panfrost/midgard: Dead code eliminate MIR
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .abs = src->abs,
258 .negate = src->negate,
259 .rep_low = 0,
260 .rep_high = 0,
261 .half = 0, /* TODO */
262 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
263 };
264
265 return alu_src;
266 }
267
268 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
269
270 static midgard_instruction
271 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
272 {
273 midgard_instruction ins = {
274 .type = TAG_ALU_4,
275 .ssa_args = {
276 .src0 = SSA_UNUSED_1,
277 .src1 = src,
278 .dest = dest,
279 },
280 .alu = {
281 .op = midgard_alu_op_fmov,
282 .reg_mode = midgard_reg_mode_full,
283 .dest_override = midgard_dest_override_none,
284 .mask = 0xFF,
285 .src1 = vector_alu_srco_unsigned(zero_alu_src),
286 .src2 = vector_alu_srco_unsigned(mod)
287 },
288 };
289
290 return ins;
291 }
292
293 /* load/store instructions have both 32-bit and 16-bit variants, depending on
294 * whether we are using vectors composed of highp or mediump. At the moment, we
295 * don't support half-floats -- this requires changes in other parts of the
296 * compiler -- therefore the 16-bit versions are commented out. */
297
298 //M_LOAD(load_attr_16);
299 M_LOAD(load_attr_32);
300 //M_LOAD(load_vary_16);
301 M_LOAD(load_vary_32);
302 //M_LOAD(load_uniform_16);
303 M_LOAD(load_uniform_32);
304 M_LOAD(load_color_buffer_8);
305 //M_STORE(store_vary_16);
306 M_STORE(store_vary_32);
307 M_STORE(store_cubemap_coords);
308
309 static midgard_instruction
310 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
311 {
312 midgard_branch_cond branch = {
313 .op = op,
314 .dest_tag = tag,
315 .offset = offset,
316 .cond = cond
317 };
318
319 uint16_t compact;
320 memcpy(&compact, &branch, sizeof(branch));
321
322 midgard_instruction ins = {
323 .type = TAG_ALU_4,
324 .unit = ALU_ENAB_BR_COMPACT,
325 .prepacked_branch = true,
326 .compact_branch = true,
327 .br_compact = compact
328 };
329
330 if (op == midgard_jmp_writeout_op_writeout)
331 ins.writeout = true;
332
333 return ins;
334 }
335
336 static midgard_instruction
337 v_branch(bool conditional, bool invert)
338 {
339 midgard_instruction ins = {
340 .type = TAG_ALU_4,
341 .unit = ALU_ENAB_BRANCH,
342 .compact_branch = true,
343 .branch = {
344 .conditional = conditional,
345 .invert_conditional = invert
346 }
347 };
348
349 return ins;
350 }
351
352 static midgard_branch_extended
353 midgard_create_branch_extended( midgard_condition cond,
354 midgard_jmp_writeout_op op,
355 unsigned dest_tag,
356 signed quadword_offset)
357 {
358 /* For unclear reasons, the condition code is repeated 8 times */
359 uint16_t duplicated_cond =
360 (cond << 14) |
361 (cond << 12) |
362 (cond << 10) |
363 (cond << 8) |
364 (cond << 6) |
365 (cond << 4) |
366 (cond << 2) |
367 (cond << 0);
368
369 midgard_branch_extended branch = {
370 .op = op,
371 .dest_tag = dest_tag,
372 .offset = quadword_offset,
373 .cond = duplicated_cond
374 };
375
376 return branch;
377 }
378
379 typedef struct midgard_bundle {
380 /* Tag for the overall bundle */
381 int tag;
382
383 /* Instructions contained by the bundle */
384 int instruction_count;
385 midgard_instruction instructions[5];
386
387 /* Bundle-wide ALU configuration */
388 int padding;
389 int control;
390 bool has_embedded_constants;
391 float constants[4];
392 bool has_blend_constant;
393
394 uint16_t register_words[8];
395 int register_words_count;
396
397 uint64_t body_words[8];
398 size_t body_size[8];
399 int body_words_count;
400 } midgard_bundle;
401
402 typedef struct compiler_context {
403 nir_shader *nir;
404 gl_shader_stage stage;
405
406 /* Is internally a blend shader? Depends on stage == FRAGMENT */
407 bool is_blend;
408
409 /* Tracking for blend constant patching */
410 int blend_constant_number;
411 int blend_constant_offset;
412
413 /* Current NIR function */
414 nir_function *func;
415
416 /* Unordered list of midgard_blocks */
417 int block_count;
418 struct list_head blocks;
419
420 midgard_block *initial_block;
421 midgard_block *previous_source_block;
422 midgard_block *final_block;
423
424 /* List of midgard_instructions emitted for the current block */
425 midgard_block *current_block;
426
427 /* The index corresponding to the current loop, e.g. for breaks/contineus */
428 int current_loop;
429
430 /* Constants which have been loaded, for later inlining */
431 struct hash_table_u64 *ssa_constants;
432
433 /* SSA indices to be outputted to corresponding varying offset */
434 struct hash_table_u64 *ssa_varyings;
435
436 /* SSA values / registers which have been aliased. Naively, these
437 * demand a fmov output; instead, we alias them in a later pass to
438 * avoid the wasted op.
439 *
440 * A note on encoding: to avoid dynamic memory management here, rather
441 * than ampping to a pointer, we map to the source index; the key
442 * itself is just the destination index. */
443
444 struct hash_table_u64 *ssa_to_alias;
445 struct set *leftover_ssa_to_alias;
446
447 /* Actual SSA-to-register for RA */
448 struct hash_table_u64 *ssa_to_register;
449
450 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
451 struct hash_table_u64 *hash_to_temp;
452 int temp_count;
453 int max_hash;
454
455 /* Just the count of the max register used. Higher count => higher
456 * register pressure */
457 int work_registers;
458
459 /* Used for cont/last hinting. Increase when a tex op is added.
460 * Decrease when a tex op is removed. */
461 int texture_op_count;
462
463 /* Mapping of texture register -> SSA index for unaliasing */
464 int texture_index[2];
465
466 /* If any path hits a discard instruction */
467 bool can_discard;
468
469 /* The number of uniforms allowable for the fast path */
470 int uniform_cutoff;
471
472 /* Count of instructions emitted from NIR overall, across all blocks */
473 int instruction_count;
474
475 /* Alpha ref value passed in */
476 float alpha_ref;
477
478 /* The index corresponding to the fragment output */
479 unsigned fragment_output;
480
481 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
482 unsigned sysvals[MAX_SYSVAL_COUNT];
483 unsigned sysval_count;
484 struct hash_table_u64 *sysval_to_id;
485 } compiler_context;
486
487 /* Append instruction to end of current block */
488
489 static midgard_instruction *
490 mir_upload_ins(struct midgard_instruction ins)
491 {
492 midgard_instruction *heap = malloc(sizeof(ins));
493 memcpy(heap, &ins, sizeof(ins));
494 return heap;
495 }
496
497 static void
498 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
499 {
500 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
501 }
502
503 static void
504 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
505 {
506 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
507 }
508
509 static void
510 mir_remove_instruction(struct midgard_instruction *ins)
511 {
512 list_del(&ins->link);
513 }
514
515 static midgard_instruction*
516 mir_prev_op(struct midgard_instruction *ins)
517 {
518 return list_last_entry(&(ins->link), midgard_instruction, link);
519 }
520
521 static midgard_instruction*
522 mir_next_op(struct midgard_instruction *ins)
523 {
524 return list_first_entry(&(ins->link), midgard_instruction, link);
525 }
526
527 static midgard_block *
528 mir_next_block(struct midgard_block *blk)
529 {
530 return list_first_entry(&(blk->link), midgard_block, link);
531 }
532
533
534 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
535 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
536
537 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
538 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
539 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
540 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
541 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
542 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
543
544
545 static midgard_instruction *
546 mir_last_in_block(struct midgard_block *block)
547 {
548 return list_last_entry(&block->instructions, struct midgard_instruction, link);
549 }
550
551 static midgard_block *
552 mir_get_block(compiler_context *ctx, int idx)
553 {
554 struct list_head *lst = &ctx->blocks;
555
556 while ((idx--) + 1)
557 lst = lst->next;
558
559 return (struct midgard_block *) lst;
560 }
561
562 /* Pretty printer for internal Midgard IR */
563
564 static void
565 print_mir_source(int source)
566 {
567 if (source >= SSA_FIXED_MINIMUM) {
568 /* Specific register */
569 int reg = SSA_REG_FROM_FIXED(source);
570
571 /* TODO: Moving threshold */
572 if (reg > 16 && reg < 24)
573 printf("u%d", 23 - reg);
574 else
575 printf("r%d", reg);
576 } else {
577 printf("%d", source);
578 }
579 }
580
581 static void
582 print_mir_instruction(midgard_instruction *ins)
583 {
584 printf("\t");
585
586 switch (ins->type) {
587 case TAG_ALU_4: {
588 midgard_alu_op op = ins->alu.op;
589 const char *name = alu_opcode_names[op];
590
591 if (ins->unit)
592 printf("%d.", ins->unit);
593
594 printf("%s", name ? name : "??");
595 break;
596 }
597
598 case TAG_LOAD_STORE_4: {
599 midgard_load_store_op op = ins->load_store.op;
600 const char *name = load_store_opcode_names[op];
601
602 assert(name);
603 printf("%s", name);
604 break;
605 }
606
607 case TAG_TEXTURE_4: {
608 printf("texture");
609 break;
610 }
611
612 default:
613 assert(0);
614 }
615
616 ssa_args *args = &ins->ssa_args;
617
618 printf(" %d, ", args->dest);
619
620 print_mir_source(args->src0);
621 printf(", ");
622
623 if (args->inline_constant)
624 printf("#%d", ins->inline_constant);
625 else
626 print_mir_source(args->src1);
627
628 if (ins->has_constants)
629 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
630
631 printf("\n");
632 }
633
634 static void
635 print_mir_block(midgard_block *block)
636 {
637 printf("{\n");
638
639 mir_foreach_instr_in_block(block, ins) {
640 print_mir_instruction(ins);
641 }
642
643 printf("}\n");
644 }
645
646 static void
647 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
648 {
649 ins->has_constants = true;
650 memcpy(&ins->constants, constants, 16);
651
652 /* If this is the special blend constant, mark this instruction */
653
654 if (ctx->is_blend && ctx->blend_constant_number == name)
655 ins->has_blend_constant = true;
656 }
657
658 static int
659 glsl_type_size(const struct glsl_type *type, bool bindless)
660 {
661 return glsl_count_attribute_slots(type, false);
662 }
663
664 /* Lower fdot2 to a vector multiplication followed by channel addition */
665 static void
666 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
667 {
668 if (alu->op != nir_op_fdot2)
669 return;
670
671 b->cursor = nir_before_instr(&alu->instr);
672
673 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
674 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
675
676 nir_ssa_def *product = nir_fmul(b, src0, src1);
677
678 nir_ssa_def *sum = nir_fadd(b,
679 nir_channel(b, product, 0),
680 nir_channel(b, product, 1));
681
682 /* Replace the fdot2 with this sum */
683 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
684 }
685
686 static int
687 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
688 {
689 switch (instr->intrinsic) {
690 case nir_intrinsic_load_viewport_scale:
691 return PAN_SYSVAL_VIEWPORT_SCALE;
692 case nir_intrinsic_load_viewport_offset:
693 return PAN_SYSVAL_VIEWPORT_OFFSET;
694 default:
695 return -1;
696 }
697 }
698
699 static void
700 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
701 {
702 int sysval = -1;
703
704 if (instr->type == nir_instr_type_intrinsic) {
705 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
706 sysval = midgard_nir_sysval_for_intrinsic(intr);
707 }
708
709 if (sysval < 0)
710 return;
711
712 /* We have a sysval load; check if it's already been assigned */
713
714 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
715 return;
716
717 /* It hasn't -- so assign it now! */
718
719 unsigned id = ctx->sysval_count++;
720 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
721 ctx->sysvals[id] = sysval;
722 }
723
724 static void
725 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
726 {
727 ctx->sysval_count = 0;
728
729 nir_foreach_function(function, shader) {
730 if (!function->impl) continue;
731
732 nir_foreach_block(block, function->impl) {
733 nir_foreach_instr_safe(instr, block) {
734 midgard_nir_assign_sysval_body(ctx, instr);
735 }
736 }
737 }
738 }
739
740 static bool
741 midgard_nir_lower_fdot2(nir_shader *shader)
742 {
743 bool progress = false;
744
745 nir_foreach_function(function, shader) {
746 if (!function->impl) continue;
747
748 nir_builder _b;
749 nir_builder *b = &_b;
750 nir_builder_init(b, function->impl);
751
752 nir_foreach_block(block, function->impl) {
753 nir_foreach_instr_safe(instr, block) {
754 if (instr->type != nir_instr_type_alu) continue;
755
756 nir_alu_instr *alu = nir_instr_as_alu(instr);
757 midgard_nir_lower_fdot2_body(b, alu);
758
759 progress |= true;
760 }
761 }
762
763 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
764
765 }
766
767 return progress;
768 }
769
770 static void
771 optimise_nir(nir_shader *nir)
772 {
773 bool progress;
774
775 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
776 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
777
778 nir_lower_tex_options lower_tex_options = {
779 .lower_rect = true
780 };
781
782 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
783
784 do {
785 progress = false;
786
787 NIR_PASS(progress, nir, nir_lower_var_copies);
788 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
789
790 NIR_PASS(progress, nir, nir_copy_prop);
791 NIR_PASS(progress, nir, nir_opt_dce);
792 NIR_PASS(progress, nir, nir_opt_dead_cf);
793 NIR_PASS(progress, nir, nir_opt_cse);
794 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
795 NIR_PASS(progress, nir, nir_opt_algebraic);
796 NIR_PASS(progress, nir, nir_opt_constant_folding);
797 NIR_PASS(progress, nir, nir_opt_undef);
798 NIR_PASS(progress, nir, nir_opt_loop_unroll,
799 nir_var_shader_in |
800 nir_var_shader_out |
801 nir_var_function_temp);
802
803 /* TODO: Enable vectorize when merged upstream */
804 // NIR_PASS(progress, nir, nir_opt_vectorize);
805 } while (progress);
806
807 /* Must be run at the end to prevent creation of fsin/fcos ops */
808 NIR_PASS(progress, nir, midgard_nir_scale_trig);
809
810 do {
811 progress = false;
812
813 NIR_PASS(progress, nir, nir_opt_dce);
814 NIR_PASS(progress, nir, nir_opt_algebraic);
815 NIR_PASS(progress, nir, nir_opt_constant_folding);
816 NIR_PASS(progress, nir, nir_copy_prop);
817 } while (progress);
818
819 NIR_PASS(progress, nir, nir_opt_algebraic_late);
820 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
821
822 /* Lower mods for float ops only. Integer ops don't support modifiers
823 * (saturate doesn't make sense on integers, neg/abs require dedicated
824 * instructions) */
825
826 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
827 NIR_PASS(progress, nir, nir_copy_prop);
828 NIR_PASS(progress, nir, nir_opt_dce);
829
830 /* We implement booleans as 32-bit 0/~0 */
831 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
832
833 /* Take us out of SSA */
834 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
835 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
836
837 /* We are a vector architecture; write combine where possible */
838 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
839 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
840
841 NIR_PASS(progress, nir, nir_opt_dce);
842 }
843
844 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
845 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
846 * r0. See the comments in compiler_context */
847
848 static void
849 alias_ssa(compiler_context *ctx, int dest, int src)
850 {
851 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
852 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
853 }
854
855 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
856
857 static void
858 unalias_ssa(compiler_context *ctx, int dest)
859 {
860 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
861 /* TODO: Remove from leftover or no? */
862 }
863
864 static void
865 midgard_pin_output(compiler_context *ctx, int index, int reg)
866 {
867 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
868 }
869
870 static bool
871 midgard_is_pinned(compiler_context *ctx, int index)
872 {
873 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
874 }
875
876 /* Do not actually emit a load; instead, cache the constant for inlining */
877
878 static void
879 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
880 {
881 nir_ssa_def def = instr->def;
882
883 float *v = ralloc_array(NULL, float, 4);
884 nir_const_load_to_arr(v, instr, f32);
885 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
886 }
887
888 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
889 * do the inverse) */
890
891 static unsigned
892 expand_writemask(unsigned mask)
893 {
894 unsigned o = 0;
895
896 for (int i = 0; i < 4; ++i)
897 if (mask & (1 << i))
898 o |= (3 << (2 * i));
899
900 return o;
901 }
902
903 static unsigned
904 squeeze_writemask(unsigned mask)
905 {
906 unsigned o = 0;
907
908 for (int i = 0; i < 4; ++i)
909 if (mask & (3 << (2 * i)))
910 o |= (1 << i);
911
912 return o;
913
914 }
915
916 /* Determines effective writemask, taking quirks and expansion into account */
917 static unsigned
918 effective_writemask(midgard_vector_alu *alu)
919 {
920 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
921 * sense) */
922
923 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
924
925 /* If there is a fixed channel count, construct the appropriate mask */
926
927 if (channel_count)
928 return (1 << channel_count) - 1;
929
930 /* Otherwise, just squeeze the existing mask */
931 return squeeze_writemask(alu->mask);
932 }
933
934 static unsigned
935 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
936 {
937 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
938 return hash;
939
940 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
941
942 if (temp)
943 return temp - 1;
944
945 /* If no temp is find, allocate one */
946 temp = ctx->temp_count++;
947 ctx->max_hash = MAX2(ctx->max_hash, hash);
948
949 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
950
951 return temp;
952 }
953
954 static unsigned
955 nir_src_index(compiler_context *ctx, nir_src *src)
956 {
957 if (src->is_ssa)
958 return src->ssa->index;
959 else {
960 assert(!src->reg.indirect);
961 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
962 }
963 }
964
965 static unsigned
966 nir_dest_index(compiler_context *ctx, nir_dest *dst)
967 {
968 if (dst->is_ssa)
969 return dst->ssa.index;
970 else {
971 assert(!dst->reg.indirect);
972 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
973 }
974 }
975
976 static unsigned
977 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
978 {
979 return nir_src_index(ctx, &src->src);
980 }
981
982 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
983 * a conditional test) into that register */
984
985 static void
986 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
987 {
988 int condition = nir_src_index(ctx, src);
989
990 /* Source to swizzle the desired component into w */
991
992 const midgard_vector_alu_src alu_src = {
993 .swizzle = SWIZZLE(component, component, component, component),
994 };
995
996 /* There is no boolean move instruction. Instead, we simulate a move by
997 * ANDing the condition with itself to get it into r31.w */
998
999 midgard_instruction ins = {
1000 .type = TAG_ALU_4,
1001 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1002 .ssa_args = {
1003 .src0 = condition,
1004 .src1 = condition,
1005 .dest = SSA_FIXED_REGISTER(31),
1006 },
1007 .alu = {
1008 .op = midgard_alu_op_iand,
1009 .reg_mode = midgard_reg_mode_full,
1010 .dest_override = midgard_dest_override_none,
1011 .mask = (0x3 << 6), /* w */
1012 .src1 = vector_alu_srco_unsigned(alu_src),
1013 .src2 = vector_alu_srco_unsigned(alu_src)
1014 },
1015 };
1016
1017 emit_mir_instruction(ctx, ins);
1018 }
1019
1020 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1021 * pinning to eliminate this move in all known cases */
1022
1023 static void
1024 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1025 {
1026 int offset = nir_src_index(ctx, src);
1027
1028 midgard_instruction ins = {
1029 .type = TAG_ALU_4,
1030 .ssa_args = {
1031 .src0 = SSA_UNUSED_1,
1032 .src1 = offset,
1033 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1034 },
1035 .alu = {
1036 .op = midgard_alu_op_imov,
1037 .reg_mode = midgard_reg_mode_full,
1038 .dest_override = midgard_dest_override_none,
1039 .mask = (0x3 << 6), /* w */
1040 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1041 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1042 },
1043 };
1044
1045 emit_mir_instruction(ctx, ins);
1046 }
1047
1048 #define ALU_CASE(nir, _op) \
1049 case nir_op_##nir: \
1050 op = midgard_alu_op_##_op; \
1051 break;
1052
1053 static void
1054 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1055 {
1056 bool is_ssa = instr->dest.dest.is_ssa;
1057
1058 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1059 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1060 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1061
1062 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1063 * supported. A few do not and are commented for now. Also, there are a
1064 * number of NIR ops which Midgard does not support and need to be
1065 * lowered, also TODO. This switch block emits the opcode and calling
1066 * convention of the Midgard instruction; actual packing is done in
1067 * emit_alu below */
1068
1069 unsigned op;
1070
1071 switch (instr->op) {
1072 ALU_CASE(fadd, fadd);
1073 ALU_CASE(fmul, fmul);
1074 ALU_CASE(fmin, fmin);
1075 ALU_CASE(fmax, fmax);
1076 ALU_CASE(imin, imin);
1077 ALU_CASE(imax, imax);
1078 ALU_CASE(umin, umin);
1079 ALU_CASE(umax, umax);
1080 ALU_CASE(fmov, fmov);
1081 ALU_CASE(ffloor, ffloor);
1082 ALU_CASE(fround_even, froundeven);
1083 ALU_CASE(ftrunc, ftrunc);
1084 ALU_CASE(fceil, fceil);
1085 ALU_CASE(fdot3, fdot3);
1086 ALU_CASE(fdot4, fdot4);
1087 ALU_CASE(iadd, iadd);
1088 ALU_CASE(isub, isub);
1089 ALU_CASE(imul, imul);
1090 ALU_CASE(iabs, iabs);
1091
1092 /* XXX: Use fmov, not imov, since imov was causing major
1093 * issues with texture precision? XXX research */
1094 ALU_CASE(imov, imov);
1095
1096 ALU_CASE(feq32, feq);
1097 ALU_CASE(fne32, fne);
1098 ALU_CASE(flt32, flt);
1099 ALU_CASE(ieq32, ieq);
1100 ALU_CASE(ine32, ine);
1101 ALU_CASE(ilt32, ilt);
1102 ALU_CASE(ult32, ult);
1103
1104 /* We don't have a native b2f32 instruction. Instead, like many
1105 * GPUs, we exploit booleans as 0/~0 for false/true, and
1106 * correspondingly AND
1107 * by 1.0 to do the type conversion. For the moment, prime us
1108 * to emit:
1109 *
1110 * iand [whatever], #0
1111 *
1112 * At the end of emit_alu (as MIR), we'll fix-up the constant
1113 */
1114
1115 ALU_CASE(b2f32, iand);
1116 ALU_CASE(b2i32, iand);
1117
1118 /* Likewise, we don't have a dedicated f2b32 instruction, but
1119 * we can do a "not equal to 0.0" test. */
1120
1121 ALU_CASE(f2b32, fne);
1122 ALU_CASE(i2b32, ine);
1123
1124 ALU_CASE(frcp, frcp);
1125 ALU_CASE(frsq, frsqrt);
1126 ALU_CASE(fsqrt, fsqrt);
1127 ALU_CASE(fexp2, fexp2);
1128 ALU_CASE(flog2, flog2);
1129
1130 ALU_CASE(f2i32, f2i);
1131 ALU_CASE(f2u32, f2u);
1132 ALU_CASE(i2f32, i2f);
1133 ALU_CASE(u2f32, u2f);
1134
1135 ALU_CASE(fsin, fsin);
1136 ALU_CASE(fcos, fcos);
1137
1138 ALU_CASE(iand, iand);
1139 ALU_CASE(ior, ior);
1140 ALU_CASE(ixor, ixor);
1141 ALU_CASE(inot, inot);
1142 ALU_CASE(ishl, ishl);
1143 ALU_CASE(ishr, iasr);
1144 ALU_CASE(ushr, ilsr);
1145
1146 ALU_CASE(b32all_fequal2, fball_eq);
1147 ALU_CASE(b32all_fequal3, fball_eq);
1148 ALU_CASE(b32all_fequal4, fball_eq);
1149
1150 ALU_CASE(b32any_fnequal2, fbany_neq);
1151 ALU_CASE(b32any_fnequal3, fbany_neq);
1152 ALU_CASE(b32any_fnequal4, fbany_neq);
1153
1154 ALU_CASE(b32all_iequal2, iball_eq);
1155 ALU_CASE(b32all_iequal3, iball_eq);
1156 ALU_CASE(b32all_iequal4, iball_eq);
1157
1158 ALU_CASE(b32any_inequal2, ibany_neq);
1159 ALU_CASE(b32any_inequal3, ibany_neq);
1160 ALU_CASE(b32any_inequal4, ibany_neq);
1161
1162 /* For greater-or-equal, we lower to less-or-equal and flip the
1163 * arguments */
1164
1165 case nir_op_fge:
1166 case nir_op_fge32:
1167 case nir_op_ige32:
1168 case nir_op_uge32: {
1169 op =
1170 instr->op == nir_op_fge ? midgard_alu_op_fle :
1171 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1172 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1173 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1174 0;
1175
1176 /* Swap via temporary */
1177 nir_alu_src temp = instr->src[1];
1178 instr->src[1] = instr->src[0];
1179 instr->src[0] = temp;
1180
1181 break;
1182 }
1183
1184 case nir_op_b32csel: {
1185 op = midgard_alu_op_fcsel;
1186
1187 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1188 nr_inputs = 2;
1189
1190 /* Figure out which component the condition is in */
1191
1192 unsigned comp = instr->src[0].swizzle[0];
1193
1194 /* Make sure NIR isn't throwing a mixed condition at us */
1195
1196 for (unsigned c = 1; c < nr_components; ++c)
1197 assert(instr->src[0].swizzle[c] == comp);
1198
1199 /* Emit the condition into r31.w */
1200 emit_condition(ctx, &instr->src[0].src, false, comp);
1201
1202 /* The condition is the first argument; move the other
1203 * arguments up one to be a binary instruction for
1204 * Midgard */
1205
1206 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1207 break;
1208 }
1209
1210 default:
1211 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1212 assert(0);
1213 return;
1214 }
1215
1216 /* Fetch unit, quirks, etc information */
1217 unsigned opcode_props = alu_opcode_props[op];
1218 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1219
1220 /* Initialise fields common between scalar/vector instructions */
1221 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1222
1223 /* src0 will always exist afaik, but src1 will not for 1-argument
1224 * instructions. The latter can only be fetched if the instruction
1225 * needs it, or else we may segfault. */
1226
1227 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1228 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1229
1230 /* Rather than use the instruction generation helpers, we do it
1231 * ourselves here to avoid the mess */
1232
1233 midgard_instruction ins = {
1234 .type = TAG_ALU_4,
1235 .ssa_args = {
1236 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1237 .src1 = quirk_flipped_r24 ? src0 : src1,
1238 .dest = dest,
1239 }
1240 };
1241
1242 nir_alu_src *nirmods[2] = { NULL };
1243
1244 if (nr_inputs == 2) {
1245 nirmods[0] = &instr->src[0];
1246 nirmods[1] = &instr->src[1];
1247 } else if (nr_inputs == 1) {
1248 nirmods[quirk_flipped_r24] = &instr->src[0];
1249 } else {
1250 assert(0);
1251 }
1252
1253 midgard_vector_alu alu = {
1254 .op = op,
1255 .reg_mode = midgard_reg_mode_full,
1256 .dest_override = midgard_dest_override_none,
1257 .outmod = outmod,
1258
1259 /* Writemask only valid for non-SSA NIR */
1260 .mask = expand_writemask((1 << nr_components) - 1),
1261
1262 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1263 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1264 };
1265
1266 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1267
1268 if (!is_ssa)
1269 alu.mask &= expand_writemask(instr->dest.write_mask);
1270
1271 ins.alu = alu;
1272
1273 /* Late fixup for emulated instructions */
1274
1275 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1276 /* Presently, our second argument is an inline #0 constant.
1277 * Switch over to an embedded 1.0 constant (that can't fit
1278 * inline, since we're 32-bit, not 16-bit like the inline
1279 * constants) */
1280
1281 ins.ssa_args.inline_constant = false;
1282 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1283 ins.has_constants = true;
1284
1285 if (instr->op == nir_op_b2f32) {
1286 ins.constants[0] = 1.0f;
1287 } else {
1288 /* Type pun it into place */
1289 uint32_t one = 0x1;
1290 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1291 }
1292
1293 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1294 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1295 ins.ssa_args.inline_constant = false;
1296 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1297 ins.has_constants = true;
1298 ins.constants[0] = 0.0f;
1299 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1300 }
1301
1302 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1303 /* To avoid duplicating the lookup tables (probably), true LUT
1304 * instructions can only operate as if they were scalars. Lower
1305 * them here by changing the component. */
1306
1307 uint8_t original_swizzle[4];
1308 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1309
1310 for (int i = 0; i < nr_components; ++i) {
1311 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1312
1313 for (int j = 0; j < 4; ++j)
1314 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1315
1316 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1317 emit_mir_instruction(ctx, ins);
1318 }
1319 } else {
1320 emit_mir_instruction(ctx, ins);
1321 }
1322 }
1323
1324 #undef ALU_CASE
1325
1326 static void
1327 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1328 {
1329 /* TODO: half-floats */
1330
1331 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1332 /* Fast path: For the first 16 uniforms, direct accesses are
1333 * 0-cycle, since they're just a register fetch in the usual
1334 * case. So, we alias the registers while we're still in
1335 * SSA-space */
1336
1337 int reg_slot = 23 - offset;
1338 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1339 } else {
1340 /* Otherwise, read from the 'special' UBO to access
1341 * higher-indexed uniforms, at a performance cost. More
1342 * generally, we're emitting a UBO read instruction. */
1343
1344 midgard_instruction ins = m_load_uniform_32(dest, offset);
1345
1346 /* TODO: Don't split */
1347 ins.load_store.varying_parameters = (offset & 7) << 7;
1348 ins.load_store.address = offset >> 3;
1349
1350 if (indirect_offset) {
1351 emit_indirect_offset(ctx, indirect_offset);
1352 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1353 } else {
1354 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1355 }
1356
1357 emit_mir_instruction(ctx, ins);
1358 }
1359 }
1360
1361 static void
1362 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1363 {
1364 /* First, pull out the destination */
1365 unsigned dest = nir_dest_index(ctx, &instr->dest);
1366
1367 /* Now, figure out which uniform this is */
1368 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1369 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1370
1371 /* Sysvals are prefix uniforms */
1372 unsigned uniform = ((uintptr_t) val) - 1;
1373
1374 /* Emit the read itself -- this is never indirect */
1375 emit_uniform_read(ctx, dest, uniform, NULL);
1376 }
1377
1378 static void
1379 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1380 {
1381 unsigned offset, reg;
1382
1383 switch (instr->intrinsic) {
1384 case nir_intrinsic_discard_if:
1385 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1386
1387 /* fallthrough */
1388
1389 case nir_intrinsic_discard: {
1390 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1391 struct midgard_instruction discard = v_branch(conditional, false);
1392 discard.branch.target_type = TARGET_DISCARD;
1393 emit_mir_instruction(ctx, discard);
1394
1395 ctx->can_discard = true;
1396 break;
1397 }
1398
1399 case nir_intrinsic_load_uniform:
1400 case nir_intrinsic_load_input:
1401 offset = nir_intrinsic_base(instr);
1402
1403 bool direct = nir_src_is_const(instr->src[0]);
1404
1405 if (direct) {
1406 offset += nir_src_as_uint(instr->src[0]);
1407 }
1408
1409 reg = nir_dest_index(ctx, &instr->dest);
1410
1411 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1412 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1413 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1414 /* XXX: Half-floats? */
1415 /* TODO: swizzle, mask */
1416
1417 midgard_instruction ins = m_load_vary_32(reg, offset);
1418
1419 midgard_varying_parameter p = {
1420 .is_varying = 1,
1421 .interpolation = midgard_interp_default,
1422 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1423 };
1424
1425 unsigned u;
1426 memcpy(&u, &p, sizeof(p));
1427 ins.load_store.varying_parameters = u;
1428
1429 if (direct) {
1430 /* We have the offset totally ready */
1431 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1432 } else {
1433 /* We have it partially ready, but we need to
1434 * add in the dynamic index, moved to r27.w */
1435 emit_indirect_offset(ctx, &instr->src[0]);
1436 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1437 }
1438
1439 emit_mir_instruction(ctx, ins);
1440 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1441 /* Constant encoded as a pinned constant */
1442
1443 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1444 ins.has_constants = true;
1445 ins.has_blend_constant = true;
1446 emit_mir_instruction(ctx, ins);
1447 } else if (ctx->is_blend) {
1448 /* For blend shaders, a load might be
1449 * translated various ways depending on what
1450 * we're loading. Figure out how this is used */
1451
1452 nir_variable *out = NULL;
1453
1454 nir_foreach_variable(var, &ctx->nir->inputs) {
1455 int drvloc = var->data.driver_location;
1456
1457 if (nir_intrinsic_base(instr) == drvloc) {
1458 out = var;
1459 break;
1460 }
1461 }
1462
1463 assert(out);
1464
1465 if (out->data.location == VARYING_SLOT_COL0) {
1466 /* Source color preloaded to r0 */
1467
1468 midgard_pin_output(ctx, reg, 0);
1469 } else if (out->data.location == VARYING_SLOT_COL1) {
1470 /* Destination color must be read from framebuffer */
1471
1472 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1473 ins.load_store.swizzle = 0; /* xxxx */
1474
1475 /* Read each component sequentially */
1476
1477 for (int c = 0; c < 4; ++c) {
1478 ins.load_store.mask = (1 << c);
1479 ins.load_store.unknown = c;
1480 emit_mir_instruction(ctx, ins);
1481 }
1482
1483 /* vadd.u2f hr2, abs(hr2), #0 */
1484
1485 midgard_vector_alu_src alu_src = blank_alu_src;
1486 alu_src.abs = true;
1487 alu_src.half = true;
1488
1489 midgard_instruction u2f = {
1490 .type = TAG_ALU_4,
1491 .ssa_args = {
1492 .src0 = reg,
1493 .src1 = SSA_UNUSED_0,
1494 .dest = reg,
1495 .inline_constant = true
1496 },
1497 .alu = {
1498 .op = midgard_alu_op_u2f,
1499 .reg_mode = midgard_reg_mode_half,
1500 .dest_override = midgard_dest_override_none,
1501 .mask = 0xF,
1502 .src1 = vector_alu_srco_unsigned(alu_src),
1503 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1504 }
1505 };
1506
1507 emit_mir_instruction(ctx, u2f);
1508
1509 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1510
1511 alu_src.abs = false;
1512
1513 midgard_instruction fmul = {
1514 .type = TAG_ALU_4,
1515 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1516 .ssa_args = {
1517 .src0 = reg,
1518 .dest = reg,
1519 .src1 = SSA_UNUSED_0,
1520 .inline_constant = true
1521 },
1522 .alu = {
1523 .op = midgard_alu_op_fmul,
1524 .reg_mode = midgard_reg_mode_full,
1525 .dest_override = midgard_dest_override_none,
1526 .outmod = midgard_outmod_sat,
1527 .mask = 0xFF,
1528 .src1 = vector_alu_srco_unsigned(alu_src),
1529 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1530 }
1531 };
1532
1533 emit_mir_instruction(ctx, fmul);
1534 } else {
1535 DBG("Unknown input in blend shader\n");
1536 assert(0);
1537 }
1538 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1539 midgard_instruction ins = m_load_attr_32(reg, offset);
1540 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1541 ins.load_store.mask = (1 << instr->num_components) - 1;
1542 emit_mir_instruction(ctx, ins);
1543 } else {
1544 DBG("Unknown load\n");
1545 assert(0);
1546 }
1547
1548 break;
1549
1550 case nir_intrinsic_store_output:
1551 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1552
1553 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1554
1555 reg = nir_src_index(ctx, &instr->src[0]);
1556
1557 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1558 /* gl_FragColor is not emitted with load/store
1559 * instructions. Instead, it gets plonked into
1560 * r0 at the end of the shader and we do the
1561 * framebuffer writeout dance. TODO: Defer
1562 * writes */
1563
1564 midgard_pin_output(ctx, reg, 0);
1565
1566 /* Save the index we're writing to for later reference
1567 * in the epilogue */
1568
1569 ctx->fragment_output = reg;
1570 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1571 /* Varyings are written into one of two special
1572 * varying register, r26 or r27. The register itself is selected as the register
1573 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1574 *
1575 * Normally emitting fmov's is frowned upon,
1576 * but due to unique constraints of
1577 * REGISTER_VARYING, fmov emission + a
1578 * dedicated cleanup pass is the only way to
1579 * guarantee correctness when considering some
1580 * (common) edge cases XXX: FIXME */
1581
1582 /* If this varying corresponds to a constant (why?!),
1583 * emit that now since it won't get picked up by
1584 * hoisting (since there is no corresponding move
1585 * emitted otherwise) */
1586
1587 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1588
1589 if (constant_value) {
1590 /* Special case: emit the varying write
1591 * directly to r26 (looks funny in asm but it's
1592 * fine) and emit the store _now_. Possibly
1593 * slightly slower, but this is a really stupid
1594 * special case anyway (why on earth would you
1595 * have a constant varying? Your own fault for
1596 * slightly worse perf :P) */
1597
1598 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1599 attach_constants(ctx, &ins, constant_value, reg + 1);
1600 emit_mir_instruction(ctx, ins);
1601
1602 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1603 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1604 emit_mir_instruction(ctx, st);
1605 } else {
1606 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1607
1608 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1609 }
1610 } else {
1611 DBG("Unknown store\n");
1612 assert(0);
1613 }
1614
1615 break;
1616
1617 case nir_intrinsic_load_alpha_ref_float:
1618 assert(instr->dest.is_ssa);
1619
1620 float ref_value = ctx->alpha_ref;
1621
1622 float *v = ralloc_array(NULL, float, 4);
1623 memcpy(v, &ref_value, sizeof(float));
1624 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1625 break;
1626
1627 case nir_intrinsic_load_viewport_scale:
1628 case nir_intrinsic_load_viewport_offset:
1629 emit_sysval_read(ctx, instr);
1630 break;
1631
1632 default:
1633 printf ("Unhandled intrinsic\n");
1634 assert(0);
1635 break;
1636 }
1637 }
1638
1639 static unsigned
1640 midgard_tex_format(enum glsl_sampler_dim dim)
1641 {
1642 switch (dim) {
1643 case GLSL_SAMPLER_DIM_2D:
1644 case GLSL_SAMPLER_DIM_EXTERNAL:
1645 return TEXTURE_2D;
1646
1647 case GLSL_SAMPLER_DIM_3D:
1648 return TEXTURE_3D;
1649
1650 case GLSL_SAMPLER_DIM_CUBE:
1651 return TEXTURE_CUBE;
1652
1653 default:
1654 DBG("Unknown sampler dim type\n");
1655 assert(0);
1656 return 0;
1657 }
1658 }
1659
1660 static void
1661 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1662 {
1663 /* TODO */
1664 //assert (!instr->sampler);
1665 //assert (!instr->texture_array_size);
1666 assert (instr->op == nir_texop_tex);
1667
1668 /* Allocate registers via a round robin scheme to alternate between the two registers */
1669 int reg = ctx->texture_op_count & 1;
1670 int in_reg = reg, out_reg = reg;
1671
1672 /* Make room for the reg */
1673
1674 if (ctx->texture_index[reg] > -1)
1675 unalias_ssa(ctx, ctx->texture_index[reg]);
1676
1677 int texture_index = instr->texture_index;
1678 int sampler_index = texture_index;
1679
1680 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1681 switch (instr->src[i].src_type) {
1682 case nir_tex_src_coord: {
1683 int index = nir_src_index(ctx, &instr->src[i].src);
1684
1685 midgard_vector_alu_src alu_src = blank_alu_src;
1686
1687 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1688
1689 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1690 /* For cubemaps, we need to load coords into
1691 * special r27, and then use a special ld/st op
1692 * to copy into the texture register */
1693
1694 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1695
1696 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1697 emit_mir_instruction(ctx, move);
1698
1699 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1700 st.load_store.unknown = 0x24; /* XXX: What is this? */
1701 st.load_store.mask = 0x3; /* xy? */
1702 st.load_store.swizzle = alu_src.swizzle;
1703 emit_mir_instruction(ctx, st);
1704
1705 } else {
1706 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1707
1708 midgard_instruction ins = v_fmov(index, alu_src, reg);
1709 emit_mir_instruction(ctx, ins);
1710 }
1711
1712 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1713
1714 break;
1715 }
1716
1717 default: {
1718 DBG("Unknown source type\n");
1719 //assert(0);
1720 break;
1721 }
1722 }
1723 }
1724
1725 /* No helper to build texture words -- we do it all here */
1726 midgard_instruction ins = {
1727 .type = TAG_TEXTURE_4,
1728 .texture = {
1729 .op = TEXTURE_OP_NORMAL,
1730 .format = midgard_tex_format(instr->sampler_dim),
1731 .texture_handle = texture_index,
1732 .sampler_handle = sampler_index,
1733
1734 /* TODO: Don't force xyzw */
1735 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1736 .mask = 0xF,
1737
1738 /* TODO: half */
1739 //.in_reg_full = 1,
1740 .out_full = 1,
1741
1742 .filter = 1,
1743
1744 /* Always 1 */
1745 .unknown7 = 1,
1746
1747 /* Assume we can continue; hint it out later */
1748 .cont = 1,
1749 }
1750 };
1751
1752 /* Set registers to read and write from the same place */
1753 ins.texture.in_reg_select = in_reg;
1754 ins.texture.out_reg_select = out_reg;
1755
1756 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1757 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1758 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1759 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1760 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1761 } else {
1762 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1763 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1764 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1765 }
1766
1767 emit_mir_instruction(ctx, ins);
1768
1769 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1770
1771 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1772 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1773 ctx->texture_index[reg] = o_index;
1774
1775 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1776 emit_mir_instruction(ctx, ins2);
1777
1778 /* Used for .cont and .last hinting */
1779 ctx->texture_op_count++;
1780 }
1781
1782 static void
1783 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1784 {
1785 switch (instr->type) {
1786 case nir_jump_break: {
1787 /* Emit a branch out of the loop */
1788 struct midgard_instruction br = v_branch(false, false);
1789 br.branch.target_type = TARGET_BREAK;
1790 br.branch.target_break = ctx->current_loop;
1791 emit_mir_instruction(ctx, br);
1792
1793 DBG("break..\n");
1794 break;
1795 }
1796
1797 default:
1798 DBG("Unknown jump type %d\n", instr->type);
1799 break;
1800 }
1801 }
1802
1803 static void
1804 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1805 {
1806 switch (instr->type) {
1807 case nir_instr_type_load_const:
1808 emit_load_const(ctx, nir_instr_as_load_const(instr));
1809 break;
1810
1811 case nir_instr_type_intrinsic:
1812 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1813 break;
1814
1815 case nir_instr_type_alu:
1816 emit_alu(ctx, nir_instr_as_alu(instr));
1817 break;
1818
1819 case nir_instr_type_tex:
1820 emit_tex(ctx, nir_instr_as_tex(instr));
1821 break;
1822
1823 case nir_instr_type_jump:
1824 emit_jump(ctx, nir_instr_as_jump(instr));
1825 break;
1826
1827 case nir_instr_type_ssa_undef:
1828 /* Spurious */
1829 break;
1830
1831 default:
1832 DBG("Unhandled instruction type\n");
1833 break;
1834 }
1835 }
1836
1837 /* Determine the actual hardware from the index based on the RA results or special values */
1838
1839 static int
1840 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1841 {
1842 if (reg >= SSA_FIXED_MINIMUM)
1843 return SSA_REG_FROM_FIXED(reg);
1844
1845 if (reg >= 0) {
1846 assert(reg < maxreg);
1847 int r = ra_get_node_reg(g, reg);
1848 ctx->work_registers = MAX2(ctx->work_registers, r);
1849 return r;
1850 }
1851
1852 switch (reg) {
1853 /* fmov style unused */
1854 case SSA_UNUSED_0:
1855 return REGISTER_UNUSED;
1856
1857 /* lut style unused */
1858 case SSA_UNUSED_1:
1859 return REGISTER_UNUSED;
1860
1861 default:
1862 DBG("Unknown SSA register alias %d\n", reg);
1863 assert(0);
1864 return 31;
1865 }
1866 }
1867
1868 static unsigned int
1869 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1870 {
1871 /* Choose the first available register to minimise reported register pressure */
1872
1873 for (int i = 0; i < 16; ++i) {
1874 if (BITSET_TEST(regs, i)) {
1875 return i;
1876 }
1877 }
1878
1879 assert(0);
1880 return 0;
1881 }
1882
1883 static bool
1884 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1885 {
1886 if (ins->ssa_args.src0 == src) return true;
1887 if (ins->ssa_args.src1 == src) return true;
1888
1889 return false;
1890 }
1891
1892 /* Determine if a variable is live in the successors of a block */
1893 static bool
1894 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1895 {
1896 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1897 midgard_block *succ = bl->successors[i];
1898
1899 /* If we already visited, the value we're seeking
1900 * isn't down this path (or we would have short
1901 * circuited */
1902
1903 if (succ->visited) continue;
1904
1905 /* Otherwise (it's visited *now*), check the block */
1906
1907 succ->visited = true;
1908
1909 mir_foreach_instr_in_block(succ, ins) {
1910 if (midgard_is_live_in_instr(ins, src))
1911 return true;
1912 }
1913
1914 /* ...and also, check *its* successors */
1915 if (is_live_after_successors(ctx, succ, src))
1916 return true;
1917
1918 }
1919
1920 /* Welp. We're really not live. */
1921
1922 return false;
1923 }
1924
1925 static bool
1926 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1927 {
1928 /* Check the rest of the block for liveness */
1929
1930 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1931 if (midgard_is_live_in_instr(ins, src))
1932 return true;
1933 }
1934
1935 /* Check the rest of the blocks for liveness recursively */
1936
1937 bool succ = is_live_after_successors(ctx, block, src);
1938
1939 mir_foreach_block(ctx, block) {
1940 block->visited = false;
1941 }
1942
1943 return succ;
1944 }
1945
1946 static void
1947 allocate_registers(compiler_context *ctx)
1948 {
1949 /* First, initialize the RA */
1950 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1951
1952 /* Create a primary (general purpose) class, as well as special purpose
1953 * pipeline register classes */
1954
1955 int primary_class = ra_alloc_reg_class(regs);
1956 int varying_class = ra_alloc_reg_class(regs);
1957
1958 /* Add the full set of work registers */
1959 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1960 for (int i = 0; i < work_count; ++i)
1961 ra_class_add_reg(regs, primary_class, i);
1962
1963 /* Add special registers */
1964 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1965 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1966
1967 /* We're done setting up */
1968 ra_set_finalize(regs, NULL);
1969
1970 /* Transform the MIR into squeezed index form */
1971 mir_foreach_block(ctx, block) {
1972 mir_foreach_instr_in_block(block, ins) {
1973 if (ins->compact_branch) continue;
1974
1975 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1976 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1977 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1978 }
1979 if (midgard_debug & MIDGARD_DBG_SHADERS)
1980 print_mir_block(block);
1981 }
1982
1983 /* Let's actually do register allocation */
1984 int nodes = ctx->temp_count;
1985 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1986
1987 /* Set everything to the work register class, unless it has somewhere
1988 * special to go */
1989
1990 mir_foreach_block(ctx, block) {
1991 mir_foreach_instr_in_block(block, ins) {
1992 if (ins->compact_branch) continue;
1993
1994 if (ins->ssa_args.dest < 0) continue;
1995
1996 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1997
1998 int class = primary_class;
1999
2000 ra_set_node_class(g, ins->ssa_args.dest, class);
2001 }
2002 }
2003
2004 for (int index = 0; index <= ctx->max_hash; ++index) {
2005 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2006
2007 if (temp) {
2008 unsigned reg = temp - 1;
2009 int t = find_or_allocate_temp(ctx, index);
2010 ra_set_node_reg(g, t, reg);
2011 }
2012 }
2013
2014 /* Determine liveness */
2015
2016 int *live_start = malloc(nodes * sizeof(int));
2017 int *live_end = malloc(nodes * sizeof(int));
2018
2019 /* Initialize as non-existent */
2020
2021 for (int i = 0; i < nodes; ++i) {
2022 live_start[i] = live_end[i] = -1;
2023 }
2024
2025 int d = 0;
2026
2027 mir_foreach_block(ctx, block) {
2028 mir_foreach_instr_in_block(block, ins) {
2029 if (ins->compact_branch) continue;
2030
2031 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2032 /* If this destination is not yet live, it is now since we just wrote it */
2033
2034 int dest = ins->ssa_args.dest;
2035
2036 if (live_start[dest] == -1)
2037 live_start[dest] = d;
2038 }
2039
2040 /* Since we just used a source, the source might be
2041 * dead now. Scan the rest of the block for
2042 * invocations, and if there are none, the source dies
2043 * */
2044
2045 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2046
2047 for (int src = 0; src < 2; ++src) {
2048 int s = sources[src];
2049
2050 if (s < 0) continue;
2051
2052 if (s >= SSA_FIXED_MINIMUM) continue;
2053
2054 if (!is_live_after(ctx, block, ins, s)) {
2055 live_end[s] = d;
2056 }
2057 }
2058
2059 ++d;
2060 }
2061 }
2062
2063 /* If a node still hasn't been killed, kill it now */
2064
2065 for (int i = 0; i < nodes; ++i) {
2066 /* live_start == -1 most likely indicates a pinned output */
2067
2068 if (live_end[i] == -1)
2069 live_end[i] = d;
2070 }
2071
2072 /* Setup interference between nodes that are live at the same time */
2073
2074 for (int i = 0; i < nodes; ++i) {
2075 for (int j = i + 1; j < nodes; ++j) {
2076 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2077 ra_add_node_interference(g, i, j);
2078 }
2079 }
2080
2081 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2082
2083 if (!ra_allocate(g)) {
2084 DBG("Error allocating registers\n");
2085 assert(0);
2086 }
2087
2088 /* Cleanup */
2089 free(live_start);
2090 free(live_end);
2091
2092 mir_foreach_block(ctx, block) {
2093 mir_foreach_instr_in_block(block, ins) {
2094 if (ins->compact_branch) continue;
2095
2096 ssa_args args = ins->ssa_args;
2097
2098 switch (ins->type) {
2099 case TAG_ALU_4:
2100 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2101
2102 ins->registers.src2_imm = args.inline_constant;
2103
2104 if (args.inline_constant) {
2105 /* Encode inline 16-bit constant as a vector by default */
2106
2107 ins->registers.src2_reg = ins->inline_constant >> 11;
2108
2109 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2110
2111 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2112 ins->alu.src2 = imm << 2;
2113 } else {
2114 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2115 }
2116
2117 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2118
2119 break;
2120
2121 case TAG_LOAD_STORE_4: {
2122 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2123 /* TODO: use ssa_args for store_vary */
2124 ins->load_store.reg = 0;
2125 } else {
2126 bool has_dest = args.dest >= 0;
2127 int ssa_arg = has_dest ? args.dest : args.src0;
2128
2129 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2130 }
2131
2132 break;
2133 }
2134
2135 default:
2136 break;
2137 }
2138 }
2139 }
2140 }
2141
2142 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2143 * use scalar ALU instructions, for functional or performance reasons. To do
2144 * this, we just demote vector ALU payloads to scalar. */
2145
2146 static int
2147 component_from_mask(unsigned mask)
2148 {
2149 for (int c = 0; c < 4; ++c) {
2150 if (mask & (3 << (2 * c)))
2151 return c;
2152 }
2153
2154 assert(0);
2155 return 0;
2156 }
2157
2158 static bool
2159 is_single_component_mask(unsigned mask)
2160 {
2161 int components = 0;
2162
2163 for (int c = 0; c < 4; ++c)
2164 if (mask & (3 << (2 * c)))
2165 components++;
2166
2167 return components == 1;
2168 }
2169
2170 /* Create a mask of accessed components from a swizzle to figure out vector
2171 * dependencies */
2172
2173 static unsigned
2174 swizzle_to_access_mask(unsigned swizzle)
2175 {
2176 unsigned component_mask = 0;
2177
2178 for (int i = 0; i < 4; ++i) {
2179 unsigned c = (swizzle >> (2 * i)) & 3;
2180 component_mask |= (1 << c);
2181 }
2182
2183 return component_mask;
2184 }
2185
2186 static unsigned
2187 vector_to_scalar_source(unsigned u)
2188 {
2189 midgard_vector_alu_src v;
2190 memcpy(&v, &u, sizeof(v));
2191
2192 midgard_scalar_alu_src s = {
2193 .abs = v.abs,
2194 .negate = v.negate,
2195 .full = !v.half,
2196 .component = (v.swizzle & 3) << 1
2197 };
2198
2199 unsigned o;
2200 memcpy(&o, &s, sizeof(s));
2201
2202 return o & ((1 << 6) - 1);
2203 }
2204
2205 static midgard_scalar_alu
2206 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2207 {
2208 /* The output component is from the mask */
2209 midgard_scalar_alu s = {
2210 .op = v.op,
2211 .src1 = vector_to_scalar_source(v.src1),
2212 .src2 = vector_to_scalar_source(v.src2),
2213 .unknown = 0,
2214 .outmod = v.outmod,
2215 .output_full = 1, /* TODO: Half */
2216 .output_component = component_from_mask(v.mask) << 1,
2217 };
2218
2219 /* Inline constant is passed along rather than trying to extract it
2220 * from v */
2221
2222 if (ins->ssa_args.inline_constant) {
2223 uint16_t imm = 0;
2224 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2225 imm |= (lower_11 >> 9) & 3;
2226 imm |= (lower_11 >> 6) & 4;
2227 imm |= (lower_11 >> 2) & 0x38;
2228 imm |= (lower_11 & 63) << 6;
2229
2230 s.src2 = imm;
2231 }
2232
2233 return s;
2234 }
2235
2236 /* Midgard prefetches instruction types, so during emission we need to
2237 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2238 * if this is the second to last and the last is an ALU, then it's also 1... */
2239
2240 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2241 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2242
2243 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2244 bytes_emitted += sizeof(type)
2245
2246 static void
2247 emit_binary_vector_instruction(midgard_instruction *ains,
2248 uint16_t *register_words, int *register_words_count,
2249 uint64_t *body_words, size_t *body_size, int *body_words_count,
2250 size_t *bytes_emitted)
2251 {
2252 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2253 *bytes_emitted += sizeof(midgard_reg_info);
2254
2255 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2256 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2257 *bytes_emitted += sizeof(midgard_vector_alu);
2258 }
2259
2260 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2261 * mind that we are a vector architecture and we can write to different
2262 * components simultaneously */
2263
2264 static bool
2265 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2266 {
2267 /* Each instruction reads some registers and writes to a register. See
2268 * where the first writes */
2269
2270 /* Figure out where exactly we wrote to */
2271 int source = first->ssa_args.dest;
2272 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2273
2274 /* As long as the second doesn't read from the first, we're okay */
2275 if (second->ssa_args.src0 == source) {
2276 if (first->type == TAG_ALU_4) {
2277 /* Figure out which components we just read from */
2278
2279 int q = second->alu.src1;
2280 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2281
2282 /* Check if there are components in common, and fail if so */
2283 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2284 return false;
2285 } else
2286 return false;
2287
2288 }
2289
2290 if (second->ssa_args.src1 == source)
2291 return false;
2292
2293 /* Otherwise, it's safe in that regard. Another data hazard is both
2294 * writing to the same place, of course */
2295
2296 if (second->ssa_args.dest == source) {
2297 /* ...but only if the components overlap */
2298 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2299
2300 if (dest_mask & source_mask)
2301 return false;
2302 }
2303
2304 /* ...That's it */
2305 return true;
2306 }
2307
2308 static bool
2309 midgard_has_hazard(
2310 midgard_instruction **segment, unsigned segment_size,
2311 midgard_instruction *ains)
2312 {
2313 for (int s = 0; s < segment_size; ++s)
2314 if (!can_run_concurrent_ssa(segment[s], ains))
2315 return true;
2316
2317 return false;
2318
2319
2320 }
2321
2322 /* Schedules, but does not emit, a single basic block. After scheduling, the
2323 * final tag and size of the block are known, which are necessary for branching
2324 * */
2325
2326 static midgard_bundle
2327 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2328 {
2329 int instructions_emitted = 0, instructions_consumed = -1;
2330 midgard_bundle bundle = { 0 };
2331
2332 uint8_t tag = ins->type;
2333
2334 /* Default to the instruction's tag */
2335 bundle.tag = tag;
2336
2337 switch (ins->type) {
2338 case TAG_ALU_4: {
2339 uint32_t control = 0;
2340 size_t bytes_emitted = sizeof(control);
2341
2342 /* TODO: Constant combining */
2343 int index = 0, last_unit = 0;
2344
2345 /* Previous instructions, for the purpose of parallelism */
2346 midgard_instruction *segment[4] = {0};
2347 int segment_size = 0;
2348
2349 instructions_emitted = -1;
2350 midgard_instruction *pins = ins;
2351
2352 for (;;) {
2353 midgard_instruction *ains = pins;
2354
2355 /* Advance instruction pointer */
2356 if (index) {
2357 ains = mir_next_op(pins);
2358 pins = ains;
2359 }
2360
2361 /* Out-of-work condition */
2362 if ((struct list_head *) ains == &block->instructions)
2363 break;
2364
2365 /* Ensure that the chain can continue */
2366 if (ains->type != TAG_ALU_4) break;
2367
2368 /* According to the presentation "The ARM
2369 * Mali-T880 Mobile GPU" from HotChips 27,
2370 * there are two pipeline stages. Branching
2371 * position determined experimentally. Lines
2372 * are executed in parallel:
2373 *
2374 * [ VMUL ] [ SADD ]
2375 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2376 *
2377 * Verify that there are no ordering dependencies here.
2378 *
2379 * TODO: Allow for parallelism!!!
2380 */
2381
2382 /* Pick a unit for it if it doesn't force a particular unit */
2383
2384 int unit = ains->unit;
2385
2386 if (!unit) {
2387 int op = ains->alu.op;
2388 int units = alu_opcode_props[op];
2389
2390 /* TODO: Promotion of scalars to vectors */
2391 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2392
2393 if (!vector)
2394 assert(units & UNITS_SCALAR);
2395
2396 if (vector) {
2397 if (last_unit >= UNIT_VADD) {
2398 if (units & UNIT_VLUT)
2399 unit = UNIT_VLUT;
2400 else
2401 break;
2402 } else {
2403 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2404 unit = UNIT_VMUL;
2405 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2406 unit = UNIT_VADD;
2407 else if (units & UNIT_VLUT)
2408 unit = UNIT_VLUT;
2409 else
2410 break;
2411 }
2412 } else {
2413 if (last_unit >= UNIT_VADD) {
2414 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2415 unit = UNIT_SMUL;
2416 else if (units & UNIT_VLUT)
2417 unit = UNIT_VLUT;
2418 else
2419 break;
2420 } else {
2421 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2422 unit = UNIT_SADD;
2423 else if (units & UNIT_SMUL)
2424 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2425 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2426 unit = UNIT_VADD;
2427 else
2428 break;
2429 }
2430 }
2431
2432 assert(unit & units);
2433 }
2434
2435 /* Late unit check, this time for encoding (not parallelism) */
2436 if (unit <= last_unit) break;
2437
2438 /* Clear the segment */
2439 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2440 segment_size = 0;
2441
2442 if (midgard_has_hazard(segment, segment_size, ains))
2443 break;
2444
2445 /* We're good to go -- emit the instruction */
2446 ains->unit = unit;
2447
2448 segment[segment_size++] = ains;
2449
2450 /* Only one set of embedded constants per
2451 * bundle possible; if we have more, we must
2452 * break the chain early, unfortunately */
2453
2454 if (ains->has_constants) {
2455 if (bundle.has_embedded_constants) {
2456 /* ...but if there are already
2457 * constants but these are the
2458 * *same* constants, we let it
2459 * through */
2460
2461 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2462 break;
2463 } else {
2464 bundle.has_embedded_constants = true;
2465 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2466
2467 /* If this is a blend shader special constant, track it for patching */
2468 if (ains->has_blend_constant)
2469 bundle.has_blend_constant = true;
2470 }
2471 }
2472
2473 if (ains->unit & UNITS_ANY_VECTOR) {
2474 emit_binary_vector_instruction(ains, bundle.register_words,
2475 &bundle.register_words_count, bundle.body_words,
2476 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2477 } else if (ains->compact_branch) {
2478 /* All of r0 has to be written out
2479 * along with the branch writeout.
2480 * (slow!) */
2481
2482 if (ains->writeout) {
2483 if (index == 0) {
2484 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2485 ins.unit = UNIT_VMUL;
2486
2487 control |= ins.unit;
2488
2489 emit_binary_vector_instruction(&ins, bundle.register_words,
2490 &bundle.register_words_count, bundle.body_words,
2491 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2492 } else {
2493 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2494 bool written_late = false;
2495 bool components[4] = { 0 };
2496 uint16_t register_dep_mask = 0;
2497 uint16_t written_mask = 0;
2498
2499 midgard_instruction *qins = ins;
2500 for (int t = 0; t < index; ++t) {
2501 if (qins->registers.out_reg != 0) {
2502 /* Mark down writes */
2503
2504 written_mask |= (1 << qins->registers.out_reg);
2505 } else {
2506 /* Mark down the register dependencies for errata check */
2507
2508 if (qins->registers.src1_reg < 16)
2509 register_dep_mask |= (1 << qins->registers.src1_reg);
2510
2511 if (qins->registers.src2_reg < 16)
2512 register_dep_mask |= (1 << qins->registers.src2_reg);
2513
2514 int mask = qins->alu.mask;
2515
2516 for (int c = 0; c < 4; ++c)
2517 if (mask & (0x3 << (2 * c)))
2518 components[c] = true;
2519
2520 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2521
2522 if (qins->unit == UNIT_VLUT)
2523 written_late = true;
2524 }
2525
2526 /* Advance instruction pointer */
2527 qins = mir_next_op(qins);
2528 }
2529
2530
2531 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2532 if (register_dep_mask & written_mask) {
2533 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2534 break;
2535 }
2536
2537 if (written_late)
2538 break;
2539
2540 /* If even a single component is not written, break it up (conservative check). */
2541 bool breakup = false;
2542
2543 for (int c = 0; c < 4; ++c)
2544 if (!components[c])
2545 breakup = true;
2546
2547 if (breakup)
2548 break;
2549
2550 /* Otherwise, we're free to proceed */
2551 }
2552 }
2553
2554 if (ains->unit == ALU_ENAB_BRANCH) {
2555 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2556 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2557 bytes_emitted += sizeof(midgard_branch_extended);
2558 } else {
2559 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2560 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2561 bytes_emitted += sizeof(ains->br_compact);
2562 }
2563 } else {
2564 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2565 bytes_emitted += sizeof(midgard_reg_info);
2566
2567 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2568 bundle.body_words_count++;
2569 bytes_emitted += sizeof(midgard_scalar_alu);
2570 }
2571
2572 /* Defer marking until after writing to allow for break */
2573 control |= ains->unit;
2574 last_unit = ains->unit;
2575 ++instructions_emitted;
2576 ++index;
2577 }
2578
2579 /* Bubble up the number of instructions for skipping */
2580 instructions_consumed = index - 1;
2581
2582 int padding = 0;
2583
2584 /* Pad ALU op to nearest word */
2585
2586 if (bytes_emitted & 15) {
2587 padding = 16 - (bytes_emitted & 15);
2588 bytes_emitted += padding;
2589 }
2590
2591 /* Constants must always be quadwords */
2592 if (bundle.has_embedded_constants)
2593 bytes_emitted += 16;
2594
2595 /* Size ALU instruction for tag */
2596 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2597 bundle.padding = padding;
2598 bundle.control = bundle.tag | control;
2599
2600 break;
2601 }
2602
2603 case TAG_LOAD_STORE_4: {
2604 /* Load store instructions have two words at once. If
2605 * we only have one queued up, we need to NOP pad.
2606 * Otherwise, we store both in succession to save space
2607 * and cycles -- letting them go in parallel -- skip
2608 * the next. The usefulness of this optimisation is
2609 * greatly dependent on the quality of the instruction
2610 * scheduler.
2611 */
2612
2613 midgard_instruction *next_op = mir_next_op(ins);
2614
2615 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2616 /* As the two operate concurrently, make sure
2617 * they are not dependent */
2618
2619 if (can_run_concurrent_ssa(ins, next_op) || true) {
2620 /* Skip ahead, since it's redundant with the pair */
2621 instructions_consumed = 1 + (instructions_emitted++);
2622 }
2623 }
2624
2625 break;
2626 }
2627
2628 default:
2629 /* Texture ops default to single-op-per-bundle scheduling */
2630 break;
2631 }
2632
2633 /* Copy the instructions into the bundle */
2634 bundle.instruction_count = instructions_emitted + 1;
2635
2636 int used_idx = 0;
2637
2638 midgard_instruction *uins = ins;
2639 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2640 bundle.instructions[used_idx++] = *uins;
2641 uins = mir_next_op(uins);
2642 }
2643
2644 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2645
2646 return bundle;
2647 }
2648
2649 static int
2650 quadword_size(int tag)
2651 {
2652 switch (tag) {
2653 case TAG_ALU_4:
2654 return 1;
2655
2656 case TAG_ALU_8:
2657 return 2;
2658
2659 case TAG_ALU_12:
2660 return 3;
2661
2662 case TAG_ALU_16:
2663 return 4;
2664
2665 case TAG_LOAD_STORE_4:
2666 return 1;
2667
2668 case TAG_TEXTURE_4:
2669 return 1;
2670
2671 default:
2672 assert(0);
2673 return 0;
2674 }
2675 }
2676
2677 /* Schedule a single block by iterating its instruction to create bundles.
2678 * While we go, tally about the bundle sizes to compute the block size. */
2679
2680 static void
2681 schedule_block(compiler_context *ctx, midgard_block *block)
2682 {
2683 util_dynarray_init(&block->bundles, NULL);
2684
2685 block->quadword_count = 0;
2686
2687 mir_foreach_instr_in_block(block, ins) {
2688 int skip;
2689 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2690 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2691
2692 if (bundle.has_blend_constant) {
2693 /* TODO: Multiblock? */
2694 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2695 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2696 }
2697
2698 while(skip--)
2699 ins = mir_next_op(ins);
2700
2701 block->quadword_count += quadword_size(bundle.tag);
2702 }
2703
2704 block->is_scheduled = true;
2705 }
2706
2707 static void
2708 schedule_program(compiler_context *ctx)
2709 {
2710 allocate_registers(ctx);
2711
2712 mir_foreach_block(ctx, block) {
2713 schedule_block(ctx, block);
2714 }
2715 }
2716
2717 /* After everything is scheduled, emit whole bundles at a time */
2718
2719 static void
2720 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2721 {
2722 int lookahead = next_tag << 4;
2723
2724 switch (bundle->tag) {
2725 case TAG_ALU_4:
2726 case TAG_ALU_8:
2727 case TAG_ALU_12:
2728 case TAG_ALU_16: {
2729 /* Actually emit each component */
2730 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2731
2732 for (int i = 0; i < bundle->register_words_count; ++i)
2733 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2734
2735 /* Emit body words based on the instructions bundled */
2736 for (int i = 0; i < bundle->instruction_count; ++i) {
2737 midgard_instruction *ins = &bundle->instructions[i];
2738
2739 if (ins->unit & UNITS_ANY_VECTOR) {
2740 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2741 } else if (ins->compact_branch) {
2742 /* Dummy move, XXX DRY */
2743 if ((i == 0) && ins->writeout) {
2744 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2745 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2746 }
2747
2748 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2749 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2750 } else {
2751 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2752 }
2753 } else {
2754 /* Scalar */
2755 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2756 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2757 }
2758 }
2759
2760 /* Emit padding (all zero) */
2761 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2762
2763 /* Tack on constants */
2764
2765 if (bundle->has_embedded_constants) {
2766 util_dynarray_append(emission, float, bundle->constants[0]);
2767 util_dynarray_append(emission, float, bundle->constants[1]);
2768 util_dynarray_append(emission, float, bundle->constants[2]);
2769 util_dynarray_append(emission, float, bundle->constants[3]);
2770 }
2771
2772 break;
2773 }
2774
2775 case TAG_LOAD_STORE_4: {
2776 /* One or two composing instructions */
2777
2778 uint64_t current64, next64 = LDST_NOP;
2779
2780 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2781
2782 if (bundle->instruction_count == 2)
2783 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2784
2785 midgard_load_store instruction = {
2786 .type = bundle->tag,
2787 .next_type = next_tag,
2788 .word1 = current64,
2789 .word2 = next64
2790 };
2791
2792 util_dynarray_append(emission, midgard_load_store, instruction);
2793
2794 break;
2795 }
2796
2797 case TAG_TEXTURE_4: {
2798 /* Texture instructions are easy, since there is no
2799 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2800
2801 midgard_instruction *ins = &bundle->instructions[0];
2802
2803 ins->texture.type = TAG_TEXTURE_4;
2804 ins->texture.next_type = next_tag;
2805
2806 ctx->texture_op_count--;
2807
2808 if (!ctx->texture_op_count) {
2809 ins->texture.cont = 0;
2810 ins->texture.last = 1;
2811 }
2812
2813 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2814 break;
2815 }
2816
2817 default:
2818 DBG("Unknown midgard instruction type\n");
2819 assert(0);
2820 break;
2821 }
2822 }
2823
2824
2825 /* ALU instructions can inline or embed constants, which decreases register
2826 * pressure and saves space. */
2827
2828 #define CONDITIONAL_ATTACH(src) { \
2829 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2830 \
2831 if (entry) { \
2832 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2833 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2834 } \
2835 }
2836
2837 static void
2838 inline_alu_constants(compiler_context *ctx)
2839 {
2840 mir_foreach_instr(ctx, alu) {
2841 /* Other instructions cannot inline constants */
2842 if (alu->type != TAG_ALU_4) continue;
2843
2844 /* If there is already a constant here, we can do nothing */
2845 if (alu->has_constants) continue;
2846
2847 /* It makes no sense to inline constants on a branch */
2848 if (alu->compact_branch || alu->prepacked_branch) continue;
2849
2850 CONDITIONAL_ATTACH(src0);
2851
2852 if (!alu->has_constants) {
2853 CONDITIONAL_ATTACH(src1)
2854 } else if (!alu->inline_constant) {
2855 /* Corner case: _two_ vec4 constants, for instance with a
2856 * csel. For this case, we can only use a constant
2857 * register for one, we'll have to emit a move for the
2858 * other. Note, if both arguments are constants, then
2859 * necessarily neither argument depends on the value of
2860 * any particular register. As the destination register
2861 * will be wiped, that means we can spill the constant
2862 * to the destination register.
2863 */
2864
2865 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2866 unsigned scratch = alu->ssa_args.dest;
2867
2868 if (entry) {
2869 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2870 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2871
2872 /* Force a break XXX Defer r31 writes */
2873 ins.unit = UNIT_VLUT;
2874
2875 /* Set the source */
2876 alu->ssa_args.src1 = scratch;
2877
2878 /* Inject us -before- the last instruction which set r31 */
2879 mir_insert_instruction_before(mir_prev_op(alu), ins);
2880 }
2881 }
2882 }
2883 }
2884
2885 /* Midgard supports two types of constants, embedded constants (128-bit) and
2886 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2887 * constants can be demoted to inline constants, for space savings and
2888 * sometimes a performance boost */
2889
2890 static void
2891 embedded_to_inline_constant(compiler_context *ctx)
2892 {
2893 mir_foreach_instr(ctx, ins) {
2894 if (!ins->has_constants) continue;
2895
2896 if (ins->ssa_args.inline_constant) continue;
2897
2898 /* Blend constants must not be inlined by definition */
2899 if (ins->has_blend_constant) continue;
2900
2901 /* src1 cannot be an inline constant due to encoding
2902 * restrictions. So, if possible we try to flip the arguments
2903 * in that case */
2904
2905 int op = ins->alu.op;
2906
2907 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2908 /* Flip based on op. Fallthrough intentional */
2909
2910 switch (op) {
2911 /* These ops require an operational change to flip their arguments TODO */
2912 case midgard_alu_op_flt:
2913 case midgard_alu_op_fle:
2914 case midgard_alu_op_ilt:
2915 case midgard_alu_op_ile:
2916 case midgard_alu_op_fcsel:
2917 case midgard_alu_op_icsel:
2918 case midgard_alu_op_isub:
2919 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2920 break;
2921
2922 /* These ops are commutative and Just Flip */
2923 case midgard_alu_op_fne:
2924 case midgard_alu_op_fadd:
2925 case midgard_alu_op_fmul:
2926 case midgard_alu_op_fmin:
2927 case midgard_alu_op_fmax:
2928 case midgard_alu_op_iadd:
2929 case midgard_alu_op_imul:
2930 case midgard_alu_op_feq:
2931 case midgard_alu_op_ieq:
2932 case midgard_alu_op_ine:
2933 case midgard_alu_op_iand:
2934 case midgard_alu_op_ior:
2935 case midgard_alu_op_ixor:
2936 /* Flip the SSA numbers */
2937 ins->ssa_args.src0 = ins->ssa_args.src1;
2938 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2939
2940 /* And flip the modifiers */
2941
2942 unsigned src_temp;
2943
2944 src_temp = ins->alu.src2;
2945 ins->alu.src2 = ins->alu.src1;
2946 ins->alu.src1 = src_temp;
2947
2948 default:
2949 break;
2950 }
2951 }
2952
2953 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2954 /* Extract the source information */
2955
2956 midgard_vector_alu_src *src;
2957 int q = ins->alu.src2;
2958 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2959 src = m;
2960
2961 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2962 int component = src->swizzle & 3;
2963
2964 /* Scale constant appropriately, if we can legally */
2965 uint16_t scaled_constant = 0;
2966
2967 /* XXX: Check legality */
2968 if (midgard_is_integer_op(op)) {
2969 /* TODO: Inline integer */
2970 continue;
2971
2972 unsigned int *iconstants = (unsigned int *) ins->constants;
2973 scaled_constant = (uint16_t) iconstants[component];
2974
2975 /* Constant overflow after resize */
2976 if (scaled_constant != iconstants[component])
2977 continue;
2978 } else {
2979 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2980 }
2981
2982 /* We don't know how to handle these with a constant */
2983
2984 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2985 DBG("Bailing inline constant...\n");
2986 continue;
2987 }
2988
2989 /* Make sure that the constant is not itself a
2990 * vector by checking if all accessed values
2991 * (by the swizzle) are the same. */
2992
2993 uint32_t *cons = (uint32_t *) ins->constants;
2994 uint32_t value = cons[component];
2995
2996 bool is_vector = false;
2997 unsigned mask = effective_writemask(&ins->alu);
2998
2999 for (int c = 1; c < 4; ++c) {
3000 /* We only care if this component is actually used */
3001 if (!(mask & (1 << c)))
3002 continue;
3003
3004 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3005
3006 if (test != value) {
3007 is_vector = true;
3008 break;
3009 }
3010 }
3011
3012 if (is_vector)
3013 continue;
3014
3015 /* Get rid of the embedded constant */
3016 ins->has_constants = false;
3017 ins->ssa_args.src1 = SSA_UNUSED_0;
3018 ins->ssa_args.inline_constant = true;
3019 ins->inline_constant = scaled_constant;
3020 }
3021 }
3022 }
3023
3024 /* Map normal SSA sources to other SSA sources / fixed registers (like
3025 * uniforms) */
3026
3027 static void
3028 map_ssa_to_alias(compiler_context *ctx, int *ref)
3029 {
3030 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3031
3032 if (alias) {
3033 /* Remove entry in leftovers to avoid a redunant fmov */
3034
3035 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3036
3037 if (leftover)
3038 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3039
3040 /* Assign the alias map */
3041 *ref = alias - 1;
3042 return;
3043 }
3044 }
3045
3046 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3047 * texture pipeline */
3048
3049 static void
3050 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3051 {
3052 mir_foreach_instr_in_block_safe(block, ins) {
3053 if (ins->type != TAG_ALU_4) continue;
3054 if (ins->compact_branch) continue;
3055
3056 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3057 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3058 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3059
3060 mir_remove_instruction(ins);
3061 }
3062 }
3063
3064 /* The following passes reorder MIR instructions to enable better scheduling */
3065
3066 static void
3067 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3068 {
3069 mir_foreach_instr_in_block_safe(block, ins) {
3070 if (ins->type != TAG_LOAD_STORE_4) continue;
3071
3072 /* We've found a load/store op. Check if next is also load/store. */
3073 midgard_instruction *next_op = mir_next_op(ins);
3074 if (&next_op->link != &block->instructions) {
3075 if (next_op->type == TAG_LOAD_STORE_4) {
3076 /* If so, we're done since we're a pair */
3077 ins = mir_next_op(ins);
3078 continue;
3079 }
3080
3081 /* Maximum search distance to pair, to avoid register pressure disasters */
3082 int search_distance = 8;
3083
3084 /* Otherwise, we have an orphaned load/store -- search for another load */
3085 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3086 /* Terminate search if necessary */
3087 if (!(search_distance--)) break;
3088
3089 if (c->type != TAG_LOAD_STORE_4) continue;
3090
3091 /* Stores cannot be reordered, since they have
3092 * dependencies. For the same reason, indirect
3093 * loads cannot be reordered as their index is
3094 * loaded in r27.w */
3095
3096 if (OP_IS_STORE(c->load_store.op)) continue;
3097
3098 /* It appears the 0x800 bit is set whenever a
3099 * load is direct, unset when it is indirect.
3100 * Skip indirect loads. */
3101
3102 if (!(c->load_store.unknown & 0x800)) continue;
3103
3104 /* We found one! Move it up to pair and remove it from the old location */
3105
3106 mir_insert_instruction_before(ins, *c);
3107 mir_remove_instruction(c);
3108
3109 break;
3110 }
3111 }
3112 }
3113 }
3114
3115 /* Emit varying stores late */
3116
3117 static void
3118 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3119 /* Iterate in reverse to get the final write, rather than the first */
3120
3121 mir_foreach_instr_in_block_safe_rev(block, ins) {
3122 /* Check if what we just wrote needs a store */
3123 int idx = ins->ssa_args.dest;
3124 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3125
3126 if (!varying) continue;
3127
3128 varying -= 1;
3129
3130 /* We need to store to the appropriate varying, so emit the
3131 * move/store */
3132
3133 /* TODO: Integrate with special purpose RA (and scheduler?) */
3134 bool high_varying_register = false;
3135
3136 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3137
3138 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3139 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3140
3141 mir_insert_instruction_before(mir_next_op(ins), st);
3142 mir_insert_instruction_before(mir_next_op(ins), mov);
3143
3144 /* We no longer need to store this varying */
3145 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3146 }
3147 }
3148
3149 /* If there are leftovers after the below pass, emit actual fmov
3150 * instructions for the slow-but-correct path */
3151
3152 static void
3153 emit_leftover_move(compiler_context *ctx)
3154 {
3155 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3156 int base = ((uintptr_t) leftover->key) - 1;
3157 int mapped = base;
3158
3159 map_ssa_to_alias(ctx, &mapped);
3160 EMIT(fmov, mapped, blank_alu_src, base);
3161 }
3162 }
3163
3164 static void
3165 actualise_ssa_to_alias(compiler_context *ctx)
3166 {
3167 mir_foreach_instr(ctx, ins) {
3168 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3169 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3170 }
3171
3172 emit_leftover_move(ctx);
3173 }
3174
3175 static void
3176 emit_fragment_epilogue(compiler_context *ctx)
3177 {
3178 /* Special case: writing out constants requires us to include the move
3179 * explicitly now, so shove it into r0 */
3180
3181 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3182
3183 if (constant_value) {
3184 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3185 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3186 emit_mir_instruction(ctx, ins);
3187 }
3188
3189 /* Perform the actual fragment writeout. We have two writeout/branch
3190 * instructions, forming a loop until writeout is successful as per the
3191 * docs. TODO: gl_FragDepth */
3192
3193 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3194 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3195 }
3196
3197 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3198 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3199 * with the int8 analogue to the fragment epilogue */
3200
3201 static void
3202 emit_blend_epilogue(compiler_context *ctx)
3203 {
3204 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3205
3206 midgard_instruction scale = {
3207 .type = TAG_ALU_4,
3208 .unit = UNIT_VMUL,
3209 .inline_constant = _mesa_float_to_half(255.0),
3210 .ssa_args = {
3211 .src0 = SSA_FIXED_REGISTER(0),
3212 .src1 = SSA_UNUSED_0,
3213 .dest = SSA_FIXED_REGISTER(24),
3214 .inline_constant = true
3215 },
3216 .alu = {
3217 .op = midgard_alu_op_fmul,
3218 .reg_mode = midgard_reg_mode_full,
3219 .dest_override = midgard_dest_override_lower,
3220 .mask = 0xFF,
3221 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3222 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3223 }
3224 };
3225
3226 emit_mir_instruction(ctx, scale);
3227
3228 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3229
3230 midgard_vector_alu_src alu_src = blank_alu_src;
3231 alu_src.half = true;
3232
3233 midgard_instruction f2u8 = {
3234 .type = TAG_ALU_4,
3235 .ssa_args = {
3236 .src0 = SSA_FIXED_REGISTER(24),
3237 .src1 = SSA_UNUSED_0,
3238 .dest = SSA_FIXED_REGISTER(0),
3239 .inline_constant = true
3240 },
3241 .alu = {
3242 .op = midgard_alu_op_f2u8,
3243 .reg_mode = midgard_reg_mode_half,
3244 .dest_override = midgard_dest_override_lower,
3245 .outmod = midgard_outmod_pos,
3246 .mask = 0xF,
3247 .src1 = vector_alu_srco_unsigned(alu_src),
3248 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3249 }
3250 };
3251
3252 emit_mir_instruction(ctx, f2u8);
3253
3254 /* vmul.imov.quarter r0, r0, r0 */
3255
3256 midgard_instruction imov_8 = {
3257 .type = TAG_ALU_4,
3258 .ssa_args = {
3259 .src0 = SSA_UNUSED_1,
3260 .src1 = SSA_FIXED_REGISTER(0),
3261 .dest = SSA_FIXED_REGISTER(0),
3262 },
3263 .alu = {
3264 .op = midgard_alu_op_imov,
3265 .reg_mode = midgard_reg_mode_quarter,
3266 .dest_override = midgard_dest_override_none,
3267 .mask = 0xFF,
3268 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3269 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3270 }
3271 };
3272
3273 /* Emit branch epilogue with the 8-bit move as the source */
3274
3275 emit_mir_instruction(ctx, imov_8);
3276 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3277
3278 emit_mir_instruction(ctx, imov_8);
3279 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3280 }
3281
3282 static midgard_block *
3283 emit_block(compiler_context *ctx, nir_block *block)
3284 {
3285 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3286 list_addtail(&this_block->link, &ctx->blocks);
3287
3288 this_block->is_scheduled = false;
3289 ++ctx->block_count;
3290
3291 ctx->texture_index[0] = -1;
3292 ctx->texture_index[1] = -1;
3293
3294 /* Add us as a successor to the block we are following */
3295 if (ctx->current_block)
3296 midgard_block_add_successor(ctx->current_block, this_block);
3297
3298 /* Set up current block */
3299 list_inithead(&this_block->instructions);
3300 ctx->current_block = this_block;
3301
3302 nir_foreach_instr(instr, block) {
3303 emit_instr(ctx, instr);
3304 ++ctx->instruction_count;
3305 }
3306
3307 inline_alu_constants(ctx);
3308 embedded_to_inline_constant(ctx);
3309
3310 /* Perform heavylifting for aliasing */
3311 actualise_ssa_to_alias(ctx);
3312
3313 midgard_emit_store(ctx, this_block);
3314 midgard_pair_load_store(ctx, this_block);
3315
3316 /* Append fragment shader epilogue (value writeout) */
3317 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3318 if (block == nir_impl_last_block(ctx->func->impl)) {
3319 if (ctx->is_blend)
3320 emit_blend_epilogue(ctx);
3321 else
3322 emit_fragment_epilogue(ctx);
3323 }
3324 }
3325
3326 if (block == nir_start_block(ctx->func->impl))
3327 ctx->initial_block = this_block;
3328
3329 if (block == nir_impl_last_block(ctx->func->impl))
3330 ctx->final_block = this_block;
3331
3332 /* Allow the next control flow to access us retroactively, for
3333 * branching etc */
3334 ctx->current_block = this_block;
3335
3336 /* Document the fallthrough chain */
3337 ctx->previous_source_block = this_block;
3338
3339 return this_block;
3340 }
3341
3342 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3343
3344 static void
3345 emit_if(struct compiler_context *ctx, nir_if *nif)
3346 {
3347 /* Conditional branches expect the condition in r31.w; emit a move for
3348 * that in the _previous_ block (which is the current block). */
3349 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3350
3351 /* Speculatively emit the branch, but we can't fill it in until later */
3352 EMIT(branch, true, true);
3353 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3354
3355 /* Emit the two subblocks */
3356 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3357
3358 /* Emit a jump from the end of the then block to the end of the else */
3359 EMIT(branch, false, false);
3360 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3361
3362 /* Emit second block, and check if it's empty */
3363
3364 int else_idx = ctx->block_count;
3365 int count_in = ctx->instruction_count;
3366 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3367 int after_else_idx = ctx->block_count;
3368
3369 /* Now that we have the subblocks emitted, fix up the branches */
3370
3371 assert(then_block);
3372 assert(else_block);
3373
3374 if (ctx->instruction_count == count_in) {
3375 /* The else block is empty, so don't emit an exit jump */
3376 mir_remove_instruction(then_exit);
3377 then_branch->branch.target_block = after_else_idx;
3378 } else {
3379 then_branch->branch.target_block = else_idx;
3380 then_exit->branch.target_block = after_else_idx;
3381 }
3382 }
3383
3384 static void
3385 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3386 {
3387 /* Remember where we are */
3388 midgard_block *start_block = ctx->current_block;
3389
3390 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3391 * single current_loop variable, maybe we need a stack */
3392
3393 int loop_idx = ++ctx->current_loop;
3394
3395 /* Get index from before the body so we can loop back later */
3396 int start_idx = ctx->block_count;
3397
3398 /* Emit the body itself */
3399 emit_cf_list(ctx, &nloop->body);
3400
3401 /* Branch back to loop back */
3402 struct midgard_instruction br_back = v_branch(false, false);
3403 br_back.branch.target_block = start_idx;
3404 emit_mir_instruction(ctx, br_back);
3405
3406 /* Mark down that branch in the graph */
3407 midgard_block_add_successor(ctx->current_block, start_block);
3408
3409 /* Find the index of the block about to follow us (note: we don't add
3410 * one; blocks are 0-indexed so we get a fencepost problem) */
3411 int break_block_idx = ctx->block_count;
3412
3413 /* Fix up the break statements we emitted to point to the right place,
3414 * now that we can allocate a block number for them */
3415
3416 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3417 mir_foreach_instr_in_block(block, ins) {
3418 if (ins->type != TAG_ALU_4) continue;
3419 if (!ins->compact_branch) continue;
3420 if (ins->prepacked_branch) continue;
3421
3422 /* We found a branch -- check the type to see if we need to do anything */
3423 if (ins->branch.target_type != TARGET_BREAK) continue;
3424
3425 /* It's a break! Check if it's our break */
3426 if (ins->branch.target_break != loop_idx) continue;
3427
3428 /* Okay, cool, we're breaking out of this loop.
3429 * Rewrite from a break to a goto */
3430
3431 ins->branch.target_type = TARGET_GOTO;
3432 ins->branch.target_block = break_block_idx;
3433 }
3434 }
3435 }
3436
3437 static midgard_block *
3438 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3439 {
3440 midgard_block *start_block = NULL;
3441
3442 foreach_list_typed(nir_cf_node, node, node, list) {
3443 switch (node->type) {
3444 case nir_cf_node_block: {
3445 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3446
3447 if (!start_block)
3448 start_block = block;
3449
3450 break;
3451 }
3452
3453 case nir_cf_node_if:
3454 emit_if(ctx, nir_cf_node_as_if(node));
3455 break;
3456
3457 case nir_cf_node_loop:
3458 emit_loop(ctx, nir_cf_node_as_loop(node));
3459 break;
3460
3461 case nir_cf_node_function:
3462 assert(0);
3463 break;
3464 }
3465 }
3466
3467 return start_block;
3468 }
3469
3470 /* Due to lookahead, we need to report the first tag executed in the command
3471 * stream and in branch targets. An initial block might be empty, so iterate
3472 * until we find one that 'works' */
3473
3474 static unsigned
3475 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3476 {
3477 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3478
3479 unsigned first_tag = 0;
3480
3481 do {
3482 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3483
3484 if (initial_bundle) {
3485 first_tag = initial_bundle->tag;
3486 break;
3487 }
3488
3489 /* Initial block is empty, try the next block */
3490 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3491 } while(initial_block != NULL);
3492
3493 assert(first_tag);
3494 return first_tag;
3495 }
3496
3497 int
3498 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3499 {
3500 struct util_dynarray *compiled = &program->compiled;
3501
3502 midgard_debug = debug_get_option_midgard_debug();
3503
3504 compiler_context ictx = {
3505 .nir = nir,
3506 .stage = nir->info.stage,
3507
3508 .is_blend = is_blend,
3509 .blend_constant_offset = -1,
3510
3511 .alpha_ref = program->alpha_ref
3512 };
3513
3514 compiler_context *ctx = &ictx;
3515
3516 /* TODO: Decide this at runtime */
3517 ctx->uniform_cutoff = 8;
3518
3519 /* Assign var locations early, so the epilogue can use them if necessary */
3520
3521 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3522 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3523 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3524
3525 /* Initialize at a global (not block) level hash tables */
3526
3527 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3528 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3529 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3530 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3531 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3532 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3533 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3534
3535 /* Record the varying mapping for the command stream's bookkeeping */
3536
3537 struct exec_list *varyings =
3538 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3539
3540 nir_foreach_variable(var, varyings) {
3541 unsigned loc = var->data.driver_location;
3542 unsigned sz = glsl_type_size(var->type, FALSE);
3543
3544 for (int c = 0; c < sz; ++c) {
3545 program->varyings[loc + c] = var->data.location;
3546 }
3547 }
3548
3549 /* Lower gl_Position pre-optimisation */
3550
3551 if (ctx->stage == MESA_SHADER_VERTEX)
3552 NIR_PASS_V(nir, nir_lower_viewport_transform);
3553
3554 NIR_PASS_V(nir, nir_lower_var_copies);
3555 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3556 NIR_PASS_V(nir, nir_split_var_copies);
3557 NIR_PASS_V(nir, nir_lower_var_copies);
3558 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3559 NIR_PASS_V(nir, nir_lower_var_copies);
3560 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3561
3562 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3563
3564 /* Optimisation passes */
3565
3566 optimise_nir(nir);
3567
3568 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3569 nir_print_shader(nir, stdout);
3570 }
3571
3572 /* Assign sysvals and counts, now that we're sure
3573 * (post-optimisation) */
3574
3575 midgard_nir_assign_sysvals(ctx, nir);
3576
3577 program->uniform_count = nir->num_uniforms;
3578 program->sysval_count = ctx->sysval_count;
3579 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3580
3581 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3582 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3583
3584 nir_foreach_function(func, nir) {
3585 if (!func->impl)
3586 continue;
3587
3588 list_inithead(&ctx->blocks);
3589 ctx->block_count = 0;
3590 ctx->func = func;
3591
3592 emit_cf_list(ctx, &func->impl->body);
3593 emit_block(ctx, func->impl->end_block);
3594
3595 break; /* TODO: Multi-function shaders */
3596 }
3597
3598 util_dynarray_init(compiled, NULL);
3599
3600 /* Peephole optimizations */
3601
3602 mir_foreach_block(ctx, block) {
3603 midgard_opt_dead_code_eliminate(ctx, block);
3604 }
3605
3606 /* Schedule! */
3607 schedule_program(ctx);
3608
3609 /* Now that all the bundles are scheduled and we can calculate block
3610 * sizes, emit actual branch instructions rather than placeholders */
3611
3612 int br_block_idx = 0;
3613
3614 mir_foreach_block(ctx, block) {
3615 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3616 for (int c = 0; c < bundle->instruction_count; ++c) {
3617 midgard_instruction *ins = &bundle->instructions[c];
3618
3619 if (!midgard_is_branch_unit(ins->unit)) continue;
3620
3621 if (ins->prepacked_branch) continue;
3622
3623 /* Parse some basic branch info */
3624 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3625 bool is_conditional = ins->branch.conditional;
3626 bool is_inverted = ins->branch.invert_conditional;
3627 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3628
3629 /* Determine the block we're jumping to */
3630 int target_number = ins->branch.target_block;
3631
3632 /* Report the destination tag. Discards don't need this */
3633 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3634
3635 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3636 int quadword_offset = 0;
3637
3638 if (is_discard) {
3639 /* Jump to the end of the shader. We
3640 * need to include not only the
3641 * following blocks, but also the
3642 * contents of our current block (since
3643 * discard can come in the middle of
3644 * the block) */
3645
3646 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3647
3648 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3649 quadword_offset += quadword_size(bun->tag);
3650 }
3651
3652 mir_foreach_block_from(ctx, blk, b) {
3653 quadword_offset += b->quadword_count;
3654 }
3655
3656 } else if (target_number > br_block_idx) {
3657 /* Jump forward */
3658
3659 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3660 midgard_block *blk = mir_get_block(ctx, idx);
3661 assert(blk);
3662
3663 quadword_offset += blk->quadword_count;
3664 }
3665 } else {
3666 /* Jump backwards */
3667
3668 for (int idx = br_block_idx; idx >= target_number; --idx) {
3669 midgard_block *blk = mir_get_block(ctx, idx);
3670 assert(blk);
3671
3672 quadword_offset -= blk->quadword_count;
3673 }
3674 }
3675
3676 /* Unconditional extended branches (far jumps)
3677 * have issues, so we always use a conditional
3678 * branch, setting the condition to always for
3679 * unconditional. For compact unconditional
3680 * branches, cond isn't used so it doesn't
3681 * matter what we pick. */
3682
3683 midgard_condition cond =
3684 !is_conditional ? midgard_condition_always :
3685 is_inverted ? midgard_condition_false :
3686 midgard_condition_true;
3687
3688 midgard_jmp_writeout_op op =
3689 is_discard ? midgard_jmp_writeout_op_discard :
3690 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3691 midgard_jmp_writeout_op_branch_cond;
3692
3693 if (!is_compact) {
3694 midgard_branch_extended branch =
3695 midgard_create_branch_extended(
3696 cond, op,
3697 dest_tag,
3698 quadword_offset);
3699
3700 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3701 } else if (is_conditional || is_discard) {
3702 midgard_branch_cond branch = {
3703 .op = op,
3704 .dest_tag = dest_tag,
3705 .offset = quadword_offset,
3706 .cond = cond
3707 };
3708
3709 assert(branch.offset == quadword_offset);
3710
3711 memcpy(&ins->br_compact, &branch, sizeof(branch));
3712 } else {
3713 assert(op == midgard_jmp_writeout_op_branch_uncond);
3714
3715 midgard_branch_uncond branch = {
3716 .op = op,
3717 .dest_tag = dest_tag,
3718 .offset = quadword_offset,
3719 .unknown = 1
3720 };
3721
3722 assert(branch.offset == quadword_offset);
3723
3724 memcpy(&ins->br_compact, &branch, sizeof(branch));
3725 }
3726 }
3727 }
3728
3729 ++br_block_idx;
3730 }
3731
3732 /* Emit flat binary from the instruction arrays. Iterate each block in
3733 * sequence. Save instruction boundaries such that lookahead tags can
3734 * be assigned easily */
3735
3736 /* Cache _all_ bundles in source order for lookahead across failed branches */
3737
3738 int bundle_count = 0;
3739 mir_foreach_block(ctx, block) {
3740 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3741 }
3742 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3743 int bundle_idx = 0;
3744 mir_foreach_block(ctx, block) {
3745 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3746 source_order_bundles[bundle_idx++] = bundle;
3747 }
3748 }
3749
3750 int current_bundle = 0;
3751
3752 mir_foreach_block(ctx, block) {
3753 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3754 int lookahead = 1;
3755
3756 if (current_bundle + 1 < bundle_count) {
3757 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3758
3759 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3760 lookahead = 1;
3761 } else {
3762 lookahead = next;
3763 }
3764 }
3765
3766 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3767 ++current_bundle;
3768 }
3769
3770 /* TODO: Free deeper */
3771 //util_dynarray_fini(&block->instructions);
3772 }
3773
3774 free(source_order_bundles);
3775
3776 /* Report the very first tag executed */
3777 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3778
3779 /* Deal with off-by-one related to the fencepost problem */
3780 program->work_register_count = ctx->work_registers + 1;
3781
3782 program->can_discard = ctx->can_discard;
3783 program->uniform_cutoff = ctx->uniform_cutoff;
3784
3785 program->blend_patch_offset = ctx->blend_constant_offset;
3786
3787 if (midgard_debug & MIDGARD_DBG_SHADERS)
3788 disassemble_midgard(program->compiled.data, program->compiled.size);
3789
3790 return 0;
3791 }