
1160 }
1161
1162 case nir_intrinsic_load_uniform:
1163 case nir_intrinsic_load_input:
1164 const_offset = nir_src_as_const_value(instr->src[0]);
1165 assert (const_offset && "no indirect inputs");
1166
1167 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1168
1169 reg = nir_dest_index(ctx, &instr->dest);
1170
1171 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1172 /* TODO: half-floats */
1173
1174 int uniform_offset = 0;
1175
1176 if (offset >= SPECIAL_UNIFORM_BASE) {
1177 /* XXX: Resolve which uniform */
1178 uniform_offset = 0;
1179 } else {
1180 /* Offset away from the special
1181 * uniform block */
1182
1183 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1184
1185 /* XXX */
1186 if (!entry) {
1187 printf("WARNING: Unknown uniform %d\n", offset);
1188 break;
1189 }
1190
1191 uniform_offset = (uintptr_t) (entry) - 1;
1192 uniform_offset += ctx->special_uniforms;
1193 }
1194
1195 if (uniform_offset < ctx->uniform_cutoff) {
1196 /* Fast path: For the first 16 uniform,
1197 * accesses are 0-cycle, since they're
1198 * just a register fetch in the usual
1199 * case. So, we alias the registers
1200 * while we're still in SSA-space */
1201
1202 int reg_slot = 23 - uniform_offset;
1203 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1204 } else {
1205 /* Otherwise, read from the 'special'
1206 * UBO to access higher-indexed
1207 * uniforms, at a performance cost */
1208
1209 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1210
1211 /* TODO: Don't split */
1212 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1213 ins.load_store.address = uniform_offset >> 3;
1214
1215 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1216 emit_mir_instruction(ctx, ins);
1217 }
1218 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1219 /* XXX: Half-floats? */
1220 /* TODO: swizzle, mask */
1221
1222 midgard_instruction ins = m_load_vary_32(reg, offset);
1223
1224 midgard_varying_parameter p = {
1225 .is_varying = 1,
1226 .interpolation = midgard_interp_default,
1227 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1228 };
1229
1230 unsigned u;
1231 memcpy(&u, &p, sizeof(p));
1232 ins.load_store.varying_parameters = u;
1233
1234 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1235 emit_mir_instruction(ctx, ins);
1236 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1237 /* Constant encoded as a pinned constant */
1238
1239 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1240 ins.has_constants = true;
1241 ins.has_blend_constant = true;
1242 emit_mir_instruction(ctx, ins);
1243 } else if (ctx->is_blend) {
1244 /* For blend shaders, a load might be
1245 * translated various ways depending on what
1246 * we're loading. Figure out how this is used */
1247
1248 nir_variable *out = NULL;
1249
1250 nir_foreach_variable(var, &ctx->nir->inputs) {
1251 int drvloc = var->data.driver_location;
1252
1253 if (nir_intrinsic_base(instr) == drvloc) {
1254 out = var;
1255 break;
1256 }
1257 }
1258
1259 assert(out);
1260
1261 if (out->data.location == VARYING_SLOT_COL0) {
1262 /* Source color preloaded to r0 */
1263
1264 midgard_pin_output(ctx, reg, 0);
1265 } else if (out->data.location == VARYING_SLOT_COL1) {
1266 /* Destination color must be read from framebuffer */
1267
1268 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1269 ins.load_store.swizzle = 0; /* xxxx */
1270
1271 /* Read each component sequentially */
1272
1273 for (int c = 0; c < 4; ++c) {
1274 ins.load_store.mask = (1 << c);
1275 ins.load_store.unknown = c;
1276 emit_mir_instruction(ctx, ins);
1277 }
1278
1279 /* vadd.u2f hr2, abs(hr2), #0 */
1280
1281 midgard_vector_alu_src alu_src = blank_alu_src;
1282 alu_src.abs = true;
1283 alu_src.half = true;
1284
1285 midgard_instruction u2f = {
1286 .type = TAG_ALU_4,
1287 .ssa_args = {
1288 .src0 = reg,
1289 .src1 = SSA_UNUSED_0,
1290 .dest = reg,
1291 .inline_constant = true
1292 },
1293 .alu = {
1294 .op = midgard_alu_op_u2f,
1295 .reg_mode = midgard_reg_mode_half,
1296 .dest_override = midgard_dest_override_none,
1297 .mask = 0xF,
1298 .src1 = vector_alu_srco_unsigned(alu_src),
1299 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1300 }
1301 };
1302
1303 emit_mir_instruction(ctx, u2f);
1304
1305 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1306
1307 alu_src.abs = false;
1308
1309 midgard_instruction fmul = {
1310 .type = TAG_ALU_4,
1311 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1312 .ssa_args = {
1313 .src0 = reg,
1314 .dest = reg,
1315 .src1 = SSA_UNUSED_0,
1316 .inline_constant = true
1317 },
1318 .alu = {
1319 .op = midgard_alu_op_fmul,
1320 .reg_mode = midgard_reg_mode_full,
1321 .dest_override = midgard_dest_override_none,
1322 .outmod = midgard_outmod_sat,
1323 .mask = 0xFF,
1324 .src1 = vector_alu_srco_unsigned(alu_src),
1325 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1326 }
1327 };
1328
1329 emit_mir_instruction(ctx, fmul);
1330 } else {
1331 printf("Unknown input in blend shader\n");
1332 assert(0);
1333 }
1334 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1335 midgard_instruction ins = m_load_attr_32(reg, offset);
1336 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1337 ins.load_store.mask = (1 << instr->num_components) - 1;
1338 emit_mir_instruction(ctx, ins);
1339 } else {
1340 printf("Unknown load\n");
1341 assert(0);
1342 }
1343
1344 break;
1345
1346 case nir_intrinsic_store_output:
1347 const_offset = nir_src_as_const_value(instr->src[1]);
1348 assert(const_offset && "no indirect outputs");
1349
1350 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1351
1352 reg = nir_src_index(ctx, &instr->src[0]);
1353
1354 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1355 /* gl_FragColor is not emitted with load/store
1356 * instructions. Instead, it gets plonked into
1357 * r0 at the end of the shader and we do the
1358 * framebuffer writeout dance. TODO: Defer
1359 * writes */
1360
1361 midgard_pin_output(ctx, reg, 0);
1362
1363 /* Save the index we're writing to for later reference
1364 * in the epilogue */
1365
1366 ctx->fragment_output = reg;
1367 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1368 /* Varyings are written into one of two special
1369 * varying register, r26 or r27. The register itself is selected as the register
1370 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1371 *
1372 * Normally emitting fmov's is frowned upon,
1373 * but due to unique constraints of
1374 * REGISTER_VARYING, fmov emission + a
1375 * dedicated cleanup pass is the only way to
1376 * guarantee correctness when considering some
1377 * (common) edge cases XXX: FIXME */
1378
1379 /* Look up how it was actually laid out */
1380
1381 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1382
1383 if (!entry) {
1384 printf("WARNING: skipping varying\n");
1385 break;
1386 }
1387
1388 offset = (uintptr_t) (entry) - 1;
1389
1390 /* If this varying corresponds to a constant (why?!),
1391 * emit that now since it won't get picked up by
1392 * hoisting (since there is no corresponding move
1393 * emitted otherwise) */
1394
1395 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1396
1397 if (constant_value) {
1398 /* Special case: emit the varying write
1399 * directly to r26 (looks funny in asm but it's
1400 * fine) and emit the store _now_. Possibly
1401 * slightly slower, but this is a really stupid
1402 * special case anyway (why on earth would you
1403 * have a constant varying? Your own fault for
1404 * slightly worse perf :P) */
1405
1406 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1407 attach_constants(ctx, &ins, constant_value, reg + 1);
1408 emit_mir_instruction(ctx, ins);
1409
1410 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1411 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1412 emit_mir_instruction(ctx, st);
1413 } else {
1414 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1415
1416 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1417 }
1418 } else {
1419 printf("Unknown store\n");
1420 assert(0);
1421 }
1422
1423 break;
1424
1425 case nir_intrinsic_load_alpha_ref_float:
1426 assert(instr->dest.is_ssa);
1427
1428 float ref_value = ctx->alpha_ref;
1429
1430 float *v = ralloc_array(NULL, float, 4);
1431 memcpy(v, &ref_value, sizeof(float));
1432 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1433 break;
1434
1435
1436 default:
1437 printf ("Unhandled intrinsic\n");
1438 assert(0);
1439 break;
1440 }
1441 }
1442
1443 static unsigned
1444 midgard_tex_format(enum glsl_sampler_dim dim)
1445 {
1446 switch (dim) {
1447 case GLSL_SAMPLER_DIM_2D:
1448 case GLSL_SAMPLER_DIM_EXTERNAL:
1449 return TEXTURE_2D;
1450
1451 case GLSL_SAMPLER_DIM_3D:
1452 return TEXTURE_3D;
1453
1454 case GLSL_SAMPLER_DIM_CUBE:
1455 return TEXTURE_CUBE;
1456
1457 default:
1458 printf("Unknown sampler dim type\n");
1459 assert(0);
1460 return 0;
1461 }
1462 }
1463
1464 static void
1465 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1466 {
1467 /* TODO */
1468 //assert (!instr->sampler);
1469 //assert (!instr->texture_array_size);
1470 assert (instr->op == nir_texop_tex);
1471
1472 /* Allocate registers via a round robin scheme to alternate between the two registers */
1473 int reg = ctx->texture_op_count & 1;
1474 int in_reg = reg, out_reg = reg;
1475
1476 /* Make room for the reg */
1477
1478 if (ctx->texture_index[reg] > -1)
1479 unalias_ssa(ctx, ctx->texture_index[reg]);
1480
1481 int texture_index = instr->texture_index;
1482 int sampler_index = texture_index;
1483
1484 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1485 switch (instr->src[i].src_type) {
1486 case nir_tex_src_coord: {
1487 int index = nir_src_index(ctx, &instr->src[i].src);
1488
1489 midgard_vector_alu_src alu_src = blank_alu_src;
1490 alu_src.swizzle = (COMPONENT_Y << 2);
1491
1492 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1493 emit_mir_instruction(ctx, ins);
1494
1495 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1496
1497 break;
1498 }
1499
1500 default: {
1501 printf("Unknown source type\n");
1502 //assert(0);
1503 break;
1504 }
1505 }
1506 }
1507
1508 /* No helper to build texture words -- we do it all here */
1509 midgard_instruction ins = {
1510 .type = TAG_TEXTURE_4,
1511 .texture = {
1512 .op = TEXTURE_OP_NORMAL,
1513 .format = midgard_tex_format(instr->sampler_dim),
1514 .texture_handle = texture_index,
1515 .sampler_handle = sampler_index,
1516
1517 /* TODO: Don't force xyzw */
1518 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1519 .mask = 0xF,
1520
1521 /* TODO: half */
1522 //.in_reg_full = 1,
1523 .out_full = 1,
1524
1525 .filter = 1,
1526
1527 /* Always 1 */
1528 .unknown7 = 1,
1529
1530 /* Assume we can continue; hint it out later */
1531 .cont = 1,
1532 }
1533 };
1534
1535 /* Set registers to read and write from the same place */
1536 ins.texture.in_reg_select = in_reg;
1537 ins.texture.out_reg_select = out_reg;
1538
1539 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1540 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1541 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1542 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1543 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1544 } else {
1545 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1546 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1547 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1548 }
1549
1550 emit_mir_instruction(ctx, ins);
1551
1552 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1553
1554 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1555 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1556 ctx->texture_index[reg] = o_index;
1557
1558 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1559 emit_mir_instruction(ctx, ins2);
1560
1561 /* Used for .cont and .last hinting */
1562 ctx->texture_op_count++;
1563 }
1564
1565 static void
1566 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1567 {
1568 switch (instr->type) {
1569 case nir_jump_break: {
1570 /* Emit a branch out of the loop */
1571 struct midgard_instruction br = v_branch(false, false);
1572 br.branch.target_type = TARGET_BREAK;
1573 br.branch.target_break = ctx->current_loop;
1574 emit_mir_instruction(ctx, br);
1575
1576 printf("break..\n");
1577 break;
1578 }
1579
1580 default:
1581 printf("Unknown jump type %d\n", instr->type);
1582 break;
1583 }
1584 }
1585
1586 static void
1587 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1588 {
1589 switch (instr->type) {
1590 case nir_instr_type_load_const:
1591 emit_load_const(ctx, nir_instr_as_load_const(instr));
1592 break;
1593
1594 case nir_instr_type_intrinsic:
1595 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1596 break;
1597
1598 case nir_instr_type_alu:
1599 emit_alu(ctx, nir_instr_as_alu(instr));
1600 break;
1601
1602 case nir_instr_type_tex:
1603 emit_tex(ctx, nir_instr_as_tex(instr));
1604 break;
1605
1606 case nir_instr_type_jump:
1607 emit_jump(ctx, nir_instr_as_jump(instr));
1608 break;
1609
1610 case nir_instr_type_ssa_undef:
1611 /* Spurious */
1612 break;
1613
1614 default:
1615 printf("Unhandled instruction type\n");
1616 break;
1617 }
1618 }
1619
1620 /* Determine the actual hardware from the index based on the RA results or special values */
1621
1622 static int
1623 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1624 {
1625 if (reg >= SSA_FIXED_MINIMUM)
1626 return SSA_REG_FROM_FIXED(reg);
1627
1628 if (reg >= 0) {
1629 assert(reg < maxreg);
1630 int r = ra_get_node_reg(g, reg);
1631 ctx->work_registers = MAX2(ctx->work_registers, r);
1632 return r;
1633 }
1634
1635 switch (reg) {
1636 /* fmov style unused */
1637 case SSA_UNUSED_0:
1638 return REGISTER_UNUSED;
1639
1640 /* lut style unused */
1641 case SSA_UNUSED_1:
1642 return REGISTER_UNUSED;
1643
1644 default:
1645 printf("Unknown SSA register alias %d\n", reg);
1646 assert(0);
1647 return 31;
1648 }
1649 }
1650
1651 static unsigned int
1652 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1653 {
1654 /* Choose the first available register to minimise reported register pressure */
1655
1656 for (int i = 0; i < 16; ++i) {
1657 if (BITSET_TEST(regs, i)) {
1658 return i;
1659 }
1660 }
1661
1662 assert(0);
1663 return 0;
1664 }
1665
1666 static bool
1667 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1668 {
1669 if (ins->ssa_args.src0 == src) return true;
1670 if (ins->ssa_args.src1 == src) return true;
1671
1672 return false;
1673 }
1674
1675 static bool
1676 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1677 {
1678 /* Check the rest of the block for liveness */
1679 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1680 if (midgard_is_live_in_instr(ins, src))
1681 return true;
1682 }
1683
1684 /* Check the rest of the blocks for liveness */
1685 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1686 mir_foreach_instr_in_block(b, ins) {
1687 if (midgard_is_live_in_instr(ins, src))
1688 return true;
1689 }
1690 }
1691
1692 /* TODO: How does control flow interact in complex shaders? */
1693
1694 return false;
1695 }
1696
1697 static void
1698 allocate_registers(compiler_context *ctx)
1699 {
1700 /* First, initialize the RA */
1701 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1702
1703 /* Create a primary (general purpose) class, as well as special purpose
1704 * pipeline register classes */
1705
1706 int primary_class = ra_alloc_reg_class(regs);
1707 int varying_class = ra_alloc_reg_class(regs);
1708
1709 /* Add the full set of work registers */
1710 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1711 for (int i = 0; i < work_count; ++i)
1712 ra_class_add_reg(regs, primary_class, i);
1713
1714 /* Add special registers */
1715 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1716 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1717
1718 /* We're done setting up */
1719 ra_set_finalize(regs, NULL);
1720
1721 /* Transform the MIR into squeezed index form */
1722 mir_foreach_block(ctx, block) {
1723 mir_foreach_instr_in_block(block, ins) {
1724 if (ins->compact_branch) continue;
1725
1726 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1727 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1728 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1729 }
1730
1731 print_mir_block(block);
1732 }
1733
1734 /* Let's actually do register allocation */
1735 int nodes = ctx->temp_count;
1736 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1737
1738 /* Set everything to the work register class, unless it has somewhere
1739 * special to go */
1740
1741 mir_foreach_block(ctx, block) {
1742 mir_foreach_instr_in_block(block, ins) {
1743 if (ins->compact_branch) continue;
1744
1745 if (ins->ssa_args.dest < 0) continue;
1746
1747 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1748
1749 int class = primary_class;
1750
1751 ra_set_node_class(g, ins->ssa_args.dest, class);
1752 }
1753 }
1754
1755 for (int index = 0; index <= ctx->max_hash; ++index) {
1756 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1757
1758 if (temp) {
1759 unsigned reg = temp - 1;
1760 int t = find_or_allocate_temp(ctx, index);
1761 ra_set_node_reg(g, t, reg);
1762 }
1763 }
1764
1765 /* Determine liveness */
1766
1767 int *live_start = malloc(nodes * sizeof(int));
1768 int *live_end = malloc(nodes * sizeof(int));
1769
1770 /* Initialize as non-existent */
1771
1772 for (int i = 0; i < nodes; ++i) {
1773 live_start[i] = live_end[i] = -1;
1774 }
1775
1776 int d = 0;
1777
1778 mir_foreach_block(ctx, block) {
1779 mir_foreach_instr_in_block(block, ins) {
1780 if (ins->compact_branch) continue;
1781
1782 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1783 /* If this destination is not yet live, it is now since we just wrote it */
1784
1785 int dest = ins->ssa_args.dest;
1786
1787 if (live_start[dest] == -1)
1788 live_start[dest] = d;
1789 }
1790
1791 /* Since we just used a source, the source might be
1792 * dead now. Scan the rest of the block for
1793 * invocations, and if there are none, the source dies
1794 * */
1795
1796 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1797
1798 for (int src = 0; src < 2; ++src) {
1799 int s = sources[src];
1800
1801 if (s < 0) continue;
1802
1803 if (s >= SSA_FIXED_MINIMUM) continue;
1804
1805 if (!is_live_after(ctx, block, ins, s)) {
1806 live_end[s] = d;
1807 }
1808 }
1809
1810 ++d;
1811 }
1812 }
1813
1814 /* If a node still hasn't been killed, kill it now */
1815
1816 for (int i = 0; i < nodes; ++i) {
1817 /* live_start == -1 most likely indicates a pinned output */
1818
1819 if (live_end[i] == -1)
1820 live_end[i] = d;
1821 }
1822
1823 /* Setup interference between nodes that are live at the same time */
1824
1825 for (int i = 0; i < nodes; ++i) {
1826 for (int j = i + 1; j < nodes; ++j) {
1827 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1828 ra_add_node_interference(g, i, j);
1829 }
1830 }
1831
1832 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1833
1834 if (!ra_allocate(g)) {
1835 printf("Error allocating registers\n");
1836 assert(0);
1837 }
1838
1839 /* Cleanup */
1840 free(live_start);
1841 free(live_end);
1842
1843 mir_foreach_block(ctx, block) {
1844 mir_foreach_instr_in_block(block, ins) {
1845 if (ins->compact_branch) continue;
1846
1847 ssa_args args = ins->ssa_args;
1848
1849 switch (ins->type) {
1850 case TAG_ALU_4:
1851 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1852
1853 ins->registers.src2_imm = args.inline_constant;
1854
1855 if (args.inline_constant) {
1856 /* Encode inline 16-bit constant as a vector by default */
1857
1858 ins->registers.src2_reg = ins->inline_constant >> 11;
1859
1860 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1861
1862 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1863 ins->alu.src2 = imm << 2;
1864 } else {
1865 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1866 }
1867
1868 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1869
1870 break;
1871
1872 case TAG_LOAD_STORE_4: {
1873 if (OP_IS_STORE(ins->load_store.op)) {
1874 /* TODO: use ssa_args for store_vary */
1875 ins->load_store.reg = 0;
1876 } else {
1877 bool has_dest = args.dest >= 0;
1878 int ssa_arg = has_dest ? args.dest : args.src0;
1879
1880 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1881 }
1882
1883 break;
1884 }
1885
1886 default:
1887 break;
1888 }
1889 }
1890 }
1891 }
1892
1893 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1894 * use scalar ALU instructions, for functional or performance reasons. To do
1895 * this, we just demote vector ALU payloads to scalar. */
1896
1897 static int
1898 component_from_mask(unsigned mask)
1899 {
1900 for (int c = 0; c < 4; ++c) {
1901 if (mask & (3 << (2 * c)))
1902 return c;
1903 }
1904
1905 assert(0);
1906 return 0;
1907 }
1908
1909 static bool
1910 is_single_component_mask(unsigned mask)
1911 {
1912 int components = 0;
1913
1914 for (int c = 0; c < 4; ++c)
1915 if (mask & (3 << (2 * c)))
1916 components++;
1917
1918 return components == 1;
1919 }
1920
1921 /* Create a mask of accessed components from a swizzle to figure out vector
1922 * dependencies */
1923
1924 static unsigned
1925 swizzle_to_access_mask(unsigned swizzle)
1926 {
1927 unsigned component_mask = 0;
1928
1929 for (int i = 0; i < 4; ++i) {
1930 unsigned c = (swizzle >> (2 * i)) & 3;
1931 component_mask |= (1 << c);
1932 }
1933
1934 return component_mask;
1935 }
1936
1937 static unsigned
1938 vector_to_scalar_source(unsigned u)
1939 {
1940 midgard_vector_alu_src v;
1941 memcpy(&v, &u, sizeof(v));
1942
1943 midgard_scalar_alu_src s = {
1944 .abs = v.abs,
1945 .negate = v.negate,
1946 .full = !v.half,
1947 .component = (v.swizzle & 3) << 1
1948 };
1949
1950 unsigned o;
1951 memcpy(&o, &s, sizeof(s));
1952
1953 return o & ((1 << 6) - 1);
1954 }
1955
1956 static midgard_scalar_alu
1957 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1958 {
1959 /* The output component is from the mask */
1960 midgard_scalar_alu s = {
1961 .op = v.op,
1962 .src1 = vector_to_scalar_source(v.src1),
1963 .src2 = vector_to_scalar_source(v.src2),
1964 .unknown = 0,
1965 .outmod = v.outmod,
1966 .output_full = 1, /* TODO: Half */
1967 .output_component = component_from_mask(v.mask) << 1,
1968 };
1969
1970 /* Inline constant is passed along rather than trying to extract it
1971 * from v */
1972
1973 if (ins->ssa_args.inline_constant) {
1974 uint16_t imm = 0;
1975 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1976 imm |= (lower_11 >> 9) & 3;
1977 imm |= (lower_11 >> 6) & 4;
1978 imm |= (lower_11 >> 2) & 0x38;
1979 imm |= (lower_11 & 63) << 6;
1980
1981 s.src2 = imm;
1982 }
1983
1984 return s;
1985 }
1986
1987 /* Midgard prefetches instruction types, so during emission we need to
1988 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1989 * if this is the second to last and the last is an ALU, then it's also 1... */
1990
1991 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1992 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1993
1994 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
1995 bytes_emitted += sizeof(type)
1996
1997 static void
1998 emit_binary_vector_instruction(midgard_instruction *ains,
1999 uint16_t *register_words, int *register_words_count,
2000 uint64_t *body_words, size_t *body_size, int *body_words_count,
2001 size_t *bytes_emitted)
2002 {
2003 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2004 *bytes_emitted += sizeof(midgard_reg_info);
2005
2006 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2007 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2008 *bytes_emitted += sizeof(midgard_vector_alu);
2009 }
2010
2011 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2012 * mind that we are a vector architecture and we can write to different
2013 * components simultaneously */
2014
2015 static bool
2016 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2017 {
2018 /* Each instruction reads some registers and writes to a register. See
2019 * where the first writes */
2020
2021 /* Figure out where exactly we wrote to */
2022 int source = first->ssa_args.dest;
2023 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2024
2025 /* As long as the second doesn't read from the first, we're okay */
2026 if (second->ssa_args.src0 == source) {
2027 if (first->type == TAG_ALU_4) {
2028 /* Figure out which components we just read from */
2029
2030 int q = second->alu.src1;
2031 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2032
2033 /* Check if there are components in common, and fail if so */
2034 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2035 return false;
2036 } else
2037 return false;
2038
2039 }
2040
2041 if (second->ssa_args.src1 == source)
2042 return false;
2043
2044 /* Otherwise, it's safe in that regard. Another data hazard is both
2045 * writing to the same place, of course */
2046
2047 if (second->ssa_args.dest == source) {
2048 /* ...but only if the components overlap */
2049 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2050
2051 if (dest_mask & source_mask)
2052 return false;
2053 }
2054
2055 /* ...That's it */
2056 return true;
2057 }
2058
2059 /* Schedules, but does not emit, a single basic block. After scheduling, the
2060 * final tag and size of the block are known, which are necessary for branching
2061 * */
2062
2063 static midgard_bundle
2064 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2065 {
2066 int instructions_emitted = 0, instructions_consumed = -1;
2067 midgard_bundle bundle = { 0 };
2068
2069 uint8_t tag = ins->type;
2070
2071 /* Default to the instruction's tag */
2072 bundle.tag = tag;
2073
2074 switch (ins->type) {
2075 case TAG_ALU_4: {
2076 uint32_t control = 0;
2077 size_t bytes_emitted = sizeof(control);
2078
2079 /* TODO: Constant combining */
2080 int index = 0, last_unit = 0;
2081
2082 /* Previous instructions, for the purpose of parallelism */
2083 midgard_instruction *segment[4] = {0};
2084 int segment_size = 0;
2085
2086 instructions_emitted = -1;
2087 midgard_instruction *pins = ins;
2088
2089 for (;;) {
2090 midgard_instruction *ains = pins;
2091
2092 /* Advance instruction pointer */
2093 if (index) {
2094 ains = mir_next_op(pins);
2095 pins = ains;
2096 }
2097
2098 /* Out-of-work condition */
2099 if ((struct list_head *) ains == &block->instructions)
2100 break;
2101
2102 /* Ensure that the chain can continue */
2103 if (ains->type != TAG_ALU_4) break;
2104
2105 /* According to the presentation "The ARM
2106 * Mali-T880 Mobile GPU" from HotChips 27,
2107 * there are two pipeline stages. Branching
2108 * position determined experimentally. Lines
2109 * are executed in parallel:
2110 *
2111 * [ VMUL ] [ SADD ]
2112 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2113 *
2114 * Verify that there are no ordering dependencies here.
2115 *
2116 * TODO: Allow for parallelism!!!
2117 */
2118
2119 /* Pick a unit for it if it doesn't force a particular unit */
2120
2121 int unit = ains->unit;
2122
2123 if (!unit) {
2124 int op = ains->alu.op;
2125 int units = alu_opcode_props[op];
2126
2127 /* TODO: Promotion of scalars to vectors */
2128 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2129
2130 if (!vector)
2131 assert(units & UNITS_SCALAR);
2132
2133 if (vector) {
2134 if (last_unit >= UNIT_VADD) {
2135 if (units & UNIT_VLUT)
2136 unit = UNIT_VLUT;
2137 else
2138 break;
2139 } else {
2140 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2141 unit = UNIT_VMUL;
2142 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2143 unit = UNIT_VADD;
2144 else if (units & UNIT_VLUT)
2145 unit = UNIT_VLUT;
2146 else
2147 break;
2148 }
2149 } else {
2150 if (last_unit >= UNIT_VADD) {
2151 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2152 unit = UNIT_SMUL;
2153 else if (units & UNIT_VLUT)
2154 unit = UNIT_VLUT;
2155 else
2156 break;
2157 } else {
2158 if ((units & UNIT_SADD) && !(control & UNIT_SADD))
2159 unit = UNIT_SADD;
2160 else if (units & UNIT_SMUL)
2161 unit = UNIT_SMUL;
2162 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2163 unit = UNIT_VADD;
2164 else
2165 break;
2166 }
2167 }
2168
2169 assert(unit & units);
2170 }
2171
2172 /* Late unit check, this time for encoding (not parallelism) */
2173 if (unit <= last_unit) break;
2174
2175 /* Clear the segment */
2176 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2177 segment_size = 0;
2178
2179 /* Check for data hazards */
2180 int has_hazard = false;
2181
2182 for (int s = 0; s < segment_size; ++s)
2183 if (!can_run_concurrent_ssa(segment[s], ains))
2184 has_hazard = true;
2185
2186 if (has_hazard)
2187 break;
2188
2189 /* We're good to go -- emit the instruction */
2190 ains->unit = unit;
2191
2192 segment[segment_size++] = ains;
2193
2194 /* Only one set of embedded constants per
2195 * bundle possible; if we have more, we must
2196 * break the chain early, unfortunately */
2197
2198 if (ains->has_constants) {
2199 if (bundle.has_embedded_constants) {
2200 /* ...but if there are already
2201 * constants but these are the
2202 * *same* constants, we let it
2203 * through */
2204
2205 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2206 break;
2207 } else {
2208 bundle.has_embedded_constants = true;
2209 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2210
2211 /* If this is a blend shader special constant, track it for patching */
2212 if (ains->has_blend_constant)
2213 bundle.has_blend_constant = true;
2214 }
2215 }
2216
2217 if (ains->unit & UNITS_ANY_VECTOR) {
2218 emit_binary_vector_instruction(ains, bundle.register_words,
2219 &bundle.register_words_count, bundle.body_words,
2220 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2221 } else if (ains->compact_branch) {
2222 /* All of r0 has to be written out
2223 * along with the branch writeout.
2224 * (slow!) */
2225
2226 if (ains->writeout) {
2227 if (index == 0) {
2228 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2229 ins.unit = UNIT_VMUL;
2230
2231 control |= ins.unit;
2232
2233 emit_binary_vector_instruction(&ins, bundle.register_words,
2234 &bundle.register_words_count, bundle.body_words,
2235 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2236 } else {
2237 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2238 bool written_late = false;
2239 bool components[4] = { 0 };
2240 uint16_t register_dep_mask = 0;
2241 uint16_t written_mask = 0;
2242
2243 midgard_instruction *qins = ins;
2244 for (int t = 0; t < index; ++t) {
2245 if (qins->registers.out_reg != 0) {
2246 /* Mark down writes */
2247
2248 written_mask |= (1 << qins->registers.out_reg);
2249 } else {
2250 /* Mark down the register dependencies for errata check */
2251
2252 if (qins->registers.src1_reg < 16)
2253 register_dep_mask |= (1 << qins->registers.src1_reg);
2254
2255 if (qins->registers.src2_reg < 16)
2256 register_dep_mask |= (1 << qins->registers.src2_reg);
2257
2258 int mask = qins->alu.mask;
2259
2260 for (int c = 0; c < 4; ++c)
2261 if (mask & (0x3 << (2 * c)))
2262 components[c] = true;
2263
2264 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2265
2266 if (qins->unit == UNIT_VLUT)
2267 written_late = true;
2268 }
2269
2270 /* Advance instruction pointer */
2271 qins = mir_next_op(qins);
2272 }
2273
2274
2275 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2276 if (register_dep_mask & written_mask) {
2277 printf("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2278 break;
2279 }
2280
2281 if (written_late)
2282 break;
2283
2284 /* If even a single component is not written, break it up (conservative check). */
2285 bool breakup = false;
2286
2287 for (int c = 0; c < 4; ++c)
2288 if (!components[c])
2289 breakup = true;
2290
2291 if (breakup)
2292 break;
2293
2294 /* Otherwise, we're free to proceed */
2295 }
2296 }
2297
2298 if (ains->unit == ALU_ENAB_BRANCH) {
2299 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2300 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2301 bytes_emitted += sizeof(midgard_branch_extended);
2302 } else {
2303 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2304 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2305 bytes_emitted += sizeof(ains->br_compact);
2306 }
2307 } else {
2308 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2309 bytes_emitted += sizeof(midgard_reg_info);
2310
2311 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2312 bundle.body_words_count++;
2313 bytes_emitted += sizeof(midgard_scalar_alu);
2314 }
2315
2316 /* Defer marking until after writing to allow for break */
2317 control |= ains->unit;
2318 last_unit = ains->unit;
2319 ++instructions_emitted;
2320 ++index;
2321 }
2322
2323 /* Bubble up the number of instructions for skipping */
2324 instructions_consumed = index - 1;
2325
2326 int padding = 0;
2327
2328 /* Pad ALU op to nearest word */
2329
2330 if (bytes_emitted & 15) {
2331 padding = 16 - (bytes_emitted & 15);
2332 bytes_emitted += padding;
2333 }
2334
2335 /* Constants must always be quadwords */
2336 if (bundle.has_embedded_constants)
2337 bytes_emitted += 16;
2338
2339 /* Size ALU instruction for tag */
2340 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2341 bundle.padding = padding;
2342 bundle.control = bundle.tag | control;
2343
2344 break;
2345 }
2346
2347 case TAG_LOAD_STORE_4: {
2348 /* Load store instructions have two words at once. If
2349 * we only have one queued up, we need to NOP pad.
2350 * Otherwise, we store both in succession to save space
2351 * and cycles -- letting them go in parallel -- skip
2352 * the next. The usefulness of this optimisation is
2353 * greatly dependent on the quality of the instruction
2354 * scheduler.
2355 */
2356
2357 midgard_instruction *next_op = mir_next_op(ins);
2358
2359 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2360 /* As the two operate concurrently, make sure
2361 * they are not dependent */
2362
2363 if (can_run_concurrent_ssa(ins, next_op) || true) {
2364 /* Skip ahead, since it's redundant with the pair */
2365 instructions_consumed = 1 + (instructions_emitted++);
2366 }
2367 }
2368
2369 break;
2370 }
2371
2372 default:
2373 /* Texture ops default to single-op-per-bundle scheduling */
2374 break;
2375 }
2376
2377 /* Copy the instructions into the bundle */
2378 bundle.instruction_count = instructions_emitted + 1;
2379
2380 int used_idx = 0;
2381
2382 midgard_instruction *uins = ins;
2383 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2384 bundle.instructions[used_idx++] = *uins;
2385 uins = mir_next_op(uins);
2386 }
2387
2388 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2389
2390 return bundle;
2391 }
2392
2393 static int
2394 quadword_size(int tag)
2395 {
2396 switch (tag) {
2397 case TAG_ALU_4:
2398 return 1;
2399
2400 case TAG_ALU_8:
2401 return 2;
2402
2403 case TAG_ALU_12:
2404 return 3;
2405
2406 case TAG_ALU_16:
2407 return 4;
2408
2409 case TAG_LOAD_STORE_4:
2410 return 1;
2411
2412 case TAG_TEXTURE_4:
2413 return 1;
2414
2415 default:
2416 assert(0);
2417 return 0;
2418 }
2419 }
2420
2421 /* Schedule a single block by iterating its instruction to create bundles.
2422 * While we go, tally about the bundle sizes to compute the block size. */
2423
2424 static void
2425 schedule_block(compiler_context *ctx, midgard_block *block)
2426 {
2427 util_dynarray_init(&block->bundles, NULL);
2428
2429 block->quadword_count = 0;
2430
2431 mir_foreach_instr_in_block(block, ins) {
2432 int skip;
2433 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2434 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2435
2436 if (bundle.has_blend_constant) {
2437 /* TODO: Multiblock? */
2438 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2439 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2440 }
2441
2442 while(skip--)
2443 ins = mir_next_op(ins);
2444
2445 block->quadword_count += quadword_size(bundle.tag);
2446 }
2447
2448 block->is_scheduled = true;
2449 }
2450
2451 static void
2452 schedule_program(compiler_context *ctx)
2453 {
2454 allocate_registers(ctx);
2455
2456 mir_foreach_block(ctx, block) {
2457 schedule_block(ctx, block);
2458 }
2459 }
2460
2461 /* After everything is scheduled, emit whole bundles at a time */
2462
2463 static void
2464 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2465 {
2466 int lookahead = next_tag << 4;
2467
2468 switch (bundle->tag) {
2469 case TAG_ALU_4:
2470 case TAG_ALU_8:
2471 case TAG_ALU_12:
2472 case TAG_ALU_16: {
2473 /* Actually emit each component */
2474 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2475
2476 for (int i = 0; i < bundle->register_words_count; ++i)
2477 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2478
2479 /* Emit body words based on the instructions bundled */
2480 for (int i = 0; i < bundle->instruction_count; ++i) {
2481 midgard_instruction *ins = &bundle->instructions[i];
2482
2483 if (ins->unit & UNITS_ANY_VECTOR) {
2484 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2485 } else if (ins->compact_branch) {
2486 /* Dummy move, XXX DRY */
2487 if ((i == 0) && ins->writeout) {
2488 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2489 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2490 }
2491
2492 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2493 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2494 } else {
2495 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2496 }
2497 } else {
2498 /* Scalar */
2499 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2500 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2501 }
2502 }
2503
2504 /* Emit padding (all zero) */
2505 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2506
2507 /* Tack on constants */
2508
2509 if (bundle->has_embedded_constants) {
2510 util_dynarray_append(emission, float, bundle->constants[0]);
2511 util_dynarray_append(emission, float, bundle->constants[1]);
2512 util_dynarray_append(emission, float, bundle->constants[2]);
2513 util_dynarray_append(emission, float, bundle->constants[3]);
2514 }
2515
2516 break;
2517 }
2518
2519 case TAG_LOAD_STORE_4: {
2520 /* One or two composing instructions */
2521
2522 uint64_t current64, next64 = LDST_NOP;
2523
2524 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2525
2526 if (bundle->instruction_count == 2)
2527 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2528
2529 midgard_load_store instruction = {
2530 .type = bundle->tag,
2531 .next_type = next_tag,
2532 .word1 = current64,
2533 .word2 = next64
2534 };
2535
2536 util_dynarray_append(emission, midgard_load_store, instruction);
2537
2538 break;
2539 }
2540
2541 case TAG_TEXTURE_4: {
2542 /* Texture instructions are easy, since there is no
2543 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2544
2545 midgard_instruction *ins = &bundle->instructions[0];
2546
2547 ins->texture.type = TAG_TEXTURE_4;
2548 ins->texture.next_type = next_tag;
2549
2550 ctx->texture_op_count--;
2551
2552 if (!ctx->texture_op_count) {
2553 ins->texture.cont = 0;
2554 ins->texture.last = 1;
2555 }
2556
2557 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2558 break;
2559 }
2560
2561 default:
2562 printf("Unknown midgard instruction type\n");
2563 assert(0);
2564 break;
2565 }
2566 }
2567
2568
2569 /* ALU instructions can inline or embed constants, which decreases register
2570 * pressure and saves space. */
2571
2572 #define CONDITIONAL_ATTACH(src) { \
2573 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2574 \
2575 if (entry) { \
2576 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2577 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2578 } \
2579 }
2580
2581 static void
2582 inline_alu_constants(compiler_context *ctx)
2583 {
2584 mir_foreach_instr(ctx, alu) {
2585 /* Other instructions cannot inline constants */
2586 if (alu->type != TAG_ALU_4) continue;
2587
2588 /* If there is already a constant here, we can do nothing */
2589 if (alu->has_constants) continue;
2590
2591 CONDITIONAL_ATTACH(src0);
2592
2593 if (!alu->has_constants) {
2594 CONDITIONAL_ATTACH(src1)
2595 } else if (!alu->inline_constant) {
2596 /* Corner case: _two_ vec4 constants, for instance with a
2597 * csel. For this case, we can only use a constant
2598 * register for one, we'll have to emit a move for the
2599 * other. Note, if both arguments are constants, then
2600 * necessarily neither argument depends on the value of
2601 * any particular register. As the destination register
2602 * will be wiped, that means we can spill the constant
2603 * to the destination register.
2604 */
2605
2606 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2607 unsigned scratch = alu->ssa_args.dest;
2608
2609 if (entry) {
2610 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2611 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2612
2613 /* Force a break XXX Defer r31 writes */
2614 ins.unit = UNIT_VLUT;
2615
2616 /* Set the source */
2617 alu->ssa_args.src1 = scratch;
2618
2619 /* Inject us -before- the last instruction which set r31 */
2620 mir_insert_instruction_before(mir_prev_op(alu), ins);
2621 }
2622 }
2623 }
2624 }
2625
2626 /* Midgard supports two types of constants, embedded constants (128-bit) and
2627 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2628 * constants can be demoted to inline constants, for space savings and
2629 * sometimes a performance boost */
2630
2631 static void
2632 embedded_to_inline_constant(compiler_context *ctx)
2633 {
2634 mir_foreach_instr(ctx, ins) {
2635 if (!ins->has_constants) continue;
2636
2637 if (ins->ssa_args.inline_constant) continue;
2638
2639 /* Blend constants must not be inlined by definition */
2640 if (ins->has_blend_constant) continue;
2641
2642 /* src1 cannot be an inline constant due to encoding
2643 * restrictions. So, if possible we try to flip the arguments
2644 * in that case */
2645
2646 int op = ins->alu.op;
2647
2648 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2649 /* Flip based on op. Fallthrough intentional */
2650
2651 switch (op) {
2652 /* These ops require an operational change to flip their arguments TODO */
2653 case midgard_alu_op_flt:
2654 case midgard_alu_op_fle:
2655 case midgard_alu_op_ilt:
2656 case midgard_alu_op_ile:
2657 case midgard_alu_op_fcsel:
2658 case midgard_alu_op_icsel:
2659 case midgard_alu_op_isub:
2660 printf("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2661 break;
2662
2663 /* These ops are commutative and Just Flip */
2664 case midgard_alu_op_fne:
2665 case midgard_alu_op_fadd:
2666 case midgard_alu_op_fmul:
2667 case midgard_alu_op_fmin:
2668 case midgard_alu_op_fmax:
2669 case midgard_alu_op_iadd:
2670 case midgard_alu_op_imul:
2671 case midgard_alu_op_feq:
2672 case midgard_alu_op_ieq:
2673 case midgard_alu_op_ine:
2674 case midgard_alu_op_iand:
2675 case midgard_alu_op_ior:
2676 case midgard_alu_op_ixor:
2677 /* Flip the SSA numbers */
2678 ins->ssa_args.src0 = ins->ssa_args.src1;
2679 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2680
2681 /* And flip the modifiers */
2682
2683 unsigned src_temp;
2684
2685 src_temp = ins->alu.src2;
2686 ins->alu.src2 = ins->alu.src1;
2687 ins->alu.src1 = src_temp;
2688
2689 default:
2690 break;
2691 }
2692 }
2693
2694 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2695 /* Extract the source information */
2696
2697 midgard_vector_alu_src *src;
2698 int q = ins->alu.src2;
2699 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2700 src = m;
2701
2702 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2703 int component = src->swizzle & 3;
2704
2705 /* Scale constant appropriately, if we can legally */
2706 uint16_t scaled_constant = 0;
2707
2708 /* XXX: Check legality */
2709 if (midgard_is_integer_op(op)) {
2710 /* TODO: Inline integer */
2711 continue;
2712
2713 unsigned int *iconstants = (unsigned int *) ins->constants;
2714 scaled_constant = (uint16_t) iconstants[component];
2715
2716 /* Constant overflow after resize */
2717 if (scaled_constant != iconstants[component])
2718 continue;
2719 } else {
2720 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2721 }
2722
2723 /* We don't know how to handle these with a constant */
2724
2725 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2726 printf("Bailing inline constant...\n");
2727 continue;
2728 }
2729
2730 /* Make sure that the constant is not itself a
2731 * vector by checking if all accessed values
2732 * (by the swizzle) are the same. */
2733
2734 uint32_t *cons = (uint32_t *) ins->constants;
2735 uint32_t value = cons[component];
2736
2737 bool is_vector = false;
2738 unsigned mask = effective_writemask(&ins->alu);
2739
2740 for (int c = 1; c < 4; ++c) {
2741 /* We only care if this component is actually used */
2742 if (!(mask & (1 << c)))
2743 continue;
2744
2745 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2746
2747 if (test != value) {
2748 is_vector = true;
2749 break;
2750 }
2751 }
2752
2753 if (is_vector)
2754 continue;
2755
2756 /* Get rid of the embedded constant */
2757 ins->has_constants = false;
2758 ins->ssa_args.src1 = SSA_UNUSED_0;
2759 ins->ssa_args.inline_constant = true;
2760 ins->inline_constant = scaled_constant;
2761 }
2762 }
2763 }
2764
2765 /* Map normal SSA sources to other SSA sources / fixed registers (like
2766 * uniforms) */
2767
2768 static void
2769 map_ssa_to_alias(compiler_context *ctx, int *ref)
2770 {
2771 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2772
2773 if (alias) {
2774 /* Remove entry in leftovers to avoid a redunant fmov */
2775
2776 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2777
2778 if (leftover)
2779 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2780
2781 /* Assign the alias map */
2782 *ref = alias - 1;
2783 return;
2784 }
2785 }
2786
2787 #define AS_SRC(to, u) \
2788 int q##to = ins->alu.src2; \
2789 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2790
2791 /* Removing unused moves is necessary to clean up the texture pipeline results.
2792 *
2793 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2794
2795 static void
2796 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2797 {
2798 mir_foreach_instr_in_block_safe(block, ins) {
2799 if (ins->type != TAG_ALU_4) continue;
2800
2801 if (ins->alu.op != midgard_alu_op_fmov) continue;
2802
2803 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2804
2805 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2806
2807 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2808
2809 mir_remove_instruction(ins);
2810 }
2811 }
2812
2813 /* The following passes reorder MIR instructions to enable better scheduling */
2814
2815 static void
2816 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2817 {
2818 mir_foreach_instr_in_block_safe(block, ins) {
2819 if (ins->type != TAG_LOAD_STORE_4) continue;
2820
2821 /* We've found a load/store op. Check if next is also load/store. */
2822 midgard_instruction *next_op = mir_next_op(ins);
2823 if (&next_op->link != &block->instructions) {
2824 if (next_op->type == TAG_LOAD_STORE_4) {
2825 /* If so, we're done since we're a pair */
2826 ins = mir_next_op(ins);
2827 continue;
2828 }
2829
2830 /* Maximum search distance to pair, to avoid register pressure disasters */
2831 int search_distance = 8;
2832
2833 /* Otherwise, we have an orphaned load/store -- search for another load */
2834 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2835 /* Terminate search if necessary */
2836 if (!(search_distance--)) break;
2837
2838 if (c->type != TAG_LOAD_STORE_4) continue;
2839
2840 if (OP_IS_STORE(c->load_store.op)) continue;
2841
2842 /* We found one! Move it up to pair and remove it from the old location */
2843
2844 mir_insert_instruction_before(ins, *c);
2845 mir_remove_instruction(c);
2846
2847 break;
2848 }
2849 }
2850 }
2851 }
2852
2853 /* Emit varying stores late */
2854
2855 static void
2856 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2857 /* Iterate in reverse to get the final write, rather than the first */
2858
2859 mir_foreach_instr_in_block_safe_rev(block, ins) {
2860 /* Check if what we just wrote needs a store */
2861 int idx = ins->ssa_args.dest;
2862 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2863
2864 if (!varying) continue;
2865
2866 varying -= 1;
2867
2868 /* We need to store to the appropriate varying, so emit the
2869 * move/store */
2870
2871 /* TODO: Integrate with special purpose RA (and scheduler?) */
2872 bool high_varying_register = false;
2873
2874 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2875
2876 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2877 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2878
2879 mir_insert_instruction_before(mir_next_op(ins), st);
2880 mir_insert_instruction_before(mir_next_op(ins), mov);
2881
2882 /* We no longer need to store this varying */
2883 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2884 }
2885 }
2886
2887 /* If there are leftovers after the below pass, emit actual fmov
2888 * instructions for the slow-but-correct path */
2889
2890 static void
2891 emit_leftover_move(compiler_context *ctx)
2892 {
2893 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2894 int base = ((uintptr_t) leftover->key) - 1;
2895 int mapped = base;
2896
2897 map_ssa_to_alias(ctx, &mapped);
2898 EMIT(fmov, mapped, blank_alu_src, base);
2899 }
2900 }
2901
2902 static void
2903 actualise_ssa_to_alias(compiler_context *ctx)
2904 {
2905 mir_foreach_instr(ctx, ins) {
2906 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2907 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2908 }
2909
2910 emit_leftover_move(ctx);
2911 }
2912
2913 /* Vertex shaders do not write gl_Position as is; instead, they write a
2914 * transformed screen space position as a varying. See section 12.5 "Coordinate
2915 * Transformation" of the ES 3.2 full specification for details.
2916 *
2917 * This transformation occurs early on, as NIR and prior to optimisation, in
2918 * order to take advantage of NIR optimisation passes of the transform itself.
2919 * */
2920
2921 static void
2922 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2923 {
2924 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2925
2926 /* Get viewport from the uniforms */
2927 nir_intrinsic_instr *load;
2928 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2929 load->num_components = 4;
2930 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2931 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2932 nir_builder_instr_insert(b, &load->instr);
2933
2934 /* Formatted as <width, height, centerx, centery> */
2935 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2936 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2937 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2938 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2939
2940 /* XXX: From uniforms? */
2941 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2942 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2943
2944 /* World space to normalised device coordinates */
2945
2946 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2947 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2948
2949 /* Normalised device coordinates to screen space */
2950
2951 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2952 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2953
2954 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2955 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2956 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2957
2958 /* gl_Position will be written out in screenspace xyz, with w set to
2959 * the reciprocal we computed earlier. The transformed w component is
2960 * then used for perspective-correct varying interpolation. The
2961 * transformed w component must preserve its original sign; this is
2962 * used in depth clipping computations */
2963
2964 nir_ssa_def *screen_space = nir_vec4(b,
2965 nir_channel(b, viewport_xy, 0),
2966 nir_channel(b, viewport_xy, 1),
2967 screen_depth,
2968 w_recip);
2969
2970 /* Finally, write out the transformed values to the varying */
2971
2972 nir_intrinsic_instr *store;
2973 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2974 store->num_components = 4;
2975 nir_intrinsic_set_base(store, 0);
2976 nir_intrinsic_set_write_mask(store, 0xf);
2977 store->src[0].ssa = screen_space;
2978 store->src[0].is_ssa = true;
2979 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2980 nir_builder_instr_insert(b, &store->instr);
2981 }
2982
2983 static void
2984 transform_position_writes(nir_shader *shader)
2985 {
2986 nir_foreach_function(func, shader) {
2987 nir_foreach_block(block, func->impl) {
2988 nir_foreach_instr_safe(instr, block) {
2989 if (instr->type != nir_instr_type_intrinsic) continue;
2990
2991 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
2992 nir_variable *out = NULL;
2993
2994 switch (intr->intrinsic) {
2995 case nir_intrinsic_store_output:
2996 /* already had i/o lowered.. lookup the matching output var: */
2997 nir_foreach_variable(var, &shader->outputs) {
2998 int drvloc = var->data.driver_location;
2999
3000 if (nir_intrinsic_base(intr) == drvloc) {
3001 out = var;
3002 break;
3003 }
3004 }
3005
3006 break;
3007
3008 default:
3009 break;
3010 }
3011
3012 if (!out) continue;
3013
3014 if (out->data.mode != nir_var_shader_out)
3015 continue;
3016
3017 if (out->data.location != VARYING_SLOT_POS)
3018 continue;
3019
3020 nir_builder b;
3021 nir_builder_init(&b, func->impl);
3022 b.cursor = nir_before_instr(instr);
3023
3024 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3025 nir_instr_remove(instr);
3026 }
3027 }
3028 }
3029 }
3030
3031 static void
3032 emit_fragment_epilogue(compiler_context *ctx)
3033 {
3034 /* Special case: writing out constants requires us to include the move
3035 * explicitly now, so shove it into r0 */
3036
3037 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3038
3039 if (constant_value) {
3040 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3041 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3042 emit_mir_instruction(ctx, ins);
3043 }
3044
3045 /* Perform the actual fragment writeout. We have two writeout/branch
3046 * instructions, forming a loop until writeout is successful as per the
3047 * docs. TODO: gl_FragDepth */
3048
3049 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3050 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3051 }
3052
3053 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3054 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3055 * with the int8 analogue to the fragment epilogue */
3056
3057 static void
3058 emit_blend_epilogue(compiler_context *ctx)
3059 {
3060 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3061
3062 midgard_instruction scale = {
3063 .type = TAG_ALU_4,
3064 .unit = UNIT_VMUL,
3065 .inline_constant = _mesa_float_to_half(255.0),
3066 .ssa_args = {
3067 .src0 = SSA_FIXED_REGISTER(0),
3068 .src1 = SSA_UNUSED_0,
3069 .dest = SSA_FIXED_REGISTER(24),
3070 .inline_constant = true
3071 },
3072 .alu = {
3073 .op = midgard_alu_op_fmul,
3074 .reg_mode = midgard_reg_mode_full,
3075 .dest_override = midgard_dest_override_lower,
3076 .mask = 0xFF,
3077 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3078 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3079 }
3080 };
3081
3082 emit_mir_instruction(ctx, scale);
3083
3084 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3085
3086 midgard_vector_alu_src alu_src = blank_alu_src;
3087 alu_src.half = true;
3088
3089 midgard_instruction f2u8 = {
3090 .type = TAG_ALU_4,
3091 .ssa_args = {
3092 .src0 = SSA_FIXED_REGISTER(24),
3093 .src1 = SSA_UNUSED_0,
3094 .dest = SSA_FIXED_REGISTER(0),
3095 .inline_constant = true
3096 },
3097 .alu = {
3098 .op = midgard_alu_op_f2u8,
3099 .reg_mode = midgard_reg_mode_half,
3100 .dest_override = midgard_dest_override_lower,
3101 .outmod = midgard_outmod_pos,
3102 .mask = 0xF,
3103 .src1 = vector_alu_srco_unsigned(alu_src),
3104 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3105 }
3106 };
3107
3108 emit_mir_instruction(ctx, f2u8);
3109
3110 /* vmul.imov.quarter r0, r0, r0 */
3111
3112 midgard_instruction imov_8 = {
3113 .type = TAG_ALU_4,
3114 .ssa_args = {
3115 .src0 = SSA_UNUSED_1,
3116 .src1 = SSA_FIXED_REGISTER(0),
3117 .dest = SSA_FIXED_REGISTER(0),
3118 },
3119 .alu = {
3120 .op = midgard_alu_op_imov,
3121 .reg_mode = midgard_reg_mode_quarter,
3122 .dest_override = midgard_dest_override_none,
3123 .mask = 0xFF,
3124 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3125 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3126 }
3127 };
3128
3129 /* Emit branch epilogue with the 8-bit move as the source */
3130
3131 emit_mir_instruction(ctx, imov_8);
3132 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3133
3134 emit_mir_instruction(ctx, imov_8);
3135 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3136 }
3137
3138 static midgard_block *
3139 emit_block(compiler_context *ctx, nir_block *block)
3140 {
3141 midgard_block *this_block = malloc(sizeof(midgard_block));
3142 list_addtail(&this_block->link, &ctx->blocks);
3143
3144 this_block->is_scheduled = false;
3145 ++ctx->block_count;
3146
3147 ctx->texture_index[0] = -1;
3148 ctx->texture_index[1] = -1;
3149
3150 /* Set up current block */
3151 list_inithead(&this_block->instructions);
3152 ctx->current_block = this_block;
3153
3154 nir_foreach_instr(instr, block) {
3155 emit_instr(ctx, instr);
3156 ++ctx->instruction_count;
3157 }
3158
3159 inline_alu_constants(ctx);
3160 embedded_to_inline_constant(ctx);
3161
3162 /* Perform heavylifting for aliasing */
3163 actualise_ssa_to_alias(ctx);
3164
3165 midgard_emit_store(ctx, this_block);
3166 midgard_eliminate_orphan_moves(ctx, this_block);
3167 midgard_pair_load_store(ctx, this_block);
3168
3169 /* Append fragment shader epilogue (value writeout) */
3170 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3171 if (block == nir_impl_last_block(ctx->func->impl)) {
3172 if (ctx->is_blend)
3173 emit_blend_epilogue(ctx);
3174 else
3175 emit_fragment_epilogue(ctx);
3176 }
3177 }
3178
3179 /* Fallthrough save */
3180 this_block->next_fallthrough = ctx->previous_source_block;
3181
3182 if (block == nir_start_block(ctx->func->impl))
3183 ctx->initial_block = this_block;
3184
3185 if (block == nir_impl_last_block(ctx->func->impl))
3186 ctx->final_block = this_block;
3187
3188 /* Allow the next control flow to access us retroactively, for
3189 * branching etc */
3190 ctx->current_block = this_block;
3191
3192 /* Document the fallthrough chain */
3193 ctx->previous_source_block = this_block;
3194
3195 return this_block;
3196 }
3197
3198 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3199
3200 static void
3201 emit_if(struct compiler_context *ctx, nir_if *nif)
3202 {
3203 /* Conditional branches expect the condition in r31.w; emit a move for
3204 * that in the _previous_ block (which is the current block). */
3205 emit_condition(ctx, &nif->condition, true);
3206
3207 /* Speculatively emit the branch, but we can't fill it in until later */
3208 EMIT(branch, true, true);
3209 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3210
3211 /* Emit the two subblocks */
3212 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3213
3214 /* Emit a jump from the end of the then block to the end of the else */
3215 EMIT(branch, false, false);
3216 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3217
3218 /* Emit second block, and check if it's empty */
3219
3220 int else_idx = ctx->block_count;
3221 int count_in = ctx->instruction_count;
3222 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3223 int after_else_idx = ctx->block_count;
3224
3225 /* Now that we have the subblocks emitted, fix up the branches */
3226
3227 assert(then_block);
3228 assert(else_block);
3229
3230 if (ctx->instruction_count == count_in) {
3231 /* The else block is empty, so don't emit an exit jump */
3232 mir_remove_instruction(then_exit);
3233 then_branch->branch.target_block = after_else_idx;
3234 } else {
3235 then_branch->branch.target_block = else_idx;
3236 then_exit->branch.target_block = after_else_idx;
3237 }
3238 }
3239
3240 static void
3241 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3242 {
3243 /* Remember where we are */
3244 midgard_block *start_block = ctx->current_block;
3245
3246 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3247 * single current_loop variable, maybe we need a stack */
3248
3249 int loop_idx = ++ctx->current_loop;
3250
3251 /* Get index from before the body so we can loop back later */
3252 int start_idx = ctx->block_count;
3253
3254 /* Emit the body itself */
3255 emit_cf_list(ctx, &nloop->body);
3256
3257 /* Branch back to loop back */
3258 struct midgard_instruction br_back = v_branch(false, false);
3259 br_back.branch.target_block = start_idx;
3260 emit_mir_instruction(ctx, br_back);
3261
3262 /* Find the index of the block about to follow us (note: we don't add
3263 * one; blocks are 0-indexed so we get a fencepost problem) */
3264 int break_block_idx = ctx->block_count;
3265
3266 /* Fix up the break statements we emitted to point to the right place,
3267 * now that we can allocate a block number for them */
3268
3269 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3270 print_mir_block(block);
3271 mir_foreach_instr_in_block(block, ins) {
3272 if (ins->type != TAG_ALU_4) continue;
3273 if (!ins->compact_branch) continue;
3274 if (ins->prepacked_branch) continue;
3275
3276 /* We found a branch -- check the type to see if we need to do anything */
3277 if (ins->branch.target_type != TARGET_BREAK) continue;
3278
3279 /* It's a break! Check if it's our break */
3280 if (ins->branch.target_break != loop_idx) continue;
3281
3282 /* Okay, cool, we're breaking out of this loop.
3283 * Rewrite from a break to a goto */
3284
3285 ins->branch.target_type = TARGET_GOTO;
3286 ins->branch.target_block = break_block_idx;
3287 }
3288 }
3289 }
3290
3291 static midgard_block *
3292 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3293 {
3294 midgard_block *start_block = NULL;
3295
3296 foreach_list_typed(nir_cf_node, node, node, list) {
3297 switch (node->type) {
3298 case nir_cf_node_block: {
3299 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3300
3301 if (!start_block)
3302 start_block = block;
3303
3304 break;
3305 }
3306
3307 case nir_cf_node_if:
3308 emit_if(ctx, nir_cf_node_as_if(node));
3309 break;
3310
3311 case nir_cf_node_loop:
3312 emit_loop(ctx, nir_cf_node_as_loop(node));
3313 break;
3314
3315 case nir_cf_node_function:
3316 assert(0);
3317 break;
3318 }
3319 }
3320
3321 return start_block;
3322 }
3323
3324 /* Due to lookahead, we need to report the first tag executed in the command
3325 * stream and in branch targets. An initial block might be empty, so iterate
3326 * until we find one that 'works' */
3327
3328 static unsigned
3329 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3330 {
3331 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3332
3333 unsigned first_tag = 0;
3334
3335 do {
3336 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3337
3338 if (initial_bundle) {
3339 first_tag = initial_bundle->tag;
3340 break;
3341 }
3342
3343 /* Initial block is empty, try the next block */
3344 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3345 } while(initial_block != NULL);
3346
3347 assert(first_tag);
3348 return first_tag;
3349 }
3350
3351 int
3352 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3353 {
3354 struct util_dynarray *compiled = &program->compiled;
3355
3356 compiler_context ictx = {
3357 .nir = nir,
3358 .stage = nir->info.stage,
3359
3360 .is_blend = is_blend,
3361 .blend_constant_offset = -1,
3362
3363 .alpha_ref = program->alpha_ref
3364 };
3365
3366 compiler_context *ctx = &ictx;
3367
3368 /* TODO: Decide this at runtime */
3369 ctx->uniform_cutoff = 8;
3370
3371 switch (ctx->stage) {
3372 case MESA_SHADER_VERTEX:
3373 ctx->special_uniforms = 1;
3374 break;
3375
3376 default:
3377 ctx->special_uniforms = 0;
3378 break;
3379 }
3380
3381 /* Append epilogue uniforms if necessary. The cmdstream depends on
3382 * these being at the -end-; see assign_var_locations. */
3383
3384 if (ctx->stage == MESA_SHADER_VERTEX) {
3385 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3386 }
3387
3388 /* Assign var locations early, so the epilogue can use them if necessary */
3389
3390 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3391 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3392 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3393
3394 /* Initialize at a global (not block) level hash tables */
3395
3396 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3397 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3398 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3399 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3400 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3401 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3402
3403 /* Assign actual uniform location, skipping over samplers */
3404
3405 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3406
3407 nir_foreach_variable(var, &nir->uniforms) {
3408 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3409
3410 unsigned length = glsl_get_aoa_size(var->type);
3411
3412 if (!length) {
3413 length = glsl_get_length(var->type);
3414 }
3415
3416 if (!length) {
3417 length = glsl_get_matrix_columns(var->type);
3418 }
3419
3420 for (int col = 0; col < length; ++col) {
3421 int id = ctx->uniform_count++;
3422 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3423 }
3424 }
3425
3426 if (ctx->stage == MESA_SHADER_VERTEX) {
3427 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3428
3429 /* First, collect the special varyings */
3430 nir_foreach_variable(var, &nir->outputs) {
3431 if (var->data.location == VARYING_SLOT_POS) {
3432 /* Set position first, always. It takes up two
3433 * spots, the latter one is de facto unused (at
3434 * least from the shader's perspective), we
3435 * just need to skip over the spot*/
3436
3437 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3438 ctx->varying_count = MAX2(ctx->varying_count, 2);
3439 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3440 /* Set point size second (third, see above) */
3441 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3442 ctx->varying_count = MAX2(ctx->varying_count, 3);
3443
3444 program->writes_point_size = true;
3445 }
3446 }
3447
3448 /* Now, collect normal varyings */
3449
3450 nir_foreach_variable(var, &nir->outputs) {
3451 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3452
3453 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3454 int id = ctx->varying_count++;
3455 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3456 }
3457 }
3458 }
3459
3460
3461
3462 /* Lower vars -- not I/O -- before epilogue */
3463
3464 NIR_PASS_V(nir, nir_lower_var_copies);
3465 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3466 NIR_PASS_V(nir, nir_split_var_copies);
3467 NIR_PASS_V(nir, nir_lower_var_copies);
3468 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3469 NIR_PASS_V(nir, nir_lower_var_copies);
3470 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3471 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3472
3473 /* Append vertex epilogue before optimisation, so the epilogue itself
3474 * is optimised */
3475
3476 if (ctx->stage == MESA_SHADER_VERTEX)
3477 transform_position_writes(nir);
3478
3479 /* Optimisation passes */
3480
3481 optimise_nir(nir);
3482
3483 nir_print_shader(nir, stdout);
3484
3485 /* Assign counts, now that we're sure (post-optimisation) */
3486 program->uniform_count = nir->num_uniforms;
3487
3488 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3489 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3490
3491
3492 nir_foreach_function(func, nir) {
3493 if (!func->impl)
3494 continue;
3495
3496 list_inithead(&ctx->blocks);
3497 ctx->block_count = 0;
3498 ctx->func = func;
3499
3500 emit_cf_list(ctx, &func->impl->body);
3501 emit_block(ctx, func->impl->end_block);
3502
3503 break; /* TODO: Multi-function shaders */
3504 }
3505
3506 util_dynarray_init(compiled, NULL);
3507
3508 /* Schedule! */
3509 schedule_program(ctx);
3510
3511 /* Now that all the bundles are scheduled and we can calculate block
3512 * sizes, emit actual branch instructions rather than placeholders */
3513
3514 int br_block_idx = 0;
3515
3516 mir_foreach_block(ctx, block) {
3517 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3518 for (int c = 0; c < bundle->instruction_count; ++c) {
3519 midgard_instruction *ins = &bundle->instructions[c];
3520
3521 if (!midgard_is_branch_unit(ins->unit)) continue;
3522
3523 if (ins->prepacked_branch) continue;
3524
3525 /* Determine the block we're jumping to */
3526 int target_number = ins->branch.target_block;
3527
3528 midgard_block *target = mir_get_block(ctx, target_number);
3529 assert(target);
3530
3531 /* Report the destination tag. */
3532 int dest_tag = midgard_get_first_tag_from_block(ctx, target_number);
3533
3534 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3535 int quadword_offset = 0;
3536
3537 if (target_number > br_block_idx) {
3538 /* Jump forward */
3539
3540 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3541 midgard_block *blk = mir_get_block(ctx, idx);
3542 assert(blk);
3543
3544 quadword_offset += blk->quadword_count;
3545 }
3546 } else {
3547 /* Jump backwards */
3548
3549 for (int idx = br_block_idx; idx >= target_number; --idx) {
3550 midgard_block *blk = mir_get_block(ctx, idx);
3551 assert(blk);
3552
3553 quadword_offset -= blk->quadword_count;
3554 }
3555 }
3556
3557 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3558 bool is_conditional = ins->branch.conditional;
3559 bool is_inverted = ins->branch.invert_conditional;
3560
3561 /* Unconditional extended branches (far jumps)
3562 * have issues, so we always use a conditional
3563 * branch, setting the condition to always for
3564 * unconditional. For compact unconditional
3565 * branches, cond isn't used so it doesn't
3566 * matter what we pick. */
3567
3568 midgard_condition cond =
3569 !is_conditional ? midgard_condition_always :
3570 is_inverted ? midgard_condition_false :
3571 midgard_condition_true;
3572
3573 if (!is_compact) {
3574 midgard_branch_extended branch =
3575 midgard_create_branch_extended(
3576 cond,
3577 midgard_jmp_writeout_op_branch_cond,
3578 dest_tag,
3579 quadword_offset);
3580
3581 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3582 } else if (is_conditional) {
3583 midgard_branch_cond branch = {
3584 .op = midgard_jmp_writeout_op_branch_cond,
3585 .dest_tag = dest_tag,
3586 .offset = quadword_offset,
3587 .cond = cond
3588 };
3589
3590 assert(branch.offset == quadword_offset);
3591
3592 memcpy(&ins->br_compact, &branch, sizeof(branch));
3593 } else {
3594 midgard_branch_uncond branch = {
3595 .op = midgard_jmp_writeout_op_branch_uncond,
3596 .dest_tag = dest_tag,
3597 .offset = quadword_offset,
3598 .unknown = 1
3599 };
3600
3601 assert(branch.offset == quadword_offset);
3602
3603 memcpy(&ins->br_compact, &branch, sizeof(branch));
3604 }
3605 }
3606 }
3607
3608 ++br_block_idx;
3609 }
3610
3611 /* Emit flat binary from the instruction arrays. Iterate each block in
3612 * sequence. Save instruction boundaries such that lookahead tags can
3613 * be assigned easily */
3614
3615 /* Cache _all_ bundles in source order for lookahead across failed branches */
3616
3617 int bundle_count = 0;
3618 mir_foreach_block(ctx, block) {
3619 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3620 }
3621 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3622 int bundle_idx = 0;
3623 mir_foreach_block(ctx, block) {
3624 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3625 source_order_bundles[bundle_idx++] = bundle;
3626 }
3627 }
3628
3629 int current_bundle = 0;
3630
3631 mir_foreach_block(ctx, block) {
3632 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3633 int lookahead = 1;
3634
3635 if (current_bundle + 1 < bundle_count) {
3636 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3637
3638 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3639 lookahead = 1;
3640 } else {
3641 lookahead = next;
3642 }
3643 }
3644
3645 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3646 ++current_bundle;
3647 }
3648
3649 /* TODO: Free deeper */
3650 //util_dynarray_fini(&block->instructions);
3651 }
3652
3653 free(source_order_bundles);
3654
3655 /* Report the very first tag executed */
3656 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3657
3658 /* Deal with off-by-one related to the fencepost problem */
3659 program->work_register_count = ctx->work_registers + 1;
3660
3661 program->can_discard = ctx->can_discard;
3662 program->uniform_cutoff = ctx->uniform_cutoff;
3663
3664 program->blend_patch_offset = ctx->blend_constant_offset;
3665
3666 disassemble_midgard(program->compiled.data, program->compiled.size);
3667
3668 return 0;
3669 }