panfrost/midgard: Copy prop for texture registers
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137
1138 /* XXX: Use fmov, not imov, since imov was causing major
1139 * issues with texture precision? XXX research */
1140 ALU_CASE(imov, imov);
1141
1142 ALU_CASE(feq32, feq);
1143 ALU_CASE(fne32, fne);
1144 ALU_CASE(flt32, flt);
1145 ALU_CASE(ieq32, ieq);
1146 ALU_CASE(ine32, ine);
1147 ALU_CASE(ilt32, ilt);
1148 ALU_CASE(ult32, ult);
1149
1150 /* We don't have a native b2f32 instruction. Instead, like many
1151 * GPUs, we exploit booleans as 0/~0 for false/true, and
1152 * correspondingly AND
1153 * by 1.0 to do the type conversion. For the moment, prime us
1154 * to emit:
1155 *
1156 * iand [whatever], #0
1157 *
1158 * At the end of emit_alu (as MIR), we'll fix-up the constant
1159 */
1160
1161 ALU_CASE(b2f32, iand);
1162 ALU_CASE(b2i32, iand);
1163
1164 /* Likewise, we don't have a dedicated f2b32 instruction, but
1165 * we can do a "not equal to 0.0" test. */
1166
1167 ALU_CASE(f2b32, fne);
1168 ALU_CASE(i2b32, ine);
1169
1170 ALU_CASE(frcp, frcp);
1171 ALU_CASE(frsq, frsqrt);
1172 ALU_CASE(fsqrt, fsqrt);
1173 ALU_CASE(fexp2, fexp2);
1174 ALU_CASE(flog2, flog2);
1175
1176 ALU_CASE(f2i32, f2i);
1177 ALU_CASE(f2u32, f2u);
1178 ALU_CASE(i2f32, i2f);
1179 ALU_CASE(u2f32, u2f);
1180
1181 ALU_CASE(fsin, fsin);
1182 ALU_CASE(fcos, fcos);
1183
1184 ALU_CASE(iand, iand);
1185 ALU_CASE(ior, ior);
1186 ALU_CASE(ixor, ixor);
1187 ALU_CASE(inot, inot);
1188 ALU_CASE(ishl, ishl);
1189 ALU_CASE(ishr, iasr);
1190 ALU_CASE(ushr, ilsr);
1191
1192 ALU_CASE(b32all_fequal2, fball_eq);
1193 ALU_CASE(b32all_fequal3, fball_eq);
1194 ALU_CASE(b32all_fequal4, fball_eq);
1195
1196 ALU_CASE(b32any_fnequal2, fbany_neq);
1197 ALU_CASE(b32any_fnequal3, fbany_neq);
1198 ALU_CASE(b32any_fnequal4, fbany_neq);
1199
1200 ALU_CASE(b32all_iequal2, iball_eq);
1201 ALU_CASE(b32all_iequal3, iball_eq);
1202 ALU_CASE(b32all_iequal4, iball_eq);
1203
1204 ALU_CASE(b32any_inequal2, ibany_neq);
1205 ALU_CASE(b32any_inequal3, ibany_neq);
1206 ALU_CASE(b32any_inequal4, ibany_neq);
1207
1208 /* For greater-or-equal, we lower to less-or-equal and flip the
1209 * arguments */
1210
1211 case nir_op_fge:
1212 case nir_op_fge32:
1213 case nir_op_ige32:
1214 case nir_op_uge32: {
1215 op =
1216 instr->op == nir_op_fge ? midgard_alu_op_fle :
1217 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1218 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1219 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1220 0;
1221
1222 /* Swap via temporary */
1223 nir_alu_src temp = instr->src[1];
1224 instr->src[1] = instr->src[0];
1225 instr->src[0] = temp;
1226
1227 break;
1228 }
1229
1230 /* For a few special csel cases not handled by NIR, we can opt to
1231 * bitwise. Otherwise, we emit the condition and do a real csel */
1232
1233 case nir_op_b32csel: {
1234 if (nir_is_fzero_constant(instr->src[2].src)) {
1235 /* (b ? v : 0) = (b & v) */
1236 op = midgard_alu_op_iand;
1237 nr_inputs = 2;
1238 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1239 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1240 op = midgard_alu_op_iandnot;
1241 nr_inputs = 2;
1242 instr->src[1] = instr->src[0];
1243 instr->src[0] = instr->src[2];
1244 } else {
1245 op = midgard_alu_op_fcsel;
1246
1247 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1248 nr_inputs = 2;
1249
1250 /* Figure out which component the condition is in */
1251
1252 unsigned comp = instr->src[0].swizzle[0];
1253
1254 /* Make sure NIR isn't throwing a mixed condition at us */
1255
1256 for (unsigned c = 1; c < nr_components; ++c)
1257 assert(instr->src[0].swizzle[c] == comp);
1258
1259 /* Emit the condition into r31.w */
1260 emit_condition(ctx, &instr->src[0].src, false, comp);
1261
1262 /* The condition is the first argument; move the other
1263 * arguments up one to be a binary instruction for
1264 * Midgard */
1265
1266 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1267 }
1268 break;
1269 }
1270
1271 default:
1272 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1273 assert(0);
1274 return;
1275 }
1276
1277 /* Midgard can perform certain modifiers on output ofa n ALU op */
1278 midgard_outmod outmod =
1279 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1280
1281 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1282
1283 if (instr->op == nir_op_fmax) {
1284 if (nir_is_fzero_constant(instr->src[0].src)) {
1285 op = midgard_alu_op_fmov;
1286 nr_inputs = 1;
1287 outmod = midgard_outmod_pos;
1288 instr->src[0] = instr->src[1];
1289 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1290 op = midgard_alu_op_fmov;
1291 nr_inputs = 1;
1292 outmod = midgard_outmod_pos;
1293 }
1294 }
1295
1296 /* Fetch unit, quirks, etc information */
1297 unsigned opcode_props = alu_opcode_props[op].props;
1298 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1299
1300 /* src0 will always exist afaik, but src1 will not for 1-argument
1301 * instructions. The latter can only be fetched if the instruction
1302 * needs it, or else we may segfault. */
1303
1304 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1305 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1306
1307 /* Rather than use the instruction generation helpers, we do it
1308 * ourselves here to avoid the mess */
1309
1310 midgard_instruction ins = {
1311 .type = TAG_ALU_4,
1312 .ssa_args = {
1313 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1314 .src1 = quirk_flipped_r24 ? src0 : src1,
1315 .dest = dest,
1316 }
1317 };
1318
1319 nir_alu_src *nirmods[2] = { NULL };
1320
1321 if (nr_inputs == 2) {
1322 nirmods[0] = &instr->src[0];
1323 nirmods[1] = &instr->src[1];
1324 } else if (nr_inputs == 1) {
1325 nirmods[quirk_flipped_r24] = &instr->src[0];
1326 } else {
1327 assert(0);
1328 }
1329
1330 bool is_int = midgard_is_integer_op(op);
1331
1332 midgard_vector_alu alu = {
1333 .op = op,
1334 .reg_mode = midgard_reg_mode_full,
1335 .dest_override = midgard_dest_override_none,
1336 .outmod = outmod,
1337
1338 /* Writemask only valid for non-SSA NIR */
1339 .mask = expand_writemask((1 << nr_components) - 1),
1340
1341 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1342 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1343 };
1344
1345 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1346
1347 if (!is_ssa)
1348 alu.mask &= expand_writemask(instr->dest.write_mask);
1349
1350 ins.alu = alu;
1351
1352 /* Late fixup for emulated instructions */
1353
1354 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1355 /* Presently, our second argument is an inline #0 constant.
1356 * Switch over to an embedded 1.0 constant (that can't fit
1357 * inline, since we're 32-bit, not 16-bit like the inline
1358 * constants) */
1359
1360 ins.ssa_args.inline_constant = false;
1361 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1362 ins.has_constants = true;
1363
1364 if (instr->op == nir_op_b2f32) {
1365 ins.constants[0] = 1.0f;
1366 } else {
1367 /* Type pun it into place */
1368 uint32_t one = 0x1;
1369 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1370 }
1371
1372 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1373 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1374 ins.ssa_args.inline_constant = false;
1375 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1376 ins.has_constants = true;
1377 ins.constants[0] = 0.0f;
1378 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1379 }
1380
1381 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1382 /* To avoid duplicating the lookup tables (probably), true LUT
1383 * instructions can only operate as if they were scalars. Lower
1384 * them here by changing the component. */
1385
1386 uint8_t original_swizzle[4];
1387 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1388
1389 for (int i = 0; i < nr_components; ++i) {
1390 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1391
1392 for (int j = 0; j < 4; ++j)
1393 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1394
1395 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1396 emit_mir_instruction(ctx, ins);
1397 }
1398 } else {
1399 emit_mir_instruction(ctx, ins);
1400 }
1401 }
1402
1403 #undef ALU_CASE
1404
1405 static void
1406 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1407 {
1408 /* TODO: half-floats */
1409
1410 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1411 /* Fast path: For the first 16 uniforms, direct accesses are
1412 * 0-cycle, since they're just a register fetch in the usual
1413 * case. So, we alias the registers while we're still in
1414 * SSA-space */
1415
1416 int reg_slot = 23 - offset;
1417 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1418 } else {
1419 /* Otherwise, read from the 'special' UBO to access
1420 * higher-indexed uniforms, at a performance cost. More
1421 * generally, we're emitting a UBO read instruction. */
1422
1423 midgard_instruction ins = m_load_uniform_32(dest, offset);
1424
1425 /* TODO: Don't split */
1426 ins.load_store.varying_parameters = (offset & 7) << 7;
1427 ins.load_store.address = offset >> 3;
1428
1429 if (indirect_offset) {
1430 emit_indirect_offset(ctx, indirect_offset);
1431 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1432 } else {
1433 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1434 }
1435
1436 emit_mir_instruction(ctx, ins);
1437 }
1438 }
1439
1440 static void
1441 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1442 {
1443 /* First, pull out the destination */
1444 unsigned dest = nir_dest_index(ctx, &instr->dest);
1445
1446 /* Now, figure out which uniform this is */
1447 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1448 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1449
1450 /* Sysvals are prefix uniforms */
1451 unsigned uniform = ((uintptr_t) val) - 1;
1452
1453 /* Emit the read itself -- this is never indirect */
1454 emit_uniform_read(ctx, dest, uniform, NULL);
1455 }
1456
1457 static void
1458 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1459 {
1460 unsigned offset, reg;
1461
1462 switch (instr->intrinsic) {
1463 case nir_intrinsic_discard_if:
1464 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1465
1466 /* fallthrough */
1467
1468 case nir_intrinsic_discard: {
1469 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1470 struct midgard_instruction discard = v_branch(conditional, false);
1471 discard.branch.target_type = TARGET_DISCARD;
1472 emit_mir_instruction(ctx, discard);
1473
1474 ctx->can_discard = true;
1475 break;
1476 }
1477
1478 case nir_intrinsic_load_uniform:
1479 case nir_intrinsic_load_input:
1480 offset = nir_intrinsic_base(instr);
1481
1482 bool direct = nir_src_is_const(instr->src[0]);
1483
1484 if (direct) {
1485 offset += nir_src_as_uint(instr->src[0]);
1486 }
1487
1488 reg = nir_dest_index(ctx, &instr->dest);
1489
1490 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1491 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1492 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1493 /* XXX: Half-floats? */
1494 /* TODO: swizzle, mask */
1495
1496 midgard_instruction ins = m_load_vary_32(reg, offset);
1497
1498 midgard_varying_parameter p = {
1499 .is_varying = 1,
1500 .interpolation = midgard_interp_default,
1501 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1502 };
1503
1504 unsigned u;
1505 memcpy(&u, &p, sizeof(p));
1506 ins.load_store.varying_parameters = u;
1507
1508 if (direct) {
1509 /* We have the offset totally ready */
1510 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1511 } else {
1512 /* We have it partially ready, but we need to
1513 * add in the dynamic index, moved to r27.w */
1514 emit_indirect_offset(ctx, &instr->src[0]);
1515 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1516 }
1517
1518 emit_mir_instruction(ctx, ins);
1519 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1520 /* Constant encoded as a pinned constant */
1521
1522 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1523 ins.has_constants = true;
1524 ins.has_blend_constant = true;
1525 emit_mir_instruction(ctx, ins);
1526 } else if (ctx->is_blend) {
1527 /* For blend shaders, a load might be
1528 * translated various ways depending on what
1529 * we're loading. Figure out how this is used */
1530
1531 nir_variable *out = NULL;
1532
1533 nir_foreach_variable(var, &ctx->nir->inputs) {
1534 int drvloc = var->data.driver_location;
1535
1536 if (nir_intrinsic_base(instr) == drvloc) {
1537 out = var;
1538 break;
1539 }
1540 }
1541
1542 assert(out);
1543
1544 if (out->data.location == VARYING_SLOT_COL0) {
1545 /* Source color preloaded to r0 */
1546
1547 midgard_pin_output(ctx, reg, 0);
1548 } else if (out->data.location == VARYING_SLOT_COL1) {
1549 /* Destination color must be read from framebuffer */
1550
1551 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1552 ins.load_store.swizzle = 0; /* xxxx */
1553
1554 /* Read each component sequentially */
1555
1556 for (int c = 0; c < 4; ++c) {
1557 ins.load_store.mask = (1 << c);
1558 ins.load_store.unknown = c;
1559 emit_mir_instruction(ctx, ins);
1560 }
1561
1562 /* vadd.u2f hr2, zext(hr2), #0 */
1563
1564 midgard_vector_alu_src alu_src = blank_alu_src;
1565 alu_src.mod = midgard_int_zero_extend;
1566 alu_src.half = true;
1567
1568 midgard_instruction u2f = {
1569 .type = TAG_ALU_4,
1570 .ssa_args = {
1571 .src0 = reg,
1572 .src1 = SSA_UNUSED_0,
1573 .dest = reg,
1574 .inline_constant = true
1575 },
1576 .alu = {
1577 .op = midgard_alu_op_u2f,
1578 .reg_mode = midgard_reg_mode_half,
1579 .dest_override = midgard_dest_override_none,
1580 .mask = 0xF,
1581 .src1 = vector_alu_srco_unsigned(alu_src),
1582 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1583 }
1584 };
1585
1586 emit_mir_instruction(ctx, u2f);
1587
1588 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1589
1590 alu_src.mod = 0;
1591
1592 midgard_instruction fmul = {
1593 .type = TAG_ALU_4,
1594 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1595 .ssa_args = {
1596 .src0 = reg,
1597 .dest = reg,
1598 .src1 = SSA_UNUSED_0,
1599 .inline_constant = true
1600 },
1601 .alu = {
1602 .op = midgard_alu_op_fmul,
1603 .reg_mode = midgard_reg_mode_full,
1604 .dest_override = midgard_dest_override_none,
1605 .outmod = midgard_outmod_sat,
1606 .mask = 0xFF,
1607 .src1 = vector_alu_srco_unsigned(alu_src),
1608 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1609 }
1610 };
1611
1612 emit_mir_instruction(ctx, fmul);
1613 } else {
1614 DBG("Unknown input in blend shader\n");
1615 assert(0);
1616 }
1617 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1618 midgard_instruction ins = m_load_attr_32(reg, offset);
1619 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1620 ins.load_store.mask = (1 << instr->num_components) - 1;
1621 emit_mir_instruction(ctx, ins);
1622 } else {
1623 DBG("Unknown load\n");
1624 assert(0);
1625 }
1626
1627 break;
1628
1629 case nir_intrinsic_store_output:
1630 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1631
1632 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1633
1634 reg = nir_src_index(ctx, &instr->src[0]);
1635
1636 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1637 /* gl_FragColor is not emitted with load/store
1638 * instructions. Instead, it gets plonked into
1639 * r0 at the end of the shader and we do the
1640 * framebuffer writeout dance. TODO: Defer
1641 * writes */
1642
1643 midgard_pin_output(ctx, reg, 0);
1644
1645 /* Save the index we're writing to for later reference
1646 * in the epilogue */
1647
1648 ctx->fragment_output = reg;
1649 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1650 /* Varyings are written into one of two special
1651 * varying register, r26 or r27. The register itself is selected as the register
1652 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1653 *
1654 * Normally emitting fmov's is frowned upon,
1655 * but due to unique constraints of
1656 * REGISTER_VARYING, fmov emission + a
1657 * dedicated cleanup pass is the only way to
1658 * guarantee correctness when considering some
1659 * (common) edge cases XXX: FIXME */
1660
1661 /* If this varying corresponds to a constant (why?!),
1662 * emit that now since it won't get picked up by
1663 * hoisting (since there is no corresponding move
1664 * emitted otherwise) */
1665
1666 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1667
1668 if (constant_value) {
1669 /* Special case: emit the varying write
1670 * directly to r26 (looks funny in asm but it's
1671 * fine) and emit the store _now_. Possibly
1672 * slightly slower, but this is a really stupid
1673 * special case anyway (why on earth would you
1674 * have a constant varying? Your own fault for
1675 * slightly worse perf :P) */
1676
1677 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1678 attach_constants(ctx, &ins, constant_value, reg + 1);
1679 emit_mir_instruction(ctx, ins);
1680
1681 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1682 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1683 emit_mir_instruction(ctx, st);
1684 } else {
1685 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1686
1687 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1688 }
1689 } else {
1690 DBG("Unknown store\n");
1691 assert(0);
1692 }
1693
1694 break;
1695
1696 case nir_intrinsic_load_alpha_ref_float:
1697 assert(instr->dest.is_ssa);
1698
1699 float ref_value = ctx->alpha_ref;
1700
1701 float *v = ralloc_array(NULL, float, 4);
1702 memcpy(v, &ref_value, sizeof(float));
1703 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1704 break;
1705
1706 case nir_intrinsic_load_viewport_scale:
1707 case nir_intrinsic_load_viewport_offset:
1708 emit_sysval_read(ctx, instr);
1709 break;
1710
1711 default:
1712 printf ("Unhandled intrinsic\n");
1713 assert(0);
1714 break;
1715 }
1716 }
1717
1718 static unsigned
1719 midgard_tex_format(enum glsl_sampler_dim dim)
1720 {
1721 switch (dim) {
1722 case GLSL_SAMPLER_DIM_2D:
1723 case GLSL_SAMPLER_DIM_EXTERNAL:
1724 return TEXTURE_2D;
1725
1726 case GLSL_SAMPLER_DIM_3D:
1727 return TEXTURE_3D;
1728
1729 case GLSL_SAMPLER_DIM_CUBE:
1730 return TEXTURE_CUBE;
1731
1732 default:
1733 DBG("Unknown sampler dim type\n");
1734 assert(0);
1735 return 0;
1736 }
1737 }
1738
1739 static void
1740 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1741 {
1742 /* TODO */
1743 //assert (!instr->sampler);
1744 //assert (!instr->texture_array_size);
1745 assert (instr->op == nir_texop_tex);
1746
1747 /* Allocate registers via a round robin scheme to alternate between the two registers */
1748 int reg = ctx->texture_op_count & 1;
1749 int in_reg = reg, out_reg = reg;
1750
1751 /* Make room for the reg */
1752
1753 if (ctx->texture_index[reg] > -1)
1754 unalias_ssa(ctx, ctx->texture_index[reg]);
1755
1756 int texture_index = instr->texture_index;
1757 int sampler_index = texture_index;
1758
1759 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1760 switch (instr->src[i].src_type) {
1761 case nir_tex_src_coord: {
1762 int index = nir_src_index(ctx, &instr->src[i].src);
1763
1764 midgard_vector_alu_src alu_src = blank_alu_src;
1765
1766 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1767
1768 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1769 /* For cubemaps, we need to load coords into
1770 * special r27, and then use a special ld/st op
1771 * to copy into the texture register */
1772
1773 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1774
1775 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1776 emit_mir_instruction(ctx, move);
1777
1778 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1779 st.load_store.unknown = 0x24; /* XXX: What is this? */
1780 st.load_store.mask = 0x3; /* xy? */
1781 st.load_store.swizzle = alu_src.swizzle;
1782 emit_mir_instruction(ctx, st);
1783
1784 } else {
1785 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1786
1787 midgard_instruction ins = v_fmov(index, alu_src, reg);
1788 emit_mir_instruction(ctx, ins);
1789 }
1790
1791 break;
1792 }
1793
1794 default: {
1795 DBG("Unknown source type\n");
1796 //assert(0);
1797 break;
1798 }
1799 }
1800 }
1801
1802 /* No helper to build texture words -- we do it all here */
1803 midgard_instruction ins = {
1804 .type = TAG_TEXTURE_4,
1805 .texture = {
1806 .op = TEXTURE_OP_NORMAL,
1807 .format = midgard_tex_format(instr->sampler_dim),
1808 .texture_handle = texture_index,
1809 .sampler_handle = sampler_index,
1810
1811 /* TODO: Don't force xyzw */
1812 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1813 .mask = 0xF,
1814
1815 /* TODO: half */
1816 //.in_reg_full = 1,
1817 .out_full = 1,
1818
1819 .filter = 1,
1820
1821 /* Always 1 */
1822 .unknown7 = 1,
1823
1824 /* Assume we can continue; hint it out later */
1825 .cont = 1,
1826 }
1827 };
1828
1829 /* Set registers to read and write from the same place */
1830 ins.texture.in_reg_select = in_reg;
1831 ins.texture.out_reg_select = out_reg;
1832
1833 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1834 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1835 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1836 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1837 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1838 } else {
1839 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1840 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1841 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1842 }
1843
1844 emit_mir_instruction(ctx, ins);
1845
1846 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1847
1848 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1849 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1850 ctx->texture_index[reg] = o_index;
1851
1852 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1853 emit_mir_instruction(ctx, ins2);
1854
1855 /* Used for .cont and .last hinting */
1856 ctx->texture_op_count++;
1857 }
1858
1859 static void
1860 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1861 {
1862 switch (instr->type) {
1863 case nir_jump_break: {
1864 /* Emit a branch out of the loop */
1865 struct midgard_instruction br = v_branch(false, false);
1866 br.branch.target_type = TARGET_BREAK;
1867 br.branch.target_break = ctx->current_loop_depth;
1868 emit_mir_instruction(ctx, br);
1869
1870 DBG("break..\n");
1871 break;
1872 }
1873
1874 default:
1875 DBG("Unknown jump type %d\n", instr->type);
1876 break;
1877 }
1878 }
1879
1880 static void
1881 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1882 {
1883 switch (instr->type) {
1884 case nir_instr_type_load_const:
1885 emit_load_const(ctx, nir_instr_as_load_const(instr));
1886 break;
1887
1888 case nir_instr_type_intrinsic:
1889 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1890 break;
1891
1892 case nir_instr_type_alu:
1893 emit_alu(ctx, nir_instr_as_alu(instr));
1894 break;
1895
1896 case nir_instr_type_tex:
1897 emit_tex(ctx, nir_instr_as_tex(instr));
1898 break;
1899
1900 case nir_instr_type_jump:
1901 emit_jump(ctx, nir_instr_as_jump(instr));
1902 break;
1903
1904 case nir_instr_type_ssa_undef:
1905 /* Spurious */
1906 break;
1907
1908 default:
1909 DBG("Unhandled instruction type\n");
1910 break;
1911 }
1912 }
1913
1914 /* Determine the actual hardware from the index based on the RA results or special values */
1915
1916 static int
1917 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1918 {
1919 if (reg >= SSA_FIXED_MINIMUM)
1920 return SSA_REG_FROM_FIXED(reg);
1921
1922 if (reg >= 0) {
1923 assert(reg < maxreg);
1924 int r = ra_get_node_reg(g, reg);
1925 ctx->work_registers = MAX2(ctx->work_registers, r);
1926 return r;
1927 }
1928
1929 switch (reg) {
1930 /* fmov style unused */
1931 case SSA_UNUSED_0:
1932 return REGISTER_UNUSED;
1933
1934 /* lut style unused */
1935 case SSA_UNUSED_1:
1936 return REGISTER_UNUSED;
1937
1938 default:
1939 DBG("Unknown SSA register alias %d\n", reg);
1940 assert(0);
1941 return 31;
1942 }
1943 }
1944
1945 static unsigned int
1946 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1947 {
1948 /* Choose the first available register to minimise reported register pressure */
1949
1950 for (int i = 0; i < 16; ++i) {
1951 if (BITSET_TEST(regs, i)) {
1952 return i;
1953 }
1954 }
1955
1956 assert(0);
1957 return 0;
1958 }
1959
1960 static bool
1961 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1962 {
1963 if (ins->ssa_args.src0 == src) return true;
1964 if (ins->ssa_args.src1 == src) return true;
1965
1966 return false;
1967 }
1968
1969 /* Determine if a variable is live in the successors of a block */
1970 static bool
1971 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1972 {
1973 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1974 midgard_block *succ = bl->successors[i];
1975
1976 /* If we already visited, the value we're seeking
1977 * isn't down this path (or we would have short
1978 * circuited */
1979
1980 if (succ->visited) continue;
1981
1982 /* Otherwise (it's visited *now*), check the block */
1983
1984 succ->visited = true;
1985
1986 mir_foreach_instr_in_block(succ, ins) {
1987 if (midgard_is_live_in_instr(ins, src))
1988 return true;
1989 }
1990
1991 /* ...and also, check *its* successors */
1992 if (is_live_after_successors(ctx, succ, src))
1993 return true;
1994
1995 }
1996
1997 /* Welp. We're really not live. */
1998
1999 return false;
2000 }
2001
2002 static bool
2003 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2004 {
2005 /* Check the rest of the block for liveness */
2006
2007 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2008 if (midgard_is_live_in_instr(ins, src))
2009 return true;
2010 }
2011
2012 /* Check the rest of the blocks for liveness recursively */
2013
2014 bool succ = is_live_after_successors(ctx, block, src);
2015
2016 mir_foreach_block(ctx, block) {
2017 block->visited = false;
2018 }
2019
2020 return succ;
2021 }
2022
2023 static void
2024 allocate_registers(compiler_context *ctx)
2025 {
2026 /* First, initialize the RA */
2027 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2028
2029 /* Create a primary (general purpose) class, as well as special purpose
2030 * pipeline register classes */
2031
2032 int primary_class = ra_alloc_reg_class(regs);
2033 int varying_class = ra_alloc_reg_class(regs);
2034
2035 /* Add the full set of work registers */
2036 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2037 for (int i = 0; i < work_count; ++i)
2038 ra_class_add_reg(regs, primary_class, i);
2039
2040 /* Add special registers */
2041 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2042 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2043
2044 /* We're done setting up */
2045 ra_set_finalize(regs, NULL);
2046
2047 /* Transform the MIR into squeezed index form */
2048 mir_foreach_block(ctx, block) {
2049 mir_foreach_instr_in_block(block, ins) {
2050 if (ins->compact_branch) continue;
2051
2052 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2053 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2054 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2055 }
2056 if (midgard_debug & MIDGARD_DBG_SHADERS)
2057 print_mir_block(block);
2058 }
2059
2060 /* Let's actually do register allocation */
2061 int nodes = ctx->temp_count;
2062 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2063
2064 /* Set everything to the work register class, unless it has somewhere
2065 * special to go */
2066
2067 mir_foreach_block(ctx, block) {
2068 mir_foreach_instr_in_block(block, ins) {
2069 if (ins->compact_branch) continue;
2070
2071 if (ins->ssa_args.dest < 0) continue;
2072
2073 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2074
2075 int class = primary_class;
2076
2077 ra_set_node_class(g, ins->ssa_args.dest, class);
2078 }
2079 }
2080
2081 for (int index = 0; index <= ctx->max_hash; ++index) {
2082 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2083
2084 if (temp) {
2085 unsigned reg = temp - 1;
2086 int t = find_or_allocate_temp(ctx, index);
2087 ra_set_node_reg(g, t, reg);
2088 }
2089 }
2090
2091 /* Determine liveness */
2092
2093 int *live_start = malloc(nodes * sizeof(int));
2094 int *live_end = malloc(nodes * sizeof(int));
2095
2096 /* Initialize as non-existent */
2097
2098 for (int i = 0; i < nodes; ++i) {
2099 live_start[i] = live_end[i] = -1;
2100 }
2101
2102 int d = 0;
2103
2104 mir_foreach_block(ctx, block) {
2105 mir_foreach_instr_in_block(block, ins) {
2106 if (ins->compact_branch) continue;
2107
2108 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2109 /* If this destination is not yet live, it is now since we just wrote it */
2110
2111 int dest = ins->ssa_args.dest;
2112
2113 if (live_start[dest] == -1)
2114 live_start[dest] = d;
2115 }
2116
2117 /* Since we just used a source, the source might be
2118 * dead now. Scan the rest of the block for
2119 * invocations, and if there are none, the source dies
2120 * */
2121
2122 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2123
2124 for (int src = 0; src < 2; ++src) {
2125 int s = sources[src];
2126
2127 if (s < 0) continue;
2128
2129 if (s >= SSA_FIXED_MINIMUM) continue;
2130
2131 if (!is_live_after(ctx, block, ins, s)) {
2132 live_end[s] = d;
2133 }
2134 }
2135
2136 ++d;
2137 }
2138 }
2139
2140 /* If a node still hasn't been killed, kill it now */
2141
2142 for (int i = 0; i < nodes; ++i) {
2143 /* live_start == -1 most likely indicates a pinned output */
2144
2145 if (live_end[i] == -1)
2146 live_end[i] = d;
2147 }
2148
2149 /* Setup interference between nodes that are live at the same time */
2150
2151 for (int i = 0; i < nodes; ++i) {
2152 for (int j = i + 1; j < nodes; ++j) {
2153 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2154 ra_add_node_interference(g, i, j);
2155 }
2156 }
2157
2158 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2159
2160 if (!ra_allocate(g)) {
2161 DBG("Error allocating registers\n");
2162 assert(0);
2163 }
2164
2165 /* Cleanup */
2166 free(live_start);
2167 free(live_end);
2168
2169 mir_foreach_block(ctx, block) {
2170 mir_foreach_instr_in_block(block, ins) {
2171 if (ins->compact_branch) continue;
2172
2173 ssa_args args = ins->ssa_args;
2174
2175 switch (ins->type) {
2176 case TAG_ALU_4:
2177 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2178
2179 ins->registers.src2_imm = args.inline_constant;
2180
2181 if (args.inline_constant) {
2182 /* Encode inline 16-bit constant as a vector by default */
2183
2184 ins->registers.src2_reg = ins->inline_constant >> 11;
2185
2186 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2187
2188 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2189 ins->alu.src2 = imm << 2;
2190 } else {
2191 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2192 }
2193
2194 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2195
2196 break;
2197
2198 case TAG_LOAD_STORE_4: {
2199 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2200 /* TODO: use ssa_args for store_vary */
2201 ins->load_store.reg = 0;
2202 } else {
2203 bool has_dest = args.dest >= 0;
2204 int ssa_arg = has_dest ? args.dest : args.src0;
2205
2206 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2207 }
2208
2209 break;
2210 }
2211
2212 default:
2213 break;
2214 }
2215 }
2216 }
2217 }
2218
2219 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2220 * use scalar ALU instructions, for functional or performance reasons. To do
2221 * this, we just demote vector ALU payloads to scalar. */
2222
2223 static int
2224 component_from_mask(unsigned mask)
2225 {
2226 for (int c = 0; c < 4; ++c) {
2227 if (mask & (3 << (2 * c)))
2228 return c;
2229 }
2230
2231 assert(0);
2232 return 0;
2233 }
2234
2235 static bool
2236 is_single_component_mask(unsigned mask)
2237 {
2238 int components = 0;
2239
2240 for (int c = 0; c < 4; ++c)
2241 if (mask & (3 << (2 * c)))
2242 components++;
2243
2244 return components == 1;
2245 }
2246
2247 /* Create a mask of accessed components from a swizzle to figure out vector
2248 * dependencies */
2249
2250 static unsigned
2251 swizzle_to_access_mask(unsigned swizzle)
2252 {
2253 unsigned component_mask = 0;
2254
2255 for (int i = 0; i < 4; ++i) {
2256 unsigned c = (swizzle >> (2 * i)) & 3;
2257 component_mask |= (1 << c);
2258 }
2259
2260 return component_mask;
2261 }
2262
2263 static unsigned
2264 vector_to_scalar_source(unsigned u, bool is_int)
2265 {
2266 midgard_vector_alu_src v;
2267 memcpy(&v, &u, sizeof(v));
2268
2269 /* TODO: Integers */
2270
2271 midgard_scalar_alu_src s = {
2272 .full = !v.half,
2273 .component = (v.swizzle & 3) << 1
2274 };
2275
2276 if (is_int) {
2277 /* TODO */
2278 } else {
2279 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2280 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2281 }
2282
2283 unsigned o;
2284 memcpy(&o, &s, sizeof(s));
2285
2286 return o & ((1 << 6) - 1);
2287 }
2288
2289 static midgard_scalar_alu
2290 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2291 {
2292 bool is_int = midgard_is_integer_op(v.op);
2293
2294 /* The output component is from the mask */
2295 midgard_scalar_alu s = {
2296 .op = v.op,
2297 .src1 = vector_to_scalar_source(v.src1, is_int),
2298 .src2 = vector_to_scalar_source(v.src2, is_int),
2299 .unknown = 0,
2300 .outmod = v.outmod,
2301 .output_full = 1, /* TODO: Half */
2302 .output_component = component_from_mask(v.mask) << 1,
2303 };
2304
2305 /* Inline constant is passed along rather than trying to extract it
2306 * from v */
2307
2308 if (ins->ssa_args.inline_constant) {
2309 uint16_t imm = 0;
2310 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2311 imm |= (lower_11 >> 9) & 3;
2312 imm |= (lower_11 >> 6) & 4;
2313 imm |= (lower_11 >> 2) & 0x38;
2314 imm |= (lower_11 & 63) << 6;
2315
2316 s.src2 = imm;
2317 }
2318
2319 return s;
2320 }
2321
2322 /* Midgard prefetches instruction types, so during emission we need to
2323 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2324 * if this is the second to last and the last is an ALU, then it's also 1... */
2325
2326 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2327 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2328
2329 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2330 bytes_emitted += sizeof(type)
2331
2332 static void
2333 emit_binary_vector_instruction(midgard_instruction *ains,
2334 uint16_t *register_words, int *register_words_count,
2335 uint64_t *body_words, size_t *body_size, int *body_words_count,
2336 size_t *bytes_emitted)
2337 {
2338 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2339 *bytes_emitted += sizeof(midgard_reg_info);
2340
2341 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2342 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2343 *bytes_emitted += sizeof(midgard_vector_alu);
2344 }
2345
2346 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2347 * mind that we are a vector architecture and we can write to different
2348 * components simultaneously */
2349
2350 static bool
2351 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2352 {
2353 /* Each instruction reads some registers and writes to a register. See
2354 * where the first writes */
2355
2356 /* Figure out where exactly we wrote to */
2357 int source = first->ssa_args.dest;
2358 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2359
2360 /* As long as the second doesn't read from the first, we're okay */
2361 if (second->ssa_args.src0 == source) {
2362 if (first->type == TAG_ALU_4) {
2363 /* Figure out which components we just read from */
2364
2365 int q = second->alu.src1;
2366 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2367
2368 /* Check if there are components in common, and fail if so */
2369 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2370 return false;
2371 } else
2372 return false;
2373
2374 }
2375
2376 if (second->ssa_args.src1 == source)
2377 return false;
2378
2379 /* Otherwise, it's safe in that regard. Another data hazard is both
2380 * writing to the same place, of course */
2381
2382 if (second->ssa_args.dest == source) {
2383 /* ...but only if the components overlap */
2384 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2385
2386 if (dest_mask & source_mask)
2387 return false;
2388 }
2389
2390 /* ...That's it */
2391 return true;
2392 }
2393
2394 static bool
2395 midgard_has_hazard(
2396 midgard_instruction **segment, unsigned segment_size,
2397 midgard_instruction *ains)
2398 {
2399 for (int s = 0; s < segment_size; ++s)
2400 if (!can_run_concurrent_ssa(segment[s], ains))
2401 return true;
2402
2403 return false;
2404
2405
2406 }
2407
2408 /* Schedules, but does not emit, a single basic block. After scheduling, the
2409 * final tag and size of the block are known, which are necessary for branching
2410 * */
2411
2412 static midgard_bundle
2413 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2414 {
2415 int instructions_emitted = 0, instructions_consumed = -1;
2416 midgard_bundle bundle = { 0 };
2417
2418 uint8_t tag = ins->type;
2419
2420 /* Default to the instruction's tag */
2421 bundle.tag = tag;
2422
2423 switch (ins->type) {
2424 case TAG_ALU_4: {
2425 uint32_t control = 0;
2426 size_t bytes_emitted = sizeof(control);
2427
2428 /* TODO: Constant combining */
2429 int index = 0, last_unit = 0;
2430
2431 /* Previous instructions, for the purpose of parallelism */
2432 midgard_instruction *segment[4] = {0};
2433 int segment_size = 0;
2434
2435 instructions_emitted = -1;
2436 midgard_instruction *pins = ins;
2437
2438 for (;;) {
2439 midgard_instruction *ains = pins;
2440
2441 /* Advance instruction pointer */
2442 if (index) {
2443 ains = mir_next_op(pins);
2444 pins = ains;
2445 }
2446
2447 /* Out-of-work condition */
2448 if ((struct list_head *) ains == &block->instructions)
2449 break;
2450
2451 /* Ensure that the chain can continue */
2452 if (ains->type != TAG_ALU_4) break;
2453
2454 /* According to the presentation "The ARM
2455 * Mali-T880 Mobile GPU" from HotChips 27,
2456 * there are two pipeline stages. Branching
2457 * position determined experimentally. Lines
2458 * are executed in parallel:
2459 *
2460 * [ VMUL ] [ SADD ]
2461 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2462 *
2463 * Verify that there are no ordering dependencies here.
2464 *
2465 * TODO: Allow for parallelism!!!
2466 */
2467
2468 /* Pick a unit for it if it doesn't force a particular unit */
2469
2470 int unit = ains->unit;
2471
2472 if (!unit) {
2473 int op = ains->alu.op;
2474 int units = alu_opcode_props[op].props;
2475
2476 /* TODO: Promotion of scalars to vectors */
2477 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2478
2479 if (!vector)
2480 assert(units & UNITS_SCALAR);
2481
2482 if (vector) {
2483 if (last_unit >= UNIT_VADD) {
2484 if (units & UNIT_VLUT)
2485 unit = UNIT_VLUT;
2486 else
2487 break;
2488 } else {
2489 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2490 unit = UNIT_VMUL;
2491 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2492 unit = UNIT_VADD;
2493 else if (units & UNIT_VLUT)
2494 unit = UNIT_VLUT;
2495 else
2496 break;
2497 }
2498 } else {
2499 if (last_unit >= UNIT_VADD) {
2500 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2501 unit = UNIT_SMUL;
2502 else if (units & UNIT_VLUT)
2503 unit = UNIT_VLUT;
2504 else
2505 break;
2506 } else {
2507 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2508 unit = UNIT_SADD;
2509 else if (units & UNIT_SMUL)
2510 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2511 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2512 unit = UNIT_VADD;
2513 else
2514 break;
2515 }
2516 }
2517
2518 assert(unit & units);
2519 }
2520
2521 /* Late unit check, this time for encoding (not parallelism) */
2522 if (unit <= last_unit) break;
2523
2524 /* Clear the segment */
2525 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2526 segment_size = 0;
2527
2528 if (midgard_has_hazard(segment, segment_size, ains))
2529 break;
2530
2531 /* We're good to go -- emit the instruction */
2532 ains->unit = unit;
2533
2534 segment[segment_size++] = ains;
2535
2536 /* Only one set of embedded constants per
2537 * bundle possible; if we have more, we must
2538 * break the chain early, unfortunately */
2539
2540 if (ains->has_constants) {
2541 if (bundle.has_embedded_constants) {
2542 /* ...but if there are already
2543 * constants but these are the
2544 * *same* constants, we let it
2545 * through */
2546
2547 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2548 break;
2549 } else {
2550 bundle.has_embedded_constants = true;
2551 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2552
2553 /* If this is a blend shader special constant, track it for patching */
2554 if (ains->has_blend_constant)
2555 bundle.has_blend_constant = true;
2556 }
2557 }
2558
2559 if (ains->unit & UNITS_ANY_VECTOR) {
2560 emit_binary_vector_instruction(ains, bundle.register_words,
2561 &bundle.register_words_count, bundle.body_words,
2562 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2563 } else if (ains->compact_branch) {
2564 /* All of r0 has to be written out
2565 * along with the branch writeout.
2566 * (slow!) */
2567
2568 if (ains->writeout) {
2569 if (index == 0) {
2570 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2571 ins.unit = UNIT_VMUL;
2572
2573 control |= ins.unit;
2574
2575 emit_binary_vector_instruction(&ins, bundle.register_words,
2576 &bundle.register_words_count, bundle.body_words,
2577 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2578 } else {
2579 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2580 bool written_late = false;
2581 bool components[4] = { 0 };
2582 uint16_t register_dep_mask = 0;
2583 uint16_t written_mask = 0;
2584
2585 midgard_instruction *qins = ins;
2586 for (int t = 0; t < index; ++t) {
2587 if (qins->registers.out_reg != 0) {
2588 /* Mark down writes */
2589
2590 written_mask |= (1 << qins->registers.out_reg);
2591 } else {
2592 /* Mark down the register dependencies for errata check */
2593
2594 if (qins->registers.src1_reg < 16)
2595 register_dep_mask |= (1 << qins->registers.src1_reg);
2596
2597 if (qins->registers.src2_reg < 16)
2598 register_dep_mask |= (1 << qins->registers.src2_reg);
2599
2600 int mask = qins->alu.mask;
2601
2602 for (int c = 0; c < 4; ++c)
2603 if (mask & (0x3 << (2 * c)))
2604 components[c] = true;
2605
2606 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2607
2608 if (qins->unit == UNIT_VLUT)
2609 written_late = true;
2610 }
2611
2612 /* Advance instruction pointer */
2613 qins = mir_next_op(qins);
2614 }
2615
2616
2617 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2618 if (register_dep_mask & written_mask) {
2619 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2620 break;
2621 }
2622
2623 if (written_late)
2624 break;
2625
2626 /* If even a single component is not written, break it up (conservative check). */
2627 bool breakup = false;
2628
2629 for (int c = 0; c < 4; ++c)
2630 if (!components[c])
2631 breakup = true;
2632
2633 if (breakup)
2634 break;
2635
2636 /* Otherwise, we're free to proceed */
2637 }
2638 }
2639
2640 if (ains->unit == ALU_ENAB_BRANCH) {
2641 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2642 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2643 bytes_emitted += sizeof(midgard_branch_extended);
2644 } else {
2645 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2646 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2647 bytes_emitted += sizeof(ains->br_compact);
2648 }
2649 } else {
2650 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2651 bytes_emitted += sizeof(midgard_reg_info);
2652
2653 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2654 bundle.body_words_count++;
2655 bytes_emitted += sizeof(midgard_scalar_alu);
2656 }
2657
2658 /* Defer marking until after writing to allow for break */
2659 control |= ains->unit;
2660 last_unit = ains->unit;
2661 ++instructions_emitted;
2662 ++index;
2663 }
2664
2665 /* Bubble up the number of instructions for skipping */
2666 instructions_consumed = index - 1;
2667
2668 int padding = 0;
2669
2670 /* Pad ALU op to nearest word */
2671
2672 if (bytes_emitted & 15) {
2673 padding = 16 - (bytes_emitted & 15);
2674 bytes_emitted += padding;
2675 }
2676
2677 /* Constants must always be quadwords */
2678 if (bundle.has_embedded_constants)
2679 bytes_emitted += 16;
2680
2681 /* Size ALU instruction for tag */
2682 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2683 bundle.padding = padding;
2684 bundle.control = bundle.tag | control;
2685
2686 break;
2687 }
2688
2689 case TAG_LOAD_STORE_4: {
2690 /* Load store instructions have two words at once. If
2691 * we only have one queued up, we need to NOP pad.
2692 * Otherwise, we store both in succession to save space
2693 * and cycles -- letting them go in parallel -- skip
2694 * the next. The usefulness of this optimisation is
2695 * greatly dependent on the quality of the instruction
2696 * scheduler.
2697 */
2698
2699 midgard_instruction *next_op = mir_next_op(ins);
2700
2701 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2702 /* As the two operate concurrently, make sure
2703 * they are not dependent */
2704
2705 if (can_run_concurrent_ssa(ins, next_op) || true) {
2706 /* Skip ahead, since it's redundant with the pair */
2707 instructions_consumed = 1 + (instructions_emitted++);
2708 }
2709 }
2710
2711 break;
2712 }
2713
2714 default:
2715 /* Texture ops default to single-op-per-bundle scheduling */
2716 break;
2717 }
2718
2719 /* Copy the instructions into the bundle */
2720 bundle.instruction_count = instructions_emitted + 1;
2721
2722 int used_idx = 0;
2723
2724 midgard_instruction *uins = ins;
2725 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2726 bundle.instructions[used_idx++] = *uins;
2727 uins = mir_next_op(uins);
2728 }
2729
2730 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2731
2732 return bundle;
2733 }
2734
2735 static int
2736 quadword_size(int tag)
2737 {
2738 switch (tag) {
2739 case TAG_ALU_4:
2740 return 1;
2741
2742 case TAG_ALU_8:
2743 return 2;
2744
2745 case TAG_ALU_12:
2746 return 3;
2747
2748 case TAG_ALU_16:
2749 return 4;
2750
2751 case TAG_LOAD_STORE_4:
2752 return 1;
2753
2754 case TAG_TEXTURE_4:
2755 return 1;
2756
2757 default:
2758 assert(0);
2759 return 0;
2760 }
2761 }
2762
2763 /* Schedule a single block by iterating its instruction to create bundles.
2764 * While we go, tally about the bundle sizes to compute the block size. */
2765
2766 static void
2767 schedule_block(compiler_context *ctx, midgard_block *block)
2768 {
2769 util_dynarray_init(&block->bundles, NULL);
2770
2771 block->quadword_count = 0;
2772
2773 mir_foreach_instr_in_block(block, ins) {
2774 int skip;
2775 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2776 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2777
2778 if (bundle.has_blend_constant) {
2779 /* TODO: Multiblock? */
2780 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2781 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2782 }
2783
2784 while(skip--)
2785 ins = mir_next_op(ins);
2786
2787 block->quadword_count += quadword_size(bundle.tag);
2788 }
2789
2790 block->is_scheduled = true;
2791 }
2792
2793 static void
2794 schedule_program(compiler_context *ctx)
2795 {
2796 allocate_registers(ctx);
2797
2798 mir_foreach_block(ctx, block) {
2799 schedule_block(ctx, block);
2800 }
2801 }
2802
2803 /* After everything is scheduled, emit whole bundles at a time */
2804
2805 static void
2806 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2807 {
2808 int lookahead = next_tag << 4;
2809
2810 switch (bundle->tag) {
2811 case TAG_ALU_4:
2812 case TAG_ALU_8:
2813 case TAG_ALU_12:
2814 case TAG_ALU_16: {
2815 /* Actually emit each component */
2816 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2817
2818 for (int i = 0; i < bundle->register_words_count; ++i)
2819 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2820
2821 /* Emit body words based on the instructions bundled */
2822 for (int i = 0; i < bundle->instruction_count; ++i) {
2823 midgard_instruction *ins = &bundle->instructions[i];
2824
2825 if (ins->unit & UNITS_ANY_VECTOR) {
2826 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2827 } else if (ins->compact_branch) {
2828 /* Dummy move, XXX DRY */
2829 if ((i == 0) && ins->writeout) {
2830 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2831 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2832 }
2833
2834 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2835 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2836 } else {
2837 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2838 }
2839 } else {
2840 /* Scalar */
2841 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2842 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2843 }
2844 }
2845
2846 /* Emit padding (all zero) */
2847 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2848
2849 /* Tack on constants */
2850
2851 if (bundle->has_embedded_constants) {
2852 util_dynarray_append(emission, float, bundle->constants[0]);
2853 util_dynarray_append(emission, float, bundle->constants[1]);
2854 util_dynarray_append(emission, float, bundle->constants[2]);
2855 util_dynarray_append(emission, float, bundle->constants[3]);
2856 }
2857
2858 break;
2859 }
2860
2861 case TAG_LOAD_STORE_4: {
2862 /* One or two composing instructions */
2863
2864 uint64_t current64, next64 = LDST_NOP;
2865
2866 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2867
2868 if (bundle->instruction_count == 2)
2869 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2870
2871 midgard_load_store instruction = {
2872 .type = bundle->tag,
2873 .next_type = next_tag,
2874 .word1 = current64,
2875 .word2 = next64
2876 };
2877
2878 util_dynarray_append(emission, midgard_load_store, instruction);
2879
2880 break;
2881 }
2882
2883 case TAG_TEXTURE_4: {
2884 /* Texture instructions are easy, since there is no
2885 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2886
2887 midgard_instruction *ins = &bundle->instructions[0];
2888
2889 ins->texture.type = TAG_TEXTURE_4;
2890 ins->texture.next_type = next_tag;
2891
2892 ctx->texture_op_count--;
2893
2894 if (!ctx->texture_op_count) {
2895 ins->texture.cont = 0;
2896 ins->texture.last = 1;
2897 }
2898
2899 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2900 break;
2901 }
2902
2903 default:
2904 DBG("Unknown midgard instruction type\n");
2905 assert(0);
2906 break;
2907 }
2908 }
2909
2910
2911 /* ALU instructions can inline or embed constants, which decreases register
2912 * pressure and saves space. */
2913
2914 #define CONDITIONAL_ATTACH(src) { \
2915 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2916 \
2917 if (entry) { \
2918 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2919 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2920 } \
2921 }
2922
2923 static void
2924 inline_alu_constants(compiler_context *ctx)
2925 {
2926 mir_foreach_instr(ctx, alu) {
2927 /* Other instructions cannot inline constants */
2928 if (alu->type != TAG_ALU_4) continue;
2929
2930 /* If there is already a constant here, we can do nothing */
2931 if (alu->has_constants) continue;
2932
2933 /* It makes no sense to inline constants on a branch */
2934 if (alu->compact_branch || alu->prepacked_branch) continue;
2935
2936 CONDITIONAL_ATTACH(src0);
2937
2938 if (!alu->has_constants) {
2939 CONDITIONAL_ATTACH(src1)
2940 } else if (!alu->inline_constant) {
2941 /* Corner case: _two_ vec4 constants, for instance with a
2942 * csel. For this case, we can only use a constant
2943 * register for one, we'll have to emit a move for the
2944 * other. Note, if both arguments are constants, then
2945 * necessarily neither argument depends on the value of
2946 * any particular register. As the destination register
2947 * will be wiped, that means we can spill the constant
2948 * to the destination register.
2949 */
2950
2951 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2952 unsigned scratch = alu->ssa_args.dest;
2953
2954 if (entry) {
2955 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2956 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2957
2958 /* Force a break XXX Defer r31 writes */
2959 ins.unit = UNIT_VLUT;
2960
2961 /* Set the source */
2962 alu->ssa_args.src1 = scratch;
2963
2964 /* Inject us -before- the last instruction which set r31 */
2965 mir_insert_instruction_before(mir_prev_op(alu), ins);
2966 }
2967 }
2968 }
2969 }
2970
2971 /* Midgard supports two types of constants, embedded constants (128-bit) and
2972 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2973 * constants can be demoted to inline constants, for space savings and
2974 * sometimes a performance boost */
2975
2976 static void
2977 embedded_to_inline_constant(compiler_context *ctx)
2978 {
2979 mir_foreach_instr(ctx, ins) {
2980 if (!ins->has_constants) continue;
2981
2982 if (ins->ssa_args.inline_constant) continue;
2983
2984 /* Blend constants must not be inlined by definition */
2985 if (ins->has_blend_constant) continue;
2986
2987 /* src1 cannot be an inline constant due to encoding
2988 * restrictions. So, if possible we try to flip the arguments
2989 * in that case */
2990
2991 int op = ins->alu.op;
2992
2993 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2994 switch (op) {
2995 /* These ops require an operational change to flip
2996 * their arguments TODO */
2997 case midgard_alu_op_flt:
2998 case midgard_alu_op_fle:
2999 case midgard_alu_op_ilt:
3000 case midgard_alu_op_ile:
3001 case midgard_alu_op_fcsel:
3002 case midgard_alu_op_icsel:
3003 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3004 default:
3005 break;
3006 }
3007
3008 if (alu_opcode_props[op].props & OP_COMMUTES) {
3009 /* Flip the SSA numbers */
3010 ins->ssa_args.src0 = ins->ssa_args.src1;
3011 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3012
3013 /* And flip the modifiers */
3014
3015 unsigned src_temp;
3016
3017 src_temp = ins->alu.src2;
3018 ins->alu.src2 = ins->alu.src1;
3019 ins->alu.src1 = src_temp;
3020 }
3021 }
3022
3023 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3024 /* Extract the source information */
3025
3026 midgard_vector_alu_src *src;
3027 int q = ins->alu.src2;
3028 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3029 src = m;
3030
3031 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3032 int component = src->swizzle & 3;
3033
3034 /* Scale constant appropriately, if we can legally */
3035 uint16_t scaled_constant = 0;
3036
3037 /* XXX: Check legality */
3038 if (midgard_is_integer_op(op)) {
3039 /* TODO: Inline integer */
3040 continue;
3041
3042 unsigned int *iconstants = (unsigned int *) ins->constants;
3043 scaled_constant = (uint16_t) iconstants[component];
3044
3045 /* Constant overflow after resize */
3046 if (scaled_constant != iconstants[component])
3047 continue;
3048 } else {
3049 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3050 }
3051
3052 /* We don't know how to handle these with a constant */
3053
3054 if (src->mod || src->half || src->rep_low || src->rep_high) {
3055 DBG("Bailing inline constant...\n");
3056 continue;
3057 }
3058
3059 /* Make sure that the constant is not itself a
3060 * vector by checking if all accessed values
3061 * (by the swizzle) are the same. */
3062
3063 uint32_t *cons = (uint32_t *) ins->constants;
3064 uint32_t value = cons[component];
3065
3066 bool is_vector = false;
3067 unsigned mask = effective_writemask(&ins->alu);
3068
3069 for (int c = 1; c < 4; ++c) {
3070 /* We only care if this component is actually used */
3071 if (!(mask & (1 << c)))
3072 continue;
3073
3074 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3075
3076 if (test != value) {
3077 is_vector = true;
3078 break;
3079 }
3080 }
3081
3082 if (is_vector)
3083 continue;
3084
3085 /* Get rid of the embedded constant */
3086 ins->has_constants = false;
3087 ins->ssa_args.src1 = SSA_UNUSED_0;
3088 ins->ssa_args.inline_constant = true;
3089 ins->inline_constant = scaled_constant;
3090 }
3091 }
3092 }
3093
3094 /* Map normal SSA sources to other SSA sources / fixed registers (like
3095 * uniforms) */
3096
3097 static void
3098 map_ssa_to_alias(compiler_context *ctx, int *ref)
3099 {
3100 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3101
3102 if (alias) {
3103 /* Remove entry in leftovers to avoid a redunant fmov */
3104
3105 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3106
3107 if (leftover)
3108 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3109
3110 /* Assign the alias map */
3111 *ref = alias - 1;
3112 return;
3113 }
3114 }
3115
3116 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3117 * texture pipeline */
3118
3119 static bool
3120 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3121 {
3122 bool progress = false;
3123
3124 mir_foreach_instr_in_block_safe(block, ins) {
3125 if (ins->type != TAG_ALU_4) continue;
3126 if (ins->compact_branch) continue;
3127
3128 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3129 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3130 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3131
3132 mir_remove_instruction(ins);
3133 progress = true;
3134 }
3135
3136 return progress;
3137 }
3138
3139 /* Combines the two outmods if possible. Returns whether the combination was
3140 * successful */
3141
3142 static bool
3143 midgard_combine_outmod(midgard_outmod *main, midgard_outmod overlay)
3144 {
3145 if (overlay == midgard_outmod_none)
3146 return true;
3147
3148 if (*main == overlay)
3149 return true;
3150
3151 if (*main == midgard_outmod_none) {
3152 *main = overlay;
3153 return true;
3154 }
3155
3156 if (*main == midgard_outmod_pos && overlay == midgard_outmod_sat) {
3157 *main = midgard_outmod_sat;
3158 return true;
3159 }
3160
3161 if (overlay == midgard_outmod_pos && *main == midgard_outmod_sat) {
3162 *main = midgard_outmod_sat;
3163 return true;
3164 }
3165
3166 return false;
3167 }
3168
3169 static bool
3170 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3171 {
3172 bool progress = false;
3173
3174 mir_foreach_instr_in_block_safe(block, ins) {
3175 if (ins->type != TAG_ALU_4) continue;
3176 if (!OP_IS_MOVE(ins->alu.op)) continue;
3177
3178 unsigned from = ins->ssa_args.src1;
3179 unsigned to = ins->ssa_args.dest;
3180
3181 /* We only work on pure SSA */
3182
3183 if (to >= SSA_FIXED_MINIMUM) continue;
3184 if (from >= SSA_FIXED_MINIMUM) continue;
3185 if (to >= ctx->func->impl->ssa_alloc) continue;
3186 if (from >= ctx->func->impl->ssa_alloc) continue;
3187
3188 /* Also, if the move has source side effects, we're not sure
3189 * what to do. Destination side effects we can handle, though.
3190 */
3191
3192 midgard_vector_alu_src src =
3193 vector_alu_from_unsigned(ins->alu.src2);
3194 unsigned mask = squeeze_writemask(ins->alu.mask);
3195 bool is_int = midgard_is_integer_op(ins->alu.op);
3196
3197 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3198
3199 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3200 if (v->ssa_args.dest == from) {
3201 if (v->type == TAG_ALU_4) {
3202 midgard_outmod final = v->alu.outmod;
3203
3204 if (!midgard_combine_outmod(&final, ins->alu.outmod))
3205 continue;
3206
3207 v->alu.outmod = final;
3208 }
3209
3210 v->ssa_args.dest = to;
3211 progress = true;
3212 }
3213 }
3214
3215 mir_remove_instruction(ins);
3216 }
3217
3218 return progress;
3219 }
3220
3221 static bool
3222 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3223 {
3224 bool progress = false;
3225
3226 mir_foreach_instr_in_block_safe(block, ins) {
3227 if (ins->type != TAG_ALU_4) continue;
3228 if (!OP_IS_MOVE(ins->alu.op)) continue;
3229
3230 unsigned from = ins->ssa_args.src1;
3231 unsigned to = ins->ssa_args.dest;
3232
3233 /* Make sure it's a familiar type of special move. Basically we
3234 * just handle the special dummy moves emitted by the texture
3235 * pipeline. TODO: verify. TODO: why does this break varyings?
3236 */
3237
3238 if (from >= SSA_FIXED_MINIMUM) continue;
3239 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3240 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3241
3242 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3243 if (v->ssa_args.dest == from) {
3244 v->ssa_args.dest = to;
3245 progress = true;
3246 }
3247 }
3248
3249 mir_remove_instruction(ins);
3250 }
3251
3252 return progress;
3253 }
3254
3255 /* The following passes reorder MIR instructions to enable better scheduling */
3256
3257 static void
3258 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3259 {
3260 mir_foreach_instr_in_block_safe(block, ins) {
3261 if (ins->type != TAG_LOAD_STORE_4) continue;
3262
3263 /* We've found a load/store op. Check if next is also load/store. */
3264 midgard_instruction *next_op = mir_next_op(ins);
3265 if (&next_op->link != &block->instructions) {
3266 if (next_op->type == TAG_LOAD_STORE_4) {
3267 /* If so, we're done since we're a pair */
3268 ins = mir_next_op(ins);
3269 continue;
3270 }
3271
3272 /* Maximum search distance to pair, to avoid register pressure disasters */
3273 int search_distance = 8;
3274
3275 /* Otherwise, we have an orphaned load/store -- search for another load */
3276 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3277 /* Terminate search if necessary */
3278 if (!(search_distance--)) break;
3279
3280 if (c->type != TAG_LOAD_STORE_4) continue;
3281
3282 /* Stores cannot be reordered, since they have
3283 * dependencies. For the same reason, indirect
3284 * loads cannot be reordered as their index is
3285 * loaded in r27.w */
3286
3287 if (OP_IS_STORE(c->load_store.op)) continue;
3288
3289 /* It appears the 0x800 bit is set whenever a
3290 * load is direct, unset when it is indirect.
3291 * Skip indirect loads. */
3292
3293 if (!(c->load_store.unknown & 0x800)) continue;
3294
3295 /* We found one! Move it up to pair and remove it from the old location */
3296
3297 mir_insert_instruction_before(ins, *c);
3298 mir_remove_instruction(c);
3299
3300 break;
3301 }
3302 }
3303 }
3304 }
3305
3306 /* Emit varying stores late */
3307
3308 static void
3309 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3310 /* Iterate in reverse to get the final write, rather than the first */
3311
3312 mir_foreach_instr_in_block_safe_rev(block, ins) {
3313 /* Check if what we just wrote needs a store */
3314 int idx = ins->ssa_args.dest;
3315 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3316
3317 if (!varying) continue;
3318
3319 varying -= 1;
3320
3321 /* We need to store to the appropriate varying, so emit the
3322 * move/store */
3323
3324 /* TODO: Integrate with special purpose RA (and scheduler?) */
3325 bool high_varying_register = false;
3326
3327 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3328
3329 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3330 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3331
3332 mir_insert_instruction_before(mir_next_op(ins), st);
3333 mir_insert_instruction_before(mir_next_op(ins), mov);
3334
3335 /* We no longer need to store this varying */
3336 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3337 }
3338 }
3339
3340 /* If there are leftovers after the below pass, emit actual fmov
3341 * instructions for the slow-but-correct path */
3342
3343 static void
3344 emit_leftover_move(compiler_context *ctx)
3345 {
3346 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3347 int base = ((uintptr_t) leftover->key) - 1;
3348 int mapped = base;
3349
3350 map_ssa_to_alias(ctx, &mapped);
3351 EMIT(fmov, mapped, blank_alu_src, base);
3352 }
3353 }
3354
3355 static void
3356 actualise_ssa_to_alias(compiler_context *ctx)
3357 {
3358 mir_foreach_instr(ctx, ins) {
3359 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3360 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3361 }
3362
3363 emit_leftover_move(ctx);
3364 }
3365
3366 static void
3367 emit_fragment_epilogue(compiler_context *ctx)
3368 {
3369 /* Special case: writing out constants requires us to include the move
3370 * explicitly now, so shove it into r0 */
3371
3372 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3373
3374 if (constant_value) {
3375 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3376 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3377 emit_mir_instruction(ctx, ins);
3378 }
3379
3380 /* Perform the actual fragment writeout. We have two writeout/branch
3381 * instructions, forming a loop until writeout is successful as per the
3382 * docs. TODO: gl_FragDepth */
3383
3384 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3385 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3386 }
3387
3388 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3389 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3390 * with the int8 analogue to the fragment epilogue */
3391
3392 static void
3393 emit_blend_epilogue(compiler_context *ctx)
3394 {
3395 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3396
3397 midgard_instruction scale = {
3398 .type = TAG_ALU_4,
3399 .unit = UNIT_VMUL,
3400 .inline_constant = _mesa_float_to_half(255.0),
3401 .ssa_args = {
3402 .src0 = SSA_FIXED_REGISTER(0),
3403 .src1 = SSA_UNUSED_0,
3404 .dest = SSA_FIXED_REGISTER(24),
3405 .inline_constant = true
3406 },
3407 .alu = {
3408 .op = midgard_alu_op_fmul,
3409 .reg_mode = midgard_reg_mode_full,
3410 .dest_override = midgard_dest_override_lower,
3411 .mask = 0xFF,
3412 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3413 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3414 }
3415 };
3416
3417 emit_mir_instruction(ctx, scale);
3418
3419 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3420
3421 midgard_vector_alu_src alu_src = blank_alu_src;
3422 alu_src.half = true;
3423
3424 midgard_instruction f2u8 = {
3425 .type = TAG_ALU_4,
3426 .ssa_args = {
3427 .src0 = SSA_FIXED_REGISTER(24),
3428 .src1 = SSA_UNUSED_0,
3429 .dest = SSA_FIXED_REGISTER(0),
3430 .inline_constant = true
3431 },
3432 .alu = {
3433 .op = midgard_alu_op_f2u8,
3434 .reg_mode = midgard_reg_mode_half,
3435 .dest_override = midgard_dest_override_lower,
3436 .outmod = midgard_outmod_pos,
3437 .mask = 0xF,
3438 .src1 = vector_alu_srco_unsigned(alu_src),
3439 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3440 }
3441 };
3442
3443 emit_mir_instruction(ctx, f2u8);
3444
3445 /* vmul.imov.quarter r0, r0, r0 */
3446
3447 midgard_instruction imov_8 = {
3448 .type = TAG_ALU_4,
3449 .ssa_args = {
3450 .src0 = SSA_UNUSED_1,
3451 .src1 = SSA_FIXED_REGISTER(0),
3452 .dest = SSA_FIXED_REGISTER(0),
3453 },
3454 .alu = {
3455 .op = midgard_alu_op_imov,
3456 .reg_mode = midgard_reg_mode_quarter,
3457 .dest_override = midgard_dest_override_none,
3458 .mask = 0xFF,
3459 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3460 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3461 }
3462 };
3463
3464 /* Emit branch epilogue with the 8-bit move as the source */
3465
3466 emit_mir_instruction(ctx, imov_8);
3467 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3468
3469 emit_mir_instruction(ctx, imov_8);
3470 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3471 }
3472
3473 static midgard_block *
3474 emit_block(compiler_context *ctx, nir_block *block)
3475 {
3476 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3477 list_addtail(&this_block->link, &ctx->blocks);
3478
3479 this_block->is_scheduled = false;
3480 ++ctx->block_count;
3481
3482 ctx->texture_index[0] = -1;
3483 ctx->texture_index[1] = -1;
3484
3485 /* Add us as a successor to the block we are following */
3486 if (ctx->current_block)
3487 midgard_block_add_successor(ctx->current_block, this_block);
3488
3489 /* Set up current block */
3490 list_inithead(&this_block->instructions);
3491 ctx->current_block = this_block;
3492
3493 nir_foreach_instr(instr, block) {
3494 emit_instr(ctx, instr);
3495 ++ctx->instruction_count;
3496 }
3497
3498 inline_alu_constants(ctx);
3499 embedded_to_inline_constant(ctx);
3500
3501 /* Perform heavylifting for aliasing */
3502 actualise_ssa_to_alias(ctx);
3503
3504 midgard_emit_store(ctx, this_block);
3505 midgard_pair_load_store(ctx, this_block);
3506
3507 /* Append fragment shader epilogue (value writeout) */
3508 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3509 if (block == nir_impl_last_block(ctx->func->impl)) {
3510 if (ctx->is_blend)
3511 emit_blend_epilogue(ctx);
3512 else
3513 emit_fragment_epilogue(ctx);
3514 }
3515 }
3516
3517 if (block == nir_start_block(ctx->func->impl))
3518 ctx->initial_block = this_block;
3519
3520 if (block == nir_impl_last_block(ctx->func->impl))
3521 ctx->final_block = this_block;
3522
3523 /* Allow the next control flow to access us retroactively, for
3524 * branching etc */
3525 ctx->current_block = this_block;
3526
3527 /* Document the fallthrough chain */
3528 ctx->previous_source_block = this_block;
3529
3530 return this_block;
3531 }
3532
3533 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3534
3535 static void
3536 emit_if(struct compiler_context *ctx, nir_if *nif)
3537 {
3538 /* Conditional branches expect the condition in r31.w; emit a move for
3539 * that in the _previous_ block (which is the current block). */
3540 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3541
3542 /* Speculatively emit the branch, but we can't fill it in until later */
3543 EMIT(branch, true, true);
3544 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3545
3546 /* Emit the two subblocks */
3547 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3548
3549 /* Emit a jump from the end of the then block to the end of the else */
3550 EMIT(branch, false, false);
3551 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3552
3553 /* Emit second block, and check if it's empty */
3554
3555 int else_idx = ctx->block_count;
3556 int count_in = ctx->instruction_count;
3557 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3558 int after_else_idx = ctx->block_count;
3559
3560 /* Now that we have the subblocks emitted, fix up the branches */
3561
3562 assert(then_block);
3563 assert(else_block);
3564
3565 if (ctx->instruction_count == count_in) {
3566 /* The else block is empty, so don't emit an exit jump */
3567 mir_remove_instruction(then_exit);
3568 then_branch->branch.target_block = after_else_idx;
3569 } else {
3570 then_branch->branch.target_block = else_idx;
3571 then_exit->branch.target_block = after_else_idx;
3572 }
3573 }
3574
3575 static void
3576 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3577 {
3578 /* Remember where we are */
3579 midgard_block *start_block = ctx->current_block;
3580
3581 /* Allocate a loop number, growing the current inner loop depth */
3582 int loop_idx = ++ctx->current_loop_depth;
3583
3584 /* Get index from before the body so we can loop back later */
3585 int start_idx = ctx->block_count;
3586
3587 /* Emit the body itself */
3588 emit_cf_list(ctx, &nloop->body);
3589
3590 /* Branch back to loop back */
3591 struct midgard_instruction br_back = v_branch(false, false);
3592 br_back.branch.target_block = start_idx;
3593 emit_mir_instruction(ctx, br_back);
3594
3595 /* Mark down that branch in the graph. Note that we're really branching
3596 * to the block *after* we started in. TODO: Why doesn't the branch
3597 * itself have an off-by-one then...? */
3598 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3599
3600 /* Find the index of the block about to follow us (note: we don't add
3601 * one; blocks are 0-indexed so we get a fencepost problem) */
3602 int break_block_idx = ctx->block_count;
3603
3604 /* Fix up the break statements we emitted to point to the right place,
3605 * now that we can allocate a block number for them */
3606
3607 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3608 mir_foreach_instr_in_block(block, ins) {
3609 if (ins->type != TAG_ALU_4) continue;
3610 if (!ins->compact_branch) continue;
3611 if (ins->prepacked_branch) continue;
3612
3613 /* We found a branch -- check the type to see if we need to do anything */
3614 if (ins->branch.target_type != TARGET_BREAK) continue;
3615
3616 /* It's a break! Check if it's our break */
3617 if (ins->branch.target_break != loop_idx) continue;
3618
3619 /* Okay, cool, we're breaking out of this loop.
3620 * Rewrite from a break to a goto */
3621
3622 ins->branch.target_type = TARGET_GOTO;
3623 ins->branch.target_block = break_block_idx;
3624 }
3625 }
3626
3627 /* Now that we've finished emitting the loop, free up the depth again
3628 * so we play nice with recursion amid nested loops */
3629 --ctx->current_loop_depth;
3630 }
3631
3632 static midgard_block *
3633 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3634 {
3635 midgard_block *start_block = NULL;
3636
3637 foreach_list_typed(nir_cf_node, node, node, list) {
3638 switch (node->type) {
3639 case nir_cf_node_block: {
3640 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3641
3642 if (!start_block)
3643 start_block = block;
3644
3645 break;
3646 }
3647
3648 case nir_cf_node_if:
3649 emit_if(ctx, nir_cf_node_as_if(node));
3650 break;
3651
3652 case nir_cf_node_loop:
3653 emit_loop(ctx, nir_cf_node_as_loop(node));
3654 break;
3655
3656 case nir_cf_node_function:
3657 assert(0);
3658 break;
3659 }
3660 }
3661
3662 return start_block;
3663 }
3664
3665 /* Due to lookahead, we need to report the first tag executed in the command
3666 * stream and in branch targets. An initial block might be empty, so iterate
3667 * until we find one that 'works' */
3668
3669 static unsigned
3670 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3671 {
3672 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3673
3674 unsigned first_tag = 0;
3675
3676 do {
3677 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3678
3679 if (initial_bundle) {
3680 first_tag = initial_bundle->tag;
3681 break;
3682 }
3683
3684 /* Initial block is empty, try the next block */
3685 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3686 } while(initial_block != NULL);
3687
3688 assert(first_tag);
3689 return first_tag;
3690 }
3691
3692 int
3693 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3694 {
3695 struct util_dynarray *compiled = &program->compiled;
3696
3697 midgard_debug = debug_get_option_midgard_debug();
3698
3699 compiler_context ictx = {
3700 .nir = nir,
3701 .stage = nir->info.stage,
3702
3703 .is_blend = is_blend,
3704 .blend_constant_offset = -1,
3705
3706 .alpha_ref = program->alpha_ref
3707 };
3708
3709 compiler_context *ctx = &ictx;
3710
3711 /* TODO: Decide this at runtime */
3712 ctx->uniform_cutoff = 8;
3713
3714 /* Assign var locations early, so the epilogue can use them if necessary */
3715
3716 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3717 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3718 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3719
3720 /* Initialize at a global (not block) level hash tables */
3721
3722 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3723 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3724 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3725 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3726 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3727 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3728 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3729
3730 /* Record the varying mapping for the command stream's bookkeeping */
3731
3732 struct exec_list *varyings =
3733 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3734
3735 nir_foreach_variable(var, varyings) {
3736 unsigned loc = var->data.driver_location;
3737 unsigned sz = glsl_type_size(var->type, FALSE);
3738
3739 for (int c = 0; c < sz; ++c) {
3740 program->varyings[loc + c] = var->data.location;
3741 }
3742 }
3743
3744 /* Lower gl_Position pre-optimisation */
3745
3746 if (ctx->stage == MESA_SHADER_VERTEX)
3747 NIR_PASS_V(nir, nir_lower_viewport_transform);
3748
3749 NIR_PASS_V(nir, nir_lower_var_copies);
3750 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3751 NIR_PASS_V(nir, nir_split_var_copies);
3752 NIR_PASS_V(nir, nir_lower_var_copies);
3753 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3754 NIR_PASS_V(nir, nir_lower_var_copies);
3755 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3756
3757 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3758
3759 /* Optimisation passes */
3760
3761 optimise_nir(nir);
3762
3763 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3764 nir_print_shader(nir, stdout);
3765 }
3766
3767 /* Assign sysvals and counts, now that we're sure
3768 * (post-optimisation) */
3769
3770 midgard_nir_assign_sysvals(ctx, nir);
3771
3772 program->uniform_count = nir->num_uniforms;
3773 program->sysval_count = ctx->sysval_count;
3774 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3775
3776 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3777 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3778
3779 nir_foreach_function(func, nir) {
3780 if (!func->impl)
3781 continue;
3782
3783 list_inithead(&ctx->blocks);
3784 ctx->block_count = 0;
3785 ctx->func = func;
3786
3787 emit_cf_list(ctx, &func->impl->body);
3788 emit_block(ctx, func->impl->end_block);
3789
3790 break; /* TODO: Multi-function shaders */
3791 }
3792
3793 util_dynarray_init(compiled, NULL);
3794
3795 /* MIR-level optimizations */
3796
3797 bool progress = false;
3798
3799 do {
3800 progress = false;
3801
3802 mir_foreach_block(ctx, block) {
3803 progress |= midgard_opt_copy_prop(ctx, block);
3804 progress |= midgard_opt_copy_prop_tex(ctx, block);
3805 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3806 }
3807 } while (progress);
3808
3809 /* Schedule! */
3810 schedule_program(ctx);
3811
3812 /* Now that all the bundles are scheduled and we can calculate block
3813 * sizes, emit actual branch instructions rather than placeholders */
3814
3815 int br_block_idx = 0;
3816
3817 mir_foreach_block(ctx, block) {
3818 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3819 for (int c = 0; c < bundle->instruction_count; ++c) {
3820 midgard_instruction *ins = &bundle->instructions[c];
3821
3822 if (!midgard_is_branch_unit(ins->unit)) continue;
3823
3824 if (ins->prepacked_branch) continue;
3825
3826 /* Parse some basic branch info */
3827 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3828 bool is_conditional = ins->branch.conditional;
3829 bool is_inverted = ins->branch.invert_conditional;
3830 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3831
3832 /* Determine the block we're jumping to */
3833 int target_number = ins->branch.target_block;
3834
3835 /* Report the destination tag. Discards don't need this */
3836 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3837
3838 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3839 int quadword_offset = 0;
3840
3841 if (is_discard) {
3842 /* Jump to the end of the shader. We
3843 * need to include not only the
3844 * following blocks, but also the
3845 * contents of our current block (since
3846 * discard can come in the middle of
3847 * the block) */
3848
3849 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3850
3851 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3852 quadword_offset += quadword_size(bun->tag);
3853 }
3854
3855 mir_foreach_block_from(ctx, blk, b) {
3856 quadword_offset += b->quadword_count;
3857 }
3858
3859 } else if (target_number > br_block_idx) {
3860 /* Jump forward */
3861
3862 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3863 midgard_block *blk = mir_get_block(ctx, idx);
3864 assert(blk);
3865
3866 quadword_offset += blk->quadword_count;
3867 }
3868 } else {
3869 /* Jump backwards */
3870
3871 for (int idx = br_block_idx; idx >= target_number; --idx) {
3872 midgard_block *blk = mir_get_block(ctx, idx);
3873 assert(blk);
3874
3875 quadword_offset -= blk->quadword_count;
3876 }
3877 }
3878
3879 /* Unconditional extended branches (far jumps)
3880 * have issues, so we always use a conditional
3881 * branch, setting the condition to always for
3882 * unconditional. For compact unconditional
3883 * branches, cond isn't used so it doesn't
3884 * matter what we pick. */
3885
3886 midgard_condition cond =
3887 !is_conditional ? midgard_condition_always :
3888 is_inverted ? midgard_condition_false :
3889 midgard_condition_true;
3890
3891 midgard_jmp_writeout_op op =
3892 is_discard ? midgard_jmp_writeout_op_discard :
3893 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3894 midgard_jmp_writeout_op_branch_cond;
3895
3896 if (!is_compact) {
3897 midgard_branch_extended branch =
3898 midgard_create_branch_extended(
3899 cond, op,
3900 dest_tag,
3901 quadword_offset);
3902
3903 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3904 } else if (is_conditional || is_discard) {
3905 midgard_branch_cond branch = {
3906 .op = op,
3907 .dest_tag = dest_tag,
3908 .offset = quadword_offset,
3909 .cond = cond
3910 };
3911
3912 assert(branch.offset == quadword_offset);
3913
3914 memcpy(&ins->br_compact, &branch, sizeof(branch));
3915 } else {
3916 assert(op == midgard_jmp_writeout_op_branch_uncond);
3917
3918 midgard_branch_uncond branch = {
3919 .op = op,
3920 .dest_tag = dest_tag,
3921 .offset = quadword_offset,
3922 .unknown = 1
3923 };
3924
3925 assert(branch.offset == quadword_offset);
3926
3927 memcpy(&ins->br_compact, &branch, sizeof(branch));
3928 }
3929 }
3930 }
3931
3932 ++br_block_idx;
3933 }
3934
3935 /* Emit flat binary from the instruction arrays. Iterate each block in
3936 * sequence. Save instruction boundaries such that lookahead tags can
3937 * be assigned easily */
3938
3939 /* Cache _all_ bundles in source order for lookahead across failed branches */
3940
3941 int bundle_count = 0;
3942 mir_foreach_block(ctx, block) {
3943 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3944 }
3945 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3946 int bundle_idx = 0;
3947 mir_foreach_block(ctx, block) {
3948 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3949 source_order_bundles[bundle_idx++] = bundle;
3950 }
3951 }
3952
3953 int current_bundle = 0;
3954
3955 mir_foreach_block(ctx, block) {
3956 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3957 int lookahead = 1;
3958
3959 if (current_bundle + 1 < bundle_count) {
3960 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3961
3962 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3963 lookahead = 1;
3964 } else {
3965 lookahead = next;
3966 }
3967 }
3968
3969 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3970 ++current_bundle;
3971 }
3972
3973 /* TODO: Free deeper */
3974 //util_dynarray_fini(&block->instructions);
3975 }
3976
3977 free(source_order_bundles);
3978
3979 /* Report the very first tag executed */
3980 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3981
3982 /* Deal with off-by-one related to the fencepost problem */
3983 program->work_register_count = ctx->work_registers + 1;
3984
3985 program->can_discard = ctx->can_discard;
3986 program->uniform_cutoff = ctx->uniform_cutoff;
3987
3988 program->blend_patch_offset = ctx->blend_constant_offset;
3989
3990 if (midgard_debug & MIDGARD_DBG_SHADERS)
3991 disassemble_midgard(program->compiled.data, program->compiled.size);
3992
3993 return 0;
3994 }