panfrost/midgard: Fix b2f32 swizzle for vectors
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751
752 /* Lower mods */
753 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
754 NIR_PASS(progress, nir, nir_copy_prop);
755 NIR_PASS(progress, nir, nir_opt_dce);
756
757 /* Take us out of SSA */
758 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
759 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
760
761 /* We are a vector architecture; write combine where possible */
762 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
763 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
764
765 NIR_PASS(progress, nir, nir_opt_dce);
766 }
767
768 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
769 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
770 * r0. See the comments in compiler_context */
771
772 static void
773 alias_ssa(compiler_context *ctx, int dest, int src)
774 {
775 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
776 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
777 }
778
779 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
780
781 static void
782 unalias_ssa(compiler_context *ctx, int dest)
783 {
784 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
785 /* TODO: Remove from leftover or no? */
786 }
787
788 static void
789 midgard_pin_output(compiler_context *ctx, int index, int reg)
790 {
791 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
792 }
793
794 static bool
795 midgard_is_pinned(compiler_context *ctx, int index)
796 {
797 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
798 }
799
800 /* Do not actually emit a load; instead, cache the constant for inlining */
801
802 static void
803 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
804 {
805 nir_ssa_def def = instr->def;
806
807 float *v = ralloc_array(NULL, float, 4);
808 memcpy(v, &instr->value.f32, 4 * sizeof(float));
809 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
810 }
811
812 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
813 * do the inverse) */
814
815 static unsigned
816 expand_writemask(unsigned mask)
817 {
818 unsigned o = 0;
819
820 for (int i = 0; i < 4; ++i)
821 if (mask & (1 << i))
822 o |= (3 << (2 * i));
823
824 return o;
825 }
826
827 static unsigned
828 squeeze_writemask(unsigned mask)
829 {
830 unsigned o = 0;
831
832 for (int i = 0; i < 4; ++i)
833 if (mask & (3 << (2 * i)))
834 o |= (1 << i);
835
836 return o;
837
838 }
839
840 /* Determines effective writemask, taking quirks and expansion into account */
841 static unsigned
842 effective_writemask(midgard_vector_alu *alu)
843 {
844 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
845 * sense) */
846
847 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
848
849 /* If there is a fixed channel count, construct the appropriate mask */
850
851 if (channel_count)
852 return (1 << channel_count) - 1;
853
854 /* Otherwise, just squeeze the existing mask */
855 return squeeze_writemask(alu->mask);
856 }
857
858 static unsigned
859 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
860 {
861 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
862 return hash;
863
864 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
865
866 if (temp)
867 return temp - 1;
868
869 /* If no temp is find, allocate one */
870 temp = ctx->temp_count++;
871 ctx->max_hash = MAX2(ctx->max_hash, hash);
872
873 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
874
875 return temp;
876 }
877
878 static unsigned
879 nir_src_index(compiler_context *ctx, nir_src *src)
880 {
881 if (src->is_ssa)
882 return src->ssa->index;
883 else
884 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
885 }
886
887 static unsigned
888 nir_dest_index(compiler_context *ctx, nir_dest *dst)
889 {
890 if (dst->is_ssa)
891 return dst->ssa.index;
892 else
893 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
894 }
895
896 static unsigned
897 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
898 {
899 return nir_src_index(ctx, &src->src);
900 }
901
902 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
903 * a conditional test) into that register */
904
905 static void
906 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
907 {
908 /* XXX: Force component correct */
909 int condition = nir_src_index(ctx, src);
910
911 /* There is no boolean move instruction. Instead, we simulate a move by
912 * ANDing the condition with itself to get it into r31.w */
913
914 midgard_instruction ins = {
915 .type = TAG_ALU_4,
916 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
917 .ssa_args = {
918 .src0 = condition,
919 .src1 = condition,
920 .dest = SSA_FIXED_REGISTER(31),
921 },
922 .alu = {
923 .op = midgard_alu_op_iand,
924 .reg_mode = midgard_reg_mode_full,
925 .dest_override = midgard_dest_override_none,
926 .mask = (0x3 << 6), /* w */
927 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
928 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
929 },
930 };
931
932 emit_mir_instruction(ctx, ins);
933 }
934
935 #define ALU_CASE(nir, _op) \
936 case nir_op_##nir: \
937 op = midgard_alu_op_##_op; \
938 break;
939
940 static void
941 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
942 {
943 bool is_ssa = instr->dest.dest.is_ssa;
944
945 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
946 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
947 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
948
949 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
950 * supported. A few do not and are commented for now. Also, there are a
951 * number of NIR ops which Midgard does not support and need to be
952 * lowered, also TODO. This switch block emits the opcode and calling
953 * convention of the Midgard instruction; actual packing is done in
954 * emit_alu below */
955
956 unsigned op;
957
958 switch (instr->op) {
959 ALU_CASE(fadd, fadd);
960 ALU_CASE(fmul, fmul);
961 ALU_CASE(fmin, fmin);
962 ALU_CASE(fmax, fmax);
963 ALU_CASE(imin, imin);
964 ALU_CASE(imax, imax);
965 ALU_CASE(fmov, fmov);
966 ALU_CASE(ffloor, ffloor);
967 ALU_CASE(fround_even, froundeven);
968 ALU_CASE(ftrunc, ftrunc);
969 ALU_CASE(fceil, fceil);
970 ALU_CASE(fdot3, fdot3);
971 ALU_CASE(fdot4, fdot4);
972 ALU_CASE(iadd, iadd);
973 ALU_CASE(isub, isub);
974 ALU_CASE(imul, imul);
975
976 /* XXX: Use fmov, not imov, since imov was causing major
977 * issues with texture precision? XXX research */
978 ALU_CASE(imov, fmov);
979
980 ALU_CASE(feq, feq);
981 ALU_CASE(fne, fne);
982 ALU_CASE(flt, flt);
983 ALU_CASE(ieq, ieq);
984 ALU_CASE(ine, ine);
985 ALU_CASE(ilt, ilt);
986
987 ALU_CASE(frcp, frcp);
988 ALU_CASE(frsq, frsqrt);
989 ALU_CASE(fsqrt, fsqrt);
990 ALU_CASE(fpow, fpow);
991 ALU_CASE(fexp2, fexp2);
992 ALU_CASE(flog2, flog2);
993
994 ALU_CASE(f2i32, f2i);
995 ALU_CASE(f2u32, f2u);
996 ALU_CASE(i2f32, i2f);
997 ALU_CASE(u2f32, u2f);
998
999 ALU_CASE(fsin, fsin);
1000 ALU_CASE(fcos, fcos);
1001
1002 ALU_CASE(iand, iand);
1003 ALU_CASE(ior, ior);
1004 ALU_CASE(ixor, ixor);
1005 ALU_CASE(inot, inot);
1006 ALU_CASE(ishl, ishl);
1007 ALU_CASE(ishr, iasr);
1008 ALU_CASE(ushr, ilsr);
1009
1010 ALU_CASE(ball_fequal4, fball_eq);
1011 ALU_CASE(bany_fnequal4, fbany_neq);
1012 ALU_CASE(ball_iequal4, iball_eq);
1013 ALU_CASE(bany_inequal4, ibany_neq);
1014
1015 /* For greater-or-equal, we use less-or-equal and flip the
1016 * arguments */
1017
1018 case nir_op_ige: {
1019 op = midgard_alu_op_ile;
1020
1021 /* Swap via temporary */
1022 nir_alu_src temp = instr->src[1];
1023 instr->src[1] = instr->src[0];
1024 instr->src[0] = temp;
1025
1026 break;
1027 }
1028
1029 case nir_op_bcsel: {
1030 op = midgard_alu_op_fcsel;
1031
1032 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1033 nr_inputs = 2;
1034
1035 emit_condition(ctx, &instr->src[0].src, false);
1036
1037 /* The condition is the first argument; move the other
1038 * arguments up one to be a binary instruction for
1039 * Midgard */
1040
1041 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1042 break;
1043 }
1044
1045 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1046 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1047 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1048 *
1049 * iand [whatever], #0
1050 *
1051 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1052
1053 case nir_op_b2f32: {
1054 op = midgard_alu_op_iand;
1055 break;
1056 }
1057
1058 default:
1059 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1060 assert(0);
1061 return;
1062 }
1063
1064 /* Fetch unit, quirks, etc information */
1065 unsigned opcode_props = alu_opcode_props[op];
1066 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1067
1068 /* Initialise fields common between scalar/vector instructions */
1069 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1070
1071 /* src0 will always exist afaik, but src1 will not for 1-argument
1072 * instructions. The latter can only be fetched if the instruction
1073 * needs it, or else we may segfault. */
1074
1075 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1076 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1077
1078 /* Rather than use the instruction generation helpers, we do it
1079 * ourselves here to avoid the mess */
1080
1081 midgard_instruction ins = {
1082 .type = TAG_ALU_4,
1083 .ssa_args = {
1084 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1085 .src1 = quirk_flipped_r24 ? src0 : src1,
1086 .dest = dest,
1087 }
1088 };
1089
1090 nir_alu_src *nirmods[2] = { NULL };
1091
1092 if (nr_inputs == 2) {
1093 nirmods[0] = &instr->src[0];
1094 nirmods[1] = &instr->src[1];
1095 } else if (nr_inputs == 1) {
1096 nirmods[quirk_flipped_r24] = &instr->src[0];
1097 } else {
1098 assert(0);
1099 }
1100
1101 midgard_vector_alu alu = {
1102 .op = op,
1103 .reg_mode = midgard_reg_mode_full,
1104 .dest_override = midgard_dest_override_none,
1105 .outmod = outmod,
1106
1107 /* Writemask only valid for non-SSA NIR */
1108 .mask = expand_writemask((1 << nr_components) - 1),
1109
1110 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1111 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1112 };
1113
1114 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1115
1116 if (!is_ssa)
1117 alu.mask &= expand_writemask(instr->dest.write_mask);
1118
1119 ins.alu = alu;
1120
1121 /* Late fixup for emulated instructions */
1122
1123 if (instr->op == nir_op_b2f32) {
1124 /* Presently, our second argument is an inline #0 constant.
1125 * Switch over to an embedded 1.0 constant (that can't fit
1126 * inline, since we're 32-bit, not 16-bit like the inline
1127 * constants) */
1128
1129 ins.ssa_args.inline_constant = false;
1130 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1131 ins.has_constants = true;
1132 ins.constants[0] = 1.0;
1133
1134 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1135 }
1136
1137 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1138 /* To avoid duplicating the lookup tables (probably), true LUT
1139 * instructions can only operate as if they were scalars. Lower
1140 * them here by changing the component. */
1141
1142 uint8_t original_swizzle[4];
1143 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1144
1145 for (int i = 0; i < nr_components; ++i) {
1146 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1147
1148 for (int j = 0; j < 4; ++j)
1149 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1150
1151 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1152 emit_mir_instruction(ctx, ins);
1153 }
1154 } else {
1155 emit_mir_instruction(ctx, ins);
1156 }
1157 }
1158
1159 #undef ALU_CASE
1160
1161 static void
1162 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1163 {
1164 nir_const_value *const_offset;
1165 unsigned offset, reg;
1166
1167 switch (instr->intrinsic) {
1168 case nir_intrinsic_discard_if:
1169 emit_condition(ctx, &instr->src[0], true);
1170
1171 /* fallthrough */
1172
1173 case nir_intrinsic_discard: {
1174 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1175 struct midgard_instruction discard = v_branch(conditional, false);
1176 discard.branch.target_type = TARGET_DISCARD;
1177 emit_mir_instruction(ctx, discard);
1178
1179 ctx->can_discard = true;
1180 break;
1181 }
1182
1183 case nir_intrinsic_load_uniform:
1184 case nir_intrinsic_load_input:
1185 const_offset = nir_src_as_const_value(instr->src[0]);
1186 assert (const_offset && "no indirect inputs");
1187
1188 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1189
1190 reg = nir_dest_index(ctx, &instr->dest);
1191
1192 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1193 /* TODO: half-floats */
1194
1195 int uniform_offset = 0;
1196
1197 if (offset >= SPECIAL_UNIFORM_BASE) {
1198 /* XXX: Resolve which uniform */
1199 uniform_offset = 0;
1200 } else {
1201 /* Offset away from the special
1202 * uniform block */
1203
1204 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1205
1206 /* XXX */
1207 if (!entry) {
1208 DBG("WARNING: Unknown uniform %d\n", offset);
1209 break;
1210 }
1211
1212 uniform_offset = (uintptr_t) (entry) - 1;
1213 uniform_offset += ctx->special_uniforms;
1214 }
1215
1216 if (uniform_offset < ctx->uniform_cutoff) {
1217 /* Fast path: For the first 16 uniform,
1218 * accesses are 0-cycle, since they're
1219 * just a register fetch in the usual
1220 * case. So, we alias the registers
1221 * while we're still in SSA-space */
1222
1223 int reg_slot = 23 - uniform_offset;
1224 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1225 } else {
1226 /* Otherwise, read from the 'special'
1227 * UBO to access higher-indexed
1228 * uniforms, at a performance cost */
1229
1230 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1231
1232 /* TODO: Don't split */
1233 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1234 ins.load_store.address = uniform_offset >> 3;
1235
1236 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1237 emit_mir_instruction(ctx, ins);
1238 }
1239 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1240 /* XXX: Half-floats? */
1241 /* TODO: swizzle, mask */
1242
1243 midgard_instruction ins = m_load_vary_32(reg, offset);
1244
1245 midgard_varying_parameter p = {
1246 .is_varying = 1,
1247 .interpolation = midgard_interp_default,
1248 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1249 };
1250
1251 unsigned u;
1252 memcpy(&u, &p, sizeof(p));
1253 ins.load_store.varying_parameters = u;
1254
1255 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1256 emit_mir_instruction(ctx, ins);
1257 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1258 /* Constant encoded as a pinned constant */
1259
1260 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1261 ins.has_constants = true;
1262 ins.has_blend_constant = true;
1263 emit_mir_instruction(ctx, ins);
1264 } else if (ctx->is_blend) {
1265 /* For blend shaders, a load might be
1266 * translated various ways depending on what
1267 * we're loading. Figure out how this is used */
1268
1269 nir_variable *out = NULL;
1270
1271 nir_foreach_variable(var, &ctx->nir->inputs) {
1272 int drvloc = var->data.driver_location;
1273
1274 if (nir_intrinsic_base(instr) == drvloc) {
1275 out = var;
1276 break;
1277 }
1278 }
1279
1280 assert(out);
1281
1282 if (out->data.location == VARYING_SLOT_COL0) {
1283 /* Source color preloaded to r0 */
1284
1285 midgard_pin_output(ctx, reg, 0);
1286 } else if (out->data.location == VARYING_SLOT_COL1) {
1287 /* Destination color must be read from framebuffer */
1288
1289 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1290 ins.load_store.swizzle = 0; /* xxxx */
1291
1292 /* Read each component sequentially */
1293
1294 for (int c = 0; c < 4; ++c) {
1295 ins.load_store.mask = (1 << c);
1296 ins.load_store.unknown = c;
1297 emit_mir_instruction(ctx, ins);
1298 }
1299
1300 /* vadd.u2f hr2, abs(hr2), #0 */
1301
1302 midgard_vector_alu_src alu_src = blank_alu_src;
1303 alu_src.abs = true;
1304 alu_src.half = true;
1305
1306 midgard_instruction u2f = {
1307 .type = TAG_ALU_4,
1308 .ssa_args = {
1309 .src0 = reg,
1310 .src1 = SSA_UNUSED_0,
1311 .dest = reg,
1312 .inline_constant = true
1313 },
1314 .alu = {
1315 .op = midgard_alu_op_u2f,
1316 .reg_mode = midgard_reg_mode_half,
1317 .dest_override = midgard_dest_override_none,
1318 .mask = 0xF,
1319 .src1 = vector_alu_srco_unsigned(alu_src),
1320 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1321 }
1322 };
1323
1324 emit_mir_instruction(ctx, u2f);
1325
1326 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1327
1328 alu_src.abs = false;
1329
1330 midgard_instruction fmul = {
1331 .type = TAG_ALU_4,
1332 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1333 .ssa_args = {
1334 .src0 = reg,
1335 .dest = reg,
1336 .src1 = SSA_UNUSED_0,
1337 .inline_constant = true
1338 },
1339 .alu = {
1340 .op = midgard_alu_op_fmul,
1341 .reg_mode = midgard_reg_mode_full,
1342 .dest_override = midgard_dest_override_none,
1343 .outmod = midgard_outmod_sat,
1344 .mask = 0xFF,
1345 .src1 = vector_alu_srco_unsigned(alu_src),
1346 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1347 }
1348 };
1349
1350 emit_mir_instruction(ctx, fmul);
1351 } else {
1352 DBG("Unknown input in blend shader\n");
1353 assert(0);
1354 }
1355 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1356 midgard_instruction ins = m_load_attr_32(reg, offset);
1357 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1358 ins.load_store.mask = (1 << instr->num_components) - 1;
1359 emit_mir_instruction(ctx, ins);
1360 } else {
1361 DBG("Unknown load\n");
1362 assert(0);
1363 }
1364
1365 break;
1366
1367 case nir_intrinsic_store_output:
1368 const_offset = nir_src_as_const_value(instr->src[1]);
1369 assert(const_offset && "no indirect outputs");
1370
1371 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1372
1373 reg = nir_src_index(ctx, &instr->src[0]);
1374
1375 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1376 /* gl_FragColor is not emitted with load/store
1377 * instructions. Instead, it gets plonked into
1378 * r0 at the end of the shader and we do the
1379 * framebuffer writeout dance. TODO: Defer
1380 * writes */
1381
1382 midgard_pin_output(ctx, reg, 0);
1383
1384 /* Save the index we're writing to for later reference
1385 * in the epilogue */
1386
1387 ctx->fragment_output = reg;
1388 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1389 /* Varyings are written into one of two special
1390 * varying register, r26 or r27. The register itself is selected as the register
1391 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1392 *
1393 * Normally emitting fmov's is frowned upon,
1394 * but due to unique constraints of
1395 * REGISTER_VARYING, fmov emission + a
1396 * dedicated cleanup pass is the only way to
1397 * guarantee correctness when considering some
1398 * (common) edge cases XXX: FIXME */
1399
1400 /* If this varying corresponds to a constant (why?!),
1401 * emit that now since it won't get picked up by
1402 * hoisting (since there is no corresponding move
1403 * emitted otherwise) */
1404
1405 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1406
1407 if (constant_value) {
1408 /* Special case: emit the varying write
1409 * directly to r26 (looks funny in asm but it's
1410 * fine) and emit the store _now_. Possibly
1411 * slightly slower, but this is a really stupid
1412 * special case anyway (why on earth would you
1413 * have a constant varying? Your own fault for
1414 * slightly worse perf :P) */
1415
1416 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1417 attach_constants(ctx, &ins, constant_value, reg + 1);
1418 emit_mir_instruction(ctx, ins);
1419
1420 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1421 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1422 emit_mir_instruction(ctx, st);
1423 } else {
1424 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1425
1426 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1427 }
1428 } else {
1429 DBG("Unknown store\n");
1430 assert(0);
1431 }
1432
1433 break;
1434
1435 case nir_intrinsic_load_alpha_ref_float:
1436 assert(instr->dest.is_ssa);
1437
1438 float ref_value = ctx->alpha_ref;
1439
1440 float *v = ralloc_array(NULL, float, 4);
1441 memcpy(v, &ref_value, sizeof(float));
1442 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1443 break;
1444
1445
1446 default:
1447 printf ("Unhandled intrinsic\n");
1448 assert(0);
1449 break;
1450 }
1451 }
1452
1453 static unsigned
1454 midgard_tex_format(enum glsl_sampler_dim dim)
1455 {
1456 switch (dim) {
1457 case GLSL_SAMPLER_DIM_2D:
1458 case GLSL_SAMPLER_DIM_EXTERNAL:
1459 return TEXTURE_2D;
1460
1461 case GLSL_SAMPLER_DIM_3D:
1462 return TEXTURE_3D;
1463
1464 case GLSL_SAMPLER_DIM_CUBE:
1465 return TEXTURE_CUBE;
1466
1467 default:
1468 DBG("Unknown sampler dim type\n");
1469 assert(0);
1470 return 0;
1471 }
1472 }
1473
1474 static void
1475 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1476 {
1477 /* TODO */
1478 //assert (!instr->sampler);
1479 //assert (!instr->texture_array_size);
1480 assert (instr->op == nir_texop_tex);
1481
1482 /* Allocate registers via a round robin scheme to alternate between the two registers */
1483 int reg = ctx->texture_op_count & 1;
1484 int in_reg = reg, out_reg = reg;
1485
1486 /* Make room for the reg */
1487
1488 if (ctx->texture_index[reg] > -1)
1489 unalias_ssa(ctx, ctx->texture_index[reg]);
1490
1491 int texture_index = instr->texture_index;
1492 int sampler_index = texture_index;
1493
1494 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1495 switch (instr->src[i].src_type) {
1496 case nir_tex_src_coord: {
1497 int index = nir_src_index(ctx, &instr->src[i].src);
1498
1499 midgard_vector_alu_src alu_src = blank_alu_src;
1500 alu_src.swizzle = (COMPONENT_Y << 2);
1501
1502 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1503 emit_mir_instruction(ctx, ins);
1504
1505 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1506
1507 break;
1508 }
1509
1510 default: {
1511 DBG("Unknown source type\n");
1512 //assert(0);
1513 break;
1514 }
1515 }
1516 }
1517
1518 /* No helper to build texture words -- we do it all here */
1519 midgard_instruction ins = {
1520 .type = TAG_TEXTURE_4,
1521 .texture = {
1522 .op = TEXTURE_OP_NORMAL,
1523 .format = midgard_tex_format(instr->sampler_dim),
1524 .texture_handle = texture_index,
1525 .sampler_handle = sampler_index,
1526
1527 /* TODO: Don't force xyzw */
1528 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1529 .mask = 0xF,
1530
1531 /* TODO: half */
1532 //.in_reg_full = 1,
1533 .out_full = 1,
1534
1535 .filter = 1,
1536
1537 /* Always 1 */
1538 .unknown7 = 1,
1539
1540 /* Assume we can continue; hint it out later */
1541 .cont = 1,
1542 }
1543 };
1544
1545 /* Set registers to read and write from the same place */
1546 ins.texture.in_reg_select = in_reg;
1547 ins.texture.out_reg_select = out_reg;
1548
1549 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1550 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1551 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1552 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1553 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1554 } else {
1555 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1556 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1557 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1558 }
1559
1560 emit_mir_instruction(ctx, ins);
1561
1562 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1563
1564 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1565 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1566 ctx->texture_index[reg] = o_index;
1567
1568 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1569 emit_mir_instruction(ctx, ins2);
1570
1571 /* Used for .cont and .last hinting */
1572 ctx->texture_op_count++;
1573 }
1574
1575 static void
1576 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1577 {
1578 switch (instr->type) {
1579 case nir_jump_break: {
1580 /* Emit a branch out of the loop */
1581 struct midgard_instruction br = v_branch(false, false);
1582 br.branch.target_type = TARGET_BREAK;
1583 br.branch.target_break = ctx->current_loop;
1584 emit_mir_instruction(ctx, br);
1585
1586 DBG("break..\n");
1587 break;
1588 }
1589
1590 default:
1591 DBG("Unknown jump type %d\n", instr->type);
1592 break;
1593 }
1594 }
1595
1596 static void
1597 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1598 {
1599 switch (instr->type) {
1600 case nir_instr_type_load_const:
1601 emit_load_const(ctx, nir_instr_as_load_const(instr));
1602 break;
1603
1604 case nir_instr_type_intrinsic:
1605 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1606 break;
1607
1608 case nir_instr_type_alu:
1609 emit_alu(ctx, nir_instr_as_alu(instr));
1610 break;
1611
1612 case nir_instr_type_tex:
1613 emit_tex(ctx, nir_instr_as_tex(instr));
1614 break;
1615
1616 case nir_instr_type_jump:
1617 emit_jump(ctx, nir_instr_as_jump(instr));
1618 break;
1619
1620 case nir_instr_type_ssa_undef:
1621 /* Spurious */
1622 break;
1623
1624 default:
1625 DBG("Unhandled instruction type\n");
1626 break;
1627 }
1628 }
1629
1630 /* Determine the actual hardware from the index based on the RA results or special values */
1631
1632 static int
1633 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1634 {
1635 if (reg >= SSA_FIXED_MINIMUM)
1636 return SSA_REG_FROM_FIXED(reg);
1637
1638 if (reg >= 0) {
1639 assert(reg < maxreg);
1640 int r = ra_get_node_reg(g, reg);
1641 ctx->work_registers = MAX2(ctx->work_registers, r);
1642 return r;
1643 }
1644
1645 switch (reg) {
1646 /* fmov style unused */
1647 case SSA_UNUSED_0:
1648 return REGISTER_UNUSED;
1649
1650 /* lut style unused */
1651 case SSA_UNUSED_1:
1652 return REGISTER_UNUSED;
1653
1654 default:
1655 DBG("Unknown SSA register alias %d\n", reg);
1656 assert(0);
1657 return 31;
1658 }
1659 }
1660
1661 static unsigned int
1662 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1663 {
1664 /* Choose the first available register to minimise reported register pressure */
1665
1666 for (int i = 0; i < 16; ++i) {
1667 if (BITSET_TEST(regs, i)) {
1668 return i;
1669 }
1670 }
1671
1672 assert(0);
1673 return 0;
1674 }
1675
1676 static bool
1677 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1678 {
1679 if (ins->ssa_args.src0 == src) return true;
1680 if (ins->ssa_args.src1 == src) return true;
1681
1682 return false;
1683 }
1684
1685 static bool
1686 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1687 {
1688 /* Check the rest of the block for liveness */
1689 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1690 if (midgard_is_live_in_instr(ins, src))
1691 return true;
1692 }
1693
1694 /* Check the rest of the blocks for liveness */
1695 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1696 mir_foreach_instr_in_block(b, ins) {
1697 if (midgard_is_live_in_instr(ins, src))
1698 return true;
1699 }
1700 }
1701
1702 /* TODO: How does control flow interact in complex shaders? */
1703
1704 return false;
1705 }
1706
1707 static void
1708 allocate_registers(compiler_context *ctx)
1709 {
1710 /* First, initialize the RA */
1711 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1712
1713 /* Create a primary (general purpose) class, as well as special purpose
1714 * pipeline register classes */
1715
1716 int primary_class = ra_alloc_reg_class(regs);
1717 int varying_class = ra_alloc_reg_class(regs);
1718
1719 /* Add the full set of work registers */
1720 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1721 for (int i = 0; i < work_count; ++i)
1722 ra_class_add_reg(regs, primary_class, i);
1723
1724 /* Add special registers */
1725 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1726 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1727
1728 /* We're done setting up */
1729 ra_set_finalize(regs, NULL);
1730
1731 /* Transform the MIR into squeezed index form */
1732 mir_foreach_block(ctx, block) {
1733 mir_foreach_instr_in_block(block, ins) {
1734 if (ins->compact_branch) continue;
1735
1736 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1737 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1738 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1739 }
1740 if (midgard_debug & MIDGARD_DBG_SHADERS)
1741 print_mir_block(block);
1742 }
1743
1744 /* Let's actually do register allocation */
1745 int nodes = ctx->temp_count;
1746 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1747
1748 /* Set everything to the work register class, unless it has somewhere
1749 * special to go */
1750
1751 mir_foreach_block(ctx, block) {
1752 mir_foreach_instr_in_block(block, ins) {
1753 if (ins->compact_branch) continue;
1754
1755 if (ins->ssa_args.dest < 0) continue;
1756
1757 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1758
1759 int class = primary_class;
1760
1761 ra_set_node_class(g, ins->ssa_args.dest, class);
1762 }
1763 }
1764
1765 for (int index = 0; index <= ctx->max_hash; ++index) {
1766 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1767
1768 if (temp) {
1769 unsigned reg = temp - 1;
1770 int t = find_or_allocate_temp(ctx, index);
1771 ra_set_node_reg(g, t, reg);
1772 }
1773 }
1774
1775 /* Determine liveness */
1776
1777 int *live_start = malloc(nodes * sizeof(int));
1778 int *live_end = malloc(nodes * sizeof(int));
1779
1780 /* Initialize as non-existent */
1781
1782 for (int i = 0; i < nodes; ++i) {
1783 live_start[i] = live_end[i] = -1;
1784 }
1785
1786 int d = 0;
1787
1788 mir_foreach_block(ctx, block) {
1789 mir_foreach_instr_in_block(block, ins) {
1790 if (ins->compact_branch) continue;
1791
1792 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1793 /* If this destination is not yet live, it is now since we just wrote it */
1794
1795 int dest = ins->ssa_args.dest;
1796
1797 if (live_start[dest] == -1)
1798 live_start[dest] = d;
1799 }
1800
1801 /* Since we just used a source, the source might be
1802 * dead now. Scan the rest of the block for
1803 * invocations, and if there are none, the source dies
1804 * */
1805
1806 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1807
1808 for (int src = 0; src < 2; ++src) {
1809 int s = sources[src];
1810
1811 if (s < 0) continue;
1812
1813 if (s >= SSA_FIXED_MINIMUM) continue;
1814
1815 if (!is_live_after(ctx, block, ins, s)) {
1816 live_end[s] = d;
1817 }
1818 }
1819
1820 ++d;
1821 }
1822 }
1823
1824 /* If a node still hasn't been killed, kill it now */
1825
1826 for (int i = 0; i < nodes; ++i) {
1827 /* live_start == -1 most likely indicates a pinned output */
1828
1829 if (live_end[i] == -1)
1830 live_end[i] = d;
1831 }
1832
1833 /* Setup interference between nodes that are live at the same time */
1834
1835 for (int i = 0; i < nodes; ++i) {
1836 for (int j = i + 1; j < nodes; ++j) {
1837 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1838 ra_add_node_interference(g, i, j);
1839 }
1840 }
1841
1842 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1843
1844 if (!ra_allocate(g)) {
1845 DBG("Error allocating registers\n");
1846 assert(0);
1847 }
1848
1849 /* Cleanup */
1850 free(live_start);
1851 free(live_end);
1852
1853 mir_foreach_block(ctx, block) {
1854 mir_foreach_instr_in_block(block, ins) {
1855 if (ins->compact_branch) continue;
1856
1857 ssa_args args = ins->ssa_args;
1858
1859 switch (ins->type) {
1860 case TAG_ALU_4:
1861 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1862
1863 ins->registers.src2_imm = args.inline_constant;
1864
1865 if (args.inline_constant) {
1866 /* Encode inline 16-bit constant as a vector by default */
1867
1868 ins->registers.src2_reg = ins->inline_constant >> 11;
1869
1870 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1871
1872 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1873 ins->alu.src2 = imm << 2;
1874 } else {
1875 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1876 }
1877
1878 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1879
1880 break;
1881
1882 case TAG_LOAD_STORE_4: {
1883 if (OP_IS_STORE(ins->load_store.op)) {
1884 /* TODO: use ssa_args for store_vary */
1885 ins->load_store.reg = 0;
1886 } else {
1887 bool has_dest = args.dest >= 0;
1888 int ssa_arg = has_dest ? args.dest : args.src0;
1889
1890 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1891 }
1892
1893 break;
1894 }
1895
1896 default:
1897 break;
1898 }
1899 }
1900 }
1901 }
1902
1903 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1904 * use scalar ALU instructions, for functional or performance reasons. To do
1905 * this, we just demote vector ALU payloads to scalar. */
1906
1907 static int
1908 component_from_mask(unsigned mask)
1909 {
1910 for (int c = 0; c < 4; ++c) {
1911 if (mask & (3 << (2 * c)))
1912 return c;
1913 }
1914
1915 assert(0);
1916 return 0;
1917 }
1918
1919 static bool
1920 is_single_component_mask(unsigned mask)
1921 {
1922 int components = 0;
1923
1924 for (int c = 0; c < 4; ++c)
1925 if (mask & (3 << (2 * c)))
1926 components++;
1927
1928 return components == 1;
1929 }
1930
1931 /* Create a mask of accessed components from a swizzle to figure out vector
1932 * dependencies */
1933
1934 static unsigned
1935 swizzle_to_access_mask(unsigned swizzle)
1936 {
1937 unsigned component_mask = 0;
1938
1939 for (int i = 0; i < 4; ++i) {
1940 unsigned c = (swizzle >> (2 * i)) & 3;
1941 component_mask |= (1 << c);
1942 }
1943
1944 return component_mask;
1945 }
1946
1947 static unsigned
1948 vector_to_scalar_source(unsigned u)
1949 {
1950 midgard_vector_alu_src v;
1951 memcpy(&v, &u, sizeof(v));
1952
1953 midgard_scalar_alu_src s = {
1954 .abs = v.abs,
1955 .negate = v.negate,
1956 .full = !v.half,
1957 .component = (v.swizzle & 3) << 1
1958 };
1959
1960 unsigned o;
1961 memcpy(&o, &s, sizeof(s));
1962
1963 return o & ((1 << 6) - 1);
1964 }
1965
1966 static midgard_scalar_alu
1967 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1968 {
1969 /* The output component is from the mask */
1970 midgard_scalar_alu s = {
1971 .op = v.op,
1972 .src1 = vector_to_scalar_source(v.src1),
1973 .src2 = vector_to_scalar_source(v.src2),
1974 .unknown = 0,
1975 .outmod = v.outmod,
1976 .output_full = 1, /* TODO: Half */
1977 .output_component = component_from_mask(v.mask) << 1,
1978 };
1979
1980 /* Inline constant is passed along rather than trying to extract it
1981 * from v */
1982
1983 if (ins->ssa_args.inline_constant) {
1984 uint16_t imm = 0;
1985 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1986 imm |= (lower_11 >> 9) & 3;
1987 imm |= (lower_11 >> 6) & 4;
1988 imm |= (lower_11 >> 2) & 0x38;
1989 imm |= (lower_11 & 63) << 6;
1990
1991 s.src2 = imm;
1992 }
1993
1994 return s;
1995 }
1996
1997 /* Midgard prefetches instruction types, so during emission we need to
1998 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1999 * if this is the second to last and the last is an ALU, then it's also 1... */
2000
2001 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2002 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2003
2004 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2005 bytes_emitted += sizeof(type)
2006
2007 static void
2008 emit_binary_vector_instruction(midgard_instruction *ains,
2009 uint16_t *register_words, int *register_words_count,
2010 uint64_t *body_words, size_t *body_size, int *body_words_count,
2011 size_t *bytes_emitted)
2012 {
2013 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2014 *bytes_emitted += sizeof(midgard_reg_info);
2015
2016 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2017 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2018 *bytes_emitted += sizeof(midgard_vector_alu);
2019 }
2020
2021 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2022 * mind that we are a vector architecture and we can write to different
2023 * components simultaneously */
2024
2025 static bool
2026 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2027 {
2028 /* Each instruction reads some registers and writes to a register. See
2029 * where the first writes */
2030
2031 /* Figure out where exactly we wrote to */
2032 int source = first->ssa_args.dest;
2033 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2034
2035 /* As long as the second doesn't read from the first, we're okay */
2036 if (second->ssa_args.src0 == source) {
2037 if (first->type == TAG_ALU_4) {
2038 /* Figure out which components we just read from */
2039
2040 int q = second->alu.src1;
2041 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2042
2043 /* Check if there are components in common, and fail if so */
2044 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2045 return false;
2046 } else
2047 return false;
2048
2049 }
2050
2051 if (second->ssa_args.src1 == source)
2052 return false;
2053
2054 /* Otherwise, it's safe in that regard. Another data hazard is both
2055 * writing to the same place, of course */
2056
2057 if (second->ssa_args.dest == source) {
2058 /* ...but only if the components overlap */
2059 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2060
2061 if (dest_mask & source_mask)
2062 return false;
2063 }
2064
2065 /* ...That's it */
2066 return true;
2067 }
2068
2069 static bool
2070 midgard_has_hazard(
2071 midgard_instruction **segment, unsigned segment_size,
2072 midgard_instruction *ains)
2073 {
2074 for (int s = 0; s < segment_size; ++s)
2075 if (!can_run_concurrent_ssa(segment[s], ains))
2076 return true;
2077
2078 return false;
2079
2080
2081 }
2082
2083 /* Schedules, but does not emit, a single basic block. After scheduling, the
2084 * final tag and size of the block are known, which are necessary for branching
2085 * */
2086
2087 static midgard_bundle
2088 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2089 {
2090 int instructions_emitted = 0, instructions_consumed = -1;
2091 midgard_bundle bundle = { 0 };
2092
2093 uint8_t tag = ins->type;
2094
2095 /* Default to the instruction's tag */
2096 bundle.tag = tag;
2097
2098 switch (ins->type) {
2099 case TAG_ALU_4: {
2100 uint32_t control = 0;
2101 size_t bytes_emitted = sizeof(control);
2102
2103 /* TODO: Constant combining */
2104 int index = 0, last_unit = 0;
2105
2106 /* Previous instructions, for the purpose of parallelism */
2107 midgard_instruction *segment[4] = {0};
2108 int segment_size = 0;
2109
2110 instructions_emitted = -1;
2111 midgard_instruction *pins = ins;
2112
2113 for (;;) {
2114 midgard_instruction *ains = pins;
2115
2116 /* Advance instruction pointer */
2117 if (index) {
2118 ains = mir_next_op(pins);
2119 pins = ains;
2120 }
2121
2122 /* Out-of-work condition */
2123 if ((struct list_head *) ains == &block->instructions)
2124 break;
2125
2126 /* Ensure that the chain can continue */
2127 if (ains->type != TAG_ALU_4) break;
2128
2129 /* According to the presentation "The ARM
2130 * Mali-T880 Mobile GPU" from HotChips 27,
2131 * there are two pipeline stages. Branching
2132 * position determined experimentally. Lines
2133 * are executed in parallel:
2134 *
2135 * [ VMUL ] [ SADD ]
2136 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2137 *
2138 * Verify that there are no ordering dependencies here.
2139 *
2140 * TODO: Allow for parallelism!!!
2141 */
2142
2143 /* Pick a unit for it if it doesn't force a particular unit */
2144
2145 int unit = ains->unit;
2146
2147 if (!unit) {
2148 int op = ains->alu.op;
2149 int units = alu_opcode_props[op];
2150
2151 /* TODO: Promotion of scalars to vectors */
2152 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2153
2154 if (!vector)
2155 assert(units & UNITS_SCALAR);
2156
2157 if (vector) {
2158 if (last_unit >= UNIT_VADD) {
2159 if (units & UNIT_VLUT)
2160 unit = UNIT_VLUT;
2161 else
2162 break;
2163 } else {
2164 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2165 unit = UNIT_VMUL;
2166 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2167 unit = UNIT_VADD;
2168 else if (units & UNIT_VLUT)
2169 unit = UNIT_VLUT;
2170 else
2171 break;
2172 }
2173 } else {
2174 if (last_unit >= UNIT_VADD) {
2175 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2176 unit = UNIT_SMUL;
2177 else if (units & UNIT_VLUT)
2178 unit = UNIT_VLUT;
2179 else
2180 break;
2181 } else {
2182 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2183 unit = UNIT_SADD;
2184 else if (units & UNIT_SMUL)
2185 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2186 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2187 unit = UNIT_VADD;
2188 else
2189 break;
2190 }
2191 }
2192
2193 assert(unit & units);
2194 }
2195
2196 /* Late unit check, this time for encoding (not parallelism) */
2197 if (unit <= last_unit) break;
2198
2199 /* Clear the segment */
2200 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2201 segment_size = 0;
2202
2203 if (midgard_has_hazard(segment, segment_size, ains))
2204 break;
2205
2206 /* We're good to go -- emit the instruction */
2207 ains->unit = unit;
2208
2209 segment[segment_size++] = ains;
2210
2211 /* Only one set of embedded constants per
2212 * bundle possible; if we have more, we must
2213 * break the chain early, unfortunately */
2214
2215 if (ains->has_constants) {
2216 if (bundle.has_embedded_constants) {
2217 /* ...but if there are already
2218 * constants but these are the
2219 * *same* constants, we let it
2220 * through */
2221
2222 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2223 break;
2224 } else {
2225 bundle.has_embedded_constants = true;
2226 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2227
2228 /* If this is a blend shader special constant, track it for patching */
2229 if (ains->has_blend_constant)
2230 bundle.has_blend_constant = true;
2231 }
2232 }
2233
2234 if (ains->unit & UNITS_ANY_VECTOR) {
2235 emit_binary_vector_instruction(ains, bundle.register_words,
2236 &bundle.register_words_count, bundle.body_words,
2237 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2238 } else if (ains->compact_branch) {
2239 /* All of r0 has to be written out
2240 * along with the branch writeout.
2241 * (slow!) */
2242
2243 if (ains->writeout) {
2244 if (index == 0) {
2245 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2246 ins.unit = UNIT_VMUL;
2247
2248 control |= ins.unit;
2249
2250 emit_binary_vector_instruction(&ins, bundle.register_words,
2251 &bundle.register_words_count, bundle.body_words,
2252 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2253 } else {
2254 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2255 bool written_late = false;
2256 bool components[4] = { 0 };
2257 uint16_t register_dep_mask = 0;
2258 uint16_t written_mask = 0;
2259
2260 midgard_instruction *qins = ins;
2261 for (int t = 0; t < index; ++t) {
2262 if (qins->registers.out_reg != 0) {
2263 /* Mark down writes */
2264
2265 written_mask |= (1 << qins->registers.out_reg);
2266 } else {
2267 /* Mark down the register dependencies for errata check */
2268
2269 if (qins->registers.src1_reg < 16)
2270 register_dep_mask |= (1 << qins->registers.src1_reg);
2271
2272 if (qins->registers.src2_reg < 16)
2273 register_dep_mask |= (1 << qins->registers.src2_reg);
2274
2275 int mask = qins->alu.mask;
2276
2277 for (int c = 0; c < 4; ++c)
2278 if (mask & (0x3 << (2 * c)))
2279 components[c] = true;
2280
2281 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2282
2283 if (qins->unit == UNIT_VLUT)
2284 written_late = true;
2285 }
2286
2287 /* Advance instruction pointer */
2288 qins = mir_next_op(qins);
2289 }
2290
2291
2292 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2293 if (register_dep_mask & written_mask) {
2294 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2295 break;
2296 }
2297
2298 if (written_late)
2299 break;
2300
2301 /* If even a single component is not written, break it up (conservative check). */
2302 bool breakup = false;
2303
2304 for (int c = 0; c < 4; ++c)
2305 if (!components[c])
2306 breakup = true;
2307
2308 if (breakup)
2309 break;
2310
2311 /* Otherwise, we're free to proceed */
2312 }
2313 }
2314
2315 if (ains->unit == ALU_ENAB_BRANCH) {
2316 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2317 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2318 bytes_emitted += sizeof(midgard_branch_extended);
2319 } else {
2320 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2321 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2322 bytes_emitted += sizeof(ains->br_compact);
2323 }
2324 } else {
2325 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2326 bytes_emitted += sizeof(midgard_reg_info);
2327
2328 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2329 bundle.body_words_count++;
2330 bytes_emitted += sizeof(midgard_scalar_alu);
2331 }
2332
2333 /* Defer marking until after writing to allow for break */
2334 control |= ains->unit;
2335 last_unit = ains->unit;
2336 ++instructions_emitted;
2337 ++index;
2338 }
2339
2340 /* Bubble up the number of instructions for skipping */
2341 instructions_consumed = index - 1;
2342
2343 int padding = 0;
2344
2345 /* Pad ALU op to nearest word */
2346
2347 if (bytes_emitted & 15) {
2348 padding = 16 - (bytes_emitted & 15);
2349 bytes_emitted += padding;
2350 }
2351
2352 /* Constants must always be quadwords */
2353 if (bundle.has_embedded_constants)
2354 bytes_emitted += 16;
2355
2356 /* Size ALU instruction for tag */
2357 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2358 bundle.padding = padding;
2359 bundle.control = bundle.tag | control;
2360
2361 break;
2362 }
2363
2364 case TAG_LOAD_STORE_4: {
2365 /* Load store instructions have two words at once. If
2366 * we only have one queued up, we need to NOP pad.
2367 * Otherwise, we store both in succession to save space
2368 * and cycles -- letting them go in parallel -- skip
2369 * the next. The usefulness of this optimisation is
2370 * greatly dependent on the quality of the instruction
2371 * scheduler.
2372 */
2373
2374 midgard_instruction *next_op = mir_next_op(ins);
2375
2376 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2377 /* As the two operate concurrently, make sure
2378 * they are not dependent */
2379
2380 if (can_run_concurrent_ssa(ins, next_op) || true) {
2381 /* Skip ahead, since it's redundant with the pair */
2382 instructions_consumed = 1 + (instructions_emitted++);
2383 }
2384 }
2385
2386 break;
2387 }
2388
2389 default:
2390 /* Texture ops default to single-op-per-bundle scheduling */
2391 break;
2392 }
2393
2394 /* Copy the instructions into the bundle */
2395 bundle.instruction_count = instructions_emitted + 1;
2396
2397 int used_idx = 0;
2398
2399 midgard_instruction *uins = ins;
2400 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2401 bundle.instructions[used_idx++] = *uins;
2402 uins = mir_next_op(uins);
2403 }
2404
2405 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2406
2407 return bundle;
2408 }
2409
2410 static int
2411 quadword_size(int tag)
2412 {
2413 switch (tag) {
2414 case TAG_ALU_4:
2415 return 1;
2416
2417 case TAG_ALU_8:
2418 return 2;
2419
2420 case TAG_ALU_12:
2421 return 3;
2422
2423 case TAG_ALU_16:
2424 return 4;
2425
2426 case TAG_LOAD_STORE_4:
2427 return 1;
2428
2429 case TAG_TEXTURE_4:
2430 return 1;
2431
2432 default:
2433 assert(0);
2434 return 0;
2435 }
2436 }
2437
2438 /* Schedule a single block by iterating its instruction to create bundles.
2439 * While we go, tally about the bundle sizes to compute the block size. */
2440
2441 static void
2442 schedule_block(compiler_context *ctx, midgard_block *block)
2443 {
2444 util_dynarray_init(&block->bundles, NULL);
2445
2446 block->quadword_count = 0;
2447
2448 mir_foreach_instr_in_block(block, ins) {
2449 int skip;
2450 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2451 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2452
2453 if (bundle.has_blend_constant) {
2454 /* TODO: Multiblock? */
2455 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2456 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2457 }
2458
2459 while(skip--)
2460 ins = mir_next_op(ins);
2461
2462 block->quadword_count += quadword_size(bundle.tag);
2463 }
2464
2465 block->is_scheduled = true;
2466 }
2467
2468 static void
2469 schedule_program(compiler_context *ctx)
2470 {
2471 allocate_registers(ctx);
2472
2473 mir_foreach_block(ctx, block) {
2474 schedule_block(ctx, block);
2475 }
2476 }
2477
2478 /* After everything is scheduled, emit whole bundles at a time */
2479
2480 static void
2481 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2482 {
2483 int lookahead = next_tag << 4;
2484
2485 switch (bundle->tag) {
2486 case TAG_ALU_4:
2487 case TAG_ALU_8:
2488 case TAG_ALU_12:
2489 case TAG_ALU_16: {
2490 /* Actually emit each component */
2491 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2492
2493 for (int i = 0; i < bundle->register_words_count; ++i)
2494 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2495
2496 /* Emit body words based on the instructions bundled */
2497 for (int i = 0; i < bundle->instruction_count; ++i) {
2498 midgard_instruction *ins = &bundle->instructions[i];
2499
2500 if (ins->unit & UNITS_ANY_VECTOR) {
2501 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2502 } else if (ins->compact_branch) {
2503 /* Dummy move, XXX DRY */
2504 if ((i == 0) && ins->writeout) {
2505 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2506 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2507 }
2508
2509 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2510 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2511 } else {
2512 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2513 }
2514 } else {
2515 /* Scalar */
2516 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2517 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2518 }
2519 }
2520
2521 /* Emit padding (all zero) */
2522 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2523
2524 /* Tack on constants */
2525
2526 if (bundle->has_embedded_constants) {
2527 util_dynarray_append(emission, float, bundle->constants[0]);
2528 util_dynarray_append(emission, float, bundle->constants[1]);
2529 util_dynarray_append(emission, float, bundle->constants[2]);
2530 util_dynarray_append(emission, float, bundle->constants[3]);
2531 }
2532
2533 break;
2534 }
2535
2536 case TAG_LOAD_STORE_4: {
2537 /* One or two composing instructions */
2538
2539 uint64_t current64, next64 = LDST_NOP;
2540
2541 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2542
2543 if (bundle->instruction_count == 2)
2544 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2545
2546 midgard_load_store instruction = {
2547 .type = bundle->tag,
2548 .next_type = next_tag,
2549 .word1 = current64,
2550 .word2 = next64
2551 };
2552
2553 util_dynarray_append(emission, midgard_load_store, instruction);
2554
2555 break;
2556 }
2557
2558 case TAG_TEXTURE_4: {
2559 /* Texture instructions are easy, since there is no
2560 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2561
2562 midgard_instruction *ins = &bundle->instructions[0];
2563
2564 ins->texture.type = TAG_TEXTURE_4;
2565 ins->texture.next_type = next_tag;
2566
2567 ctx->texture_op_count--;
2568
2569 if (!ctx->texture_op_count) {
2570 ins->texture.cont = 0;
2571 ins->texture.last = 1;
2572 }
2573
2574 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2575 break;
2576 }
2577
2578 default:
2579 DBG("Unknown midgard instruction type\n");
2580 assert(0);
2581 break;
2582 }
2583 }
2584
2585
2586 /* ALU instructions can inline or embed constants, which decreases register
2587 * pressure and saves space. */
2588
2589 #define CONDITIONAL_ATTACH(src) { \
2590 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2591 \
2592 if (entry) { \
2593 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2594 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2595 } \
2596 }
2597
2598 static void
2599 inline_alu_constants(compiler_context *ctx)
2600 {
2601 mir_foreach_instr(ctx, alu) {
2602 /* Other instructions cannot inline constants */
2603 if (alu->type != TAG_ALU_4) continue;
2604
2605 /* If there is already a constant here, we can do nothing */
2606 if (alu->has_constants) continue;
2607
2608 CONDITIONAL_ATTACH(src0);
2609
2610 if (!alu->has_constants) {
2611 CONDITIONAL_ATTACH(src1)
2612 } else if (!alu->inline_constant) {
2613 /* Corner case: _two_ vec4 constants, for instance with a
2614 * csel. For this case, we can only use a constant
2615 * register for one, we'll have to emit a move for the
2616 * other. Note, if both arguments are constants, then
2617 * necessarily neither argument depends on the value of
2618 * any particular register. As the destination register
2619 * will be wiped, that means we can spill the constant
2620 * to the destination register.
2621 */
2622
2623 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2624 unsigned scratch = alu->ssa_args.dest;
2625
2626 if (entry) {
2627 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2628 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2629
2630 /* Force a break XXX Defer r31 writes */
2631 ins.unit = UNIT_VLUT;
2632
2633 /* Set the source */
2634 alu->ssa_args.src1 = scratch;
2635
2636 /* Inject us -before- the last instruction which set r31 */
2637 mir_insert_instruction_before(mir_prev_op(alu), ins);
2638 }
2639 }
2640 }
2641 }
2642
2643 /* Midgard supports two types of constants, embedded constants (128-bit) and
2644 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2645 * constants can be demoted to inline constants, for space savings and
2646 * sometimes a performance boost */
2647
2648 static void
2649 embedded_to_inline_constant(compiler_context *ctx)
2650 {
2651 mir_foreach_instr(ctx, ins) {
2652 if (!ins->has_constants) continue;
2653
2654 if (ins->ssa_args.inline_constant) continue;
2655
2656 /* Blend constants must not be inlined by definition */
2657 if (ins->has_blend_constant) continue;
2658
2659 /* src1 cannot be an inline constant due to encoding
2660 * restrictions. So, if possible we try to flip the arguments
2661 * in that case */
2662
2663 int op = ins->alu.op;
2664
2665 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2666 /* Flip based on op. Fallthrough intentional */
2667
2668 switch (op) {
2669 /* These ops require an operational change to flip their arguments TODO */
2670 case midgard_alu_op_flt:
2671 case midgard_alu_op_fle:
2672 case midgard_alu_op_ilt:
2673 case midgard_alu_op_ile:
2674 case midgard_alu_op_fcsel:
2675 case midgard_alu_op_icsel:
2676 case midgard_alu_op_isub:
2677 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2678 break;
2679
2680 /* These ops are commutative and Just Flip */
2681 case midgard_alu_op_fne:
2682 case midgard_alu_op_fadd:
2683 case midgard_alu_op_fmul:
2684 case midgard_alu_op_fmin:
2685 case midgard_alu_op_fmax:
2686 case midgard_alu_op_iadd:
2687 case midgard_alu_op_imul:
2688 case midgard_alu_op_feq:
2689 case midgard_alu_op_ieq:
2690 case midgard_alu_op_ine:
2691 case midgard_alu_op_iand:
2692 case midgard_alu_op_ior:
2693 case midgard_alu_op_ixor:
2694 /* Flip the SSA numbers */
2695 ins->ssa_args.src0 = ins->ssa_args.src1;
2696 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2697
2698 /* And flip the modifiers */
2699
2700 unsigned src_temp;
2701
2702 src_temp = ins->alu.src2;
2703 ins->alu.src2 = ins->alu.src1;
2704 ins->alu.src1 = src_temp;
2705
2706 default:
2707 break;
2708 }
2709 }
2710
2711 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2712 /* Extract the source information */
2713
2714 midgard_vector_alu_src *src;
2715 int q = ins->alu.src2;
2716 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2717 src = m;
2718
2719 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2720 int component = src->swizzle & 3;
2721
2722 /* Scale constant appropriately, if we can legally */
2723 uint16_t scaled_constant = 0;
2724
2725 /* XXX: Check legality */
2726 if (midgard_is_integer_op(op)) {
2727 /* TODO: Inline integer */
2728 continue;
2729
2730 unsigned int *iconstants = (unsigned int *) ins->constants;
2731 scaled_constant = (uint16_t) iconstants[component];
2732
2733 /* Constant overflow after resize */
2734 if (scaled_constant != iconstants[component])
2735 continue;
2736 } else {
2737 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2738 }
2739
2740 /* We don't know how to handle these with a constant */
2741
2742 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2743 DBG("Bailing inline constant...\n");
2744 continue;
2745 }
2746
2747 /* Make sure that the constant is not itself a
2748 * vector by checking if all accessed values
2749 * (by the swizzle) are the same. */
2750
2751 uint32_t *cons = (uint32_t *) ins->constants;
2752 uint32_t value = cons[component];
2753
2754 bool is_vector = false;
2755 unsigned mask = effective_writemask(&ins->alu);
2756
2757 for (int c = 1; c < 4; ++c) {
2758 /* We only care if this component is actually used */
2759 if (!(mask & (1 << c)))
2760 continue;
2761
2762 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2763
2764 if (test != value) {
2765 is_vector = true;
2766 break;
2767 }
2768 }
2769
2770 if (is_vector)
2771 continue;
2772
2773 /* Get rid of the embedded constant */
2774 ins->has_constants = false;
2775 ins->ssa_args.src1 = SSA_UNUSED_0;
2776 ins->ssa_args.inline_constant = true;
2777 ins->inline_constant = scaled_constant;
2778 }
2779 }
2780 }
2781
2782 /* Map normal SSA sources to other SSA sources / fixed registers (like
2783 * uniforms) */
2784
2785 static void
2786 map_ssa_to_alias(compiler_context *ctx, int *ref)
2787 {
2788 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2789
2790 if (alias) {
2791 /* Remove entry in leftovers to avoid a redunant fmov */
2792
2793 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2794
2795 if (leftover)
2796 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2797
2798 /* Assign the alias map */
2799 *ref = alias - 1;
2800 return;
2801 }
2802 }
2803
2804 #define AS_SRC(to, u) \
2805 int q##to = ins->alu.src2; \
2806 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2807
2808 /* Removing unused moves is necessary to clean up the texture pipeline results.
2809 *
2810 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2811
2812 static void
2813 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2814 {
2815 mir_foreach_instr_in_block_safe(block, ins) {
2816 if (ins->type != TAG_ALU_4) continue;
2817
2818 if (ins->alu.op != midgard_alu_op_fmov) continue;
2819
2820 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2821
2822 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2823
2824 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2825
2826 mir_remove_instruction(ins);
2827 }
2828 }
2829
2830 /* The following passes reorder MIR instructions to enable better scheduling */
2831
2832 static void
2833 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2834 {
2835 mir_foreach_instr_in_block_safe(block, ins) {
2836 if (ins->type != TAG_LOAD_STORE_4) continue;
2837
2838 /* We've found a load/store op. Check if next is also load/store. */
2839 midgard_instruction *next_op = mir_next_op(ins);
2840 if (&next_op->link != &block->instructions) {
2841 if (next_op->type == TAG_LOAD_STORE_4) {
2842 /* If so, we're done since we're a pair */
2843 ins = mir_next_op(ins);
2844 continue;
2845 }
2846
2847 /* Maximum search distance to pair, to avoid register pressure disasters */
2848 int search_distance = 8;
2849
2850 /* Otherwise, we have an orphaned load/store -- search for another load */
2851 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2852 /* Terminate search if necessary */
2853 if (!(search_distance--)) break;
2854
2855 if (c->type != TAG_LOAD_STORE_4) continue;
2856
2857 if (OP_IS_STORE(c->load_store.op)) continue;
2858
2859 /* We found one! Move it up to pair and remove it from the old location */
2860
2861 mir_insert_instruction_before(ins, *c);
2862 mir_remove_instruction(c);
2863
2864 break;
2865 }
2866 }
2867 }
2868 }
2869
2870 /* Emit varying stores late */
2871
2872 static void
2873 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2874 /* Iterate in reverse to get the final write, rather than the first */
2875
2876 mir_foreach_instr_in_block_safe_rev(block, ins) {
2877 /* Check if what we just wrote needs a store */
2878 int idx = ins->ssa_args.dest;
2879 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2880
2881 if (!varying) continue;
2882
2883 varying -= 1;
2884
2885 /* We need to store to the appropriate varying, so emit the
2886 * move/store */
2887
2888 /* TODO: Integrate with special purpose RA (and scheduler?) */
2889 bool high_varying_register = false;
2890
2891 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2892
2893 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2894 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2895
2896 mir_insert_instruction_before(mir_next_op(ins), st);
2897 mir_insert_instruction_before(mir_next_op(ins), mov);
2898
2899 /* We no longer need to store this varying */
2900 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2901 }
2902 }
2903
2904 /* If there are leftovers after the below pass, emit actual fmov
2905 * instructions for the slow-but-correct path */
2906
2907 static void
2908 emit_leftover_move(compiler_context *ctx)
2909 {
2910 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2911 int base = ((uintptr_t) leftover->key) - 1;
2912 int mapped = base;
2913
2914 map_ssa_to_alias(ctx, &mapped);
2915 EMIT(fmov, mapped, blank_alu_src, base);
2916 }
2917 }
2918
2919 static void
2920 actualise_ssa_to_alias(compiler_context *ctx)
2921 {
2922 mir_foreach_instr(ctx, ins) {
2923 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2924 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2925 }
2926
2927 emit_leftover_move(ctx);
2928 }
2929
2930 /* Vertex shaders do not write gl_Position as is; instead, they write a
2931 * transformed screen space position as a varying. See section 12.5 "Coordinate
2932 * Transformation" of the ES 3.2 full specification for details.
2933 *
2934 * This transformation occurs early on, as NIR and prior to optimisation, in
2935 * order to take advantage of NIR optimisation passes of the transform itself.
2936 * */
2937
2938 static void
2939 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2940 {
2941 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2942
2943 /* Get viewport from the uniforms */
2944 nir_intrinsic_instr *load;
2945 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2946 load->num_components = 4;
2947 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2948 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2949 nir_builder_instr_insert(b, &load->instr);
2950
2951 /* Formatted as <width, height, centerx, centery> */
2952 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2953 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2954 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2955 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2956
2957 /* XXX: From uniforms? */
2958 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2959 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2960
2961 /* World space to normalised device coordinates */
2962
2963 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2964 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2965
2966 /* Normalised device coordinates to screen space */
2967
2968 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2969 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2970
2971 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2972 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2973 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2974
2975 /* gl_Position will be written out in screenspace xyz, with w set to
2976 * the reciprocal we computed earlier. The transformed w component is
2977 * then used for perspective-correct varying interpolation. The
2978 * transformed w component must preserve its original sign; this is
2979 * used in depth clipping computations */
2980
2981 nir_ssa_def *screen_space = nir_vec4(b,
2982 nir_channel(b, viewport_xy, 0),
2983 nir_channel(b, viewport_xy, 1),
2984 screen_depth,
2985 w_recip);
2986
2987 /* Finally, write out the transformed values to the varying */
2988
2989 nir_intrinsic_instr *store;
2990 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2991 store->num_components = 4;
2992 nir_intrinsic_set_base(store, 0);
2993 nir_intrinsic_set_write_mask(store, 0xf);
2994 store->src[0].ssa = screen_space;
2995 store->src[0].is_ssa = true;
2996 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2997 nir_builder_instr_insert(b, &store->instr);
2998 }
2999
3000 static void
3001 transform_position_writes(nir_shader *shader)
3002 {
3003 nir_foreach_function(func, shader) {
3004 nir_foreach_block(block, func->impl) {
3005 nir_foreach_instr_safe(instr, block) {
3006 if (instr->type != nir_instr_type_intrinsic) continue;
3007
3008 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3009 nir_variable *out = NULL;
3010
3011 switch (intr->intrinsic) {
3012 case nir_intrinsic_store_output:
3013 /* already had i/o lowered.. lookup the matching output var: */
3014 nir_foreach_variable(var, &shader->outputs) {
3015 int drvloc = var->data.driver_location;
3016
3017 if (nir_intrinsic_base(intr) == drvloc) {
3018 out = var;
3019 break;
3020 }
3021 }
3022
3023 break;
3024
3025 default:
3026 break;
3027 }
3028
3029 if (!out) continue;
3030
3031 if (out->data.mode != nir_var_shader_out)
3032 continue;
3033
3034 if (out->data.location != VARYING_SLOT_POS)
3035 continue;
3036
3037 nir_builder b;
3038 nir_builder_init(&b, func->impl);
3039 b.cursor = nir_before_instr(instr);
3040
3041 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3042 nir_instr_remove(instr);
3043 }
3044 }
3045 }
3046 }
3047
3048 static void
3049 emit_fragment_epilogue(compiler_context *ctx)
3050 {
3051 /* Special case: writing out constants requires us to include the move
3052 * explicitly now, so shove it into r0 */
3053
3054 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3055
3056 if (constant_value) {
3057 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3058 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3059 emit_mir_instruction(ctx, ins);
3060 }
3061
3062 /* Perform the actual fragment writeout. We have two writeout/branch
3063 * instructions, forming a loop until writeout is successful as per the
3064 * docs. TODO: gl_FragDepth */
3065
3066 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3067 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3068 }
3069
3070 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3071 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3072 * with the int8 analogue to the fragment epilogue */
3073
3074 static void
3075 emit_blend_epilogue(compiler_context *ctx)
3076 {
3077 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3078
3079 midgard_instruction scale = {
3080 .type = TAG_ALU_4,
3081 .unit = UNIT_VMUL,
3082 .inline_constant = _mesa_float_to_half(255.0),
3083 .ssa_args = {
3084 .src0 = SSA_FIXED_REGISTER(0),
3085 .src1 = SSA_UNUSED_0,
3086 .dest = SSA_FIXED_REGISTER(24),
3087 .inline_constant = true
3088 },
3089 .alu = {
3090 .op = midgard_alu_op_fmul,
3091 .reg_mode = midgard_reg_mode_full,
3092 .dest_override = midgard_dest_override_lower,
3093 .mask = 0xFF,
3094 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3095 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3096 }
3097 };
3098
3099 emit_mir_instruction(ctx, scale);
3100
3101 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3102
3103 midgard_vector_alu_src alu_src = blank_alu_src;
3104 alu_src.half = true;
3105
3106 midgard_instruction f2u8 = {
3107 .type = TAG_ALU_4,
3108 .ssa_args = {
3109 .src0 = SSA_FIXED_REGISTER(24),
3110 .src1 = SSA_UNUSED_0,
3111 .dest = SSA_FIXED_REGISTER(0),
3112 .inline_constant = true
3113 },
3114 .alu = {
3115 .op = midgard_alu_op_f2u8,
3116 .reg_mode = midgard_reg_mode_half,
3117 .dest_override = midgard_dest_override_lower,
3118 .outmod = midgard_outmod_pos,
3119 .mask = 0xF,
3120 .src1 = vector_alu_srco_unsigned(alu_src),
3121 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3122 }
3123 };
3124
3125 emit_mir_instruction(ctx, f2u8);
3126
3127 /* vmul.imov.quarter r0, r0, r0 */
3128
3129 midgard_instruction imov_8 = {
3130 .type = TAG_ALU_4,
3131 .ssa_args = {
3132 .src0 = SSA_UNUSED_1,
3133 .src1 = SSA_FIXED_REGISTER(0),
3134 .dest = SSA_FIXED_REGISTER(0),
3135 },
3136 .alu = {
3137 .op = midgard_alu_op_imov,
3138 .reg_mode = midgard_reg_mode_quarter,
3139 .dest_override = midgard_dest_override_none,
3140 .mask = 0xFF,
3141 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3142 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3143 }
3144 };
3145
3146 /* Emit branch epilogue with the 8-bit move as the source */
3147
3148 emit_mir_instruction(ctx, imov_8);
3149 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3150
3151 emit_mir_instruction(ctx, imov_8);
3152 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3153 }
3154
3155 static midgard_block *
3156 emit_block(compiler_context *ctx, nir_block *block)
3157 {
3158 midgard_block *this_block = malloc(sizeof(midgard_block));
3159 list_addtail(&this_block->link, &ctx->blocks);
3160
3161 this_block->is_scheduled = false;
3162 ++ctx->block_count;
3163
3164 ctx->texture_index[0] = -1;
3165 ctx->texture_index[1] = -1;
3166
3167 /* Set up current block */
3168 list_inithead(&this_block->instructions);
3169 ctx->current_block = this_block;
3170
3171 nir_foreach_instr(instr, block) {
3172 emit_instr(ctx, instr);
3173 ++ctx->instruction_count;
3174 }
3175
3176 inline_alu_constants(ctx);
3177 embedded_to_inline_constant(ctx);
3178
3179 /* Perform heavylifting for aliasing */
3180 actualise_ssa_to_alias(ctx);
3181
3182 midgard_emit_store(ctx, this_block);
3183 midgard_eliminate_orphan_moves(ctx, this_block);
3184 midgard_pair_load_store(ctx, this_block);
3185
3186 /* Append fragment shader epilogue (value writeout) */
3187 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3188 if (block == nir_impl_last_block(ctx->func->impl)) {
3189 if (ctx->is_blend)
3190 emit_blend_epilogue(ctx);
3191 else
3192 emit_fragment_epilogue(ctx);
3193 }
3194 }
3195
3196 /* Fallthrough save */
3197 this_block->next_fallthrough = ctx->previous_source_block;
3198
3199 if (block == nir_start_block(ctx->func->impl))
3200 ctx->initial_block = this_block;
3201
3202 if (block == nir_impl_last_block(ctx->func->impl))
3203 ctx->final_block = this_block;
3204
3205 /* Allow the next control flow to access us retroactively, for
3206 * branching etc */
3207 ctx->current_block = this_block;
3208
3209 /* Document the fallthrough chain */
3210 ctx->previous_source_block = this_block;
3211
3212 return this_block;
3213 }
3214
3215 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3216
3217 static void
3218 emit_if(struct compiler_context *ctx, nir_if *nif)
3219 {
3220 /* Conditional branches expect the condition in r31.w; emit a move for
3221 * that in the _previous_ block (which is the current block). */
3222 emit_condition(ctx, &nif->condition, true);
3223
3224 /* Speculatively emit the branch, but we can't fill it in until later */
3225 EMIT(branch, true, true);
3226 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3227
3228 /* Emit the two subblocks */
3229 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3230
3231 /* Emit a jump from the end of the then block to the end of the else */
3232 EMIT(branch, false, false);
3233 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3234
3235 /* Emit second block, and check if it's empty */
3236
3237 int else_idx = ctx->block_count;
3238 int count_in = ctx->instruction_count;
3239 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3240 int after_else_idx = ctx->block_count;
3241
3242 /* Now that we have the subblocks emitted, fix up the branches */
3243
3244 assert(then_block);
3245 assert(else_block);
3246
3247 if (ctx->instruction_count == count_in) {
3248 /* The else block is empty, so don't emit an exit jump */
3249 mir_remove_instruction(then_exit);
3250 then_branch->branch.target_block = after_else_idx;
3251 } else {
3252 then_branch->branch.target_block = else_idx;
3253 then_exit->branch.target_block = after_else_idx;
3254 }
3255 }
3256
3257 static void
3258 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3259 {
3260 /* Remember where we are */
3261 midgard_block *start_block = ctx->current_block;
3262
3263 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3264 * single current_loop variable, maybe we need a stack */
3265
3266 int loop_idx = ++ctx->current_loop;
3267
3268 /* Get index from before the body so we can loop back later */
3269 int start_idx = ctx->block_count;
3270
3271 /* Emit the body itself */
3272 emit_cf_list(ctx, &nloop->body);
3273
3274 /* Branch back to loop back */
3275 struct midgard_instruction br_back = v_branch(false, false);
3276 br_back.branch.target_block = start_idx;
3277 emit_mir_instruction(ctx, br_back);
3278
3279 /* Find the index of the block about to follow us (note: we don't add
3280 * one; blocks are 0-indexed so we get a fencepost problem) */
3281 int break_block_idx = ctx->block_count;
3282
3283 /* Fix up the break statements we emitted to point to the right place,
3284 * now that we can allocate a block number for them */
3285
3286 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3287 if (midgard_debug & MIDGARD_DBG_SHADERS)
3288 print_mir_block(block);
3289 mir_foreach_instr_in_block(block, ins) {
3290 if (ins->type != TAG_ALU_4) continue;
3291 if (!ins->compact_branch) continue;
3292 if (ins->prepacked_branch) continue;
3293
3294 /* We found a branch -- check the type to see if we need to do anything */
3295 if (ins->branch.target_type != TARGET_BREAK) continue;
3296
3297 /* It's a break! Check if it's our break */
3298 if (ins->branch.target_break != loop_idx) continue;
3299
3300 /* Okay, cool, we're breaking out of this loop.
3301 * Rewrite from a break to a goto */
3302
3303 ins->branch.target_type = TARGET_GOTO;
3304 ins->branch.target_block = break_block_idx;
3305 }
3306 }
3307 }
3308
3309 static midgard_block *
3310 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3311 {
3312 midgard_block *start_block = NULL;
3313
3314 foreach_list_typed(nir_cf_node, node, node, list) {
3315 switch (node->type) {
3316 case nir_cf_node_block: {
3317 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3318
3319 if (!start_block)
3320 start_block = block;
3321
3322 break;
3323 }
3324
3325 case nir_cf_node_if:
3326 emit_if(ctx, nir_cf_node_as_if(node));
3327 break;
3328
3329 case nir_cf_node_loop:
3330 emit_loop(ctx, nir_cf_node_as_loop(node));
3331 break;
3332
3333 case nir_cf_node_function:
3334 assert(0);
3335 break;
3336 }
3337 }
3338
3339 return start_block;
3340 }
3341
3342 /* Due to lookahead, we need to report the first tag executed in the command
3343 * stream and in branch targets. An initial block might be empty, so iterate
3344 * until we find one that 'works' */
3345
3346 static unsigned
3347 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3348 {
3349 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3350
3351 unsigned first_tag = 0;
3352
3353 do {
3354 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3355
3356 if (initial_bundle) {
3357 first_tag = initial_bundle->tag;
3358 break;
3359 }
3360
3361 /* Initial block is empty, try the next block */
3362 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3363 } while(initial_block != NULL);
3364
3365 assert(first_tag);
3366 return first_tag;
3367 }
3368
3369 int
3370 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3371 {
3372 struct util_dynarray *compiled = &program->compiled;
3373
3374 midgard_debug = debug_get_option_midgard_debug();
3375
3376 compiler_context ictx = {
3377 .nir = nir,
3378 .stage = nir->info.stage,
3379
3380 .is_blend = is_blend,
3381 .blend_constant_offset = -1,
3382
3383 .alpha_ref = program->alpha_ref
3384 };
3385
3386 compiler_context *ctx = &ictx;
3387
3388 /* TODO: Decide this at runtime */
3389 ctx->uniform_cutoff = 8;
3390
3391 switch (ctx->stage) {
3392 case MESA_SHADER_VERTEX:
3393 ctx->special_uniforms = 1;
3394 break;
3395
3396 default:
3397 ctx->special_uniforms = 0;
3398 break;
3399 }
3400
3401 /* Append epilogue uniforms if necessary. The cmdstream depends on
3402 * these being at the -end-; see assign_var_locations. */
3403
3404 if (ctx->stage == MESA_SHADER_VERTEX) {
3405 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3406 }
3407
3408 /* Assign var locations early, so the epilogue can use them if necessary */
3409
3410 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3411 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3412 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3413
3414 /* Initialize at a global (not block) level hash tables */
3415
3416 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3417 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3418 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3419 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3420 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3421 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3422
3423 /* Assign actual uniform location, skipping over samplers */
3424
3425 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3426
3427 nir_foreach_variable(var, &nir->uniforms) {
3428 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3429
3430 unsigned length = glsl_get_aoa_size(var->type);
3431
3432 if (!length) {
3433 length = glsl_get_length(var->type);
3434 }
3435
3436 if (!length) {
3437 length = glsl_get_matrix_columns(var->type);
3438 }
3439
3440 for (int col = 0; col < length; ++col) {
3441 int id = ctx->uniform_count++;
3442 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3443 }
3444 }
3445
3446 /* Record the varying mapping for the command stream's bookkeeping */
3447
3448 struct exec_list *varyings =
3449 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3450
3451 nir_foreach_variable(var, varyings) {
3452 unsigned loc = var->data.driver_location;
3453 program->varyings[loc] = var->data.location;
3454 }
3455
3456 /* Lower vars -- not I/O -- before epilogue */
3457
3458 NIR_PASS_V(nir, nir_lower_var_copies);
3459 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3460 NIR_PASS_V(nir, nir_split_var_copies);
3461 NIR_PASS_V(nir, nir_lower_var_copies);
3462 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3463 NIR_PASS_V(nir, nir_lower_var_copies);
3464 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3465 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3466
3467 /* Append vertex epilogue before optimisation, so the epilogue itself
3468 * is optimised */
3469
3470 if (ctx->stage == MESA_SHADER_VERTEX)
3471 transform_position_writes(nir);
3472
3473 /* Optimisation passes */
3474
3475 optimise_nir(nir);
3476
3477 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3478 nir_print_shader(nir, stdout);
3479 }
3480
3481 /* Assign counts, now that we're sure (post-optimisation) */
3482 program->uniform_count = nir->num_uniforms;
3483
3484 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3485 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3486
3487
3488 nir_foreach_function(func, nir) {
3489 if (!func->impl)
3490 continue;
3491
3492 list_inithead(&ctx->blocks);
3493 ctx->block_count = 0;
3494 ctx->func = func;
3495
3496 emit_cf_list(ctx, &func->impl->body);
3497 emit_block(ctx, func->impl->end_block);
3498
3499 break; /* TODO: Multi-function shaders */
3500 }
3501
3502 util_dynarray_init(compiled, NULL);
3503
3504 /* Schedule! */
3505 schedule_program(ctx);
3506
3507 /* Now that all the bundles are scheduled and we can calculate block
3508 * sizes, emit actual branch instructions rather than placeholders */
3509
3510 int br_block_idx = 0;
3511
3512 mir_foreach_block(ctx, block) {
3513 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3514 for (int c = 0; c < bundle->instruction_count; ++c) {
3515 midgard_instruction *ins = &bundle->instructions[c];
3516
3517 if (!midgard_is_branch_unit(ins->unit)) continue;
3518
3519 if (ins->prepacked_branch) continue;
3520
3521 /* Parse some basic branch info */
3522 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3523 bool is_conditional = ins->branch.conditional;
3524 bool is_inverted = ins->branch.invert_conditional;
3525 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3526
3527 /* Determine the block we're jumping to */
3528 int target_number = ins->branch.target_block;
3529
3530 /* Report the destination tag. Discards don't need this */
3531 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3532
3533 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3534 int quadword_offset = 0;
3535
3536 if (is_discard) {
3537 /* Jump to the end of the shader. We
3538 * need to include not only the
3539 * following blocks, but also the
3540 * contents of our current block (since
3541 * discard can come in the middle of
3542 * the block) */
3543
3544 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3545
3546 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3547 quadword_offset += quadword_size(bun->tag);
3548 }
3549
3550 mir_foreach_block_from(ctx, blk, b) {
3551 quadword_offset += b->quadword_count;
3552 }
3553
3554 } else if (target_number > br_block_idx) {
3555 /* Jump forward */
3556
3557 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3558 midgard_block *blk = mir_get_block(ctx, idx);
3559 assert(blk);
3560
3561 quadword_offset += blk->quadword_count;
3562 }
3563 } else {
3564 /* Jump backwards */
3565
3566 for (int idx = br_block_idx; idx >= target_number; --idx) {
3567 midgard_block *blk = mir_get_block(ctx, idx);
3568 assert(blk);
3569
3570 quadword_offset -= blk->quadword_count;
3571 }
3572 }
3573
3574 /* Unconditional extended branches (far jumps)
3575 * have issues, so we always use a conditional
3576 * branch, setting the condition to always for
3577 * unconditional. For compact unconditional
3578 * branches, cond isn't used so it doesn't
3579 * matter what we pick. */
3580
3581 midgard_condition cond =
3582 !is_conditional ? midgard_condition_always :
3583 is_inverted ? midgard_condition_false :
3584 midgard_condition_true;
3585
3586 midgard_jmp_writeout_op op =
3587 is_discard ? midgard_jmp_writeout_op_discard :
3588 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3589 midgard_jmp_writeout_op_branch_cond;
3590
3591 if (!is_compact) {
3592 midgard_branch_extended branch =
3593 midgard_create_branch_extended(
3594 cond, op,
3595 dest_tag,
3596 quadword_offset);
3597
3598 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3599 } else if (is_conditional || is_discard) {
3600 midgard_branch_cond branch = {
3601 .op = op,
3602 .dest_tag = dest_tag,
3603 .offset = quadword_offset,
3604 .cond = cond
3605 };
3606
3607 assert(branch.offset == quadword_offset);
3608
3609 memcpy(&ins->br_compact, &branch, sizeof(branch));
3610 } else {
3611 assert(op == midgard_jmp_writeout_op_branch_uncond);
3612
3613 midgard_branch_uncond branch = {
3614 .op = op,
3615 .dest_tag = dest_tag,
3616 .offset = quadword_offset,
3617 .unknown = 1
3618 };
3619
3620 assert(branch.offset == quadword_offset);
3621
3622 memcpy(&ins->br_compact, &branch, sizeof(branch));
3623 }
3624 }
3625 }
3626
3627 ++br_block_idx;
3628 }
3629
3630 /* Emit flat binary from the instruction arrays. Iterate each block in
3631 * sequence. Save instruction boundaries such that lookahead tags can
3632 * be assigned easily */
3633
3634 /* Cache _all_ bundles in source order for lookahead across failed branches */
3635
3636 int bundle_count = 0;
3637 mir_foreach_block(ctx, block) {
3638 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3639 }
3640 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3641 int bundle_idx = 0;
3642 mir_foreach_block(ctx, block) {
3643 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3644 source_order_bundles[bundle_idx++] = bundle;
3645 }
3646 }
3647
3648 int current_bundle = 0;
3649
3650 mir_foreach_block(ctx, block) {
3651 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3652 int lookahead = 1;
3653
3654 if (current_bundle + 1 < bundle_count) {
3655 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3656
3657 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3658 lookahead = 1;
3659 } else {
3660 lookahead = next;
3661 }
3662 }
3663
3664 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3665 ++current_bundle;
3666 }
3667
3668 /* TODO: Free deeper */
3669 //util_dynarray_fini(&block->instructions);
3670 }
3671
3672 free(source_order_bundles);
3673
3674 /* Report the very first tag executed */
3675 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3676
3677 /* Deal with off-by-one related to the fencepost problem */
3678 program->work_register_count = ctx->work_registers + 1;
3679
3680 program->can_discard = ctx->can_discard;
3681 program->uniform_cutoff = ctx->uniform_cutoff;
3682
3683 program->blend_patch_offset = ctx->blend_constant_offset;
3684
3685 if (midgard_debug & MIDGARD_DBG_SHADERS)
3686 disassemble_midgard(program->compiled.data, program->compiled.size);
3687
3688 return 0;
3689 }