panfrost/midgard: Lower i2b32
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751
752 /* Lower mods */
753 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
754 NIR_PASS(progress, nir, nir_copy_prop);
755 NIR_PASS(progress, nir, nir_opt_dce);
756
757 /* We implement booleans as 32-bit 0/~0 */
758 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
759
760 /* Take us out of SSA */
761 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
762 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
763
764 /* We are a vector architecture; write combine where possible */
765 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
766 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
767
768 NIR_PASS(progress, nir, nir_opt_dce);
769 }
770
771 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
772 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
773 * r0. See the comments in compiler_context */
774
775 static void
776 alias_ssa(compiler_context *ctx, int dest, int src)
777 {
778 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
779 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
780 }
781
782 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
783
784 static void
785 unalias_ssa(compiler_context *ctx, int dest)
786 {
787 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
788 /* TODO: Remove from leftover or no? */
789 }
790
791 static void
792 midgard_pin_output(compiler_context *ctx, int index, int reg)
793 {
794 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
795 }
796
797 static bool
798 midgard_is_pinned(compiler_context *ctx, int index)
799 {
800 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
801 }
802
803 /* Do not actually emit a load; instead, cache the constant for inlining */
804
805 static void
806 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
807 {
808 nir_ssa_def def = instr->def;
809
810 float *v = ralloc_array(NULL, float, 4);
811 memcpy(v, &instr->value.f32, 4 * sizeof(float));
812 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
813 }
814
815 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
816 * do the inverse) */
817
818 static unsigned
819 expand_writemask(unsigned mask)
820 {
821 unsigned o = 0;
822
823 for (int i = 0; i < 4; ++i)
824 if (mask & (1 << i))
825 o |= (3 << (2 * i));
826
827 return o;
828 }
829
830 static unsigned
831 squeeze_writemask(unsigned mask)
832 {
833 unsigned o = 0;
834
835 for (int i = 0; i < 4; ++i)
836 if (mask & (3 << (2 * i)))
837 o |= (1 << i);
838
839 return o;
840
841 }
842
843 /* Determines effective writemask, taking quirks and expansion into account */
844 static unsigned
845 effective_writemask(midgard_vector_alu *alu)
846 {
847 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
848 * sense) */
849
850 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
851
852 /* If there is a fixed channel count, construct the appropriate mask */
853
854 if (channel_count)
855 return (1 << channel_count) - 1;
856
857 /* Otherwise, just squeeze the existing mask */
858 return squeeze_writemask(alu->mask);
859 }
860
861 static unsigned
862 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
863 {
864 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
865 return hash;
866
867 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
868
869 if (temp)
870 return temp - 1;
871
872 /* If no temp is find, allocate one */
873 temp = ctx->temp_count++;
874 ctx->max_hash = MAX2(ctx->max_hash, hash);
875
876 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
877
878 return temp;
879 }
880
881 static unsigned
882 nir_src_index(compiler_context *ctx, nir_src *src)
883 {
884 if (src->is_ssa)
885 return src->ssa->index;
886 else
887 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
888 }
889
890 static unsigned
891 nir_dest_index(compiler_context *ctx, nir_dest *dst)
892 {
893 if (dst->is_ssa)
894 return dst->ssa.index;
895 else
896 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
897 }
898
899 static unsigned
900 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
901 {
902 return nir_src_index(ctx, &src->src);
903 }
904
905 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
906 * a conditional test) into that register */
907
908 static void
909 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
910 {
911 /* XXX: Force component correct */
912 int condition = nir_src_index(ctx, src);
913
914 /* There is no boolean move instruction. Instead, we simulate a move by
915 * ANDing the condition with itself to get it into r31.w */
916
917 midgard_instruction ins = {
918 .type = TAG_ALU_4,
919 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
920 .ssa_args = {
921 .src0 = condition,
922 .src1 = condition,
923 .dest = SSA_FIXED_REGISTER(31),
924 },
925 .alu = {
926 .op = midgard_alu_op_iand,
927 .reg_mode = midgard_reg_mode_full,
928 .dest_override = midgard_dest_override_none,
929 .mask = (0x3 << 6), /* w */
930 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
931 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
932 },
933 };
934
935 emit_mir_instruction(ctx, ins);
936 }
937
938 #define ALU_CASE(nir, _op) \
939 case nir_op_##nir: \
940 op = midgard_alu_op_##_op; \
941 break;
942
943 static void
944 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
945 {
946 bool is_ssa = instr->dest.dest.is_ssa;
947
948 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
949 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
950 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
951
952 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
953 * supported. A few do not and are commented for now. Also, there are a
954 * number of NIR ops which Midgard does not support and need to be
955 * lowered, also TODO. This switch block emits the opcode and calling
956 * convention of the Midgard instruction; actual packing is done in
957 * emit_alu below */
958
959 unsigned op;
960
961 switch (instr->op) {
962 ALU_CASE(fadd, fadd);
963 ALU_CASE(fmul, fmul);
964 ALU_CASE(fmin, fmin);
965 ALU_CASE(fmax, fmax);
966 ALU_CASE(imin, imin);
967 ALU_CASE(imax, imax);
968 ALU_CASE(fmov, fmov);
969 ALU_CASE(ffloor, ffloor);
970 ALU_CASE(fround_even, froundeven);
971 ALU_CASE(ftrunc, ftrunc);
972 ALU_CASE(fceil, fceil);
973 ALU_CASE(fdot3, fdot3);
974 ALU_CASE(fdot4, fdot4);
975 ALU_CASE(iadd, iadd);
976 ALU_CASE(isub, isub);
977 ALU_CASE(imul, imul);
978
979 /* XXX: Use fmov, not imov, since imov was causing major
980 * issues with texture precision? XXX research */
981 ALU_CASE(imov, fmov);
982
983 ALU_CASE(feq32, feq);
984 ALU_CASE(fne32, fne);
985 ALU_CASE(flt32, flt);
986 ALU_CASE(ieq32, ieq);
987 ALU_CASE(ine32, ine);
988 ALU_CASE(ilt32, ilt);
989
990 /* Likewise, we don't have a dedicated f2b32 instruction, but
991 * we can do a "not equal to 0.0" test. Since an inline
992 * constant vec4(0.0) is the default, we don't need to do any
993 * special lowering */
994
995 ALU_CASE(f2b32, fne);
996 ALU_CASE(i2b32, ine);
997
998 ALU_CASE(frcp, frcp);
999 ALU_CASE(frsq, frsqrt);
1000 ALU_CASE(fsqrt, fsqrt);
1001 ALU_CASE(fpow, fpow);
1002 ALU_CASE(fexp2, fexp2);
1003 ALU_CASE(flog2, flog2);
1004
1005 ALU_CASE(f2i32, f2i);
1006 ALU_CASE(f2u32, f2u);
1007 ALU_CASE(i2f32, i2f);
1008 ALU_CASE(u2f32, u2f);
1009
1010 ALU_CASE(fsin, fsin);
1011 ALU_CASE(fcos, fcos);
1012
1013 ALU_CASE(iand, iand);
1014 ALU_CASE(ior, ior);
1015 ALU_CASE(ixor, ixor);
1016 ALU_CASE(inot, inot);
1017 ALU_CASE(ishl, ishl);
1018 ALU_CASE(ishr, iasr);
1019 ALU_CASE(ushr, ilsr);
1020
1021 ALU_CASE(b32all_fequal2, fball_eq);
1022 ALU_CASE(b32all_fequal3, fball_eq);
1023 ALU_CASE(b32all_fequal4, fball_eq);
1024
1025 ALU_CASE(b32any_fnequal2, fbany_neq);
1026 ALU_CASE(b32any_fnequal3, fbany_neq);
1027 ALU_CASE(b32any_fnequal4, fbany_neq);
1028
1029 ALU_CASE(b32all_iequal2, iball_eq);
1030 ALU_CASE(b32all_iequal3, iball_eq);
1031 ALU_CASE(b32all_iequal4, iball_eq);
1032
1033 ALU_CASE(b32any_inequal2, ibany_neq);
1034 ALU_CASE(b32any_inequal3, ibany_neq);
1035 ALU_CASE(b32any_inequal4, ibany_neq);
1036
1037 /* For greater-or-equal, we use less-or-equal and flip the
1038 * arguments */
1039
1040 case nir_op_ige32: {
1041 op = midgard_alu_op_ile;
1042
1043 /* Swap via temporary */
1044 nir_alu_src temp = instr->src[1];
1045 instr->src[1] = instr->src[0];
1046 instr->src[0] = temp;
1047
1048 break;
1049 }
1050
1051 case nir_op_b32csel: {
1052 op = midgard_alu_op_fcsel;
1053
1054 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1055 nr_inputs = 2;
1056
1057 emit_condition(ctx, &instr->src[0].src, false);
1058
1059 /* The condition is the first argument; move the other
1060 * arguments up one to be a binary instruction for
1061 * Midgard */
1062
1063 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1064 break;
1065 }
1066
1067 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1068 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1069 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1070 *
1071 * iand [whatever], #0
1072 *
1073 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1074
1075 case nir_op_b2f32: {
1076 op = midgard_alu_op_iand;
1077 break;
1078 }
1079
1080 default:
1081 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1082 assert(0);
1083 return;
1084 }
1085
1086 /* Fetch unit, quirks, etc information */
1087 unsigned opcode_props = alu_opcode_props[op];
1088 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1089
1090 /* Initialise fields common between scalar/vector instructions */
1091 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1092
1093 /* src0 will always exist afaik, but src1 will not for 1-argument
1094 * instructions. The latter can only be fetched if the instruction
1095 * needs it, or else we may segfault. */
1096
1097 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1098 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1099
1100 /* Rather than use the instruction generation helpers, we do it
1101 * ourselves here to avoid the mess */
1102
1103 midgard_instruction ins = {
1104 .type = TAG_ALU_4,
1105 .ssa_args = {
1106 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1107 .src1 = quirk_flipped_r24 ? src0 : src1,
1108 .dest = dest,
1109 }
1110 };
1111
1112 nir_alu_src *nirmods[2] = { NULL };
1113
1114 if (nr_inputs == 2) {
1115 nirmods[0] = &instr->src[0];
1116 nirmods[1] = &instr->src[1];
1117 } else if (nr_inputs == 1) {
1118 nirmods[quirk_flipped_r24] = &instr->src[0];
1119 } else {
1120 assert(0);
1121 }
1122
1123 midgard_vector_alu alu = {
1124 .op = op,
1125 .reg_mode = midgard_reg_mode_full,
1126 .dest_override = midgard_dest_override_none,
1127 .outmod = outmod,
1128
1129 /* Writemask only valid for non-SSA NIR */
1130 .mask = expand_writemask((1 << nr_components) - 1),
1131
1132 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1133 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1134 };
1135
1136 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1137
1138 if (!is_ssa)
1139 alu.mask &= expand_writemask(instr->dest.write_mask);
1140
1141 ins.alu = alu;
1142
1143 /* Late fixup for emulated instructions */
1144
1145 if (instr->op == nir_op_b2f32) {
1146 /* Presently, our second argument is an inline #0 constant.
1147 * Switch over to an embedded 1.0 constant (that can't fit
1148 * inline, since we're 32-bit, not 16-bit like the inline
1149 * constants) */
1150
1151 ins.ssa_args.inline_constant = false;
1152 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1153 ins.has_constants = true;
1154 ins.constants[0] = 1.0;
1155
1156 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1157 }
1158
1159 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1160 /* To avoid duplicating the lookup tables (probably), true LUT
1161 * instructions can only operate as if they were scalars. Lower
1162 * them here by changing the component. */
1163
1164 uint8_t original_swizzle[4];
1165 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1166
1167 for (int i = 0; i < nr_components; ++i) {
1168 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1169
1170 for (int j = 0; j < 4; ++j)
1171 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1172
1173 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1174 emit_mir_instruction(ctx, ins);
1175 }
1176 } else {
1177 emit_mir_instruction(ctx, ins);
1178 }
1179 }
1180
1181 #undef ALU_CASE
1182
1183 static void
1184 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1185 {
1186 nir_const_value *const_offset;
1187 unsigned offset, reg;
1188
1189 switch (instr->intrinsic) {
1190 case nir_intrinsic_discard_if:
1191 emit_condition(ctx, &instr->src[0], true);
1192
1193 /* fallthrough */
1194
1195 case nir_intrinsic_discard: {
1196 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1197 struct midgard_instruction discard = v_branch(conditional, false);
1198 discard.branch.target_type = TARGET_DISCARD;
1199 emit_mir_instruction(ctx, discard);
1200
1201 ctx->can_discard = true;
1202 break;
1203 }
1204
1205 case nir_intrinsic_load_uniform:
1206 case nir_intrinsic_load_input:
1207 const_offset = nir_src_as_const_value(instr->src[0]);
1208 assert (const_offset && "no indirect inputs");
1209
1210 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1211
1212 reg = nir_dest_index(ctx, &instr->dest);
1213
1214 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1215 /* TODO: half-floats */
1216
1217 int uniform_offset = 0;
1218
1219 if (offset >= SPECIAL_UNIFORM_BASE) {
1220 /* XXX: Resolve which uniform */
1221 uniform_offset = 0;
1222 } else {
1223 /* Offset away from the special
1224 * uniform block */
1225
1226 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1227
1228 /* XXX */
1229 if (!entry) {
1230 DBG("WARNING: Unknown uniform %d\n", offset);
1231 break;
1232 }
1233
1234 uniform_offset = (uintptr_t) (entry) - 1;
1235 uniform_offset += ctx->special_uniforms;
1236 }
1237
1238 if (uniform_offset < ctx->uniform_cutoff) {
1239 /* Fast path: For the first 16 uniform,
1240 * accesses are 0-cycle, since they're
1241 * just a register fetch in the usual
1242 * case. So, we alias the registers
1243 * while we're still in SSA-space */
1244
1245 int reg_slot = 23 - uniform_offset;
1246 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1247 } else {
1248 /* Otherwise, read from the 'special'
1249 * UBO to access higher-indexed
1250 * uniforms, at a performance cost */
1251
1252 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1253
1254 /* TODO: Don't split */
1255 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1256 ins.load_store.address = uniform_offset >> 3;
1257
1258 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1259 emit_mir_instruction(ctx, ins);
1260 }
1261 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1262 /* XXX: Half-floats? */
1263 /* TODO: swizzle, mask */
1264
1265 midgard_instruction ins = m_load_vary_32(reg, offset);
1266
1267 midgard_varying_parameter p = {
1268 .is_varying = 1,
1269 .interpolation = midgard_interp_default,
1270 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1271 };
1272
1273 unsigned u;
1274 memcpy(&u, &p, sizeof(p));
1275 ins.load_store.varying_parameters = u;
1276
1277 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1278 emit_mir_instruction(ctx, ins);
1279 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1280 /* Constant encoded as a pinned constant */
1281
1282 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1283 ins.has_constants = true;
1284 ins.has_blend_constant = true;
1285 emit_mir_instruction(ctx, ins);
1286 } else if (ctx->is_blend) {
1287 /* For blend shaders, a load might be
1288 * translated various ways depending on what
1289 * we're loading. Figure out how this is used */
1290
1291 nir_variable *out = NULL;
1292
1293 nir_foreach_variable(var, &ctx->nir->inputs) {
1294 int drvloc = var->data.driver_location;
1295
1296 if (nir_intrinsic_base(instr) == drvloc) {
1297 out = var;
1298 break;
1299 }
1300 }
1301
1302 assert(out);
1303
1304 if (out->data.location == VARYING_SLOT_COL0) {
1305 /* Source color preloaded to r0 */
1306
1307 midgard_pin_output(ctx, reg, 0);
1308 } else if (out->data.location == VARYING_SLOT_COL1) {
1309 /* Destination color must be read from framebuffer */
1310
1311 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1312 ins.load_store.swizzle = 0; /* xxxx */
1313
1314 /* Read each component sequentially */
1315
1316 for (int c = 0; c < 4; ++c) {
1317 ins.load_store.mask = (1 << c);
1318 ins.load_store.unknown = c;
1319 emit_mir_instruction(ctx, ins);
1320 }
1321
1322 /* vadd.u2f hr2, abs(hr2), #0 */
1323
1324 midgard_vector_alu_src alu_src = blank_alu_src;
1325 alu_src.abs = true;
1326 alu_src.half = true;
1327
1328 midgard_instruction u2f = {
1329 .type = TAG_ALU_4,
1330 .ssa_args = {
1331 .src0 = reg,
1332 .src1 = SSA_UNUSED_0,
1333 .dest = reg,
1334 .inline_constant = true
1335 },
1336 .alu = {
1337 .op = midgard_alu_op_u2f,
1338 .reg_mode = midgard_reg_mode_half,
1339 .dest_override = midgard_dest_override_none,
1340 .mask = 0xF,
1341 .src1 = vector_alu_srco_unsigned(alu_src),
1342 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1343 }
1344 };
1345
1346 emit_mir_instruction(ctx, u2f);
1347
1348 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1349
1350 alu_src.abs = false;
1351
1352 midgard_instruction fmul = {
1353 .type = TAG_ALU_4,
1354 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1355 .ssa_args = {
1356 .src0 = reg,
1357 .dest = reg,
1358 .src1 = SSA_UNUSED_0,
1359 .inline_constant = true
1360 },
1361 .alu = {
1362 .op = midgard_alu_op_fmul,
1363 .reg_mode = midgard_reg_mode_full,
1364 .dest_override = midgard_dest_override_none,
1365 .outmod = midgard_outmod_sat,
1366 .mask = 0xFF,
1367 .src1 = vector_alu_srco_unsigned(alu_src),
1368 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1369 }
1370 };
1371
1372 emit_mir_instruction(ctx, fmul);
1373 } else {
1374 DBG("Unknown input in blend shader\n");
1375 assert(0);
1376 }
1377 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1378 midgard_instruction ins = m_load_attr_32(reg, offset);
1379 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1380 ins.load_store.mask = (1 << instr->num_components) - 1;
1381 emit_mir_instruction(ctx, ins);
1382 } else {
1383 DBG("Unknown load\n");
1384 assert(0);
1385 }
1386
1387 break;
1388
1389 case nir_intrinsic_store_output:
1390 const_offset = nir_src_as_const_value(instr->src[1]);
1391 assert(const_offset && "no indirect outputs");
1392
1393 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1394
1395 reg = nir_src_index(ctx, &instr->src[0]);
1396
1397 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1398 /* gl_FragColor is not emitted with load/store
1399 * instructions. Instead, it gets plonked into
1400 * r0 at the end of the shader and we do the
1401 * framebuffer writeout dance. TODO: Defer
1402 * writes */
1403
1404 midgard_pin_output(ctx, reg, 0);
1405
1406 /* Save the index we're writing to for later reference
1407 * in the epilogue */
1408
1409 ctx->fragment_output = reg;
1410 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1411 /* Varyings are written into one of two special
1412 * varying register, r26 or r27. The register itself is selected as the register
1413 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1414 *
1415 * Normally emitting fmov's is frowned upon,
1416 * but due to unique constraints of
1417 * REGISTER_VARYING, fmov emission + a
1418 * dedicated cleanup pass is the only way to
1419 * guarantee correctness when considering some
1420 * (common) edge cases XXX: FIXME */
1421
1422 /* If this varying corresponds to a constant (why?!),
1423 * emit that now since it won't get picked up by
1424 * hoisting (since there is no corresponding move
1425 * emitted otherwise) */
1426
1427 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1428
1429 if (constant_value) {
1430 /* Special case: emit the varying write
1431 * directly to r26 (looks funny in asm but it's
1432 * fine) and emit the store _now_. Possibly
1433 * slightly slower, but this is a really stupid
1434 * special case anyway (why on earth would you
1435 * have a constant varying? Your own fault for
1436 * slightly worse perf :P) */
1437
1438 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1439 attach_constants(ctx, &ins, constant_value, reg + 1);
1440 emit_mir_instruction(ctx, ins);
1441
1442 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1443 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1444 emit_mir_instruction(ctx, st);
1445 } else {
1446 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1447
1448 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1449 }
1450 } else {
1451 DBG("Unknown store\n");
1452 assert(0);
1453 }
1454
1455 break;
1456
1457 case nir_intrinsic_load_alpha_ref_float:
1458 assert(instr->dest.is_ssa);
1459
1460 float ref_value = ctx->alpha_ref;
1461
1462 float *v = ralloc_array(NULL, float, 4);
1463 memcpy(v, &ref_value, sizeof(float));
1464 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1465 break;
1466
1467
1468 default:
1469 printf ("Unhandled intrinsic\n");
1470 assert(0);
1471 break;
1472 }
1473 }
1474
1475 static unsigned
1476 midgard_tex_format(enum glsl_sampler_dim dim)
1477 {
1478 switch (dim) {
1479 case GLSL_SAMPLER_DIM_2D:
1480 case GLSL_SAMPLER_DIM_EXTERNAL:
1481 return TEXTURE_2D;
1482
1483 case GLSL_SAMPLER_DIM_3D:
1484 return TEXTURE_3D;
1485
1486 case GLSL_SAMPLER_DIM_CUBE:
1487 return TEXTURE_CUBE;
1488
1489 default:
1490 DBG("Unknown sampler dim type\n");
1491 assert(0);
1492 return 0;
1493 }
1494 }
1495
1496 static void
1497 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1498 {
1499 /* TODO */
1500 //assert (!instr->sampler);
1501 //assert (!instr->texture_array_size);
1502 assert (instr->op == nir_texop_tex);
1503
1504 /* Allocate registers via a round robin scheme to alternate between the two registers */
1505 int reg = ctx->texture_op_count & 1;
1506 int in_reg = reg, out_reg = reg;
1507
1508 /* Make room for the reg */
1509
1510 if (ctx->texture_index[reg] > -1)
1511 unalias_ssa(ctx, ctx->texture_index[reg]);
1512
1513 int texture_index = instr->texture_index;
1514 int sampler_index = texture_index;
1515
1516 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1517 switch (instr->src[i].src_type) {
1518 case nir_tex_src_coord: {
1519 int index = nir_src_index(ctx, &instr->src[i].src);
1520
1521 midgard_vector_alu_src alu_src = blank_alu_src;
1522 alu_src.swizzle = (COMPONENT_Y << 2);
1523
1524 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1525 emit_mir_instruction(ctx, ins);
1526
1527 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1528
1529 break;
1530 }
1531
1532 default: {
1533 DBG("Unknown source type\n");
1534 //assert(0);
1535 break;
1536 }
1537 }
1538 }
1539
1540 /* No helper to build texture words -- we do it all here */
1541 midgard_instruction ins = {
1542 .type = TAG_TEXTURE_4,
1543 .texture = {
1544 .op = TEXTURE_OP_NORMAL,
1545 .format = midgard_tex_format(instr->sampler_dim),
1546 .texture_handle = texture_index,
1547 .sampler_handle = sampler_index,
1548
1549 /* TODO: Don't force xyzw */
1550 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1551 .mask = 0xF,
1552
1553 /* TODO: half */
1554 //.in_reg_full = 1,
1555 .out_full = 1,
1556
1557 .filter = 1,
1558
1559 /* Always 1 */
1560 .unknown7 = 1,
1561
1562 /* Assume we can continue; hint it out later */
1563 .cont = 1,
1564 }
1565 };
1566
1567 /* Set registers to read and write from the same place */
1568 ins.texture.in_reg_select = in_reg;
1569 ins.texture.out_reg_select = out_reg;
1570
1571 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1572 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1573 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1574 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1575 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1576 } else {
1577 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1578 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1579 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1580 }
1581
1582 emit_mir_instruction(ctx, ins);
1583
1584 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1585
1586 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1587 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1588 ctx->texture_index[reg] = o_index;
1589
1590 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1591 emit_mir_instruction(ctx, ins2);
1592
1593 /* Used for .cont and .last hinting */
1594 ctx->texture_op_count++;
1595 }
1596
1597 static void
1598 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1599 {
1600 switch (instr->type) {
1601 case nir_jump_break: {
1602 /* Emit a branch out of the loop */
1603 struct midgard_instruction br = v_branch(false, false);
1604 br.branch.target_type = TARGET_BREAK;
1605 br.branch.target_break = ctx->current_loop;
1606 emit_mir_instruction(ctx, br);
1607
1608 DBG("break..\n");
1609 break;
1610 }
1611
1612 default:
1613 DBG("Unknown jump type %d\n", instr->type);
1614 break;
1615 }
1616 }
1617
1618 static void
1619 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1620 {
1621 switch (instr->type) {
1622 case nir_instr_type_load_const:
1623 emit_load_const(ctx, nir_instr_as_load_const(instr));
1624 break;
1625
1626 case nir_instr_type_intrinsic:
1627 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1628 break;
1629
1630 case nir_instr_type_alu:
1631 emit_alu(ctx, nir_instr_as_alu(instr));
1632 break;
1633
1634 case nir_instr_type_tex:
1635 emit_tex(ctx, nir_instr_as_tex(instr));
1636 break;
1637
1638 case nir_instr_type_jump:
1639 emit_jump(ctx, nir_instr_as_jump(instr));
1640 break;
1641
1642 case nir_instr_type_ssa_undef:
1643 /* Spurious */
1644 break;
1645
1646 default:
1647 DBG("Unhandled instruction type\n");
1648 break;
1649 }
1650 }
1651
1652 /* Determine the actual hardware from the index based on the RA results or special values */
1653
1654 static int
1655 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1656 {
1657 if (reg >= SSA_FIXED_MINIMUM)
1658 return SSA_REG_FROM_FIXED(reg);
1659
1660 if (reg >= 0) {
1661 assert(reg < maxreg);
1662 int r = ra_get_node_reg(g, reg);
1663 ctx->work_registers = MAX2(ctx->work_registers, r);
1664 return r;
1665 }
1666
1667 switch (reg) {
1668 /* fmov style unused */
1669 case SSA_UNUSED_0:
1670 return REGISTER_UNUSED;
1671
1672 /* lut style unused */
1673 case SSA_UNUSED_1:
1674 return REGISTER_UNUSED;
1675
1676 default:
1677 DBG("Unknown SSA register alias %d\n", reg);
1678 assert(0);
1679 return 31;
1680 }
1681 }
1682
1683 static unsigned int
1684 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1685 {
1686 /* Choose the first available register to minimise reported register pressure */
1687
1688 for (int i = 0; i < 16; ++i) {
1689 if (BITSET_TEST(regs, i)) {
1690 return i;
1691 }
1692 }
1693
1694 assert(0);
1695 return 0;
1696 }
1697
1698 static bool
1699 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1700 {
1701 if (ins->ssa_args.src0 == src) return true;
1702 if (ins->ssa_args.src1 == src) return true;
1703
1704 return false;
1705 }
1706
1707 static bool
1708 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1709 {
1710 /* Check the rest of the block for liveness */
1711 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1712 if (midgard_is_live_in_instr(ins, src))
1713 return true;
1714 }
1715
1716 /* Check the rest of the blocks for liveness */
1717 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1718 mir_foreach_instr_in_block(b, ins) {
1719 if (midgard_is_live_in_instr(ins, src))
1720 return true;
1721 }
1722 }
1723
1724 /* TODO: How does control flow interact in complex shaders? */
1725
1726 return false;
1727 }
1728
1729 static void
1730 allocate_registers(compiler_context *ctx)
1731 {
1732 /* First, initialize the RA */
1733 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1734
1735 /* Create a primary (general purpose) class, as well as special purpose
1736 * pipeline register classes */
1737
1738 int primary_class = ra_alloc_reg_class(regs);
1739 int varying_class = ra_alloc_reg_class(regs);
1740
1741 /* Add the full set of work registers */
1742 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1743 for (int i = 0; i < work_count; ++i)
1744 ra_class_add_reg(regs, primary_class, i);
1745
1746 /* Add special registers */
1747 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1748 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1749
1750 /* We're done setting up */
1751 ra_set_finalize(regs, NULL);
1752
1753 /* Transform the MIR into squeezed index form */
1754 mir_foreach_block(ctx, block) {
1755 mir_foreach_instr_in_block(block, ins) {
1756 if (ins->compact_branch) continue;
1757
1758 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1759 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1760 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1761 }
1762 if (midgard_debug & MIDGARD_DBG_SHADERS)
1763 print_mir_block(block);
1764 }
1765
1766 /* Let's actually do register allocation */
1767 int nodes = ctx->temp_count;
1768 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1769
1770 /* Set everything to the work register class, unless it has somewhere
1771 * special to go */
1772
1773 mir_foreach_block(ctx, block) {
1774 mir_foreach_instr_in_block(block, ins) {
1775 if (ins->compact_branch) continue;
1776
1777 if (ins->ssa_args.dest < 0) continue;
1778
1779 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1780
1781 int class = primary_class;
1782
1783 ra_set_node_class(g, ins->ssa_args.dest, class);
1784 }
1785 }
1786
1787 for (int index = 0; index <= ctx->max_hash; ++index) {
1788 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1789
1790 if (temp) {
1791 unsigned reg = temp - 1;
1792 int t = find_or_allocate_temp(ctx, index);
1793 ra_set_node_reg(g, t, reg);
1794 }
1795 }
1796
1797 /* Determine liveness */
1798
1799 int *live_start = malloc(nodes * sizeof(int));
1800 int *live_end = malloc(nodes * sizeof(int));
1801
1802 /* Initialize as non-existent */
1803
1804 for (int i = 0; i < nodes; ++i) {
1805 live_start[i] = live_end[i] = -1;
1806 }
1807
1808 int d = 0;
1809
1810 mir_foreach_block(ctx, block) {
1811 mir_foreach_instr_in_block(block, ins) {
1812 if (ins->compact_branch) continue;
1813
1814 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1815 /* If this destination is not yet live, it is now since we just wrote it */
1816
1817 int dest = ins->ssa_args.dest;
1818
1819 if (live_start[dest] == -1)
1820 live_start[dest] = d;
1821 }
1822
1823 /* Since we just used a source, the source might be
1824 * dead now. Scan the rest of the block for
1825 * invocations, and if there are none, the source dies
1826 * */
1827
1828 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1829
1830 for (int src = 0; src < 2; ++src) {
1831 int s = sources[src];
1832
1833 if (s < 0) continue;
1834
1835 if (s >= SSA_FIXED_MINIMUM) continue;
1836
1837 if (!is_live_after(ctx, block, ins, s)) {
1838 live_end[s] = d;
1839 }
1840 }
1841
1842 ++d;
1843 }
1844 }
1845
1846 /* If a node still hasn't been killed, kill it now */
1847
1848 for (int i = 0; i < nodes; ++i) {
1849 /* live_start == -1 most likely indicates a pinned output */
1850
1851 if (live_end[i] == -1)
1852 live_end[i] = d;
1853 }
1854
1855 /* Setup interference between nodes that are live at the same time */
1856
1857 for (int i = 0; i < nodes; ++i) {
1858 for (int j = i + 1; j < nodes; ++j) {
1859 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1860 ra_add_node_interference(g, i, j);
1861 }
1862 }
1863
1864 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1865
1866 if (!ra_allocate(g)) {
1867 DBG("Error allocating registers\n");
1868 assert(0);
1869 }
1870
1871 /* Cleanup */
1872 free(live_start);
1873 free(live_end);
1874
1875 mir_foreach_block(ctx, block) {
1876 mir_foreach_instr_in_block(block, ins) {
1877 if (ins->compact_branch) continue;
1878
1879 ssa_args args = ins->ssa_args;
1880
1881 switch (ins->type) {
1882 case TAG_ALU_4:
1883 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1884
1885 ins->registers.src2_imm = args.inline_constant;
1886
1887 if (args.inline_constant) {
1888 /* Encode inline 16-bit constant as a vector by default */
1889
1890 ins->registers.src2_reg = ins->inline_constant >> 11;
1891
1892 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1893
1894 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1895 ins->alu.src2 = imm << 2;
1896 } else {
1897 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1898 }
1899
1900 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1901
1902 break;
1903
1904 case TAG_LOAD_STORE_4: {
1905 if (OP_IS_STORE(ins->load_store.op)) {
1906 /* TODO: use ssa_args for store_vary */
1907 ins->load_store.reg = 0;
1908 } else {
1909 bool has_dest = args.dest >= 0;
1910 int ssa_arg = has_dest ? args.dest : args.src0;
1911
1912 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1913 }
1914
1915 break;
1916 }
1917
1918 default:
1919 break;
1920 }
1921 }
1922 }
1923 }
1924
1925 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1926 * use scalar ALU instructions, for functional or performance reasons. To do
1927 * this, we just demote vector ALU payloads to scalar. */
1928
1929 static int
1930 component_from_mask(unsigned mask)
1931 {
1932 for (int c = 0; c < 4; ++c) {
1933 if (mask & (3 << (2 * c)))
1934 return c;
1935 }
1936
1937 assert(0);
1938 return 0;
1939 }
1940
1941 static bool
1942 is_single_component_mask(unsigned mask)
1943 {
1944 int components = 0;
1945
1946 for (int c = 0; c < 4; ++c)
1947 if (mask & (3 << (2 * c)))
1948 components++;
1949
1950 return components == 1;
1951 }
1952
1953 /* Create a mask of accessed components from a swizzle to figure out vector
1954 * dependencies */
1955
1956 static unsigned
1957 swizzle_to_access_mask(unsigned swizzle)
1958 {
1959 unsigned component_mask = 0;
1960
1961 for (int i = 0; i < 4; ++i) {
1962 unsigned c = (swizzle >> (2 * i)) & 3;
1963 component_mask |= (1 << c);
1964 }
1965
1966 return component_mask;
1967 }
1968
1969 static unsigned
1970 vector_to_scalar_source(unsigned u)
1971 {
1972 midgard_vector_alu_src v;
1973 memcpy(&v, &u, sizeof(v));
1974
1975 midgard_scalar_alu_src s = {
1976 .abs = v.abs,
1977 .negate = v.negate,
1978 .full = !v.half,
1979 .component = (v.swizzle & 3) << 1
1980 };
1981
1982 unsigned o;
1983 memcpy(&o, &s, sizeof(s));
1984
1985 return o & ((1 << 6) - 1);
1986 }
1987
1988 static midgard_scalar_alu
1989 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1990 {
1991 /* The output component is from the mask */
1992 midgard_scalar_alu s = {
1993 .op = v.op,
1994 .src1 = vector_to_scalar_source(v.src1),
1995 .src2 = vector_to_scalar_source(v.src2),
1996 .unknown = 0,
1997 .outmod = v.outmod,
1998 .output_full = 1, /* TODO: Half */
1999 .output_component = component_from_mask(v.mask) << 1,
2000 };
2001
2002 /* Inline constant is passed along rather than trying to extract it
2003 * from v */
2004
2005 if (ins->ssa_args.inline_constant) {
2006 uint16_t imm = 0;
2007 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2008 imm |= (lower_11 >> 9) & 3;
2009 imm |= (lower_11 >> 6) & 4;
2010 imm |= (lower_11 >> 2) & 0x38;
2011 imm |= (lower_11 & 63) << 6;
2012
2013 s.src2 = imm;
2014 }
2015
2016 return s;
2017 }
2018
2019 /* Midgard prefetches instruction types, so during emission we need to
2020 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2021 * if this is the second to last and the last is an ALU, then it's also 1... */
2022
2023 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2024 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2025
2026 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2027 bytes_emitted += sizeof(type)
2028
2029 static void
2030 emit_binary_vector_instruction(midgard_instruction *ains,
2031 uint16_t *register_words, int *register_words_count,
2032 uint64_t *body_words, size_t *body_size, int *body_words_count,
2033 size_t *bytes_emitted)
2034 {
2035 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2036 *bytes_emitted += sizeof(midgard_reg_info);
2037
2038 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2039 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2040 *bytes_emitted += sizeof(midgard_vector_alu);
2041 }
2042
2043 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2044 * mind that we are a vector architecture and we can write to different
2045 * components simultaneously */
2046
2047 static bool
2048 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2049 {
2050 /* Each instruction reads some registers and writes to a register. See
2051 * where the first writes */
2052
2053 /* Figure out where exactly we wrote to */
2054 int source = first->ssa_args.dest;
2055 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2056
2057 /* As long as the second doesn't read from the first, we're okay */
2058 if (second->ssa_args.src0 == source) {
2059 if (first->type == TAG_ALU_4) {
2060 /* Figure out which components we just read from */
2061
2062 int q = second->alu.src1;
2063 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2064
2065 /* Check if there are components in common, and fail if so */
2066 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2067 return false;
2068 } else
2069 return false;
2070
2071 }
2072
2073 if (second->ssa_args.src1 == source)
2074 return false;
2075
2076 /* Otherwise, it's safe in that regard. Another data hazard is both
2077 * writing to the same place, of course */
2078
2079 if (second->ssa_args.dest == source) {
2080 /* ...but only if the components overlap */
2081 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2082
2083 if (dest_mask & source_mask)
2084 return false;
2085 }
2086
2087 /* ...That's it */
2088 return true;
2089 }
2090
2091 static bool
2092 midgard_has_hazard(
2093 midgard_instruction **segment, unsigned segment_size,
2094 midgard_instruction *ains)
2095 {
2096 for (int s = 0; s < segment_size; ++s)
2097 if (!can_run_concurrent_ssa(segment[s], ains))
2098 return true;
2099
2100 return false;
2101
2102
2103 }
2104
2105 /* Schedules, but does not emit, a single basic block. After scheduling, the
2106 * final tag and size of the block are known, which are necessary for branching
2107 * */
2108
2109 static midgard_bundle
2110 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2111 {
2112 int instructions_emitted = 0, instructions_consumed = -1;
2113 midgard_bundle bundle = { 0 };
2114
2115 uint8_t tag = ins->type;
2116
2117 /* Default to the instruction's tag */
2118 bundle.tag = tag;
2119
2120 switch (ins->type) {
2121 case TAG_ALU_4: {
2122 uint32_t control = 0;
2123 size_t bytes_emitted = sizeof(control);
2124
2125 /* TODO: Constant combining */
2126 int index = 0, last_unit = 0;
2127
2128 /* Previous instructions, for the purpose of parallelism */
2129 midgard_instruction *segment[4] = {0};
2130 int segment_size = 0;
2131
2132 instructions_emitted = -1;
2133 midgard_instruction *pins = ins;
2134
2135 for (;;) {
2136 midgard_instruction *ains = pins;
2137
2138 /* Advance instruction pointer */
2139 if (index) {
2140 ains = mir_next_op(pins);
2141 pins = ains;
2142 }
2143
2144 /* Out-of-work condition */
2145 if ((struct list_head *) ains == &block->instructions)
2146 break;
2147
2148 /* Ensure that the chain can continue */
2149 if (ains->type != TAG_ALU_4) break;
2150
2151 /* According to the presentation "The ARM
2152 * Mali-T880 Mobile GPU" from HotChips 27,
2153 * there are two pipeline stages. Branching
2154 * position determined experimentally. Lines
2155 * are executed in parallel:
2156 *
2157 * [ VMUL ] [ SADD ]
2158 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2159 *
2160 * Verify that there are no ordering dependencies here.
2161 *
2162 * TODO: Allow for parallelism!!!
2163 */
2164
2165 /* Pick a unit for it if it doesn't force a particular unit */
2166
2167 int unit = ains->unit;
2168
2169 if (!unit) {
2170 int op = ains->alu.op;
2171 int units = alu_opcode_props[op];
2172
2173 /* TODO: Promotion of scalars to vectors */
2174 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2175
2176 if (!vector)
2177 assert(units & UNITS_SCALAR);
2178
2179 if (vector) {
2180 if (last_unit >= UNIT_VADD) {
2181 if (units & UNIT_VLUT)
2182 unit = UNIT_VLUT;
2183 else
2184 break;
2185 } else {
2186 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2187 unit = UNIT_VMUL;
2188 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2189 unit = UNIT_VADD;
2190 else if (units & UNIT_VLUT)
2191 unit = UNIT_VLUT;
2192 else
2193 break;
2194 }
2195 } else {
2196 if (last_unit >= UNIT_VADD) {
2197 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2198 unit = UNIT_SMUL;
2199 else if (units & UNIT_VLUT)
2200 unit = UNIT_VLUT;
2201 else
2202 break;
2203 } else {
2204 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2205 unit = UNIT_SADD;
2206 else if (units & UNIT_SMUL)
2207 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2208 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2209 unit = UNIT_VADD;
2210 else
2211 break;
2212 }
2213 }
2214
2215 assert(unit & units);
2216 }
2217
2218 /* Late unit check, this time for encoding (not parallelism) */
2219 if (unit <= last_unit) break;
2220
2221 /* Clear the segment */
2222 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2223 segment_size = 0;
2224
2225 if (midgard_has_hazard(segment, segment_size, ains))
2226 break;
2227
2228 /* We're good to go -- emit the instruction */
2229 ains->unit = unit;
2230
2231 segment[segment_size++] = ains;
2232
2233 /* Only one set of embedded constants per
2234 * bundle possible; if we have more, we must
2235 * break the chain early, unfortunately */
2236
2237 if (ains->has_constants) {
2238 if (bundle.has_embedded_constants) {
2239 /* ...but if there are already
2240 * constants but these are the
2241 * *same* constants, we let it
2242 * through */
2243
2244 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2245 break;
2246 } else {
2247 bundle.has_embedded_constants = true;
2248 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2249
2250 /* If this is a blend shader special constant, track it for patching */
2251 if (ains->has_blend_constant)
2252 bundle.has_blend_constant = true;
2253 }
2254 }
2255
2256 if (ains->unit & UNITS_ANY_VECTOR) {
2257 emit_binary_vector_instruction(ains, bundle.register_words,
2258 &bundle.register_words_count, bundle.body_words,
2259 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2260 } else if (ains->compact_branch) {
2261 /* All of r0 has to be written out
2262 * along with the branch writeout.
2263 * (slow!) */
2264
2265 if (ains->writeout) {
2266 if (index == 0) {
2267 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2268 ins.unit = UNIT_VMUL;
2269
2270 control |= ins.unit;
2271
2272 emit_binary_vector_instruction(&ins, bundle.register_words,
2273 &bundle.register_words_count, bundle.body_words,
2274 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2275 } else {
2276 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2277 bool written_late = false;
2278 bool components[4] = { 0 };
2279 uint16_t register_dep_mask = 0;
2280 uint16_t written_mask = 0;
2281
2282 midgard_instruction *qins = ins;
2283 for (int t = 0; t < index; ++t) {
2284 if (qins->registers.out_reg != 0) {
2285 /* Mark down writes */
2286
2287 written_mask |= (1 << qins->registers.out_reg);
2288 } else {
2289 /* Mark down the register dependencies for errata check */
2290
2291 if (qins->registers.src1_reg < 16)
2292 register_dep_mask |= (1 << qins->registers.src1_reg);
2293
2294 if (qins->registers.src2_reg < 16)
2295 register_dep_mask |= (1 << qins->registers.src2_reg);
2296
2297 int mask = qins->alu.mask;
2298
2299 for (int c = 0; c < 4; ++c)
2300 if (mask & (0x3 << (2 * c)))
2301 components[c] = true;
2302
2303 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2304
2305 if (qins->unit == UNIT_VLUT)
2306 written_late = true;
2307 }
2308
2309 /* Advance instruction pointer */
2310 qins = mir_next_op(qins);
2311 }
2312
2313
2314 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2315 if (register_dep_mask & written_mask) {
2316 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2317 break;
2318 }
2319
2320 if (written_late)
2321 break;
2322
2323 /* If even a single component is not written, break it up (conservative check). */
2324 bool breakup = false;
2325
2326 for (int c = 0; c < 4; ++c)
2327 if (!components[c])
2328 breakup = true;
2329
2330 if (breakup)
2331 break;
2332
2333 /* Otherwise, we're free to proceed */
2334 }
2335 }
2336
2337 if (ains->unit == ALU_ENAB_BRANCH) {
2338 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2339 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2340 bytes_emitted += sizeof(midgard_branch_extended);
2341 } else {
2342 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2343 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2344 bytes_emitted += sizeof(ains->br_compact);
2345 }
2346 } else {
2347 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2348 bytes_emitted += sizeof(midgard_reg_info);
2349
2350 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2351 bundle.body_words_count++;
2352 bytes_emitted += sizeof(midgard_scalar_alu);
2353 }
2354
2355 /* Defer marking until after writing to allow for break */
2356 control |= ains->unit;
2357 last_unit = ains->unit;
2358 ++instructions_emitted;
2359 ++index;
2360 }
2361
2362 /* Bubble up the number of instructions for skipping */
2363 instructions_consumed = index - 1;
2364
2365 int padding = 0;
2366
2367 /* Pad ALU op to nearest word */
2368
2369 if (bytes_emitted & 15) {
2370 padding = 16 - (bytes_emitted & 15);
2371 bytes_emitted += padding;
2372 }
2373
2374 /* Constants must always be quadwords */
2375 if (bundle.has_embedded_constants)
2376 bytes_emitted += 16;
2377
2378 /* Size ALU instruction for tag */
2379 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2380 bundle.padding = padding;
2381 bundle.control = bundle.tag | control;
2382
2383 break;
2384 }
2385
2386 case TAG_LOAD_STORE_4: {
2387 /* Load store instructions have two words at once. If
2388 * we only have one queued up, we need to NOP pad.
2389 * Otherwise, we store both in succession to save space
2390 * and cycles -- letting them go in parallel -- skip
2391 * the next. The usefulness of this optimisation is
2392 * greatly dependent on the quality of the instruction
2393 * scheduler.
2394 */
2395
2396 midgard_instruction *next_op = mir_next_op(ins);
2397
2398 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2399 /* As the two operate concurrently, make sure
2400 * they are not dependent */
2401
2402 if (can_run_concurrent_ssa(ins, next_op) || true) {
2403 /* Skip ahead, since it's redundant with the pair */
2404 instructions_consumed = 1 + (instructions_emitted++);
2405 }
2406 }
2407
2408 break;
2409 }
2410
2411 default:
2412 /* Texture ops default to single-op-per-bundle scheduling */
2413 break;
2414 }
2415
2416 /* Copy the instructions into the bundle */
2417 bundle.instruction_count = instructions_emitted + 1;
2418
2419 int used_idx = 0;
2420
2421 midgard_instruction *uins = ins;
2422 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2423 bundle.instructions[used_idx++] = *uins;
2424 uins = mir_next_op(uins);
2425 }
2426
2427 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2428
2429 return bundle;
2430 }
2431
2432 static int
2433 quadword_size(int tag)
2434 {
2435 switch (tag) {
2436 case TAG_ALU_4:
2437 return 1;
2438
2439 case TAG_ALU_8:
2440 return 2;
2441
2442 case TAG_ALU_12:
2443 return 3;
2444
2445 case TAG_ALU_16:
2446 return 4;
2447
2448 case TAG_LOAD_STORE_4:
2449 return 1;
2450
2451 case TAG_TEXTURE_4:
2452 return 1;
2453
2454 default:
2455 assert(0);
2456 return 0;
2457 }
2458 }
2459
2460 /* Schedule a single block by iterating its instruction to create bundles.
2461 * While we go, tally about the bundle sizes to compute the block size. */
2462
2463 static void
2464 schedule_block(compiler_context *ctx, midgard_block *block)
2465 {
2466 util_dynarray_init(&block->bundles, NULL);
2467
2468 block->quadword_count = 0;
2469
2470 mir_foreach_instr_in_block(block, ins) {
2471 int skip;
2472 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2473 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2474
2475 if (bundle.has_blend_constant) {
2476 /* TODO: Multiblock? */
2477 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2478 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2479 }
2480
2481 while(skip--)
2482 ins = mir_next_op(ins);
2483
2484 block->quadword_count += quadword_size(bundle.tag);
2485 }
2486
2487 block->is_scheduled = true;
2488 }
2489
2490 static void
2491 schedule_program(compiler_context *ctx)
2492 {
2493 allocate_registers(ctx);
2494
2495 mir_foreach_block(ctx, block) {
2496 schedule_block(ctx, block);
2497 }
2498 }
2499
2500 /* After everything is scheduled, emit whole bundles at a time */
2501
2502 static void
2503 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2504 {
2505 int lookahead = next_tag << 4;
2506
2507 switch (bundle->tag) {
2508 case TAG_ALU_4:
2509 case TAG_ALU_8:
2510 case TAG_ALU_12:
2511 case TAG_ALU_16: {
2512 /* Actually emit each component */
2513 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2514
2515 for (int i = 0; i < bundle->register_words_count; ++i)
2516 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2517
2518 /* Emit body words based on the instructions bundled */
2519 for (int i = 0; i < bundle->instruction_count; ++i) {
2520 midgard_instruction *ins = &bundle->instructions[i];
2521
2522 if (ins->unit & UNITS_ANY_VECTOR) {
2523 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2524 } else if (ins->compact_branch) {
2525 /* Dummy move, XXX DRY */
2526 if ((i == 0) && ins->writeout) {
2527 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2528 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2529 }
2530
2531 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2532 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2533 } else {
2534 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2535 }
2536 } else {
2537 /* Scalar */
2538 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2539 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2540 }
2541 }
2542
2543 /* Emit padding (all zero) */
2544 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2545
2546 /* Tack on constants */
2547
2548 if (bundle->has_embedded_constants) {
2549 util_dynarray_append(emission, float, bundle->constants[0]);
2550 util_dynarray_append(emission, float, bundle->constants[1]);
2551 util_dynarray_append(emission, float, bundle->constants[2]);
2552 util_dynarray_append(emission, float, bundle->constants[3]);
2553 }
2554
2555 break;
2556 }
2557
2558 case TAG_LOAD_STORE_4: {
2559 /* One or two composing instructions */
2560
2561 uint64_t current64, next64 = LDST_NOP;
2562
2563 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2564
2565 if (bundle->instruction_count == 2)
2566 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2567
2568 midgard_load_store instruction = {
2569 .type = bundle->tag,
2570 .next_type = next_tag,
2571 .word1 = current64,
2572 .word2 = next64
2573 };
2574
2575 util_dynarray_append(emission, midgard_load_store, instruction);
2576
2577 break;
2578 }
2579
2580 case TAG_TEXTURE_4: {
2581 /* Texture instructions are easy, since there is no
2582 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2583
2584 midgard_instruction *ins = &bundle->instructions[0];
2585
2586 ins->texture.type = TAG_TEXTURE_4;
2587 ins->texture.next_type = next_tag;
2588
2589 ctx->texture_op_count--;
2590
2591 if (!ctx->texture_op_count) {
2592 ins->texture.cont = 0;
2593 ins->texture.last = 1;
2594 }
2595
2596 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2597 break;
2598 }
2599
2600 default:
2601 DBG("Unknown midgard instruction type\n");
2602 assert(0);
2603 break;
2604 }
2605 }
2606
2607
2608 /* ALU instructions can inline or embed constants, which decreases register
2609 * pressure and saves space. */
2610
2611 #define CONDITIONAL_ATTACH(src) { \
2612 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2613 \
2614 if (entry) { \
2615 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2616 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2617 } \
2618 }
2619
2620 static void
2621 inline_alu_constants(compiler_context *ctx)
2622 {
2623 mir_foreach_instr(ctx, alu) {
2624 /* Other instructions cannot inline constants */
2625 if (alu->type != TAG_ALU_4) continue;
2626
2627 /* If there is already a constant here, we can do nothing */
2628 if (alu->has_constants) continue;
2629
2630 CONDITIONAL_ATTACH(src0);
2631
2632 if (!alu->has_constants) {
2633 CONDITIONAL_ATTACH(src1)
2634 } else if (!alu->inline_constant) {
2635 /* Corner case: _two_ vec4 constants, for instance with a
2636 * csel. For this case, we can only use a constant
2637 * register for one, we'll have to emit a move for the
2638 * other. Note, if both arguments are constants, then
2639 * necessarily neither argument depends on the value of
2640 * any particular register. As the destination register
2641 * will be wiped, that means we can spill the constant
2642 * to the destination register.
2643 */
2644
2645 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2646 unsigned scratch = alu->ssa_args.dest;
2647
2648 if (entry) {
2649 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2650 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2651
2652 /* Force a break XXX Defer r31 writes */
2653 ins.unit = UNIT_VLUT;
2654
2655 /* Set the source */
2656 alu->ssa_args.src1 = scratch;
2657
2658 /* Inject us -before- the last instruction which set r31 */
2659 mir_insert_instruction_before(mir_prev_op(alu), ins);
2660 }
2661 }
2662 }
2663 }
2664
2665 /* Midgard supports two types of constants, embedded constants (128-bit) and
2666 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2667 * constants can be demoted to inline constants, for space savings and
2668 * sometimes a performance boost */
2669
2670 static void
2671 embedded_to_inline_constant(compiler_context *ctx)
2672 {
2673 mir_foreach_instr(ctx, ins) {
2674 if (!ins->has_constants) continue;
2675
2676 if (ins->ssa_args.inline_constant) continue;
2677
2678 /* Blend constants must not be inlined by definition */
2679 if (ins->has_blend_constant) continue;
2680
2681 /* src1 cannot be an inline constant due to encoding
2682 * restrictions. So, if possible we try to flip the arguments
2683 * in that case */
2684
2685 int op = ins->alu.op;
2686
2687 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2688 /* Flip based on op. Fallthrough intentional */
2689
2690 switch (op) {
2691 /* These ops require an operational change to flip their arguments TODO */
2692 case midgard_alu_op_flt:
2693 case midgard_alu_op_fle:
2694 case midgard_alu_op_ilt:
2695 case midgard_alu_op_ile:
2696 case midgard_alu_op_fcsel:
2697 case midgard_alu_op_icsel:
2698 case midgard_alu_op_isub:
2699 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2700 break;
2701
2702 /* These ops are commutative and Just Flip */
2703 case midgard_alu_op_fne:
2704 case midgard_alu_op_fadd:
2705 case midgard_alu_op_fmul:
2706 case midgard_alu_op_fmin:
2707 case midgard_alu_op_fmax:
2708 case midgard_alu_op_iadd:
2709 case midgard_alu_op_imul:
2710 case midgard_alu_op_feq:
2711 case midgard_alu_op_ieq:
2712 case midgard_alu_op_ine:
2713 case midgard_alu_op_iand:
2714 case midgard_alu_op_ior:
2715 case midgard_alu_op_ixor:
2716 /* Flip the SSA numbers */
2717 ins->ssa_args.src0 = ins->ssa_args.src1;
2718 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2719
2720 /* And flip the modifiers */
2721
2722 unsigned src_temp;
2723
2724 src_temp = ins->alu.src2;
2725 ins->alu.src2 = ins->alu.src1;
2726 ins->alu.src1 = src_temp;
2727
2728 default:
2729 break;
2730 }
2731 }
2732
2733 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2734 /* Extract the source information */
2735
2736 midgard_vector_alu_src *src;
2737 int q = ins->alu.src2;
2738 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2739 src = m;
2740
2741 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2742 int component = src->swizzle & 3;
2743
2744 /* Scale constant appropriately, if we can legally */
2745 uint16_t scaled_constant = 0;
2746
2747 /* XXX: Check legality */
2748 if (midgard_is_integer_op(op)) {
2749 /* TODO: Inline integer */
2750 continue;
2751
2752 unsigned int *iconstants = (unsigned int *) ins->constants;
2753 scaled_constant = (uint16_t) iconstants[component];
2754
2755 /* Constant overflow after resize */
2756 if (scaled_constant != iconstants[component])
2757 continue;
2758 } else {
2759 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2760 }
2761
2762 /* We don't know how to handle these with a constant */
2763
2764 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2765 DBG("Bailing inline constant...\n");
2766 continue;
2767 }
2768
2769 /* Make sure that the constant is not itself a
2770 * vector by checking if all accessed values
2771 * (by the swizzle) are the same. */
2772
2773 uint32_t *cons = (uint32_t *) ins->constants;
2774 uint32_t value = cons[component];
2775
2776 bool is_vector = false;
2777 unsigned mask = effective_writemask(&ins->alu);
2778
2779 for (int c = 1; c < 4; ++c) {
2780 /* We only care if this component is actually used */
2781 if (!(mask & (1 << c)))
2782 continue;
2783
2784 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2785
2786 if (test != value) {
2787 is_vector = true;
2788 break;
2789 }
2790 }
2791
2792 if (is_vector)
2793 continue;
2794
2795 /* Get rid of the embedded constant */
2796 ins->has_constants = false;
2797 ins->ssa_args.src1 = SSA_UNUSED_0;
2798 ins->ssa_args.inline_constant = true;
2799 ins->inline_constant = scaled_constant;
2800 }
2801 }
2802 }
2803
2804 /* Map normal SSA sources to other SSA sources / fixed registers (like
2805 * uniforms) */
2806
2807 static void
2808 map_ssa_to_alias(compiler_context *ctx, int *ref)
2809 {
2810 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2811
2812 if (alias) {
2813 /* Remove entry in leftovers to avoid a redunant fmov */
2814
2815 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2816
2817 if (leftover)
2818 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2819
2820 /* Assign the alias map */
2821 *ref = alias - 1;
2822 return;
2823 }
2824 }
2825
2826 #define AS_SRC(to, u) \
2827 int q##to = ins->alu.src2; \
2828 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2829
2830 /* Removing unused moves is necessary to clean up the texture pipeline results.
2831 *
2832 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2833
2834 static void
2835 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2836 {
2837 mir_foreach_instr_in_block_safe(block, ins) {
2838 if (ins->type != TAG_ALU_4) continue;
2839
2840 if (ins->alu.op != midgard_alu_op_fmov) continue;
2841
2842 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2843
2844 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2845
2846 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2847
2848 mir_remove_instruction(ins);
2849 }
2850 }
2851
2852 /* The following passes reorder MIR instructions to enable better scheduling */
2853
2854 static void
2855 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2856 {
2857 mir_foreach_instr_in_block_safe(block, ins) {
2858 if (ins->type != TAG_LOAD_STORE_4) continue;
2859
2860 /* We've found a load/store op. Check if next is also load/store. */
2861 midgard_instruction *next_op = mir_next_op(ins);
2862 if (&next_op->link != &block->instructions) {
2863 if (next_op->type == TAG_LOAD_STORE_4) {
2864 /* If so, we're done since we're a pair */
2865 ins = mir_next_op(ins);
2866 continue;
2867 }
2868
2869 /* Maximum search distance to pair, to avoid register pressure disasters */
2870 int search_distance = 8;
2871
2872 /* Otherwise, we have an orphaned load/store -- search for another load */
2873 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2874 /* Terminate search if necessary */
2875 if (!(search_distance--)) break;
2876
2877 if (c->type != TAG_LOAD_STORE_4) continue;
2878
2879 if (OP_IS_STORE(c->load_store.op)) continue;
2880
2881 /* We found one! Move it up to pair and remove it from the old location */
2882
2883 mir_insert_instruction_before(ins, *c);
2884 mir_remove_instruction(c);
2885
2886 break;
2887 }
2888 }
2889 }
2890 }
2891
2892 /* Emit varying stores late */
2893
2894 static void
2895 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2896 /* Iterate in reverse to get the final write, rather than the first */
2897
2898 mir_foreach_instr_in_block_safe_rev(block, ins) {
2899 /* Check if what we just wrote needs a store */
2900 int idx = ins->ssa_args.dest;
2901 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2902
2903 if (!varying) continue;
2904
2905 varying -= 1;
2906
2907 /* We need to store to the appropriate varying, so emit the
2908 * move/store */
2909
2910 /* TODO: Integrate with special purpose RA (and scheduler?) */
2911 bool high_varying_register = false;
2912
2913 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2914
2915 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2916 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2917
2918 mir_insert_instruction_before(mir_next_op(ins), st);
2919 mir_insert_instruction_before(mir_next_op(ins), mov);
2920
2921 /* We no longer need to store this varying */
2922 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2923 }
2924 }
2925
2926 /* If there are leftovers after the below pass, emit actual fmov
2927 * instructions for the slow-but-correct path */
2928
2929 static void
2930 emit_leftover_move(compiler_context *ctx)
2931 {
2932 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2933 int base = ((uintptr_t) leftover->key) - 1;
2934 int mapped = base;
2935
2936 map_ssa_to_alias(ctx, &mapped);
2937 EMIT(fmov, mapped, blank_alu_src, base);
2938 }
2939 }
2940
2941 static void
2942 actualise_ssa_to_alias(compiler_context *ctx)
2943 {
2944 mir_foreach_instr(ctx, ins) {
2945 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2946 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2947 }
2948
2949 emit_leftover_move(ctx);
2950 }
2951
2952 /* Vertex shaders do not write gl_Position as is; instead, they write a
2953 * transformed screen space position as a varying. See section 12.5 "Coordinate
2954 * Transformation" of the ES 3.2 full specification for details.
2955 *
2956 * This transformation occurs early on, as NIR and prior to optimisation, in
2957 * order to take advantage of NIR optimisation passes of the transform itself.
2958 * */
2959
2960 static void
2961 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2962 {
2963 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2964
2965 /* Get viewport from the uniforms */
2966 nir_intrinsic_instr *load;
2967 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2968 load->num_components = 4;
2969 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2970 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2971 nir_builder_instr_insert(b, &load->instr);
2972
2973 /* Formatted as <width, height, centerx, centery> */
2974 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2975 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2976 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2977 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2978
2979 /* XXX: From uniforms? */
2980 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2981 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2982
2983 /* World space to normalised device coordinates */
2984
2985 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2986 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2987
2988 /* Normalised device coordinates to screen space */
2989
2990 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2991 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2992
2993 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2994 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2995 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2996
2997 /* gl_Position will be written out in screenspace xyz, with w set to
2998 * the reciprocal we computed earlier. The transformed w component is
2999 * then used for perspective-correct varying interpolation. The
3000 * transformed w component must preserve its original sign; this is
3001 * used in depth clipping computations */
3002
3003 nir_ssa_def *screen_space = nir_vec4(b,
3004 nir_channel(b, viewport_xy, 0),
3005 nir_channel(b, viewport_xy, 1),
3006 screen_depth,
3007 w_recip);
3008
3009 /* Finally, write out the transformed values to the varying */
3010
3011 nir_intrinsic_instr *store;
3012 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3013 store->num_components = 4;
3014 nir_intrinsic_set_base(store, 0);
3015 nir_intrinsic_set_write_mask(store, 0xf);
3016 store->src[0].ssa = screen_space;
3017 store->src[0].is_ssa = true;
3018 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3019 nir_builder_instr_insert(b, &store->instr);
3020 }
3021
3022 static void
3023 transform_position_writes(nir_shader *shader)
3024 {
3025 nir_foreach_function(func, shader) {
3026 nir_foreach_block(block, func->impl) {
3027 nir_foreach_instr_safe(instr, block) {
3028 if (instr->type != nir_instr_type_intrinsic) continue;
3029
3030 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3031 nir_variable *out = NULL;
3032
3033 switch (intr->intrinsic) {
3034 case nir_intrinsic_store_output:
3035 /* already had i/o lowered.. lookup the matching output var: */
3036 nir_foreach_variable(var, &shader->outputs) {
3037 int drvloc = var->data.driver_location;
3038
3039 if (nir_intrinsic_base(intr) == drvloc) {
3040 out = var;
3041 break;
3042 }
3043 }
3044
3045 break;
3046
3047 default:
3048 break;
3049 }
3050
3051 if (!out) continue;
3052
3053 if (out->data.mode != nir_var_shader_out)
3054 continue;
3055
3056 if (out->data.location != VARYING_SLOT_POS)
3057 continue;
3058
3059 nir_builder b;
3060 nir_builder_init(&b, func->impl);
3061 b.cursor = nir_before_instr(instr);
3062
3063 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3064 nir_instr_remove(instr);
3065 }
3066 }
3067 }
3068 }
3069
3070 static void
3071 emit_fragment_epilogue(compiler_context *ctx)
3072 {
3073 /* Special case: writing out constants requires us to include the move
3074 * explicitly now, so shove it into r0 */
3075
3076 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3077
3078 if (constant_value) {
3079 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3080 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3081 emit_mir_instruction(ctx, ins);
3082 }
3083
3084 /* Perform the actual fragment writeout. We have two writeout/branch
3085 * instructions, forming a loop until writeout is successful as per the
3086 * docs. TODO: gl_FragDepth */
3087
3088 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3089 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3090 }
3091
3092 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3093 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3094 * with the int8 analogue to the fragment epilogue */
3095
3096 static void
3097 emit_blend_epilogue(compiler_context *ctx)
3098 {
3099 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3100
3101 midgard_instruction scale = {
3102 .type = TAG_ALU_4,
3103 .unit = UNIT_VMUL,
3104 .inline_constant = _mesa_float_to_half(255.0),
3105 .ssa_args = {
3106 .src0 = SSA_FIXED_REGISTER(0),
3107 .src1 = SSA_UNUSED_0,
3108 .dest = SSA_FIXED_REGISTER(24),
3109 .inline_constant = true
3110 },
3111 .alu = {
3112 .op = midgard_alu_op_fmul,
3113 .reg_mode = midgard_reg_mode_full,
3114 .dest_override = midgard_dest_override_lower,
3115 .mask = 0xFF,
3116 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3117 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3118 }
3119 };
3120
3121 emit_mir_instruction(ctx, scale);
3122
3123 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3124
3125 midgard_vector_alu_src alu_src = blank_alu_src;
3126 alu_src.half = true;
3127
3128 midgard_instruction f2u8 = {
3129 .type = TAG_ALU_4,
3130 .ssa_args = {
3131 .src0 = SSA_FIXED_REGISTER(24),
3132 .src1 = SSA_UNUSED_0,
3133 .dest = SSA_FIXED_REGISTER(0),
3134 .inline_constant = true
3135 },
3136 .alu = {
3137 .op = midgard_alu_op_f2u8,
3138 .reg_mode = midgard_reg_mode_half,
3139 .dest_override = midgard_dest_override_lower,
3140 .outmod = midgard_outmod_pos,
3141 .mask = 0xF,
3142 .src1 = vector_alu_srco_unsigned(alu_src),
3143 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3144 }
3145 };
3146
3147 emit_mir_instruction(ctx, f2u8);
3148
3149 /* vmul.imov.quarter r0, r0, r0 */
3150
3151 midgard_instruction imov_8 = {
3152 .type = TAG_ALU_4,
3153 .ssa_args = {
3154 .src0 = SSA_UNUSED_1,
3155 .src1 = SSA_FIXED_REGISTER(0),
3156 .dest = SSA_FIXED_REGISTER(0),
3157 },
3158 .alu = {
3159 .op = midgard_alu_op_imov,
3160 .reg_mode = midgard_reg_mode_quarter,
3161 .dest_override = midgard_dest_override_none,
3162 .mask = 0xFF,
3163 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3164 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3165 }
3166 };
3167
3168 /* Emit branch epilogue with the 8-bit move as the source */
3169
3170 emit_mir_instruction(ctx, imov_8);
3171 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3172
3173 emit_mir_instruction(ctx, imov_8);
3174 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3175 }
3176
3177 static midgard_block *
3178 emit_block(compiler_context *ctx, nir_block *block)
3179 {
3180 midgard_block *this_block = malloc(sizeof(midgard_block));
3181 list_addtail(&this_block->link, &ctx->blocks);
3182
3183 this_block->is_scheduled = false;
3184 ++ctx->block_count;
3185
3186 ctx->texture_index[0] = -1;
3187 ctx->texture_index[1] = -1;
3188
3189 /* Set up current block */
3190 list_inithead(&this_block->instructions);
3191 ctx->current_block = this_block;
3192
3193 nir_foreach_instr(instr, block) {
3194 emit_instr(ctx, instr);
3195 ++ctx->instruction_count;
3196 }
3197
3198 inline_alu_constants(ctx);
3199 embedded_to_inline_constant(ctx);
3200
3201 /* Perform heavylifting for aliasing */
3202 actualise_ssa_to_alias(ctx);
3203
3204 midgard_emit_store(ctx, this_block);
3205 midgard_eliminate_orphan_moves(ctx, this_block);
3206 midgard_pair_load_store(ctx, this_block);
3207
3208 /* Append fragment shader epilogue (value writeout) */
3209 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3210 if (block == nir_impl_last_block(ctx->func->impl)) {
3211 if (ctx->is_blend)
3212 emit_blend_epilogue(ctx);
3213 else
3214 emit_fragment_epilogue(ctx);
3215 }
3216 }
3217
3218 /* Fallthrough save */
3219 this_block->next_fallthrough = ctx->previous_source_block;
3220
3221 if (block == nir_start_block(ctx->func->impl))
3222 ctx->initial_block = this_block;
3223
3224 if (block == nir_impl_last_block(ctx->func->impl))
3225 ctx->final_block = this_block;
3226
3227 /* Allow the next control flow to access us retroactively, for
3228 * branching etc */
3229 ctx->current_block = this_block;
3230
3231 /* Document the fallthrough chain */
3232 ctx->previous_source_block = this_block;
3233
3234 return this_block;
3235 }
3236
3237 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3238
3239 static void
3240 emit_if(struct compiler_context *ctx, nir_if *nif)
3241 {
3242 /* Conditional branches expect the condition in r31.w; emit a move for
3243 * that in the _previous_ block (which is the current block). */
3244 emit_condition(ctx, &nif->condition, true);
3245
3246 /* Speculatively emit the branch, but we can't fill it in until later */
3247 EMIT(branch, true, true);
3248 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3249
3250 /* Emit the two subblocks */
3251 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3252
3253 /* Emit a jump from the end of the then block to the end of the else */
3254 EMIT(branch, false, false);
3255 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3256
3257 /* Emit second block, and check if it's empty */
3258
3259 int else_idx = ctx->block_count;
3260 int count_in = ctx->instruction_count;
3261 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3262 int after_else_idx = ctx->block_count;
3263
3264 /* Now that we have the subblocks emitted, fix up the branches */
3265
3266 assert(then_block);
3267 assert(else_block);
3268
3269 if (ctx->instruction_count == count_in) {
3270 /* The else block is empty, so don't emit an exit jump */
3271 mir_remove_instruction(then_exit);
3272 then_branch->branch.target_block = after_else_idx;
3273 } else {
3274 then_branch->branch.target_block = else_idx;
3275 then_exit->branch.target_block = after_else_idx;
3276 }
3277 }
3278
3279 static void
3280 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3281 {
3282 /* Remember where we are */
3283 midgard_block *start_block = ctx->current_block;
3284
3285 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3286 * single current_loop variable, maybe we need a stack */
3287
3288 int loop_idx = ++ctx->current_loop;
3289
3290 /* Get index from before the body so we can loop back later */
3291 int start_idx = ctx->block_count;
3292
3293 /* Emit the body itself */
3294 emit_cf_list(ctx, &nloop->body);
3295
3296 /* Branch back to loop back */
3297 struct midgard_instruction br_back = v_branch(false, false);
3298 br_back.branch.target_block = start_idx;
3299 emit_mir_instruction(ctx, br_back);
3300
3301 /* Find the index of the block about to follow us (note: we don't add
3302 * one; blocks are 0-indexed so we get a fencepost problem) */
3303 int break_block_idx = ctx->block_count;
3304
3305 /* Fix up the break statements we emitted to point to the right place,
3306 * now that we can allocate a block number for them */
3307
3308 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3309 if (midgard_debug & MIDGARD_DBG_SHADERS)
3310 print_mir_block(block);
3311 mir_foreach_instr_in_block(block, ins) {
3312 if (ins->type != TAG_ALU_4) continue;
3313 if (!ins->compact_branch) continue;
3314 if (ins->prepacked_branch) continue;
3315
3316 /* We found a branch -- check the type to see if we need to do anything */
3317 if (ins->branch.target_type != TARGET_BREAK) continue;
3318
3319 /* It's a break! Check if it's our break */
3320 if (ins->branch.target_break != loop_idx) continue;
3321
3322 /* Okay, cool, we're breaking out of this loop.
3323 * Rewrite from a break to a goto */
3324
3325 ins->branch.target_type = TARGET_GOTO;
3326 ins->branch.target_block = break_block_idx;
3327 }
3328 }
3329 }
3330
3331 static midgard_block *
3332 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3333 {
3334 midgard_block *start_block = NULL;
3335
3336 foreach_list_typed(nir_cf_node, node, node, list) {
3337 switch (node->type) {
3338 case nir_cf_node_block: {
3339 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3340
3341 if (!start_block)
3342 start_block = block;
3343
3344 break;
3345 }
3346
3347 case nir_cf_node_if:
3348 emit_if(ctx, nir_cf_node_as_if(node));
3349 break;
3350
3351 case nir_cf_node_loop:
3352 emit_loop(ctx, nir_cf_node_as_loop(node));
3353 break;
3354
3355 case nir_cf_node_function:
3356 assert(0);
3357 break;
3358 }
3359 }
3360
3361 return start_block;
3362 }
3363
3364 /* Due to lookahead, we need to report the first tag executed in the command
3365 * stream and in branch targets. An initial block might be empty, so iterate
3366 * until we find one that 'works' */
3367
3368 static unsigned
3369 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3370 {
3371 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3372
3373 unsigned first_tag = 0;
3374
3375 do {
3376 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3377
3378 if (initial_bundle) {
3379 first_tag = initial_bundle->tag;
3380 break;
3381 }
3382
3383 /* Initial block is empty, try the next block */
3384 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3385 } while(initial_block != NULL);
3386
3387 assert(first_tag);
3388 return first_tag;
3389 }
3390
3391 int
3392 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3393 {
3394 struct util_dynarray *compiled = &program->compiled;
3395
3396 midgard_debug = debug_get_option_midgard_debug();
3397
3398 compiler_context ictx = {
3399 .nir = nir,
3400 .stage = nir->info.stage,
3401
3402 .is_blend = is_blend,
3403 .blend_constant_offset = -1,
3404
3405 .alpha_ref = program->alpha_ref
3406 };
3407
3408 compiler_context *ctx = &ictx;
3409
3410 /* TODO: Decide this at runtime */
3411 ctx->uniform_cutoff = 8;
3412
3413 switch (ctx->stage) {
3414 case MESA_SHADER_VERTEX:
3415 ctx->special_uniforms = 1;
3416 break;
3417
3418 default:
3419 ctx->special_uniforms = 0;
3420 break;
3421 }
3422
3423 /* Append epilogue uniforms if necessary. The cmdstream depends on
3424 * these being at the -end-; see assign_var_locations. */
3425
3426 if (ctx->stage == MESA_SHADER_VERTEX) {
3427 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3428 }
3429
3430 /* Assign var locations early, so the epilogue can use them if necessary */
3431
3432 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3433 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3434 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3435
3436 /* Initialize at a global (not block) level hash tables */
3437
3438 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3439 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3440 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3441 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3442 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3443 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3444
3445 /* Assign actual uniform location, skipping over samplers */
3446
3447 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3448
3449 nir_foreach_variable(var, &nir->uniforms) {
3450 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3451
3452 unsigned length = glsl_get_aoa_size(var->type);
3453
3454 if (!length) {
3455 length = glsl_get_length(var->type);
3456 }
3457
3458 if (!length) {
3459 length = glsl_get_matrix_columns(var->type);
3460 }
3461
3462 for (int col = 0; col < length; ++col) {
3463 int id = ctx->uniform_count++;
3464 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3465 }
3466 }
3467
3468 /* Record the varying mapping for the command stream's bookkeeping */
3469
3470 struct exec_list *varyings =
3471 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3472
3473 nir_foreach_variable(var, varyings) {
3474 unsigned loc = var->data.driver_location;
3475 program->varyings[loc] = var->data.location;
3476 }
3477
3478 /* Lower vars -- not I/O -- before epilogue */
3479
3480 NIR_PASS_V(nir, nir_lower_var_copies);
3481 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3482 NIR_PASS_V(nir, nir_split_var_copies);
3483 NIR_PASS_V(nir, nir_lower_var_copies);
3484 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3485 NIR_PASS_V(nir, nir_lower_var_copies);
3486 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3487 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3488
3489 /* Append vertex epilogue before optimisation, so the epilogue itself
3490 * is optimised */
3491
3492 if (ctx->stage == MESA_SHADER_VERTEX)
3493 transform_position_writes(nir);
3494
3495 /* Optimisation passes */
3496
3497 optimise_nir(nir);
3498
3499 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3500 nir_print_shader(nir, stdout);
3501 }
3502
3503 /* Assign counts, now that we're sure (post-optimisation) */
3504 program->uniform_count = nir->num_uniforms;
3505
3506 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3507 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3508
3509
3510 nir_foreach_function(func, nir) {
3511 if (!func->impl)
3512 continue;
3513
3514 list_inithead(&ctx->blocks);
3515 ctx->block_count = 0;
3516 ctx->func = func;
3517
3518 emit_cf_list(ctx, &func->impl->body);
3519 emit_block(ctx, func->impl->end_block);
3520
3521 break; /* TODO: Multi-function shaders */
3522 }
3523
3524 util_dynarray_init(compiled, NULL);
3525
3526 /* Schedule! */
3527 schedule_program(ctx);
3528
3529 /* Now that all the bundles are scheduled and we can calculate block
3530 * sizes, emit actual branch instructions rather than placeholders */
3531
3532 int br_block_idx = 0;
3533
3534 mir_foreach_block(ctx, block) {
3535 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3536 for (int c = 0; c < bundle->instruction_count; ++c) {
3537 midgard_instruction *ins = &bundle->instructions[c];
3538
3539 if (!midgard_is_branch_unit(ins->unit)) continue;
3540
3541 if (ins->prepacked_branch) continue;
3542
3543 /* Parse some basic branch info */
3544 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3545 bool is_conditional = ins->branch.conditional;
3546 bool is_inverted = ins->branch.invert_conditional;
3547 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3548
3549 /* Determine the block we're jumping to */
3550 int target_number = ins->branch.target_block;
3551
3552 /* Report the destination tag. Discards don't need this */
3553 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3554
3555 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3556 int quadword_offset = 0;
3557
3558 if (is_discard) {
3559 /* Jump to the end of the shader. We
3560 * need to include not only the
3561 * following blocks, but also the
3562 * contents of our current block (since
3563 * discard can come in the middle of
3564 * the block) */
3565
3566 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3567
3568 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3569 quadword_offset += quadword_size(bun->tag);
3570 }
3571
3572 mir_foreach_block_from(ctx, blk, b) {
3573 quadword_offset += b->quadword_count;
3574 }
3575
3576 } else if (target_number > br_block_idx) {
3577 /* Jump forward */
3578
3579 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3580 midgard_block *blk = mir_get_block(ctx, idx);
3581 assert(blk);
3582
3583 quadword_offset += blk->quadword_count;
3584 }
3585 } else {
3586 /* Jump backwards */
3587
3588 for (int idx = br_block_idx; idx >= target_number; --idx) {
3589 midgard_block *blk = mir_get_block(ctx, idx);
3590 assert(blk);
3591
3592 quadword_offset -= blk->quadword_count;
3593 }
3594 }
3595
3596 /* Unconditional extended branches (far jumps)
3597 * have issues, so we always use a conditional
3598 * branch, setting the condition to always for
3599 * unconditional. For compact unconditional
3600 * branches, cond isn't used so it doesn't
3601 * matter what we pick. */
3602
3603 midgard_condition cond =
3604 !is_conditional ? midgard_condition_always :
3605 is_inverted ? midgard_condition_false :
3606 midgard_condition_true;
3607
3608 midgard_jmp_writeout_op op =
3609 is_discard ? midgard_jmp_writeout_op_discard :
3610 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3611 midgard_jmp_writeout_op_branch_cond;
3612
3613 if (!is_compact) {
3614 midgard_branch_extended branch =
3615 midgard_create_branch_extended(
3616 cond, op,
3617 dest_tag,
3618 quadword_offset);
3619
3620 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3621 } else if (is_conditional || is_discard) {
3622 midgard_branch_cond branch = {
3623 .op = op,
3624 .dest_tag = dest_tag,
3625 .offset = quadword_offset,
3626 .cond = cond
3627 };
3628
3629 assert(branch.offset == quadword_offset);
3630
3631 memcpy(&ins->br_compact, &branch, sizeof(branch));
3632 } else {
3633 assert(op == midgard_jmp_writeout_op_branch_uncond);
3634
3635 midgard_branch_uncond branch = {
3636 .op = op,
3637 .dest_tag = dest_tag,
3638 .offset = quadword_offset,
3639 .unknown = 1
3640 };
3641
3642 assert(branch.offset == quadword_offset);
3643
3644 memcpy(&ins->br_compact, &branch, sizeof(branch));
3645 }
3646 }
3647 }
3648
3649 ++br_block_idx;
3650 }
3651
3652 /* Emit flat binary from the instruction arrays. Iterate each block in
3653 * sequence. Save instruction boundaries such that lookahead tags can
3654 * be assigned easily */
3655
3656 /* Cache _all_ bundles in source order for lookahead across failed branches */
3657
3658 int bundle_count = 0;
3659 mir_foreach_block(ctx, block) {
3660 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3661 }
3662 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3663 int bundle_idx = 0;
3664 mir_foreach_block(ctx, block) {
3665 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3666 source_order_bundles[bundle_idx++] = bundle;
3667 }
3668 }
3669
3670 int current_bundle = 0;
3671
3672 mir_foreach_block(ctx, block) {
3673 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3674 int lookahead = 1;
3675
3676 if (current_bundle + 1 < bundle_count) {
3677 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3678
3679 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3680 lookahead = 1;
3681 } else {
3682 lookahead = next;
3683 }
3684 }
3685
3686 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3687 ++current_bundle;
3688 }
3689
3690 /* TODO: Free deeper */
3691 //util_dynarray_fini(&block->instructions);
3692 }
3693
3694 free(source_order_bundles);
3695
3696 /* Report the very first tag executed */
3697 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3698
3699 /* Deal with off-by-one related to the fencepost problem */
3700 program->work_register_count = ctx->work_registers + 1;
3701
3702 program->can_discard = ctx->can_discard;
3703 program->uniform_cutoff = ctx->uniform_cutoff;
3704
3705 program->blend_patch_offset = ctx->blend_constant_offset;
3706
3707 if (midgard_debug & MIDGARD_DBG_SHADERS)
3708 disassemble_midgard(program->compiled.data, program->compiled.size);
3709
3710 return 0;
3711 }