panfrost/midgard: Add ult/ule ops
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
752
753 /* Lower mods for float ops only. Integer ops don't support modifiers
754 * (saturate doesn't make sense on integers, neg/abs require dedicated
755 * instructions) */
756
757 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
758 NIR_PASS(progress, nir, nir_copy_prop);
759 NIR_PASS(progress, nir, nir_opt_dce);
760
761 /* We implement booleans as 32-bit 0/~0 */
762 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
763
764 /* Take us out of SSA */
765 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
766 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
767
768 /* We are a vector architecture; write combine where possible */
769 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
770 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
771
772 NIR_PASS(progress, nir, nir_opt_dce);
773 }
774
775 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
776 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
777 * r0. See the comments in compiler_context */
778
779 static void
780 alias_ssa(compiler_context *ctx, int dest, int src)
781 {
782 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
783 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
784 }
785
786 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
787
788 static void
789 unalias_ssa(compiler_context *ctx, int dest)
790 {
791 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
792 /* TODO: Remove from leftover or no? */
793 }
794
795 static void
796 midgard_pin_output(compiler_context *ctx, int index, int reg)
797 {
798 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
799 }
800
801 static bool
802 midgard_is_pinned(compiler_context *ctx, int index)
803 {
804 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
805 }
806
807 /* Do not actually emit a load; instead, cache the constant for inlining */
808
809 static void
810 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
811 {
812 nir_ssa_def def = instr->def;
813
814 float *v = ralloc_array(NULL, float, 4);
815 memcpy(v, &instr->value.f32, 4 * sizeof(float));
816 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
817 }
818
819 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
820 * do the inverse) */
821
822 static unsigned
823 expand_writemask(unsigned mask)
824 {
825 unsigned o = 0;
826
827 for (int i = 0; i < 4; ++i)
828 if (mask & (1 << i))
829 o |= (3 << (2 * i));
830
831 return o;
832 }
833
834 static unsigned
835 squeeze_writemask(unsigned mask)
836 {
837 unsigned o = 0;
838
839 for (int i = 0; i < 4; ++i)
840 if (mask & (3 << (2 * i)))
841 o |= (1 << i);
842
843 return o;
844
845 }
846
847 /* Determines effective writemask, taking quirks and expansion into account */
848 static unsigned
849 effective_writemask(midgard_vector_alu *alu)
850 {
851 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
852 * sense) */
853
854 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
855
856 /* If there is a fixed channel count, construct the appropriate mask */
857
858 if (channel_count)
859 return (1 << channel_count) - 1;
860
861 /* Otherwise, just squeeze the existing mask */
862 return squeeze_writemask(alu->mask);
863 }
864
865 static unsigned
866 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
867 {
868 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
869 return hash;
870
871 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
872
873 if (temp)
874 return temp - 1;
875
876 /* If no temp is find, allocate one */
877 temp = ctx->temp_count++;
878 ctx->max_hash = MAX2(ctx->max_hash, hash);
879
880 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
881
882 return temp;
883 }
884
885 static unsigned
886 nir_src_index(compiler_context *ctx, nir_src *src)
887 {
888 if (src->is_ssa)
889 return src->ssa->index;
890 else
891 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
892 }
893
894 static unsigned
895 nir_dest_index(compiler_context *ctx, nir_dest *dst)
896 {
897 if (dst->is_ssa)
898 return dst->ssa.index;
899 else
900 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
901 }
902
903 static unsigned
904 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
905 {
906 return nir_src_index(ctx, &src->src);
907 }
908
909 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
910 * a conditional test) into that register */
911
912 static void
913 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
914 {
915 /* XXX: Force component correct */
916 int condition = nir_src_index(ctx, src);
917
918 /* There is no boolean move instruction. Instead, we simulate a move by
919 * ANDing the condition with itself to get it into r31.w */
920
921 midgard_instruction ins = {
922 .type = TAG_ALU_4,
923 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
924 .ssa_args = {
925 .src0 = condition,
926 .src1 = condition,
927 .dest = SSA_FIXED_REGISTER(31),
928 },
929 .alu = {
930 .op = midgard_alu_op_iand,
931 .reg_mode = midgard_reg_mode_full,
932 .dest_override = midgard_dest_override_none,
933 .mask = (0x3 << 6), /* w */
934 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
935 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
936 },
937 };
938
939 emit_mir_instruction(ctx, ins);
940 }
941
942 #define ALU_CASE(nir, _op) \
943 case nir_op_##nir: \
944 op = midgard_alu_op_##_op; \
945 break;
946
947 static void
948 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
949 {
950 bool is_ssa = instr->dest.dest.is_ssa;
951
952 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
953 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
954 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
955
956 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
957 * supported. A few do not and are commented for now. Also, there are a
958 * number of NIR ops which Midgard does not support and need to be
959 * lowered, also TODO. This switch block emits the opcode and calling
960 * convention of the Midgard instruction; actual packing is done in
961 * emit_alu below */
962
963 unsigned op;
964
965 switch (instr->op) {
966 ALU_CASE(fadd, fadd);
967 ALU_CASE(fmul, fmul);
968 ALU_CASE(fmin, fmin);
969 ALU_CASE(fmax, fmax);
970 ALU_CASE(imin, imin);
971 ALU_CASE(imax, imax);
972 ALU_CASE(fmov, fmov);
973 ALU_CASE(ffloor, ffloor);
974 ALU_CASE(fround_even, froundeven);
975 ALU_CASE(ftrunc, ftrunc);
976 ALU_CASE(fceil, fceil);
977 ALU_CASE(fdot3, fdot3);
978 ALU_CASE(fdot4, fdot4);
979 ALU_CASE(iadd, iadd);
980 ALU_CASE(isub, isub);
981 ALU_CASE(imul, imul);
982 ALU_CASE(iabs, iabs);
983
984 /* XXX: Use fmov, not imov, since imov was causing major
985 * issues with texture precision? XXX research */
986 ALU_CASE(imov, fmov);
987
988 ALU_CASE(feq32, feq);
989 ALU_CASE(fne32, fne);
990 ALU_CASE(flt32, flt);
991 ALU_CASE(ieq32, ieq);
992 ALU_CASE(ine32, ine);
993 ALU_CASE(ilt32, ilt);
994 ALU_CASE(ult32, ult);
995
996 /* We don't have a native b2f32 instruction. Instead, like many
997 * GPUs, we exploit booleans as 0/~0 for false/true, and
998 * correspondingly AND
999 * by 1.0 to do the type conversion. For the moment, prime us
1000 * to emit:
1001 *
1002 * iand [whatever], #0
1003 *
1004 * At the end of emit_alu (as MIR), we'll fix-up the constant
1005 */
1006
1007 ALU_CASE(b2f32, iand);
1008 ALU_CASE(b2i32, iand);
1009
1010 /* Likewise, we don't have a dedicated f2b32 instruction, but
1011 * we can do a "not equal to 0.0" test. */
1012
1013 ALU_CASE(f2b32, fne);
1014 ALU_CASE(i2b32, ine);
1015
1016 ALU_CASE(frcp, frcp);
1017 ALU_CASE(frsq, frsqrt);
1018 ALU_CASE(fsqrt, fsqrt);
1019 ALU_CASE(fpow, fpow);
1020 ALU_CASE(fexp2, fexp2);
1021 ALU_CASE(flog2, flog2);
1022
1023 ALU_CASE(f2i32, f2i);
1024 ALU_CASE(f2u32, f2u);
1025 ALU_CASE(i2f32, i2f);
1026 ALU_CASE(u2f32, u2f);
1027
1028 ALU_CASE(fsin, fsin);
1029 ALU_CASE(fcos, fcos);
1030
1031 ALU_CASE(iand, iand);
1032 ALU_CASE(ior, ior);
1033 ALU_CASE(ixor, ixor);
1034 ALU_CASE(inot, inot);
1035 ALU_CASE(ishl, ishl);
1036 ALU_CASE(ishr, iasr);
1037 ALU_CASE(ushr, ilsr);
1038
1039 ALU_CASE(b32all_fequal2, fball_eq);
1040 ALU_CASE(b32all_fequal3, fball_eq);
1041 ALU_CASE(b32all_fequal4, fball_eq);
1042
1043 ALU_CASE(b32any_fnequal2, fbany_neq);
1044 ALU_CASE(b32any_fnequal3, fbany_neq);
1045 ALU_CASE(b32any_fnequal4, fbany_neq);
1046
1047 ALU_CASE(b32all_iequal2, iball_eq);
1048 ALU_CASE(b32all_iequal3, iball_eq);
1049 ALU_CASE(b32all_iequal4, iball_eq);
1050
1051 ALU_CASE(b32any_inequal2, ibany_neq);
1052 ALU_CASE(b32any_inequal3, ibany_neq);
1053 ALU_CASE(b32any_inequal4, ibany_neq);
1054
1055 /* For greater-or-equal, we use less-or-equal and flip the
1056 * arguments */
1057
1058 case nir_op_ige32: {
1059 op = midgard_alu_op_ile;
1060
1061 /* Swap via temporary */
1062 nir_alu_src temp = instr->src[1];
1063 instr->src[1] = instr->src[0];
1064 instr->src[0] = temp;
1065
1066 break;
1067 }
1068
1069 case nir_op_b32csel: {
1070 op = midgard_alu_op_fcsel;
1071
1072 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1073 nr_inputs = 2;
1074
1075 emit_condition(ctx, &instr->src[0].src, false);
1076
1077 /* The condition is the first argument; move the other
1078 * arguments up one to be a binary instruction for
1079 * Midgard */
1080
1081 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1082 break;
1083 }
1084
1085 default:
1086 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1087 assert(0);
1088 return;
1089 }
1090
1091 /* Fetch unit, quirks, etc information */
1092 unsigned opcode_props = alu_opcode_props[op];
1093 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1094
1095 /* Initialise fields common between scalar/vector instructions */
1096 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1097
1098 /* src0 will always exist afaik, but src1 will not for 1-argument
1099 * instructions. The latter can only be fetched if the instruction
1100 * needs it, or else we may segfault. */
1101
1102 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1103 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1104
1105 /* Rather than use the instruction generation helpers, we do it
1106 * ourselves here to avoid the mess */
1107
1108 midgard_instruction ins = {
1109 .type = TAG_ALU_4,
1110 .ssa_args = {
1111 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1112 .src1 = quirk_flipped_r24 ? src0 : src1,
1113 .dest = dest,
1114 }
1115 };
1116
1117 nir_alu_src *nirmods[2] = { NULL };
1118
1119 if (nr_inputs == 2) {
1120 nirmods[0] = &instr->src[0];
1121 nirmods[1] = &instr->src[1];
1122 } else if (nr_inputs == 1) {
1123 nirmods[quirk_flipped_r24] = &instr->src[0];
1124 } else {
1125 assert(0);
1126 }
1127
1128 midgard_vector_alu alu = {
1129 .op = op,
1130 .reg_mode = midgard_reg_mode_full,
1131 .dest_override = midgard_dest_override_none,
1132 .outmod = outmod,
1133
1134 /* Writemask only valid for non-SSA NIR */
1135 .mask = expand_writemask((1 << nr_components) - 1),
1136
1137 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1138 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1139 };
1140
1141 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1142
1143 if (!is_ssa)
1144 alu.mask &= expand_writemask(instr->dest.write_mask);
1145
1146 ins.alu = alu;
1147
1148 /* Late fixup for emulated instructions */
1149
1150 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1151 /* Presently, our second argument is an inline #0 constant.
1152 * Switch over to an embedded 1.0 constant (that can't fit
1153 * inline, since we're 32-bit, not 16-bit like the inline
1154 * constants) */
1155
1156 ins.ssa_args.inline_constant = false;
1157 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1158 ins.has_constants = true;
1159
1160 if (instr->op == nir_op_b2f32) {
1161 ins.constants[0] = 1.0f;
1162 } else {
1163 /* Type pun it into place */
1164 uint32_t one = 0x1;
1165 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1166 }
1167
1168 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1169 } else if (instr->op == nir_op_f2b32) {
1170 ins.ssa_args.inline_constant = false;
1171 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1172 ins.has_constants = true;
1173 ins.constants[0] = 0.0f;
1174 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1175 }
1176
1177 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1178 /* To avoid duplicating the lookup tables (probably), true LUT
1179 * instructions can only operate as if they were scalars. Lower
1180 * them here by changing the component. */
1181
1182 uint8_t original_swizzle[4];
1183 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1184
1185 for (int i = 0; i < nr_components; ++i) {
1186 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1187
1188 for (int j = 0; j < 4; ++j)
1189 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1190
1191 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1192 emit_mir_instruction(ctx, ins);
1193 }
1194 } else {
1195 emit_mir_instruction(ctx, ins);
1196 }
1197 }
1198
1199 #undef ALU_CASE
1200
1201 static void
1202 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1203 {
1204 nir_const_value *const_offset;
1205 unsigned offset, reg;
1206
1207 switch (instr->intrinsic) {
1208 case nir_intrinsic_discard_if:
1209 emit_condition(ctx, &instr->src[0], true);
1210
1211 /* fallthrough */
1212
1213 case nir_intrinsic_discard: {
1214 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1215 struct midgard_instruction discard = v_branch(conditional, false);
1216 discard.branch.target_type = TARGET_DISCARD;
1217 emit_mir_instruction(ctx, discard);
1218
1219 ctx->can_discard = true;
1220 break;
1221 }
1222
1223 case nir_intrinsic_load_uniform:
1224 case nir_intrinsic_load_input:
1225 const_offset = nir_src_as_const_value(instr->src[0]);
1226 assert (const_offset && "no indirect inputs");
1227
1228 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1229
1230 reg = nir_dest_index(ctx, &instr->dest);
1231
1232 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1233 /* TODO: half-floats */
1234
1235 int uniform_offset = 0;
1236
1237 if (offset >= SPECIAL_UNIFORM_BASE) {
1238 /* XXX: Resolve which uniform */
1239 uniform_offset = 0;
1240 } else {
1241 /* Offset away from the special
1242 * uniform block */
1243
1244 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1245
1246 /* XXX */
1247 if (!entry) {
1248 DBG("WARNING: Unknown uniform %d\n", offset);
1249 break;
1250 }
1251
1252 uniform_offset = (uintptr_t) (entry) - 1;
1253 uniform_offset += ctx->special_uniforms;
1254 }
1255
1256 if (uniform_offset < ctx->uniform_cutoff) {
1257 /* Fast path: For the first 16 uniform,
1258 * accesses are 0-cycle, since they're
1259 * just a register fetch in the usual
1260 * case. So, we alias the registers
1261 * while we're still in SSA-space */
1262
1263 int reg_slot = 23 - uniform_offset;
1264 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1265 } else {
1266 /* Otherwise, read from the 'special'
1267 * UBO to access higher-indexed
1268 * uniforms, at a performance cost */
1269
1270 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1271
1272 /* TODO: Don't split */
1273 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1274 ins.load_store.address = uniform_offset >> 3;
1275
1276 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1277 emit_mir_instruction(ctx, ins);
1278 }
1279 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1280 /* XXX: Half-floats? */
1281 /* TODO: swizzle, mask */
1282
1283 midgard_instruction ins = m_load_vary_32(reg, offset);
1284
1285 midgard_varying_parameter p = {
1286 .is_varying = 1,
1287 .interpolation = midgard_interp_default,
1288 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1289 };
1290
1291 unsigned u;
1292 memcpy(&u, &p, sizeof(p));
1293 ins.load_store.varying_parameters = u;
1294
1295 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1296 emit_mir_instruction(ctx, ins);
1297 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1298 /* Constant encoded as a pinned constant */
1299
1300 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1301 ins.has_constants = true;
1302 ins.has_blend_constant = true;
1303 emit_mir_instruction(ctx, ins);
1304 } else if (ctx->is_blend) {
1305 /* For blend shaders, a load might be
1306 * translated various ways depending on what
1307 * we're loading. Figure out how this is used */
1308
1309 nir_variable *out = NULL;
1310
1311 nir_foreach_variable(var, &ctx->nir->inputs) {
1312 int drvloc = var->data.driver_location;
1313
1314 if (nir_intrinsic_base(instr) == drvloc) {
1315 out = var;
1316 break;
1317 }
1318 }
1319
1320 assert(out);
1321
1322 if (out->data.location == VARYING_SLOT_COL0) {
1323 /* Source color preloaded to r0 */
1324
1325 midgard_pin_output(ctx, reg, 0);
1326 } else if (out->data.location == VARYING_SLOT_COL1) {
1327 /* Destination color must be read from framebuffer */
1328
1329 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1330 ins.load_store.swizzle = 0; /* xxxx */
1331
1332 /* Read each component sequentially */
1333
1334 for (int c = 0; c < 4; ++c) {
1335 ins.load_store.mask = (1 << c);
1336 ins.load_store.unknown = c;
1337 emit_mir_instruction(ctx, ins);
1338 }
1339
1340 /* vadd.u2f hr2, abs(hr2), #0 */
1341
1342 midgard_vector_alu_src alu_src = blank_alu_src;
1343 alu_src.abs = true;
1344 alu_src.half = true;
1345
1346 midgard_instruction u2f = {
1347 .type = TAG_ALU_4,
1348 .ssa_args = {
1349 .src0 = reg,
1350 .src1 = SSA_UNUSED_0,
1351 .dest = reg,
1352 .inline_constant = true
1353 },
1354 .alu = {
1355 .op = midgard_alu_op_u2f,
1356 .reg_mode = midgard_reg_mode_half,
1357 .dest_override = midgard_dest_override_none,
1358 .mask = 0xF,
1359 .src1 = vector_alu_srco_unsigned(alu_src),
1360 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1361 }
1362 };
1363
1364 emit_mir_instruction(ctx, u2f);
1365
1366 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1367
1368 alu_src.abs = false;
1369
1370 midgard_instruction fmul = {
1371 .type = TAG_ALU_4,
1372 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1373 .ssa_args = {
1374 .src0 = reg,
1375 .dest = reg,
1376 .src1 = SSA_UNUSED_0,
1377 .inline_constant = true
1378 },
1379 .alu = {
1380 .op = midgard_alu_op_fmul,
1381 .reg_mode = midgard_reg_mode_full,
1382 .dest_override = midgard_dest_override_none,
1383 .outmod = midgard_outmod_sat,
1384 .mask = 0xFF,
1385 .src1 = vector_alu_srco_unsigned(alu_src),
1386 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1387 }
1388 };
1389
1390 emit_mir_instruction(ctx, fmul);
1391 } else {
1392 DBG("Unknown input in blend shader\n");
1393 assert(0);
1394 }
1395 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1396 midgard_instruction ins = m_load_attr_32(reg, offset);
1397 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1398 ins.load_store.mask = (1 << instr->num_components) - 1;
1399 emit_mir_instruction(ctx, ins);
1400 } else {
1401 DBG("Unknown load\n");
1402 assert(0);
1403 }
1404
1405 break;
1406
1407 case nir_intrinsic_store_output:
1408 const_offset = nir_src_as_const_value(instr->src[1]);
1409 assert(const_offset && "no indirect outputs");
1410
1411 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1412
1413 reg = nir_src_index(ctx, &instr->src[0]);
1414
1415 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1416 /* gl_FragColor is not emitted with load/store
1417 * instructions. Instead, it gets plonked into
1418 * r0 at the end of the shader and we do the
1419 * framebuffer writeout dance. TODO: Defer
1420 * writes */
1421
1422 midgard_pin_output(ctx, reg, 0);
1423
1424 /* Save the index we're writing to for later reference
1425 * in the epilogue */
1426
1427 ctx->fragment_output = reg;
1428 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1429 /* Varyings are written into one of two special
1430 * varying register, r26 or r27. The register itself is selected as the register
1431 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1432 *
1433 * Normally emitting fmov's is frowned upon,
1434 * but due to unique constraints of
1435 * REGISTER_VARYING, fmov emission + a
1436 * dedicated cleanup pass is the only way to
1437 * guarantee correctness when considering some
1438 * (common) edge cases XXX: FIXME */
1439
1440 /* If this varying corresponds to a constant (why?!),
1441 * emit that now since it won't get picked up by
1442 * hoisting (since there is no corresponding move
1443 * emitted otherwise) */
1444
1445 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1446
1447 if (constant_value) {
1448 /* Special case: emit the varying write
1449 * directly to r26 (looks funny in asm but it's
1450 * fine) and emit the store _now_. Possibly
1451 * slightly slower, but this is a really stupid
1452 * special case anyway (why on earth would you
1453 * have a constant varying? Your own fault for
1454 * slightly worse perf :P) */
1455
1456 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1457 attach_constants(ctx, &ins, constant_value, reg + 1);
1458 emit_mir_instruction(ctx, ins);
1459
1460 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1461 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1462 emit_mir_instruction(ctx, st);
1463 } else {
1464 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1465
1466 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1467 }
1468 } else {
1469 DBG("Unknown store\n");
1470 assert(0);
1471 }
1472
1473 break;
1474
1475 case nir_intrinsic_load_alpha_ref_float:
1476 assert(instr->dest.is_ssa);
1477
1478 float ref_value = ctx->alpha_ref;
1479
1480 float *v = ralloc_array(NULL, float, 4);
1481 memcpy(v, &ref_value, sizeof(float));
1482 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1483 break;
1484
1485
1486 default:
1487 printf ("Unhandled intrinsic\n");
1488 assert(0);
1489 break;
1490 }
1491 }
1492
1493 static unsigned
1494 midgard_tex_format(enum glsl_sampler_dim dim)
1495 {
1496 switch (dim) {
1497 case GLSL_SAMPLER_DIM_2D:
1498 case GLSL_SAMPLER_DIM_EXTERNAL:
1499 return TEXTURE_2D;
1500
1501 case GLSL_SAMPLER_DIM_3D:
1502 return TEXTURE_3D;
1503
1504 case GLSL_SAMPLER_DIM_CUBE:
1505 return TEXTURE_CUBE;
1506
1507 default:
1508 DBG("Unknown sampler dim type\n");
1509 assert(0);
1510 return 0;
1511 }
1512 }
1513
1514 static void
1515 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1516 {
1517 /* TODO */
1518 //assert (!instr->sampler);
1519 //assert (!instr->texture_array_size);
1520 assert (instr->op == nir_texop_tex);
1521
1522 /* Allocate registers via a round robin scheme to alternate between the two registers */
1523 int reg = ctx->texture_op_count & 1;
1524 int in_reg = reg, out_reg = reg;
1525
1526 /* Make room for the reg */
1527
1528 if (ctx->texture_index[reg] > -1)
1529 unalias_ssa(ctx, ctx->texture_index[reg]);
1530
1531 int texture_index = instr->texture_index;
1532 int sampler_index = texture_index;
1533
1534 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1535 switch (instr->src[i].src_type) {
1536 case nir_tex_src_coord: {
1537 int index = nir_src_index(ctx, &instr->src[i].src);
1538
1539 midgard_vector_alu_src alu_src = blank_alu_src;
1540 alu_src.swizzle = (COMPONENT_Y << 2);
1541
1542 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1543 emit_mir_instruction(ctx, ins);
1544
1545 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1546
1547 break;
1548 }
1549
1550 default: {
1551 DBG("Unknown source type\n");
1552 //assert(0);
1553 break;
1554 }
1555 }
1556 }
1557
1558 /* No helper to build texture words -- we do it all here */
1559 midgard_instruction ins = {
1560 .type = TAG_TEXTURE_4,
1561 .texture = {
1562 .op = TEXTURE_OP_NORMAL,
1563 .format = midgard_tex_format(instr->sampler_dim),
1564 .texture_handle = texture_index,
1565 .sampler_handle = sampler_index,
1566
1567 /* TODO: Don't force xyzw */
1568 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1569 .mask = 0xF,
1570
1571 /* TODO: half */
1572 //.in_reg_full = 1,
1573 .out_full = 1,
1574
1575 .filter = 1,
1576
1577 /* Always 1 */
1578 .unknown7 = 1,
1579
1580 /* Assume we can continue; hint it out later */
1581 .cont = 1,
1582 }
1583 };
1584
1585 /* Set registers to read and write from the same place */
1586 ins.texture.in_reg_select = in_reg;
1587 ins.texture.out_reg_select = out_reg;
1588
1589 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1590 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1591 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1592 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1593 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1594 } else {
1595 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1596 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1597 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1598 }
1599
1600 emit_mir_instruction(ctx, ins);
1601
1602 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1603
1604 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1605 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1606 ctx->texture_index[reg] = o_index;
1607
1608 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1609 emit_mir_instruction(ctx, ins2);
1610
1611 /* Used for .cont and .last hinting */
1612 ctx->texture_op_count++;
1613 }
1614
1615 static void
1616 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1617 {
1618 switch (instr->type) {
1619 case nir_jump_break: {
1620 /* Emit a branch out of the loop */
1621 struct midgard_instruction br = v_branch(false, false);
1622 br.branch.target_type = TARGET_BREAK;
1623 br.branch.target_break = ctx->current_loop;
1624 emit_mir_instruction(ctx, br);
1625
1626 DBG("break..\n");
1627 break;
1628 }
1629
1630 default:
1631 DBG("Unknown jump type %d\n", instr->type);
1632 break;
1633 }
1634 }
1635
1636 static void
1637 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1638 {
1639 switch (instr->type) {
1640 case nir_instr_type_load_const:
1641 emit_load_const(ctx, nir_instr_as_load_const(instr));
1642 break;
1643
1644 case nir_instr_type_intrinsic:
1645 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1646 break;
1647
1648 case nir_instr_type_alu:
1649 emit_alu(ctx, nir_instr_as_alu(instr));
1650 break;
1651
1652 case nir_instr_type_tex:
1653 emit_tex(ctx, nir_instr_as_tex(instr));
1654 break;
1655
1656 case nir_instr_type_jump:
1657 emit_jump(ctx, nir_instr_as_jump(instr));
1658 break;
1659
1660 case nir_instr_type_ssa_undef:
1661 /* Spurious */
1662 break;
1663
1664 default:
1665 DBG("Unhandled instruction type\n");
1666 break;
1667 }
1668 }
1669
1670 /* Determine the actual hardware from the index based on the RA results or special values */
1671
1672 static int
1673 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1674 {
1675 if (reg >= SSA_FIXED_MINIMUM)
1676 return SSA_REG_FROM_FIXED(reg);
1677
1678 if (reg >= 0) {
1679 assert(reg < maxreg);
1680 int r = ra_get_node_reg(g, reg);
1681 ctx->work_registers = MAX2(ctx->work_registers, r);
1682 return r;
1683 }
1684
1685 switch (reg) {
1686 /* fmov style unused */
1687 case SSA_UNUSED_0:
1688 return REGISTER_UNUSED;
1689
1690 /* lut style unused */
1691 case SSA_UNUSED_1:
1692 return REGISTER_UNUSED;
1693
1694 default:
1695 DBG("Unknown SSA register alias %d\n", reg);
1696 assert(0);
1697 return 31;
1698 }
1699 }
1700
1701 static unsigned int
1702 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1703 {
1704 /* Choose the first available register to minimise reported register pressure */
1705
1706 for (int i = 0; i < 16; ++i) {
1707 if (BITSET_TEST(regs, i)) {
1708 return i;
1709 }
1710 }
1711
1712 assert(0);
1713 return 0;
1714 }
1715
1716 static bool
1717 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1718 {
1719 if (ins->ssa_args.src0 == src) return true;
1720 if (ins->ssa_args.src1 == src) return true;
1721
1722 return false;
1723 }
1724
1725 static bool
1726 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1727 {
1728 /* Check the rest of the block for liveness */
1729 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1730 if (midgard_is_live_in_instr(ins, src))
1731 return true;
1732 }
1733
1734 /* Check the rest of the blocks for liveness */
1735 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1736 mir_foreach_instr_in_block(b, ins) {
1737 if (midgard_is_live_in_instr(ins, src))
1738 return true;
1739 }
1740 }
1741
1742 /* TODO: How does control flow interact in complex shaders? */
1743
1744 return false;
1745 }
1746
1747 static void
1748 allocate_registers(compiler_context *ctx)
1749 {
1750 /* First, initialize the RA */
1751 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1752
1753 /* Create a primary (general purpose) class, as well as special purpose
1754 * pipeline register classes */
1755
1756 int primary_class = ra_alloc_reg_class(regs);
1757 int varying_class = ra_alloc_reg_class(regs);
1758
1759 /* Add the full set of work registers */
1760 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1761 for (int i = 0; i < work_count; ++i)
1762 ra_class_add_reg(regs, primary_class, i);
1763
1764 /* Add special registers */
1765 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1766 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1767
1768 /* We're done setting up */
1769 ra_set_finalize(regs, NULL);
1770
1771 /* Transform the MIR into squeezed index form */
1772 mir_foreach_block(ctx, block) {
1773 mir_foreach_instr_in_block(block, ins) {
1774 if (ins->compact_branch) continue;
1775
1776 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1777 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1778 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1779 }
1780 if (midgard_debug & MIDGARD_DBG_SHADERS)
1781 print_mir_block(block);
1782 }
1783
1784 /* Let's actually do register allocation */
1785 int nodes = ctx->temp_count;
1786 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1787
1788 /* Set everything to the work register class, unless it has somewhere
1789 * special to go */
1790
1791 mir_foreach_block(ctx, block) {
1792 mir_foreach_instr_in_block(block, ins) {
1793 if (ins->compact_branch) continue;
1794
1795 if (ins->ssa_args.dest < 0) continue;
1796
1797 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1798
1799 int class = primary_class;
1800
1801 ra_set_node_class(g, ins->ssa_args.dest, class);
1802 }
1803 }
1804
1805 for (int index = 0; index <= ctx->max_hash; ++index) {
1806 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1807
1808 if (temp) {
1809 unsigned reg = temp - 1;
1810 int t = find_or_allocate_temp(ctx, index);
1811 ra_set_node_reg(g, t, reg);
1812 }
1813 }
1814
1815 /* Determine liveness */
1816
1817 int *live_start = malloc(nodes * sizeof(int));
1818 int *live_end = malloc(nodes * sizeof(int));
1819
1820 /* Initialize as non-existent */
1821
1822 for (int i = 0; i < nodes; ++i) {
1823 live_start[i] = live_end[i] = -1;
1824 }
1825
1826 int d = 0;
1827
1828 mir_foreach_block(ctx, block) {
1829 mir_foreach_instr_in_block(block, ins) {
1830 if (ins->compact_branch) continue;
1831
1832 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1833 /* If this destination is not yet live, it is now since we just wrote it */
1834
1835 int dest = ins->ssa_args.dest;
1836
1837 if (live_start[dest] == -1)
1838 live_start[dest] = d;
1839 }
1840
1841 /* Since we just used a source, the source might be
1842 * dead now. Scan the rest of the block for
1843 * invocations, and if there are none, the source dies
1844 * */
1845
1846 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1847
1848 for (int src = 0; src < 2; ++src) {
1849 int s = sources[src];
1850
1851 if (s < 0) continue;
1852
1853 if (s >= SSA_FIXED_MINIMUM) continue;
1854
1855 if (!is_live_after(ctx, block, ins, s)) {
1856 live_end[s] = d;
1857 }
1858 }
1859
1860 ++d;
1861 }
1862 }
1863
1864 /* If a node still hasn't been killed, kill it now */
1865
1866 for (int i = 0; i < nodes; ++i) {
1867 /* live_start == -1 most likely indicates a pinned output */
1868
1869 if (live_end[i] == -1)
1870 live_end[i] = d;
1871 }
1872
1873 /* Setup interference between nodes that are live at the same time */
1874
1875 for (int i = 0; i < nodes; ++i) {
1876 for (int j = i + 1; j < nodes; ++j) {
1877 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1878 ra_add_node_interference(g, i, j);
1879 }
1880 }
1881
1882 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1883
1884 if (!ra_allocate(g)) {
1885 DBG("Error allocating registers\n");
1886 assert(0);
1887 }
1888
1889 /* Cleanup */
1890 free(live_start);
1891 free(live_end);
1892
1893 mir_foreach_block(ctx, block) {
1894 mir_foreach_instr_in_block(block, ins) {
1895 if (ins->compact_branch) continue;
1896
1897 ssa_args args = ins->ssa_args;
1898
1899 switch (ins->type) {
1900 case TAG_ALU_4:
1901 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1902
1903 ins->registers.src2_imm = args.inline_constant;
1904
1905 if (args.inline_constant) {
1906 /* Encode inline 16-bit constant as a vector by default */
1907
1908 ins->registers.src2_reg = ins->inline_constant >> 11;
1909
1910 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1911
1912 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1913 ins->alu.src2 = imm << 2;
1914 } else {
1915 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1916 }
1917
1918 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1919
1920 break;
1921
1922 case TAG_LOAD_STORE_4: {
1923 if (OP_IS_STORE(ins->load_store.op)) {
1924 /* TODO: use ssa_args for store_vary */
1925 ins->load_store.reg = 0;
1926 } else {
1927 bool has_dest = args.dest >= 0;
1928 int ssa_arg = has_dest ? args.dest : args.src0;
1929
1930 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1931 }
1932
1933 break;
1934 }
1935
1936 default:
1937 break;
1938 }
1939 }
1940 }
1941 }
1942
1943 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1944 * use scalar ALU instructions, for functional or performance reasons. To do
1945 * this, we just demote vector ALU payloads to scalar. */
1946
1947 static int
1948 component_from_mask(unsigned mask)
1949 {
1950 for (int c = 0; c < 4; ++c) {
1951 if (mask & (3 << (2 * c)))
1952 return c;
1953 }
1954
1955 assert(0);
1956 return 0;
1957 }
1958
1959 static bool
1960 is_single_component_mask(unsigned mask)
1961 {
1962 int components = 0;
1963
1964 for (int c = 0; c < 4; ++c)
1965 if (mask & (3 << (2 * c)))
1966 components++;
1967
1968 return components == 1;
1969 }
1970
1971 /* Create a mask of accessed components from a swizzle to figure out vector
1972 * dependencies */
1973
1974 static unsigned
1975 swizzle_to_access_mask(unsigned swizzle)
1976 {
1977 unsigned component_mask = 0;
1978
1979 for (int i = 0; i < 4; ++i) {
1980 unsigned c = (swizzle >> (2 * i)) & 3;
1981 component_mask |= (1 << c);
1982 }
1983
1984 return component_mask;
1985 }
1986
1987 static unsigned
1988 vector_to_scalar_source(unsigned u)
1989 {
1990 midgard_vector_alu_src v;
1991 memcpy(&v, &u, sizeof(v));
1992
1993 midgard_scalar_alu_src s = {
1994 .abs = v.abs,
1995 .negate = v.negate,
1996 .full = !v.half,
1997 .component = (v.swizzle & 3) << 1
1998 };
1999
2000 unsigned o;
2001 memcpy(&o, &s, sizeof(s));
2002
2003 return o & ((1 << 6) - 1);
2004 }
2005
2006 static midgard_scalar_alu
2007 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2008 {
2009 /* The output component is from the mask */
2010 midgard_scalar_alu s = {
2011 .op = v.op,
2012 .src1 = vector_to_scalar_source(v.src1),
2013 .src2 = vector_to_scalar_source(v.src2),
2014 .unknown = 0,
2015 .outmod = v.outmod,
2016 .output_full = 1, /* TODO: Half */
2017 .output_component = component_from_mask(v.mask) << 1,
2018 };
2019
2020 /* Inline constant is passed along rather than trying to extract it
2021 * from v */
2022
2023 if (ins->ssa_args.inline_constant) {
2024 uint16_t imm = 0;
2025 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2026 imm |= (lower_11 >> 9) & 3;
2027 imm |= (lower_11 >> 6) & 4;
2028 imm |= (lower_11 >> 2) & 0x38;
2029 imm |= (lower_11 & 63) << 6;
2030
2031 s.src2 = imm;
2032 }
2033
2034 return s;
2035 }
2036
2037 /* Midgard prefetches instruction types, so during emission we need to
2038 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2039 * if this is the second to last and the last is an ALU, then it's also 1... */
2040
2041 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2042 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2043
2044 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2045 bytes_emitted += sizeof(type)
2046
2047 static void
2048 emit_binary_vector_instruction(midgard_instruction *ains,
2049 uint16_t *register_words, int *register_words_count,
2050 uint64_t *body_words, size_t *body_size, int *body_words_count,
2051 size_t *bytes_emitted)
2052 {
2053 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2054 *bytes_emitted += sizeof(midgard_reg_info);
2055
2056 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2057 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2058 *bytes_emitted += sizeof(midgard_vector_alu);
2059 }
2060
2061 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2062 * mind that we are a vector architecture and we can write to different
2063 * components simultaneously */
2064
2065 static bool
2066 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2067 {
2068 /* Each instruction reads some registers and writes to a register. See
2069 * where the first writes */
2070
2071 /* Figure out where exactly we wrote to */
2072 int source = first->ssa_args.dest;
2073 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2074
2075 /* As long as the second doesn't read from the first, we're okay */
2076 if (second->ssa_args.src0 == source) {
2077 if (first->type == TAG_ALU_4) {
2078 /* Figure out which components we just read from */
2079
2080 int q = second->alu.src1;
2081 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2082
2083 /* Check if there are components in common, and fail if so */
2084 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2085 return false;
2086 } else
2087 return false;
2088
2089 }
2090
2091 if (second->ssa_args.src1 == source)
2092 return false;
2093
2094 /* Otherwise, it's safe in that regard. Another data hazard is both
2095 * writing to the same place, of course */
2096
2097 if (second->ssa_args.dest == source) {
2098 /* ...but only if the components overlap */
2099 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2100
2101 if (dest_mask & source_mask)
2102 return false;
2103 }
2104
2105 /* ...That's it */
2106 return true;
2107 }
2108
2109 static bool
2110 midgard_has_hazard(
2111 midgard_instruction **segment, unsigned segment_size,
2112 midgard_instruction *ains)
2113 {
2114 for (int s = 0; s < segment_size; ++s)
2115 if (!can_run_concurrent_ssa(segment[s], ains))
2116 return true;
2117
2118 return false;
2119
2120
2121 }
2122
2123 /* Schedules, but does not emit, a single basic block. After scheduling, the
2124 * final tag and size of the block are known, which are necessary for branching
2125 * */
2126
2127 static midgard_bundle
2128 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2129 {
2130 int instructions_emitted = 0, instructions_consumed = -1;
2131 midgard_bundle bundle = { 0 };
2132
2133 uint8_t tag = ins->type;
2134
2135 /* Default to the instruction's tag */
2136 bundle.tag = tag;
2137
2138 switch (ins->type) {
2139 case TAG_ALU_4: {
2140 uint32_t control = 0;
2141 size_t bytes_emitted = sizeof(control);
2142
2143 /* TODO: Constant combining */
2144 int index = 0, last_unit = 0;
2145
2146 /* Previous instructions, for the purpose of parallelism */
2147 midgard_instruction *segment[4] = {0};
2148 int segment_size = 0;
2149
2150 instructions_emitted = -1;
2151 midgard_instruction *pins = ins;
2152
2153 for (;;) {
2154 midgard_instruction *ains = pins;
2155
2156 /* Advance instruction pointer */
2157 if (index) {
2158 ains = mir_next_op(pins);
2159 pins = ains;
2160 }
2161
2162 /* Out-of-work condition */
2163 if ((struct list_head *) ains == &block->instructions)
2164 break;
2165
2166 /* Ensure that the chain can continue */
2167 if (ains->type != TAG_ALU_4) break;
2168
2169 /* According to the presentation "The ARM
2170 * Mali-T880 Mobile GPU" from HotChips 27,
2171 * there are two pipeline stages. Branching
2172 * position determined experimentally. Lines
2173 * are executed in parallel:
2174 *
2175 * [ VMUL ] [ SADD ]
2176 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2177 *
2178 * Verify that there are no ordering dependencies here.
2179 *
2180 * TODO: Allow for parallelism!!!
2181 */
2182
2183 /* Pick a unit for it if it doesn't force a particular unit */
2184
2185 int unit = ains->unit;
2186
2187 if (!unit) {
2188 int op = ains->alu.op;
2189 int units = alu_opcode_props[op];
2190
2191 /* TODO: Promotion of scalars to vectors */
2192 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2193
2194 if (!vector)
2195 assert(units & UNITS_SCALAR);
2196
2197 if (vector) {
2198 if (last_unit >= UNIT_VADD) {
2199 if (units & UNIT_VLUT)
2200 unit = UNIT_VLUT;
2201 else
2202 break;
2203 } else {
2204 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2205 unit = UNIT_VMUL;
2206 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2207 unit = UNIT_VADD;
2208 else if (units & UNIT_VLUT)
2209 unit = UNIT_VLUT;
2210 else
2211 break;
2212 }
2213 } else {
2214 if (last_unit >= UNIT_VADD) {
2215 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2216 unit = UNIT_SMUL;
2217 else if (units & UNIT_VLUT)
2218 unit = UNIT_VLUT;
2219 else
2220 break;
2221 } else {
2222 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2223 unit = UNIT_SADD;
2224 else if (units & UNIT_SMUL)
2225 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2226 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2227 unit = UNIT_VADD;
2228 else
2229 break;
2230 }
2231 }
2232
2233 assert(unit & units);
2234 }
2235
2236 /* Late unit check, this time for encoding (not parallelism) */
2237 if (unit <= last_unit) break;
2238
2239 /* Clear the segment */
2240 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2241 segment_size = 0;
2242
2243 if (midgard_has_hazard(segment, segment_size, ains))
2244 break;
2245
2246 /* We're good to go -- emit the instruction */
2247 ains->unit = unit;
2248
2249 segment[segment_size++] = ains;
2250
2251 /* Only one set of embedded constants per
2252 * bundle possible; if we have more, we must
2253 * break the chain early, unfortunately */
2254
2255 if (ains->has_constants) {
2256 if (bundle.has_embedded_constants) {
2257 /* ...but if there are already
2258 * constants but these are the
2259 * *same* constants, we let it
2260 * through */
2261
2262 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2263 break;
2264 } else {
2265 bundle.has_embedded_constants = true;
2266 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2267
2268 /* If this is a blend shader special constant, track it for patching */
2269 if (ains->has_blend_constant)
2270 bundle.has_blend_constant = true;
2271 }
2272 }
2273
2274 if (ains->unit & UNITS_ANY_VECTOR) {
2275 emit_binary_vector_instruction(ains, bundle.register_words,
2276 &bundle.register_words_count, bundle.body_words,
2277 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2278 } else if (ains->compact_branch) {
2279 /* All of r0 has to be written out
2280 * along with the branch writeout.
2281 * (slow!) */
2282
2283 if (ains->writeout) {
2284 if (index == 0) {
2285 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2286 ins.unit = UNIT_VMUL;
2287
2288 control |= ins.unit;
2289
2290 emit_binary_vector_instruction(&ins, bundle.register_words,
2291 &bundle.register_words_count, bundle.body_words,
2292 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2293 } else {
2294 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2295 bool written_late = false;
2296 bool components[4] = { 0 };
2297 uint16_t register_dep_mask = 0;
2298 uint16_t written_mask = 0;
2299
2300 midgard_instruction *qins = ins;
2301 for (int t = 0; t < index; ++t) {
2302 if (qins->registers.out_reg != 0) {
2303 /* Mark down writes */
2304
2305 written_mask |= (1 << qins->registers.out_reg);
2306 } else {
2307 /* Mark down the register dependencies for errata check */
2308
2309 if (qins->registers.src1_reg < 16)
2310 register_dep_mask |= (1 << qins->registers.src1_reg);
2311
2312 if (qins->registers.src2_reg < 16)
2313 register_dep_mask |= (1 << qins->registers.src2_reg);
2314
2315 int mask = qins->alu.mask;
2316
2317 for (int c = 0; c < 4; ++c)
2318 if (mask & (0x3 << (2 * c)))
2319 components[c] = true;
2320
2321 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2322
2323 if (qins->unit == UNIT_VLUT)
2324 written_late = true;
2325 }
2326
2327 /* Advance instruction pointer */
2328 qins = mir_next_op(qins);
2329 }
2330
2331
2332 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2333 if (register_dep_mask & written_mask) {
2334 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2335 break;
2336 }
2337
2338 if (written_late)
2339 break;
2340
2341 /* If even a single component is not written, break it up (conservative check). */
2342 bool breakup = false;
2343
2344 for (int c = 0; c < 4; ++c)
2345 if (!components[c])
2346 breakup = true;
2347
2348 if (breakup)
2349 break;
2350
2351 /* Otherwise, we're free to proceed */
2352 }
2353 }
2354
2355 if (ains->unit == ALU_ENAB_BRANCH) {
2356 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2357 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2358 bytes_emitted += sizeof(midgard_branch_extended);
2359 } else {
2360 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2361 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2362 bytes_emitted += sizeof(ains->br_compact);
2363 }
2364 } else {
2365 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2366 bytes_emitted += sizeof(midgard_reg_info);
2367
2368 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2369 bundle.body_words_count++;
2370 bytes_emitted += sizeof(midgard_scalar_alu);
2371 }
2372
2373 /* Defer marking until after writing to allow for break */
2374 control |= ains->unit;
2375 last_unit = ains->unit;
2376 ++instructions_emitted;
2377 ++index;
2378 }
2379
2380 /* Bubble up the number of instructions for skipping */
2381 instructions_consumed = index - 1;
2382
2383 int padding = 0;
2384
2385 /* Pad ALU op to nearest word */
2386
2387 if (bytes_emitted & 15) {
2388 padding = 16 - (bytes_emitted & 15);
2389 bytes_emitted += padding;
2390 }
2391
2392 /* Constants must always be quadwords */
2393 if (bundle.has_embedded_constants)
2394 bytes_emitted += 16;
2395
2396 /* Size ALU instruction for tag */
2397 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2398 bundle.padding = padding;
2399 bundle.control = bundle.tag | control;
2400
2401 break;
2402 }
2403
2404 case TAG_LOAD_STORE_4: {
2405 /* Load store instructions have two words at once. If
2406 * we only have one queued up, we need to NOP pad.
2407 * Otherwise, we store both in succession to save space
2408 * and cycles -- letting them go in parallel -- skip
2409 * the next. The usefulness of this optimisation is
2410 * greatly dependent on the quality of the instruction
2411 * scheduler.
2412 */
2413
2414 midgard_instruction *next_op = mir_next_op(ins);
2415
2416 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2417 /* As the two operate concurrently, make sure
2418 * they are not dependent */
2419
2420 if (can_run_concurrent_ssa(ins, next_op) || true) {
2421 /* Skip ahead, since it's redundant with the pair */
2422 instructions_consumed = 1 + (instructions_emitted++);
2423 }
2424 }
2425
2426 break;
2427 }
2428
2429 default:
2430 /* Texture ops default to single-op-per-bundle scheduling */
2431 break;
2432 }
2433
2434 /* Copy the instructions into the bundle */
2435 bundle.instruction_count = instructions_emitted + 1;
2436
2437 int used_idx = 0;
2438
2439 midgard_instruction *uins = ins;
2440 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2441 bundle.instructions[used_idx++] = *uins;
2442 uins = mir_next_op(uins);
2443 }
2444
2445 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2446
2447 return bundle;
2448 }
2449
2450 static int
2451 quadword_size(int tag)
2452 {
2453 switch (tag) {
2454 case TAG_ALU_4:
2455 return 1;
2456
2457 case TAG_ALU_8:
2458 return 2;
2459
2460 case TAG_ALU_12:
2461 return 3;
2462
2463 case TAG_ALU_16:
2464 return 4;
2465
2466 case TAG_LOAD_STORE_4:
2467 return 1;
2468
2469 case TAG_TEXTURE_4:
2470 return 1;
2471
2472 default:
2473 assert(0);
2474 return 0;
2475 }
2476 }
2477
2478 /* Schedule a single block by iterating its instruction to create bundles.
2479 * While we go, tally about the bundle sizes to compute the block size. */
2480
2481 static void
2482 schedule_block(compiler_context *ctx, midgard_block *block)
2483 {
2484 util_dynarray_init(&block->bundles, NULL);
2485
2486 block->quadword_count = 0;
2487
2488 mir_foreach_instr_in_block(block, ins) {
2489 int skip;
2490 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2491 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2492
2493 if (bundle.has_blend_constant) {
2494 /* TODO: Multiblock? */
2495 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2496 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2497 }
2498
2499 while(skip--)
2500 ins = mir_next_op(ins);
2501
2502 block->quadword_count += quadword_size(bundle.tag);
2503 }
2504
2505 block->is_scheduled = true;
2506 }
2507
2508 static void
2509 schedule_program(compiler_context *ctx)
2510 {
2511 allocate_registers(ctx);
2512
2513 mir_foreach_block(ctx, block) {
2514 schedule_block(ctx, block);
2515 }
2516 }
2517
2518 /* After everything is scheduled, emit whole bundles at a time */
2519
2520 static void
2521 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2522 {
2523 int lookahead = next_tag << 4;
2524
2525 switch (bundle->tag) {
2526 case TAG_ALU_4:
2527 case TAG_ALU_8:
2528 case TAG_ALU_12:
2529 case TAG_ALU_16: {
2530 /* Actually emit each component */
2531 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2532
2533 for (int i = 0; i < bundle->register_words_count; ++i)
2534 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2535
2536 /* Emit body words based on the instructions bundled */
2537 for (int i = 0; i < bundle->instruction_count; ++i) {
2538 midgard_instruction *ins = &bundle->instructions[i];
2539
2540 if (ins->unit & UNITS_ANY_VECTOR) {
2541 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2542 } else if (ins->compact_branch) {
2543 /* Dummy move, XXX DRY */
2544 if ((i == 0) && ins->writeout) {
2545 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2546 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2547 }
2548
2549 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2550 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2551 } else {
2552 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2553 }
2554 } else {
2555 /* Scalar */
2556 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2557 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2558 }
2559 }
2560
2561 /* Emit padding (all zero) */
2562 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2563
2564 /* Tack on constants */
2565
2566 if (bundle->has_embedded_constants) {
2567 util_dynarray_append(emission, float, bundle->constants[0]);
2568 util_dynarray_append(emission, float, bundle->constants[1]);
2569 util_dynarray_append(emission, float, bundle->constants[2]);
2570 util_dynarray_append(emission, float, bundle->constants[3]);
2571 }
2572
2573 break;
2574 }
2575
2576 case TAG_LOAD_STORE_4: {
2577 /* One or two composing instructions */
2578
2579 uint64_t current64, next64 = LDST_NOP;
2580
2581 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2582
2583 if (bundle->instruction_count == 2)
2584 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2585
2586 midgard_load_store instruction = {
2587 .type = bundle->tag,
2588 .next_type = next_tag,
2589 .word1 = current64,
2590 .word2 = next64
2591 };
2592
2593 util_dynarray_append(emission, midgard_load_store, instruction);
2594
2595 break;
2596 }
2597
2598 case TAG_TEXTURE_4: {
2599 /* Texture instructions are easy, since there is no
2600 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2601
2602 midgard_instruction *ins = &bundle->instructions[0];
2603
2604 ins->texture.type = TAG_TEXTURE_4;
2605 ins->texture.next_type = next_tag;
2606
2607 ctx->texture_op_count--;
2608
2609 if (!ctx->texture_op_count) {
2610 ins->texture.cont = 0;
2611 ins->texture.last = 1;
2612 }
2613
2614 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2615 break;
2616 }
2617
2618 default:
2619 DBG("Unknown midgard instruction type\n");
2620 assert(0);
2621 break;
2622 }
2623 }
2624
2625
2626 /* ALU instructions can inline or embed constants, which decreases register
2627 * pressure and saves space. */
2628
2629 #define CONDITIONAL_ATTACH(src) { \
2630 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2631 \
2632 if (entry) { \
2633 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2634 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2635 } \
2636 }
2637
2638 static void
2639 inline_alu_constants(compiler_context *ctx)
2640 {
2641 mir_foreach_instr(ctx, alu) {
2642 /* Other instructions cannot inline constants */
2643 if (alu->type != TAG_ALU_4) continue;
2644
2645 /* If there is already a constant here, we can do nothing */
2646 if (alu->has_constants) continue;
2647
2648 CONDITIONAL_ATTACH(src0);
2649
2650 if (!alu->has_constants) {
2651 CONDITIONAL_ATTACH(src1)
2652 } else if (!alu->inline_constant) {
2653 /* Corner case: _two_ vec4 constants, for instance with a
2654 * csel. For this case, we can only use a constant
2655 * register for one, we'll have to emit a move for the
2656 * other. Note, if both arguments are constants, then
2657 * necessarily neither argument depends on the value of
2658 * any particular register. As the destination register
2659 * will be wiped, that means we can spill the constant
2660 * to the destination register.
2661 */
2662
2663 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2664 unsigned scratch = alu->ssa_args.dest;
2665
2666 if (entry) {
2667 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2668 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2669
2670 /* Force a break XXX Defer r31 writes */
2671 ins.unit = UNIT_VLUT;
2672
2673 /* Set the source */
2674 alu->ssa_args.src1 = scratch;
2675
2676 /* Inject us -before- the last instruction which set r31 */
2677 mir_insert_instruction_before(mir_prev_op(alu), ins);
2678 }
2679 }
2680 }
2681 }
2682
2683 /* Midgard supports two types of constants, embedded constants (128-bit) and
2684 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2685 * constants can be demoted to inline constants, for space savings and
2686 * sometimes a performance boost */
2687
2688 static void
2689 embedded_to_inline_constant(compiler_context *ctx)
2690 {
2691 mir_foreach_instr(ctx, ins) {
2692 if (!ins->has_constants) continue;
2693
2694 if (ins->ssa_args.inline_constant) continue;
2695
2696 /* Blend constants must not be inlined by definition */
2697 if (ins->has_blend_constant) continue;
2698
2699 /* src1 cannot be an inline constant due to encoding
2700 * restrictions. So, if possible we try to flip the arguments
2701 * in that case */
2702
2703 int op = ins->alu.op;
2704
2705 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2706 /* Flip based on op. Fallthrough intentional */
2707
2708 switch (op) {
2709 /* These ops require an operational change to flip their arguments TODO */
2710 case midgard_alu_op_flt:
2711 case midgard_alu_op_fle:
2712 case midgard_alu_op_ilt:
2713 case midgard_alu_op_ile:
2714 case midgard_alu_op_fcsel:
2715 case midgard_alu_op_icsel:
2716 case midgard_alu_op_isub:
2717 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2718 break;
2719
2720 /* These ops are commutative and Just Flip */
2721 case midgard_alu_op_fne:
2722 case midgard_alu_op_fadd:
2723 case midgard_alu_op_fmul:
2724 case midgard_alu_op_fmin:
2725 case midgard_alu_op_fmax:
2726 case midgard_alu_op_iadd:
2727 case midgard_alu_op_imul:
2728 case midgard_alu_op_feq:
2729 case midgard_alu_op_ieq:
2730 case midgard_alu_op_ine:
2731 case midgard_alu_op_iand:
2732 case midgard_alu_op_ior:
2733 case midgard_alu_op_ixor:
2734 /* Flip the SSA numbers */
2735 ins->ssa_args.src0 = ins->ssa_args.src1;
2736 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2737
2738 /* And flip the modifiers */
2739
2740 unsigned src_temp;
2741
2742 src_temp = ins->alu.src2;
2743 ins->alu.src2 = ins->alu.src1;
2744 ins->alu.src1 = src_temp;
2745
2746 default:
2747 break;
2748 }
2749 }
2750
2751 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2752 /* Extract the source information */
2753
2754 midgard_vector_alu_src *src;
2755 int q = ins->alu.src2;
2756 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2757 src = m;
2758
2759 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2760 int component = src->swizzle & 3;
2761
2762 /* Scale constant appropriately, if we can legally */
2763 uint16_t scaled_constant = 0;
2764
2765 /* XXX: Check legality */
2766 if (midgard_is_integer_op(op)) {
2767 /* TODO: Inline integer */
2768 continue;
2769
2770 unsigned int *iconstants = (unsigned int *) ins->constants;
2771 scaled_constant = (uint16_t) iconstants[component];
2772
2773 /* Constant overflow after resize */
2774 if (scaled_constant != iconstants[component])
2775 continue;
2776 } else {
2777 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2778 }
2779
2780 /* We don't know how to handle these with a constant */
2781
2782 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2783 DBG("Bailing inline constant...\n");
2784 continue;
2785 }
2786
2787 /* Make sure that the constant is not itself a
2788 * vector by checking if all accessed values
2789 * (by the swizzle) are the same. */
2790
2791 uint32_t *cons = (uint32_t *) ins->constants;
2792 uint32_t value = cons[component];
2793
2794 bool is_vector = false;
2795 unsigned mask = effective_writemask(&ins->alu);
2796
2797 for (int c = 1; c < 4; ++c) {
2798 /* We only care if this component is actually used */
2799 if (!(mask & (1 << c)))
2800 continue;
2801
2802 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2803
2804 if (test != value) {
2805 is_vector = true;
2806 break;
2807 }
2808 }
2809
2810 if (is_vector)
2811 continue;
2812
2813 /* Get rid of the embedded constant */
2814 ins->has_constants = false;
2815 ins->ssa_args.src1 = SSA_UNUSED_0;
2816 ins->ssa_args.inline_constant = true;
2817 ins->inline_constant = scaled_constant;
2818 }
2819 }
2820 }
2821
2822 /* Map normal SSA sources to other SSA sources / fixed registers (like
2823 * uniforms) */
2824
2825 static void
2826 map_ssa_to_alias(compiler_context *ctx, int *ref)
2827 {
2828 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2829
2830 if (alias) {
2831 /* Remove entry in leftovers to avoid a redunant fmov */
2832
2833 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2834
2835 if (leftover)
2836 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2837
2838 /* Assign the alias map */
2839 *ref = alias - 1;
2840 return;
2841 }
2842 }
2843
2844 #define AS_SRC(to, u) \
2845 int q##to = ins->alu.src2; \
2846 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2847
2848 /* Removing unused moves is necessary to clean up the texture pipeline results.
2849 *
2850 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2851
2852 static void
2853 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2854 {
2855 mir_foreach_instr_in_block_safe(block, ins) {
2856 if (ins->type != TAG_ALU_4) continue;
2857
2858 if (ins->alu.op != midgard_alu_op_fmov) continue;
2859
2860 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2861
2862 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2863
2864 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2865
2866 mir_remove_instruction(ins);
2867 }
2868 }
2869
2870 /* The following passes reorder MIR instructions to enable better scheduling */
2871
2872 static void
2873 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2874 {
2875 mir_foreach_instr_in_block_safe(block, ins) {
2876 if (ins->type != TAG_LOAD_STORE_4) continue;
2877
2878 /* We've found a load/store op. Check if next is also load/store. */
2879 midgard_instruction *next_op = mir_next_op(ins);
2880 if (&next_op->link != &block->instructions) {
2881 if (next_op->type == TAG_LOAD_STORE_4) {
2882 /* If so, we're done since we're a pair */
2883 ins = mir_next_op(ins);
2884 continue;
2885 }
2886
2887 /* Maximum search distance to pair, to avoid register pressure disasters */
2888 int search_distance = 8;
2889
2890 /* Otherwise, we have an orphaned load/store -- search for another load */
2891 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2892 /* Terminate search if necessary */
2893 if (!(search_distance--)) break;
2894
2895 if (c->type != TAG_LOAD_STORE_4) continue;
2896
2897 if (OP_IS_STORE(c->load_store.op)) continue;
2898
2899 /* We found one! Move it up to pair and remove it from the old location */
2900
2901 mir_insert_instruction_before(ins, *c);
2902 mir_remove_instruction(c);
2903
2904 break;
2905 }
2906 }
2907 }
2908 }
2909
2910 /* Emit varying stores late */
2911
2912 static void
2913 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2914 /* Iterate in reverse to get the final write, rather than the first */
2915
2916 mir_foreach_instr_in_block_safe_rev(block, ins) {
2917 /* Check if what we just wrote needs a store */
2918 int idx = ins->ssa_args.dest;
2919 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2920
2921 if (!varying) continue;
2922
2923 varying -= 1;
2924
2925 /* We need to store to the appropriate varying, so emit the
2926 * move/store */
2927
2928 /* TODO: Integrate with special purpose RA (and scheduler?) */
2929 bool high_varying_register = false;
2930
2931 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2932
2933 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2934 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2935
2936 mir_insert_instruction_before(mir_next_op(ins), st);
2937 mir_insert_instruction_before(mir_next_op(ins), mov);
2938
2939 /* We no longer need to store this varying */
2940 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2941 }
2942 }
2943
2944 /* If there are leftovers after the below pass, emit actual fmov
2945 * instructions for the slow-but-correct path */
2946
2947 static void
2948 emit_leftover_move(compiler_context *ctx)
2949 {
2950 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2951 int base = ((uintptr_t) leftover->key) - 1;
2952 int mapped = base;
2953
2954 map_ssa_to_alias(ctx, &mapped);
2955 EMIT(fmov, mapped, blank_alu_src, base);
2956 }
2957 }
2958
2959 static void
2960 actualise_ssa_to_alias(compiler_context *ctx)
2961 {
2962 mir_foreach_instr(ctx, ins) {
2963 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2964 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2965 }
2966
2967 emit_leftover_move(ctx);
2968 }
2969
2970 /* Vertex shaders do not write gl_Position as is; instead, they write a
2971 * transformed screen space position as a varying. See section 12.5 "Coordinate
2972 * Transformation" of the ES 3.2 full specification for details.
2973 *
2974 * This transformation occurs early on, as NIR and prior to optimisation, in
2975 * order to take advantage of NIR optimisation passes of the transform itself.
2976 * */
2977
2978 static void
2979 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2980 {
2981 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2982
2983 /* Get viewport from the uniforms */
2984 nir_intrinsic_instr *load;
2985 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2986 load->num_components = 4;
2987 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2988 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2989 nir_builder_instr_insert(b, &load->instr);
2990
2991 /* Formatted as <width, height, centerx, centery> */
2992 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2993 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2994 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2995 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2996
2997 /* XXX: From uniforms? */
2998 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2999 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
3000
3001 /* World space to normalised device coordinates */
3002
3003 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3004 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3005
3006 /* Normalised device coordinates to screen space */
3007
3008 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
3009 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
3010
3011 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3012 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
3013 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
3014
3015 /* gl_Position will be written out in screenspace xyz, with w set to
3016 * the reciprocal we computed earlier. The transformed w component is
3017 * then used for perspective-correct varying interpolation. The
3018 * transformed w component must preserve its original sign; this is
3019 * used in depth clipping computations */
3020
3021 nir_ssa_def *screen_space = nir_vec4(b,
3022 nir_channel(b, viewport_xy, 0),
3023 nir_channel(b, viewport_xy, 1),
3024 screen_depth,
3025 w_recip);
3026
3027 /* Finally, write out the transformed values to the varying */
3028
3029 nir_intrinsic_instr *store;
3030 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3031 store->num_components = 4;
3032 nir_intrinsic_set_base(store, 0);
3033 nir_intrinsic_set_write_mask(store, 0xf);
3034 store->src[0].ssa = screen_space;
3035 store->src[0].is_ssa = true;
3036 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3037 nir_builder_instr_insert(b, &store->instr);
3038 }
3039
3040 static void
3041 transform_position_writes(nir_shader *shader)
3042 {
3043 nir_foreach_function(func, shader) {
3044 nir_foreach_block(block, func->impl) {
3045 nir_foreach_instr_safe(instr, block) {
3046 if (instr->type != nir_instr_type_intrinsic) continue;
3047
3048 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3049 nir_variable *out = NULL;
3050
3051 switch (intr->intrinsic) {
3052 case nir_intrinsic_store_output:
3053 /* already had i/o lowered.. lookup the matching output var: */
3054 nir_foreach_variable(var, &shader->outputs) {
3055 int drvloc = var->data.driver_location;
3056
3057 if (nir_intrinsic_base(intr) == drvloc) {
3058 out = var;
3059 break;
3060 }
3061 }
3062
3063 break;
3064
3065 default:
3066 break;
3067 }
3068
3069 if (!out) continue;
3070
3071 if (out->data.mode != nir_var_shader_out)
3072 continue;
3073
3074 if (out->data.location != VARYING_SLOT_POS)
3075 continue;
3076
3077 nir_builder b;
3078 nir_builder_init(&b, func->impl);
3079 b.cursor = nir_before_instr(instr);
3080
3081 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3082 nir_instr_remove(instr);
3083 }
3084 }
3085 }
3086 }
3087
3088 static void
3089 emit_fragment_epilogue(compiler_context *ctx)
3090 {
3091 /* Special case: writing out constants requires us to include the move
3092 * explicitly now, so shove it into r0 */
3093
3094 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3095
3096 if (constant_value) {
3097 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3098 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3099 emit_mir_instruction(ctx, ins);
3100 }
3101
3102 /* Perform the actual fragment writeout. We have two writeout/branch
3103 * instructions, forming a loop until writeout is successful as per the
3104 * docs. TODO: gl_FragDepth */
3105
3106 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3107 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3108 }
3109
3110 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3111 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3112 * with the int8 analogue to the fragment epilogue */
3113
3114 static void
3115 emit_blend_epilogue(compiler_context *ctx)
3116 {
3117 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3118
3119 midgard_instruction scale = {
3120 .type = TAG_ALU_4,
3121 .unit = UNIT_VMUL,
3122 .inline_constant = _mesa_float_to_half(255.0),
3123 .ssa_args = {
3124 .src0 = SSA_FIXED_REGISTER(0),
3125 .src1 = SSA_UNUSED_0,
3126 .dest = SSA_FIXED_REGISTER(24),
3127 .inline_constant = true
3128 },
3129 .alu = {
3130 .op = midgard_alu_op_fmul,
3131 .reg_mode = midgard_reg_mode_full,
3132 .dest_override = midgard_dest_override_lower,
3133 .mask = 0xFF,
3134 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3135 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3136 }
3137 };
3138
3139 emit_mir_instruction(ctx, scale);
3140
3141 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3142
3143 midgard_vector_alu_src alu_src = blank_alu_src;
3144 alu_src.half = true;
3145
3146 midgard_instruction f2u8 = {
3147 .type = TAG_ALU_4,
3148 .ssa_args = {
3149 .src0 = SSA_FIXED_REGISTER(24),
3150 .src1 = SSA_UNUSED_0,
3151 .dest = SSA_FIXED_REGISTER(0),
3152 .inline_constant = true
3153 },
3154 .alu = {
3155 .op = midgard_alu_op_f2u8,
3156 .reg_mode = midgard_reg_mode_half,
3157 .dest_override = midgard_dest_override_lower,
3158 .outmod = midgard_outmod_pos,
3159 .mask = 0xF,
3160 .src1 = vector_alu_srco_unsigned(alu_src),
3161 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3162 }
3163 };
3164
3165 emit_mir_instruction(ctx, f2u8);
3166
3167 /* vmul.imov.quarter r0, r0, r0 */
3168
3169 midgard_instruction imov_8 = {
3170 .type = TAG_ALU_4,
3171 .ssa_args = {
3172 .src0 = SSA_UNUSED_1,
3173 .src1 = SSA_FIXED_REGISTER(0),
3174 .dest = SSA_FIXED_REGISTER(0),
3175 },
3176 .alu = {
3177 .op = midgard_alu_op_imov,
3178 .reg_mode = midgard_reg_mode_quarter,
3179 .dest_override = midgard_dest_override_none,
3180 .mask = 0xFF,
3181 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3182 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3183 }
3184 };
3185
3186 /* Emit branch epilogue with the 8-bit move as the source */
3187
3188 emit_mir_instruction(ctx, imov_8);
3189 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3190
3191 emit_mir_instruction(ctx, imov_8);
3192 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3193 }
3194
3195 static midgard_block *
3196 emit_block(compiler_context *ctx, nir_block *block)
3197 {
3198 midgard_block *this_block = malloc(sizeof(midgard_block));
3199 list_addtail(&this_block->link, &ctx->blocks);
3200
3201 this_block->is_scheduled = false;
3202 ++ctx->block_count;
3203
3204 ctx->texture_index[0] = -1;
3205 ctx->texture_index[1] = -1;
3206
3207 /* Set up current block */
3208 list_inithead(&this_block->instructions);
3209 ctx->current_block = this_block;
3210
3211 nir_foreach_instr(instr, block) {
3212 emit_instr(ctx, instr);
3213 ++ctx->instruction_count;
3214 }
3215
3216 inline_alu_constants(ctx);
3217 embedded_to_inline_constant(ctx);
3218
3219 /* Perform heavylifting for aliasing */
3220 actualise_ssa_to_alias(ctx);
3221
3222 midgard_emit_store(ctx, this_block);
3223 midgard_eliminate_orphan_moves(ctx, this_block);
3224 midgard_pair_load_store(ctx, this_block);
3225
3226 /* Append fragment shader epilogue (value writeout) */
3227 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3228 if (block == nir_impl_last_block(ctx->func->impl)) {
3229 if (ctx->is_blend)
3230 emit_blend_epilogue(ctx);
3231 else
3232 emit_fragment_epilogue(ctx);
3233 }
3234 }
3235
3236 /* Fallthrough save */
3237 this_block->next_fallthrough = ctx->previous_source_block;
3238
3239 if (block == nir_start_block(ctx->func->impl))
3240 ctx->initial_block = this_block;
3241
3242 if (block == nir_impl_last_block(ctx->func->impl))
3243 ctx->final_block = this_block;
3244
3245 /* Allow the next control flow to access us retroactively, for
3246 * branching etc */
3247 ctx->current_block = this_block;
3248
3249 /* Document the fallthrough chain */
3250 ctx->previous_source_block = this_block;
3251
3252 return this_block;
3253 }
3254
3255 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3256
3257 static void
3258 emit_if(struct compiler_context *ctx, nir_if *nif)
3259 {
3260 /* Conditional branches expect the condition in r31.w; emit a move for
3261 * that in the _previous_ block (which is the current block). */
3262 emit_condition(ctx, &nif->condition, true);
3263
3264 /* Speculatively emit the branch, but we can't fill it in until later */
3265 EMIT(branch, true, true);
3266 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3267
3268 /* Emit the two subblocks */
3269 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3270
3271 /* Emit a jump from the end of the then block to the end of the else */
3272 EMIT(branch, false, false);
3273 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3274
3275 /* Emit second block, and check if it's empty */
3276
3277 int else_idx = ctx->block_count;
3278 int count_in = ctx->instruction_count;
3279 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3280 int after_else_idx = ctx->block_count;
3281
3282 /* Now that we have the subblocks emitted, fix up the branches */
3283
3284 assert(then_block);
3285 assert(else_block);
3286
3287 if (ctx->instruction_count == count_in) {
3288 /* The else block is empty, so don't emit an exit jump */
3289 mir_remove_instruction(then_exit);
3290 then_branch->branch.target_block = after_else_idx;
3291 } else {
3292 then_branch->branch.target_block = else_idx;
3293 then_exit->branch.target_block = after_else_idx;
3294 }
3295 }
3296
3297 static void
3298 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3299 {
3300 /* Remember where we are */
3301 midgard_block *start_block = ctx->current_block;
3302
3303 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3304 * single current_loop variable, maybe we need a stack */
3305
3306 int loop_idx = ++ctx->current_loop;
3307
3308 /* Get index from before the body so we can loop back later */
3309 int start_idx = ctx->block_count;
3310
3311 /* Emit the body itself */
3312 emit_cf_list(ctx, &nloop->body);
3313
3314 /* Branch back to loop back */
3315 struct midgard_instruction br_back = v_branch(false, false);
3316 br_back.branch.target_block = start_idx;
3317 emit_mir_instruction(ctx, br_back);
3318
3319 /* Find the index of the block about to follow us (note: we don't add
3320 * one; blocks are 0-indexed so we get a fencepost problem) */
3321 int break_block_idx = ctx->block_count;
3322
3323 /* Fix up the break statements we emitted to point to the right place,
3324 * now that we can allocate a block number for them */
3325
3326 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3327 if (midgard_debug & MIDGARD_DBG_SHADERS)
3328 print_mir_block(block);
3329 mir_foreach_instr_in_block(block, ins) {
3330 if (ins->type != TAG_ALU_4) continue;
3331 if (!ins->compact_branch) continue;
3332 if (ins->prepacked_branch) continue;
3333
3334 /* We found a branch -- check the type to see if we need to do anything */
3335 if (ins->branch.target_type != TARGET_BREAK) continue;
3336
3337 /* It's a break! Check if it's our break */
3338 if (ins->branch.target_break != loop_idx) continue;
3339
3340 /* Okay, cool, we're breaking out of this loop.
3341 * Rewrite from a break to a goto */
3342
3343 ins->branch.target_type = TARGET_GOTO;
3344 ins->branch.target_block = break_block_idx;
3345 }
3346 }
3347 }
3348
3349 static midgard_block *
3350 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3351 {
3352 midgard_block *start_block = NULL;
3353
3354 foreach_list_typed(nir_cf_node, node, node, list) {
3355 switch (node->type) {
3356 case nir_cf_node_block: {
3357 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3358
3359 if (!start_block)
3360 start_block = block;
3361
3362 break;
3363 }
3364
3365 case nir_cf_node_if:
3366 emit_if(ctx, nir_cf_node_as_if(node));
3367 break;
3368
3369 case nir_cf_node_loop:
3370 emit_loop(ctx, nir_cf_node_as_loop(node));
3371 break;
3372
3373 case nir_cf_node_function:
3374 assert(0);
3375 break;
3376 }
3377 }
3378
3379 return start_block;
3380 }
3381
3382 /* Due to lookahead, we need to report the first tag executed in the command
3383 * stream and in branch targets. An initial block might be empty, so iterate
3384 * until we find one that 'works' */
3385
3386 static unsigned
3387 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3388 {
3389 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3390
3391 unsigned first_tag = 0;
3392
3393 do {
3394 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3395
3396 if (initial_bundle) {
3397 first_tag = initial_bundle->tag;
3398 break;
3399 }
3400
3401 /* Initial block is empty, try the next block */
3402 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3403 } while(initial_block != NULL);
3404
3405 assert(first_tag);
3406 return first_tag;
3407 }
3408
3409 int
3410 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3411 {
3412 struct util_dynarray *compiled = &program->compiled;
3413
3414 midgard_debug = debug_get_option_midgard_debug();
3415
3416 compiler_context ictx = {
3417 .nir = nir,
3418 .stage = nir->info.stage,
3419
3420 .is_blend = is_blend,
3421 .blend_constant_offset = -1,
3422
3423 .alpha_ref = program->alpha_ref
3424 };
3425
3426 compiler_context *ctx = &ictx;
3427
3428 /* TODO: Decide this at runtime */
3429 ctx->uniform_cutoff = 8;
3430
3431 switch (ctx->stage) {
3432 case MESA_SHADER_VERTEX:
3433 ctx->special_uniforms = 1;
3434 break;
3435
3436 default:
3437 ctx->special_uniforms = 0;
3438 break;
3439 }
3440
3441 /* Append epilogue uniforms if necessary. The cmdstream depends on
3442 * these being at the -end-; see assign_var_locations. */
3443
3444 if (ctx->stage == MESA_SHADER_VERTEX) {
3445 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3446 }
3447
3448 /* Assign var locations early, so the epilogue can use them if necessary */
3449
3450 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3451 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3452 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3453
3454 /* Initialize at a global (not block) level hash tables */
3455
3456 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3457 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3458 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3459 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3460 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3461 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3462
3463 /* Assign actual uniform location, skipping over samplers */
3464
3465 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3466
3467 nir_foreach_variable(var, &nir->uniforms) {
3468 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3469
3470 unsigned length = glsl_get_aoa_size(var->type);
3471
3472 if (!length) {
3473 length = glsl_get_length(var->type);
3474 }
3475
3476 if (!length) {
3477 length = glsl_get_matrix_columns(var->type);
3478 }
3479
3480 for (int col = 0; col < length; ++col) {
3481 int id = ctx->uniform_count++;
3482 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3483 }
3484 }
3485
3486 /* Record the varying mapping for the command stream's bookkeeping */
3487
3488 struct exec_list *varyings =
3489 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3490
3491 nir_foreach_variable(var, varyings) {
3492 unsigned loc = var->data.driver_location;
3493 program->varyings[loc] = var->data.location;
3494 }
3495
3496 /* Lower vars -- not I/O -- before epilogue */
3497
3498 NIR_PASS_V(nir, nir_lower_var_copies);
3499 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3500 NIR_PASS_V(nir, nir_split_var_copies);
3501 NIR_PASS_V(nir, nir_lower_var_copies);
3502 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3503 NIR_PASS_V(nir, nir_lower_var_copies);
3504 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3505 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3506
3507 /* Append vertex epilogue before optimisation, so the epilogue itself
3508 * is optimised */
3509
3510 if (ctx->stage == MESA_SHADER_VERTEX)
3511 transform_position_writes(nir);
3512
3513 /* Optimisation passes */
3514
3515 optimise_nir(nir);
3516
3517 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3518 nir_print_shader(nir, stdout);
3519 }
3520
3521 /* Assign counts, now that we're sure (post-optimisation) */
3522 program->uniform_count = nir->num_uniforms;
3523
3524 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3525 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3526
3527
3528 nir_foreach_function(func, nir) {
3529 if (!func->impl)
3530 continue;
3531
3532 list_inithead(&ctx->blocks);
3533 ctx->block_count = 0;
3534 ctx->func = func;
3535
3536 emit_cf_list(ctx, &func->impl->body);
3537 emit_block(ctx, func->impl->end_block);
3538
3539 break; /* TODO: Multi-function shaders */
3540 }
3541
3542 util_dynarray_init(compiled, NULL);
3543
3544 /* Schedule! */
3545 schedule_program(ctx);
3546
3547 /* Now that all the bundles are scheduled and we can calculate block
3548 * sizes, emit actual branch instructions rather than placeholders */
3549
3550 int br_block_idx = 0;
3551
3552 mir_foreach_block(ctx, block) {
3553 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3554 for (int c = 0; c < bundle->instruction_count; ++c) {
3555 midgard_instruction *ins = &bundle->instructions[c];
3556
3557 if (!midgard_is_branch_unit(ins->unit)) continue;
3558
3559 if (ins->prepacked_branch) continue;
3560
3561 /* Parse some basic branch info */
3562 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3563 bool is_conditional = ins->branch.conditional;
3564 bool is_inverted = ins->branch.invert_conditional;
3565 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3566
3567 /* Determine the block we're jumping to */
3568 int target_number = ins->branch.target_block;
3569
3570 /* Report the destination tag. Discards don't need this */
3571 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3572
3573 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3574 int quadword_offset = 0;
3575
3576 if (is_discard) {
3577 /* Jump to the end of the shader. We
3578 * need to include not only the
3579 * following blocks, but also the
3580 * contents of our current block (since
3581 * discard can come in the middle of
3582 * the block) */
3583
3584 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3585
3586 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3587 quadword_offset += quadword_size(bun->tag);
3588 }
3589
3590 mir_foreach_block_from(ctx, blk, b) {
3591 quadword_offset += b->quadword_count;
3592 }
3593
3594 } else if (target_number > br_block_idx) {
3595 /* Jump forward */
3596
3597 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3598 midgard_block *blk = mir_get_block(ctx, idx);
3599 assert(blk);
3600
3601 quadword_offset += blk->quadword_count;
3602 }
3603 } else {
3604 /* Jump backwards */
3605
3606 for (int idx = br_block_idx; idx >= target_number; --idx) {
3607 midgard_block *blk = mir_get_block(ctx, idx);
3608 assert(blk);
3609
3610 quadword_offset -= blk->quadword_count;
3611 }
3612 }
3613
3614 /* Unconditional extended branches (far jumps)
3615 * have issues, so we always use a conditional
3616 * branch, setting the condition to always for
3617 * unconditional. For compact unconditional
3618 * branches, cond isn't used so it doesn't
3619 * matter what we pick. */
3620
3621 midgard_condition cond =
3622 !is_conditional ? midgard_condition_always :
3623 is_inverted ? midgard_condition_false :
3624 midgard_condition_true;
3625
3626 midgard_jmp_writeout_op op =
3627 is_discard ? midgard_jmp_writeout_op_discard :
3628 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3629 midgard_jmp_writeout_op_branch_cond;
3630
3631 if (!is_compact) {
3632 midgard_branch_extended branch =
3633 midgard_create_branch_extended(
3634 cond, op,
3635 dest_tag,
3636 quadword_offset);
3637
3638 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3639 } else if (is_conditional || is_discard) {
3640 midgard_branch_cond branch = {
3641 .op = op,
3642 .dest_tag = dest_tag,
3643 .offset = quadword_offset,
3644 .cond = cond
3645 };
3646
3647 assert(branch.offset == quadword_offset);
3648
3649 memcpy(&ins->br_compact, &branch, sizeof(branch));
3650 } else {
3651 assert(op == midgard_jmp_writeout_op_branch_uncond);
3652
3653 midgard_branch_uncond branch = {
3654 .op = op,
3655 .dest_tag = dest_tag,
3656 .offset = quadword_offset,
3657 .unknown = 1
3658 };
3659
3660 assert(branch.offset == quadword_offset);
3661
3662 memcpy(&ins->br_compact, &branch, sizeof(branch));
3663 }
3664 }
3665 }
3666
3667 ++br_block_idx;
3668 }
3669
3670 /* Emit flat binary from the instruction arrays. Iterate each block in
3671 * sequence. Save instruction boundaries such that lookahead tags can
3672 * be assigned easily */
3673
3674 /* Cache _all_ bundles in source order for lookahead across failed branches */
3675
3676 int bundle_count = 0;
3677 mir_foreach_block(ctx, block) {
3678 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3679 }
3680 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3681 int bundle_idx = 0;
3682 mir_foreach_block(ctx, block) {
3683 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3684 source_order_bundles[bundle_idx++] = bundle;
3685 }
3686 }
3687
3688 int current_bundle = 0;
3689
3690 mir_foreach_block(ctx, block) {
3691 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3692 int lookahead = 1;
3693
3694 if (current_bundle + 1 < bundle_count) {
3695 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3696
3697 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3698 lookahead = 1;
3699 } else {
3700 lookahead = next;
3701 }
3702 }
3703
3704 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3705 ++current_bundle;
3706 }
3707
3708 /* TODO: Free deeper */
3709 //util_dynarray_fini(&block->instructions);
3710 }
3711
3712 free(source_order_bundles);
3713
3714 /* Report the very first tag executed */
3715 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3716
3717 /* Deal with off-by-one related to the fencepost problem */
3718 program->work_register_count = ctx->work_registers + 1;
3719
3720 program->can_discard = ctx->can_discard;
3721 program->uniform_cutoff = ctx->uniform_cutoff;
3722
3723 program->blend_patch_offset = ctx->blend_constant_offset;
3724
3725 if (midgard_debug & MIDGARD_DBG_SHADERS)
3726 disassemble_midgard(program->compiled.data, program->compiled.size);
3727
3728 return 0;
3729 }