panfrost/midgard: Emit cubemap coordinates
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287 M_STORE(store_cubemap_coords);
288
289 static midgard_instruction
290 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
291 {
292 midgard_branch_cond branch = {
293 .op = op,
294 .dest_tag = tag,
295 .offset = offset,
296 .cond = cond
297 };
298
299 uint16_t compact;
300 memcpy(&compact, &branch, sizeof(branch));
301
302 midgard_instruction ins = {
303 .type = TAG_ALU_4,
304 .unit = ALU_ENAB_BR_COMPACT,
305 .prepacked_branch = true,
306 .compact_branch = true,
307 .br_compact = compact
308 };
309
310 if (op == midgard_jmp_writeout_op_writeout)
311 ins.writeout = true;
312
313 return ins;
314 }
315
316 static midgard_instruction
317 v_branch(bool conditional, bool invert)
318 {
319 midgard_instruction ins = {
320 .type = TAG_ALU_4,
321 .unit = ALU_ENAB_BRANCH,
322 .compact_branch = true,
323 .branch = {
324 .conditional = conditional,
325 .invert_conditional = invert
326 }
327 };
328
329 return ins;
330 }
331
332 static midgard_branch_extended
333 midgard_create_branch_extended( midgard_condition cond,
334 midgard_jmp_writeout_op op,
335 unsigned dest_tag,
336 signed quadword_offset)
337 {
338 /* For unclear reasons, the condition code is repeated 8 times */
339 uint16_t duplicated_cond =
340 (cond << 14) |
341 (cond << 12) |
342 (cond << 10) |
343 (cond << 8) |
344 (cond << 6) |
345 (cond << 4) |
346 (cond << 2) |
347 (cond << 0);
348
349 midgard_branch_extended branch = {
350 .op = op,
351 .dest_tag = dest_tag,
352 .offset = quadword_offset,
353 .cond = duplicated_cond
354 };
355
356 return branch;
357 }
358
359 typedef struct midgard_bundle {
360 /* Tag for the overall bundle */
361 int tag;
362
363 /* Instructions contained by the bundle */
364 int instruction_count;
365 midgard_instruction instructions[5];
366
367 /* Bundle-wide ALU configuration */
368 int padding;
369 int control;
370 bool has_embedded_constants;
371 float constants[4];
372 bool has_blend_constant;
373
374 uint16_t register_words[8];
375 int register_words_count;
376
377 uint64_t body_words[8];
378 size_t body_size[8];
379 int body_words_count;
380 } midgard_bundle;
381
382 typedef struct compiler_context {
383 nir_shader *nir;
384 gl_shader_stage stage;
385
386 /* Is internally a blend shader? Depends on stage == FRAGMENT */
387 bool is_blend;
388
389 /* Tracking for blend constant patching */
390 int blend_constant_number;
391 int blend_constant_offset;
392
393 /* Current NIR function */
394 nir_function *func;
395
396 /* Unordered list of midgard_blocks */
397 int block_count;
398 struct list_head blocks;
399
400 midgard_block *initial_block;
401 midgard_block *previous_source_block;
402 midgard_block *final_block;
403
404 /* List of midgard_instructions emitted for the current block */
405 midgard_block *current_block;
406
407 /* The index corresponding to the current loop, e.g. for breaks/contineus */
408 int current_loop;
409
410 /* Constants which have been loaded, for later inlining */
411 struct hash_table_u64 *ssa_constants;
412
413 /* SSA indices to be outputted to corresponding varying offset */
414 struct hash_table_u64 *ssa_varyings;
415
416 /* SSA values / registers which have been aliased. Naively, these
417 * demand a fmov output; instead, we alias them in a later pass to
418 * avoid the wasted op.
419 *
420 * A note on encoding: to avoid dynamic memory management here, rather
421 * than ampping to a pointer, we map to the source index; the key
422 * itself is just the destination index. */
423
424 struct hash_table_u64 *ssa_to_alias;
425 struct set *leftover_ssa_to_alias;
426
427 /* Actual SSA-to-register for RA */
428 struct hash_table_u64 *ssa_to_register;
429
430 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
431 struct hash_table_u64 *hash_to_temp;
432 int temp_count;
433 int max_hash;
434
435 /* Uniform IDs for mdg */
436 struct hash_table_u64 *uniform_nir_to_mdg;
437 int uniform_count;
438
439 /* Just the count of the max register used. Higher count => higher
440 * register pressure */
441 int work_registers;
442
443 /* Used for cont/last hinting. Increase when a tex op is added.
444 * Decrease when a tex op is removed. */
445 int texture_op_count;
446
447 /* Mapping of texture register -> SSA index for unaliasing */
448 int texture_index[2];
449
450 /* Count of special uniforms (viewport, etc) in vec4 units */
451 int special_uniforms;
452
453 /* If any path hits a discard instruction */
454 bool can_discard;
455
456 /* The number of uniforms allowable for the fast path */
457 int uniform_cutoff;
458
459 /* Count of instructions emitted from NIR overall, across all blocks */
460 int instruction_count;
461
462 /* Alpha ref value passed in */
463 float alpha_ref;
464
465 /* The index corresponding to the fragment output */
466 unsigned fragment_output;
467 } compiler_context;
468
469 /* Append instruction to end of current block */
470
471 static midgard_instruction *
472 mir_upload_ins(struct midgard_instruction ins)
473 {
474 midgard_instruction *heap = malloc(sizeof(ins));
475 memcpy(heap, &ins, sizeof(ins));
476 return heap;
477 }
478
479 static void
480 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
481 {
482 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
483 }
484
485 static void
486 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
487 {
488 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
489 }
490
491 static void
492 mir_remove_instruction(struct midgard_instruction *ins)
493 {
494 list_del(&ins->link);
495 }
496
497 static midgard_instruction*
498 mir_prev_op(struct midgard_instruction *ins)
499 {
500 return list_last_entry(&(ins->link), midgard_instruction, link);
501 }
502
503 static midgard_instruction*
504 mir_next_op(struct midgard_instruction *ins)
505 {
506 return list_first_entry(&(ins->link), midgard_instruction, link);
507 }
508
509 static midgard_block *
510 mir_next_block(struct midgard_block *blk)
511 {
512 return list_first_entry(&(blk->link), midgard_block, link);
513 }
514
515
516 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
517 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
518
519 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
521 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
524 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
525
526
527 static midgard_instruction *
528 mir_last_in_block(struct midgard_block *block)
529 {
530 return list_last_entry(&block->instructions, struct midgard_instruction, link);
531 }
532
533 static midgard_block *
534 mir_get_block(compiler_context *ctx, int idx)
535 {
536 struct list_head *lst = &ctx->blocks;
537
538 while ((idx--) + 1)
539 lst = lst->next;
540
541 return (struct midgard_block *) lst;
542 }
543
544 /* Pretty printer for internal Midgard IR */
545
546 static void
547 print_mir_source(int source)
548 {
549 if (source >= SSA_FIXED_MINIMUM) {
550 /* Specific register */
551 int reg = SSA_REG_FROM_FIXED(source);
552
553 /* TODO: Moving threshold */
554 if (reg > 16 && reg < 24)
555 printf("u%d", 23 - reg);
556 else
557 printf("r%d", reg);
558 } else {
559 printf("%d", source);
560 }
561 }
562
563 static void
564 print_mir_instruction(midgard_instruction *ins)
565 {
566 printf("\t");
567
568 switch (ins->type) {
569 case TAG_ALU_4: {
570 midgard_alu_op op = ins->alu.op;
571 const char *name = alu_opcode_names[op];
572
573 if (ins->unit)
574 printf("%d.", ins->unit);
575
576 printf("%s", name ? name : "??");
577 break;
578 }
579
580 case TAG_LOAD_STORE_4: {
581 midgard_load_store_op op = ins->load_store.op;
582 const char *name = load_store_opcode_names[op];
583
584 assert(name);
585 printf("%s", name);
586 break;
587 }
588
589 case TAG_TEXTURE_4: {
590 printf("texture");
591 break;
592 }
593
594 default:
595 assert(0);
596 }
597
598 ssa_args *args = &ins->ssa_args;
599
600 printf(" %d, ", args->dest);
601
602 print_mir_source(args->src0);
603 printf(", ");
604
605 if (args->inline_constant)
606 printf("#%d", ins->inline_constant);
607 else
608 print_mir_source(args->src1);
609
610 if (ins->has_constants)
611 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
612
613 printf("\n");
614 }
615
616 static void
617 print_mir_block(midgard_block *block)
618 {
619 printf("{\n");
620
621 mir_foreach_instr_in_block(block, ins) {
622 print_mir_instruction(ins);
623 }
624
625 printf("}\n");
626 }
627
628
629
630 static void
631 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
632 {
633 ins->has_constants = true;
634 memcpy(&ins->constants, constants, 16);
635
636 /* If this is the special blend constant, mark this instruction */
637
638 if (ctx->is_blend && ctx->blend_constant_number == name)
639 ins->has_blend_constant = true;
640 }
641
642 static int
643 glsl_type_size(const struct glsl_type *type)
644 {
645 return glsl_count_attribute_slots(type, false);
646 }
647
648 /* Lower fdot2 to a vector multiplication followed by channel addition */
649 static void
650 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
651 {
652 if (alu->op != nir_op_fdot2)
653 return;
654
655 b->cursor = nir_before_instr(&alu->instr);
656
657 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
658 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
659
660 nir_ssa_def *product = nir_fmul(b, src0, src1);
661
662 nir_ssa_def *sum = nir_fadd(b,
663 nir_channel(b, product, 0),
664 nir_channel(b, product, 1));
665
666 /* Replace the fdot2 with this sum */
667 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
668 }
669
670 static bool
671 midgard_nir_lower_fdot2(nir_shader *shader)
672 {
673 bool progress = false;
674
675 nir_foreach_function(function, shader) {
676 if (!function->impl) continue;
677
678 nir_builder _b;
679 nir_builder *b = &_b;
680 nir_builder_init(b, function->impl);
681
682 nir_foreach_block(block, function->impl) {
683 nir_foreach_instr_safe(instr, block) {
684 if (instr->type != nir_instr_type_alu) continue;
685
686 nir_alu_instr *alu = nir_instr_as_alu(instr);
687 midgard_nir_lower_fdot2_body(b, alu);
688
689 progress |= true;
690 }
691 }
692
693 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
694
695 }
696
697 return progress;
698 }
699
700 static void
701 optimise_nir(nir_shader *nir)
702 {
703 bool progress;
704
705 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
706 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
707
708 nir_lower_tex_options lower_tex_options = {
709 .lower_rect = true
710 };
711
712 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
713
714 do {
715 progress = false;
716
717 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
718 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
719 NIR_PASS(progress, nir, nir_lower_var_copies);
720 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
721
722 NIR_PASS(progress, nir, nir_copy_prop);
723 NIR_PASS(progress, nir, nir_opt_dce);
724 NIR_PASS(progress, nir, nir_opt_dead_cf);
725 NIR_PASS(progress, nir, nir_opt_cse);
726 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
727 NIR_PASS(progress, nir, nir_opt_algebraic);
728 NIR_PASS(progress, nir, nir_opt_constant_folding);
729 NIR_PASS(progress, nir, nir_opt_undef);
730 NIR_PASS(progress, nir, nir_opt_loop_unroll,
731 nir_var_shader_in |
732 nir_var_shader_out |
733 nir_var_function_temp);
734
735 /* TODO: Enable vectorize when merged upstream */
736 // NIR_PASS(progress, nir, nir_opt_vectorize);
737 } while (progress);
738
739 /* Must be run at the end to prevent creation of fsin/fcos ops */
740 NIR_PASS(progress, nir, midgard_nir_scale_trig);
741
742 do {
743 progress = false;
744
745 NIR_PASS(progress, nir, nir_opt_dce);
746 NIR_PASS(progress, nir, nir_opt_algebraic);
747 NIR_PASS(progress, nir, nir_opt_constant_folding);
748 NIR_PASS(progress, nir, nir_copy_prop);
749 } while (progress);
750
751 NIR_PASS(progress, nir, nir_opt_algebraic_late);
752 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
753
754 /* Lower mods for float ops only. Integer ops don't support modifiers
755 * (saturate doesn't make sense on integers, neg/abs require dedicated
756 * instructions) */
757
758 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
759 NIR_PASS(progress, nir, nir_copy_prop);
760 NIR_PASS(progress, nir, nir_opt_dce);
761
762 /* We implement booleans as 32-bit 0/~0 */
763 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
764
765 /* Take us out of SSA */
766 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
767 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
768
769 /* We are a vector architecture; write combine where possible */
770 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
771 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
772
773 NIR_PASS(progress, nir, nir_opt_dce);
774 }
775
776 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
777 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
778 * r0. See the comments in compiler_context */
779
780 static void
781 alias_ssa(compiler_context *ctx, int dest, int src)
782 {
783 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
784 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
785 }
786
787 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
788
789 static void
790 unalias_ssa(compiler_context *ctx, int dest)
791 {
792 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
793 /* TODO: Remove from leftover or no? */
794 }
795
796 static void
797 midgard_pin_output(compiler_context *ctx, int index, int reg)
798 {
799 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
800 }
801
802 static bool
803 midgard_is_pinned(compiler_context *ctx, int index)
804 {
805 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
806 }
807
808 /* Do not actually emit a load; instead, cache the constant for inlining */
809
810 static void
811 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
812 {
813 nir_ssa_def def = instr->def;
814
815 float *v = ralloc_array(NULL, float, 4);
816 memcpy(v, &instr->value.f32, 4 * sizeof(float));
817 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
818 }
819
820 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
821 * do the inverse) */
822
823 static unsigned
824 expand_writemask(unsigned mask)
825 {
826 unsigned o = 0;
827
828 for (int i = 0; i < 4; ++i)
829 if (mask & (1 << i))
830 o |= (3 << (2 * i));
831
832 return o;
833 }
834
835 static unsigned
836 squeeze_writemask(unsigned mask)
837 {
838 unsigned o = 0;
839
840 for (int i = 0; i < 4; ++i)
841 if (mask & (3 << (2 * i)))
842 o |= (1 << i);
843
844 return o;
845
846 }
847
848 /* Determines effective writemask, taking quirks and expansion into account */
849 static unsigned
850 effective_writemask(midgard_vector_alu *alu)
851 {
852 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
853 * sense) */
854
855 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
856
857 /* If there is a fixed channel count, construct the appropriate mask */
858
859 if (channel_count)
860 return (1 << channel_count) - 1;
861
862 /* Otherwise, just squeeze the existing mask */
863 return squeeze_writemask(alu->mask);
864 }
865
866 static unsigned
867 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
868 {
869 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
870 return hash;
871
872 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
873
874 if (temp)
875 return temp - 1;
876
877 /* If no temp is find, allocate one */
878 temp = ctx->temp_count++;
879 ctx->max_hash = MAX2(ctx->max_hash, hash);
880
881 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
882
883 return temp;
884 }
885
886 static unsigned
887 nir_src_index(compiler_context *ctx, nir_src *src)
888 {
889 if (src->is_ssa)
890 return src->ssa->index;
891 else
892 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
893 }
894
895 static unsigned
896 nir_dest_index(compiler_context *ctx, nir_dest *dst)
897 {
898 if (dst->is_ssa)
899 return dst->ssa.index;
900 else
901 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
902 }
903
904 static unsigned
905 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
906 {
907 return nir_src_index(ctx, &src->src);
908 }
909
910 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
911 * a conditional test) into that register */
912
913 static void
914 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
915 {
916 /* XXX: Force component correct */
917 int condition = nir_src_index(ctx, src);
918
919 /* There is no boolean move instruction. Instead, we simulate a move by
920 * ANDing the condition with itself to get it into r31.w */
921
922 midgard_instruction ins = {
923 .type = TAG_ALU_4,
924 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
925 .ssa_args = {
926 .src0 = condition,
927 .src1 = condition,
928 .dest = SSA_FIXED_REGISTER(31),
929 },
930 .alu = {
931 .op = midgard_alu_op_iand,
932 .reg_mode = midgard_reg_mode_full,
933 .dest_override = midgard_dest_override_none,
934 .mask = (0x3 << 6), /* w */
935 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
936 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
937 },
938 };
939
940 emit_mir_instruction(ctx, ins);
941 }
942
943 #define ALU_CASE(nir, _op) \
944 case nir_op_##nir: \
945 op = midgard_alu_op_##_op; \
946 break;
947
948 static void
949 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
950 {
951 bool is_ssa = instr->dest.dest.is_ssa;
952
953 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
954 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
955 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
956
957 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
958 * supported. A few do not and are commented for now. Also, there are a
959 * number of NIR ops which Midgard does not support and need to be
960 * lowered, also TODO. This switch block emits the opcode and calling
961 * convention of the Midgard instruction; actual packing is done in
962 * emit_alu below */
963
964 unsigned op;
965
966 switch (instr->op) {
967 ALU_CASE(fadd, fadd);
968 ALU_CASE(fmul, fmul);
969 ALU_CASE(fmin, fmin);
970 ALU_CASE(fmax, fmax);
971 ALU_CASE(imin, imin);
972 ALU_CASE(imax, imax);
973 ALU_CASE(fmov, fmov);
974 ALU_CASE(ffloor, ffloor);
975 ALU_CASE(fround_even, froundeven);
976 ALU_CASE(ftrunc, ftrunc);
977 ALU_CASE(fceil, fceil);
978 ALU_CASE(fdot3, fdot3);
979 ALU_CASE(fdot4, fdot4);
980 ALU_CASE(iadd, iadd);
981 ALU_CASE(isub, isub);
982 ALU_CASE(imul, imul);
983 ALU_CASE(iabs, iabs);
984
985 /* XXX: Use fmov, not imov, since imov was causing major
986 * issues with texture precision? XXX research */
987 ALU_CASE(imov, fmov);
988
989 ALU_CASE(feq32, feq);
990 ALU_CASE(fne32, fne);
991 ALU_CASE(flt32, flt);
992 ALU_CASE(ieq32, ieq);
993 ALU_CASE(ine32, ine);
994 ALU_CASE(ilt32, ilt);
995 ALU_CASE(ult32, ult);
996
997 /* We don't have a native b2f32 instruction. Instead, like many
998 * GPUs, we exploit booleans as 0/~0 for false/true, and
999 * correspondingly AND
1000 * by 1.0 to do the type conversion. For the moment, prime us
1001 * to emit:
1002 *
1003 * iand [whatever], #0
1004 *
1005 * At the end of emit_alu (as MIR), we'll fix-up the constant
1006 */
1007
1008 ALU_CASE(b2f32, iand);
1009 ALU_CASE(b2i32, iand);
1010
1011 /* Likewise, we don't have a dedicated f2b32 instruction, but
1012 * we can do a "not equal to 0.0" test. */
1013
1014 ALU_CASE(f2b32, fne);
1015 ALU_CASE(i2b32, ine);
1016
1017 ALU_CASE(frcp, frcp);
1018 ALU_CASE(frsq, frsqrt);
1019 ALU_CASE(fsqrt, fsqrt);
1020 ALU_CASE(fexp2, fexp2);
1021 ALU_CASE(flog2, flog2);
1022
1023 ALU_CASE(f2i32, f2i);
1024 ALU_CASE(f2u32, f2u);
1025 ALU_CASE(i2f32, i2f);
1026 ALU_CASE(u2f32, u2f);
1027
1028 ALU_CASE(fsin, fsin);
1029 ALU_CASE(fcos, fcos);
1030
1031 ALU_CASE(iand, iand);
1032 ALU_CASE(ior, ior);
1033 ALU_CASE(ixor, ixor);
1034 ALU_CASE(inot, inot);
1035 ALU_CASE(ishl, ishl);
1036 ALU_CASE(ishr, iasr);
1037 ALU_CASE(ushr, ilsr);
1038
1039 ALU_CASE(b32all_fequal2, fball_eq);
1040 ALU_CASE(b32all_fequal3, fball_eq);
1041 ALU_CASE(b32all_fequal4, fball_eq);
1042
1043 ALU_CASE(b32any_fnequal2, fbany_neq);
1044 ALU_CASE(b32any_fnequal3, fbany_neq);
1045 ALU_CASE(b32any_fnequal4, fbany_neq);
1046
1047 ALU_CASE(b32all_iequal2, iball_eq);
1048 ALU_CASE(b32all_iequal3, iball_eq);
1049 ALU_CASE(b32all_iequal4, iball_eq);
1050
1051 ALU_CASE(b32any_inequal2, ibany_neq);
1052 ALU_CASE(b32any_inequal3, ibany_neq);
1053 ALU_CASE(b32any_inequal4, ibany_neq);
1054
1055 /* For greater-or-equal, we lower to less-or-equal and flip the
1056 * arguments */
1057
1058 case nir_op_fge:
1059 case nir_op_fge32:
1060 case nir_op_ige32:
1061 case nir_op_uge32: {
1062 op =
1063 instr->op == nir_op_fge ? midgard_alu_op_fle :
1064 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1065 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1066 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1067 0;
1068
1069 /* Swap via temporary */
1070 nir_alu_src temp = instr->src[1];
1071 instr->src[1] = instr->src[0];
1072 instr->src[0] = temp;
1073
1074 break;
1075 }
1076
1077 case nir_op_b32csel: {
1078 op = midgard_alu_op_fcsel;
1079
1080 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1081 nr_inputs = 2;
1082
1083 emit_condition(ctx, &instr->src[0].src, false);
1084
1085 /* The condition is the first argument; move the other
1086 * arguments up one to be a binary instruction for
1087 * Midgard */
1088
1089 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1090 break;
1091 }
1092
1093 default:
1094 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1095 assert(0);
1096 return;
1097 }
1098
1099 /* Fetch unit, quirks, etc information */
1100 unsigned opcode_props = alu_opcode_props[op];
1101 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1102
1103 /* Initialise fields common between scalar/vector instructions */
1104 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1105
1106 /* src0 will always exist afaik, but src1 will not for 1-argument
1107 * instructions. The latter can only be fetched if the instruction
1108 * needs it, or else we may segfault. */
1109
1110 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1111 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1112
1113 /* Rather than use the instruction generation helpers, we do it
1114 * ourselves here to avoid the mess */
1115
1116 midgard_instruction ins = {
1117 .type = TAG_ALU_4,
1118 .ssa_args = {
1119 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1120 .src1 = quirk_flipped_r24 ? src0 : src1,
1121 .dest = dest,
1122 }
1123 };
1124
1125 nir_alu_src *nirmods[2] = { NULL };
1126
1127 if (nr_inputs == 2) {
1128 nirmods[0] = &instr->src[0];
1129 nirmods[1] = &instr->src[1];
1130 } else if (nr_inputs == 1) {
1131 nirmods[quirk_flipped_r24] = &instr->src[0];
1132 } else {
1133 assert(0);
1134 }
1135
1136 midgard_vector_alu alu = {
1137 .op = op,
1138 .reg_mode = midgard_reg_mode_full,
1139 .dest_override = midgard_dest_override_none,
1140 .outmod = outmod,
1141
1142 /* Writemask only valid for non-SSA NIR */
1143 .mask = expand_writemask((1 << nr_components) - 1),
1144
1145 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1146 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1147 };
1148
1149 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1150
1151 if (!is_ssa)
1152 alu.mask &= expand_writemask(instr->dest.write_mask);
1153
1154 ins.alu = alu;
1155
1156 /* Late fixup for emulated instructions */
1157
1158 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1159 /* Presently, our second argument is an inline #0 constant.
1160 * Switch over to an embedded 1.0 constant (that can't fit
1161 * inline, since we're 32-bit, not 16-bit like the inline
1162 * constants) */
1163
1164 ins.ssa_args.inline_constant = false;
1165 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1166 ins.has_constants = true;
1167
1168 if (instr->op == nir_op_b2f32) {
1169 ins.constants[0] = 1.0f;
1170 } else {
1171 /* Type pun it into place */
1172 uint32_t one = 0x1;
1173 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1174 }
1175
1176 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1177 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1178 ins.ssa_args.inline_constant = false;
1179 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1180 ins.has_constants = true;
1181 ins.constants[0] = 0.0f;
1182 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1183 }
1184
1185 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1186 /* To avoid duplicating the lookup tables (probably), true LUT
1187 * instructions can only operate as if they were scalars. Lower
1188 * them here by changing the component. */
1189
1190 uint8_t original_swizzle[4];
1191 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1192
1193 for (int i = 0; i < nr_components; ++i) {
1194 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1195
1196 for (int j = 0; j < 4; ++j)
1197 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1198
1199 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1200 emit_mir_instruction(ctx, ins);
1201 }
1202 } else {
1203 emit_mir_instruction(ctx, ins);
1204 }
1205 }
1206
1207 #undef ALU_CASE
1208
1209 static void
1210 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1211 {
1212 nir_const_value *const_offset;
1213 unsigned offset, reg;
1214
1215 switch (instr->intrinsic) {
1216 case nir_intrinsic_discard_if:
1217 emit_condition(ctx, &instr->src[0], true);
1218
1219 /* fallthrough */
1220
1221 case nir_intrinsic_discard: {
1222 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1223 struct midgard_instruction discard = v_branch(conditional, false);
1224 discard.branch.target_type = TARGET_DISCARD;
1225 emit_mir_instruction(ctx, discard);
1226
1227 ctx->can_discard = true;
1228 break;
1229 }
1230
1231 case nir_intrinsic_load_uniform:
1232 case nir_intrinsic_load_input:
1233 const_offset = nir_src_as_const_value(instr->src[0]);
1234 assert (const_offset && "no indirect inputs");
1235
1236 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1237
1238 reg = nir_dest_index(ctx, &instr->dest);
1239
1240 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1241 /* TODO: half-floats */
1242
1243 int uniform_offset = 0;
1244
1245 if (offset >= SPECIAL_UNIFORM_BASE) {
1246 /* XXX: Resolve which uniform */
1247 uniform_offset = 0;
1248 } else {
1249 /* Offset away from the special
1250 * uniform block */
1251
1252 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1253
1254 /* XXX */
1255 if (!entry) {
1256 DBG("WARNING: Unknown uniform %d\n", offset);
1257 break;
1258 }
1259
1260 uniform_offset = (uintptr_t) (entry) - 1;
1261 uniform_offset += ctx->special_uniforms;
1262 }
1263
1264 if (uniform_offset < ctx->uniform_cutoff) {
1265 /* Fast path: For the first 16 uniform,
1266 * accesses are 0-cycle, since they're
1267 * just a register fetch in the usual
1268 * case. So, we alias the registers
1269 * while we're still in SSA-space */
1270
1271 int reg_slot = 23 - uniform_offset;
1272 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1273 } else {
1274 /* Otherwise, read from the 'special'
1275 * UBO to access higher-indexed
1276 * uniforms, at a performance cost */
1277
1278 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1279
1280 /* TODO: Don't split */
1281 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1282 ins.load_store.address = uniform_offset >> 3;
1283
1284 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1285 emit_mir_instruction(ctx, ins);
1286 }
1287 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1288 /* XXX: Half-floats? */
1289 /* TODO: swizzle, mask */
1290
1291 midgard_instruction ins = m_load_vary_32(reg, offset);
1292
1293 midgard_varying_parameter p = {
1294 .is_varying = 1,
1295 .interpolation = midgard_interp_default,
1296 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1297 };
1298
1299 unsigned u;
1300 memcpy(&u, &p, sizeof(p));
1301 ins.load_store.varying_parameters = u;
1302
1303 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1304 emit_mir_instruction(ctx, ins);
1305 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1306 /* Constant encoded as a pinned constant */
1307
1308 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1309 ins.has_constants = true;
1310 ins.has_blend_constant = true;
1311 emit_mir_instruction(ctx, ins);
1312 } else if (ctx->is_blend) {
1313 /* For blend shaders, a load might be
1314 * translated various ways depending on what
1315 * we're loading. Figure out how this is used */
1316
1317 nir_variable *out = NULL;
1318
1319 nir_foreach_variable(var, &ctx->nir->inputs) {
1320 int drvloc = var->data.driver_location;
1321
1322 if (nir_intrinsic_base(instr) == drvloc) {
1323 out = var;
1324 break;
1325 }
1326 }
1327
1328 assert(out);
1329
1330 if (out->data.location == VARYING_SLOT_COL0) {
1331 /* Source color preloaded to r0 */
1332
1333 midgard_pin_output(ctx, reg, 0);
1334 } else if (out->data.location == VARYING_SLOT_COL1) {
1335 /* Destination color must be read from framebuffer */
1336
1337 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1338 ins.load_store.swizzle = 0; /* xxxx */
1339
1340 /* Read each component sequentially */
1341
1342 for (int c = 0; c < 4; ++c) {
1343 ins.load_store.mask = (1 << c);
1344 ins.load_store.unknown = c;
1345 emit_mir_instruction(ctx, ins);
1346 }
1347
1348 /* vadd.u2f hr2, abs(hr2), #0 */
1349
1350 midgard_vector_alu_src alu_src = blank_alu_src;
1351 alu_src.abs = true;
1352 alu_src.half = true;
1353
1354 midgard_instruction u2f = {
1355 .type = TAG_ALU_4,
1356 .ssa_args = {
1357 .src0 = reg,
1358 .src1 = SSA_UNUSED_0,
1359 .dest = reg,
1360 .inline_constant = true
1361 },
1362 .alu = {
1363 .op = midgard_alu_op_u2f,
1364 .reg_mode = midgard_reg_mode_half,
1365 .dest_override = midgard_dest_override_none,
1366 .mask = 0xF,
1367 .src1 = vector_alu_srco_unsigned(alu_src),
1368 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1369 }
1370 };
1371
1372 emit_mir_instruction(ctx, u2f);
1373
1374 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1375
1376 alu_src.abs = false;
1377
1378 midgard_instruction fmul = {
1379 .type = TAG_ALU_4,
1380 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1381 .ssa_args = {
1382 .src0 = reg,
1383 .dest = reg,
1384 .src1 = SSA_UNUSED_0,
1385 .inline_constant = true
1386 },
1387 .alu = {
1388 .op = midgard_alu_op_fmul,
1389 .reg_mode = midgard_reg_mode_full,
1390 .dest_override = midgard_dest_override_none,
1391 .outmod = midgard_outmod_sat,
1392 .mask = 0xFF,
1393 .src1 = vector_alu_srco_unsigned(alu_src),
1394 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1395 }
1396 };
1397
1398 emit_mir_instruction(ctx, fmul);
1399 } else {
1400 DBG("Unknown input in blend shader\n");
1401 assert(0);
1402 }
1403 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1404 midgard_instruction ins = m_load_attr_32(reg, offset);
1405 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1406 ins.load_store.mask = (1 << instr->num_components) - 1;
1407 emit_mir_instruction(ctx, ins);
1408 } else {
1409 DBG("Unknown load\n");
1410 assert(0);
1411 }
1412
1413 break;
1414
1415 case nir_intrinsic_store_output:
1416 const_offset = nir_src_as_const_value(instr->src[1]);
1417 assert(const_offset && "no indirect outputs");
1418
1419 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1420
1421 reg = nir_src_index(ctx, &instr->src[0]);
1422
1423 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1424 /* gl_FragColor is not emitted with load/store
1425 * instructions. Instead, it gets plonked into
1426 * r0 at the end of the shader and we do the
1427 * framebuffer writeout dance. TODO: Defer
1428 * writes */
1429
1430 midgard_pin_output(ctx, reg, 0);
1431
1432 /* Save the index we're writing to for later reference
1433 * in the epilogue */
1434
1435 ctx->fragment_output = reg;
1436 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1437 /* Varyings are written into one of two special
1438 * varying register, r26 or r27. The register itself is selected as the register
1439 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1440 *
1441 * Normally emitting fmov's is frowned upon,
1442 * but due to unique constraints of
1443 * REGISTER_VARYING, fmov emission + a
1444 * dedicated cleanup pass is the only way to
1445 * guarantee correctness when considering some
1446 * (common) edge cases XXX: FIXME */
1447
1448 /* If this varying corresponds to a constant (why?!),
1449 * emit that now since it won't get picked up by
1450 * hoisting (since there is no corresponding move
1451 * emitted otherwise) */
1452
1453 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1454
1455 if (constant_value) {
1456 /* Special case: emit the varying write
1457 * directly to r26 (looks funny in asm but it's
1458 * fine) and emit the store _now_. Possibly
1459 * slightly slower, but this is a really stupid
1460 * special case anyway (why on earth would you
1461 * have a constant varying? Your own fault for
1462 * slightly worse perf :P) */
1463
1464 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1465 attach_constants(ctx, &ins, constant_value, reg + 1);
1466 emit_mir_instruction(ctx, ins);
1467
1468 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1469 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1470 emit_mir_instruction(ctx, st);
1471 } else {
1472 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1473
1474 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1475 }
1476 } else {
1477 DBG("Unknown store\n");
1478 assert(0);
1479 }
1480
1481 break;
1482
1483 case nir_intrinsic_load_alpha_ref_float:
1484 assert(instr->dest.is_ssa);
1485
1486 float ref_value = ctx->alpha_ref;
1487
1488 float *v = ralloc_array(NULL, float, 4);
1489 memcpy(v, &ref_value, sizeof(float));
1490 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1491 break;
1492
1493
1494 default:
1495 printf ("Unhandled intrinsic\n");
1496 assert(0);
1497 break;
1498 }
1499 }
1500
1501 static unsigned
1502 midgard_tex_format(enum glsl_sampler_dim dim)
1503 {
1504 switch (dim) {
1505 case GLSL_SAMPLER_DIM_2D:
1506 case GLSL_SAMPLER_DIM_EXTERNAL:
1507 return TEXTURE_2D;
1508
1509 case GLSL_SAMPLER_DIM_3D:
1510 return TEXTURE_3D;
1511
1512 case GLSL_SAMPLER_DIM_CUBE:
1513 return TEXTURE_CUBE;
1514
1515 default:
1516 DBG("Unknown sampler dim type\n");
1517 assert(0);
1518 return 0;
1519 }
1520 }
1521
1522 static void
1523 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1524 {
1525 /* TODO */
1526 //assert (!instr->sampler);
1527 //assert (!instr->texture_array_size);
1528 assert (instr->op == nir_texop_tex);
1529
1530 /* Allocate registers via a round robin scheme to alternate between the two registers */
1531 int reg = ctx->texture_op_count & 1;
1532 int in_reg = reg, out_reg = reg;
1533
1534 /* Make room for the reg */
1535
1536 if (ctx->texture_index[reg] > -1)
1537 unalias_ssa(ctx, ctx->texture_index[reg]);
1538
1539 int texture_index = instr->texture_index;
1540 int sampler_index = texture_index;
1541
1542 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1543 switch (instr->src[i].src_type) {
1544 case nir_tex_src_coord: {
1545 int index = nir_src_index(ctx, &instr->src[i].src);
1546
1547 midgard_vector_alu_src alu_src = blank_alu_src;
1548
1549 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1550
1551 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1552 /* For cubemaps, we need to load coords into
1553 * special r27, and then use a special ld/st op
1554 * to copy into the texture register */
1555
1556 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1557
1558 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1559 emit_mir_instruction(ctx, move);
1560
1561 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1562 st.load_store.unknown = 0x24; /* XXX: What is this? */
1563 st.load_store.mask = 0x3; /* xy? */
1564 st.load_store.swizzle = alu_src.swizzle;
1565 emit_mir_instruction(ctx, st);
1566
1567 } else {
1568 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1569
1570 midgard_instruction ins = v_fmov(index, alu_src, reg);
1571 emit_mir_instruction(ctx, ins);
1572 }
1573
1574 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1575
1576 break;
1577 }
1578
1579 default: {
1580 DBG("Unknown source type\n");
1581 //assert(0);
1582 break;
1583 }
1584 }
1585 }
1586
1587 /* No helper to build texture words -- we do it all here */
1588 midgard_instruction ins = {
1589 .type = TAG_TEXTURE_4,
1590 .texture = {
1591 .op = TEXTURE_OP_NORMAL,
1592 .format = midgard_tex_format(instr->sampler_dim),
1593 .texture_handle = texture_index,
1594 .sampler_handle = sampler_index,
1595
1596 /* TODO: Don't force xyzw */
1597 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1598 .mask = 0xF,
1599
1600 /* TODO: half */
1601 //.in_reg_full = 1,
1602 .out_full = 1,
1603
1604 .filter = 1,
1605
1606 /* Always 1 */
1607 .unknown7 = 1,
1608
1609 /* Assume we can continue; hint it out later */
1610 .cont = 1,
1611 }
1612 };
1613
1614 /* Set registers to read and write from the same place */
1615 ins.texture.in_reg_select = in_reg;
1616 ins.texture.out_reg_select = out_reg;
1617
1618 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1619 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1620 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1621 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1622 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1623 } else {
1624 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1625 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1626 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1627 }
1628
1629 emit_mir_instruction(ctx, ins);
1630
1631 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1632
1633 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1634 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1635 ctx->texture_index[reg] = o_index;
1636
1637 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1638 emit_mir_instruction(ctx, ins2);
1639
1640 /* Used for .cont and .last hinting */
1641 ctx->texture_op_count++;
1642 }
1643
1644 static void
1645 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1646 {
1647 switch (instr->type) {
1648 case nir_jump_break: {
1649 /* Emit a branch out of the loop */
1650 struct midgard_instruction br = v_branch(false, false);
1651 br.branch.target_type = TARGET_BREAK;
1652 br.branch.target_break = ctx->current_loop;
1653 emit_mir_instruction(ctx, br);
1654
1655 DBG("break..\n");
1656 break;
1657 }
1658
1659 default:
1660 DBG("Unknown jump type %d\n", instr->type);
1661 break;
1662 }
1663 }
1664
1665 static void
1666 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1667 {
1668 switch (instr->type) {
1669 case nir_instr_type_load_const:
1670 emit_load_const(ctx, nir_instr_as_load_const(instr));
1671 break;
1672
1673 case nir_instr_type_intrinsic:
1674 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1675 break;
1676
1677 case nir_instr_type_alu:
1678 emit_alu(ctx, nir_instr_as_alu(instr));
1679 break;
1680
1681 case nir_instr_type_tex:
1682 emit_tex(ctx, nir_instr_as_tex(instr));
1683 break;
1684
1685 case nir_instr_type_jump:
1686 emit_jump(ctx, nir_instr_as_jump(instr));
1687 break;
1688
1689 case nir_instr_type_ssa_undef:
1690 /* Spurious */
1691 break;
1692
1693 default:
1694 DBG("Unhandled instruction type\n");
1695 break;
1696 }
1697 }
1698
1699 /* Determine the actual hardware from the index based on the RA results or special values */
1700
1701 static int
1702 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1703 {
1704 if (reg >= SSA_FIXED_MINIMUM)
1705 return SSA_REG_FROM_FIXED(reg);
1706
1707 if (reg >= 0) {
1708 assert(reg < maxreg);
1709 int r = ra_get_node_reg(g, reg);
1710 ctx->work_registers = MAX2(ctx->work_registers, r);
1711 return r;
1712 }
1713
1714 switch (reg) {
1715 /* fmov style unused */
1716 case SSA_UNUSED_0:
1717 return REGISTER_UNUSED;
1718
1719 /* lut style unused */
1720 case SSA_UNUSED_1:
1721 return REGISTER_UNUSED;
1722
1723 default:
1724 DBG("Unknown SSA register alias %d\n", reg);
1725 assert(0);
1726 return 31;
1727 }
1728 }
1729
1730 static unsigned int
1731 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1732 {
1733 /* Choose the first available register to minimise reported register pressure */
1734
1735 for (int i = 0; i < 16; ++i) {
1736 if (BITSET_TEST(regs, i)) {
1737 return i;
1738 }
1739 }
1740
1741 assert(0);
1742 return 0;
1743 }
1744
1745 static bool
1746 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1747 {
1748 if (ins->ssa_args.src0 == src) return true;
1749 if (ins->ssa_args.src1 == src) return true;
1750
1751 return false;
1752 }
1753
1754 static bool
1755 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1756 {
1757 /* Check the rest of the block for liveness */
1758 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1759 if (midgard_is_live_in_instr(ins, src))
1760 return true;
1761 }
1762
1763 /* Check the rest of the blocks for liveness */
1764 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1765 mir_foreach_instr_in_block(b, ins) {
1766 if (midgard_is_live_in_instr(ins, src))
1767 return true;
1768 }
1769 }
1770
1771 /* TODO: How does control flow interact in complex shaders? */
1772
1773 return false;
1774 }
1775
1776 static void
1777 allocate_registers(compiler_context *ctx)
1778 {
1779 /* First, initialize the RA */
1780 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1781
1782 /* Create a primary (general purpose) class, as well as special purpose
1783 * pipeline register classes */
1784
1785 int primary_class = ra_alloc_reg_class(regs);
1786 int varying_class = ra_alloc_reg_class(regs);
1787
1788 /* Add the full set of work registers */
1789 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1790 for (int i = 0; i < work_count; ++i)
1791 ra_class_add_reg(regs, primary_class, i);
1792
1793 /* Add special registers */
1794 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1795 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1796
1797 /* We're done setting up */
1798 ra_set_finalize(regs, NULL);
1799
1800 /* Transform the MIR into squeezed index form */
1801 mir_foreach_block(ctx, block) {
1802 mir_foreach_instr_in_block(block, ins) {
1803 if (ins->compact_branch) continue;
1804
1805 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1806 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1807 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1808 }
1809 if (midgard_debug & MIDGARD_DBG_SHADERS)
1810 print_mir_block(block);
1811 }
1812
1813 /* Let's actually do register allocation */
1814 int nodes = ctx->temp_count;
1815 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1816
1817 /* Set everything to the work register class, unless it has somewhere
1818 * special to go */
1819
1820 mir_foreach_block(ctx, block) {
1821 mir_foreach_instr_in_block(block, ins) {
1822 if (ins->compact_branch) continue;
1823
1824 if (ins->ssa_args.dest < 0) continue;
1825
1826 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1827
1828 int class = primary_class;
1829
1830 ra_set_node_class(g, ins->ssa_args.dest, class);
1831 }
1832 }
1833
1834 for (int index = 0; index <= ctx->max_hash; ++index) {
1835 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1836
1837 if (temp) {
1838 unsigned reg = temp - 1;
1839 int t = find_or_allocate_temp(ctx, index);
1840 ra_set_node_reg(g, t, reg);
1841 }
1842 }
1843
1844 /* Determine liveness */
1845
1846 int *live_start = malloc(nodes * sizeof(int));
1847 int *live_end = malloc(nodes * sizeof(int));
1848
1849 /* Initialize as non-existent */
1850
1851 for (int i = 0; i < nodes; ++i) {
1852 live_start[i] = live_end[i] = -1;
1853 }
1854
1855 int d = 0;
1856
1857 mir_foreach_block(ctx, block) {
1858 mir_foreach_instr_in_block(block, ins) {
1859 if (ins->compact_branch) continue;
1860
1861 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1862 /* If this destination is not yet live, it is now since we just wrote it */
1863
1864 int dest = ins->ssa_args.dest;
1865
1866 if (live_start[dest] == -1)
1867 live_start[dest] = d;
1868 }
1869
1870 /* Since we just used a source, the source might be
1871 * dead now. Scan the rest of the block for
1872 * invocations, and if there are none, the source dies
1873 * */
1874
1875 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1876
1877 for (int src = 0; src < 2; ++src) {
1878 int s = sources[src];
1879
1880 if (s < 0) continue;
1881
1882 if (s >= SSA_FIXED_MINIMUM) continue;
1883
1884 if (!is_live_after(ctx, block, ins, s)) {
1885 live_end[s] = d;
1886 }
1887 }
1888
1889 ++d;
1890 }
1891 }
1892
1893 /* If a node still hasn't been killed, kill it now */
1894
1895 for (int i = 0; i < nodes; ++i) {
1896 /* live_start == -1 most likely indicates a pinned output */
1897
1898 if (live_end[i] == -1)
1899 live_end[i] = d;
1900 }
1901
1902 /* Setup interference between nodes that are live at the same time */
1903
1904 for (int i = 0; i < nodes; ++i) {
1905 for (int j = i + 1; j < nodes; ++j) {
1906 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1907 ra_add_node_interference(g, i, j);
1908 }
1909 }
1910
1911 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1912
1913 if (!ra_allocate(g)) {
1914 DBG("Error allocating registers\n");
1915 assert(0);
1916 }
1917
1918 /* Cleanup */
1919 free(live_start);
1920 free(live_end);
1921
1922 mir_foreach_block(ctx, block) {
1923 mir_foreach_instr_in_block(block, ins) {
1924 if (ins->compact_branch) continue;
1925
1926 ssa_args args = ins->ssa_args;
1927
1928 switch (ins->type) {
1929 case TAG_ALU_4:
1930 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1931
1932 ins->registers.src2_imm = args.inline_constant;
1933
1934 if (args.inline_constant) {
1935 /* Encode inline 16-bit constant as a vector by default */
1936
1937 ins->registers.src2_reg = ins->inline_constant >> 11;
1938
1939 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1940
1941 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1942 ins->alu.src2 = imm << 2;
1943 } else {
1944 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1945 }
1946
1947 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1948
1949 break;
1950
1951 case TAG_LOAD_STORE_4: {
1952 if (OP_IS_STORE_VARY(ins->load_store.op)) {
1953 /* TODO: use ssa_args for store_vary */
1954 ins->load_store.reg = 0;
1955 } else {
1956 bool has_dest = args.dest >= 0;
1957 int ssa_arg = has_dest ? args.dest : args.src0;
1958
1959 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1960 }
1961
1962 break;
1963 }
1964
1965 default:
1966 break;
1967 }
1968 }
1969 }
1970 }
1971
1972 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1973 * use scalar ALU instructions, for functional or performance reasons. To do
1974 * this, we just demote vector ALU payloads to scalar. */
1975
1976 static int
1977 component_from_mask(unsigned mask)
1978 {
1979 for (int c = 0; c < 4; ++c) {
1980 if (mask & (3 << (2 * c)))
1981 return c;
1982 }
1983
1984 assert(0);
1985 return 0;
1986 }
1987
1988 static bool
1989 is_single_component_mask(unsigned mask)
1990 {
1991 int components = 0;
1992
1993 for (int c = 0; c < 4; ++c)
1994 if (mask & (3 << (2 * c)))
1995 components++;
1996
1997 return components == 1;
1998 }
1999
2000 /* Create a mask of accessed components from a swizzle to figure out vector
2001 * dependencies */
2002
2003 static unsigned
2004 swizzle_to_access_mask(unsigned swizzle)
2005 {
2006 unsigned component_mask = 0;
2007
2008 for (int i = 0; i < 4; ++i) {
2009 unsigned c = (swizzle >> (2 * i)) & 3;
2010 component_mask |= (1 << c);
2011 }
2012
2013 return component_mask;
2014 }
2015
2016 static unsigned
2017 vector_to_scalar_source(unsigned u)
2018 {
2019 midgard_vector_alu_src v;
2020 memcpy(&v, &u, sizeof(v));
2021
2022 midgard_scalar_alu_src s = {
2023 .abs = v.abs,
2024 .negate = v.negate,
2025 .full = !v.half,
2026 .component = (v.swizzle & 3) << 1
2027 };
2028
2029 unsigned o;
2030 memcpy(&o, &s, sizeof(s));
2031
2032 return o & ((1 << 6) - 1);
2033 }
2034
2035 static midgard_scalar_alu
2036 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2037 {
2038 /* The output component is from the mask */
2039 midgard_scalar_alu s = {
2040 .op = v.op,
2041 .src1 = vector_to_scalar_source(v.src1),
2042 .src2 = vector_to_scalar_source(v.src2),
2043 .unknown = 0,
2044 .outmod = v.outmod,
2045 .output_full = 1, /* TODO: Half */
2046 .output_component = component_from_mask(v.mask) << 1,
2047 };
2048
2049 /* Inline constant is passed along rather than trying to extract it
2050 * from v */
2051
2052 if (ins->ssa_args.inline_constant) {
2053 uint16_t imm = 0;
2054 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2055 imm |= (lower_11 >> 9) & 3;
2056 imm |= (lower_11 >> 6) & 4;
2057 imm |= (lower_11 >> 2) & 0x38;
2058 imm |= (lower_11 & 63) << 6;
2059
2060 s.src2 = imm;
2061 }
2062
2063 return s;
2064 }
2065
2066 /* Midgard prefetches instruction types, so during emission we need to
2067 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2068 * if this is the second to last and the last is an ALU, then it's also 1... */
2069
2070 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2071 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2072
2073 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2074 bytes_emitted += sizeof(type)
2075
2076 static void
2077 emit_binary_vector_instruction(midgard_instruction *ains,
2078 uint16_t *register_words, int *register_words_count,
2079 uint64_t *body_words, size_t *body_size, int *body_words_count,
2080 size_t *bytes_emitted)
2081 {
2082 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2083 *bytes_emitted += sizeof(midgard_reg_info);
2084
2085 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2086 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2087 *bytes_emitted += sizeof(midgard_vector_alu);
2088 }
2089
2090 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2091 * mind that we are a vector architecture and we can write to different
2092 * components simultaneously */
2093
2094 static bool
2095 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2096 {
2097 /* Each instruction reads some registers and writes to a register. See
2098 * where the first writes */
2099
2100 /* Figure out where exactly we wrote to */
2101 int source = first->ssa_args.dest;
2102 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2103
2104 /* As long as the second doesn't read from the first, we're okay */
2105 if (second->ssa_args.src0 == source) {
2106 if (first->type == TAG_ALU_4) {
2107 /* Figure out which components we just read from */
2108
2109 int q = second->alu.src1;
2110 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2111
2112 /* Check if there are components in common, and fail if so */
2113 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2114 return false;
2115 } else
2116 return false;
2117
2118 }
2119
2120 if (second->ssa_args.src1 == source)
2121 return false;
2122
2123 /* Otherwise, it's safe in that regard. Another data hazard is both
2124 * writing to the same place, of course */
2125
2126 if (second->ssa_args.dest == source) {
2127 /* ...but only if the components overlap */
2128 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2129
2130 if (dest_mask & source_mask)
2131 return false;
2132 }
2133
2134 /* ...That's it */
2135 return true;
2136 }
2137
2138 static bool
2139 midgard_has_hazard(
2140 midgard_instruction **segment, unsigned segment_size,
2141 midgard_instruction *ains)
2142 {
2143 for (int s = 0; s < segment_size; ++s)
2144 if (!can_run_concurrent_ssa(segment[s], ains))
2145 return true;
2146
2147 return false;
2148
2149
2150 }
2151
2152 /* Schedules, but does not emit, a single basic block. After scheduling, the
2153 * final tag and size of the block are known, which are necessary for branching
2154 * */
2155
2156 static midgard_bundle
2157 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2158 {
2159 int instructions_emitted = 0, instructions_consumed = -1;
2160 midgard_bundle bundle = { 0 };
2161
2162 uint8_t tag = ins->type;
2163
2164 /* Default to the instruction's tag */
2165 bundle.tag = tag;
2166
2167 switch (ins->type) {
2168 case TAG_ALU_4: {
2169 uint32_t control = 0;
2170 size_t bytes_emitted = sizeof(control);
2171
2172 /* TODO: Constant combining */
2173 int index = 0, last_unit = 0;
2174
2175 /* Previous instructions, for the purpose of parallelism */
2176 midgard_instruction *segment[4] = {0};
2177 int segment_size = 0;
2178
2179 instructions_emitted = -1;
2180 midgard_instruction *pins = ins;
2181
2182 for (;;) {
2183 midgard_instruction *ains = pins;
2184
2185 /* Advance instruction pointer */
2186 if (index) {
2187 ains = mir_next_op(pins);
2188 pins = ains;
2189 }
2190
2191 /* Out-of-work condition */
2192 if ((struct list_head *) ains == &block->instructions)
2193 break;
2194
2195 /* Ensure that the chain can continue */
2196 if (ains->type != TAG_ALU_4) break;
2197
2198 /* According to the presentation "The ARM
2199 * Mali-T880 Mobile GPU" from HotChips 27,
2200 * there are two pipeline stages. Branching
2201 * position determined experimentally. Lines
2202 * are executed in parallel:
2203 *
2204 * [ VMUL ] [ SADD ]
2205 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2206 *
2207 * Verify that there are no ordering dependencies here.
2208 *
2209 * TODO: Allow for parallelism!!!
2210 */
2211
2212 /* Pick a unit for it if it doesn't force a particular unit */
2213
2214 int unit = ains->unit;
2215
2216 if (!unit) {
2217 int op = ains->alu.op;
2218 int units = alu_opcode_props[op];
2219
2220 /* TODO: Promotion of scalars to vectors */
2221 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2222
2223 if (!vector)
2224 assert(units & UNITS_SCALAR);
2225
2226 if (vector) {
2227 if (last_unit >= UNIT_VADD) {
2228 if (units & UNIT_VLUT)
2229 unit = UNIT_VLUT;
2230 else
2231 break;
2232 } else {
2233 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2234 unit = UNIT_VMUL;
2235 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2236 unit = UNIT_VADD;
2237 else if (units & UNIT_VLUT)
2238 unit = UNIT_VLUT;
2239 else
2240 break;
2241 }
2242 } else {
2243 if (last_unit >= UNIT_VADD) {
2244 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2245 unit = UNIT_SMUL;
2246 else if (units & UNIT_VLUT)
2247 unit = UNIT_VLUT;
2248 else
2249 break;
2250 } else {
2251 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2252 unit = UNIT_SADD;
2253 else if (units & UNIT_SMUL)
2254 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2255 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2256 unit = UNIT_VADD;
2257 else
2258 break;
2259 }
2260 }
2261
2262 assert(unit & units);
2263 }
2264
2265 /* Late unit check, this time for encoding (not parallelism) */
2266 if (unit <= last_unit) break;
2267
2268 /* Clear the segment */
2269 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2270 segment_size = 0;
2271
2272 if (midgard_has_hazard(segment, segment_size, ains))
2273 break;
2274
2275 /* We're good to go -- emit the instruction */
2276 ains->unit = unit;
2277
2278 segment[segment_size++] = ains;
2279
2280 /* Only one set of embedded constants per
2281 * bundle possible; if we have more, we must
2282 * break the chain early, unfortunately */
2283
2284 if (ains->has_constants) {
2285 if (bundle.has_embedded_constants) {
2286 /* ...but if there are already
2287 * constants but these are the
2288 * *same* constants, we let it
2289 * through */
2290
2291 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2292 break;
2293 } else {
2294 bundle.has_embedded_constants = true;
2295 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2296
2297 /* If this is a blend shader special constant, track it for patching */
2298 if (ains->has_blend_constant)
2299 bundle.has_blend_constant = true;
2300 }
2301 }
2302
2303 if (ains->unit & UNITS_ANY_VECTOR) {
2304 emit_binary_vector_instruction(ains, bundle.register_words,
2305 &bundle.register_words_count, bundle.body_words,
2306 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2307 } else if (ains->compact_branch) {
2308 /* All of r0 has to be written out
2309 * along with the branch writeout.
2310 * (slow!) */
2311
2312 if (ains->writeout) {
2313 if (index == 0) {
2314 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2315 ins.unit = UNIT_VMUL;
2316
2317 control |= ins.unit;
2318
2319 emit_binary_vector_instruction(&ins, bundle.register_words,
2320 &bundle.register_words_count, bundle.body_words,
2321 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2322 } else {
2323 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2324 bool written_late = false;
2325 bool components[4] = { 0 };
2326 uint16_t register_dep_mask = 0;
2327 uint16_t written_mask = 0;
2328
2329 midgard_instruction *qins = ins;
2330 for (int t = 0; t < index; ++t) {
2331 if (qins->registers.out_reg != 0) {
2332 /* Mark down writes */
2333
2334 written_mask |= (1 << qins->registers.out_reg);
2335 } else {
2336 /* Mark down the register dependencies for errata check */
2337
2338 if (qins->registers.src1_reg < 16)
2339 register_dep_mask |= (1 << qins->registers.src1_reg);
2340
2341 if (qins->registers.src2_reg < 16)
2342 register_dep_mask |= (1 << qins->registers.src2_reg);
2343
2344 int mask = qins->alu.mask;
2345
2346 for (int c = 0; c < 4; ++c)
2347 if (mask & (0x3 << (2 * c)))
2348 components[c] = true;
2349
2350 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2351
2352 if (qins->unit == UNIT_VLUT)
2353 written_late = true;
2354 }
2355
2356 /* Advance instruction pointer */
2357 qins = mir_next_op(qins);
2358 }
2359
2360
2361 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2362 if (register_dep_mask & written_mask) {
2363 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2364 break;
2365 }
2366
2367 if (written_late)
2368 break;
2369
2370 /* If even a single component is not written, break it up (conservative check). */
2371 bool breakup = false;
2372
2373 for (int c = 0; c < 4; ++c)
2374 if (!components[c])
2375 breakup = true;
2376
2377 if (breakup)
2378 break;
2379
2380 /* Otherwise, we're free to proceed */
2381 }
2382 }
2383
2384 if (ains->unit == ALU_ENAB_BRANCH) {
2385 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2386 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2387 bytes_emitted += sizeof(midgard_branch_extended);
2388 } else {
2389 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2390 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2391 bytes_emitted += sizeof(ains->br_compact);
2392 }
2393 } else {
2394 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2395 bytes_emitted += sizeof(midgard_reg_info);
2396
2397 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2398 bundle.body_words_count++;
2399 bytes_emitted += sizeof(midgard_scalar_alu);
2400 }
2401
2402 /* Defer marking until after writing to allow for break */
2403 control |= ains->unit;
2404 last_unit = ains->unit;
2405 ++instructions_emitted;
2406 ++index;
2407 }
2408
2409 /* Bubble up the number of instructions for skipping */
2410 instructions_consumed = index - 1;
2411
2412 int padding = 0;
2413
2414 /* Pad ALU op to nearest word */
2415
2416 if (bytes_emitted & 15) {
2417 padding = 16 - (bytes_emitted & 15);
2418 bytes_emitted += padding;
2419 }
2420
2421 /* Constants must always be quadwords */
2422 if (bundle.has_embedded_constants)
2423 bytes_emitted += 16;
2424
2425 /* Size ALU instruction for tag */
2426 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2427 bundle.padding = padding;
2428 bundle.control = bundle.tag | control;
2429
2430 break;
2431 }
2432
2433 case TAG_LOAD_STORE_4: {
2434 /* Load store instructions have two words at once. If
2435 * we only have one queued up, we need to NOP pad.
2436 * Otherwise, we store both in succession to save space
2437 * and cycles -- letting them go in parallel -- skip
2438 * the next. The usefulness of this optimisation is
2439 * greatly dependent on the quality of the instruction
2440 * scheduler.
2441 */
2442
2443 midgard_instruction *next_op = mir_next_op(ins);
2444
2445 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2446 /* As the two operate concurrently, make sure
2447 * they are not dependent */
2448
2449 if (can_run_concurrent_ssa(ins, next_op) || true) {
2450 /* Skip ahead, since it's redundant with the pair */
2451 instructions_consumed = 1 + (instructions_emitted++);
2452 }
2453 }
2454
2455 break;
2456 }
2457
2458 default:
2459 /* Texture ops default to single-op-per-bundle scheduling */
2460 break;
2461 }
2462
2463 /* Copy the instructions into the bundle */
2464 bundle.instruction_count = instructions_emitted + 1;
2465
2466 int used_idx = 0;
2467
2468 midgard_instruction *uins = ins;
2469 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2470 bundle.instructions[used_idx++] = *uins;
2471 uins = mir_next_op(uins);
2472 }
2473
2474 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2475
2476 return bundle;
2477 }
2478
2479 static int
2480 quadword_size(int tag)
2481 {
2482 switch (tag) {
2483 case TAG_ALU_4:
2484 return 1;
2485
2486 case TAG_ALU_8:
2487 return 2;
2488
2489 case TAG_ALU_12:
2490 return 3;
2491
2492 case TAG_ALU_16:
2493 return 4;
2494
2495 case TAG_LOAD_STORE_4:
2496 return 1;
2497
2498 case TAG_TEXTURE_4:
2499 return 1;
2500
2501 default:
2502 assert(0);
2503 return 0;
2504 }
2505 }
2506
2507 /* Schedule a single block by iterating its instruction to create bundles.
2508 * While we go, tally about the bundle sizes to compute the block size. */
2509
2510 static void
2511 schedule_block(compiler_context *ctx, midgard_block *block)
2512 {
2513 util_dynarray_init(&block->bundles, NULL);
2514
2515 block->quadword_count = 0;
2516
2517 mir_foreach_instr_in_block(block, ins) {
2518 int skip;
2519 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2520 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2521
2522 if (bundle.has_blend_constant) {
2523 /* TODO: Multiblock? */
2524 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2525 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2526 }
2527
2528 while(skip--)
2529 ins = mir_next_op(ins);
2530
2531 block->quadword_count += quadword_size(bundle.tag);
2532 }
2533
2534 block->is_scheduled = true;
2535 }
2536
2537 static void
2538 schedule_program(compiler_context *ctx)
2539 {
2540 allocate_registers(ctx);
2541
2542 mir_foreach_block(ctx, block) {
2543 schedule_block(ctx, block);
2544 }
2545 }
2546
2547 /* After everything is scheduled, emit whole bundles at a time */
2548
2549 static void
2550 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2551 {
2552 int lookahead = next_tag << 4;
2553
2554 switch (bundle->tag) {
2555 case TAG_ALU_4:
2556 case TAG_ALU_8:
2557 case TAG_ALU_12:
2558 case TAG_ALU_16: {
2559 /* Actually emit each component */
2560 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2561
2562 for (int i = 0; i < bundle->register_words_count; ++i)
2563 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2564
2565 /* Emit body words based on the instructions bundled */
2566 for (int i = 0; i < bundle->instruction_count; ++i) {
2567 midgard_instruction *ins = &bundle->instructions[i];
2568
2569 if (ins->unit & UNITS_ANY_VECTOR) {
2570 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2571 } else if (ins->compact_branch) {
2572 /* Dummy move, XXX DRY */
2573 if ((i == 0) && ins->writeout) {
2574 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2575 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2576 }
2577
2578 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2579 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2580 } else {
2581 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2582 }
2583 } else {
2584 /* Scalar */
2585 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2586 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2587 }
2588 }
2589
2590 /* Emit padding (all zero) */
2591 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2592
2593 /* Tack on constants */
2594
2595 if (bundle->has_embedded_constants) {
2596 util_dynarray_append(emission, float, bundle->constants[0]);
2597 util_dynarray_append(emission, float, bundle->constants[1]);
2598 util_dynarray_append(emission, float, bundle->constants[2]);
2599 util_dynarray_append(emission, float, bundle->constants[3]);
2600 }
2601
2602 break;
2603 }
2604
2605 case TAG_LOAD_STORE_4: {
2606 /* One or two composing instructions */
2607
2608 uint64_t current64, next64 = LDST_NOP;
2609
2610 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2611
2612 if (bundle->instruction_count == 2)
2613 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2614
2615 midgard_load_store instruction = {
2616 .type = bundle->tag,
2617 .next_type = next_tag,
2618 .word1 = current64,
2619 .word2 = next64
2620 };
2621
2622 util_dynarray_append(emission, midgard_load_store, instruction);
2623
2624 break;
2625 }
2626
2627 case TAG_TEXTURE_4: {
2628 /* Texture instructions are easy, since there is no
2629 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2630
2631 midgard_instruction *ins = &bundle->instructions[0];
2632
2633 ins->texture.type = TAG_TEXTURE_4;
2634 ins->texture.next_type = next_tag;
2635
2636 ctx->texture_op_count--;
2637
2638 if (!ctx->texture_op_count) {
2639 ins->texture.cont = 0;
2640 ins->texture.last = 1;
2641 }
2642
2643 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2644 break;
2645 }
2646
2647 default:
2648 DBG("Unknown midgard instruction type\n");
2649 assert(0);
2650 break;
2651 }
2652 }
2653
2654
2655 /* ALU instructions can inline or embed constants, which decreases register
2656 * pressure and saves space. */
2657
2658 #define CONDITIONAL_ATTACH(src) { \
2659 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2660 \
2661 if (entry) { \
2662 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2663 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2664 } \
2665 }
2666
2667 static void
2668 inline_alu_constants(compiler_context *ctx)
2669 {
2670 mir_foreach_instr(ctx, alu) {
2671 /* Other instructions cannot inline constants */
2672 if (alu->type != TAG_ALU_4) continue;
2673
2674 /* If there is already a constant here, we can do nothing */
2675 if (alu->has_constants) continue;
2676
2677 CONDITIONAL_ATTACH(src0);
2678
2679 if (!alu->has_constants) {
2680 CONDITIONAL_ATTACH(src1)
2681 } else if (!alu->inline_constant) {
2682 /* Corner case: _two_ vec4 constants, for instance with a
2683 * csel. For this case, we can only use a constant
2684 * register for one, we'll have to emit a move for the
2685 * other. Note, if both arguments are constants, then
2686 * necessarily neither argument depends on the value of
2687 * any particular register. As the destination register
2688 * will be wiped, that means we can spill the constant
2689 * to the destination register.
2690 */
2691
2692 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2693 unsigned scratch = alu->ssa_args.dest;
2694
2695 if (entry) {
2696 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2697 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2698
2699 /* Force a break XXX Defer r31 writes */
2700 ins.unit = UNIT_VLUT;
2701
2702 /* Set the source */
2703 alu->ssa_args.src1 = scratch;
2704
2705 /* Inject us -before- the last instruction which set r31 */
2706 mir_insert_instruction_before(mir_prev_op(alu), ins);
2707 }
2708 }
2709 }
2710 }
2711
2712 /* Midgard supports two types of constants, embedded constants (128-bit) and
2713 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2714 * constants can be demoted to inline constants, for space savings and
2715 * sometimes a performance boost */
2716
2717 static void
2718 embedded_to_inline_constant(compiler_context *ctx)
2719 {
2720 mir_foreach_instr(ctx, ins) {
2721 if (!ins->has_constants) continue;
2722
2723 if (ins->ssa_args.inline_constant) continue;
2724
2725 /* Blend constants must not be inlined by definition */
2726 if (ins->has_blend_constant) continue;
2727
2728 /* src1 cannot be an inline constant due to encoding
2729 * restrictions. So, if possible we try to flip the arguments
2730 * in that case */
2731
2732 int op = ins->alu.op;
2733
2734 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2735 /* Flip based on op. Fallthrough intentional */
2736
2737 switch (op) {
2738 /* These ops require an operational change to flip their arguments TODO */
2739 case midgard_alu_op_flt:
2740 case midgard_alu_op_fle:
2741 case midgard_alu_op_ilt:
2742 case midgard_alu_op_ile:
2743 case midgard_alu_op_fcsel:
2744 case midgard_alu_op_icsel:
2745 case midgard_alu_op_isub:
2746 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2747 break;
2748
2749 /* These ops are commutative and Just Flip */
2750 case midgard_alu_op_fne:
2751 case midgard_alu_op_fadd:
2752 case midgard_alu_op_fmul:
2753 case midgard_alu_op_fmin:
2754 case midgard_alu_op_fmax:
2755 case midgard_alu_op_iadd:
2756 case midgard_alu_op_imul:
2757 case midgard_alu_op_feq:
2758 case midgard_alu_op_ieq:
2759 case midgard_alu_op_ine:
2760 case midgard_alu_op_iand:
2761 case midgard_alu_op_ior:
2762 case midgard_alu_op_ixor:
2763 /* Flip the SSA numbers */
2764 ins->ssa_args.src0 = ins->ssa_args.src1;
2765 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2766
2767 /* And flip the modifiers */
2768
2769 unsigned src_temp;
2770
2771 src_temp = ins->alu.src2;
2772 ins->alu.src2 = ins->alu.src1;
2773 ins->alu.src1 = src_temp;
2774
2775 default:
2776 break;
2777 }
2778 }
2779
2780 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2781 /* Extract the source information */
2782
2783 midgard_vector_alu_src *src;
2784 int q = ins->alu.src2;
2785 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2786 src = m;
2787
2788 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2789 int component = src->swizzle & 3;
2790
2791 /* Scale constant appropriately, if we can legally */
2792 uint16_t scaled_constant = 0;
2793
2794 /* XXX: Check legality */
2795 if (midgard_is_integer_op(op)) {
2796 /* TODO: Inline integer */
2797 continue;
2798
2799 unsigned int *iconstants = (unsigned int *) ins->constants;
2800 scaled_constant = (uint16_t) iconstants[component];
2801
2802 /* Constant overflow after resize */
2803 if (scaled_constant != iconstants[component])
2804 continue;
2805 } else {
2806 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2807 }
2808
2809 /* We don't know how to handle these with a constant */
2810
2811 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2812 DBG("Bailing inline constant...\n");
2813 continue;
2814 }
2815
2816 /* Make sure that the constant is not itself a
2817 * vector by checking if all accessed values
2818 * (by the swizzle) are the same. */
2819
2820 uint32_t *cons = (uint32_t *) ins->constants;
2821 uint32_t value = cons[component];
2822
2823 bool is_vector = false;
2824 unsigned mask = effective_writemask(&ins->alu);
2825
2826 for (int c = 1; c < 4; ++c) {
2827 /* We only care if this component is actually used */
2828 if (!(mask & (1 << c)))
2829 continue;
2830
2831 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2832
2833 if (test != value) {
2834 is_vector = true;
2835 break;
2836 }
2837 }
2838
2839 if (is_vector)
2840 continue;
2841
2842 /* Get rid of the embedded constant */
2843 ins->has_constants = false;
2844 ins->ssa_args.src1 = SSA_UNUSED_0;
2845 ins->ssa_args.inline_constant = true;
2846 ins->inline_constant = scaled_constant;
2847 }
2848 }
2849 }
2850
2851 /* Map normal SSA sources to other SSA sources / fixed registers (like
2852 * uniforms) */
2853
2854 static void
2855 map_ssa_to_alias(compiler_context *ctx, int *ref)
2856 {
2857 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2858
2859 if (alias) {
2860 /* Remove entry in leftovers to avoid a redunant fmov */
2861
2862 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2863
2864 if (leftover)
2865 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2866
2867 /* Assign the alias map */
2868 *ref = alias - 1;
2869 return;
2870 }
2871 }
2872
2873 #define AS_SRC(to, u) \
2874 int q##to = ins->alu.src2; \
2875 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2876
2877 /* Removing unused moves is necessary to clean up the texture pipeline results.
2878 *
2879 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2880
2881 static void
2882 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2883 {
2884 mir_foreach_instr_in_block_safe(block, ins) {
2885 if (ins->type != TAG_ALU_4) continue;
2886
2887 if (ins->alu.op != midgard_alu_op_fmov) continue;
2888
2889 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2890
2891 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2892
2893 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2894
2895 mir_remove_instruction(ins);
2896 }
2897 }
2898
2899 /* The following passes reorder MIR instructions to enable better scheduling */
2900
2901 static void
2902 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2903 {
2904 mir_foreach_instr_in_block_safe(block, ins) {
2905 if (ins->type != TAG_LOAD_STORE_4) continue;
2906
2907 /* We've found a load/store op. Check if next is also load/store. */
2908 midgard_instruction *next_op = mir_next_op(ins);
2909 if (&next_op->link != &block->instructions) {
2910 if (next_op->type == TAG_LOAD_STORE_4) {
2911 /* If so, we're done since we're a pair */
2912 ins = mir_next_op(ins);
2913 continue;
2914 }
2915
2916 /* Maximum search distance to pair, to avoid register pressure disasters */
2917 int search_distance = 8;
2918
2919 /* Otherwise, we have an orphaned load/store -- search for another load */
2920 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2921 /* Terminate search if necessary */
2922 if (!(search_distance--)) break;
2923
2924 if (c->type != TAG_LOAD_STORE_4) continue;
2925
2926 if (OP_IS_STORE(c->load_store.op)) continue;
2927
2928 /* We found one! Move it up to pair and remove it from the old location */
2929
2930 mir_insert_instruction_before(ins, *c);
2931 mir_remove_instruction(c);
2932
2933 break;
2934 }
2935 }
2936 }
2937 }
2938
2939 /* Emit varying stores late */
2940
2941 static void
2942 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2943 /* Iterate in reverse to get the final write, rather than the first */
2944
2945 mir_foreach_instr_in_block_safe_rev(block, ins) {
2946 /* Check if what we just wrote needs a store */
2947 int idx = ins->ssa_args.dest;
2948 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2949
2950 if (!varying) continue;
2951
2952 varying -= 1;
2953
2954 /* We need to store to the appropriate varying, so emit the
2955 * move/store */
2956
2957 /* TODO: Integrate with special purpose RA (and scheduler?) */
2958 bool high_varying_register = false;
2959
2960 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2961
2962 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2963 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2964
2965 mir_insert_instruction_before(mir_next_op(ins), st);
2966 mir_insert_instruction_before(mir_next_op(ins), mov);
2967
2968 /* We no longer need to store this varying */
2969 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2970 }
2971 }
2972
2973 /* If there are leftovers after the below pass, emit actual fmov
2974 * instructions for the slow-but-correct path */
2975
2976 static void
2977 emit_leftover_move(compiler_context *ctx)
2978 {
2979 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2980 int base = ((uintptr_t) leftover->key) - 1;
2981 int mapped = base;
2982
2983 map_ssa_to_alias(ctx, &mapped);
2984 EMIT(fmov, mapped, blank_alu_src, base);
2985 }
2986 }
2987
2988 static void
2989 actualise_ssa_to_alias(compiler_context *ctx)
2990 {
2991 mir_foreach_instr(ctx, ins) {
2992 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2993 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2994 }
2995
2996 emit_leftover_move(ctx);
2997 }
2998
2999 /* Vertex shaders do not write gl_Position as is; instead, they write a
3000 * transformed screen space position as a varying. See section 12.5 "Coordinate
3001 * Transformation" of the ES 3.2 full specification for details.
3002 *
3003 * This transformation occurs early on, as NIR and prior to optimisation, in
3004 * order to take advantage of NIR optimisation passes of the transform itself.
3005 * */
3006
3007 static void
3008 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
3009 {
3010 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
3011
3012 /* Get viewport from the uniforms */
3013 nir_intrinsic_instr *load;
3014 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
3015 load->num_components = 4;
3016 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
3017 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
3018 nir_builder_instr_insert(b, &load->instr);
3019
3020 /* Formatted as <width, height, centerx, centery> */
3021 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
3022 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
3023 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
3024 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
3025
3026 /* XXX: From uniforms? */
3027 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
3028 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
3029
3030 /* World space to normalised device coordinates */
3031
3032 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3033 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3034
3035 /* Normalised device coordinates to screen space */
3036
3037 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3038 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3039
3040 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3041 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3042 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3043
3044 /* gl_Position will be written out in screenspace xyz, with w set to
3045 * the reciprocal we computed earlier. The transformed w component is
3046 * then used for perspective-correct varying interpolation. The
3047 * transformed w component must preserve its original sign; this is
3048 * used in depth clipping computations */
3049
3050 nir_ssa_def *screen_space = nir_vec4(b,
3051 nir_channel(b, viewport_xy, 0),
3052 nir_channel(b, viewport_xy, 1),
3053 screen_depth,
3054 w_recip);
3055
3056 /* Finally, write out the transformed values to the varying */
3057
3058 nir_intrinsic_instr *store;
3059 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3060 store->num_components = 4;
3061 nir_intrinsic_set_base(store, 0);
3062 nir_intrinsic_set_write_mask(store, 0xf);
3063 store->src[0].ssa = screen_space;
3064 store->src[0].is_ssa = true;
3065 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3066 nir_builder_instr_insert(b, &store->instr);
3067 }
3068
3069 static void
3070 transform_position_writes(nir_shader *shader)
3071 {
3072 nir_foreach_function(func, shader) {
3073 nir_foreach_block(block, func->impl) {
3074 nir_foreach_instr_safe(instr, block) {
3075 if (instr->type != nir_instr_type_intrinsic) continue;
3076
3077 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3078 nir_variable *out = NULL;
3079
3080 switch (intr->intrinsic) {
3081 case nir_intrinsic_store_output:
3082 /* already had i/o lowered.. lookup the matching output var: */
3083 nir_foreach_variable(var, &shader->outputs) {
3084 int drvloc = var->data.driver_location;
3085
3086 if (nir_intrinsic_base(intr) == drvloc) {
3087 out = var;
3088 break;
3089 }
3090 }
3091
3092 break;
3093
3094 default:
3095 break;
3096 }
3097
3098 if (!out) continue;
3099
3100 if (out->data.mode != nir_var_shader_out)
3101 continue;
3102
3103 if (out->data.location != VARYING_SLOT_POS)
3104 continue;
3105
3106 nir_builder b;
3107 nir_builder_init(&b, func->impl);
3108 b.cursor = nir_before_instr(instr);
3109
3110 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3111 nir_instr_remove(instr);
3112 }
3113 }
3114 }
3115 }
3116
3117 static void
3118 emit_fragment_epilogue(compiler_context *ctx)
3119 {
3120 /* Special case: writing out constants requires us to include the move
3121 * explicitly now, so shove it into r0 */
3122
3123 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3124
3125 if (constant_value) {
3126 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3127 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3128 emit_mir_instruction(ctx, ins);
3129 }
3130
3131 /* Perform the actual fragment writeout. We have two writeout/branch
3132 * instructions, forming a loop until writeout is successful as per the
3133 * docs. TODO: gl_FragDepth */
3134
3135 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3136 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3137 }
3138
3139 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3140 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3141 * with the int8 analogue to the fragment epilogue */
3142
3143 static void
3144 emit_blend_epilogue(compiler_context *ctx)
3145 {
3146 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3147
3148 midgard_instruction scale = {
3149 .type = TAG_ALU_4,
3150 .unit = UNIT_VMUL,
3151 .inline_constant = _mesa_float_to_half(255.0),
3152 .ssa_args = {
3153 .src0 = SSA_FIXED_REGISTER(0),
3154 .src1 = SSA_UNUSED_0,
3155 .dest = SSA_FIXED_REGISTER(24),
3156 .inline_constant = true
3157 },
3158 .alu = {
3159 .op = midgard_alu_op_fmul,
3160 .reg_mode = midgard_reg_mode_full,
3161 .dest_override = midgard_dest_override_lower,
3162 .mask = 0xFF,
3163 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3164 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3165 }
3166 };
3167
3168 emit_mir_instruction(ctx, scale);
3169
3170 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3171
3172 midgard_vector_alu_src alu_src = blank_alu_src;
3173 alu_src.half = true;
3174
3175 midgard_instruction f2u8 = {
3176 .type = TAG_ALU_4,
3177 .ssa_args = {
3178 .src0 = SSA_FIXED_REGISTER(24),
3179 .src1 = SSA_UNUSED_0,
3180 .dest = SSA_FIXED_REGISTER(0),
3181 .inline_constant = true
3182 },
3183 .alu = {
3184 .op = midgard_alu_op_f2u8,
3185 .reg_mode = midgard_reg_mode_half,
3186 .dest_override = midgard_dest_override_lower,
3187 .outmod = midgard_outmod_pos,
3188 .mask = 0xF,
3189 .src1 = vector_alu_srco_unsigned(alu_src),
3190 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3191 }
3192 };
3193
3194 emit_mir_instruction(ctx, f2u8);
3195
3196 /* vmul.imov.quarter r0, r0, r0 */
3197
3198 midgard_instruction imov_8 = {
3199 .type = TAG_ALU_4,
3200 .ssa_args = {
3201 .src0 = SSA_UNUSED_1,
3202 .src1 = SSA_FIXED_REGISTER(0),
3203 .dest = SSA_FIXED_REGISTER(0),
3204 },
3205 .alu = {
3206 .op = midgard_alu_op_imov,
3207 .reg_mode = midgard_reg_mode_quarter,
3208 .dest_override = midgard_dest_override_none,
3209 .mask = 0xFF,
3210 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3211 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3212 }
3213 };
3214
3215 /* Emit branch epilogue with the 8-bit move as the source */
3216
3217 emit_mir_instruction(ctx, imov_8);
3218 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3219
3220 emit_mir_instruction(ctx, imov_8);
3221 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3222 }
3223
3224 static midgard_block *
3225 emit_block(compiler_context *ctx, nir_block *block)
3226 {
3227 midgard_block *this_block = malloc(sizeof(midgard_block));
3228 list_addtail(&this_block->link, &ctx->blocks);
3229
3230 this_block->is_scheduled = false;
3231 ++ctx->block_count;
3232
3233 ctx->texture_index[0] = -1;
3234 ctx->texture_index[1] = -1;
3235
3236 /* Set up current block */
3237 list_inithead(&this_block->instructions);
3238 ctx->current_block = this_block;
3239
3240 nir_foreach_instr(instr, block) {
3241 emit_instr(ctx, instr);
3242 ++ctx->instruction_count;
3243 }
3244
3245 inline_alu_constants(ctx);
3246 embedded_to_inline_constant(ctx);
3247
3248 /* Perform heavylifting for aliasing */
3249 actualise_ssa_to_alias(ctx);
3250
3251 midgard_emit_store(ctx, this_block);
3252 midgard_eliminate_orphan_moves(ctx, this_block);
3253 midgard_pair_load_store(ctx, this_block);
3254
3255 /* Append fragment shader epilogue (value writeout) */
3256 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3257 if (block == nir_impl_last_block(ctx->func->impl)) {
3258 if (ctx->is_blend)
3259 emit_blend_epilogue(ctx);
3260 else
3261 emit_fragment_epilogue(ctx);
3262 }
3263 }
3264
3265 /* Fallthrough save */
3266 this_block->next_fallthrough = ctx->previous_source_block;
3267
3268 if (block == nir_start_block(ctx->func->impl))
3269 ctx->initial_block = this_block;
3270
3271 if (block == nir_impl_last_block(ctx->func->impl))
3272 ctx->final_block = this_block;
3273
3274 /* Allow the next control flow to access us retroactively, for
3275 * branching etc */
3276 ctx->current_block = this_block;
3277
3278 /* Document the fallthrough chain */
3279 ctx->previous_source_block = this_block;
3280
3281 return this_block;
3282 }
3283
3284 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3285
3286 static void
3287 emit_if(struct compiler_context *ctx, nir_if *nif)
3288 {
3289 /* Conditional branches expect the condition in r31.w; emit a move for
3290 * that in the _previous_ block (which is the current block). */
3291 emit_condition(ctx, &nif->condition, true);
3292
3293 /* Speculatively emit the branch, but we can't fill it in until later */
3294 EMIT(branch, true, true);
3295 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3296
3297 /* Emit the two subblocks */
3298 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3299
3300 /* Emit a jump from the end of the then block to the end of the else */
3301 EMIT(branch, false, false);
3302 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3303
3304 /* Emit second block, and check if it's empty */
3305
3306 int else_idx = ctx->block_count;
3307 int count_in = ctx->instruction_count;
3308 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3309 int after_else_idx = ctx->block_count;
3310
3311 /* Now that we have the subblocks emitted, fix up the branches */
3312
3313 assert(then_block);
3314 assert(else_block);
3315
3316 if (ctx->instruction_count == count_in) {
3317 /* The else block is empty, so don't emit an exit jump */
3318 mir_remove_instruction(then_exit);
3319 then_branch->branch.target_block = after_else_idx;
3320 } else {
3321 then_branch->branch.target_block = else_idx;
3322 then_exit->branch.target_block = after_else_idx;
3323 }
3324 }
3325
3326 static void
3327 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3328 {
3329 /* Remember where we are */
3330 midgard_block *start_block = ctx->current_block;
3331
3332 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3333 * single current_loop variable, maybe we need a stack */
3334
3335 int loop_idx = ++ctx->current_loop;
3336
3337 /* Get index from before the body so we can loop back later */
3338 int start_idx = ctx->block_count;
3339
3340 /* Emit the body itself */
3341 emit_cf_list(ctx, &nloop->body);
3342
3343 /* Branch back to loop back */
3344 struct midgard_instruction br_back = v_branch(false, false);
3345 br_back.branch.target_block = start_idx;
3346 emit_mir_instruction(ctx, br_back);
3347
3348 /* Find the index of the block about to follow us (note: we don't add
3349 * one; blocks are 0-indexed so we get a fencepost problem) */
3350 int break_block_idx = ctx->block_count;
3351
3352 /* Fix up the break statements we emitted to point to the right place,
3353 * now that we can allocate a block number for them */
3354
3355 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3356 if (midgard_debug & MIDGARD_DBG_SHADERS)
3357 print_mir_block(block);
3358 mir_foreach_instr_in_block(block, ins) {
3359 if (ins->type != TAG_ALU_4) continue;
3360 if (!ins->compact_branch) continue;
3361 if (ins->prepacked_branch) continue;
3362
3363 /* We found a branch -- check the type to see if we need to do anything */
3364 if (ins->branch.target_type != TARGET_BREAK) continue;
3365
3366 /* It's a break! Check if it's our break */
3367 if (ins->branch.target_break != loop_idx) continue;
3368
3369 /* Okay, cool, we're breaking out of this loop.
3370 * Rewrite from a break to a goto */
3371
3372 ins->branch.target_type = TARGET_GOTO;
3373 ins->branch.target_block = break_block_idx;
3374 }
3375 }
3376 }
3377
3378 static midgard_block *
3379 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3380 {
3381 midgard_block *start_block = NULL;
3382
3383 foreach_list_typed(nir_cf_node, node, node, list) {
3384 switch (node->type) {
3385 case nir_cf_node_block: {
3386 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3387
3388 if (!start_block)
3389 start_block = block;
3390
3391 break;
3392 }
3393
3394 case nir_cf_node_if:
3395 emit_if(ctx, nir_cf_node_as_if(node));
3396 break;
3397
3398 case nir_cf_node_loop:
3399 emit_loop(ctx, nir_cf_node_as_loop(node));
3400 break;
3401
3402 case nir_cf_node_function:
3403 assert(0);
3404 break;
3405 }
3406 }
3407
3408 return start_block;
3409 }
3410
3411 /* Due to lookahead, we need to report the first tag executed in the command
3412 * stream and in branch targets. An initial block might be empty, so iterate
3413 * until we find one that 'works' */
3414
3415 static unsigned
3416 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3417 {
3418 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3419
3420 unsigned first_tag = 0;
3421
3422 do {
3423 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3424
3425 if (initial_bundle) {
3426 first_tag = initial_bundle->tag;
3427 break;
3428 }
3429
3430 /* Initial block is empty, try the next block */
3431 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3432 } while(initial_block != NULL);
3433
3434 assert(first_tag);
3435 return first_tag;
3436 }
3437
3438 int
3439 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3440 {
3441 struct util_dynarray *compiled = &program->compiled;
3442
3443 midgard_debug = debug_get_option_midgard_debug();
3444
3445 compiler_context ictx = {
3446 .nir = nir,
3447 .stage = nir->info.stage,
3448
3449 .is_blend = is_blend,
3450 .blend_constant_offset = -1,
3451
3452 .alpha_ref = program->alpha_ref
3453 };
3454
3455 compiler_context *ctx = &ictx;
3456
3457 /* TODO: Decide this at runtime */
3458 ctx->uniform_cutoff = 8;
3459
3460 switch (ctx->stage) {
3461 case MESA_SHADER_VERTEX:
3462 ctx->special_uniforms = 1;
3463 break;
3464
3465 default:
3466 ctx->special_uniforms = 0;
3467 break;
3468 }
3469
3470 /* Append epilogue uniforms if necessary. The cmdstream depends on
3471 * these being at the -end-; see assign_var_locations. */
3472
3473 if (ctx->stage == MESA_SHADER_VERTEX) {
3474 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3475 }
3476
3477 /* Assign var locations early, so the epilogue can use them if necessary */
3478
3479 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3480 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3481 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3482
3483 /* Initialize at a global (not block) level hash tables */
3484
3485 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3486 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3487 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3488 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3489 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3490 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3491
3492 /* Assign actual uniform location, skipping over samplers */
3493
3494 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3495
3496 nir_foreach_variable(var, &nir->uniforms) {
3497 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3498
3499 unsigned length = glsl_get_aoa_size(var->type);
3500
3501 if (!length) {
3502 length = glsl_get_length(var->type);
3503 }
3504
3505 if (!length) {
3506 length = glsl_get_matrix_columns(var->type);
3507 }
3508
3509 for (int col = 0; col < length; ++col) {
3510 int id = ctx->uniform_count++;
3511 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3512 }
3513 }
3514
3515 /* Record the varying mapping for the command stream's bookkeeping */
3516
3517 struct exec_list *varyings =
3518 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3519
3520 nir_foreach_variable(var, varyings) {
3521 unsigned loc = var->data.driver_location;
3522 program->varyings[loc] = var->data.location;
3523 }
3524
3525 /* Lower vars -- not I/O -- before epilogue */
3526
3527 NIR_PASS_V(nir, nir_lower_var_copies);
3528 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3529 NIR_PASS_V(nir, nir_split_var_copies);
3530 NIR_PASS_V(nir, nir_lower_var_copies);
3531 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3532 NIR_PASS_V(nir, nir_lower_var_copies);
3533 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3534 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3535
3536 /* Append vertex epilogue before optimisation, so the epilogue itself
3537 * is optimised */
3538
3539 if (ctx->stage == MESA_SHADER_VERTEX)
3540 transform_position_writes(nir);
3541
3542 /* Optimisation passes */
3543
3544 optimise_nir(nir);
3545
3546 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3547 nir_print_shader(nir, stdout);
3548 }
3549
3550 /* Assign counts, now that we're sure (post-optimisation) */
3551 program->uniform_count = nir->num_uniforms;
3552
3553 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3554 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3555
3556
3557 nir_foreach_function(func, nir) {
3558 if (!func->impl)
3559 continue;
3560
3561 list_inithead(&ctx->blocks);
3562 ctx->block_count = 0;
3563 ctx->func = func;
3564
3565 emit_cf_list(ctx, &func->impl->body);
3566 emit_block(ctx, func->impl->end_block);
3567
3568 break; /* TODO: Multi-function shaders */
3569 }
3570
3571 util_dynarray_init(compiled, NULL);
3572
3573 /* Schedule! */
3574 schedule_program(ctx);
3575
3576 /* Now that all the bundles are scheduled and we can calculate block
3577 * sizes, emit actual branch instructions rather than placeholders */
3578
3579 int br_block_idx = 0;
3580
3581 mir_foreach_block(ctx, block) {
3582 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3583 for (int c = 0; c < bundle->instruction_count; ++c) {
3584 midgard_instruction *ins = &bundle->instructions[c];
3585
3586 if (!midgard_is_branch_unit(ins->unit)) continue;
3587
3588 if (ins->prepacked_branch) continue;
3589
3590 /* Parse some basic branch info */
3591 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3592 bool is_conditional = ins->branch.conditional;
3593 bool is_inverted = ins->branch.invert_conditional;
3594 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3595
3596 /* Determine the block we're jumping to */
3597 int target_number = ins->branch.target_block;
3598
3599 /* Report the destination tag. Discards don't need this */
3600 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3601
3602 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3603 int quadword_offset = 0;
3604
3605 if (is_discard) {
3606 /* Jump to the end of the shader. We
3607 * need to include not only the
3608 * following blocks, but also the
3609 * contents of our current block (since
3610 * discard can come in the middle of
3611 * the block) */
3612
3613 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3614
3615 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3616 quadword_offset += quadword_size(bun->tag);
3617 }
3618
3619 mir_foreach_block_from(ctx, blk, b) {
3620 quadword_offset += b->quadword_count;
3621 }
3622
3623 } else if (target_number > br_block_idx) {
3624 /* Jump forward */
3625
3626 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3627 midgard_block *blk = mir_get_block(ctx, idx);
3628 assert(blk);
3629
3630 quadword_offset += blk->quadword_count;
3631 }
3632 } else {
3633 /* Jump backwards */
3634
3635 for (int idx = br_block_idx; idx >= target_number; --idx) {
3636 midgard_block *blk = mir_get_block(ctx, idx);
3637 assert(blk);
3638
3639 quadword_offset -= blk->quadword_count;
3640 }
3641 }
3642
3643 /* Unconditional extended branches (far jumps)
3644 * have issues, so we always use a conditional
3645 * branch, setting the condition to always for
3646 * unconditional. For compact unconditional
3647 * branches, cond isn't used so it doesn't
3648 * matter what we pick. */
3649
3650 midgard_condition cond =
3651 !is_conditional ? midgard_condition_always :
3652 is_inverted ? midgard_condition_false :
3653 midgard_condition_true;
3654
3655 midgard_jmp_writeout_op op =
3656 is_discard ? midgard_jmp_writeout_op_discard :
3657 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3658 midgard_jmp_writeout_op_branch_cond;
3659
3660 if (!is_compact) {
3661 midgard_branch_extended branch =
3662 midgard_create_branch_extended(
3663 cond, op,
3664 dest_tag,
3665 quadword_offset);
3666
3667 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3668 } else if (is_conditional || is_discard) {
3669 midgard_branch_cond branch = {
3670 .op = op,
3671 .dest_tag = dest_tag,
3672 .offset = quadword_offset,
3673 .cond = cond
3674 };
3675
3676 assert(branch.offset == quadword_offset);
3677
3678 memcpy(&ins->br_compact, &branch, sizeof(branch));
3679 } else {
3680 assert(op == midgard_jmp_writeout_op_branch_uncond);
3681
3682 midgard_branch_uncond branch = {
3683 .op = op,
3684 .dest_tag = dest_tag,
3685 .offset = quadword_offset,
3686 .unknown = 1
3687 };
3688
3689 assert(branch.offset == quadword_offset);
3690
3691 memcpy(&ins->br_compact, &branch, sizeof(branch));
3692 }
3693 }
3694 }
3695
3696 ++br_block_idx;
3697 }
3698
3699 /* Emit flat binary from the instruction arrays. Iterate each block in
3700 * sequence. Save instruction boundaries such that lookahead tags can
3701 * be assigned easily */
3702
3703 /* Cache _all_ bundles in source order for lookahead across failed branches */
3704
3705 int bundle_count = 0;
3706 mir_foreach_block(ctx, block) {
3707 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3708 }
3709 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3710 int bundle_idx = 0;
3711 mir_foreach_block(ctx, block) {
3712 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3713 source_order_bundles[bundle_idx++] = bundle;
3714 }
3715 }
3716
3717 int current_bundle = 0;
3718
3719 mir_foreach_block(ctx, block) {
3720 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3721 int lookahead = 1;
3722
3723 if (current_bundle + 1 < bundle_count) {
3724 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3725
3726 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3727 lookahead = 1;
3728 } else {
3729 lookahead = next;
3730 }
3731 }
3732
3733 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3734 ++current_bundle;
3735 }
3736
3737 /* TODO: Free deeper */
3738 //util_dynarray_fini(&block->instructions);
3739 }
3740
3741 free(source_order_bundles);
3742
3743 /* Report the very first tag executed */
3744 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3745
3746 /* Deal with off-by-one related to the fencepost problem */
3747 program->work_register_count = ctx->work_registers + 1;
3748
3749 program->can_discard = ctx->can_discard;
3750 program->uniform_cutoff = ctx->uniform_cutoff;
3751
3752 program->blend_patch_offset = ctx->blend_constant_offset;
3753
3754 if (midgard_debug & MIDGARD_DBG_SHADERS)
3755 disassemble_midgard(program->compiled.data, program->compiled.size);
3756
3757 return 0;
3758 }