panfrost/midgard: Fixup NIR texture op
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50
51 #include "disassemble.h"
52
53 static const struct debug_named_value debug_options[] = {
54 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
55 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
56 DEBUG_NAMED_VALUE_END
57 };
58
59 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
60
61 int midgard_debug = 0;
62
63 #define DBG(fmt, ...) \
64 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
65 fprintf(stderr, "%s:%d: "fmt, \
66 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
67
68 static bool
69 midgard_is_branch_unit(unsigned unit)
70 {
71 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
72 }
73
74 static void
75 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
76 {
77 block->successors[block->nr_successors++] = successor;
78 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
79 }
80
81 /* Helpers to generate midgard_instruction's using macro magic, since every
82 * driver seems to do it that way */
83
84 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
85 #define SWIZZLE_XXXX SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X)
86 #define SWIZZLE_XYXX SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X)
87 #define SWIZZLE_XYZX SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X)
88 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
89 #define SWIZZLE_XYZZ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_Z)
90 #define SWIZZLE_XYXZ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_Z)
91 #define SWIZZLE_WWWW SWIZZLE(COMPONENT_W, COMPONENT_W, COMPONENT_W, COMPONENT_W)
92
93 static inline unsigned
94 swizzle_of(unsigned comp)
95 {
96 switch (comp) {
97 case 1:
98 return SWIZZLE_XXXX;
99 case 2:
100 return SWIZZLE_XYXX;
101 case 3:
102 return SWIZZLE_XYZX;
103 case 4:
104 return SWIZZLE_XYZW;
105 default:
106 unreachable("Invalid component count");
107 }
108 }
109
110 static inline unsigned
111 mask_of(unsigned nr_comp)
112 {
113 return (1 << nr_comp) - 1;
114 }
115
116 #define M_LOAD_STORE(name, rname, uname) \
117 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
118 midgard_instruction i = { \
119 .type = TAG_LOAD_STORE_4, \
120 .ssa_args = { \
121 .rname = ssa, \
122 .uname = -1, \
123 .src1 = -1 \
124 }, \
125 .load_store = { \
126 .op = midgard_op_##name, \
127 .mask = 0xF, \
128 .swizzle = SWIZZLE_XYZW, \
129 .address = address \
130 } \
131 }; \
132 \
133 return i; \
134 }
135
136 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
137 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
138
139 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
140 * the corresponding Midgard source */
141
142 static midgard_vector_alu_src
143 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count)
144 {
145 if (!src) return blank_alu_src;
146
147 /* Figure out how many components there are so we can adjust the
148 * swizzle. Specifically we want to broadcast the last channel so
149 * things like ball2/3 work
150 */
151
152 if (broadcast_count) {
153 uint8_t last_component = src->swizzle[broadcast_count - 1];
154
155 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
156 src->swizzle[c] = last_component;
157 }
158 }
159
160 midgard_vector_alu_src alu_src = {
161 .rep_low = 0,
162 .rep_high = 0,
163 .half = 0, /* TODO */
164 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
165 };
166
167 if (is_int) {
168 /* TODO: sign-extend/zero-extend */
169 alu_src.mod = midgard_int_normal;
170
171 /* These should have been lowered away */
172 assert(!(src->abs || src->negate));
173 } else {
174 alu_src.mod = (src->abs << 0) | (src->negate << 1);
175 }
176
177 return alu_src;
178 }
179
180 /* load/store instructions have both 32-bit and 16-bit variants, depending on
181 * whether we are using vectors composed of highp or mediump. At the moment, we
182 * don't support half-floats -- this requires changes in other parts of the
183 * compiler -- therefore the 16-bit versions are commented out. */
184
185 //M_LOAD(ld_attr_16);
186 M_LOAD(ld_attr_32);
187 //M_LOAD(ld_vary_16);
188 M_LOAD(ld_vary_32);
189 //M_LOAD(ld_uniform_16);
190 M_LOAD(ld_uniform_32);
191 M_LOAD(ld_color_buffer_8);
192 //M_STORE(st_vary_16);
193 M_STORE(st_vary_32);
194 M_STORE(st_cubemap_coords);
195
196 static midgard_instruction
197 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
198 {
199 midgard_branch_cond branch = {
200 .op = op,
201 .dest_tag = tag,
202 .offset = offset,
203 .cond = cond
204 };
205
206 uint16_t compact;
207 memcpy(&compact, &branch, sizeof(branch));
208
209 midgard_instruction ins = {
210 .type = TAG_ALU_4,
211 .unit = ALU_ENAB_BR_COMPACT,
212 .prepacked_branch = true,
213 .compact_branch = true,
214 .br_compact = compact
215 };
216
217 if (op == midgard_jmp_writeout_op_writeout)
218 ins.writeout = true;
219
220 return ins;
221 }
222
223 static midgard_instruction
224 v_branch(bool conditional, bool invert)
225 {
226 midgard_instruction ins = {
227 .type = TAG_ALU_4,
228 .unit = ALU_ENAB_BRANCH,
229 .compact_branch = true,
230 .branch = {
231 .conditional = conditional,
232 .invert_conditional = invert
233 }
234 };
235
236 return ins;
237 }
238
239 static midgard_branch_extended
240 midgard_create_branch_extended( midgard_condition cond,
241 midgard_jmp_writeout_op op,
242 unsigned dest_tag,
243 signed quadword_offset)
244 {
245 /* For unclear reasons, the condition code is repeated 8 times */
246 uint16_t duplicated_cond =
247 (cond << 14) |
248 (cond << 12) |
249 (cond << 10) |
250 (cond << 8) |
251 (cond << 6) |
252 (cond << 4) |
253 (cond << 2) |
254 (cond << 0);
255
256 midgard_branch_extended branch = {
257 .op = op,
258 .dest_tag = dest_tag,
259 .offset = quadword_offset,
260 .cond = duplicated_cond
261 };
262
263 return branch;
264 }
265
266 static void
267 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
268 {
269 ins->has_constants = true;
270 memcpy(&ins->constants, constants, 16);
271 }
272
273 static int
274 glsl_type_size(const struct glsl_type *type, bool bindless)
275 {
276 return glsl_count_attribute_slots(type, false);
277 }
278
279 /* Lower fdot2 to a vector multiplication followed by channel addition */
280 static void
281 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
282 {
283 if (alu->op != nir_op_fdot2)
284 return;
285
286 b->cursor = nir_before_instr(&alu->instr);
287
288 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
289 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
290
291 nir_ssa_def *product = nir_fmul(b, src0, src1);
292
293 nir_ssa_def *sum = nir_fadd(b,
294 nir_channel(b, product, 0),
295 nir_channel(b, product, 1));
296
297 /* Replace the fdot2 with this sum */
298 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
299 }
300
301 static int
302 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
303 {
304 switch (instr->intrinsic) {
305 case nir_intrinsic_load_viewport_scale:
306 return PAN_SYSVAL_VIEWPORT_SCALE;
307 case nir_intrinsic_load_viewport_offset:
308 return PAN_SYSVAL_VIEWPORT_OFFSET;
309 default:
310 return -1;
311 }
312 }
313
314 static unsigned
315 nir_dest_index(compiler_context *ctx, nir_dest *dst)
316 {
317 if (dst->is_ssa)
318 return dst->ssa.index;
319 else {
320 assert(!dst->reg.indirect);
321 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
322 }
323 }
324
325 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
326 unsigned *dest)
327 {
328 nir_intrinsic_instr *intr;
329 nir_dest *dst = NULL;
330 nir_tex_instr *tex;
331 int sysval = -1;
332
333 switch (instr->type) {
334 case nir_instr_type_intrinsic:
335 intr = nir_instr_as_intrinsic(instr);
336 sysval = midgard_nir_sysval_for_intrinsic(intr);
337 dst = &intr->dest;
338 break;
339 case nir_instr_type_tex:
340 tex = nir_instr_as_tex(instr);
341 if (tex->op != nir_texop_txs)
342 break;
343
344 sysval = PAN_SYSVAL(TEXTURE_SIZE,
345 PAN_TXS_SYSVAL_ID(tex->texture_index,
346 nir_tex_instr_dest_size(tex) -
347 (tex->is_array ? 1 : 0),
348 tex->is_array));
349 dst = &tex->dest;
350 break;
351 default:
352 break;
353 }
354
355 if (dest && dst)
356 *dest = nir_dest_index(ctx, dst);
357
358 return sysval;
359 }
360
361 static void
362 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
363 {
364 int sysval;
365
366 sysval = sysval_for_instr(ctx, instr, NULL);
367 if (sysval < 0)
368 return;
369
370 /* We have a sysval load; check if it's already been assigned */
371
372 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
373 return;
374
375 /* It hasn't -- so assign it now! */
376
377 unsigned id = ctx->sysval_count++;
378 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
379 ctx->sysvals[id] = sysval;
380 }
381
382 static void
383 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
384 {
385 ctx->sysval_count = 0;
386
387 nir_foreach_function(function, shader) {
388 if (!function->impl) continue;
389
390 nir_foreach_block(block, function->impl) {
391 nir_foreach_instr_safe(instr, block) {
392 midgard_nir_assign_sysval_body(ctx, instr);
393 }
394 }
395 }
396 }
397
398 static bool
399 midgard_nir_lower_fdot2(nir_shader *shader)
400 {
401 bool progress = false;
402
403 nir_foreach_function(function, shader) {
404 if (!function->impl) continue;
405
406 nir_builder _b;
407 nir_builder *b = &_b;
408 nir_builder_init(b, function->impl);
409
410 nir_foreach_block(block, function->impl) {
411 nir_foreach_instr_safe(instr, block) {
412 if (instr->type != nir_instr_type_alu) continue;
413
414 nir_alu_instr *alu = nir_instr_as_alu(instr);
415 midgard_nir_lower_fdot2_body(b, alu);
416
417 progress |= true;
418 }
419 }
420
421 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
422
423 }
424
425 return progress;
426 }
427
428 static void
429 optimise_nir(nir_shader *nir)
430 {
431 bool progress;
432 unsigned lower_flrp =
433 (nir->options->lower_flrp16 ? 16 : 0) |
434 (nir->options->lower_flrp32 ? 32 : 0) |
435 (nir->options->lower_flrp64 ? 64 : 0);
436
437 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
438 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
439 NIR_PASS(progress, nir, nir_lower_idiv);
440
441 nir_lower_tex_options lower_tex_1st_pass_options = {
442 .lower_rect = true,
443 .lower_txp = ~0
444 };
445
446 nir_lower_tex_options lower_tex_2nd_pass_options = {
447 .lower_txs_lod = true,
448 };
449
450 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
451 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
452
453 do {
454 progress = false;
455
456 NIR_PASS(progress, nir, nir_lower_var_copies);
457 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
458
459 NIR_PASS(progress, nir, nir_copy_prop);
460 NIR_PASS(progress, nir, nir_opt_dce);
461 NIR_PASS(progress, nir, nir_opt_dead_cf);
462 NIR_PASS(progress, nir, nir_opt_cse);
463 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
464 NIR_PASS(progress, nir, nir_opt_algebraic);
465 NIR_PASS(progress, nir, nir_opt_constant_folding);
466
467 if (lower_flrp != 0) {
468 bool lower_flrp_progress = false;
469 NIR_PASS(lower_flrp_progress,
470 nir,
471 nir_lower_flrp,
472 lower_flrp,
473 false /* always_precise */,
474 nir->options->lower_ffma);
475 if (lower_flrp_progress) {
476 NIR_PASS(progress, nir,
477 nir_opt_constant_folding);
478 progress = true;
479 }
480
481 /* Nothing should rematerialize any flrps, so we only
482 * need to do this lowering once.
483 */
484 lower_flrp = 0;
485 }
486
487 NIR_PASS(progress, nir, nir_opt_undef);
488 NIR_PASS(progress, nir, nir_opt_loop_unroll,
489 nir_var_shader_in |
490 nir_var_shader_out |
491 nir_var_function_temp);
492
493 NIR_PASS(progress, nir, nir_opt_vectorize);
494 } while (progress);
495
496 /* Must be run at the end to prevent creation of fsin/fcos ops */
497 NIR_PASS(progress, nir, midgard_nir_scale_trig);
498
499 do {
500 progress = false;
501
502 NIR_PASS(progress, nir, nir_opt_dce);
503 NIR_PASS(progress, nir, nir_opt_algebraic);
504 NIR_PASS(progress, nir, nir_opt_constant_folding);
505 NIR_PASS(progress, nir, nir_copy_prop);
506 } while (progress);
507
508 NIR_PASS(progress, nir, nir_opt_algebraic_late);
509
510 /* We implement booleans as 32-bit 0/~0 */
511 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
512
513 /* Now that booleans are lowered, we can run out late opts */
514 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
515
516 /* Lower mods for float ops only. Integer ops don't support modifiers
517 * (saturate doesn't make sense on integers, neg/abs require dedicated
518 * instructions) */
519
520 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
521 NIR_PASS(progress, nir, nir_copy_prop);
522 NIR_PASS(progress, nir, nir_opt_dce);
523
524 /* Take us out of SSA */
525 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
526 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
527
528 /* We are a vector architecture; write combine where possible */
529 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
530 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
531
532 NIR_PASS(progress, nir, nir_opt_dce);
533 }
534
535 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
536 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
537 * r0. See the comments in compiler_context */
538
539 static void
540 alias_ssa(compiler_context *ctx, int dest, int src)
541 {
542 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
543 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
544 }
545
546 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
547
548 static void
549 unalias_ssa(compiler_context *ctx, int dest)
550 {
551 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
552 /* TODO: Remove from leftover or no? */
553 }
554
555 /* Do not actually emit a load; instead, cache the constant for inlining */
556
557 static void
558 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
559 {
560 nir_ssa_def def = instr->def;
561
562 float *v = rzalloc_array(NULL, float, 4);
563 nir_const_load_to_arr(v, instr, f32);
564 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
565 }
566
567 static unsigned
568 nir_src_index(compiler_context *ctx, nir_src *src)
569 {
570 if (src->is_ssa)
571 return src->ssa->index;
572 else {
573 assert(!src->reg.indirect);
574 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
575 }
576 }
577
578 static unsigned
579 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
580 {
581 return nir_src_index(ctx, &src->src);
582 }
583
584 static bool
585 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
586 {
587 unsigned comp = src->swizzle[0];
588
589 for (unsigned c = 1; c < nr_components; ++c) {
590 if (src->swizzle[c] != comp)
591 return true;
592 }
593
594 return false;
595 }
596
597 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
598 * output of a conditional test) into that register */
599
600 static void
601 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
602 {
603 int condition = nir_src_index(ctx, src);
604
605 /* Source to swizzle the desired component into w */
606
607 const midgard_vector_alu_src alu_src = {
608 .swizzle = SWIZZLE(component, component, component, component),
609 };
610
611 /* There is no boolean move instruction. Instead, we simulate a move by
612 * ANDing the condition with itself to get it into r31.w */
613
614 midgard_instruction ins = {
615 .type = TAG_ALU_4,
616
617 /* We need to set the conditional as close as possible */
618 .precede_break = true,
619 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
620
621 .ssa_args = {
622 .src0 = condition,
623 .src1 = condition,
624 .dest = SSA_FIXED_REGISTER(31),
625 },
626
627 .alu = {
628 .op = midgard_alu_op_iand,
629 .outmod = midgard_outmod_int_wrap,
630 .reg_mode = midgard_reg_mode_32,
631 .dest_override = midgard_dest_override_none,
632 .mask = (0x3 << 6), /* w */
633 .src1 = vector_alu_srco_unsigned(alu_src),
634 .src2 = vector_alu_srco_unsigned(alu_src)
635 },
636 };
637
638 emit_mir_instruction(ctx, ins);
639 }
640
641 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
642 * r31 instead */
643
644 static void
645 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
646 {
647 int condition = nir_src_index(ctx, &src->src);
648
649 /* Source to swizzle the desired component into w */
650
651 const midgard_vector_alu_src alu_src = {
652 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
653 };
654
655 /* There is no boolean move instruction. Instead, we simulate a move by
656 * ANDing the condition with itself to get it into r31.w */
657
658 midgard_instruction ins = {
659 .type = TAG_ALU_4,
660 .precede_break = true,
661 .ssa_args = {
662 .src0 = condition,
663 .src1 = condition,
664 .dest = SSA_FIXED_REGISTER(31),
665 },
666 .alu = {
667 .op = midgard_alu_op_iand,
668 .outmod = midgard_outmod_int_wrap,
669 .reg_mode = midgard_reg_mode_32,
670 .dest_override = midgard_dest_override_none,
671 .mask = expand_writemask(mask_of(nr_comp)),
672 .src1 = vector_alu_srco_unsigned(alu_src),
673 .src2 = vector_alu_srco_unsigned(alu_src)
674 },
675 };
676
677 emit_mir_instruction(ctx, ins);
678 }
679
680
681
682 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
683 * pinning to eliminate this move in all known cases */
684
685 static void
686 emit_indirect_offset(compiler_context *ctx, nir_src *src)
687 {
688 int offset = nir_src_index(ctx, src);
689
690 midgard_instruction ins = {
691 .type = TAG_ALU_4,
692 .ssa_args = {
693 .src0 = SSA_UNUSED_1,
694 .src1 = offset,
695 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
696 },
697 .alu = {
698 .op = midgard_alu_op_imov,
699 .outmod = midgard_outmod_int_wrap,
700 .reg_mode = midgard_reg_mode_32,
701 .dest_override = midgard_dest_override_none,
702 .mask = (0x3 << 6), /* w */
703 .src1 = vector_alu_srco_unsigned(zero_alu_src),
704 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
705 },
706 };
707
708 emit_mir_instruction(ctx, ins);
709 }
710
711 #define ALU_CASE(nir, _op) \
712 case nir_op_##nir: \
713 op = midgard_alu_op_##_op; \
714 break;
715
716 #define ALU_CASE_BCAST(nir, _op, count) \
717 case nir_op_##nir: \
718 op = midgard_alu_op_##_op; \
719 broadcast_swizzle = count; \
720 break;
721 static bool
722 nir_is_fzero_constant(nir_src src)
723 {
724 if (!nir_src_is_const(src))
725 return false;
726
727 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
728 if (nir_src_comp_as_float(src, c) != 0.0)
729 return false;
730 }
731
732 return true;
733 }
734
735 static void
736 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
737 {
738 bool is_ssa = instr->dest.dest.is_ssa;
739
740 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
741 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
742 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
743
744 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
745 * supported. A few do not and are commented for now. Also, there are a
746 * number of NIR ops which Midgard does not support and need to be
747 * lowered, also TODO. This switch block emits the opcode and calling
748 * convention of the Midgard instruction; actual packing is done in
749 * emit_alu below */
750
751 unsigned op;
752
753 /* Number of components valid to check for the instruction (the rest
754 * will be forced to the last), or 0 to use as-is. Relevant as
755 * ball-type instructions have a channel count in NIR but are all vec4
756 * in Midgard */
757
758 unsigned broadcast_swizzle = 0;
759
760 switch (instr->op) {
761 ALU_CASE(fadd, fadd);
762 ALU_CASE(fmul, fmul);
763 ALU_CASE(fmin, fmin);
764 ALU_CASE(fmax, fmax);
765 ALU_CASE(imin, imin);
766 ALU_CASE(imax, imax);
767 ALU_CASE(umin, umin);
768 ALU_CASE(umax, umax);
769 ALU_CASE(ffloor, ffloor);
770 ALU_CASE(fround_even, froundeven);
771 ALU_CASE(ftrunc, ftrunc);
772 ALU_CASE(fceil, fceil);
773 ALU_CASE(fdot3, fdot3);
774 ALU_CASE(fdot4, fdot4);
775 ALU_CASE(iadd, iadd);
776 ALU_CASE(isub, isub);
777 ALU_CASE(imul, imul);
778
779 /* Zero shoved as second-arg */
780 ALU_CASE(iabs, iabsdiff);
781
782 ALU_CASE(mov, imov);
783
784 ALU_CASE(feq32, feq);
785 ALU_CASE(fne32, fne);
786 ALU_CASE(flt32, flt);
787 ALU_CASE(ieq32, ieq);
788 ALU_CASE(ine32, ine);
789 ALU_CASE(ilt32, ilt);
790 ALU_CASE(ult32, ult);
791
792 /* We don't have a native b2f32 instruction. Instead, like many
793 * GPUs, we exploit booleans as 0/~0 for false/true, and
794 * correspondingly AND
795 * by 1.0 to do the type conversion. For the moment, prime us
796 * to emit:
797 *
798 * iand [whatever], #0
799 *
800 * At the end of emit_alu (as MIR), we'll fix-up the constant
801 */
802
803 ALU_CASE(b2f32, iand);
804 ALU_CASE(b2i32, iand);
805
806 /* Likewise, we don't have a dedicated f2b32 instruction, but
807 * we can do a "not equal to 0.0" test. */
808
809 ALU_CASE(f2b32, fne);
810 ALU_CASE(i2b32, ine);
811
812 ALU_CASE(frcp, frcp);
813 ALU_CASE(frsq, frsqrt);
814 ALU_CASE(fsqrt, fsqrt);
815 ALU_CASE(fexp2, fexp2);
816 ALU_CASE(flog2, flog2);
817
818 ALU_CASE(f2i32, f2i_rtz);
819 ALU_CASE(f2u32, f2u_rtz);
820 ALU_CASE(i2f32, i2f_rtz);
821 ALU_CASE(u2f32, u2f_rtz);
822
823 ALU_CASE(fsin, fsin);
824 ALU_CASE(fcos, fcos);
825
826 /* Second op implicit #0 */
827 ALU_CASE(inot, inor);
828 ALU_CASE(iand, iand);
829 ALU_CASE(ior, ior);
830 ALU_CASE(ixor, ixor);
831 ALU_CASE(ishl, ishl);
832 ALU_CASE(ishr, iasr);
833 ALU_CASE(ushr, ilsr);
834
835 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
836 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
837 ALU_CASE(b32all_fequal4, fball_eq);
838
839 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
840 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
841 ALU_CASE(b32any_fnequal4, fbany_neq);
842
843 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
844 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
845 ALU_CASE(b32all_iequal4, iball_eq);
846
847 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
848 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
849 ALU_CASE(b32any_inequal4, ibany_neq);
850
851 /* Source mods will be shoved in later */
852 ALU_CASE(fabs, fmov);
853 ALU_CASE(fneg, fmov);
854 ALU_CASE(fsat, fmov);
855
856 /* For greater-or-equal, we lower to less-or-equal and flip the
857 * arguments */
858
859 case nir_op_fge:
860 case nir_op_fge32:
861 case nir_op_ige32:
862 case nir_op_uge32: {
863 op =
864 instr->op == nir_op_fge ? midgard_alu_op_fle :
865 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
866 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
867 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
868 0;
869
870 /* Swap via temporary */
871 nir_alu_src temp = instr->src[1];
872 instr->src[1] = instr->src[0];
873 instr->src[0] = temp;
874
875 break;
876 }
877
878 case nir_op_b32csel: {
879 /* Midgard features both fcsel and icsel, depending on
880 * the type of the arguments/output. However, as long
881 * as we're careful we can _always_ use icsel and
882 * _never_ need fcsel, since the latter does additional
883 * floating-point-specific processing whereas the
884 * former just moves bits on the wire. It's not obvious
885 * why these are separate opcodes, save for the ability
886 * to do things like sat/pos/abs/neg for free */
887
888 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
889 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
890
891 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
892 nr_inputs = 2;
893
894 /* Emit the condition into r31 */
895
896 if (mixed)
897 emit_condition_mixed(ctx, &instr->src[0], nr_components);
898 else
899 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
900
901 /* The condition is the first argument; move the other
902 * arguments up one to be a binary instruction for
903 * Midgard */
904
905 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
906 break;
907 }
908
909 default:
910 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
911 assert(0);
912 return;
913 }
914
915 /* Midgard can perform certain modifiers on output of an ALU op */
916 unsigned outmod;
917
918 if (midgard_is_integer_out_op(op)) {
919 outmod = midgard_outmod_int_wrap;
920 } else {
921 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
922 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
923 }
924
925 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
926
927 if (instr->op == nir_op_fmax) {
928 if (nir_is_fzero_constant(instr->src[0].src)) {
929 op = midgard_alu_op_fmov;
930 nr_inputs = 1;
931 outmod = midgard_outmod_pos;
932 instr->src[0] = instr->src[1];
933 } else if (nir_is_fzero_constant(instr->src[1].src)) {
934 op = midgard_alu_op_fmov;
935 nr_inputs = 1;
936 outmod = midgard_outmod_pos;
937 }
938 }
939
940 /* Fetch unit, quirks, etc information */
941 unsigned opcode_props = alu_opcode_props[op].props;
942 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
943
944 /* src0 will always exist afaik, but src1 will not for 1-argument
945 * instructions. The latter can only be fetched if the instruction
946 * needs it, or else we may segfault. */
947
948 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
949 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
950
951 /* Rather than use the instruction generation helpers, we do it
952 * ourselves here to avoid the mess */
953
954 midgard_instruction ins = {
955 .type = TAG_ALU_4,
956 .ssa_args = {
957 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
958 .src1 = quirk_flipped_r24 ? src0 : src1,
959 .dest = dest,
960 }
961 };
962
963 nir_alu_src *nirmods[2] = { NULL };
964
965 if (nr_inputs == 2) {
966 nirmods[0] = &instr->src[0];
967 nirmods[1] = &instr->src[1];
968 } else if (nr_inputs == 1) {
969 nirmods[quirk_flipped_r24] = &instr->src[0];
970 } else {
971 assert(0);
972 }
973
974 /* These were lowered to a move, so apply the corresponding mod */
975
976 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
977 nir_alu_src *s = nirmods[quirk_flipped_r24];
978
979 if (instr->op == nir_op_fneg)
980 s->negate = !s->negate;
981
982 if (instr->op == nir_op_fabs)
983 s->abs = !s->abs;
984 }
985
986 bool is_int = midgard_is_integer_op(op);
987
988 midgard_vector_alu alu = {
989 .op = op,
990 .reg_mode = midgard_reg_mode_32,
991 .dest_override = midgard_dest_override_none,
992 .outmod = outmod,
993
994 /* Writemask only valid for non-SSA NIR */
995 .mask = expand_writemask(mask_of(nr_components)),
996
997 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle)),
998 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle)),
999 };
1000
1001 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1002
1003 if (!is_ssa)
1004 alu.mask &= expand_writemask(instr->dest.write_mask);
1005
1006 ins.alu = alu;
1007
1008 /* Late fixup for emulated instructions */
1009
1010 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1011 /* Presently, our second argument is an inline #0 constant.
1012 * Switch over to an embedded 1.0 constant (that can't fit
1013 * inline, since we're 32-bit, not 16-bit like the inline
1014 * constants) */
1015
1016 ins.ssa_args.inline_constant = false;
1017 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1018 ins.has_constants = true;
1019
1020 if (instr->op == nir_op_b2f32) {
1021 ins.constants[0] = 1.0f;
1022 } else {
1023 /* Type pun it into place */
1024 uint32_t one = 0x1;
1025 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1026 }
1027
1028 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1029 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1030 /* Lots of instructions need a 0 plonked in */
1031 ins.ssa_args.inline_constant = false;
1032 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1033 ins.has_constants = true;
1034 ins.constants[0] = 0.0f;
1035 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1036 } else if (instr->op == nir_op_inot) {
1037 /* ~b = ~(b & b), so duplicate the source */
1038 ins.ssa_args.src1 = ins.ssa_args.src0;
1039 ins.alu.src2 = ins.alu.src1;
1040 }
1041
1042 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1043 /* To avoid duplicating the lookup tables (probably), true LUT
1044 * instructions can only operate as if they were scalars. Lower
1045 * them here by changing the component. */
1046
1047 uint8_t original_swizzle[4];
1048 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1049
1050 for (int i = 0; i < nr_components; ++i) {
1051 /* Mask the associated component, dropping the
1052 * instruction if needed */
1053
1054 ins.alu.mask = (0x3) << (2 * i);
1055 ins.alu.mask &= alu.mask;
1056
1057 if (!ins.alu.mask)
1058 continue;
1059
1060 for (int j = 0; j < 4; ++j)
1061 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1062
1063 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle));
1064 emit_mir_instruction(ctx, ins);
1065 }
1066 } else {
1067 emit_mir_instruction(ctx, ins);
1068 }
1069 }
1070
1071 #undef ALU_CASE
1072
1073 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1074 * optimized) versions of UBO #0 */
1075
1076 static void
1077 emit_ubo_read(
1078 compiler_context *ctx,
1079 unsigned dest,
1080 unsigned offset,
1081 nir_src *indirect_offset,
1082 unsigned index)
1083 {
1084 /* TODO: half-floats */
1085
1086 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1087 /* Fast path: For the first 16 uniforms, direct accesses are
1088 * 0-cycle, since they're just a register fetch in the usual
1089 * case. So, we alias the registers while we're still in
1090 * SSA-space */
1091
1092 int reg_slot = 23 - offset;
1093 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1094 } else {
1095 /* Otherwise, read from the 'special' UBO to access
1096 * higher-indexed uniforms, at a performance cost. More
1097 * generally, we're emitting a UBO read instruction. */
1098
1099 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1100
1101 /* TODO: Don't split */
1102 ins.load_store.varying_parameters = (offset & 7) << 7;
1103 ins.load_store.address = offset >> 3;
1104
1105 if (indirect_offset) {
1106 emit_indirect_offset(ctx, indirect_offset);
1107 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1108 } else {
1109 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1110 }
1111
1112 /* TODO respect index */
1113
1114 emit_mir_instruction(ctx, ins);
1115 }
1116 }
1117
1118 static void
1119 emit_varying_read(
1120 compiler_context *ctx,
1121 unsigned dest, unsigned offset,
1122 unsigned nr_comp, unsigned component,
1123 nir_src *indirect_offset)
1124 {
1125 /* XXX: Half-floats? */
1126 /* TODO: swizzle, mask */
1127
1128 midgard_instruction ins = m_ld_vary_32(dest, offset);
1129 ins.load_store.mask = mask_of(nr_comp);
1130 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1131
1132 midgard_varying_parameter p = {
1133 .is_varying = 1,
1134 .interpolation = midgard_interp_default,
1135 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1136 };
1137
1138 unsigned u;
1139 memcpy(&u, &p, sizeof(p));
1140 ins.load_store.varying_parameters = u;
1141
1142 if (indirect_offset) {
1143 /* We need to add in the dynamic index, moved to r27.w */
1144 emit_indirect_offset(ctx, indirect_offset);
1145 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1146 } else {
1147 /* Just a direct load */
1148 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1149 }
1150
1151 emit_mir_instruction(ctx, ins);
1152 }
1153
1154 static void
1155 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1156 {
1157 unsigned dest;
1158 /* Figure out which uniform this is */
1159 int sysval = sysval_for_instr(ctx, instr, &dest);
1160 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1161
1162 /* Sysvals are prefix uniforms */
1163 unsigned uniform = ((uintptr_t) val) - 1;
1164
1165 /* Emit the read itself -- this is never indirect */
1166 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1167 }
1168
1169 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1170 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1171 * generations have faster vectorized reads. This operation is for blend
1172 * shaders in particular; reading the tilebuffer from the fragment shader
1173 * remains an open problem. */
1174
1175 static void
1176 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1177 {
1178 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1179 ins.load_store.swizzle = 0; /* xxxx */
1180
1181 /* Read each component sequentially */
1182
1183 for (unsigned c = 0; c < 4; ++c) {
1184 ins.load_store.mask = (1 << c);
1185 ins.load_store.unknown = c;
1186 emit_mir_instruction(ctx, ins);
1187 }
1188
1189 /* vadd.u2f hr2, zext(hr2), #0 */
1190
1191 midgard_vector_alu_src alu_src = blank_alu_src;
1192 alu_src.mod = midgard_int_zero_extend;
1193 alu_src.half = true;
1194
1195 midgard_instruction u2f = {
1196 .type = TAG_ALU_4,
1197 .ssa_args = {
1198 .src0 = reg,
1199 .src1 = SSA_UNUSED_0,
1200 .dest = reg,
1201 .inline_constant = true
1202 },
1203 .alu = {
1204 .op = midgard_alu_op_u2f_rtz,
1205 .reg_mode = midgard_reg_mode_16,
1206 .dest_override = midgard_dest_override_none,
1207 .mask = 0xF,
1208 .src1 = vector_alu_srco_unsigned(alu_src),
1209 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1210 }
1211 };
1212
1213 emit_mir_instruction(ctx, u2f);
1214
1215 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1216
1217 alu_src.mod = 0;
1218
1219 midgard_instruction fmul = {
1220 .type = TAG_ALU_4,
1221 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1222 .ssa_args = {
1223 .src0 = reg,
1224 .dest = reg,
1225 .src1 = SSA_UNUSED_0,
1226 .inline_constant = true
1227 },
1228 .alu = {
1229 .op = midgard_alu_op_fmul,
1230 .reg_mode = midgard_reg_mode_32,
1231 .dest_override = midgard_dest_override_none,
1232 .outmod = midgard_outmod_sat,
1233 .mask = 0xFF,
1234 .src1 = vector_alu_srco_unsigned(alu_src),
1235 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1236 }
1237 };
1238
1239 emit_mir_instruction(ctx, fmul);
1240 }
1241
1242 static void
1243 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1244 {
1245 unsigned offset = 0, reg;
1246
1247 switch (instr->intrinsic) {
1248 case nir_intrinsic_discard_if:
1249 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1250
1251 /* fallthrough */
1252
1253 case nir_intrinsic_discard: {
1254 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1255 struct midgard_instruction discard = v_branch(conditional, false);
1256 discard.branch.target_type = TARGET_DISCARD;
1257 emit_mir_instruction(ctx, discard);
1258
1259 ctx->can_discard = true;
1260 break;
1261 }
1262
1263 case nir_intrinsic_load_uniform:
1264 case nir_intrinsic_load_ubo:
1265 case nir_intrinsic_load_input: {
1266 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1267 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1268
1269 if (!is_ubo) {
1270 offset = nir_intrinsic_base(instr);
1271 }
1272
1273 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1274
1275 nir_src *src_offset = nir_get_io_offset_src(instr);
1276
1277 bool direct = nir_src_is_const(*src_offset);
1278
1279 if (direct)
1280 offset += nir_src_as_uint(*src_offset);
1281
1282 /* We may need to apply a fractional offset */
1283 int component = instr->intrinsic == nir_intrinsic_load_input ?
1284 nir_intrinsic_component(instr) : 0;
1285 reg = nir_dest_index(ctx, &instr->dest);
1286
1287 if (is_uniform && !ctx->is_blend) {
1288 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1289 } else if (is_ubo) {
1290 nir_src index = instr->src[0];
1291
1292 /* We don't yet support indirect UBOs. For indirect
1293 * block numbers (if that's possible), we don't know
1294 * enough about the hardware yet. For indirect sources,
1295 * we know what we need but we need to add some NIR
1296 * support for lowering correctly with respect to
1297 * 128-bit reads */
1298
1299 assert(nir_src_is_const(index));
1300 assert(nir_src_is_const(*src_offset));
1301
1302 /* TODO: Alignment */
1303 assert((offset & 0xF) == 0);
1304
1305 uint32_t uindex = nir_src_as_uint(index) + 1;
1306 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1307 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1308 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL);
1309 } else if (ctx->is_blend) {
1310 /* For blend shaders, load the input color, which is
1311 * preloaded to r0 */
1312
1313 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1314 emit_mir_instruction(ctx, move);
1315 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1316 midgard_instruction ins = m_ld_attr_32(reg, offset);
1317 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1318 ins.load_store.mask = mask_of(nr_comp);
1319 emit_mir_instruction(ctx, ins);
1320 } else {
1321 DBG("Unknown load\n");
1322 assert(0);
1323 }
1324
1325 break;
1326 }
1327
1328 case nir_intrinsic_load_output:
1329 assert(nir_src_is_const(instr->src[0]));
1330 reg = nir_dest_index(ctx, &instr->dest);
1331
1332 if (ctx->is_blend) {
1333 /* TODO: MRT */
1334 emit_fb_read_blend_scalar(ctx, reg);
1335 } else {
1336 DBG("Unknown output load\n");
1337 assert(0);
1338 }
1339
1340 break;
1341
1342 case nir_intrinsic_load_blend_const_color_rgba: {
1343 assert(ctx->is_blend);
1344 reg = nir_dest_index(ctx, &instr->dest);
1345
1346 /* Blend constants are embedded directly in the shader and
1347 * patched in, so we use some magic routing */
1348
1349 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1350 ins.has_constants = true;
1351 ins.has_blend_constant = true;
1352 emit_mir_instruction(ctx, ins);
1353 break;
1354 }
1355
1356 case nir_intrinsic_store_output:
1357 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1358
1359 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1360
1361 reg = nir_src_index(ctx, &instr->src[0]);
1362
1363 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1364 /* gl_FragColor is not emitted with load/store
1365 * instructions. Instead, it gets plonked into
1366 * r0 at the end of the shader and we do the
1367 * framebuffer writeout dance. TODO: Defer
1368 * writes */
1369
1370 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1371 emit_mir_instruction(ctx, move);
1372
1373 /* Save the index we're writing to for later reference
1374 * in the epilogue */
1375
1376 ctx->fragment_output = reg;
1377 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1378 /* Varyings are written into one of two special
1379 * varying register, r26 or r27. The register itself is
1380 * selected as the register in the st_vary instruction,
1381 * minus the base of 26. E.g. write into r27 and then
1382 * call st_vary(1) */
1383
1384 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1385 emit_mir_instruction(ctx, ins);
1386
1387 /* We should have been vectorized, though we don't
1388 * currently check that st_vary is emitted only once
1389 * per slot (this is relevant, since there's not a mask
1390 * parameter available on the store [set to 0 by the
1391 * blob]). We do respect the component by adjusting the
1392 * swizzle. */
1393
1394 unsigned component = nir_intrinsic_component(instr);
1395
1396 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1397 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1398 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1399 emit_mir_instruction(ctx, st);
1400 } else {
1401 DBG("Unknown store\n");
1402 assert(0);
1403 }
1404
1405 break;
1406
1407 case nir_intrinsic_load_alpha_ref_float:
1408 assert(instr->dest.is_ssa);
1409
1410 float ref_value = ctx->alpha_ref;
1411
1412 float *v = ralloc_array(NULL, float, 4);
1413 memcpy(v, &ref_value, sizeof(float));
1414 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1415 break;
1416
1417 case nir_intrinsic_load_viewport_scale:
1418 case nir_intrinsic_load_viewport_offset:
1419 emit_sysval_read(ctx, &instr->instr);
1420 break;
1421
1422 default:
1423 printf ("Unhandled intrinsic\n");
1424 assert(0);
1425 break;
1426 }
1427 }
1428
1429 static unsigned
1430 midgard_tex_format(enum glsl_sampler_dim dim)
1431 {
1432 switch (dim) {
1433 case GLSL_SAMPLER_DIM_1D:
1434 case GLSL_SAMPLER_DIM_BUF:
1435 return MALI_TEX_1D;
1436
1437 case GLSL_SAMPLER_DIM_2D:
1438 case GLSL_SAMPLER_DIM_EXTERNAL:
1439 return MALI_TEX_2D;
1440
1441 case GLSL_SAMPLER_DIM_3D:
1442 return MALI_TEX_3D;
1443
1444 case GLSL_SAMPLER_DIM_CUBE:
1445 return MALI_TEX_CUBE;
1446
1447 default:
1448 DBG("Unknown sampler dim type\n");
1449 assert(0);
1450 return 0;
1451 }
1452 }
1453
1454 static void
1455 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1456 unsigned midgard_texop)
1457 {
1458 /* TODO */
1459 //assert (!instr->sampler);
1460 //assert (!instr->texture_array_size);
1461
1462 /* Allocate registers via a round robin scheme to alternate between the two registers */
1463 int reg = ctx->texture_op_count & 1;
1464 int in_reg = reg, out_reg = reg;
1465
1466 /* Make room for the reg */
1467
1468 if (ctx->texture_index[reg] > -1)
1469 unalias_ssa(ctx, ctx->texture_index[reg]);
1470
1471 int texture_index = instr->texture_index;
1472 int sampler_index = texture_index;
1473
1474 unsigned position_swizzle = 0;
1475
1476 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1477 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1478 int index = nir_src_index(ctx, &instr->src[i].src);
1479 int nr_comp = nir_src_num_components(instr->src[i].src);
1480 midgard_vector_alu_src alu_src = blank_alu_src;
1481
1482 switch (instr->src[i].src_type) {
1483 case nir_tex_src_coord: {
1484 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1485 /* For cubemaps, we need to load coords into
1486 * special r27, and then use a special ld/st op
1487 * to select the face and copy the xy into the
1488 * texture register */
1489
1490 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1491
1492 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1493 emit_mir_instruction(ctx, move);
1494
1495 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1496 st.load_store.unknown = 0x24; /* XXX: What is this? */
1497 st.load_store.mask = 0x3; /* xy */
1498 st.load_store.swizzle = alu_src.swizzle;
1499 emit_mir_instruction(ctx, st);
1500
1501 position_swizzle = swizzle_of(2);
1502 } else {
1503 position_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1504
1505 midgard_instruction ins = v_mov(index, alu_src, reg);
1506 ins.alu.mask = expand_writemask(mask_of(nr_comp));
1507 emit_mir_instruction(ctx, ins);
1508
1509 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1510 /* Texel fetch opcodes care about the
1511 * values of z and w, so we actually
1512 * need to spill into a second register
1513 * for a texel fetch with register bias
1514 * (for non-2D). TODO: Implement that
1515 */
1516
1517 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1518
1519 midgard_instruction zero = v_mov(index, alu_src, reg);
1520 zero.ssa_args.inline_constant = true;
1521 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1522 zero.has_constants = true;
1523 zero.alu.mask = ~ins.alu.mask;
1524 emit_mir_instruction(ctx, zero);
1525
1526 position_swizzle = SWIZZLE_XYZZ;
1527 } else {
1528 /* To the hardware, z is depth, w is array
1529 * layer. To NIR, z is array layer for a 2D
1530 * array */
1531
1532 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D)
1533 position_swizzle = SWIZZLE_XYXZ;
1534 }
1535 }
1536
1537 break;
1538 }
1539
1540 case nir_tex_src_bias:
1541 case nir_tex_src_lod: {
1542 /* To keep RA simple, we put the bias/LOD into the w
1543 * component of the input source, which is otherwise in xy */
1544
1545 alu_src.swizzle = SWIZZLE_XXXX;
1546
1547 midgard_instruction ins = v_mov(index, alu_src, reg);
1548 ins.alu.mask = expand_writemask(1 << COMPONENT_W);
1549 emit_mir_instruction(ctx, ins);
1550 break;
1551 };
1552
1553 default:
1554 unreachable("Unknown texture source type\n");
1555 }
1556 }
1557
1558 /* No helper to build texture words -- we do it all here */
1559 midgard_instruction ins = {
1560 .type = TAG_TEXTURE_4,
1561 .texture = {
1562 .op = midgard_texop,
1563 .format = midgard_tex_format(instr->sampler_dim),
1564 .texture_handle = texture_index,
1565 .sampler_handle = sampler_index,
1566
1567 /* TODO: Regalloc it in */
1568 .swizzle = SWIZZLE_XYZW,
1569 .mask = 0xF,
1570
1571 /* TODO: half */
1572 .in_reg_full = 1,
1573 .in_reg_swizzle = position_swizzle,
1574 .out_full = 1,
1575
1576 /* Always 1 */
1577 .unknown7 = 1,
1578 }
1579 };
1580
1581 /* Set registers to read and write from the same place */
1582 ins.texture.in_reg_select = in_reg;
1583 ins.texture.out_reg_select = out_reg;
1584
1585 /* Setup bias/LOD if necessary. Only register mode support right now.
1586 * TODO: Immediate mode for performance gains */
1587
1588 bool needs_lod =
1589 instr->op == nir_texop_txb ||
1590 instr->op == nir_texop_txl ||
1591 instr->op == nir_texop_txf;
1592
1593 if (needs_lod) {
1594 ins.texture.lod_register = true;
1595
1596 midgard_tex_register_select sel = {
1597 .select = in_reg,
1598 .full = 1,
1599
1600 /* w */
1601 .component_lo = 1,
1602 .component_hi = 1
1603 };
1604
1605 uint8_t packed;
1606 memcpy(&packed, &sel, sizeof(packed));
1607 ins.texture.bias = packed;
1608 }
1609
1610 emit_mir_instruction(ctx, ins);
1611
1612 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1613
1614 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1615 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1616 ctx->texture_index[reg] = o_index;
1617
1618 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1619 emit_mir_instruction(ctx, ins2);
1620
1621 /* Used for .cont and .last hinting */
1622 ctx->texture_op_count++;
1623 }
1624
1625 static void
1626 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1627 {
1628 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1629 * generic tex in some cases (which confuses the hardware) */
1630
1631 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1632
1633 if (is_vertex && instr->op == nir_texop_tex)
1634 instr->op = nir_texop_txl;
1635
1636 switch (instr->op) {
1637 case nir_texop_tex:
1638 case nir_texop_txb:
1639 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1640 break;
1641 case nir_texop_txl:
1642 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1643 break;
1644 case nir_texop_txf:
1645 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1646 break;
1647 case nir_texop_txs:
1648 emit_sysval_read(ctx, &instr->instr);
1649 break;
1650 default:
1651 unreachable("Unhanlded texture op");
1652 }
1653 }
1654
1655 static void
1656 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1657 {
1658 switch (instr->type) {
1659 case nir_jump_break: {
1660 /* Emit a branch out of the loop */
1661 struct midgard_instruction br = v_branch(false, false);
1662 br.branch.target_type = TARGET_BREAK;
1663 br.branch.target_break = ctx->current_loop_depth;
1664 emit_mir_instruction(ctx, br);
1665
1666 DBG("break..\n");
1667 break;
1668 }
1669
1670 default:
1671 DBG("Unknown jump type %d\n", instr->type);
1672 break;
1673 }
1674 }
1675
1676 static void
1677 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1678 {
1679 switch (instr->type) {
1680 case nir_instr_type_load_const:
1681 emit_load_const(ctx, nir_instr_as_load_const(instr));
1682 break;
1683
1684 case nir_instr_type_intrinsic:
1685 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1686 break;
1687
1688 case nir_instr_type_alu:
1689 emit_alu(ctx, nir_instr_as_alu(instr));
1690 break;
1691
1692 case nir_instr_type_tex:
1693 emit_tex(ctx, nir_instr_as_tex(instr));
1694 break;
1695
1696 case nir_instr_type_jump:
1697 emit_jump(ctx, nir_instr_as_jump(instr));
1698 break;
1699
1700 case nir_instr_type_ssa_undef:
1701 /* Spurious */
1702 break;
1703
1704 default:
1705 DBG("Unhandled instruction type\n");
1706 break;
1707 }
1708 }
1709
1710
1711 /* ALU instructions can inline or embed constants, which decreases register
1712 * pressure and saves space. */
1713
1714 #define CONDITIONAL_ATTACH(src) { \
1715 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1716 \
1717 if (entry) { \
1718 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1719 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1720 } \
1721 }
1722
1723 static void
1724 inline_alu_constants(compiler_context *ctx)
1725 {
1726 mir_foreach_instr(ctx, alu) {
1727 /* Other instructions cannot inline constants */
1728 if (alu->type != TAG_ALU_4) continue;
1729
1730 /* If there is already a constant here, we can do nothing */
1731 if (alu->has_constants) continue;
1732
1733 /* It makes no sense to inline constants on a branch */
1734 if (alu->compact_branch || alu->prepacked_branch) continue;
1735
1736 CONDITIONAL_ATTACH(src0);
1737
1738 if (!alu->has_constants) {
1739 CONDITIONAL_ATTACH(src1)
1740 } else if (!alu->inline_constant) {
1741 /* Corner case: _two_ vec4 constants, for instance with a
1742 * csel. For this case, we can only use a constant
1743 * register for one, we'll have to emit a move for the
1744 * other. Note, if both arguments are constants, then
1745 * necessarily neither argument depends on the value of
1746 * any particular register. As the destination register
1747 * will be wiped, that means we can spill the constant
1748 * to the destination register.
1749 */
1750
1751 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1752 unsigned scratch = alu->ssa_args.dest;
1753
1754 if (entry) {
1755 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1756 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1757
1758 /* Force a break XXX Defer r31 writes */
1759 ins.unit = UNIT_VLUT;
1760
1761 /* Set the source */
1762 alu->ssa_args.src1 = scratch;
1763
1764 /* Inject us -before- the last instruction which set r31 */
1765 mir_insert_instruction_before(mir_prev_op(alu), ins);
1766 }
1767 }
1768 }
1769 }
1770
1771 /* Midgard supports two types of constants, embedded constants (128-bit) and
1772 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1773 * constants can be demoted to inline constants, for space savings and
1774 * sometimes a performance boost */
1775
1776 static void
1777 embedded_to_inline_constant(compiler_context *ctx)
1778 {
1779 mir_foreach_instr(ctx, ins) {
1780 if (!ins->has_constants) continue;
1781
1782 if (ins->ssa_args.inline_constant) continue;
1783
1784 /* Blend constants must not be inlined by definition */
1785 if (ins->has_blend_constant) continue;
1786
1787 /* src1 cannot be an inline constant due to encoding
1788 * restrictions. So, if possible we try to flip the arguments
1789 * in that case */
1790
1791 int op = ins->alu.op;
1792
1793 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1794 switch (op) {
1795 /* These ops require an operational change to flip
1796 * their arguments TODO */
1797 case midgard_alu_op_flt:
1798 case midgard_alu_op_fle:
1799 case midgard_alu_op_ilt:
1800 case midgard_alu_op_ile:
1801 case midgard_alu_op_fcsel:
1802 case midgard_alu_op_icsel:
1803 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1804 default:
1805 break;
1806 }
1807
1808 if (alu_opcode_props[op].props & OP_COMMUTES) {
1809 /* Flip the SSA numbers */
1810 ins->ssa_args.src0 = ins->ssa_args.src1;
1811 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1812
1813 /* And flip the modifiers */
1814
1815 unsigned src_temp;
1816
1817 src_temp = ins->alu.src2;
1818 ins->alu.src2 = ins->alu.src1;
1819 ins->alu.src1 = src_temp;
1820 }
1821 }
1822
1823 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1824 /* Extract the source information */
1825
1826 midgard_vector_alu_src *src;
1827 int q = ins->alu.src2;
1828 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1829 src = m;
1830
1831 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1832 int component = src->swizzle & 3;
1833
1834 /* Scale constant appropriately, if we can legally */
1835 uint16_t scaled_constant = 0;
1836
1837 if (midgard_is_integer_op(op)) {
1838 unsigned int *iconstants = (unsigned int *) ins->constants;
1839 scaled_constant = (uint16_t) iconstants[component];
1840
1841 /* Constant overflow after resize */
1842 if (scaled_constant != iconstants[component])
1843 continue;
1844 } else {
1845 float original = (float) ins->constants[component];
1846 scaled_constant = _mesa_float_to_half(original);
1847
1848 /* Check for loss of precision. If this is
1849 * mediump, we don't care, but for a highp
1850 * shader, we need to pay attention. NIR
1851 * doesn't yet tell us which mode we're in!
1852 * Practically this prevents most constants
1853 * from being inlined, sadly. */
1854
1855 float fp32 = _mesa_half_to_float(scaled_constant);
1856
1857 if (fp32 != original)
1858 continue;
1859 }
1860
1861 /* We don't know how to handle these with a constant */
1862
1863 if (src->mod || src->half || src->rep_low || src->rep_high) {
1864 DBG("Bailing inline constant...\n");
1865 continue;
1866 }
1867
1868 /* Make sure that the constant is not itself a
1869 * vector by checking if all accessed values
1870 * (by the swizzle) are the same. */
1871
1872 uint32_t *cons = (uint32_t *) ins->constants;
1873 uint32_t value = cons[component];
1874
1875 bool is_vector = false;
1876 unsigned mask = effective_writemask(&ins->alu);
1877
1878 for (int c = 1; c < 4; ++c) {
1879 /* We only care if this component is actually used */
1880 if (!(mask & (1 << c)))
1881 continue;
1882
1883 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1884
1885 if (test != value) {
1886 is_vector = true;
1887 break;
1888 }
1889 }
1890
1891 if (is_vector)
1892 continue;
1893
1894 /* Get rid of the embedded constant */
1895 ins->has_constants = false;
1896 ins->ssa_args.src1 = SSA_UNUSED_0;
1897 ins->ssa_args.inline_constant = true;
1898 ins->inline_constant = scaled_constant;
1899 }
1900 }
1901 }
1902
1903 /* Map normal SSA sources to other SSA sources / fixed registers (like
1904 * uniforms) */
1905
1906 static void
1907 map_ssa_to_alias(compiler_context *ctx, int *ref)
1908 {
1909 /* Sign is used quite deliberately for unused */
1910 if (*ref < 0)
1911 return;
1912
1913 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
1914
1915 if (alias) {
1916 /* Remove entry in leftovers to avoid a redunant fmov */
1917
1918 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
1919
1920 if (leftover)
1921 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
1922
1923 /* Assign the alias map */
1924 *ref = alias - 1;
1925 return;
1926 }
1927 }
1928
1929 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
1930 * texture pipeline */
1931
1932 static bool
1933 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
1934 {
1935 bool progress = false;
1936
1937 mir_foreach_instr_in_block_safe(block, ins) {
1938 if (ins->type != TAG_ALU_4) continue;
1939 if (ins->compact_branch) continue;
1940
1941 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1942 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
1943
1944 mir_remove_instruction(ins);
1945 progress = true;
1946 }
1947
1948 return progress;
1949 }
1950
1951 /* Dead code elimination for branches at the end of a block - only one branch
1952 * per block is legal semantically */
1953
1954 static void
1955 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1956 {
1957 bool branched = false;
1958
1959 mir_foreach_instr_in_block_safe(block, ins) {
1960 if (!midgard_is_branch_unit(ins->unit)) continue;
1961
1962 /* We ignore prepacked branches since the fragment epilogue is
1963 * just generally special */
1964 if (ins->prepacked_branch) continue;
1965
1966 /* Discards are similarly special and may not correspond to the
1967 * end of a block */
1968
1969 if (ins->branch.target_type == TARGET_DISCARD) continue;
1970
1971 if (branched) {
1972 /* We already branched, so this is dead */
1973 mir_remove_instruction(ins);
1974 }
1975
1976 branched = true;
1977 }
1978 }
1979
1980 static bool
1981 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
1982 {
1983 /* abs or neg */
1984 if (!is_int && src.mod) return true;
1985
1986 /* swizzle */
1987 for (unsigned c = 0; c < 4; ++c) {
1988 if (!(mask & (1 << c))) continue;
1989 if (((src.swizzle >> (2*c)) & 3) != c) return true;
1990 }
1991
1992 return false;
1993 }
1994
1995 static bool
1996 mir_nontrivial_source2_mod(midgard_instruction *ins)
1997 {
1998 unsigned mask = squeeze_writemask(ins->alu.mask);
1999 bool is_int = midgard_is_integer_op(ins->alu.op);
2000
2001 midgard_vector_alu_src src2 =
2002 vector_alu_from_unsigned(ins->alu.src2);
2003
2004 return mir_nontrivial_mod(src2, is_int, mask);
2005 }
2006
2007 static bool
2008 mir_nontrivial_outmod(midgard_instruction *ins)
2009 {
2010 bool is_int = midgard_is_integer_op(ins->alu.op);
2011 unsigned mod = ins->alu.outmod;
2012
2013 if (is_int)
2014 return mod != midgard_outmod_int_wrap;
2015 else
2016 return mod != midgard_outmod_none;
2017 }
2018
2019 static bool
2020 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2021 {
2022 bool progress = false;
2023
2024 mir_foreach_instr_in_block_safe(block, ins) {
2025 if (ins->type != TAG_ALU_4) continue;
2026 if (!OP_IS_MOVE(ins->alu.op)) continue;
2027
2028 unsigned from = ins->ssa_args.src1;
2029 unsigned to = ins->ssa_args.dest;
2030
2031 /* We only work on pure SSA */
2032
2033 if (to >= SSA_FIXED_MINIMUM) continue;
2034 if (from >= SSA_FIXED_MINIMUM) continue;
2035 if (to >= ctx->func->impl->ssa_alloc) continue;
2036 if (from >= ctx->func->impl->ssa_alloc) continue;
2037
2038 /* Constant propagation is not handled here, either */
2039 if (ins->ssa_args.inline_constant) continue;
2040 if (ins->has_constants) continue;
2041
2042 if (mir_nontrivial_source2_mod(ins)) continue;
2043 if (mir_nontrivial_outmod(ins)) continue;
2044
2045 /* We're clear -- rewrite */
2046 mir_rewrite_index_src(ctx, to, from);
2047 mir_remove_instruction(ins);
2048 progress |= true;
2049 }
2050
2051 return progress;
2052 }
2053
2054 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2055 * the move can be propagated away entirely */
2056
2057 static bool
2058 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2059 {
2060 /* Nothing to do */
2061 if (comp == midgard_outmod_none)
2062 return true;
2063
2064 if (*outmod == midgard_outmod_none) {
2065 *outmod = comp;
2066 return true;
2067 }
2068
2069 /* TODO: Compose rules */
2070 return false;
2071 }
2072
2073 static bool
2074 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2075 {
2076 bool progress = false;
2077
2078 mir_foreach_instr_in_block_safe(block, ins) {
2079 if (ins->type != TAG_ALU_4) continue;
2080 if (ins->alu.op != midgard_alu_op_fmov) continue;
2081 if (ins->alu.outmod != midgard_outmod_pos) continue;
2082
2083 /* TODO: Registers? */
2084 unsigned src = ins->ssa_args.src1;
2085 if (src >= ctx->func->impl->ssa_alloc) continue;
2086 assert(!mir_has_multiple_writes(ctx, src));
2087
2088 /* There might be a source modifier, too */
2089 if (mir_nontrivial_source2_mod(ins)) continue;
2090
2091 /* Backpropagate the modifier */
2092 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2093 if (v->type != TAG_ALU_4) continue;
2094 if (v->ssa_args.dest != src) continue;
2095
2096 /* Can we even take a float outmod? */
2097 if (midgard_is_integer_out_op(v->alu.op)) continue;
2098
2099 midgard_outmod_float temp = v->alu.outmod;
2100 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2101
2102 /* Throw in the towel.. */
2103 if (!progress) break;
2104
2105 /* Otherwise, transfer the modifier */
2106 v->alu.outmod = temp;
2107 ins->alu.outmod = midgard_outmod_none;
2108
2109 break;
2110 }
2111 }
2112
2113 return progress;
2114 }
2115
2116 static bool
2117 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2118 {
2119 bool progress = false;
2120
2121 mir_foreach_instr_in_block_safe(block, ins) {
2122 if (ins->type != TAG_ALU_4) continue;
2123 if (!OP_IS_MOVE(ins->alu.op)) continue;
2124
2125 unsigned from = ins->ssa_args.src1;
2126 unsigned to = ins->ssa_args.dest;
2127
2128 /* Make sure it's simple enough for us to handle */
2129
2130 if (from >= SSA_FIXED_MINIMUM) continue;
2131 if (from >= ctx->func->impl->ssa_alloc) continue;
2132 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2133 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2134
2135 bool eliminated = false;
2136
2137 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2138 /* The texture registers are not SSA so be careful.
2139 * Conservatively, just stop if we hit a texture op
2140 * (even if it may not write) to where we are */
2141
2142 if (v->type != TAG_ALU_4)
2143 break;
2144
2145 if (v->ssa_args.dest == from) {
2146 /* We don't want to track partial writes ... */
2147 if (v->alu.mask == 0xF) {
2148 v->ssa_args.dest = to;
2149 eliminated = true;
2150 }
2151
2152 break;
2153 }
2154 }
2155
2156 if (eliminated)
2157 mir_remove_instruction(ins);
2158
2159 progress |= eliminated;
2160 }
2161
2162 return progress;
2163 }
2164
2165 /* The following passes reorder MIR instructions to enable better scheduling */
2166
2167 static void
2168 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2169 {
2170 mir_foreach_instr_in_block_safe(block, ins) {
2171 if (ins->type != TAG_LOAD_STORE_4) continue;
2172
2173 /* We've found a load/store op. Check if next is also load/store. */
2174 midgard_instruction *next_op = mir_next_op(ins);
2175 if (&next_op->link != &block->instructions) {
2176 if (next_op->type == TAG_LOAD_STORE_4) {
2177 /* If so, we're done since we're a pair */
2178 ins = mir_next_op(ins);
2179 continue;
2180 }
2181
2182 /* Maximum search distance to pair, to avoid register pressure disasters */
2183 int search_distance = 8;
2184
2185 /* Otherwise, we have an orphaned load/store -- search for another load */
2186 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2187 /* Terminate search if necessary */
2188 if (!(search_distance--)) break;
2189
2190 if (c->type != TAG_LOAD_STORE_4) continue;
2191
2192 /* Stores cannot be reordered, since they have
2193 * dependencies. For the same reason, indirect
2194 * loads cannot be reordered as their index is
2195 * loaded in r27.w */
2196
2197 if (OP_IS_STORE(c->load_store.op)) continue;
2198
2199 /* It appears the 0x800 bit is set whenever a
2200 * load is direct, unset when it is indirect.
2201 * Skip indirect loads. */
2202
2203 if (!(c->load_store.unknown & 0x800)) continue;
2204
2205 /* We found one! Move it up to pair and remove it from the old location */
2206
2207 mir_insert_instruction_before(ins, *c);
2208 mir_remove_instruction(c);
2209
2210 break;
2211 }
2212 }
2213 }
2214 }
2215
2216 /* If there are leftovers after the below pass, emit actual fmov
2217 * instructions for the slow-but-correct path */
2218
2219 static void
2220 emit_leftover_move(compiler_context *ctx)
2221 {
2222 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2223 int base = ((uintptr_t) leftover->key) - 1;
2224 int mapped = base;
2225
2226 map_ssa_to_alias(ctx, &mapped);
2227 EMIT(mov, mapped, blank_alu_src, base);
2228 }
2229 }
2230
2231 static void
2232 actualise_ssa_to_alias(compiler_context *ctx)
2233 {
2234 mir_foreach_instr(ctx, ins) {
2235 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2236 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2237 }
2238
2239 emit_leftover_move(ctx);
2240 }
2241
2242 static void
2243 emit_fragment_epilogue(compiler_context *ctx)
2244 {
2245 /* Special case: writing out constants requires us to include the move
2246 * explicitly now, so shove it into r0 */
2247
2248 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2249
2250 if (constant_value) {
2251 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2252 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2253 emit_mir_instruction(ctx, ins);
2254 }
2255
2256 /* Perform the actual fragment writeout. We have two writeout/branch
2257 * instructions, forming a loop until writeout is successful as per the
2258 * docs. TODO: gl_FragDepth */
2259
2260 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2261 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2262 }
2263
2264 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
2265 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
2266 * with the int8 analogue to the fragment epilogue */
2267
2268 static void
2269 emit_blend_epilogue(compiler_context *ctx)
2270 {
2271 /* vmul.fmul.none.fulllow hr48, r0, #255 */
2272
2273 midgard_instruction scale = {
2274 .type = TAG_ALU_4,
2275 .unit = UNIT_VMUL,
2276 .inline_constant = _mesa_float_to_half(255.0),
2277 .ssa_args = {
2278 .src0 = SSA_FIXED_REGISTER(0),
2279 .src1 = SSA_UNUSED_0,
2280 .dest = SSA_FIXED_REGISTER(24),
2281 .inline_constant = true
2282 },
2283 .alu = {
2284 .op = midgard_alu_op_fmul,
2285 .reg_mode = midgard_reg_mode_32,
2286 .dest_override = midgard_dest_override_lower,
2287 .mask = 0xFF,
2288 .src1 = vector_alu_srco_unsigned(blank_alu_src),
2289 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2290 }
2291 };
2292
2293 emit_mir_instruction(ctx, scale);
2294
2295 /* vadd.f2u_rte.pos.low hr0, hr48, #0 */
2296
2297 midgard_vector_alu_src alu_src = blank_alu_src;
2298 alu_src.half = true;
2299
2300 midgard_instruction f2u_rte = {
2301 .type = TAG_ALU_4,
2302 .ssa_args = {
2303 .src0 = SSA_FIXED_REGISTER(24),
2304 .src1 = SSA_UNUSED_0,
2305 .dest = SSA_FIXED_REGISTER(0),
2306 .inline_constant = true
2307 },
2308 .alu = {
2309 .op = midgard_alu_op_f2u_rte,
2310 .reg_mode = midgard_reg_mode_16,
2311 .dest_override = midgard_dest_override_lower,
2312 .outmod = midgard_outmod_pos,
2313 .mask = 0xF,
2314 .src1 = vector_alu_srco_unsigned(alu_src),
2315 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2316 }
2317 };
2318
2319 emit_mir_instruction(ctx, f2u_rte);
2320
2321 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2322 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2323 }
2324
2325 static midgard_block *
2326 emit_block(compiler_context *ctx, nir_block *block)
2327 {
2328 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2329 list_addtail(&this_block->link, &ctx->blocks);
2330
2331 this_block->is_scheduled = false;
2332 ++ctx->block_count;
2333
2334 ctx->texture_index[0] = -1;
2335 ctx->texture_index[1] = -1;
2336
2337 /* Add us as a successor to the block we are following */
2338 if (ctx->current_block)
2339 midgard_block_add_successor(ctx->current_block, this_block);
2340
2341 /* Set up current block */
2342 list_inithead(&this_block->instructions);
2343 ctx->current_block = this_block;
2344
2345 nir_foreach_instr(instr, block) {
2346 emit_instr(ctx, instr);
2347 ++ctx->instruction_count;
2348 }
2349
2350 inline_alu_constants(ctx);
2351 embedded_to_inline_constant(ctx);
2352
2353 /* Perform heavylifting for aliasing */
2354 actualise_ssa_to_alias(ctx);
2355
2356 midgard_pair_load_store(ctx, this_block);
2357
2358 /* Append fragment shader epilogue (value writeout) */
2359 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2360 if (block == nir_impl_last_block(ctx->func->impl)) {
2361 if (ctx->is_blend)
2362 emit_blend_epilogue(ctx);
2363 else
2364 emit_fragment_epilogue(ctx);
2365 }
2366 }
2367
2368 if (block == nir_start_block(ctx->func->impl))
2369 ctx->initial_block = this_block;
2370
2371 if (block == nir_impl_last_block(ctx->func->impl))
2372 ctx->final_block = this_block;
2373
2374 /* Allow the next control flow to access us retroactively, for
2375 * branching etc */
2376 ctx->current_block = this_block;
2377
2378 /* Document the fallthrough chain */
2379 ctx->previous_source_block = this_block;
2380
2381 return this_block;
2382 }
2383
2384 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2385
2386 static void
2387 emit_if(struct compiler_context *ctx, nir_if *nif)
2388 {
2389 /* Conditional branches expect the condition in r31.w; emit a move for
2390 * that in the _previous_ block (which is the current block). */
2391 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2392
2393 /* Speculatively emit the branch, but we can't fill it in until later */
2394 EMIT(branch, true, true);
2395 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2396
2397 /* Emit the two subblocks */
2398 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2399
2400 /* Emit a jump from the end of the then block to the end of the else */
2401 EMIT(branch, false, false);
2402 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2403
2404 /* Emit second block, and check if it's empty */
2405
2406 int else_idx = ctx->block_count;
2407 int count_in = ctx->instruction_count;
2408 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2409 int after_else_idx = ctx->block_count;
2410
2411 /* Now that we have the subblocks emitted, fix up the branches */
2412
2413 assert(then_block);
2414 assert(else_block);
2415
2416 if (ctx->instruction_count == count_in) {
2417 /* The else block is empty, so don't emit an exit jump */
2418 mir_remove_instruction(then_exit);
2419 then_branch->branch.target_block = after_else_idx;
2420 } else {
2421 then_branch->branch.target_block = else_idx;
2422 then_exit->branch.target_block = after_else_idx;
2423 }
2424 }
2425
2426 static void
2427 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2428 {
2429 /* Remember where we are */
2430 midgard_block *start_block = ctx->current_block;
2431
2432 /* Allocate a loop number, growing the current inner loop depth */
2433 int loop_idx = ++ctx->current_loop_depth;
2434
2435 /* Get index from before the body so we can loop back later */
2436 int start_idx = ctx->block_count;
2437
2438 /* Emit the body itself */
2439 emit_cf_list(ctx, &nloop->body);
2440
2441 /* Branch back to loop back */
2442 struct midgard_instruction br_back = v_branch(false, false);
2443 br_back.branch.target_block = start_idx;
2444 emit_mir_instruction(ctx, br_back);
2445
2446 /* Mark down that branch in the graph. Note that we're really branching
2447 * to the block *after* we started in. TODO: Why doesn't the branch
2448 * itself have an off-by-one then...? */
2449 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2450
2451 /* Find the index of the block about to follow us (note: we don't add
2452 * one; blocks are 0-indexed so we get a fencepost problem) */
2453 int break_block_idx = ctx->block_count;
2454
2455 /* Fix up the break statements we emitted to point to the right place,
2456 * now that we can allocate a block number for them */
2457
2458 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2459 mir_foreach_instr_in_block(block, ins) {
2460 if (ins->type != TAG_ALU_4) continue;
2461 if (!ins->compact_branch) continue;
2462 if (ins->prepacked_branch) continue;
2463
2464 /* We found a branch -- check the type to see if we need to do anything */
2465 if (ins->branch.target_type != TARGET_BREAK) continue;
2466
2467 /* It's a break! Check if it's our break */
2468 if (ins->branch.target_break != loop_idx) continue;
2469
2470 /* Okay, cool, we're breaking out of this loop.
2471 * Rewrite from a break to a goto */
2472
2473 ins->branch.target_type = TARGET_GOTO;
2474 ins->branch.target_block = break_block_idx;
2475 }
2476 }
2477
2478 /* Now that we've finished emitting the loop, free up the depth again
2479 * so we play nice with recursion amid nested loops */
2480 --ctx->current_loop_depth;
2481 }
2482
2483 static midgard_block *
2484 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2485 {
2486 midgard_block *start_block = NULL;
2487
2488 foreach_list_typed(nir_cf_node, node, node, list) {
2489 switch (node->type) {
2490 case nir_cf_node_block: {
2491 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2492
2493 if (!start_block)
2494 start_block = block;
2495
2496 break;
2497 }
2498
2499 case nir_cf_node_if:
2500 emit_if(ctx, nir_cf_node_as_if(node));
2501 break;
2502
2503 case nir_cf_node_loop:
2504 emit_loop(ctx, nir_cf_node_as_loop(node));
2505 break;
2506
2507 case nir_cf_node_function:
2508 assert(0);
2509 break;
2510 }
2511 }
2512
2513 return start_block;
2514 }
2515
2516 /* Due to lookahead, we need to report the first tag executed in the command
2517 * stream and in branch targets. An initial block might be empty, so iterate
2518 * until we find one that 'works' */
2519
2520 static unsigned
2521 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2522 {
2523 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2524
2525 unsigned first_tag = 0;
2526
2527 do {
2528 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2529
2530 if (initial_bundle) {
2531 first_tag = initial_bundle->tag;
2532 break;
2533 }
2534
2535 /* Initial block is empty, try the next block */
2536 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2537 } while(initial_block != NULL);
2538
2539 assert(first_tag);
2540 return first_tag;
2541 }
2542
2543 int
2544 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2545 {
2546 struct util_dynarray *compiled = &program->compiled;
2547
2548 midgard_debug = debug_get_option_midgard_debug();
2549
2550 compiler_context ictx = {
2551 .nir = nir,
2552 .stage = nir->info.stage,
2553
2554 .is_blend = is_blend,
2555 .blend_constant_offset = -1,
2556
2557 .alpha_ref = program->alpha_ref
2558 };
2559
2560 compiler_context *ctx = &ictx;
2561
2562 /* TODO: Decide this at runtime */
2563 ctx->uniform_cutoff = 8;
2564
2565 /* Initialize at a global (not block) level hash tables */
2566
2567 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2568 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2569 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2570 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2571 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2572
2573 /* Record the varying mapping for the command stream's bookkeeping */
2574
2575 struct exec_list *varyings =
2576 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2577
2578 unsigned max_varying = 0;
2579 nir_foreach_variable(var, varyings) {
2580 unsigned loc = var->data.driver_location;
2581 unsigned sz = glsl_type_size(var->type, FALSE);
2582
2583 for (int c = 0; c < sz; ++c) {
2584 program->varyings[loc + c] = var->data.location + c;
2585 max_varying = MAX2(max_varying, loc + c);
2586 }
2587 }
2588
2589 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2590 * (so we don't accidentally duplicate the epilogue since mesa/st has
2591 * messed with our I/O quite a bit already) */
2592
2593 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2594
2595 if (ctx->stage == MESA_SHADER_VERTEX)
2596 NIR_PASS_V(nir, nir_lower_viewport_transform);
2597
2598 NIR_PASS_V(nir, nir_lower_var_copies);
2599 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2600 NIR_PASS_V(nir, nir_split_var_copies);
2601 NIR_PASS_V(nir, nir_lower_var_copies);
2602 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2603 NIR_PASS_V(nir, nir_lower_var_copies);
2604 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2605
2606 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2607
2608 /* Optimisation passes */
2609
2610 optimise_nir(nir);
2611
2612 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2613 nir_print_shader(nir, stdout);
2614 }
2615
2616 /* Assign sysvals and counts, now that we're sure
2617 * (post-optimisation) */
2618
2619 midgard_nir_assign_sysvals(ctx, nir);
2620
2621 program->uniform_count = nir->num_uniforms;
2622 program->sysval_count = ctx->sysval_count;
2623 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2624
2625 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2626 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2627
2628 nir_foreach_function(func, nir) {
2629 if (!func->impl)
2630 continue;
2631
2632 list_inithead(&ctx->blocks);
2633 ctx->block_count = 0;
2634 ctx->func = func;
2635
2636 emit_cf_list(ctx, &func->impl->body);
2637 emit_block(ctx, func->impl->end_block);
2638
2639 break; /* TODO: Multi-function shaders */
2640 }
2641
2642 util_dynarray_init(compiled, NULL);
2643
2644 /* MIR-level optimizations */
2645
2646 bool progress = false;
2647
2648 do {
2649 progress = false;
2650
2651 mir_foreach_block(ctx, block) {
2652 progress |= midgard_opt_pos_propagate(ctx, block);
2653 progress |= midgard_opt_copy_prop(ctx, block);
2654 progress |= midgard_opt_copy_prop_tex(ctx, block);
2655 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2656 }
2657 } while (progress);
2658
2659 /* Nested control-flow can result in dead branches at the end of the
2660 * block. This messes with our analysis and is just dead code, so cull
2661 * them */
2662 mir_foreach_block(ctx, block) {
2663 midgard_opt_cull_dead_branch(ctx, block);
2664 }
2665
2666 /* Schedule! */
2667 schedule_program(ctx);
2668
2669 /* Now that all the bundles are scheduled and we can calculate block
2670 * sizes, emit actual branch instructions rather than placeholders */
2671
2672 int br_block_idx = 0;
2673
2674 mir_foreach_block(ctx, block) {
2675 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2676 for (int c = 0; c < bundle->instruction_count; ++c) {
2677 midgard_instruction *ins = bundle->instructions[c];
2678
2679 if (!midgard_is_branch_unit(ins->unit)) continue;
2680
2681 if (ins->prepacked_branch) continue;
2682
2683 /* Parse some basic branch info */
2684 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2685 bool is_conditional = ins->branch.conditional;
2686 bool is_inverted = ins->branch.invert_conditional;
2687 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2688
2689 /* Determine the block we're jumping to */
2690 int target_number = ins->branch.target_block;
2691
2692 /* Report the destination tag */
2693 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2694
2695 /* Count up the number of quadwords we're
2696 * jumping over = number of quadwords until
2697 * (br_block_idx, target_number) */
2698
2699 int quadword_offset = 0;
2700
2701 if (is_discard) {
2702 /* Jump to the end of the shader. We
2703 * need to include not only the
2704 * following blocks, but also the
2705 * contents of our current block (since
2706 * discard can come in the middle of
2707 * the block) */
2708
2709 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2710
2711 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2712 quadword_offset += quadword_size(bun->tag);
2713 }
2714
2715 mir_foreach_block_from(ctx, blk, b) {
2716 quadword_offset += b->quadword_count;
2717 }
2718
2719 } else if (target_number > br_block_idx) {
2720 /* Jump forward */
2721
2722 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2723 midgard_block *blk = mir_get_block(ctx, idx);
2724 assert(blk);
2725
2726 quadword_offset += blk->quadword_count;
2727 }
2728 } else {
2729 /* Jump backwards */
2730
2731 for (int idx = br_block_idx; idx >= target_number; --idx) {
2732 midgard_block *blk = mir_get_block(ctx, idx);
2733 assert(blk);
2734
2735 quadword_offset -= blk->quadword_count;
2736 }
2737 }
2738
2739 /* Unconditional extended branches (far jumps)
2740 * have issues, so we always use a conditional
2741 * branch, setting the condition to always for
2742 * unconditional. For compact unconditional
2743 * branches, cond isn't used so it doesn't
2744 * matter what we pick. */
2745
2746 midgard_condition cond =
2747 !is_conditional ? midgard_condition_always :
2748 is_inverted ? midgard_condition_false :
2749 midgard_condition_true;
2750
2751 midgard_jmp_writeout_op op =
2752 is_discard ? midgard_jmp_writeout_op_discard :
2753 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2754 midgard_jmp_writeout_op_branch_cond;
2755
2756 if (!is_compact) {
2757 midgard_branch_extended branch =
2758 midgard_create_branch_extended(
2759 cond, op,
2760 dest_tag,
2761 quadword_offset);
2762
2763 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2764 } else if (is_conditional || is_discard) {
2765 midgard_branch_cond branch = {
2766 .op = op,
2767 .dest_tag = dest_tag,
2768 .offset = quadword_offset,
2769 .cond = cond
2770 };
2771
2772 assert(branch.offset == quadword_offset);
2773
2774 memcpy(&ins->br_compact, &branch, sizeof(branch));
2775 } else {
2776 assert(op == midgard_jmp_writeout_op_branch_uncond);
2777
2778 midgard_branch_uncond branch = {
2779 .op = op,
2780 .dest_tag = dest_tag,
2781 .offset = quadword_offset,
2782 .unknown = 1
2783 };
2784
2785 assert(branch.offset == quadword_offset);
2786
2787 memcpy(&ins->br_compact, &branch, sizeof(branch));
2788 }
2789 }
2790 }
2791
2792 ++br_block_idx;
2793 }
2794
2795 /* Emit flat binary from the instruction arrays. Iterate each block in
2796 * sequence. Save instruction boundaries such that lookahead tags can
2797 * be assigned easily */
2798
2799 /* Cache _all_ bundles in source order for lookahead across failed branches */
2800
2801 int bundle_count = 0;
2802 mir_foreach_block(ctx, block) {
2803 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2804 }
2805 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2806 int bundle_idx = 0;
2807 mir_foreach_block(ctx, block) {
2808 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2809 source_order_bundles[bundle_idx++] = bundle;
2810 }
2811 }
2812
2813 int current_bundle = 0;
2814
2815 /* Midgard prefetches instruction types, so during emission we
2816 * need to lookahead. Unless this is the last instruction, in
2817 * which we return 1. Or if this is the second to last and the
2818 * last is an ALU, then it's also 1... */
2819
2820 mir_foreach_block(ctx, block) {
2821 mir_foreach_bundle_in_block(block, bundle) {
2822 int lookahead = 1;
2823
2824 if (current_bundle + 1 < bundle_count) {
2825 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2826
2827 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2828 lookahead = 1;
2829 } else {
2830 lookahead = next;
2831 }
2832 }
2833
2834 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2835 ++current_bundle;
2836 }
2837
2838 /* TODO: Free deeper */
2839 //util_dynarray_fini(&block->instructions);
2840 }
2841
2842 free(source_order_bundles);
2843
2844 /* Report the very first tag executed */
2845 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2846
2847 /* Deal with off-by-one related to the fencepost problem */
2848 program->work_register_count = ctx->work_registers + 1;
2849
2850 program->can_discard = ctx->can_discard;
2851 program->uniform_cutoff = ctx->uniform_cutoff;
2852
2853 program->blend_patch_offset = ctx->blend_constant_offset;
2854
2855 if (midgard_debug & MIDGARD_DBG_SHADERS)
2856 disassemble_midgard(program->compiled.data, program->compiled.size);
2857
2858 return 0;
2859 }