st: Lower uniforms in st in the !PIPE_CAP_PACKED_UNIFORMS case as well.
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "mesa/state_tracker/st_glsl_types.h"
36 #include "compiler/nir_types.h"
37 #include "main/imports.h"
38 #include "compiler/nir/nir_builder.h"
39 #include "util/half_float.h"
40 #include "util/register_allocate.h"
41 #include "util/u_debug.h"
42 #include "util/u_dynarray.h"
43 #include "util/list.h"
44 #include "main/mtypes.h"
45
46 #include "midgard.h"
47 #include "midgard_nir.h"
48 #include "midgard_compile.h"
49 #include "helpers.h"
50
51 #include "disassemble.h"
52
53 static const struct debug_named_value debug_options[] = {
54 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
55 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
56 DEBUG_NAMED_VALUE_END
57 };
58
59 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
60
61 int midgard_debug = 0;
62
63 #define DBG(fmt, ...) \
64 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
65 fprintf(stderr, "%s:%d: "fmt, \
66 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
67
68 /* Instruction arguments represented as block-local SSA indices, rather than
69 * registers. Negative values mean unused. */
70
71 typedef struct {
72 int src0;
73 int src1;
74 int dest;
75
76 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
77 * in. Only valid for ALU ops. */
78 bool inline_constant;
79 } ssa_args;
80
81 /* Forward declare so midgard_branch can reference */
82 struct midgard_block;
83
84 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
85 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
86 * instruction is actually a discard op. */
87
88 #define TARGET_GOTO 0
89 #define TARGET_BREAK 1
90 #define TARGET_CONTINUE 2
91 #define TARGET_DISCARD 3
92
93 typedef struct midgard_branch {
94 /* If conditional, the condition is specified in r31.w */
95 bool conditional;
96
97 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
98 bool invert_conditional;
99
100 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
101 unsigned target_type;
102
103 /* The actual target */
104 union {
105 int target_block;
106 int target_break;
107 int target_continue;
108 };
109 } midgard_branch;
110
111 /* Generic in-memory data type repesenting a single logical instruction, rather
112 * than a single instruction group. This is the preferred form for code gen.
113 * Multiple midgard_insturctions will later be combined during scheduling,
114 * though this is not represented in this structure. Its format bridges
115 * the low-level binary representation with the higher level semantic meaning.
116 *
117 * Notably, it allows registers to be specified as block local SSA, for code
118 * emitted before the register allocation pass.
119 */
120
121 typedef struct midgard_instruction {
122 /* Must be first for casting */
123 struct list_head link;
124
125 unsigned type; /* ALU, load/store, texture */
126
127 /* If the register allocator has not run yet... */
128 ssa_args ssa_args;
129
130 /* Special fields for an ALU instruction */
131 midgard_reg_info registers;
132
133 /* I.e. (1 << alu_bit) */
134 int unit;
135
136 bool has_constants;
137 float constants[4];
138 uint16_t inline_constant;
139 bool has_blend_constant;
140
141 bool compact_branch;
142 bool writeout;
143 bool prepacked_branch;
144
145 union {
146 midgard_load_store_word load_store;
147 midgard_vector_alu alu;
148 midgard_texture_word texture;
149 midgard_branch_extended branch_extended;
150 uint16_t br_compact;
151
152 /* General branch, rather than packed br_compact. Higher level
153 * than the other components */
154 midgard_branch branch;
155 };
156 } midgard_instruction;
157
158 typedef struct midgard_block {
159 /* Link to next block. Must be first for mir_get_block */
160 struct list_head link;
161
162 /* List of midgard_instructions emitted for the current block */
163 struct list_head instructions;
164
165 bool is_scheduled;
166
167 /* List of midgard_bundles emitted (after the scheduler has run) */
168 struct util_dynarray bundles;
169
170 /* Number of quadwords _actually_ emitted, as determined after scheduling */
171 unsigned quadword_count;
172
173 struct midgard_block *next_fallthrough;
174 } midgard_block;
175
176 /* Helpers to generate midgard_instruction's using macro magic, since every
177 * driver seems to do it that way */
178
179 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
180 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
181
182 #define M_LOAD_STORE(name, rname, uname) \
183 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
184 midgard_instruction i = { \
185 .type = TAG_LOAD_STORE_4, \
186 .ssa_args = { \
187 .rname = ssa, \
188 .uname = -1, \
189 .src1 = -1 \
190 }, \
191 .load_store = { \
192 .op = midgard_op_##name, \
193 .mask = 0xF, \
194 .swizzle = SWIZZLE_XYZW, \
195 .address = address \
196 } \
197 }; \
198 \
199 return i; \
200 }
201
202 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
203 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
204
205 const midgard_vector_alu_src blank_alu_src = {
206 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
207 };
208
209 const midgard_vector_alu_src blank_alu_src_xxxx = {
210 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
211 };
212
213 const midgard_scalar_alu_src blank_scalar_alu_src = {
214 .full = true
215 };
216
217 /* Used for encoding the unused source of 1-op instructions */
218 const midgard_vector_alu_src zero_alu_src = { 0 };
219
220 /* Coerce structs to integer */
221
222 static unsigned
223 vector_alu_srco_unsigned(midgard_vector_alu_src src)
224 {
225 unsigned u;
226 memcpy(&u, &src, sizeof(src));
227 return u;
228 }
229
230 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
231 * the corresponding Midgard source */
232
233 static midgard_vector_alu_src
234 vector_alu_modifiers(nir_alu_src *src)
235 {
236 if (!src) return blank_alu_src;
237
238 midgard_vector_alu_src alu_src = {
239 .abs = src->abs,
240 .negate = src->negate,
241 .rep_low = 0,
242 .rep_high = 0,
243 .half = 0, /* TODO */
244 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
245 };
246
247 return alu_src;
248 }
249
250 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
251
252 static midgard_instruction
253 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
254 {
255 midgard_instruction ins = {
256 .type = TAG_ALU_4,
257 .ssa_args = {
258 .src0 = SSA_UNUSED_1,
259 .src1 = src,
260 .dest = dest,
261 },
262 .alu = {
263 .op = midgard_alu_op_fmov,
264 .reg_mode = midgard_reg_mode_full,
265 .dest_override = midgard_dest_override_none,
266 .mask = 0xFF,
267 .src1 = vector_alu_srco_unsigned(zero_alu_src),
268 .src2 = vector_alu_srco_unsigned(mod)
269 },
270 };
271
272 return ins;
273 }
274
275 /* load/store instructions have both 32-bit and 16-bit variants, depending on
276 * whether we are using vectors composed of highp or mediump. At the moment, we
277 * don't support half-floats -- this requires changes in other parts of the
278 * compiler -- therefore the 16-bit versions are commented out. */
279
280 //M_LOAD(load_attr_16);
281 M_LOAD(load_attr_32);
282 //M_LOAD(load_vary_16);
283 M_LOAD(load_vary_32);
284 //M_LOAD(load_uniform_16);
285 M_LOAD(load_uniform_32);
286 M_LOAD(load_color_buffer_8);
287 //M_STORE(store_vary_16);
288 M_STORE(store_vary_32);
289 M_STORE(store_cubemap_coords);
290
291 static midgard_instruction
292 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
293 {
294 midgard_branch_cond branch = {
295 .op = op,
296 .dest_tag = tag,
297 .offset = offset,
298 .cond = cond
299 };
300
301 uint16_t compact;
302 memcpy(&compact, &branch, sizeof(branch));
303
304 midgard_instruction ins = {
305 .type = TAG_ALU_4,
306 .unit = ALU_ENAB_BR_COMPACT,
307 .prepacked_branch = true,
308 .compact_branch = true,
309 .br_compact = compact
310 };
311
312 if (op == midgard_jmp_writeout_op_writeout)
313 ins.writeout = true;
314
315 return ins;
316 }
317
318 static midgard_instruction
319 v_branch(bool conditional, bool invert)
320 {
321 midgard_instruction ins = {
322 .type = TAG_ALU_4,
323 .unit = ALU_ENAB_BRANCH,
324 .compact_branch = true,
325 .branch = {
326 .conditional = conditional,
327 .invert_conditional = invert
328 }
329 };
330
331 return ins;
332 }
333
334 static midgard_branch_extended
335 midgard_create_branch_extended( midgard_condition cond,
336 midgard_jmp_writeout_op op,
337 unsigned dest_tag,
338 signed quadword_offset)
339 {
340 /* For unclear reasons, the condition code is repeated 8 times */
341 uint16_t duplicated_cond =
342 (cond << 14) |
343 (cond << 12) |
344 (cond << 10) |
345 (cond << 8) |
346 (cond << 6) |
347 (cond << 4) |
348 (cond << 2) |
349 (cond << 0);
350
351 midgard_branch_extended branch = {
352 .op = op,
353 .dest_tag = dest_tag,
354 .offset = quadword_offset,
355 .cond = duplicated_cond
356 };
357
358 return branch;
359 }
360
361 typedef struct midgard_bundle {
362 /* Tag for the overall bundle */
363 int tag;
364
365 /* Instructions contained by the bundle */
366 int instruction_count;
367 midgard_instruction instructions[5];
368
369 /* Bundle-wide ALU configuration */
370 int padding;
371 int control;
372 bool has_embedded_constants;
373 float constants[4];
374 bool has_blend_constant;
375
376 uint16_t register_words[8];
377 int register_words_count;
378
379 uint64_t body_words[8];
380 size_t body_size[8];
381 int body_words_count;
382 } midgard_bundle;
383
384 typedef struct compiler_context {
385 nir_shader *nir;
386 gl_shader_stage stage;
387
388 /* Is internally a blend shader? Depends on stage == FRAGMENT */
389 bool is_blend;
390
391 /* Tracking for blend constant patching */
392 int blend_constant_number;
393 int blend_constant_offset;
394
395 /* Current NIR function */
396 nir_function *func;
397
398 /* Unordered list of midgard_blocks */
399 int block_count;
400 struct list_head blocks;
401
402 midgard_block *initial_block;
403 midgard_block *previous_source_block;
404 midgard_block *final_block;
405
406 /* List of midgard_instructions emitted for the current block */
407 midgard_block *current_block;
408
409 /* The index corresponding to the current loop, e.g. for breaks/contineus */
410 int current_loop;
411
412 /* Constants which have been loaded, for later inlining */
413 struct hash_table_u64 *ssa_constants;
414
415 /* SSA indices to be outputted to corresponding varying offset */
416 struct hash_table_u64 *ssa_varyings;
417
418 /* SSA values / registers which have been aliased. Naively, these
419 * demand a fmov output; instead, we alias them in a later pass to
420 * avoid the wasted op.
421 *
422 * A note on encoding: to avoid dynamic memory management here, rather
423 * than ampping to a pointer, we map to the source index; the key
424 * itself is just the destination index. */
425
426 struct hash_table_u64 *ssa_to_alias;
427 struct set *leftover_ssa_to_alias;
428
429 /* Actual SSA-to-register for RA */
430 struct hash_table_u64 *ssa_to_register;
431
432 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
433 struct hash_table_u64 *hash_to_temp;
434 int temp_count;
435 int max_hash;
436
437 /* Just the count of the max register used. Higher count => higher
438 * register pressure */
439 int work_registers;
440
441 /* Used for cont/last hinting. Increase when a tex op is added.
442 * Decrease when a tex op is removed. */
443 int texture_op_count;
444
445 /* Mapping of texture register -> SSA index for unaliasing */
446 int texture_index[2];
447
448 /* If any path hits a discard instruction */
449 bool can_discard;
450
451 /* The number of uniforms allowable for the fast path */
452 int uniform_cutoff;
453
454 /* Count of instructions emitted from NIR overall, across all blocks */
455 int instruction_count;
456
457 /* Alpha ref value passed in */
458 float alpha_ref;
459
460 /* The index corresponding to the fragment output */
461 unsigned fragment_output;
462
463 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
464 unsigned sysvals[MAX_SYSVAL_COUNT];
465 unsigned sysval_count;
466 struct hash_table_u64 *sysval_to_id;
467 } compiler_context;
468
469 /* Append instruction to end of current block */
470
471 static midgard_instruction *
472 mir_upload_ins(struct midgard_instruction ins)
473 {
474 midgard_instruction *heap = malloc(sizeof(ins));
475 memcpy(heap, &ins, sizeof(ins));
476 return heap;
477 }
478
479 static void
480 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
481 {
482 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
483 }
484
485 static void
486 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
487 {
488 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
489 }
490
491 static void
492 mir_remove_instruction(struct midgard_instruction *ins)
493 {
494 list_del(&ins->link);
495 }
496
497 static midgard_instruction*
498 mir_prev_op(struct midgard_instruction *ins)
499 {
500 return list_last_entry(&(ins->link), midgard_instruction, link);
501 }
502
503 static midgard_instruction*
504 mir_next_op(struct midgard_instruction *ins)
505 {
506 return list_first_entry(&(ins->link), midgard_instruction, link);
507 }
508
509 static midgard_block *
510 mir_next_block(struct midgard_block *blk)
511 {
512 return list_first_entry(&(blk->link), midgard_block, link);
513 }
514
515
516 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
517 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
518
519 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
521 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
524 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
525
526
527 static midgard_instruction *
528 mir_last_in_block(struct midgard_block *block)
529 {
530 return list_last_entry(&block->instructions, struct midgard_instruction, link);
531 }
532
533 static midgard_block *
534 mir_get_block(compiler_context *ctx, int idx)
535 {
536 struct list_head *lst = &ctx->blocks;
537
538 while ((idx--) + 1)
539 lst = lst->next;
540
541 return (struct midgard_block *) lst;
542 }
543
544 /* Pretty printer for internal Midgard IR */
545
546 static void
547 print_mir_source(int source)
548 {
549 if (source >= SSA_FIXED_MINIMUM) {
550 /* Specific register */
551 int reg = SSA_REG_FROM_FIXED(source);
552
553 /* TODO: Moving threshold */
554 if (reg > 16 && reg < 24)
555 printf("u%d", 23 - reg);
556 else
557 printf("r%d", reg);
558 } else {
559 printf("%d", source);
560 }
561 }
562
563 static void
564 print_mir_instruction(midgard_instruction *ins)
565 {
566 printf("\t");
567
568 switch (ins->type) {
569 case TAG_ALU_4: {
570 midgard_alu_op op = ins->alu.op;
571 const char *name = alu_opcode_names[op];
572
573 if (ins->unit)
574 printf("%d.", ins->unit);
575
576 printf("%s", name ? name : "??");
577 break;
578 }
579
580 case TAG_LOAD_STORE_4: {
581 midgard_load_store_op op = ins->load_store.op;
582 const char *name = load_store_opcode_names[op];
583
584 assert(name);
585 printf("%s", name);
586 break;
587 }
588
589 case TAG_TEXTURE_4: {
590 printf("texture");
591 break;
592 }
593
594 default:
595 assert(0);
596 }
597
598 ssa_args *args = &ins->ssa_args;
599
600 printf(" %d, ", args->dest);
601
602 print_mir_source(args->src0);
603 printf(", ");
604
605 if (args->inline_constant)
606 printf("#%d", ins->inline_constant);
607 else
608 print_mir_source(args->src1);
609
610 if (ins->has_constants)
611 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
612
613 printf("\n");
614 }
615
616 static void
617 print_mir_block(midgard_block *block)
618 {
619 printf("{\n");
620
621 mir_foreach_instr_in_block(block, ins) {
622 print_mir_instruction(ins);
623 }
624
625 printf("}\n");
626 }
627
628
629
630 static void
631 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
632 {
633 ins->has_constants = true;
634 memcpy(&ins->constants, constants, 16);
635
636 /* If this is the special blend constant, mark this instruction */
637
638 if (ctx->is_blend && ctx->blend_constant_number == name)
639 ins->has_blend_constant = true;
640 }
641
642 static int
643 glsl_type_size(const struct glsl_type *type)
644 {
645 return glsl_count_attribute_slots(type, false);
646 }
647
648 static int
649 uniform_type_size(const struct glsl_type *type)
650 {
651 return st_glsl_storage_type_size(type, false);
652 }
653
654 /* Lower fdot2 to a vector multiplication followed by channel addition */
655 static void
656 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
657 {
658 if (alu->op != nir_op_fdot2)
659 return;
660
661 b->cursor = nir_before_instr(&alu->instr);
662
663 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
664 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
665
666 nir_ssa_def *product = nir_fmul(b, src0, src1);
667
668 nir_ssa_def *sum = nir_fadd(b,
669 nir_channel(b, product, 0),
670 nir_channel(b, product, 1));
671
672 /* Replace the fdot2 with this sum */
673 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
674 }
675
676 static int
677 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
678 {
679 switch (instr->intrinsic) {
680 case nir_intrinsic_load_viewport_scale:
681 return PAN_SYSVAL_VIEWPORT_SCALE;
682 case nir_intrinsic_load_viewport_offset:
683 return PAN_SYSVAL_VIEWPORT_OFFSET;
684 default:
685 return -1;
686 }
687 }
688
689 static void
690 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
691 {
692 int sysval = -1;
693
694 if (instr->type == nir_instr_type_intrinsic) {
695 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
696 sysval = midgard_nir_sysval_for_intrinsic(intr);
697 }
698
699 if (sysval < 0)
700 return;
701
702 /* We have a sysval load; check if it's already been assigned */
703
704 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
705 return;
706
707 /* It hasn't -- so assign it now! */
708
709 unsigned id = ctx->sysval_count++;
710 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
711 ctx->sysvals[id] = sysval;
712 }
713
714 static void
715 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
716 {
717 ctx->sysval_count = 0;
718
719 nir_foreach_function(function, shader) {
720 if (!function->impl) continue;
721
722 nir_foreach_block(block, function->impl) {
723 nir_foreach_instr_safe(instr, block) {
724 midgard_nir_assign_sysval_body(ctx, instr);
725 }
726 }
727 }
728 }
729
730 static bool
731 midgard_nir_lower_fdot2(nir_shader *shader)
732 {
733 bool progress = false;
734
735 nir_foreach_function(function, shader) {
736 if (!function->impl) continue;
737
738 nir_builder _b;
739 nir_builder *b = &_b;
740 nir_builder_init(b, function->impl);
741
742 nir_foreach_block(block, function->impl) {
743 nir_foreach_instr_safe(instr, block) {
744 if (instr->type != nir_instr_type_alu) continue;
745
746 nir_alu_instr *alu = nir_instr_as_alu(instr);
747 midgard_nir_lower_fdot2_body(b, alu);
748
749 progress |= true;
750 }
751 }
752
753 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
754
755 }
756
757 return progress;
758 }
759
760 static void
761 optimise_nir(nir_shader *nir)
762 {
763 bool progress;
764
765 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
766 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
767
768 nir_lower_tex_options lower_tex_options = {
769 .lower_rect = true
770 };
771
772 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
773
774 do {
775 progress = false;
776
777 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
778 NIR_PASS(progress, nir, nir_lower_var_copies);
779 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
780
781 NIR_PASS(progress, nir, nir_copy_prop);
782 NIR_PASS(progress, nir, nir_opt_dce);
783 NIR_PASS(progress, nir, nir_opt_dead_cf);
784 NIR_PASS(progress, nir, nir_opt_cse);
785 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
786 NIR_PASS(progress, nir, nir_opt_algebraic);
787 NIR_PASS(progress, nir, nir_opt_constant_folding);
788 NIR_PASS(progress, nir, nir_opt_undef);
789 NIR_PASS(progress, nir, nir_opt_loop_unroll,
790 nir_var_shader_in |
791 nir_var_shader_out |
792 nir_var_function_temp);
793
794 /* TODO: Enable vectorize when merged upstream */
795 // NIR_PASS(progress, nir, nir_opt_vectorize);
796 } while (progress);
797
798 /* Must be run at the end to prevent creation of fsin/fcos ops */
799 NIR_PASS(progress, nir, midgard_nir_scale_trig);
800
801 do {
802 progress = false;
803
804 NIR_PASS(progress, nir, nir_opt_dce);
805 NIR_PASS(progress, nir, nir_opt_algebraic);
806 NIR_PASS(progress, nir, nir_opt_constant_folding);
807 NIR_PASS(progress, nir, nir_copy_prop);
808 } while (progress);
809
810 NIR_PASS(progress, nir, nir_opt_algebraic_late);
811 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
812
813 /* Lower mods for float ops only. Integer ops don't support modifiers
814 * (saturate doesn't make sense on integers, neg/abs require dedicated
815 * instructions) */
816
817 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
818 NIR_PASS(progress, nir, nir_copy_prop);
819 NIR_PASS(progress, nir, nir_opt_dce);
820
821 /* We implement booleans as 32-bit 0/~0 */
822 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
823
824 /* Take us out of SSA */
825 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
826 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
827
828 /* We are a vector architecture; write combine where possible */
829 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
830 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
831
832 NIR_PASS(progress, nir, nir_opt_dce);
833 }
834
835 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
836 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
837 * r0. See the comments in compiler_context */
838
839 static void
840 alias_ssa(compiler_context *ctx, int dest, int src)
841 {
842 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
843 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
844 }
845
846 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
847
848 static void
849 unalias_ssa(compiler_context *ctx, int dest)
850 {
851 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
852 /* TODO: Remove from leftover or no? */
853 }
854
855 static void
856 midgard_pin_output(compiler_context *ctx, int index, int reg)
857 {
858 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
859 }
860
861 static bool
862 midgard_is_pinned(compiler_context *ctx, int index)
863 {
864 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
865 }
866
867 /* Do not actually emit a load; instead, cache the constant for inlining */
868
869 static void
870 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
871 {
872 nir_ssa_def def = instr->def;
873
874 float *v = ralloc_array(NULL, float, 4);
875 memcpy(v, &instr->value.f32, 4 * sizeof(float));
876 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
877 }
878
879 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
880 * do the inverse) */
881
882 static unsigned
883 expand_writemask(unsigned mask)
884 {
885 unsigned o = 0;
886
887 for (int i = 0; i < 4; ++i)
888 if (mask & (1 << i))
889 o |= (3 << (2 * i));
890
891 return o;
892 }
893
894 static unsigned
895 squeeze_writemask(unsigned mask)
896 {
897 unsigned o = 0;
898
899 for (int i = 0; i < 4; ++i)
900 if (mask & (3 << (2 * i)))
901 o |= (1 << i);
902
903 return o;
904
905 }
906
907 /* Determines effective writemask, taking quirks and expansion into account */
908 static unsigned
909 effective_writemask(midgard_vector_alu *alu)
910 {
911 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
912 * sense) */
913
914 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
915
916 /* If there is a fixed channel count, construct the appropriate mask */
917
918 if (channel_count)
919 return (1 << channel_count) - 1;
920
921 /* Otherwise, just squeeze the existing mask */
922 return squeeze_writemask(alu->mask);
923 }
924
925 static unsigned
926 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
927 {
928 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
929 return hash;
930
931 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
932
933 if (temp)
934 return temp - 1;
935
936 /* If no temp is find, allocate one */
937 temp = ctx->temp_count++;
938 ctx->max_hash = MAX2(ctx->max_hash, hash);
939
940 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
941
942 return temp;
943 }
944
945 static unsigned
946 nir_src_index(compiler_context *ctx, nir_src *src)
947 {
948 if (src->is_ssa)
949 return src->ssa->index;
950 else
951 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
952 }
953
954 static unsigned
955 nir_dest_index(compiler_context *ctx, nir_dest *dst)
956 {
957 if (dst->is_ssa)
958 return dst->ssa.index;
959 else
960 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
961 }
962
963 static unsigned
964 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
965 {
966 return nir_src_index(ctx, &src->src);
967 }
968
969 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
970 * a conditional test) into that register */
971
972 static void
973 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
974 {
975 /* XXX: Force component correct */
976 int condition = nir_src_index(ctx, src);
977
978 /* There is no boolean move instruction. Instead, we simulate a move by
979 * ANDing the condition with itself to get it into r31.w */
980
981 midgard_instruction ins = {
982 .type = TAG_ALU_4,
983 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
984 .ssa_args = {
985 .src0 = condition,
986 .src1 = condition,
987 .dest = SSA_FIXED_REGISTER(31),
988 },
989 .alu = {
990 .op = midgard_alu_op_iand,
991 .reg_mode = midgard_reg_mode_full,
992 .dest_override = midgard_dest_override_none,
993 .mask = (0x3 << 6), /* w */
994 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
995 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
996 },
997 };
998
999 emit_mir_instruction(ctx, ins);
1000 }
1001
1002 #define ALU_CASE(nir, _op) \
1003 case nir_op_##nir: \
1004 op = midgard_alu_op_##_op; \
1005 break;
1006
1007 static void
1008 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1009 {
1010 bool is_ssa = instr->dest.dest.is_ssa;
1011
1012 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1013 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1014 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1015
1016 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1017 * supported. A few do not and are commented for now. Also, there are a
1018 * number of NIR ops which Midgard does not support and need to be
1019 * lowered, also TODO. This switch block emits the opcode and calling
1020 * convention of the Midgard instruction; actual packing is done in
1021 * emit_alu below */
1022
1023 unsigned op;
1024
1025 switch (instr->op) {
1026 ALU_CASE(fadd, fadd);
1027 ALU_CASE(fmul, fmul);
1028 ALU_CASE(fmin, fmin);
1029 ALU_CASE(fmax, fmax);
1030 ALU_CASE(imin, imin);
1031 ALU_CASE(imax, imax);
1032 ALU_CASE(umin, umin);
1033 ALU_CASE(umax, umax);
1034 ALU_CASE(fmov, fmov);
1035 ALU_CASE(ffloor, ffloor);
1036 ALU_CASE(fround_even, froundeven);
1037 ALU_CASE(ftrunc, ftrunc);
1038 ALU_CASE(fceil, fceil);
1039 ALU_CASE(fdot3, fdot3);
1040 ALU_CASE(fdot4, fdot4);
1041 ALU_CASE(iadd, iadd);
1042 ALU_CASE(isub, isub);
1043 ALU_CASE(imul, imul);
1044 ALU_CASE(iabs, iabs);
1045
1046 /* XXX: Use fmov, not imov, since imov was causing major
1047 * issues with texture precision? XXX research */
1048 ALU_CASE(imov, fmov);
1049
1050 ALU_CASE(feq32, feq);
1051 ALU_CASE(fne32, fne);
1052 ALU_CASE(flt32, flt);
1053 ALU_CASE(ieq32, ieq);
1054 ALU_CASE(ine32, ine);
1055 ALU_CASE(ilt32, ilt);
1056 ALU_CASE(ult32, ult);
1057
1058 /* We don't have a native b2f32 instruction. Instead, like many
1059 * GPUs, we exploit booleans as 0/~0 for false/true, and
1060 * correspondingly AND
1061 * by 1.0 to do the type conversion. For the moment, prime us
1062 * to emit:
1063 *
1064 * iand [whatever], #0
1065 *
1066 * At the end of emit_alu (as MIR), we'll fix-up the constant
1067 */
1068
1069 ALU_CASE(b2f32, iand);
1070 ALU_CASE(b2i32, iand);
1071
1072 /* Likewise, we don't have a dedicated f2b32 instruction, but
1073 * we can do a "not equal to 0.0" test. */
1074
1075 ALU_CASE(f2b32, fne);
1076 ALU_CASE(i2b32, ine);
1077
1078 ALU_CASE(frcp, frcp);
1079 ALU_CASE(frsq, frsqrt);
1080 ALU_CASE(fsqrt, fsqrt);
1081 ALU_CASE(fexp2, fexp2);
1082 ALU_CASE(flog2, flog2);
1083
1084 ALU_CASE(f2i32, f2i);
1085 ALU_CASE(f2u32, f2u);
1086 ALU_CASE(i2f32, i2f);
1087 ALU_CASE(u2f32, u2f);
1088
1089 ALU_CASE(fsin, fsin);
1090 ALU_CASE(fcos, fcos);
1091
1092 ALU_CASE(iand, iand);
1093 ALU_CASE(ior, ior);
1094 ALU_CASE(ixor, ixor);
1095 ALU_CASE(inot, inot);
1096 ALU_CASE(ishl, ishl);
1097 ALU_CASE(ishr, iasr);
1098 ALU_CASE(ushr, ilsr);
1099
1100 ALU_CASE(b32all_fequal2, fball_eq);
1101 ALU_CASE(b32all_fequal3, fball_eq);
1102 ALU_CASE(b32all_fequal4, fball_eq);
1103
1104 ALU_CASE(b32any_fnequal2, fbany_neq);
1105 ALU_CASE(b32any_fnequal3, fbany_neq);
1106 ALU_CASE(b32any_fnequal4, fbany_neq);
1107
1108 ALU_CASE(b32all_iequal2, iball_eq);
1109 ALU_CASE(b32all_iequal3, iball_eq);
1110 ALU_CASE(b32all_iequal4, iball_eq);
1111
1112 ALU_CASE(b32any_inequal2, ibany_neq);
1113 ALU_CASE(b32any_inequal3, ibany_neq);
1114 ALU_CASE(b32any_inequal4, ibany_neq);
1115
1116 /* For greater-or-equal, we lower to less-or-equal and flip the
1117 * arguments */
1118
1119 case nir_op_fge:
1120 case nir_op_fge32:
1121 case nir_op_ige32:
1122 case nir_op_uge32: {
1123 op =
1124 instr->op == nir_op_fge ? midgard_alu_op_fle :
1125 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1126 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1127 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1128 0;
1129
1130 /* Swap via temporary */
1131 nir_alu_src temp = instr->src[1];
1132 instr->src[1] = instr->src[0];
1133 instr->src[0] = temp;
1134
1135 break;
1136 }
1137
1138 case nir_op_b32csel: {
1139 op = midgard_alu_op_fcsel;
1140
1141 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1142 nr_inputs = 2;
1143
1144 emit_condition(ctx, &instr->src[0].src, false);
1145
1146 /* The condition is the first argument; move the other
1147 * arguments up one to be a binary instruction for
1148 * Midgard */
1149
1150 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1151 break;
1152 }
1153
1154 default:
1155 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1156 assert(0);
1157 return;
1158 }
1159
1160 /* Fetch unit, quirks, etc information */
1161 unsigned opcode_props = alu_opcode_props[op];
1162 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1163
1164 /* Initialise fields common between scalar/vector instructions */
1165 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1166
1167 /* src0 will always exist afaik, but src1 will not for 1-argument
1168 * instructions. The latter can only be fetched if the instruction
1169 * needs it, or else we may segfault. */
1170
1171 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1172 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1173
1174 /* Rather than use the instruction generation helpers, we do it
1175 * ourselves here to avoid the mess */
1176
1177 midgard_instruction ins = {
1178 .type = TAG_ALU_4,
1179 .ssa_args = {
1180 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1181 .src1 = quirk_flipped_r24 ? src0 : src1,
1182 .dest = dest,
1183 }
1184 };
1185
1186 nir_alu_src *nirmods[2] = { NULL };
1187
1188 if (nr_inputs == 2) {
1189 nirmods[0] = &instr->src[0];
1190 nirmods[1] = &instr->src[1];
1191 } else if (nr_inputs == 1) {
1192 nirmods[quirk_flipped_r24] = &instr->src[0];
1193 } else {
1194 assert(0);
1195 }
1196
1197 midgard_vector_alu alu = {
1198 .op = op,
1199 .reg_mode = midgard_reg_mode_full,
1200 .dest_override = midgard_dest_override_none,
1201 .outmod = outmod,
1202
1203 /* Writemask only valid for non-SSA NIR */
1204 .mask = expand_writemask((1 << nr_components) - 1),
1205
1206 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1207 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1208 };
1209
1210 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1211
1212 if (!is_ssa)
1213 alu.mask &= expand_writemask(instr->dest.write_mask);
1214
1215 ins.alu = alu;
1216
1217 /* Late fixup for emulated instructions */
1218
1219 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1220 /* Presently, our second argument is an inline #0 constant.
1221 * Switch over to an embedded 1.0 constant (that can't fit
1222 * inline, since we're 32-bit, not 16-bit like the inline
1223 * constants) */
1224
1225 ins.ssa_args.inline_constant = false;
1226 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1227 ins.has_constants = true;
1228
1229 if (instr->op == nir_op_b2f32) {
1230 ins.constants[0] = 1.0f;
1231 } else {
1232 /* Type pun it into place */
1233 uint32_t one = 0x1;
1234 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1235 }
1236
1237 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1238 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1239 ins.ssa_args.inline_constant = false;
1240 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1241 ins.has_constants = true;
1242 ins.constants[0] = 0.0f;
1243 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1244 }
1245
1246 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1247 /* To avoid duplicating the lookup tables (probably), true LUT
1248 * instructions can only operate as if they were scalars. Lower
1249 * them here by changing the component. */
1250
1251 uint8_t original_swizzle[4];
1252 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1253
1254 for (int i = 0; i < nr_components; ++i) {
1255 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1256
1257 for (int j = 0; j < 4; ++j)
1258 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1259
1260 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1261 emit_mir_instruction(ctx, ins);
1262 }
1263 } else {
1264 emit_mir_instruction(ctx, ins);
1265 }
1266 }
1267
1268 #undef ALU_CASE
1269
1270 static void
1271 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset)
1272 {
1273 /* TODO: half-floats */
1274
1275 if (offset < ctx->uniform_cutoff) {
1276 /* Fast path: For the first 16 uniform,
1277 * accesses are 0-cycle, since they're
1278 * just a register fetch in the usual
1279 * case. So, we alias the registers
1280 * while we're still in SSA-space */
1281
1282 int reg_slot = 23 - offset;
1283 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1284 } else {
1285 /* Otherwise, read from the 'special'
1286 * UBO to access higher-indexed
1287 * uniforms, at a performance cost */
1288
1289 midgard_instruction ins = m_load_uniform_32(dest, offset);
1290
1291 /* TODO: Don't split */
1292 ins.load_store.varying_parameters = (offset & 7) << 7;
1293 ins.load_store.address = offset >> 3;
1294
1295 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1296 emit_mir_instruction(ctx, ins);
1297 }
1298 }
1299
1300 static void
1301 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1302 {
1303 /* First, pull out the destination */
1304 unsigned dest = nir_dest_index(ctx, &instr->dest);
1305
1306 /* Now, figure out which uniform this is */
1307 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1308 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1309
1310 /* Sysvals are prefix uniforms */
1311 unsigned uniform = ((uintptr_t) val) - 1;
1312
1313 emit_uniform_read(ctx, dest, uniform);
1314 }
1315
1316 static void
1317 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1318 {
1319 unsigned offset, reg;
1320
1321 switch (instr->intrinsic) {
1322 case nir_intrinsic_discard_if:
1323 emit_condition(ctx, &instr->src[0], true);
1324
1325 /* fallthrough */
1326
1327 case nir_intrinsic_discard: {
1328 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1329 struct midgard_instruction discard = v_branch(conditional, false);
1330 discard.branch.target_type = TARGET_DISCARD;
1331 emit_mir_instruction(ctx, discard);
1332
1333 ctx->can_discard = true;
1334 break;
1335 }
1336
1337 case nir_intrinsic_load_uniform:
1338 case nir_intrinsic_load_input:
1339 assert(nir_src_is_const(instr->src[0]) && "no indirect inputs");
1340
1341 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
1342
1343 reg = nir_dest_index(ctx, &instr->dest);
1344
1345 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1346 emit_uniform_read(ctx, reg, ctx->sysval_count + offset);
1347 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1348 /* XXX: Half-floats? */
1349 /* TODO: swizzle, mask */
1350
1351 midgard_instruction ins = m_load_vary_32(reg, offset);
1352
1353 midgard_varying_parameter p = {
1354 .is_varying = 1,
1355 .interpolation = midgard_interp_default,
1356 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1357 };
1358
1359 unsigned u;
1360 memcpy(&u, &p, sizeof(p));
1361 ins.load_store.varying_parameters = u;
1362
1363 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1364 emit_mir_instruction(ctx, ins);
1365 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1366 /* Constant encoded as a pinned constant */
1367
1368 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1369 ins.has_constants = true;
1370 ins.has_blend_constant = true;
1371 emit_mir_instruction(ctx, ins);
1372 } else if (ctx->is_blend) {
1373 /* For blend shaders, a load might be
1374 * translated various ways depending on what
1375 * we're loading. Figure out how this is used */
1376
1377 nir_variable *out = NULL;
1378
1379 nir_foreach_variable(var, &ctx->nir->inputs) {
1380 int drvloc = var->data.driver_location;
1381
1382 if (nir_intrinsic_base(instr) == drvloc) {
1383 out = var;
1384 break;
1385 }
1386 }
1387
1388 assert(out);
1389
1390 if (out->data.location == VARYING_SLOT_COL0) {
1391 /* Source color preloaded to r0 */
1392
1393 midgard_pin_output(ctx, reg, 0);
1394 } else if (out->data.location == VARYING_SLOT_COL1) {
1395 /* Destination color must be read from framebuffer */
1396
1397 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1398 ins.load_store.swizzle = 0; /* xxxx */
1399
1400 /* Read each component sequentially */
1401
1402 for (int c = 0; c < 4; ++c) {
1403 ins.load_store.mask = (1 << c);
1404 ins.load_store.unknown = c;
1405 emit_mir_instruction(ctx, ins);
1406 }
1407
1408 /* vadd.u2f hr2, abs(hr2), #0 */
1409
1410 midgard_vector_alu_src alu_src = blank_alu_src;
1411 alu_src.abs = true;
1412 alu_src.half = true;
1413
1414 midgard_instruction u2f = {
1415 .type = TAG_ALU_4,
1416 .ssa_args = {
1417 .src0 = reg,
1418 .src1 = SSA_UNUSED_0,
1419 .dest = reg,
1420 .inline_constant = true
1421 },
1422 .alu = {
1423 .op = midgard_alu_op_u2f,
1424 .reg_mode = midgard_reg_mode_half,
1425 .dest_override = midgard_dest_override_none,
1426 .mask = 0xF,
1427 .src1 = vector_alu_srco_unsigned(alu_src),
1428 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1429 }
1430 };
1431
1432 emit_mir_instruction(ctx, u2f);
1433
1434 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1435
1436 alu_src.abs = false;
1437
1438 midgard_instruction fmul = {
1439 .type = TAG_ALU_4,
1440 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1441 .ssa_args = {
1442 .src0 = reg,
1443 .dest = reg,
1444 .src1 = SSA_UNUSED_0,
1445 .inline_constant = true
1446 },
1447 .alu = {
1448 .op = midgard_alu_op_fmul,
1449 .reg_mode = midgard_reg_mode_full,
1450 .dest_override = midgard_dest_override_none,
1451 .outmod = midgard_outmod_sat,
1452 .mask = 0xFF,
1453 .src1 = vector_alu_srco_unsigned(alu_src),
1454 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1455 }
1456 };
1457
1458 emit_mir_instruction(ctx, fmul);
1459 } else {
1460 DBG("Unknown input in blend shader\n");
1461 assert(0);
1462 }
1463 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1464 midgard_instruction ins = m_load_attr_32(reg, offset);
1465 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1466 ins.load_store.mask = (1 << instr->num_components) - 1;
1467 emit_mir_instruction(ctx, ins);
1468 } else {
1469 DBG("Unknown load\n");
1470 assert(0);
1471 }
1472
1473 break;
1474
1475 case nir_intrinsic_store_output:
1476 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1477
1478 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1479
1480 reg = nir_src_index(ctx, &instr->src[0]);
1481
1482 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1483 /* gl_FragColor is not emitted with load/store
1484 * instructions. Instead, it gets plonked into
1485 * r0 at the end of the shader and we do the
1486 * framebuffer writeout dance. TODO: Defer
1487 * writes */
1488
1489 midgard_pin_output(ctx, reg, 0);
1490
1491 /* Save the index we're writing to for later reference
1492 * in the epilogue */
1493
1494 ctx->fragment_output = reg;
1495 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1496 /* Varyings are written into one of two special
1497 * varying register, r26 or r27. The register itself is selected as the register
1498 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1499 *
1500 * Normally emitting fmov's is frowned upon,
1501 * but due to unique constraints of
1502 * REGISTER_VARYING, fmov emission + a
1503 * dedicated cleanup pass is the only way to
1504 * guarantee correctness when considering some
1505 * (common) edge cases XXX: FIXME */
1506
1507 /* If this varying corresponds to a constant (why?!),
1508 * emit that now since it won't get picked up by
1509 * hoisting (since there is no corresponding move
1510 * emitted otherwise) */
1511
1512 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1513
1514 if (constant_value) {
1515 /* Special case: emit the varying write
1516 * directly to r26 (looks funny in asm but it's
1517 * fine) and emit the store _now_. Possibly
1518 * slightly slower, but this is a really stupid
1519 * special case anyway (why on earth would you
1520 * have a constant varying? Your own fault for
1521 * slightly worse perf :P) */
1522
1523 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1524 attach_constants(ctx, &ins, constant_value, reg + 1);
1525 emit_mir_instruction(ctx, ins);
1526
1527 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1528 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1529 emit_mir_instruction(ctx, st);
1530 } else {
1531 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1532
1533 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1534 }
1535 } else {
1536 DBG("Unknown store\n");
1537 assert(0);
1538 }
1539
1540 break;
1541
1542 case nir_intrinsic_load_alpha_ref_float:
1543 assert(instr->dest.is_ssa);
1544
1545 float ref_value = ctx->alpha_ref;
1546
1547 float *v = ralloc_array(NULL, float, 4);
1548 memcpy(v, &ref_value, sizeof(float));
1549 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1550 break;
1551
1552 case nir_intrinsic_load_viewport_scale:
1553 case nir_intrinsic_load_viewport_offset:
1554 emit_sysval_read(ctx, instr);
1555 break;
1556
1557 default:
1558 printf ("Unhandled intrinsic\n");
1559 assert(0);
1560 break;
1561 }
1562 }
1563
1564 static unsigned
1565 midgard_tex_format(enum glsl_sampler_dim dim)
1566 {
1567 switch (dim) {
1568 case GLSL_SAMPLER_DIM_2D:
1569 case GLSL_SAMPLER_DIM_EXTERNAL:
1570 return TEXTURE_2D;
1571
1572 case GLSL_SAMPLER_DIM_3D:
1573 return TEXTURE_3D;
1574
1575 case GLSL_SAMPLER_DIM_CUBE:
1576 return TEXTURE_CUBE;
1577
1578 default:
1579 DBG("Unknown sampler dim type\n");
1580 assert(0);
1581 return 0;
1582 }
1583 }
1584
1585 static void
1586 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1587 {
1588 /* TODO */
1589 //assert (!instr->sampler);
1590 //assert (!instr->texture_array_size);
1591 assert (instr->op == nir_texop_tex);
1592
1593 /* Allocate registers via a round robin scheme to alternate between the two registers */
1594 int reg = ctx->texture_op_count & 1;
1595 int in_reg = reg, out_reg = reg;
1596
1597 /* Make room for the reg */
1598
1599 if (ctx->texture_index[reg] > -1)
1600 unalias_ssa(ctx, ctx->texture_index[reg]);
1601
1602 int texture_index = instr->texture_index;
1603 int sampler_index = texture_index;
1604
1605 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1606 switch (instr->src[i].src_type) {
1607 case nir_tex_src_coord: {
1608 int index = nir_src_index(ctx, &instr->src[i].src);
1609
1610 midgard_vector_alu_src alu_src = blank_alu_src;
1611
1612 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1613
1614 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1615 /* For cubemaps, we need to load coords into
1616 * special r27, and then use a special ld/st op
1617 * to copy into the texture register */
1618
1619 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1620
1621 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1622 emit_mir_instruction(ctx, move);
1623
1624 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1625 st.load_store.unknown = 0x24; /* XXX: What is this? */
1626 st.load_store.mask = 0x3; /* xy? */
1627 st.load_store.swizzle = alu_src.swizzle;
1628 emit_mir_instruction(ctx, st);
1629
1630 } else {
1631 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1632
1633 midgard_instruction ins = v_fmov(index, alu_src, reg);
1634 emit_mir_instruction(ctx, ins);
1635 }
1636
1637 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1638
1639 break;
1640 }
1641
1642 default: {
1643 DBG("Unknown source type\n");
1644 //assert(0);
1645 break;
1646 }
1647 }
1648 }
1649
1650 /* No helper to build texture words -- we do it all here */
1651 midgard_instruction ins = {
1652 .type = TAG_TEXTURE_4,
1653 .texture = {
1654 .op = TEXTURE_OP_NORMAL,
1655 .format = midgard_tex_format(instr->sampler_dim),
1656 .texture_handle = texture_index,
1657 .sampler_handle = sampler_index,
1658
1659 /* TODO: Don't force xyzw */
1660 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1661 .mask = 0xF,
1662
1663 /* TODO: half */
1664 //.in_reg_full = 1,
1665 .out_full = 1,
1666
1667 .filter = 1,
1668
1669 /* Always 1 */
1670 .unknown7 = 1,
1671
1672 /* Assume we can continue; hint it out later */
1673 .cont = 1,
1674 }
1675 };
1676
1677 /* Set registers to read and write from the same place */
1678 ins.texture.in_reg_select = in_reg;
1679 ins.texture.out_reg_select = out_reg;
1680
1681 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1682 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1683 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1684 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1685 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1686 } else {
1687 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1688 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1689 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1690 }
1691
1692 emit_mir_instruction(ctx, ins);
1693
1694 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1695
1696 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1697 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1698 ctx->texture_index[reg] = o_index;
1699
1700 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1701 emit_mir_instruction(ctx, ins2);
1702
1703 /* Used for .cont and .last hinting */
1704 ctx->texture_op_count++;
1705 }
1706
1707 static void
1708 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1709 {
1710 switch (instr->type) {
1711 case nir_jump_break: {
1712 /* Emit a branch out of the loop */
1713 struct midgard_instruction br = v_branch(false, false);
1714 br.branch.target_type = TARGET_BREAK;
1715 br.branch.target_break = ctx->current_loop;
1716 emit_mir_instruction(ctx, br);
1717
1718 DBG("break..\n");
1719 break;
1720 }
1721
1722 default:
1723 DBG("Unknown jump type %d\n", instr->type);
1724 break;
1725 }
1726 }
1727
1728 static void
1729 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1730 {
1731 switch (instr->type) {
1732 case nir_instr_type_load_const:
1733 emit_load_const(ctx, nir_instr_as_load_const(instr));
1734 break;
1735
1736 case nir_instr_type_intrinsic:
1737 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1738 break;
1739
1740 case nir_instr_type_alu:
1741 emit_alu(ctx, nir_instr_as_alu(instr));
1742 break;
1743
1744 case nir_instr_type_tex:
1745 emit_tex(ctx, nir_instr_as_tex(instr));
1746 break;
1747
1748 case nir_instr_type_jump:
1749 emit_jump(ctx, nir_instr_as_jump(instr));
1750 break;
1751
1752 case nir_instr_type_ssa_undef:
1753 /* Spurious */
1754 break;
1755
1756 default:
1757 DBG("Unhandled instruction type\n");
1758 break;
1759 }
1760 }
1761
1762 /* Determine the actual hardware from the index based on the RA results or special values */
1763
1764 static int
1765 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1766 {
1767 if (reg >= SSA_FIXED_MINIMUM)
1768 return SSA_REG_FROM_FIXED(reg);
1769
1770 if (reg >= 0) {
1771 assert(reg < maxreg);
1772 int r = ra_get_node_reg(g, reg);
1773 ctx->work_registers = MAX2(ctx->work_registers, r);
1774 return r;
1775 }
1776
1777 switch (reg) {
1778 /* fmov style unused */
1779 case SSA_UNUSED_0:
1780 return REGISTER_UNUSED;
1781
1782 /* lut style unused */
1783 case SSA_UNUSED_1:
1784 return REGISTER_UNUSED;
1785
1786 default:
1787 DBG("Unknown SSA register alias %d\n", reg);
1788 assert(0);
1789 return 31;
1790 }
1791 }
1792
1793 static unsigned int
1794 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1795 {
1796 /* Choose the first available register to minimise reported register pressure */
1797
1798 for (int i = 0; i < 16; ++i) {
1799 if (BITSET_TEST(regs, i)) {
1800 return i;
1801 }
1802 }
1803
1804 assert(0);
1805 return 0;
1806 }
1807
1808 static bool
1809 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1810 {
1811 if (ins->ssa_args.src0 == src) return true;
1812 if (ins->ssa_args.src1 == src) return true;
1813
1814 return false;
1815 }
1816
1817 static bool
1818 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1819 {
1820 /* Check the rest of the block for liveness */
1821 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1822 if (midgard_is_live_in_instr(ins, src))
1823 return true;
1824 }
1825
1826 /* Check the rest of the blocks for liveness */
1827 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1828 mir_foreach_instr_in_block(b, ins) {
1829 if (midgard_is_live_in_instr(ins, src))
1830 return true;
1831 }
1832 }
1833
1834 /* TODO: How does control flow interact in complex shaders? */
1835
1836 return false;
1837 }
1838
1839 static void
1840 allocate_registers(compiler_context *ctx)
1841 {
1842 /* First, initialize the RA */
1843 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1844
1845 /* Create a primary (general purpose) class, as well as special purpose
1846 * pipeline register classes */
1847
1848 int primary_class = ra_alloc_reg_class(regs);
1849 int varying_class = ra_alloc_reg_class(regs);
1850
1851 /* Add the full set of work registers */
1852 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1853 for (int i = 0; i < work_count; ++i)
1854 ra_class_add_reg(regs, primary_class, i);
1855
1856 /* Add special registers */
1857 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1858 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1859
1860 /* We're done setting up */
1861 ra_set_finalize(regs, NULL);
1862
1863 /* Transform the MIR into squeezed index form */
1864 mir_foreach_block(ctx, block) {
1865 mir_foreach_instr_in_block(block, ins) {
1866 if (ins->compact_branch) continue;
1867
1868 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1869 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1870 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1871 }
1872 if (midgard_debug & MIDGARD_DBG_SHADERS)
1873 print_mir_block(block);
1874 }
1875
1876 /* Let's actually do register allocation */
1877 int nodes = ctx->temp_count;
1878 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1879
1880 /* Set everything to the work register class, unless it has somewhere
1881 * special to go */
1882
1883 mir_foreach_block(ctx, block) {
1884 mir_foreach_instr_in_block(block, ins) {
1885 if (ins->compact_branch) continue;
1886
1887 if (ins->ssa_args.dest < 0) continue;
1888
1889 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1890
1891 int class = primary_class;
1892
1893 ra_set_node_class(g, ins->ssa_args.dest, class);
1894 }
1895 }
1896
1897 for (int index = 0; index <= ctx->max_hash; ++index) {
1898 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1899
1900 if (temp) {
1901 unsigned reg = temp - 1;
1902 int t = find_or_allocate_temp(ctx, index);
1903 ra_set_node_reg(g, t, reg);
1904 }
1905 }
1906
1907 /* Determine liveness */
1908
1909 int *live_start = malloc(nodes * sizeof(int));
1910 int *live_end = malloc(nodes * sizeof(int));
1911
1912 /* Initialize as non-existent */
1913
1914 for (int i = 0; i < nodes; ++i) {
1915 live_start[i] = live_end[i] = -1;
1916 }
1917
1918 int d = 0;
1919
1920 mir_foreach_block(ctx, block) {
1921 mir_foreach_instr_in_block(block, ins) {
1922 if (ins->compact_branch) continue;
1923
1924 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1925 /* If this destination is not yet live, it is now since we just wrote it */
1926
1927 int dest = ins->ssa_args.dest;
1928
1929 if (live_start[dest] == -1)
1930 live_start[dest] = d;
1931 }
1932
1933 /* Since we just used a source, the source might be
1934 * dead now. Scan the rest of the block for
1935 * invocations, and if there are none, the source dies
1936 * */
1937
1938 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1939
1940 for (int src = 0; src < 2; ++src) {
1941 int s = sources[src];
1942
1943 if (s < 0) continue;
1944
1945 if (s >= SSA_FIXED_MINIMUM) continue;
1946
1947 if (!is_live_after(ctx, block, ins, s)) {
1948 live_end[s] = d;
1949 }
1950 }
1951
1952 ++d;
1953 }
1954 }
1955
1956 /* If a node still hasn't been killed, kill it now */
1957
1958 for (int i = 0; i < nodes; ++i) {
1959 /* live_start == -1 most likely indicates a pinned output */
1960
1961 if (live_end[i] == -1)
1962 live_end[i] = d;
1963 }
1964
1965 /* Setup interference between nodes that are live at the same time */
1966
1967 for (int i = 0; i < nodes; ++i) {
1968 for (int j = i + 1; j < nodes; ++j) {
1969 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1970 ra_add_node_interference(g, i, j);
1971 }
1972 }
1973
1974 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1975
1976 if (!ra_allocate(g)) {
1977 DBG("Error allocating registers\n");
1978 assert(0);
1979 }
1980
1981 /* Cleanup */
1982 free(live_start);
1983 free(live_end);
1984
1985 mir_foreach_block(ctx, block) {
1986 mir_foreach_instr_in_block(block, ins) {
1987 if (ins->compact_branch) continue;
1988
1989 ssa_args args = ins->ssa_args;
1990
1991 switch (ins->type) {
1992 case TAG_ALU_4:
1993 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1994
1995 ins->registers.src2_imm = args.inline_constant;
1996
1997 if (args.inline_constant) {
1998 /* Encode inline 16-bit constant as a vector by default */
1999
2000 ins->registers.src2_reg = ins->inline_constant >> 11;
2001
2002 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2003
2004 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2005 ins->alu.src2 = imm << 2;
2006 } else {
2007 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2008 }
2009
2010 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2011
2012 break;
2013
2014 case TAG_LOAD_STORE_4: {
2015 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2016 /* TODO: use ssa_args for store_vary */
2017 ins->load_store.reg = 0;
2018 } else {
2019 bool has_dest = args.dest >= 0;
2020 int ssa_arg = has_dest ? args.dest : args.src0;
2021
2022 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2023 }
2024
2025 break;
2026 }
2027
2028 default:
2029 break;
2030 }
2031 }
2032 }
2033 }
2034
2035 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2036 * use scalar ALU instructions, for functional or performance reasons. To do
2037 * this, we just demote vector ALU payloads to scalar. */
2038
2039 static int
2040 component_from_mask(unsigned mask)
2041 {
2042 for (int c = 0; c < 4; ++c) {
2043 if (mask & (3 << (2 * c)))
2044 return c;
2045 }
2046
2047 assert(0);
2048 return 0;
2049 }
2050
2051 static bool
2052 is_single_component_mask(unsigned mask)
2053 {
2054 int components = 0;
2055
2056 for (int c = 0; c < 4; ++c)
2057 if (mask & (3 << (2 * c)))
2058 components++;
2059
2060 return components == 1;
2061 }
2062
2063 /* Create a mask of accessed components from a swizzle to figure out vector
2064 * dependencies */
2065
2066 static unsigned
2067 swizzle_to_access_mask(unsigned swizzle)
2068 {
2069 unsigned component_mask = 0;
2070
2071 for (int i = 0; i < 4; ++i) {
2072 unsigned c = (swizzle >> (2 * i)) & 3;
2073 component_mask |= (1 << c);
2074 }
2075
2076 return component_mask;
2077 }
2078
2079 static unsigned
2080 vector_to_scalar_source(unsigned u)
2081 {
2082 midgard_vector_alu_src v;
2083 memcpy(&v, &u, sizeof(v));
2084
2085 midgard_scalar_alu_src s = {
2086 .abs = v.abs,
2087 .negate = v.negate,
2088 .full = !v.half,
2089 .component = (v.swizzle & 3) << 1
2090 };
2091
2092 unsigned o;
2093 memcpy(&o, &s, sizeof(s));
2094
2095 return o & ((1 << 6) - 1);
2096 }
2097
2098 static midgard_scalar_alu
2099 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2100 {
2101 /* The output component is from the mask */
2102 midgard_scalar_alu s = {
2103 .op = v.op,
2104 .src1 = vector_to_scalar_source(v.src1),
2105 .src2 = vector_to_scalar_source(v.src2),
2106 .unknown = 0,
2107 .outmod = v.outmod,
2108 .output_full = 1, /* TODO: Half */
2109 .output_component = component_from_mask(v.mask) << 1,
2110 };
2111
2112 /* Inline constant is passed along rather than trying to extract it
2113 * from v */
2114
2115 if (ins->ssa_args.inline_constant) {
2116 uint16_t imm = 0;
2117 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2118 imm |= (lower_11 >> 9) & 3;
2119 imm |= (lower_11 >> 6) & 4;
2120 imm |= (lower_11 >> 2) & 0x38;
2121 imm |= (lower_11 & 63) << 6;
2122
2123 s.src2 = imm;
2124 }
2125
2126 return s;
2127 }
2128
2129 /* Midgard prefetches instruction types, so during emission we need to
2130 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2131 * if this is the second to last and the last is an ALU, then it's also 1... */
2132
2133 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2134 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2135
2136 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2137 bytes_emitted += sizeof(type)
2138
2139 static void
2140 emit_binary_vector_instruction(midgard_instruction *ains,
2141 uint16_t *register_words, int *register_words_count,
2142 uint64_t *body_words, size_t *body_size, int *body_words_count,
2143 size_t *bytes_emitted)
2144 {
2145 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2146 *bytes_emitted += sizeof(midgard_reg_info);
2147
2148 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2149 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2150 *bytes_emitted += sizeof(midgard_vector_alu);
2151 }
2152
2153 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2154 * mind that we are a vector architecture and we can write to different
2155 * components simultaneously */
2156
2157 static bool
2158 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2159 {
2160 /* Each instruction reads some registers and writes to a register. See
2161 * where the first writes */
2162
2163 /* Figure out where exactly we wrote to */
2164 int source = first->ssa_args.dest;
2165 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2166
2167 /* As long as the second doesn't read from the first, we're okay */
2168 if (second->ssa_args.src0 == source) {
2169 if (first->type == TAG_ALU_4) {
2170 /* Figure out which components we just read from */
2171
2172 int q = second->alu.src1;
2173 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2174
2175 /* Check if there are components in common, and fail if so */
2176 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2177 return false;
2178 } else
2179 return false;
2180
2181 }
2182
2183 if (second->ssa_args.src1 == source)
2184 return false;
2185
2186 /* Otherwise, it's safe in that regard. Another data hazard is both
2187 * writing to the same place, of course */
2188
2189 if (second->ssa_args.dest == source) {
2190 /* ...but only if the components overlap */
2191 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2192
2193 if (dest_mask & source_mask)
2194 return false;
2195 }
2196
2197 /* ...That's it */
2198 return true;
2199 }
2200
2201 static bool
2202 midgard_has_hazard(
2203 midgard_instruction **segment, unsigned segment_size,
2204 midgard_instruction *ains)
2205 {
2206 for (int s = 0; s < segment_size; ++s)
2207 if (!can_run_concurrent_ssa(segment[s], ains))
2208 return true;
2209
2210 return false;
2211
2212
2213 }
2214
2215 /* Schedules, but does not emit, a single basic block. After scheduling, the
2216 * final tag and size of the block are known, which are necessary for branching
2217 * */
2218
2219 static midgard_bundle
2220 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2221 {
2222 int instructions_emitted = 0, instructions_consumed = -1;
2223 midgard_bundle bundle = { 0 };
2224
2225 uint8_t tag = ins->type;
2226
2227 /* Default to the instruction's tag */
2228 bundle.tag = tag;
2229
2230 switch (ins->type) {
2231 case TAG_ALU_4: {
2232 uint32_t control = 0;
2233 size_t bytes_emitted = sizeof(control);
2234
2235 /* TODO: Constant combining */
2236 int index = 0, last_unit = 0;
2237
2238 /* Previous instructions, for the purpose of parallelism */
2239 midgard_instruction *segment[4] = {0};
2240 int segment_size = 0;
2241
2242 instructions_emitted = -1;
2243 midgard_instruction *pins = ins;
2244
2245 for (;;) {
2246 midgard_instruction *ains = pins;
2247
2248 /* Advance instruction pointer */
2249 if (index) {
2250 ains = mir_next_op(pins);
2251 pins = ains;
2252 }
2253
2254 /* Out-of-work condition */
2255 if ((struct list_head *) ains == &block->instructions)
2256 break;
2257
2258 /* Ensure that the chain can continue */
2259 if (ains->type != TAG_ALU_4) break;
2260
2261 /* According to the presentation "The ARM
2262 * Mali-T880 Mobile GPU" from HotChips 27,
2263 * there are two pipeline stages. Branching
2264 * position determined experimentally. Lines
2265 * are executed in parallel:
2266 *
2267 * [ VMUL ] [ SADD ]
2268 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2269 *
2270 * Verify that there are no ordering dependencies here.
2271 *
2272 * TODO: Allow for parallelism!!!
2273 */
2274
2275 /* Pick a unit for it if it doesn't force a particular unit */
2276
2277 int unit = ains->unit;
2278
2279 if (!unit) {
2280 int op = ains->alu.op;
2281 int units = alu_opcode_props[op];
2282
2283 /* TODO: Promotion of scalars to vectors */
2284 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2285
2286 if (!vector)
2287 assert(units & UNITS_SCALAR);
2288
2289 if (vector) {
2290 if (last_unit >= UNIT_VADD) {
2291 if (units & UNIT_VLUT)
2292 unit = UNIT_VLUT;
2293 else
2294 break;
2295 } else {
2296 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2297 unit = UNIT_VMUL;
2298 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2299 unit = UNIT_VADD;
2300 else if (units & UNIT_VLUT)
2301 unit = UNIT_VLUT;
2302 else
2303 break;
2304 }
2305 } else {
2306 if (last_unit >= UNIT_VADD) {
2307 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2308 unit = UNIT_SMUL;
2309 else if (units & UNIT_VLUT)
2310 unit = UNIT_VLUT;
2311 else
2312 break;
2313 } else {
2314 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2315 unit = UNIT_SADD;
2316 else if (units & UNIT_SMUL)
2317 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2318 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2319 unit = UNIT_VADD;
2320 else
2321 break;
2322 }
2323 }
2324
2325 assert(unit & units);
2326 }
2327
2328 /* Late unit check, this time for encoding (not parallelism) */
2329 if (unit <= last_unit) break;
2330
2331 /* Clear the segment */
2332 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2333 segment_size = 0;
2334
2335 if (midgard_has_hazard(segment, segment_size, ains))
2336 break;
2337
2338 /* We're good to go -- emit the instruction */
2339 ains->unit = unit;
2340
2341 segment[segment_size++] = ains;
2342
2343 /* Only one set of embedded constants per
2344 * bundle possible; if we have more, we must
2345 * break the chain early, unfortunately */
2346
2347 if (ains->has_constants) {
2348 if (bundle.has_embedded_constants) {
2349 /* ...but if there are already
2350 * constants but these are the
2351 * *same* constants, we let it
2352 * through */
2353
2354 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2355 break;
2356 } else {
2357 bundle.has_embedded_constants = true;
2358 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2359
2360 /* If this is a blend shader special constant, track it for patching */
2361 if (ains->has_blend_constant)
2362 bundle.has_blend_constant = true;
2363 }
2364 }
2365
2366 if (ains->unit & UNITS_ANY_VECTOR) {
2367 emit_binary_vector_instruction(ains, bundle.register_words,
2368 &bundle.register_words_count, bundle.body_words,
2369 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2370 } else if (ains->compact_branch) {
2371 /* All of r0 has to be written out
2372 * along with the branch writeout.
2373 * (slow!) */
2374
2375 if (ains->writeout) {
2376 if (index == 0) {
2377 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2378 ins.unit = UNIT_VMUL;
2379
2380 control |= ins.unit;
2381
2382 emit_binary_vector_instruction(&ins, bundle.register_words,
2383 &bundle.register_words_count, bundle.body_words,
2384 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2385 } else {
2386 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2387 bool written_late = false;
2388 bool components[4] = { 0 };
2389 uint16_t register_dep_mask = 0;
2390 uint16_t written_mask = 0;
2391
2392 midgard_instruction *qins = ins;
2393 for (int t = 0; t < index; ++t) {
2394 if (qins->registers.out_reg != 0) {
2395 /* Mark down writes */
2396
2397 written_mask |= (1 << qins->registers.out_reg);
2398 } else {
2399 /* Mark down the register dependencies for errata check */
2400
2401 if (qins->registers.src1_reg < 16)
2402 register_dep_mask |= (1 << qins->registers.src1_reg);
2403
2404 if (qins->registers.src2_reg < 16)
2405 register_dep_mask |= (1 << qins->registers.src2_reg);
2406
2407 int mask = qins->alu.mask;
2408
2409 for (int c = 0; c < 4; ++c)
2410 if (mask & (0x3 << (2 * c)))
2411 components[c] = true;
2412
2413 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2414
2415 if (qins->unit == UNIT_VLUT)
2416 written_late = true;
2417 }
2418
2419 /* Advance instruction pointer */
2420 qins = mir_next_op(qins);
2421 }
2422
2423
2424 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2425 if (register_dep_mask & written_mask) {
2426 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2427 break;
2428 }
2429
2430 if (written_late)
2431 break;
2432
2433 /* If even a single component is not written, break it up (conservative check). */
2434 bool breakup = false;
2435
2436 for (int c = 0; c < 4; ++c)
2437 if (!components[c])
2438 breakup = true;
2439
2440 if (breakup)
2441 break;
2442
2443 /* Otherwise, we're free to proceed */
2444 }
2445 }
2446
2447 if (ains->unit == ALU_ENAB_BRANCH) {
2448 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2449 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2450 bytes_emitted += sizeof(midgard_branch_extended);
2451 } else {
2452 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2453 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2454 bytes_emitted += sizeof(ains->br_compact);
2455 }
2456 } else {
2457 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2458 bytes_emitted += sizeof(midgard_reg_info);
2459
2460 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2461 bundle.body_words_count++;
2462 bytes_emitted += sizeof(midgard_scalar_alu);
2463 }
2464
2465 /* Defer marking until after writing to allow for break */
2466 control |= ains->unit;
2467 last_unit = ains->unit;
2468 ++instructions_emitted;
2469 ++index;
2470 }
2471
2472 /* Bubble up the number of instructions for skipping */
2473 instructions_consumed = index - 1;
2474
2475 int padding = 0;
2476
2477 /* Pad ALU op to nearest word */
2478
2479 if (bytes_emitted & 15) {
2480 padding = 16 - (bytes_emitted & 15);
2481 bytes_emitted += padding;
2482 }
2483
2484 /* Constants must always be quadwords */
2485 if (bundle.has_embedded_constants)
2486 bytes_emitted += 16;
2487
2488 /* Size ALU instruction for tag */
2489 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2490 bundle.padding = padding;
2491 bundle.control = bundle.tag | control;
2492
2493 break;
2494 }
2495
2496 case TAG_LOAD_STORE_4: {
2497 /* Load store instructions have two words at once. If
2498 * we only have one queued up, we need to NOP pad.
2499 * Otherwise, we store both in succession to save space
2500 * and cycles -- letting them go in parallel -- skip
2501 * the next. The usefulness of this optimisation is
2502 * greatly dependent on the quality of the instruction
2503 * scheduler.
2504 */
2505
2506 midgard_instruction *next_op = mir_next_op(ins);
2507
2508 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2509 /* As the two operate concurrently, make sure
2510 * they are not dependent */
2511
2512 if (can_run_concurrent_ssa(ins, next_op) || true) {
2513 /* Skip ahead, since it's redundant with the pair */
2514 instructions_consumed = 1 + (instructions_emitted++);
2515 }
2516 }
2517
2518 break;
2519 }
2520
2521 default:
2522 /* Texture ops default to single-op-per-bundle scheduling */
2523 break;
2524 }
2525
2526 /* Copy the instructions into the bundle */
2527 bundle.instruction_count = instructions_emitted + 1;
2528
2529 int used_idx = 0;
2530
2531 midgard_instruction *uins = ins;
2532 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2533 bundle.instructions[used_idx++] = *uins;
2534 uins = mir_next_op(uins);
2535 }
2536
2537 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2538
2539 return bundle;
2540 }
2541
2542 static int
2543 quadword_size(int tag)
2544 {
2545 switch (tag) {
2546 case TAG_ALU_4:
2547 return 1;
2548
2549 case TAG_ALU_8:
2550 return 2;
2551
2552 case TAG_ALU_12:
2553 return 3;
2554
2555 case TAG_ALU_16:
2556 return 4;
2557
2558 case TAG_LOAD_STORE_4:
2559 return 1;
2560
2561 case TAG_TEXTURE_4:
2562 return 1;
2563
2564 default:
2565 assert(0);
2566 return 0;
2567 }
2568 }
2569
2570 /* Schedule a single block by iterating its instruction to create bundles.
2571 * While we go, tally about the bundle sizes to compute the block size. */
2572
2573 static void
2574 schedule_block(compiler_context *ctx, midgard_block *block)
2575 {
2576 util_dynarray_init(&block->bundles, NULL);
2577
2578 block->quadword_count = 0;
2579
2580 mir_foreach_instr_in_block(block, ins) {
2581 int skip;
2582 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2583 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2584
2585 if (bundle.has_blend_constant) {
2586 /* TODO: Multiblock? */
2587 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2588 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2589 }
2590
2591 while(skip--)
2592 ins = mir_next_op(ins);
2593
2594 block->quadword_count += quadword_size(bundle.tag);
2595 }
2596
2597 block->is_scheduled = true;
2598 }
2599
2600 static void
2601 schedule_program(compiler_context *ctx)
2602 {
2603 allocate_registers(ctx);
2604
2605 mir_foreach_block(ctx, block) {
2606 schedule_block(ctx, block);
2607 }
2608 }
2609
2610 /* After everything is scheduled, emit whole bundles at a time */
2611
2612 static void
2613 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2614 {
2615 int lookahead = next_tag << 4;
2616
2617 switch (bundle->tag) {
2618 case TAG_ALU_4:
2619 case TAG_ALU_8:
2620 case TAG_ALU_12:
2621 case TAG_ALU_16: {
2622 /* Actually emit each component */
2623 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2624
2625 for (int i = 0; i < bundle->register_words_count; ++i)
2626 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2627
2628 /* Emit body words based on the instructions bundled */
2629 for (int i = 0; i < bundle->instruction_count; ++i) {
2630 midgard_instruction *ins = &bundle->instructions[i];
2631
2632 if (ins->unit & UNITS_ANY_VECTOR) {
2633 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2634 } else if (ins->compact_branch) {
2635 /* Dummy move, XXX DRY */
2636 if ((i == 0) && ins->writeout) {
2637 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2638 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2639 }
2640
2641 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2642 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2643 } else {
2644 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2645 }
2646 } else {
2647 /* Scalar */
2648 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2649 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2650 }
2651 }
2652
2653 /* Emit padding (all zero) */
2654 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2655
2656 /* Tack on constants */
2657
2658 if (bundle->has_embedded_constants) {
2659 util_dynarray_append(emission, float, bundle->constants[0]);
2660 util_dynarray_append(emission, float, bundle->constants[1]);
2661 util_dynarray_append(emission, float, bundle->constants[2]);
2662 util_dynarray_append(emission, float, bundle->constants[3]);
2663 }
2664
2665 break;
2666 }
2667
2668 case TAG_LOAD_STORE_4: {
2669 /* One or two composing instructions */
2670
2671 uint64_t current64, next64 = LDST_NOP;
2672
2673 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2674
2675 if (bundle->instruction_count == 2)
2676 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2677
2678 midgard_load_store instruction = {
2679 .type = bundle->tag,
2680 .next_type = next_tag,
2681 .word1 = current64,
2682 .word2 = next64
2683 };
2684
2685 util_dynarray_append(emission, midgard_load_store, instruction);
2686
2687 break;
2688 }
2689
2690 case TAG_TEXTURE_4: {
2691 /* Texture instructions are easy, since there is no
2692 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2693
2694 midgard_instruction *ins = &bundle->instructions[0];
2695
2696 ins->texture.type = TAG_TEXTURE_4;
2697 ins->texture.next_type = next_tag;
2698
2699 ctx->texture_op_count--;
2700
2701 if (!ctx->texture_op_count) {
2702 ins->texture.cont = 0;
2703 ins->texture.last = 1;
2704 }
2705
2706 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2707 break;
2708 }
2709
2710 default:
2711 DBG("Unknown midgard instruction type\n");
2712 assert(0);
2713 break;
2714 }
2715 }
2716
2717
2718 /* ALU instructions can inline or embed constants, which decreases register
2719 * pressure and saves space. */
2720
2721 #define CONDITIONAL_ATTACH(src) { \
2722 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2723 \
2724 if (entry) { \
2725 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2726 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2727 } \
2728 }
2729
2730 static void
2731 inline_alu_constants(compiler_context *ctx)
2732 {
2733 mir_foreach_instr(ctx, alu) {
2734 /* Other instructions cannot inline constants */
2735 if (alu->type != TAG_ALU_4) continue;
2736
2737 /* If there is already a constant here, we can do nothing */
2738 if (alu->has_constants) continue;
2739
2740 CONDITIONAL_ATTACH(src0);
2741
2742 if (!alu->has_constants) {
2743 CONDITIONAL_ATTACH(src1)
2744 } else if (!alu->inline_constant) {
2745 /* Corner case: _two_ vec4 constants, for instance with a
2746 * csel. For this case, we can only use a constant
2747 * register for one, we'll have to emit a move for the
2748 * other. Note, if both arguments are constants, then
2749 * necessarily neither argument depends on the value of
2750 * any particular register. As the destination register
2751 * will be wiped, that means we can spill the constant
2752 * to the destination register.
2753 */
2754
2755 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2756 unsigned scratch = alu->ssa_args.dest;
2757
2758 if (entry) {
2759 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2760 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2761
2762 /* Force a break XXX Defer r31 writes */
2763 ins.unit = UNIT_VLUT;
2764
2765 /* Set the source */
2766 alu->ssa_args.src1 = scratch;
2767
2768 /* Inject us -before- the last instruction which set r31 */
2769 mir_insert_instruction_before(mir_prev_op(alu), ins);
2770 }
2771 }
2772 }
2773 }
2774
2775 /* Midgard supports two types of constants, embedded constants (128-bit) and
2776 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2777 * constants can be demoted to inline constants, for space savings and
2778 * sometimes a performance boost */
2779
2780 static void
2781 embedded_to_inline_constant(compiler_context *ctx)
2782 {
2783 mir_foreach_instr(ctx, ins) {
2784 if (!ins->has_constants) continue;
2785
2786 if (ins->ssa_args.inline_constant) continue;
2787
2788 /* Blend constants must not be inlined by definition */
2789 if (ins->has_blend_constant) continue;
2790
2791 /* src1 cannot be an inline constant due to encoding
2792 * restrictions. So, if possible we try to flip the arguments
2793 * in that case */
2794
2795 int op = ins->alu.op;
2796
2797 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2798 /* Flip based on op. Fallthrough intentional */
2799
2800 switch (op) {
2801 /* These ops require an operational change to flip their arguments TODO */
2802 case midgard_alu_op_flt:
2803 case midgard_alu_op_fle:
2804 case midgard_alu_op_ilt:
2805 case midgard_alu_op_ile:
2806 case midgard_alu_op_fcsel:
2807 case midgard_alu_op_icsel:
2808 case midgard_alu_op_isub:
2809 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2810 break;
2811
2812 /* These ops are commutative and Just Flip */
2813 case midgard_alu_op_fne:
2814 case midgard_alu_op_fadd:
2815 case midgard_alu_op_fmul:
2816 case midgard_alu_op_fmin:
2817 case midgard_alu_op_fmax:
2818 case midgard_alu_op_iadd:
2819 case midgard_alu_op_imul:
2820 case midgard_alu_op_feq:
2821 case midgard_alu_op_ieq:
2822 case midgard_alu_op_ine:
2823 case midgard_alu_op_iand:
2824 case midgard_alu_op_ior:
2825 case midgard_alu_op_ixor:
2826 /* Flip the SSA numbers */
2827 ins->ssa_args.src0 = ins->ssa_args.src1;
2828 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2829
2830 /* And flip the modifiers */
2831
2832 unsigned src_temp;
2833
2834 src_temp = ins->alu.src2;
2835 ins->alu.src2 = ins->alu.src1;
2836 ins->alu.src1 = src_temp;
2837
2838 default:
2839 break;
2840 }
2841 }
2842
2843 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2844 /* Extract the source information */
2845
2846 midgard_vector_alu_src *src;
2847 int q = ins->alu.src2;
2848 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2849 src = m;
2850
2851 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2852 int component = src->swizzle & 3;
2853
2854 /* Scale constant appropriately, if we can legally */
2855 uint16_t scaled_constant = 0;
2856
2857 /* XXX: Check legality */
2858 if (midgard_is_integer_op(op)) {
2859 /* TODO: Inline integer */
2860 continue;
2861
2862 unsigned int *iconstants = (unsigned int *) ins->constants;
2863 scaled_constant = (uint16_t) iconstants[component];
2864
2865 /* Constant overflow after resize */
2866 if (scaled_constant != iconstants[component])
2867 continue;
2868 } else {
2869 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2870 }
2871
2872 /* We don't know how to handle these with a constant */
2873
2874 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2875 DBG("Bailing inline constant...\n");
2876 continue;
2877 }
2878
2879 /* Make sure that the constant is not itself a
2880 * vector by checking if all accessed values
2881 * (by the swizzle) are the same. */
2882
2883 uint32_t *cons = (uint32_t *) ins->constants;
2884 uint32_t value = cons[component];
2885
2886 bool is_vector = false;
2887 unsigned mask = effective_writemask(&ins->alu);
2888
2889 for (int c = 1; c < 4; ++c) {
2890 /* We only care if this component is actually used */
2891 if (!(mask & (1 << c)))
2892 continue;
2893
2894 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2895
2896 if (test != value) {
2897 is_vector = true;
2898 break;
2899 }
2900 }
2901
2902 if (is_vector)
2903 continue;
2904
2905 /* Get rid of the embedded constant */
2906 ins->has_constants = false;
2907 ins->ssa_args.src1 = SSA_UNUSED_0;
2908 ins->ssa_args.inline_constant = true;
2909 ins->inline_constant = scaled_constant;
2910 }
2911 }
2912 }
2913
2914 /* Map normal SSA sources to other SSA sources / fixed registers (like
2915 * uniforms) */
2916
2917 static void
2918 map_ssa_to_alias(compiler_context *ctx, int *ref)
2919 {
2920 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2921
2922 if (alias) {
2923 /* Remove entry in leftovers to avoid a redunant fmov */
2924
2925 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2926
2927 if (leftover)
2928 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2929
2930 /* Assign the alias map */
2931 *ref = alias - 1;
2932 return;
2933 }
2934 }
2935
2936 #define AS_SRC(to, u) \
2937 int q##to = ins->alu.src2; \
2938 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2939
2940 /* Removing unused moves is necessary to clean up the texture pipeline results.
2941 *
2942 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2943
2944 static void
2945 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2946 {
2947 mir_foreach_instr_in_block_safe(block, ins) {
2948 if (ins->type != TAG_ALU_4) continue;
2949
2950 if (ins->alu.op != midgard_alu_op_fmov) continue;
2951
2952 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2953
2954 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2955
2956 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2957
2958 mir_remove_instruction(ins);
2959 }
2960 }
2961
2962 /* The following passes reorder MIR instructions to enable better scheduling */
2963
2964 static void
2965 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2966 {
2967 mir_foreach_instr_in_block_safe(block, ins) {
2968 if (ins->type != TAG_LOAD_STORE_4) continue;
2969
2970 /* We've found a load/store op. Check if next is also load/store. */
2971 midgard_instruction *next_op = mir_next_op(ins);
2972 if (&next_op->link != &block->instructions) {
2973 if (next_op->type == TAG_LOAD_STORE_4) {
2974 /* If so, we're done since we're a pair */
2975 ins = mir_next_op(ins);
2976 continue;
2977 }
2978
2979 /* Maximum search distance to pair, to avoid register pressure disasters */
2980 int search_distance = 8;
2981
2982 /* Otherwise, we have an orphaned load/store -- search for another load */
2983 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2984 /* Terminate search if necessary */
2985 if (!(search_distance--)) break;
2986
2987 if (c->type != TAG_LOAD_STORE_4) continue;
2988
2989 if (OP_IS_STORE(c->load_store.op)) continue;
2990
2991 /* We found one! Move it up to pair and remove it from the old location */
2992
2993 mir_insert_instruction_before(ins, *c);
2994 mir_remove_instruction(c);
2995
2996 break;
2997 }
2998 }
2999 }
3000 }
3001
3002 /* Emit varying stores late */
3003
3004 static void
3005 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3006 /* Iterate in reverse to get the final write, rather than the first */
3007
3008 mir_foreach_instr_in_block_safe_rev(block, ins) {
3009 /* Check if what we just wrote needs a store */
3010 int idx = ins->ssa_args.dest;
3011 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3012
3013 if (!varying) continue;
3014
3015 varying -= 1;
3016
3017 /* We need to store to the appropriate varying, so emit the
3018 * move/store */
3019
3020 /* TODO: Integrate with special purpose RA (and scheduler?) */
3021 bool high_varying_register = false;
3022
3023 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3024
3025 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3026 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3027
3028 mir_insert_instruction_before(mir_next_op(ins), st);
3029 mir_insert_instruction_before(mir_next_op(ins), mov);
3030
3031 /* We no longer need to store this varying */
3032 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3033 }
3034 }
3035
3036 /* If there are leftovers after the below pass, emit actual fmov
3037 * instructions for the slow-but-correct path */
3038
3039 static void
3040 emit_leftover_move(compiler_context *ctx)
3041 {
3042 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3043 int base = ((uintptr_t) leftover->key) - 1;
3044 int mapped = base;
3045
3046 map_ssa_to_alias(ctx, &mapped);
3047 EMIT(fmov, mapped, blank_alu_src, base);
3048 }
3049 }
3050
3051 static void
3052 actualise_ssa_to_alias(compiler_context *ctx)
3053 {
3054 mir_foreach_instr(ctx, ins) {
3055 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3056 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3057 }
3058
3059 emit_leftover_move(ctx);
3060 }
3061
3062 /* Vertex shaders do not write gl_Position as is; instead, they write a
3063 * transformed screen space position as a varying. See section 12.5 "Coordinate
3064 * Transformation" of the ES 3.2 full specification for details.
3065 *
3066 * This transformation occurs early on, as NIR and prior to optimisation, in
3067 * order to take advantage of NIR optimisation passes of the transform itself.
3068 * */
3069
3070 static void
3071 write_transformed_position(nir_builder *b, nir_src input_point_src)
3072 {
3073 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
3074 nir_ssa_def *scale = nir_load_viewport_scale(b);
3075 nir_ssa_def *offset = nir_load_viewport_offset(b);
3076
3077 /* World space to normalised device coordinates to screen space */
3078
3079 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3080 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3081 nir_ssa_def *screen = nir_fadd(b, nir_fmul(b, ndc_point, scale), offset);
3082
3083 /* gl_Position will be written out in screenspace xyz, with w set to
3084 * the reciprocal we computed earlier. The transformed w component is
3085 * then used for perspective-correct varying interpolation. The
3086 * transformed w component must preserve its original sign; this is
3087 * used in depth clipping computations */
3088
3089 nir_ssa_def *screen_space = nir_vec4(b,
3090 nir_channel(b, screen, 0),
3091 nir_channel(b, screen, 1),
3092 nir_channel(b, screen, 2),
3093 w_recip);
3094
3095 /* Finally, write out the transformed values to the varying */
3096
3097 nir_intrinsic_instr *store;
3098 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3099 store->num_components = 4;
3100 nir_intrinsic_set_base(store, 0);
3101 nir_intrinsic_set_write_mask(store, 0xf);
3102 store->src[0].ssa = screen_space;
3103 store->src[0].is_ssa = true;
3104 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3105 nir_builder_instr_insert(b, &store->instr);
3106 }
3107
3108 static void
3109 transform_position_writes(nir_shader *shader)
3110 {
3111 nir_foreach_function(func, shader) {
3112 nir_foreach_block(block, func->impl) {
3113 nir_foreach_instr_safe(instr, block) {
3114 if (instr->type != nir_instr_type_intrinsic) continue;
3115
3116 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3117 nir_variable *out = NULL;
3118
3119 switch (intr->intrinsic) {
3120 case nir_intrinsic_store_output:
3121 /* already had i/o lowered.. lookup the matching output var: */
3122 nir_foreach_variable(var, &shader->outputs) {
3123 int drvloc = var->data.driver_location;
3124
3125 if (nir_intrinsic_base(intr) == drvloc) {
3126 out = var;
3127 break;
3128 }
3129 }
3130
3131 break;
3132
3133 default:
3134 break;
3135 }
3136
3137 if (!out) continue;
3138
3139 if (out->data.mode != nir_var_shader_out)
3140 continue;
3141
3142 if (out->data.location != VARYING_SLOT_POS)
3143 continue;
3144
3145 nir_builder b;
3146 nir_builder_init(&b, func->impl);
3147 b.cursor = nir_before_instr(instr);
3148
3149 write_transformed_position(&b, intr->src[0]);
3150 nir_instr_remove(instr);
3151 }
3152 }
3153 }
3154 }
3155
3156 static void
3157 emit_fragment_epilogue(compiler_context *ctx)
3158 {
3159 /* Special case: writing out constants requires us to include the move
3160 * explicitly now, so shove it into r0 */
3161
3162 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3163
3164 if (constant_value) {
3165 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3166 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3167 emit_mir_instruction(ctx, ins);
3168 }
3169
3170 /* Perform the actual fragment writeout. We have two writeout/branch
3171 * instructions, forming a loop until writeout is successful as per the
3172 * docs. TODO: gl_FragDepth */
3173
3174 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3175 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3176 }
3177
3178 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3179 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3180 * with the int8 analogue to the fragment epilogue */
3181
3182 static void
3183 emit_blend_epilogue(compiler_context *ctx)
3184 {
3185 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3186
3187 midgard_instruction scale = {
3188 .type = TAG_ALU_4,
3189 .unit = UNIT_VMUL,
3190 .inline_constant = _mesa_float_to_half(255.0),
3191 .ssa_args = {
3192 .src0 = SSA_FIXED_REGISTER(0),
3193 .src1 = SSA_UNUSED_0,
3194 .dest = SSA_FIXED_REGISTER(24),
3195 .inline_constant = true
3196 },
3197 .alu = {
3198 .op = midgard_alu_op_fmul,
3199 .reg_mode = midgard_reg_mode_full,
3200 .dest_override = midgard_dest_override_lower,
3201 .mask = 0xFF,
3202 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3203 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3204 }
3205 };
3206
3207 emit_mir_instruction(ctx, scale);
3208
3209 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3210
3211 midgard_vector_alu_src alu_src = blank_alu_src;
3212 alu_src.half = true;
3213
3214 midgard_instruction f2u8 = {
3215 .type = TAG_ALU_4,
3216 .ssa_args = {
3217 .src0 = SSA_FIXED_REGISTER(24),
3218 .src1 = SSA_UNUSED_0,
3219 .dest = SSA_FIXED_REGISTER(0),
3220 .inline_constant = true
3221 },
3222 .alu = {
3223 .op = midgard_alu_op_f2u8,
3224 .reg_mode = midgard_reg_mode_half,
3225 .dest_override = midgard_dest_override_lower,
3226 .outmod = midgard_outmod_pos,
3227 .mask = 0xF,
3228 .src1 = vector_alu_srco_unsigned(alu_src),
3229 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3230 }
3231 };
3232
3233 emit_mir_instruction(ctx, f2u8);
3234
3235 /* vmul.imov.quarter r0, r0, r0 */
3236
3237 midgard_instruction imov_8 = {
3238 .type = TAG_ALU_4,
3239 .ssa_args = {
3240 .src0 = SSA_UNUSED_1,
3241 .src1 = SSA_FIXED_REGISTER(0),
3242 .dest = SSA_FIXED_REGISTER(0),
3243 },
3244 .alu = {
3245 .op = midgard_alu_op_imov,
3246 .reg_mode = midgard_reg_mode_quarter,
3247 .dest_override = midgard_dest_override_none,
3248 .mask = 0xFF,
3249 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3250 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3251 }
3252 };
3253
3254 /* Emit branch epilogue with the 8-bit move as the source */
3255
3256 emit_mir_instruction(ctx, imov_8);
3257 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3258
3259 emit_mir_instruction(ctx, imov_8);
3260 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3261 }
3262
3263 static midgard_block *
3264 emit_block(compiler_context *ctx, nir_block *block)
3265 {
3266 midgard_block *this_block = malloc(sizeof(midgard_block));
3267 list_addtail(&this_block->link, &ctx->blocks);
3268
3269 this_block->is_scheduled = false;
3270 ++ctx->block_count;
3271
3272 ctx->texture_index[0] = -1;
3273 ctx->texture_index[1] = -1;
3274
3275 /* Set up current block */
3276 list_inithead(&this_block->instructions);
3277 ctx->current_block = this_block;
3278
3279 nir_foreach_instr(instr, block) {
3280 emit_instr(ctx, instr);
3281 ++ctx->instruction_count;
3282 }
3283
3284 inline_alu_constants(ctx);
3285 embedded_to_inline_constant(ctx);
3286
3287 /* Perform heavylifting for aliasing */
3288 actualise_ssa_to_alias(ctx);
3289
3290 midgard_emit_store(ctx, this_block);
3291 midgard_eliminate_orphan_moves(ctx, this_block);
3292 midgard_pair_load_store(ctx, this_block);
3293
3294 /* Append fragment shader epilogue (value writeout) */
3295 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3296 if (block == nir_impl_last_block(ctx->func->impl)) {
3297 if (ctx->is_blend)
3298 emit_blend_epilogue(ctx);
3299 else
3300 emit_fragment_epilogue(ctx);
3301 }
3302 }
3303
3304 /* Fallthrough save */
3305 this_block->next_fallthrough = ctx->previous_source_block;
3306
3307 if (block == nir_start_block(ctx->func->impl))
3308 ctx->initial_block = this_block;
3309
3310 if (block == nir_impl_last_block(ctx->func->impl))
3311 ctx->final_block = this_block;
3312
3313 /* Allow the next control flow to access us retroactively, for
3314 * branching etc */
3315 ctx->current_block = this_block;
3316
3317 /* Document the fallthrough chain */
3318 ctx->previous_source_block = this_block;
3319
3320 return this_block;
3321 }
3322
3323 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3324
3325 static void
3326 emit_if(struct compiler_context *ctx, nir_if *nif)
3327 {
3328 /* Conditional branches expect the condition in r31.w; emit a move for
3329 * that in the _previous_ block (which is the current block). */
3330 emit_condition(ctx, &nif->condition, true);
3331
3332 /* Speculatively emit the branch, but we can't fill it in until later */
3333 EMIT(branch, true, true);
3334 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3335
3336 /* Emit the two subblocks */
3337 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3338
3339 /* Emit a jump from the end of the then block to the end of the else */
3340 EMIT(branch, false, false);
3341 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3342
3343 /* Emit second block, and check if it's empty */
3344
3345 int else_idx = ctx->block_count;
3346 int count_in = ctx->instruction_count;
3347 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3348 int after_else_idx = ctx->block_count;
3349
3350 /* Now that we have the subblocks emitted, fix up the branches */
3351
3352 assert(then_block);
3353 assert(else_block);
3354
3355 if (ctx->instruction_count == count_in) {
3356 /* The else block is empty, so don't emit an exit jump */
3357 mir_remove_instruction(then_exit);
3358 then_branch->branch.target_block = after_else_idx;
3359 } else {
3360 then_branch->branch.target_block = else_idx;
3361 then_exit->branch.target_block = after_else_idx;
3362 }
3363 }
3364
3365 static void
3366 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3367 {
3368 /* Remember where we are */
3369 midgard_block *start_block = ctx->current_block;
3370
3371 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3372 * single current_loop variable, maybe we need a stack */
3373
3374 int loop_idx = ++ctx->current_loop;
3375
3376 /* Get index from before the body so we can loop back later */
3377 int start_idx = ctx->block_count;
3378
3379 /* Emit the body itself */
3380 emit_cf_list(ctx, &nloop->body);
3381
3382 /* Branch back to loop back */
3383 struct midgard_instruction br_back = v_branch(false, false);
3384 br_back.branch.target_block = start_idx;
3385 emit_mir_instruction(ctx, br_back);
3386
3387 /* Find the index of the block about to follow us (note: we don't add
3388 * one; blocks are 0-indexed so we get a fencepost problem) */
3389 int break_block_idx = ctx->block_count;
3390
3391 /* Fix up the break statements we emitted to point to the right place,
3392 * now that we can allocate a block number for them */
3393
3394 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3395 if (midgard_debug & MIDGARD_DBG_SHADERS)
3396 print_mir_block(block);
3397 mir_foreach_instr_in_block(block, ins) {
3398 if (ins->type != TAG_ALU_4) continue;
3399 if (!ins->compact_branch) continue;
3400 if (ins->prepacked_branch) continue;
3401
3402 /* We found a branch -- check the type to see if we need to do anything */
3403 if (ins->branch.target_type != TARGET_BREAK) continue;
3404
3405 /* It's a break! Check if it's our break */
3406 if (ins->branch.target_break != loop_idx) continue;
3407
3408 /* Okay, cool, we're breaking out of this loop.
3409 * Rewrite from a break to a goto */
3410
3411 ins->branch.target_type = TARGET_GOTO;
3412 ins->branch.target_block = break_block_idx;
3413 }
3414 }
3415 }
3416
3417 static midgard_block *
3418 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3419 {
3420 midgard_block *start_block = NULL;
3421
3422 foreach_list_typed(nir_cf_node, node, node, list) {
3423 switch (node->type) {
3424 case nir_cf_node_block: {
3425 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3426
3427 if (!start_block)
3428 start_block = block;
3429
3430 break;
3431 }
3432
3433 case nir_cf_node_if:
3434 emit_if(ctx, nir_cf_node_as_if(node));
3435 break;
3436
3437 case nir_cf_node_loop:
3438 emit_loop(ctx, nir_cf_node_as_loop(node));
3439 break;
3440
3441 case nir_cf_node_function:
3442 assert(0);
3443 break;
3444 }
3445 }
3446
3447 return start_block;
3448 }
3449
3450 /* Due to lookahead, we need to report the first tag executed in the command
3451 * stream and in branch targets. An initial block might be empty, so iterate
3452 * until we find one that 'works' */
3453
3454 static unsigned
3455 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3456 {
3457 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3458
3459 unsigned first_tag = 0;
3460
3461 do {
3462 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3463
3464 if (initial_bundle) {
3465 first_tag = initial_bundle->tag;
3466 break;
3467 }
3468
3469 /* Initial block is empty, try the next block */
3470 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3471 } while(initial_block != NULL);
3472
3473 assert(first_tag);
3474 return first_tag;
3475 }
3476
3477 int
3478 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3479 {
3480 struct util_dynarray *compiled = &program->compiled;
3481
3482 midgard_debug = debug_get_option_midgard_debug();
3483
3484 compiler_context ictx = {
3485 .nir = nir,
3486 .stage = nir->info.stage,
3487
3488 .is_blend = is_blend,
3489 .blend_constant_offset = -1,
3490
3491 .alpha_ref = program->alpha_ref
3492 };
3493
3494 compiler_context *ctx = &ictx;
3495
3496 /* TODO: Decide this at runtime */
3497 ctx->uniform_cutoff = 8;
3498
3499 /* Assign var locations early, so the epilogue can use them if necessary */
3500
3501 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3502 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3503 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, uniform_type_size);
3504
3505 /* Initialize at a global (not block) level hash tables */
3506
3507 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3508 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3509 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3510 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3511 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3512 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3513 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3514
3515 /* Record the varying mapping for the command stream's bookkeeping */
3516
3517 struct exec_list *varyings =
3518 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3519
3520 nir_foreach_variable(var, varyings) {
3521 unsigned loc = var->data.driver_location;
3522 program->varyings[loc] = var->data.location;
3523 }
3524
3525 /* Lower vars -- not I/O -- before epilogue */
3526
3527 NIR_PASS_V(nir, nir_lower_var_copies);
3528 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3529 NIR_PASS_V(nir, nir_split_var_copies);
3530 NIR_PASS_V(nir, nir_lower_var_copies);
3531 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3532 NIR_PASS_V(nir, nir_lower_var_copies);
3533 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3534
3535 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3536
3537 /* Append vertex epilogue before optimisation, so the epilogue itself
3538 * is optimised */
3539
3540 if (ctx->stage == MESA_SHADER_VERTEX)
3541 transform_position_writes(nir);
3542
3543 /* Optimisation passes */
3544
3545 optimise_nir(nir);
3546
3547 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3548 nir_print_shader(nir, stdout);
3549 }
3550
3551 /* Assign sysvals and counts, now that we're sure
3552 * (post-optimisation) */
3553
3554 midgard_nir_assign_sysvals(ctx, nir);
3555
3556 program->uniform_count = nir->num_uniforms;
3557 program->sysval_count = ctx->sysval_count;
3558 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3559
3560 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3561 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3562
3563 nir_foreach_function(func, nir) {
3564 if (!func->impl)
3565 continue;
3566
3567 list_inithead(&ctx->blocks);
3568 ctx->block_count = 0;
3569 ctx->func = func;
3570
3571 emit_cf_list(ctx, &func->impl->body);
3572 emit_block(ctx, func->impl->end_block);
3573
3574 break; /* TODO: Multi-function shaders */
3575 }
3576
3577 util_dynarray_init(compiled, NULL);
3578
3579 /* Schedule! */
3580 schedule_program(ctx);
3581
3582 /* Now that all the bundles are scheduled and we can calculate block
3583 * sizes, emit actual branch instructions rather than placeholders */
3584
3585 int br_block_idx = 0;
3586
3587 mir_foreach_block(ctx, block) {
3588 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3589 for (int c = 0; c < bundle->instruction_count; ++c) {
3590 midgard_instruction *ins = &bundle->instructions[c];
3591
3592 if (!midgard_is_branch_unit(ins->unit)) continue;
3593
3594 if (ins->prepacked_branch) continue;
3595
3596 /* Parse some basic branch info */
3597 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3598 bool is_conditional = ins->branch.conditional;
3599 bool is_inverted = ins->branch.invert_conditional;
3600 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3601
3602 /* Determine the block we're jumping to */
3603 int target_number = ins->branch.target_block;
3604
3605 /* Report the destination tag. Discards don't need this */
3606 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3607
3608 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3609 int quadword_offset = 0;
3610
3611 if (is_discard) {
3612 /* Jump to the end of the shader. We
3613 * need to include not only the
3614 * following blocks, but also the
3615 * contents of our current block (since
3616 * discard can come in the middle of
3617 * the block) */
3618
3619 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3620
3621 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3622 quadword_offset += quadword_size(bun->tag);
3623 }
3624
3625 mir_foreach_block_from(ctx, blk, b) {
3626 quadword_offset += b->quadword_count;
3627 }
3628
3629 } else if (target_number > br_block_idx) {
3630 /* Jump forward */
3631
3632 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3633 midgard_block *blk = mir_get_block(ctx, idx);
3634 assert(blk);
3635
3636 quadword_offset += blk->quadword_count;
3637 }
3638 } else {
3639 /* Jump backwards */
3640
3641 for (int idx = br_block_idx; idx >= target_number; --idx) {
3642 midgard_block *blk = mir_get_block(ctx, idx);
3643 assert(blk);
3644
3645 quadword_offset -= blk->quadword_count;
3646 }
3647 }
3648
3649 /* Unconditional extended branches (far jumps)
3650 * have issues, so we always use a conditional
3651 * branch, setting the condition to always for
3652 * unconditional. For compact unconditional
3653 * branches, cond isn't used so it doesn't
3654 * matter what we pick. */
3655
3656 midgard_condition cond =
3657 !is_conditional ? midgard_condition_always :
3658 is_inverted ? midgard_condition_false :
3659 midgard_condition_true;
3660
3661 midgard_jmp_writeout_op op =
3662 is_discard ? midgard_jmp_writeout_op_discard :
3663 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3664 midgard_jmp_writeout_op_branch_cond;
3665
3666 if (!is_compact) {
3667 midgard_branch_extended branch =
3668 midgard_create_branch_extended(
3669 cond, op,
3670 dest_tag,
3671 quadword_offset);
3672
3673 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3674 } else if (is_conditional || is_discard) {
3675 midgard_branch_cond branch = {
3676 .op = op,
3677 .dest_tag = dest_tag,
3678 .offset = quadword_offset,
3679 .cond = cond
3680 };
3681
3682 assert(branch.offset == quadword_offset);
3683
3684 memcpy(&ins->br_compact, &branch, sizeof(branch));
3685 } else {
3686 assert(op == midgard_jmp_writeout_op_branch_uncond);
3687
3688 midgard_branch_uncond branch = {
3689 .op = op,
3690 .dest_tag = dest_tag,
3691 .offset = quadword_offset,
3692 .unknown = 1
3693 };
3694
3695 assert(branch.offset == quadword_offset);
3696
3697 memcpy(&ins->br_compact, &branch, sizeof(branch));
3698 }
3699 }
3700 }
3701
3702 ++br_block_idx;
3703 }
3704
3705 /* Emit flat binary from the instruction arrays. Iterate each block in
3706 * sequence. Save instruction boundaries such that lookahead tags can
3707 * be assigned easily */
3708
3709 /* Cache _all_ bundles in source order for lookahead across failed branches */
3710
3711 int bundle_count = 0;
3712 mir_foreach_block(ctx, block) {
3713 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3714 }
3715 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3716 int bundle_idx = 0;
3717 mir_foreach_block(ctx, block) {
3718 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3719 source_order_bundles[bundle_idx++] = bundle;
3720 }
3721 }
3722
3723 int current_bundle = 0;
3724
3725 mir_foreach_block(ctx, block) {
3726 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3727 int lookahead = 1;
3728
3729 if (current_bundle + 1 < bundle_count) {
3730 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3731
3732 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3733 lookahead = 1;
3734 } else {
3735 lookahead = next;
3736 }
3737 }
3738
3739 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3740 ++current_bundle;
3741 }
3742
3743 /* TODO: Free deeper */
3744 //util_dynarray_fini(&block->instructions);
3745 }
3746
3747 free(source_order_bundles);
3748
3749 /* Report the very first tag executed */
3750 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3751
3752 /* Deal with off-by-one related to the fencepost problem */
3753 program->work_register_count = ctx->work_registers + 1;
3754
3755 program->can_discard = ctx->can_discard;
3756 program->uniform_cutoff = ctx->uniform_cutoff;
3757
3758 program->blend_patch_offset = ctx->blend_constant_offset;
3759
3760 if (midgard_debug & MIDGARD_DBG_SHADERS)
3761 disassemble_midgard(program->compiled.data, program->compiled.size);
3762
3763 return 0;
3764 }