panfrost/midgard: Handle non-zero component in store
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50
51 #include "disassemble.h"
52
53 static const struct debug_named_value debug_options[] = {
54 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
55 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
56 DEBUG_NAMED_VALUE_END
57 };
58
59 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
60
61 int midgard_debug = 0;
62
63 #define DBG(fmt, ...) \
64 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
65 fprintf(stderr, "%s:%d: "fmt, \
66 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
67
68 static bool
69 midgard_is_branch_unit(unsigned unit)
70 {
71 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
72 }
73
74 static void
75 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
76 {
77 block->successors[block->nr_successors++] = successor;
78 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
79 }
80
81 /* Helpers to generate midgard_instruction's using macro magic, since every
82 * driver seems to do it that way */
83
84 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
85 #define SWIZZLE_XXXX SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X)
86 #define SWIZZLE_XYXX SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X)
87 #define SWIZZLE_XYZX SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X)
88 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
89 #define SWIZZLE_XYXZ SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_Z)
90 #define SWIZZLE_WWWW SWIZZLE(COMPONENT_W, COMPONENT_W, COMPONENT_W, COMPONENT_W)
91
92 static inline unsigned
93 swizzle_of(unsigned comp)
94 {
95 switch (comp) {
96 case 1:
97 return SWIZZLE_XXXX;
98 case 2:
99 return SWIZZLE_XYXX;
100 case 3:
101 return SWIZZLE_XYZX;
102 case 4:
103 return SWIZZLE_XYZW;
104 default:
105 unreachable("Invalid component count");
106 }
107 }
108
109 static inline unsigned
110 mask_of(unsigned nr_comp)
111 {
112 return (1 << nr_comp) - 1;
113 }
114
115 #define M_LOAD_STORE(name, rname, uname) \
116 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
117 midgard_instruction i = { \
118 .type = TAG_LOAD_STORE_4, \
119 .ssa_args = { \
120 .rname = ssa, \
121 .uname = -1, \
122 .src1 = -1 \
123 }, \
124 .load_store = { \
125 .op = midgard_op_##name, \
126 .mask = 0xF, \
127 .swizzle = SWIZZLE_XYZW, \
128 .address = address \
129 } \
130 }; \
131 \
132 return i; \
133 }
134
135 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
136 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
137
138 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
139 * the corresponding Midgard source */
140
141 static midgard_vector_alu_src
142 vector_alu_modifiers(nir_alu_src *src, bool is_int)
143 {
144 if (!src) return blank_alu_src;
145
146 midgard_vector_alu_src alu_src = {
147 .rep_low = 0,
148 .rep_high = 0,
149 .half = 0, /* TODO */
150 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
151 };
152
153 if (is_int) {
154 /* TODO: sign-extend/zero-extend */
155 alu_src.mod = midgard_int_normal;
156
157 /* These should have been lowered away */
158 assert(!(src->abs || src->negate));
159 } else {
160 alu_src.mod = (src->abs << 0) | (src->negate << 1);
161 }
162
163 return alu_src;
164 }
165
166 /* load/store instructions have both 32-bit and 16-bit variants, depending on
167 * whether we are using vectors composed of highp or mediump. At the moment, we
168 * don't support half-floats -- this requires changes in other parts of the
169 * compiler -- therefore the 16-bit versions are commented out. */
170
171 //M_LOAD(ld_attr_16);
172 M_LOAD(ld_attr_32);
173 //M_LOAD(ld_vary_16);
174 M_LOAD(ld_vary_32);
175 //M_LOAD(ld_uniform_16);
176 M_LOAD(ld_uniform_32);
177 M_LOAD(ld_color_buffer_8);
178 //M_STORE(st_vary_16);
179 M_STORE(st_vary_32);
180 M_STORE(st_cubemap_coords);
181
182 static midgard_instruction
183 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
184 {
185 midgard_branch_cond branch = {
186 .op = op,
187 .dest_tag = tag,
188 .offset = offset,
189 .cond = cond
190 };
191
192 uint16_t compact;
193 memcpy(&compact, &branch, sizeof(branch));
194
195 midgard_instruction ins = {
196 .type = TAG_ALU_4,
197 .unit = ALU_ENAB_BR_COMPACT,
198 .prepacked_branch = true,
199 .compact_branch = true,
200 .br_compact = compact
201 };
202
203 if (op == midgard_jmp_writeout_op_writeout)
204 ins.writeout = true;
205
206 return ins;
207 }
208
209 static midgard_instruction
210 v_branch(bool conditional, bool invert)
211 {
212 midgard_instruction ins = {
213 .type = TAG_ALU_4,
214 .unit = ALU_ENAB_BRANCH,
215 .compact_branch = true,
216 .branch = {
217 .conditional = conditional,
218 .invert_conditional = invert
219 }
220 };
221
222 return ins;
223 }
224
225 static midgard_branch_extended
226 midgard_create_branch_extended( midgard_condition cond,
227 midgard_jmp_writeout_op op,
228 unsigned dest_tag,
229 signed quadword_offset)
230 {
231 /* For unclear reasons, the condition code is repeated 8 times */
232 uint16_t duplicated_cond =
233 (cond << 14) |
234 (cond << 12) |
235 (cond << 10) |
236 (cond << 8) |
237 (cond << 6) |
238 (cond << 4) |
239 (cond << 2) |
240 (cond << 0);
241
242 midgard_branch_extended branch = {
243 .op = op,
244 .dest_tag = dest_tag,
245 .offset = quadword_offset,
246 .cond = duplicated_cond
247 };
248
249 return branch;
250 }
251
252 static void
253 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
254 {
255 ins->has_constants = true;
256 memcpy(&ins->constants, constants, 16);
257 }
258
259 static int
260 glsl_type_size(const struct glsl_type *type, bool bindless)
261 {
262 return glsl_count_attribute_slots(type, false);
263 }
264
265 /* Lower fdot2 to a vector multiplication followed by channel addition */
266 static void
267 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
268 {
269 if (alu->op != nir_op_fdot2)
270 return;
271
272 b->cursor = nir_before_instr(&alu->instr);
273
274 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
275 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
276
277 nir_ssa_def *product = nir_fmul(b, src0, src1);
278
279 nir_ssa_def *sum = nir_fadd(b,
280 nir_channel(b, product, 0),
281 nir_channel(b, product, 1));
282
283 /* Replace the fdot2 with this sum */
284 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
285 }
286
287 static int
288 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
289 {
290 switch (instr->intrinsic) {
291 case nir_intrinsic_load_viewport_scale:
292 return PAN_SYSVAL_VIEWPORT_SCALE;
293 case nir_intrinsic_load_viewport_offset:
294 return PAN_SYSVAL_VIEWPORT_OFFSET;
295 default:
296 return -1;
297 }
298 }
299
300 static void
301 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
302 {
303 int sysval = -1;
304
305 if (instr->type == nir_instr_type_intrinsic) {
306 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
307 sysval = midgard_nir_sysval_for_intrinsic(intr);
308 }
309
310 if (sysval < 0)
311 return;
312
313 /* We have a sysval load; check if it's already been assigned */
314
315 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
316 return;
317
318 /* It hasn't -- so assign it now! */
319
320 unsigned id = ctx->sysval_count++;
321 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
322 ctx->sysvals[id] = sysval;
323 }
324
325 static void
326 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
327 {
328 ctx->sysval_count = 0;
329
330 nir_foreach_function(function, shader) {
331 if (!function->impl) continue;
332
333 nir_foreach_block(block, function->impl) {
334 nir_foreach_instr_safe(instr, block) {
335 midgard_nir_assign_sysval_body(ctx, instr);
336 }
337 }
338 }
339 }
340
341 static bool
342 midgard_nir_lower_fdot2(nir_shader *shader)
343 {
344 bool progress = false;
345
346 nir_foreach_function(function, shader) {
347 if (!function->impl) continue;
348
349 nir_builder _b;
350 nir_builder *b = &_b;
351 nir_builder_init(b, function->impl);
352
353 nir_foreach_block(block, function->impl) {
354 nir_foreach_instr_safe(instr, block) {
355 if (instr->type != nir_instr_type_alu) continue;
356
357 nir_alu_instr *alu = nir_instr_as_alu(instr);
358 midgard_nir_lower_fdot2_body(b, alu);
359
360 progress |= true;
361 }
362 }
363
364 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
365
366 }
367
368 return progress;
369 }
370
371 static void
372 optimise_nir(nir_shader *nir)
373 {
374 bool progress;
375 unsigned lower_flrp =
376 (nir->options->lower_flrp16 ? 16 : 0) |
377 (nir->options->lower_flrp32 ? 32 : 0) |
378 (nir->options->lower_flrp64 ? 64 : 0);
379
380 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
381 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
382 NIR_PASS(progress, nir, nir_lower_idiv);
383
384 nir_lower_tex_options lower_tex_options = {
385 .lower_rect = true,
386 .lower_txp = ~0
387 };
388
389 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
390
391 do {
392 progress = false;
393
394 NIR_PASS(progress, nir, nir_lower_var_copies);
395 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
396
397 NIR_PASS(progress, nir, nir_copy_prop);
398 NIR_PASS(progress, nir, nir_opt_dce);
399 NIR_PASS(progress, nir, nir_opt_dead_cf);
400 NIR_PASS(progress, nir, nir_opt_cse);
401 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
402 NIR_PASS(progress, nir, nir_opt_algebraic);
403 NIR_PASS(progress, nir, nir_opt_constant_folding);
404
405 if (lower_flrp != 0) {
406 bool lower_flrp_progress = false;
407 NIR_PASS(lower_flrp_progress,
408 nir,
409 nir_lower_flrp,
410 lower_flrp,
411 false /* always_precise */,
412 nir->options->lower_ffma);
413 if (lower_flrp_progress) {
414 NIR_PASS(progress, nir,
415 nir_opt_constant_folding);
416 progress = true;
417 }
418
419 /* Nothing should rematerialize any flrps, so we only
420 * need to do this lowering once.
421 */
422 lower_flrp = 0;
423 }
424
425 NIR_PASS(progress, nir, nir_opt_undef);
426 NIR_PASS(progress, nir, nir_opt_loop_unroll,
427 nir_var_shader_in |
428 nir_var_shader_out |
429 nir_var_function_temp);
430
431 /* TODO: Enable vectorize when merged upstream */
432 // NIR_PASS(progress, nir, nir_opt_vectorize);
433 } while (progress);
434
435 /* Must be run at the end to prevent creation of fsin/fcos ops */
436 NIR_PASS(progress, nir, midgard_nir_scale_trig);
437
438 do {
439 progress = false;
440
441 NIR_PASS(progress, nir, nir_opt_dce);
442 NIR_PASS(progress, nir, nir_opt_algebraic);
443 NIR_PASS(progress, nir, nir_opt_constant_folding);
444 NIR_PASS(progress, nir, nir_copy_prop);
445 } while (progress);
446
447 NIR_PASS(progress, nir, nir_opt_algebraic_late);
448
449 /* We implement booleans as 32-bit 0/~0 */
450 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
451
452 /* Now that booleans are lowered, we can run out late opts */
453 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
454
455 /* Lower mods for float ops only. Integer ops don't support modifiers
456 * (saturate doesn't make sense on integers, neg/abs require dedicated
457 * instructions) */
458
459 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
460 NIR_PASS(progress, nir, nir_copy_prop);
461 NIR_PASS(progress, nir, nir_opt_dce);
462
463 /* Take us out of SSA */
464 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
465 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
466
467 /* We are a vector architecture; write combine where possible */
468 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
469 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
470
471 NIR_PASS(progress, nir, nir_opt_dce);
472 }
473
474 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
475 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
476 * r0. See the comments in compiler_context */
477
478 static void
479 alias_ssa(compiler_context *ctx, int dest, int src)
480 {
481 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
482 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
483 }
484
485 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
486
487 static void
488 unalias_ssa(compiler_context *ctx, int dest)
489 {
490 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
491 /* TODO: Remove from leftover or no? */
492 }
493
494 /* Do not actually emit a load; instead, cache the constant for inlining */
495
496 static void
497 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
498 {
499 nir_ssa_def def = instr->def;
500
501 float *v = rzalloc_array(NULL, float, 4);
502 nir_const_load_to_arr(v, instr, f32);
503 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
504 }
505
506 static unsigned
507 nir_src_index(compiler_context *ctx, nir_src *src)
508 {
509 if (src->is_ssa)
510 return src->ssa->index;
511 else {
512 assert(!src->reg.indirect);
513 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
514 }
515 }
516
517 static unsigned
518 nir_dest_index(compiler_context *ctx, nir_dest *dst)
519 {
520 if (dst->is_ssa)
521 return dst->ssa.index;
522 else {
523 assert(!dst->reg.indirect);
524 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
525 }
526 }
527
528 static unsigned
529 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
530 {
531 return nir_src_index(ctx, &src->src);
532 }
533
534 static bool
535 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
536 {
537 unsigned comp = src->swizzle[0];
538
539 for (unsigned c = 1; c < nr_components; ++c) {
540 if (src->swizzle[c] != comp)
541 return true;
542 }
543
544 return false;
545 }
546
547 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
548 * output of a conditional test) into that register */
549
550 static void
551 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
552 {
553 int condition = nir_src_index(ctx, src);
554
555 /* Source to swizzle the desired component into w */
556
557 const midgard_vector_alu_src alu_src = {
558 .swizzle = SWIZZLE(component, component, component, component),
559 };
560
561 /* There is no boolean move instruction. Instead, we simulate a move by
562 * ANDing the condition with itself to get it into r31.w */
563
564 midgard_instruction ins = {
565 .type = TAG_ALU_4,
566
567 /* We need to set the conditional as close as possible */
568 .precede_break = true,
569 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
570
571 .ssa_args = {
572 .src0 = condition,
573 .src1 = condition,
574 .dest = SSA_FIXED_REGISTER(31),
575 },
576
577 .alu = {
578 .op = midgard_alu_op_iand,
579 .outmod = midgard_outmod_int_wrap,
580 .reg_mode = midgard_reg_mode_32,
581 .dest_override = midgard_dest_override_none,
582 .mask = (0x3 << 6), /* w */
583 .src1 = vector_alu_srco_unsigned(alu_src),
584 .src2 = vector_alu_srco_unsigned(alu_src)
585 },
586 };
587
588 emit_mir_instruction(ctx, ins);
589 }
590
591 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
592 * r31 instead */
593
594 static void
595 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
596 {
597 int condition = nir_src_index(ctx, &src->src);
598
599 /* Source to swizzle the desired component into w */
600
601 const midgard_vector_alu_src alu_src = {
602 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
603 };
604
605 /* There is no boolean move instruction. Instead, we simulate a move by
606 * ANDing the condition with itself to get it into r31.w */
607
608 midgard_instruction ins = {
609 .type = TAG_ALU_4,
610 .precede_break = true,
611 .ssa_args = {
612 .src0 = condition,
613 .src1 = condition,
614 .dest = SSA_FIXED_REGISTER(31),
615 },
616 .alu = {
617 .op = midgard_alu_op_iand,
618 .outmod = midgard_outmod_int_wrap,
619 .reg_mode = midgard_reg_mode_32,
620 .dest_override = midgard_dest_override_none,
621 .mask = expand_writemask(mask_of(nr_comp)),
622 .src1 = vector_alu_srco_unsigned(alu_src),
623 .src2 = vector_alu_srco_unsigned(alu_src)
624 },
625 };
626
627 emit_mir_instruction(ctx, ins);
628 }
629
630
631
632 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
633 * pinning to eliminate this move in all known cases */
634
635 static void
636 emit_indirect_offset(compiler_context *ctx, nir_src *src)
637 {
638 int offset = nir_src_index(ctx, src);
639
640 midgard_instruction ins = {
641 .type = TAG_ALU_4,
642 .ssa_args = {
643 .src0 = SSA_UNUSED_1,
644 .src1 = offset,
645 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
646 },
647 .alu = {
648 .op = midgard_alu_op_imov,
649 .outmod = midgard_outmod_int_wrap,
650 .reg_mode = midgard_reg_mode_32,
651 .dest_override = midgard_dest_override_none,
652 .mask = (0x3 << 6), /* w */
653 .src1 = vector_alu_srco_unsigned(zero_alu_src),
654 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
655 },
656 };
657
658 emit_mir_instruction(ctx, ins);
659 }
660
661 #define ALU_CASE(nir, _op) \
662 case nir_op_##nir: \
663 op = midgard_alu_op_##_op; \
664 break;
665 static bool
666 nir_is_fzero_constant(nir_src src)
667 {
668 if (!nir_src_is_const(src))
669 return false;
670
671 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
672 if (nir_src_comp_as_float(src, c) != 0.0)
673 return false;
674 }
675
676 return true;
677 }
678
679 static void
680 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
681 {
682 bool is_ssa = instr->dest.dest.is_ssa;
683
684 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
685 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
686 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
687
688 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
689 * supported. A few do not and are commented for now. Also, there are a
690 * number of NIR ops which Midgard does not support and need to be
691 * lowered, also TODO. This switch block emits the opcode and calling
692 * convention of the Midgard instruction; actual packing is done in
693 * emit_alu below */
694
695 unsigned op;
696
697 switch (instr->op) {
698 ALU_CASE(fadd, fadd);
699 ALU_CASE(fmul, fmul);
700 ALU_CASE(fmin, fmin);
701 ALU_CASE(fmax, fmax);
702 ALU_CASE(imin, imin);
703 ALU_CASE(imax, imax);
704 ALU_CASE(umin, umin);
705 ALU_CASE(umax, umax);
706 ALU_CASE(ffloor, ffloor);
707 ALU_CASE(fround_even, froundeven);
708 ALU_CASE(ftrunc, ftrunc);
709 ALU_CASE(fceil, fceil);
710 ALU_CASE(fdot3, fdot3);
711 ALU_CASE(fdot4, fdot4);
712 ALU_CASE(iadd, iadd);
713 ALU_CASE(isub, isub);
714 ALU_CASE(imul, imul);
715
716 /* Zero shoved as second-arg */
717 ALU_CASE(iabs, iabsdiff);
718
719 ALU_CASE(mov, imov);
720
721 ALU_CASE(feq32, feq);
722 ALU_CASE(fne32, fne);
723 ALU_CASE(flt32, flt);
724 ALU_CASE(ieq32, ieq);
725 ALU_CASE(ine32, ine);
726 ALU_CASE(ilt32, ilt);
727 ALU_CASE(ult32, ult);
728
729 /* We don't have a native b2f32 instruction. Instead, like many
730 * GPUs, we exploit booleans as 0/~0 for false/true, and
731 * correspondingly AND
732 * by 1.0 to do the type conversion. For the moment, prime us
733 * to emit:
734 *
735 * iand [whatever], #0
736 *
737 * At the end of emit_alu (as MIR), we'll fix-up the constant
738 */
739
740 ALU_CASE(b2f32, iand);
741 ALU_CASE(b2i32, iand);
742
743 /* Likewise, we don't have a dedicated f2b32 instruction, but
744 * we can do a "not equal to 0.0" test. */
745
746 ALU_CASE(f2b32, fne);
747 ALU_CASE(i2b32, ine);
748
749 ALU_CASE(frcp, frcp);
750 ALU_CASE(frsq, frsqrt);
751 ALU_CASE(fsqrt, fsqrt);
752 ALU_CASE(fexp2, fexp2);
753 ALU_CASE(flog2, flog2);
754
755 ALU_CASE(f2i32, f2i_rtz);
756 ALU_CASE(f2u32, f2u_rtz);
757 ALU_CASE(i2f32, i2f_rtz);
758 ALU_CASE(u2f32, u2f_rtz);
759
760 ALU_CASE(fsin, fsin);
761 ALU_CASE(fcos, fcos);
762
763 /* Second op implicit #0 */
764 ALU_CASE(inot, inor);
765 ALU_CASE(iand, iand);
766 ALU_CASE(ior, ior);
767 ALU_CASE(ixor, ixor);
768 ALU_CASE(ishl, ishl);
769 ALU_CASE(ishr, iasr);
770 ALU_CASE(ushr, ilsr);
771
772 ALU_CASE(b32all_fequal2, fball_eq);
773 ALU_CASE(b32all_fequal3, fball_eq);
774 ALU_CASE(b32all_fequal4, fball_eq);
775
776 ALU_CASE(b32any_fnequal2, fbany_neq);
777 ALU_CASE(b32any_fnequal3, fbany_neq);
778 ALU_CASE(b32any_fnequal4, fbany_neq);
779
780 ALU_CASE(b32all_iequal2, iball_eq);
781 ALU_CASE(b32all_iequal3, iball_eq);
782 ALU_CASE(b32all_iequal4, iball_eq);
783
784 ALU_CASE(b32any_inequal2, ibany_neq);
785 ALU_CASE(b32any_inequal3, ibany_neq);
786 ALU_CASE(b32any_inequal4, ibany_neq);
787
788 /* Source mods will be shoved in later */
789 ALU_CASE(fabs, fmov);
790 ALU_CASE(fneg, fmov);
791 ALU_CASE(fsat, fmov);
792
793 /* For greater-or-equal, we lower to less-or-equal and flip the
794 * arguments */
795
796 case nir_op_fge:
797 case nir_op_fge32:
798 case nir_op_ige32:
799 case nir_op_uge32: {
800 op =
801 instr->op == nir_op_fge ? midgard_alu_op_fle :
802 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
803 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
804 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
805 0;
806
807 /* Swap via temporary */
808 nir_alu_src temp = instr->src[1];
809 instr->src[1] = instr->src[0];
810 instr->src[0] = temp;
811
812 break;
813 }
814
815 case nir_op_b32csel: {
816 /* Midgard features both fcsel and icsel, depending on
817 * the type of the arguments/output. However, as long
818 * as we're careful we can _always_ use icsel and
819 * _never_ need fcsel, since the latter does additional
820 * floating-point-specific processing whereas the
821 * former just moves bits on the wire. It's not obvious
822 * why these are separate opcodes, save for the ability
823 * to do things like sat/pos/abs/neg for free */
824
825 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
826 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
827
828 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
829 nr_inputs = 2;
830
831 /* Emit the condition into r31 */
832
833 if (mixed)
834 emit_condition_mixed(ctx, &instr->src[0], nr_components);
835 else
836 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
837
838 /* The condition is the first argument; move the other
839 * arguments up one to be a binary instruction for
840 * Midgard */
841
842 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
843 break;
844 }
845
846 default:
847 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
848 assert(0);
849 return;
850 }
851
852 /* Midgard can perform certain modifiers on output of an ALU op */
853 unsigned outmod;
854
855 if (midgard_is_integer_out_op(op)) {
856 outmod = midgard_outmod_int_wrap;
857 } else {
858 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
859 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
860 }
861
862 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
863
864 if (instr->op == nir_op_fmax) {
865 if (nir_is_fzero_constant(instr->src[0].src)) {
866 op = midgard_alu_op_fmov;
867 nr_inputs = 1;
868 outmod = midgard_outmod_pos;
869 instr->src[0] = instr->src[1];
870 } else if (nir_is_fzero_constant(instr->src[1].src)) {
871 op = midgard_alu_op_fmov;
872 nr_inputs = 1;
873 outmod = midgard_outmod_pos;
874 }
875 }
876
877 /* Fetch unit, quirks, etc information */
878 unsigned opcode_props = alu_opcode_props[op].props;
879 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
880
881 /* src0 will always exist afaik, but src1 will not for 1-argument
882 * instructions. The latter can only be fetched if the instruction
883 * needs it, or else we may segfault. */
884
885 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
886 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
887
888 /* Rather than use the instruction generation helpers, we do it
889 * ourselves here to avoid the mess */
890
891 midgard_instruction ins = {
892 .type = TAG_ALU_4,
893 .ssa_args = {
894 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
895 .src1 = quirk_flipped_r24 ? src0 : src1,
896 .dest = dest,
897 }
898 };
899
900 nir_alu_src *nirmods[2] = { NULL };
901
902 if (nr_inputs == 2) {
903 nirmods[0] = &instr->src[0];
904 nirmods[1] = &instr->src[1];
905 } else if (nr_inputs == 1) {
906 nirmods[quirk_flipped_r24] = &instr->src[0];
907 } else {
908 assert(0);
909 }
910
911 /* These were lowered to a move, so apply the corresponding mod */
912
913 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
914 nir_alu_src *s = nirmods[quirk_flipped_r24];
915
916 if (instr->op == nir_op_fneg)
917 s->negate = !s->negate;
918
919 if (instr->op == nir_op_fabs)
920 s->abs = !s->abs;
921 }
922
923 bool is_int = midgard_is_integer_op(op);
924
925 midgard_vector_alu alu = {
926 .op = op,
927 .reg_mode = midgard_reg_mode_32,
928 .dest_override = midgard_dest_override_none,
929 .outmod = outmod,
930
931 /* Writemask only valid for non-SSA NIR */
932 .mask = expand_writemask(mask_of(nr_components)),
933
934 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
935 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
936 };
937
938 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
939
940 if (!is_ssa)
941 alu.mask &= expand_writemask(instr->dest.write_mask);
942
943 ins.alu = alu;
944
945 /* Late fixup for emulated instructions */
946
947 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
948 /* Presently, our second argument is an inline #0 constant.
949 * Switch over to an embedded 1.0 constant (that can't fit
950 * inline, since we're 32-bit, not 16-bit like the inline
951 * constants) */
952
953 ins.ssa_args.inline_constant = false;
954 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
955 ins.has_constants = true;
956
957 if (instr->op == nir_op_b2f32) {
958 ins.constants[0] = 1.0f;
959 } else {
960 /* Type pun it into place */
961 uint32_t one = 0x1;
962 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
963 }
964
965 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
966 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
967 /* Lots of instructions need a 0 plonked in */
968 ins.ssa_args.inline_constant = false;
969 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
970 ins.has_constants = true;
971 ins.constants[0] = 0.0f;
972 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
973 } else if (instr->op == nir_op_inot) {
974 /* ~b = ~(b & b), so duplicate the source */
975 ins.ssa_args.src1 = ins.ssa_args.src0;
976 ins.alu.src2 = ins.alu.src1;
977 }
978
979 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
980 /* To avoid duplicating the lookup tables (probably), true LUT
981 * instructions can only operate as if they were scalars. Lower
982 * them here by changing the component. */
983
984 uint8_t original_swizzle[4];
985 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
986
987 for (int i = 0; i < nr_components; ++i) {
988 /* Mask the associated component, dropping the
989 * instruction if needed */
990
991 ins.alu.mask = (0x3) << (2 * i);
992 ins.alu.mask &= alu.mask;
993
994 if (!ins.alu.mask)
995 continue;
996
997 for (int j = 0; j < 4; ++j)
998 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
999
1000 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1001 emit_mir_instruction(ctx, ins);
1002 }
1003 } else {
1004 emit_mir_instruction(ctx, ins);
1005 }
1006 }
1007
1008 #undef ALU_CASE
1009
1010 static void
1011 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1012 {
1013 /* TODO: half-floats */
1014
1015 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1016 /* Fast path: For the first 16 uniforms, direct accesses are
1017 * 0-cycle, since they're just a register fetch in the usual
1018 * case. So, we alias the registers while we're still in
1019 * SSA-space */
1020
1021 int reg_slot = 23 - offset;
1022 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1023 } else {
1024 /* Otherwise, read from the 'special' UBO to access
1025 * higher-indexed uniforms, at a performance cost. More
1026 * generally, we're emitting a UBO read instruction. */
1027
1028 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1029
1030 /* TODO: Don't split */
1031 ins.load_store.varying_parameters = (offset & 7) << 7;
1032 ins.load_store.address = offset >> 3;
1033
1034 if (indirect_offset) {
1035 emit_indirect_offset(ctx, indirect_offset);
1036 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1037 } else {
1038 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1039 }
1040
1041 emit_mir_instruction(ctx, ins);
1042 }
1043 }
1044
1045 static void
1046 emit_varying_read(
1047 compiler_context *ctx,
1048 unsigned dest, unsigned offset,
1049 unsigned nr_comp, unsigned component,
1050 nir_src *indirect_offset)
1051 {
1052 /* XXX: Half-floats? */
1053 /* TODO: swizzle, mask */
1054
1055 midgard_instruction ins = m_ld_vary_32(dest, offset);
1056 ins.load_store.mask = mask_of(nr_comp);
1057 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1058
1059 midgard_varying_parameter p = {
1060 .is_varying = 1,
1061 .interpolation = midgard_interp_default,
1062 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1063 };
1064
1065 unsigned u;
1066 memcpy(&u, &p, sizeof(p));
1067 ins.load_store.varying_parameters = u;
1068
1069 if (indirect_offset) {
1070 /* We need to add in the dynamic index, moved to r27.w */
1071 emit_indirect_offset(ctx, indirect_offset);
1072 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1073 } else {
1074 /* Just a direct load */
1075 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1076 }
1077
1078 emit_mir_instruction(ctx, ins);
1079 }
1080
1081 static void
1082 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1083 {
1084 /* First, pull out the destination */
1085 unsigned dest = nir_dest_index(ctx, &instr->dest);
1086
1087 /* Now, figure out which uniform this is */
1088 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1089 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1090
1091 /* Sysvals are prefix uniforms */
1092 unsigned uniform = ((uintptr_t) val) - 1;
1093
1094 /* Emit the read itself -- this is never indirect */
1095 emit_uniform_read(ctx, dest, uniform, NULL);
1096 }
1097
1098 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1099 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1100 * generations have faster vectorized reads. This operation is for blend
1101 * shaders in particular; reading the tilebuffer from the fragment shader
1102 * remains an open problem. */
1103
1104 static void
1105 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1106 {
1107 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1108 ins.load_store.swizzle = 0; /* xxxx */
1109
1110 /* Read each component sequentially */
1111
1112 for (unsigned c = 0; c < 4; ++c) {
1113 ins.load_store.mask = (1 << c);
1114 ins.load_store.unknown = c;
1115 emit_mir_instruction(ctx, ins);
1116 }
1117
1118 /* vadd.u2f hr2, zext(hr2), #0 */
1119
1120 midgard_vector_alu_src alu_src = blank_alu_src;
1121 alu_src.mod = midgard_int_zero_extend;
1122 alu_src.half = true;
1123
1124 midgard_instruction u2f = {
1125 .type = TAG_ALU_4,
1126 .ssa_args = {
1127 .src0 = reg,
1128 .src1 = SSA_UNUSED_0,
1129 .dest = reg,
1130 .inline_constant = true
1131 },
1132 .alu = {
1133 .op = midgard_alu_op_u2f_rtz,
1134 .reg_mode = midgard_reg_mode_16,
1135 .dest_override = midgard_dest_override_none,
1136 .mask = 0xF,
1137 .src1 = vector_alu_srco_unsigned(alu_src),
1138 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1139 }
1140 };
1141
1142 emit_mir_instruction(ctx, u2f);
1143
1144 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1145
1146 alu_src.mod = 0;
1147
1148 midgard_instruction fmul = {
1149 .type = TAG_ALU_4,
1150 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1151 .ssa_args = {
1152 .src0 = reg,
1153 .dest = reg,
1154 .src1 = SSA_UNUSED_0,
1155 .inline_constant = true
1156 },
1157 .alu = {
1158 .op = midgard_alu_op_fmul,
1159 .reg_mode = midgard_reg_mode_32,
1160 .dest_override = midgard_dest_override_none,
1161 .outmod = midgard_outmod_sat,
1162 .mask = 0xFF,
1163 .src1 = vector_alu_srco_unsigned(alu_src),
1164 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1165 }
1166 };
1167
1168 emit_mir_instruction(ctx, fmul);
1169 }
1170
1171 static void
1172 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1173 {
1174 unsigned offset, reg;
1175
1176 switch (instr->intrinsic) {
1177 case nir_intrinsic_discard_if:
1178 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1179
1180 /* fallthrough */
1181
1182 case nir_intrinsic_discard: {
1183 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1184 struct midgard_instruction discard = v_branch(conditional, false);
1185 discard.branch.target_type = TARGET_DISCARD;
1186 emit_mir_instruction(ctx, discard);
1187
1188 ctx->can_discard = true;
1189 break;
1190 }
1191
1192 case nir_intrinsic_load_uniform:
1193 case nir_intrinsic_load_input:
1194 offset = nir_intrinsic_base(instr);
1195
1196 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1197 bool direct = nir_src_is_const(instr->src[0]);
1198
1199 if (direct) {
1200 offset += nir_src_as_uint(instr->src[0]);
1201 }
1202
1203 /* We may need to apply a fractional offset */
1204 int component = instr->intrinsic == nir_intrinsic_load_input ?
1205 nir_intrinsic_component(instr) : 0;
1206 reg = nir_dest_index(ctx, &instr->dest);
1207
1208 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1209 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1210 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1211 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL);
1212 } else if (ctx->is_blend) {
1213 /* For blend shaders, load the input color, which is
1214 * preloaded to r0 */
1215
1216 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1217 emit_mir_instruction(ctx, move);
1218 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1219 midgard_instruction ins = m_ld_attr_32(reg, offset);
1220 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1221 ins.load_store.mask = mask_of(nr_comp);
1222 emit_mir_instruction(ctx, ins);
1223 } else {
1224 DBG("Unknown load\n");
1225 assert(0);
1226 }
1227
1228 break;
1229
1230 case nir_intrinsic_load_output:
1231 assert(nir_src_is_const(instr->src[0]));
1232 reg = nir_dest_index(ctx, &instr->dest);
1233
1234 if (ctx->is_blend) {
1235 /* TODO: MRT */
1236 emit_fb_read_blend_scalar(ctx, reg);
1237 } else {
1238 DBG("Unknown output load\n");
1239 assert(0);
1240 }
1241
1242 break;
1243
1244 case nir_intrinsic_load_blend_const_color_rgba: {
1245 assert(ctx->is_blend);
1246 reg = nir_dest_index(ctx, &instr->dest);
1247
1248 /* Blend constants are embedded directly in the shader and
1249 * patched in, so we use some magic routing */
1250
1251 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1252 ins.has_constants = true;
1253 ins.has_blend_constant = true;
1254 emit_mir_instruction(ctx, ins);
1255 break;
1256 }
1257
1258 case nir_intrinsic_store_output:
1259 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1260
1261 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1262
1263 reg = nir_src_index(ctx, &instr->src[0]);
1264
1265 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1266 /* gl_FragColor is not emitted with load/store
1267 * instructions. Instead, it gets plonked into
1268 * r0 at the end of the shader and we do the
1269 * framebuffer writeout dance. TODO: Defer
1270 * writes */
1271
1272 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1273 emit_mir_instruction(ctx, move);
1274
1275 /* Save the index we're writing to for later reference
1276 * in the epilogue */
1277
1278 ctx->fragment_output = reg;
1279 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1280 /* Varyings are written into one of two special
1281 * varying register, r26 or r27. The register itself is
1282 * selected as the register in the st_vary instruction,
1283 * minus the base of 26. E.g. write into r27 and then
1284 * call st_vary(1) */
1285
1286 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1287 emit_mir_instruction(ctx, ins);
1288
1289 /* We should have been vectorized, though we don't
1290 * currently check that st_vary is emitted only once
1291 * per slot (this is relevant, since there's not a mask
1292 * parameter available on the store [set to 0 by the
1293 * blob]). We do respect the component by adjusting the
1294 * swizzle. */
1295
1296 unsigned component = nir_intrinsic_component(instr);
1297
1298 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1299 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1300 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1301 emit_mir_instruction(ctx, st);
1302 } else {
1303 DBG("Unknown store\n");
1304 assert(0);
1305 }
1306
1307 break;
1308
1309 case nir_intrinsic_load_alpha_ref_float:
1310 assert(instr->dest.is_ssa);
1311
1312 float ref_value = ctx->alpha_ref;
1313
1314 float *v = ralloc_array(NULL, float, 4);
1315 memcpy(v, &ref_value, sizeof(float));
1316 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1317 break;
1318
1319 case nir_intrinsic_load_viewport_scale:
1320 case nir_intrinsic_load_viewport_offset:
1321 emit_sysval_read(ctx, instr);
1322 break;
1323
1324 default:
1325 printf ("Unhandled intrinsic\n");
1326 assert(0);
1327 break;
1328 }
1329 }
1330
1331 static unsigned
1332 midgard_tex_format(enum glsl_sampler_dim dim)
1333 {
1334 switch (dim) {
1335 case GLSL_SAMPLER_DIM_2D:
1336 case GLSL_SAMPLER_DIM_EXTERNAL:
1337 return TEXTURE_2D;
1338
1339 case GLSL_SAMPLER_DIM_3D:
1340 return TEXTURE_3D;
1341
1342 case GLSL_SAMPLER_DIM_CUBE:
1343 return TEXTURE_CUBE;
1344
1345 default:
1346 DBG("Unknown sampler dim type\n");
1347 assert(0);
1348 return 0;
1349 }
1350 }
1351
1352 static unsigned
1353 midgard_tex_op(nir_texop op)
1354 {
1355 switch (op) {
1356 case nir_texop_tex:
1357 case nir_texop_txb:
1358 return TEXTURE_OP_NORMAL;
1359 case nir_texop_txl:
1360 return TEXTURE_OP_LOD;
1361 default:
1362 unreachable("Unhanlded texture op");
1363 }
1364 }
1365
1366 static void
1367 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1368 {
1369 /* TODO */
1370 //assert (!instr->sampler);
1371 //assert (!instr->texture_array_size);
1372
1373 /* Allocate registers via a round robin scheme to alternate between the two registers */
1374 int reg = ctx->texture_op_count & 1;
1375 int in_reg = reg, out_reg = reg;
1376
1377 /* Make room for the reg */
1378
1379 if (ctx->texture_index[reg] > -1)
1380 unalias_ssa(ctx, ctx->texture_index[reg]);
1381
1382 int texture_index = instr->texture_index;
1383 int sampler_index = texture_index;
1384
1385 unsigned position_swizzle = 0;
1386
1387 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1388 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1389 int index = nir_src_index(ctx, &instr->src[i].src);
1390 int nr_comp = nir_src_num_components(instr->src[i].src);
1391 midgard_vector_alu_src alu_src = blank_alu_src;
1392
1393 switch (instr->src[i].src_type) {
1394 case nir_tex_src_coord: {
1395 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1396 /* For cubemaps, we need to load coords into
1397 * special r27, and then use a special ld/st op
1398 * to select the face and copy the xy into the
1399 * texture register */
1400
1401 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1402
1403 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1404 emit_mir_instruction(ctx, move);
1405
1406 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1407 st.load_store.unknown = 0x24; /* XXX: What is this? */
1408 st.load_store.mask = 0x3; /* xy */
1409 st.load_store.swizzle = alu_src.swizzle;
1410 emit_mir_instruction(ctx, st);
1411
1412 position_swizzle = swizzle_of(2);
1413 } else {
1414 position_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1415
1416 midgard_instruction ins = v_mov(index, alu_src, reg);
1417 ins.alu.mask = expand_writemask(mask_of(nr_comp));
1418 emit_mir_instruction(ctx, ins);
1419
1420 /* To the hardware, z is depth, w is array
1421 * layer. To NIR, z is array layer for a 2D
1422 * array */
1423
1424 bool has_array = instr->texture_array_size > 0;
1425 bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D;
1426
1427 if (is_2d && has_array)
1428 position_swizzle = SWIZZLE_XYXZ;
1429 }
1430
1431 break;
1432 }
1433
1434 case nir_tex_src_bias:
1435 case nir_tex_src_lod: {
1436 /* To keep RA simple, we put the bias/LOD into the w
1437 * component of the input source, which is otherwise in xy */
1438
1439 alu_src.swizzle = SWIZZLE_XXXX;
1440
1441 midgard_instruction ins = v_mov(index, alu_src, reg);
1442 ins.alu.mask = expand_writemask(1 << COMPONENT_W);
1443 emit_mir_instruction(ctx, ins);
1444 break;
1445 };
1446
1447 default:
1448 unreachable("Unknown texture source type\n");
1449 }
1450 }
1451
1452 /* No helper to build texture words -- we do it all here */
1453 midgard_instruction ins = {
1454 .type = TAG_TEXTURE_4,
1455 .texture = {
1456 .op = midgard_tex_op(instr->op),
1457 .format = midgard_tex_format(instr->sampler_dim),
1458 .texture_handle = texture_index,
1459 .sampler_handle = sampler_index,
1460
1461 /* TODO: Regalloc it in */
1462 .swizzle = SWIZZLE_XYZW,
1463 .mask = 0xF,
1464
1465 /* TODO: half */
1466 .in_reg_full = 1,
1467 .in_reg_swizzle = position_swizzle,
1468 .out_full = 1,
1469
1470 /* Always 1 */
1471 .unknown7 = 1,
1472 }
1473 };
1474
1475 /* Set registers to read and write from the same place */
1476 ins.texture.in_reg_select = in_reg;
1477 ins.texture.out_reg_select = out_reg;
1478
1479 /* Setup bias/LOD if necessary. Only register mode support right now.
1480 * TODO: Immediate mode for performance gains */
1481
1482 if (instr->op == nir_texop_txb || instr->op == nir_texop_txl) {
1483 ins.texture.lod_register = true;
1484
1485 midgard_tex_register_select sel = {
1486 .select = in_reg,
1487 .full = 1,
1488
1489 /* w */
1490 .component_lo = 1,
1491 .component_hi = 1
1492 };
1493
1494 uint8_t packed;
1495 memcpy(&packed, &sel, sizeof(packed));
1496 ins.texture.bias = packed;
1497 }
1498
1499 emit_mir_instruction(ctx, ins);
1500
1501 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1502
1503 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1504 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1505 ctx->texture_index[reg] = o_index;
1506
1507 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1508 emit_mir_instruction(ctx, ins2);
1509
1510 /* Used for .cont and .last hinting */
1511 ctx->texture_op_count++;
1512 }
1513
1514 static void
1515 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1516 {
1517 switch (instr->type) {
1518 case nir_jump_break: {
1519 /* Emit a branch out of the loop */
1520 struct midgard_instruction br = v_branch(false, false);
1521 br.branch.target_type = TARGET_BREAK;
1522 br.branch.target_break = ctx->current_loop_depth;
1523 emit_mir_instruction(ctx, br);
1524
1525 DBG("break..\n");
1526 break;
1527 }
1528
1529 default:
1530 DBG("Unknown jump type %d\n", instr->type);
1531 break;
1532 }
1533 }
1534
1535 static void
1536 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1537 {
1538 switch (instr->type) {
1539 case nir_instr_type_load_const:
1540 emit_load_const(ctx, nir_instr_as_load_const(instr));
1541 break;
1542
1543 case nir_instr_type_intrinsic:
1544 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1545 break;
1546
1547 case nir_instr_type_alu:
1548 emit_alu(ctx, nir_instr_as_alu(instr));
1549 break;
1550
1551 case nir_instr_type_tex:
1552 emit_tex(ctx, nir_instr_as_tex(instr));
1553 break;
1554
1555 case nir_instr_type_jump:
1556 emit_jump(ctx, nir_instr_as_jump(instr));
1557 break;
1558
1559 case nir_instr_type_ssa_undef:
1560 /* Spurious */
1561 break;
1562
1563 default:
1564 DBG("Unhandled instruction type\n");
1565 break;
1566 }
1567 }
1568
1569
1570 /* ALU instructions can inline or embed constants, which decreases register
1571 * pressure and saves space. */
1572
1573 #define CONDITIONAL_ATTACH(src) { \
1574 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1575 \
1576 if (entry) { \
1577 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1578 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1579 } \
1580 }
1581
1582 static void
1583 inline_alu_constants(compiler_context *ctx)
1584 {
1585 mir_foreach_instr(ctx, alu) {
1586 /* Other instructions cannot inline constants */
1587 if (alu->type != TAG_ALU_4) continue;
1588
1589 /* If there is already a constant here, we can do nothing */
1590 if (alu->has_constants) continue;
1591
1592 /* It makes no sense to inline constants on a branch */
1593 if (alu->compact_branch || alu->prepacked_branch) continue;
1594
1595 CONDITIONAL_ATTACH(src0);
1596
1597 if (!alu->has_constants) {
1598 CONDITIONAL_ATTACH(src1)
1599 } else if (!alu->inline_constant) {
1600 /* Corner case: _two_ vec4 constants, for instance with a
1601 * csel. For this case, we can only use a constant
1602 * register for one, we'll have to emit a move for the
1603 * other. Note, if both arguments are constants, then
1604 * necessarily neither argument depends on the value of
1605 * any particular register. As the destination register
1606 * will be wiped, that means we can spill the constant
1607 * to the destination register.
1608 */
1609
1610 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1611 unsigned scratch = alu->ssa_args.dest;
1612
1613 if (entry) {
1614 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1615 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1616
1617 /* Force a break XXX Defer r31 writes */
1618 ins.unit = UNIT_VLUT;
1619
1620 /* Set the source */
1621 alu->ssa_args.src1 = scratch;
1622
1623 /* Inject us -before- the last instruction which set r31 */
1624 mir_insert_instruction_before(mir_prev_op(alu), ins);
1625 }
1626 }
1627 }
1628 }
1629
1630 /* Midgard supports two types of constants, embedded constants (128-bit) and
1631 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1632 * constants can be demoted to inline constants, for space savings and
1633 * sometimes a performance boost */
1634
1635 static void
1636 embedded_to_inline_constant(compiler_context *ctx)
1637 {
1638 mir_foreach_instr(ctx, ins) {
1639 if (!ins->has_constants) continue;
1640
1641 if (ins->ssa_args.inline_constant) continue;
1642
1643 /* Blend constants must not be inlined by definition */
1644 if (ins->has_blend_constant) continue;
1645
1646 /* src1 cannot be an inline constant due to encoding
1647 * restrictions. So, if possible we try to flip the arguments
1648 * in that case */
1649
1650 int op = ins->alu.op;
1651
1652 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1653 switch (op) {
1654 /* These ops require an operational change to flip
1655 * their arguments TODO */
1656 case midgard_alu_op_flt:
1657 case midgard_alu_op_fle:
1658 case midgard_alu_op_ilt:
1659 case midgard_alu_op_ile:
1660 case midgard_alu_op_fcsel:
1661 case midgard_alu_op_icsel:
1662 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1663 default:
1664 break;
1665 }
1666
1667 if (alu_opcode_props[op].props & OP_COMMUTES) {
1668 /* Flip the SSA numbers */
1669 ins->ssa_args.src0 = ins->ssa_args.src1;
1670 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1671
1672 /* And flip the modifiers */
1673
1674 unsigned src_temp;
1675
1676 src_temp = ins->alu.src2;
1677 ins->alu.src2 = ins->alu.src1;
1678 ins->alu.src1 = src_temp;
1679 }
1680 }
1681
1682 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1683 /* Extract the source information */
1684
1685 midgard_vector_alu_src *src;
1686 int q = ins->alu.src2;
1687 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1688 src = m;
1689
1690 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1691 int component = src->swizzle & 3;
1692
1693 /* Scale constant appropriately, if we can legally */
1694 uint16_t scaled_constant = 0;
1695
1696 if (midgard_is_integer_op(op)) {
1697 unsigned int *iconstants = (unsigned int *) ins->constants;
1698 scaled_constant = (uint16_t) iconstants[component];
1699
1700 /* Constant overflow after resize */
1701 if (scaled_constant != iconstants[component])
1702 continue;
1703 } else {
1704 float original = (float) ins->constants[component];
1705 scaled_constant = _mesa_float_to_half(original);
1706
1707 /* Check for loss of precision. If this is
1708 * mediump, we don't care, but for a highp
1709 * shader, we need to pay attention. NIR
1710 * doesn't yet tell us which mode we're in!
1711 * Practically this prevents most constants
1712 * from being inlined, sadly. */
1713
1714 float fp32 = _mesa_half_to_float(scaled_constant);
1715
1716 if (fp32 != original)
1717 continue;
1718 }
1719
1720 /* We don't know how to handle these with a constant */
1721
1722 if (src->mod || src->half || src->rep_low || src->rep_high) {
1723 DBG("Bailing inline constant...\n");
1724 continue;
1725 }
1726
1727 /* Make sure that the constant is not itself a
1728 * vector by checking if all accessed values
1729 * (by the swizzle) are the same. */
1730
1731 uint32_t *cons = (uint32_t *) ins->constants;
1732 uint32_t value = cons[component];
1733
1734 bool is_vector = false;
1735 unsigned mask = effective_writemask(&ins->alu);
1736
1737 for (int c = 1; c < 4; ++c) {
1738 /* We only care if this component is actually used */
1739 if (!(mask & (1 << c)))
1740 continue;
1741
1742 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1743
1744 if (test != value) {
1745 is_vector = true;
1746 break;
1747 }
1748 }
1749
1750 if (is_vector)
1751 continue;
1752
1753 /* Get rid of the embedded constant */
1754 ins->has_constants = false;
1755 ins->ssa_args.src1 = SSA_UNUSED_0;
1756 ins->ssa_args.inline_constant = true;
1757 ins->inline_constant = scaled_constant;
1758 }
1759 }
1760 }
1761
1762 /* Map normal SSA sources to other SSA sources / fixed registers (like
1763 * uniforms) */
1764
1765 static void
1766 map_ssa_to_alias(compiler_context *ctx, int *ref)
1767 {
1768 /* Sign is used quite deliberately for unused */
1769 if (*ref < 0)
1770 return;
1771
1772 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
1773
1774 if (alias) {
1775 /* Remove entry in leftovers to avoid a redunant fmov */
1776
1777 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
1778
1779 if (leftover)
1780 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
1781
1782 /* Assign the alias map */
1783 *ref = alias - 1;
1784 return;
1785 }
1786 }
1787
1788 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
1789 * texture pipeline */
1790
1791 static bool
1792 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
1793 {
1794 bool progress = false;
1795
1796 mir_foreach_instr_in_block_safe(block, ins) {
1797 if (ins->type != TAG_ALU_4) continue;
1798 if (ins->compact_branch) continue;
1799
1800 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1801 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
1802
1803 mir_remove_instruction(ins);
1804 progress = true;
1805 }
1806
1807 return progress;
1808 }
1809
1810 /* Dead code elimination for branches at the end of a block - only one branch
1811 * per block is legal semantically */
1812
1813 static void
1814 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1815 {
1816 bool branched = false;
1817
1818 mir_foreach_instr_in_block_safe(block, ins) {
1819 if (!midgard_is_branch_unit(ins->unit)) continue;
1820
1821 /* We ignore prepacked branches since the fragment epilogue is
1822 * just generally special */
1823 if (ins->prepacked_branch) continue;
1824
1825 /* Discards are similarly special and may not correspond to the
1826 * end of a block */
1827
1828 if (ins->branch.target_type == TARGET_DISCARD) continue;
1829
1830 if (branched) {
1831 /* We already branched, so this is dead */
1832 mir_remove_instruction(ins);
1833 }
1834
1835 branched = true;
1836 }
1837 }
1838
1839 static bool
1840 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
1841 {
1842 /* abs or neg */
1843 if (!is_int && src.mod) return true;
1844
1845 /* swizzle */
1846 for (unsigned c = 0; c < 4; ++c) {
1847 if (!(mask & (1 << c))) continue;
1848 if (((src.swizzle >> (2*c)) & 3) != c) return true;
1849 }
1850
1851 return false;
1852 }
1853
1854 static bool
1855 mir_nontrivial_source2_mod(midgard_instruction *ins)
1856 {
1857 unsigned mask = squeeze_writemask(ins->alu.mask);
1858 bool is_int = midgard_is_integer_op(ins->alu.op);
1859
1860 midgard_vector_alu_src src2 =
1861 vector_alu_from_unsigned(ins->alu.src2);
1862
1863 return mir_nontrivial_mod(src2, is_int, mask);
1864 }
1865
1866 static bool
1867 mir_nontrivial_outmod(midgard_instruction *ins)
1868 {
1869 bool is_int = midgard_is_integer_op(ins->alu.op);
1870 unsigned mod = ins->alu.outmod;
1871
1872 if (is_int)
1873 return mod != midgard_outmod_int_wrap;
1874 else
1875 return mod != midgard_outmod_none;
1876 }
1877
1878 static bool
1879 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
1880 {
1881 bool progress = false;
1882
1883 mir_foreach_instr_in_block_safe(block, ins) {
1884 if (ins->type != TAG_ALU_4) continue;
1885 if (!OP_IS_MOVE(ins->alu.op)) continue;
1886
1887 unsigned from = ins->ssa_args.src1;
1888 unsigned to = ins->ssa_args.dest;
1889
1890 /* We only work on pure SSA */
1891
1892 if (to >= SSA_FIXED_MINIMUM) continue;
1893 if (from >= SSA_FIXED_MINIMUM) continue;
1894 if (to >= ctx->func->impl->ssa_alloc) continue;
1895 if (from >= ctx->func->impl->ssa_alloc) continue;
1896
1897 /* Constant propagation is not handled here, either */
1898 if (ins->ssa_args.inline_constant) continue;
1899 if (ins->has_constants) continue;
1900
1901 if (mir_nontrivial_source2_mod(ins)) continue;
1902 if (mir_nontrivial_outmod(ins)) continue;
1903
1904 /* We're clear -- rewrite */
1905 mir_rewrite_index_src(ctx, to, from);
1906 mir_remove_instruction(ins);
1907 progress |= true;
1908 }
1909
1910 return progress;
1911 }
1912
1913 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
1914 * the move can be propagated away entirely */
1915
1916 static bool
1917 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
1918 {
1919 /* Nothing to do */
1920 if (comp == midgard_outmod_none)
1921 return true;
1922
1923 if (*outmod == midgard_outmod_none) {
1924 *outmod = comp;
1925 return true;
1926 }
1927
1928 /* TODO: Compose rules */
1929 return false;
1930 }
1931
1932 static bool
1933 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
1934 {
1935 bool progress = false;
1936
1937 mir_foreach_instr_in_block_safe(block, ins) {
1938 if (ins->type != TAG_ALU_4) continue;
1939 if (ins->alu.op != midgard_alu_op_fmov) continue;
1940 if (ins->alu.outmod != midgard_outmod_pos) continue;
1941
1942 /* TODO: Registers? */
1943 unsigned src = ins->ssa_args.src1;
1944 if (src >= ctx->func->impl->ssa_alloc) continue;
1945 assert(!mir_has_multiple_writes(ctx, src));
1946
1947 /* There might be a source modifier, too */
1948 if (mir_nontrivial_source2_mod(ins)) continue;
1949
1950 /* Backpropagate the modifier */
1951 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
1952 if (v->type != TAG_ALU_4) continue;
1953 if (v->ssa_args.dest != src) continue;
1954
1955 /* Can we even take a float outmod? */
1956 if (midgard_is_integer_out_op(v->alu.op)) continue;
1957
1958 midgard_outmod_float temp = v->alu.outmod;
1959 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
1960
1961 /* Throw in the towel.. */
1962 if (!progress) break;
1963
1964 /* Otherwise, transfer the modifier */
1965 v->alu.outmod = temp;
1966 ins->alu.outmod = midgard_outmod_none;
1967
1968 break;
1969 }
1970 }
1971
1972 return progress;
1973 }
1974
1975 static bool
1976 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
1977 {
1978 bool progress = false;
1979
1980 mir_foreach_instr_in_block_safe(block, ins) {
1981 if (ins->type != TAG_ALU_4) continue;
1982 if (!OP_IS_MOVE(ins->alu.op)) continue;
1983
1984 unsigned from = ins->ssa_args.src1;
1985 unsigned to = ins->ssa_args.dest;
1986
1987 /* Make sure it's simple enough for us to handle */
1988
1989 if (from >= SSA_FIXED_MINIMUM) continue;
1990 if (from >= ctx->func->impl->ssa_alloc) continue;
1991 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
1992 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
1993
1994 bool eliminated = false;
1995
1996 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
1997 /* The texture registers are not SSA so be careful.
1998 * Conservatively, just stop if we hit a texture op
1999 * (even if it may not write) to where we are */
2000
2001 if (v->type != TAG_ALU_4)
2002 break;
2003
2004 if (v->ssa_args.dest == from) {
2005 /* We don't want to track partial writes ... */
2006 if (v->alu.mask == 0xF) {
2007 v->ssa_args.dest = to;
2008 eliminated = true;
2009 }
2010
2011 break;
2012 }
2013 }
2014
2015 if (eliminated)
2016 mir_remove_instruction(ins);
2017
2018 progress |= eliminated;
2019 }
2020
2021 return progress;
2022 }
2023
2024 /* The following passes reorder MIR instructions to enable better scheduling */
2025
2026 static void
2027 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2028 {
2029 mir_foreach_instr_in_block_safe(block, ins) {
2030 if (ins->type != TAG_LOAD_STORE_4) continue;
2031
2032 /* We've found a load/store op. Check if next is also load/store. */
2033 midgard_instruction *next_op = mir_next_op(ins);
2034 if (&next_op->link != &block->instructions) {
2035 if (next_op->type == TAG_LOAD_STORE_4) {
2036 /* If so, we're done since we're a pair */
2037 ins = mir_next_op(ins);
2038 continue;
2039 }
2040
2041 /* Maximum search distance to pair, to avoid register pressure disasters */
2042 int search_distance = 8;
2043
2044 /* Otherwise, we have an orphaned load/store -- search for another load */
2045 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2046 /* Terminate search if necessary */
2047 if (!(search_distance--)) break;
2048
2049 if (c->type != TAG_LOAD_STORE_4) continue;
2050
2051 /* Stores cannot be reordered, since they have
2052 * dependencies. For the same reason, indirect
2053 * loads cannot be reordered as their index is
2054 * loaded in r27.w */
2055
2056 if (OP_IS_STORE(c->load_store.op)) continue;
2057
2058 /* It appears the 0x800 bit is set whenever a
2059 * load is direct, unset when it is indirect.
2060 * Skip indirect loads. */
2061
2062 if (!(c->load_store.unknown & 0x800)) continue;
2063
2064 /* We found one! Move it up to pair and remove it from the old location */
2065
2066 mir_insert_instruction_before(ins, *c);
2067 mir_remove_instruction(c);
2068
2069 break;
2070 }
2071 }
2072 }
2073 }
2074
2075 /* If there are leftovers after the below pass, emit actual fmov
2076 * instructions for the slow-but-correct path */
2077
2078 static void
2079 emit_leftover_move(compiler_context *ctx)
2080 {
2081 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2082 int base = ((uintptr_t) leftover->key) - 1;
2083 int mapped = base;
2084
2085 map_ssa_to_alias(ctx, &mapped);
2086 EMIT(mov, mapped, blank_alu_src, base);
2087 }
2088 }
2089
2090 static void
2091 actualise_ssa_to_alias(compiler_context *ctx)
2092 {
2093 mir_foreach_instr(ctx, ins) {
2094 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2095 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2096 }
2097
2098 emit_leftover_move(ctx);
2099 }
2100
2101 static void
2102 emit_fragment_epilogue(compiler_context *ctx)
2103 {
2104 /* Special case: writing out constants requires us to include the move
2105 * explicitly now, so shove it into r0 */
2106
2107 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2108
2109 if (constant_value) {
2110 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2111 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2112 emit_mir_instruction(ctx, ins);
2113 }
2114
2115 /* Perform the actual fragment writeout. We have two writeout/branch
2116 * instructions, forming a loop until writeout is successful as per the
2117 * docs. TODO: gl_FragDepth */
2118
2119 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2120 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2121 }
2122
2123 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
2124 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
2125 * with the int8 analogue to the fragment epilogue */
2126
2127 static void
2128 emit_blend_epilogue(compiler_context *ctx)
2129 {
2130 /* vmul.fmul.none.fulllow hr48, r0, #255 */
2131
2132 midgard_instruction scale = {
2133 .type = TAG_ALU_4,
2134 .unit = UNIT_VMUL,
2135 .inline_constant = _mesa_float_to_half(255.0),
2136 .ssa_args = {
2137 .src0 = SSA_FIXED_REGISTER(0),
2138 .src1 = SSA_UNUSED_0,
2139 .dest = SSA_FIXED_REGISTER(24),
2140 .inline_constant = true
2141 },
2142 .alu = {
2143 .op = midgard_alu_op_fmul,
2144 .reg_mode = midgard_reg_mode_32,
2145 .dest_override = midgard_dest_override_lower,
2146 .mask = 0xFF,
2147 .src1 = vector_alu_srco_unsigned(blank_alu_src),
2148 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2149 }
2150 };
2151
2152 emit_mir_instruction(ctx, scale);
2153
2154 /* vadd.f2u_rte.pos.low hr0, hr48, #0 */
2155
2156 midgard_vector_alu_src alu_src = blank_alu_src;
2157 alu_src.half = true;
2158
2159 midgard_instruction f2u_rte = {
2160 .type = TAG_ALU_4,
2161 .ssa_args = {
2162 .src0 = SSA_FIXED_REGISTER(24),
2163 .src1 = SSA_UNUSED_0,
2164 .dest = SSA_FIXED_REGISTER(0),
2165 .inline_constant = true
2166 },
2167 .alu = {
2168 .op = midgard_alu_op_f2u_rte,
2169 .reg_mode = midgard_reg_mode_16,
2170 .dest_override = midgard_dest_override_lower,
2171 .outmod = midgard_outmod_pos,
2172 .mask = 0xF,
2173 .src1 = vector_alu_srco_unsigned(alu_src),
2174 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2175 }
2176 };
2177
2178 emit_mir_instruction(ctx, f2u_rte);
2179
2180 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2181 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2182 }
2183
2184 static midgard_block *
2185 emit_block(compiler_context *ctx, nir_block *block)
2186 {
2187 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2188 list_addtail(&this_block->link, &ctx->blocks);
2189
2190 this_block->is_scheduled = false;
2191 ++ctx->block_count;
2192
2193 ctx->texture_index[0] = -1;
2194 ctx->texture_index[1] = -1;
2195
2196 /* Add us as a successor to the block we are following */
2197 if (ctx->current_block)
2198 midgard_block_add_successor(ctx->current_block, this_block);
2199
2200 /* Set up current block */
2201 list_inithead(&this_block->instructions);
2202 ctx->current_block = this_block;
2203
2204 nir_foreach_instr(instr, block) {
2205 emit_instr(ctx, instr);
2206 ++ctx->instruction_count;
2207 }
2208
2209 inline_alu_constants(ctx);
2210 embedded_to_inline_constant(ctx);
2211
2212 /* Perform heavylifting for aliasing */
2213 actualise_ssa_to_alias(ctx);
2214
2215 midgard_pair_load_store(ctx, this_block);
2216
2217 /* Append fragment shader epilogue (value writeout) */
2218 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2219 if (block == nir_impl_last_block(ctx->func->impl)) {
2220 if (ctx->is_blend)
2221 emit_blend_epilogue(ctx);
2222 else
2223 emit_fragment_epilogue(ctx);
2224 }
2225 }
2226
2227 if (block == nir_start_block(ctx->func->impl))
2228 ctx->initial_block = this_block;
2229
2230 if (block == nir_impl_last_block(ctx->func->impl))
2231 ctx->final_block = this_block;
2232
2233 /* Allow the next control flow to access us retroactively, for
2234 * branching etc */
2235 ctx->current_block = this_block;
2236
2237 /* Document the fallthrough chain */
2238 ctx->previous_source_block = this_block;
2239
2240 return this_block;
2241 }
2242
2243 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2244
2245 static void
2246 emit_if(struct compiler_context *ctx, nir_if *nif)
2247 {
2248 /* Conditional branches expect the condition in r31.w; emit a move for
2249 * that in the _previous_ block (which is the current block). */
2250 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2251
2252 /* Speculatively emit the branch, but we can't fill it in until later */
2253 EMIT(branch, true, true);
2254 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2255
2256 /* Emit the two subblocks */
2257 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2258
2259 /* Emit a jump from the end of the then block to the end of the else */
2260 EMIT(branch, false, false);
2261 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2262
2263 /* Emit second block, and check if it's empty */
2264
2265 int else_idx = ctx->block_count;
2266 int count_in = ctx->instruction_count;
2267 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2268 int after_else_idx = ctx->block_count;
2269
2270 /* Now that we have the subblocks emitted, fix up the branches */
2271
2272 assert(then_block);
2273 assert(else_block);
2274
2275 if (ctx->instruction_count == count_in) {
2276 /* The else block is empty, so don't emit an exit jump */
2277 mir_remove_instruction(then_exit);
2278 then_branch->branch.target_block = after_else_idx;
2279 } else {
2280 then_branch->branch.target_block = else_idx;
2281 then_exit->branch.target_block = after_else_idx;
2282 }
2283 }
2284
2285 static void
2286 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2287 {
2288 /* Remember where we are */
2289 midgard_block *start_block = ctx->current_block;
2290
2291 /* Allocate a loop number, growing the current inner loop depth */
2292 int loop_idx = ++ctx->current_loop_depth;
2293
2294 /* Get index from before the body so we can loop back later */
2295 int start_idx = ctx->block_count;
2296
2297 /* Emit the body itself */
2298 emit_cf_list(ctx, &nloop->body);
2299
2300 /* Branch back to loop back */
2301 struct midgard_instruction br_back = v_branch(false, false);
2302 br_back.branch.target_block = start_idx;
2303 emit_mir_instruction(ctx, br_back);
2304
2305 /* Mark down that branch in the graph. Note that we're really branching
2306 * to the block *after* we started in. TODO: Why doesn't the branch
2307 * itself have an off-by-one then...? */
2308 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2309
2310 /* Find the index of the block about to follow us (note: we don't add
2311 * one; blocks are 0-indexed so we get a fencepost problem) */
2312 int break_block_idx = ctx->block_count;
2313
2314 /* Fix up the break statements we emitted to point to the right place,
2315 * now that we can allocate a block number for them */
2316
2317 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2318 mir_foreach_instr_in_block(block, ins) {
2319 if (ins->type != TAG_ALU_4) continue;
2320 if (!ins->compact_branch) continue;
2321 if (ins->prepacked_branch) continue;
2322
2323 /* We found a branch -- check the type to see if we need to do anything */
2324 if (ins->branch.target_type != TARGET_BREAK) continue;
2325
2326 /* It's a break! Check if it's our break */
2327 if (ins->branch.target_break != loop_idx) continue;
2328
2329 /* Okay, cool, we're breaking out of this loop.
2330 * Rewrite from a break to a goto */
2331
2332 ins->branch.target_type = TARGET_GOTO;
2333 ins->branch.target_block = break_block_idx;
2334 }
2335 }
2336
2337 /* Now that we've finished emitting the loop, free up the depth again
2338 * so we play nice with recursion amid nested loops */
2339 --ctx->current_loop_depth;
2340 }
2341
2342 static midgard_block *
2343 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2344 {
2345 midgard_block *start_block = NULL;
2346
2347 foreach_list_typed(nir_cf_node, node, node, list) {
2348 switch (node->type) {
2349 case nir_cf_node_block: {
2350 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2351
2352 if (!start_block)
2353 start_block = block;
2354
2355 break;
2356 }
2357
2358 case nir_cf_node_if:
2359 emit_if(ctx, nir_cf_node_as_if(node));
2360 break;
2361
2362 case nir_cf_node_loop:
2363 emit_loop(ctx, nir_cf_node_as_loop(node));
2364 break;
2365
2366 case nir_cf_node_function:
2367 assert(0);
2368 break;
2369 }
2370 }
2371
2372 return start_block;
2373 }
2374
2375 /* Due to lookahead, we need to report the first tag executed in the command
2376 * stream and in branch targets. An initial block might be empty, so iterate
2377 * until we find one that 'works' */
2378
2379 static unsigned
2380 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2381 {
2382 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2383
2384 unsigned first_tag = 0;
2385
2386 do {
2387 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2388
2389 if (initial_bundle) {
2390 first_tag = initial_bundle->tag;
2391 break;
2392 }
2393
2394 /* Initial block is empty, try the next block */
2395 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2396 } while(initial_block != NULL);
2397
2398 assert(first_tag);
2399 return first_tag;
2400 }
2401
2402 int
2403 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2404 {
2405 struct util_dynarray *compiled = &program->compiled;
2406
2407 midgard_debug = debug_get_option_midgard_debug();
2408
2409 compiler_context ictx = {
2410 .nir = nir,
2411 .stage = nir->info.stage,
2412
2413 .is_blend = is_blend,
2414 .blend_constant_offset = -1,
2415
2416 .alpha_ref = program->alpha_ref
2417 };
2418
2419 compiler_context *ctx = &ictx;
2420
2421 /* TODO: Decide this at runtime */
2422 ctx->uniform_cutoff = 8;
2423
2424 /* Initialize at a global (not block) level hash tables */
2425
2426 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2427 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2428 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2429 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2430 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2431
2432 /* Record the varying mapping for the command stream's bookkeeping */
2433
2434 struct exec_list *varyings =
2435 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2436
2437 unsigned max_varying = 0;
2438 nir_foreach_variable(var, varyings) {
2439 unsigned loc = var->data.driver_location;
2440 unsigned sz = glsl_type_size(var->type, FALSE);
2441
2442 for (int c = 0; c < sz; ++c) {
2443 program->varyings[loc + c] = var->data.location + c;
2444 max_varying = MAX2(max_varying, loc + c);
2445 }
2446 }
2447
2448 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2449 * (so we don't accidentally duplicate the epilogue since mesa/st has
2450 * messed with our I/O quite a bit already) */
2451
2452 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2453
2454 if (ctx->stage == MESA_SHADER_VERTEX)
2455 NIR_PASS_V(nir, nir_lower_viewport_transform);
2456
2457 NIR_PASS_V(nir, nir_lower_var_copies);
2458 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2459 NIR_PASS_V(nir, nir_split_var_copies);
2460 NIR_PASS_V(nir, nir_lower_var_copies);
2461 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2462 NIR_PASS_V(nir, nir_lower_var_copies);
2463 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2464
2465 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2466
2467 /* Optimisation passes */
2468
2469 optimise_nir(nir);
2470
2471 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2472 nir_print_shader(nir, stdout);
2473 }
2474
2475 /* Assign sysvals and counts, now that we're sure
2476 * (post-optimisation) */
2477
2478 midgard_nir_assign_sysvals(ctx, nir);
2479
2480 program->uniform_count = nir->num_uniforms;
2481 program->sysval_count = ctx->sysval_count;
2482 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2483
2484 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2485 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2486
2487 nir_foreach_function(func, nir) {
2488 if (!func->impl)
2489 continue;
2490
2491 list_inithead(&ctx->blocks);
2492 ctx->block_count = 0;
2493 ctx->func = func;
2494
2495 emit_cf_list(ctx, &func->impl->body);
2496 emit_block(ctx, func->impl->end_block);
2497
2498 break; /* TODO: Multi-function shaders */
2499 }
2500
2501 util_dynarray_init(compiled, NULL);
2502
2503 /* MIR-level optimizations */
2504
2505 bool progress = false;
2506
2507 do {
2508 progress = false;
2509
2510 mir_foreach_block(ctx, block) {
2511 progress |= midgard_opt_pos_propagate(ctx, block);
2512 progress |= midgard_opt_copy_prop(ctx, block);
2513 progress |= midgard_opt_copy_prop_tex(ctx, block);
2514 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2515 }
2516 } while (progress);
2517
2518 /* Nested control-flow can result in dead branches at the end of the
2519 * block. This messes with our analysis and is just dead code, so cull
2520 * them */
2521 mir_foreach_block(ctx, block) {
2522 midgard_opt_cull_dead_branch(ctx, block);
2523 }
2524
2525 /* Schedule! */
2526 schedule_program(ctx);
2527
2528 /* Now that all the bundles are scheduled and we can calculate block
2529 * sizes, emit actual branch instructions rather than placeholders */
2530
2531 int br_block_idx = 0;
2532
2533 mir_foreach_block(ctx, block) {
2534 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2535 for (int c = 0; c < bundle->instruction_count; ++c) {
2536 midgard_instruction *ins = bundle->instructions[c];
2537
2538 if (!midgard_is_branch_unit(ins->unit)) continue;
2539
2540 if (ins->prepacked_branch) continue;
2541
2542 /* Parse some basic branch info */
2543 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2544 bool is_conditional = ins->branch.conditional;
2545 bool is_inverted = ins->branch.invert_conditional;
2546 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2547
2548 /* Determine the block we're jumping to */
2549 int target_number = ins->branch.target_block;
2550
2551 /* Report the destination tag */
2552 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2553
2554 /* Count up the number of quadwords we're
2555 * jumping over = number of quadwords until
2556 * (br_block_idx, target_number) */
2557
2558 int quadword_offset = 0;
2559
2560 if (is_discard) {
2561 /* Jump to the end of the shader. We
2562 * need to include not only the
2563 * following blocks, but also the
2564 * contents of our current block (since
2565 * discard can come in the middle of
2566 * the block) */
2567
2568 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2569
2570 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2571 quadword_offset += quadword_size(bun->tag);
2572 }
2573
2574 mir_foreach_block_from(ctx, blk, b) {
2575 quadword_offset += b->quadword_count;
2576 }
2577
2578 } else if (target_number > br_block_idx) {
2579 /* Jump forward */
2580
2581 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2582 midgard_block *blk = mir_get_block(ctx, idx);
2583 assert(blk);
2584
2585 quadword_offset += blk->quadword_count;
2586 }
2587 } else {
2588 /* Jump backwards */
2589
2590 for (int idx = br_block_idx; idx >= target_number; --idx) {
2591 midgard_block *blk = mir_get_block(ctx, idx);
2592 assert(blk);
2593
2594 quadword_offset -= blk->quadword_count;
2595 }
2596 }
2597
2598 /* Unconditional extended branches (far jumps)
2599 * have issues, so we always use a conditional
2600 * branch, setting the condition to always for
2601 * unconditional. For compact unconditional
2602 * branches, cond isn't used so it doesn't
2603 * matter what we pick. */
2604
2605 midgard_condition cond =
2606 !is_conditional ? midgard_condition_always :
2607 is_inverted ? midgard_condition_false :
2608 midgard_condition_true;
2609
2610 midgard_jmp_writeout_op op =
2611 is_discard ? midgard_jmp_writeout_op_discard :
2612 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2613 midgard_jmp_writeout_op_branch_cond;
2614
2615 if (!is_compact) {
2616 midgard_branch_extended branch =
2617 midgard_create_branch_extended(
2618 cond, op,
2619 dest_tag,
2620 quadword_offset);
2621
2622 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2623 } else if (is_conditional || is_discard) {
2624 midgard_branch_cond branch = {
2625 .op = op,
2626 .dest_tag = dest_tag,
2627 .offset = quadword_offset,
2628 .cond = cond
2629 };
2630
2631 assert(branch.offset == quadword_offset);
2632
2633 memcpy(&ins->br_compact, &branch, sizeof(branch));
2634 } else {
2635 assert(op == midgard_jmp_writeout_op_branch_uncond);
2636
2637 midgard_branch_uncond branch = {
2638 .op = op,
2639 .dest_tag = dest_tag,
2640 .offset = quadword_offset,
2641 .unknown = 1
2642 };
2643
2644 assert(branch.offset == quadword_offset);
2645
2646 memcpy(&ins->br_compact, &branch, sizeof(branch));
2647 }
2648 }
2649 }
2650
2651 ++br_block_idx;
2652 }
2653
2654 /* Emit flat binary from the instruction arrays. Iterate each block in
2655 * sequence. Save instruction boundaries such that lookahead tags can
2656 * be assigned easily */
2657
2658 /* Cache _all_ bundles in source order for lookahead across failed branches */
2659
2660 int bundle_count = 0;
2661 mir_foreach_block(ctx, block) {
2662 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2663 }
2664 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2665 int bundle_idx = 0;
2666 mir_foreach_block(ctx, block) {
2667 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2668 source_order_bundles[bundle_idx++] = bundle;
2669 }
2670 }
2671
2672 int current_bundle = 0;
2673
2674 /* Midgard prefetches instruction types, so during emission we
2675 * need to lookahead. Unless this is the last instruction, in
2676 * which we return 1. Or if this is the second to last and the
2677 * last is an ALU, then it's also 1... */
2678
2679 mir_foreach_block(ctx, block) {
2680 mir_foreach_bundle_in_block(block, bundle) {
2681 int lookahead = 1;
2682
2683 if (current_bundle + 1 < bundle_count) {
2684 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2685
2686 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2687 lookahead = 1;
2688 } else {
2689 lookahead = next;
2690 }
2691 }
2692
2693 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2694 ++current_bundle;
2695 }
2696
2697 /* TODO: Free deeper */
2698 //util_dynarray_fini(&block->instructions);
2699 }
2700
2701 free(source_order_bundles);
2702
2703 /* Report the very first tag executed */
2704 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2705
2706 /* Deal with off-by-one related to the fencepost problem */
2707 program->work_register_count = ctx->work_registers + 1;
2708
2709 program->can_discard = ctx->can_discard;
2710 program->uniform_cutoff = ctx->uniform_cutoff;
2711
2712 program->blend_patch_offset = ctx->blend_constant_offset;
2713
2714 if (midgard_debug & MIDGARD_DBG_SHADERS)
2715 disassemble_midgard(program->compiled.data, program->compiled.size);
2716
2717 return 0;
2718 }