panfrost/midgard: Use the appropriate ld_attr type
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 DEBUG_NAMED_VALUE_END
58 };
59
60 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
61
62 int midgard_debug = 0;
63
64 #define DBG(fmt, ...) \
65 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
66 fprintf(stderr, "%s:%d: "fmt, \
67 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
68
69 static bool
70 midgard_is_branch_unit(unsigned unit)
71 {
72 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
73 }
74
75 static void
76 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
77 {
78 block->successors[block->nr_successors++] = successor;
79 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
80 }
81
82 /* Helpers to generate midgard_instruction's using macro magic, since every
83 * driver seems to do it that way */
84
85 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
86
87 #define M_LOAD_STORE(name, rname, uname) \
88 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
89 midgard_instruction i = { \
90 .type = TAG_LOAD_STORE_4, \
91 .ssa_args = { \
92 .rname = ssa, \
93 .uname = -1, \
94 .src1 = -1 \
95 }, \
96 .load_store = { \
97 .op = midgard_op_##name, \
98 .mask = 0xF, \
99 .swizzle = SWIZZLE_XYZW, \
100 .address = address \
101 } \
102 }; \
103 \
104 return i; \
105 }
106
107 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
108 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
109
110 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
111 * the corresponding Midgard source */
112
113 static midgard_vector_alu_src
114 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count)
115 {
116 if (!src) return blank_alu_src;
117
118 /* Figure out how many components there are so we can adjust the
119 * swizzle. Specifically we want to broadcast the last channel so
120 * things like ball2/3 work
121 */
122
123 if (broadcast_count) {
124 uint8_t last_component = src->swizzle[broadcast_count - 1];
125
126 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
127 src->swizzle[c] = last_component;
128 }
129 }
130
131 midgard_vector_alu_src alu_src = {
132 .rep_low = 0,
133 .rep_high = 0,
134 .half = 0, /* TODO */
135 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
136 };
137
138 if (is_int) {
139 /* TODO: sign-extend/zero-extend */
140 alu_src.mod = midgard_int_normal;
141
142 /* These should have been lowered away */
143 assert(!(src->abs || src->negate));
144 } else {
145 alu_src.mod = (src->abs << 0) | (src->negate << 1);
146 }
147
148 return alu_src;
149 }
150
151 /* load/store instructions have both 32-bit and 16-bit variants, depending on
152 * whether we are using vectors composed of highp or mediump. At the moment, we
153 * don't support half-floats -- this requires changes in other parts of the
154 * compiler -- therefore the 16-bit versions are commented out. */
155
156 //M_LOAD(ld_attr_16);
157 M_LOAD(ld_attr_32);
158 //M_LOAD(ld_vary_16);
159 M_LOAD(ld_vary_32);
160 //M_LOAD(ld_uniform_16);
161 M_LOAD(ld_uniform_32);
162 M_LOAD(ld_color_buffer_8);
163 //M_STORE(st_vary_16);
164 M_STORE(st_vary_32);
165 M_STORE(st_cubemap_coords);
166
167 static midgard_instruction
168 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
169 {
170 midgard_branch_cond branch = {
171 .op = op,
172 .dest_tag = tag,
173 .offset = offset,
174 .cond = cond
175 };
176
177 uint16_t compact;
178 memcpy(&compact, &branch, sizeof(branch));
179
180 midgard_instruction ins = {
181 .type = TAG_ALU_4,
182 .unit = ALU_ENAB_BR_COMPACT,
183 .prepacked_branch = true,
184 .compact_branch = true,
185 .br_compact = compact
186 };
187
188 if (op == midgard_jmp_writeout_op_writeout)
189 ins.writeout = true;
190
191 return ins;
192 }
193
194 static midgard_instruction
195 v_branch(bool conditional, bool invert)
196 {
197 midgard_instruction ins = {
198 .type = TAG_ALU_4,
199 .unit = ALU_ENAB_BRANCH,
200 .compact_branch = true,
201 .branch = {
202 .conditional = conditional,
203 .invert_conditional = invert
204 }
205 };
206
207 return ins;
208 }
209
210 static midgard_branch_extended
211 midgard_create_branch_extended( midgard_condition cond,
212 midgard_jmp_writeout_op op,
213 unsigned dest_tag,
214 signed quadword_offset)
215 {
216 /* For unclear reasons, the condition code is repeated 8 times */
217 uint16_t duplicated_cond =
218 (cond << 14) |
219 (cond << 12) |
220 (cond << 10) |
221 (cond << 8) |
222 (cond << 6) |
223 (cond << 4) |
224 (cond << 2) |
225 (cond << 0);
226
227 midgard_branch_extended branch = {
228 .op = op,
229 .dest_tag = dest_tag,
230 .offset = quadword_offset,
231 .cond = duplicated_cond
232 };
233
234 return branch;
235 }
236
237 static void
238 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
239 {
240 ins->has_constants = true;
241 memcpy(&ins->constants, constants, 16);
242 }
243
244 static int
245 glsl_type_size(const struct glsl_type *type, bool bindless)
246 {
247 return glsl_count_attribute_slots(type, false);
248 }
249
250 /* Lower fdot2 to a vector multiplication followed by channel addition */
251 static void
252 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
253 {
254 if (alu->op != nir_op_fdot2)
255 return;
256
257 b->cursor = nir_before_instr(&alu->instr);
258
259 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
260 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
261
262 nir_ssa_def *product = nir_fmul(b, src0, src1);
263
264 nir_ssa_def *sum = nir_fadd(b,
265 nir_channel(b, product, 0),
266 nir_channel(b, product, 1));
267
268 /* Replace the fdot2 with this sum */
269 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
270 }
271
272 static int
273 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
274 {
275 switch (instr->intrinsic) {
276 case nir_intrinsic_load_viewport_scale:
277 return PAN_SYSVAL_VIEWPORT_SCALE;
278 case nir_intrinsic_load_viewport_offset:
279 return PAN_SYSVAL_VIEWPORT_OFFSET;
280 default:
281 return -1;
282 }
283 }
284
285 static unsigned
286 nir_dest_index(compiler_context *ctx, nir_dest *dst)
287 {
288 if (dst->is_ssa)
289 return dst->ssa.index;
290 else {
291 assert(!dst->reg.indirect);
292 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
293 }
294 }
295
296 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
297 unsigned *dest)
298 {
299 nir_intrinsic_instr *intr;
300 nir_dest *dst = NULL;
301 nir_tex_instr *tex;
302 int sysval = -1;
303
304 switch (instr->type) {
305 case nir_instr_type_intrinsic:
306 intr = nir_instr_as_intrinsic(instr);
307 sysval = midgard_nir_sysval_for_intrinsic(intr);
308 dst = &intr->dest;
309 break;
310 case nir_instr_type_tex:
311 tex = nir_instr_as_tex(instr);
312 if (tex->op != nir_texop_txs)
313 break;
314
315 sysval = PAN_SYSVAL(TEXTURE_SIZE,
316 PAN_TXS_SYSVAL_ID(tex->texture_index,
317 nir_tex_instr_dest_size(tex) -
318 (tex->is_array ? 1 : 0),
319 tex->is_array));
320 dst = &tex->dest;
321 break;
322 default:
323 break;
324 }
325
326 if (dest && dst)
327 *dest = nir_dest_index(ctx, dst);
328
329 return sysval;
330 }
331
332 static void
333 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
334 {
335 int sysval;
336
337 sysval = sysval_for_instr(ctx, instr, NULL);
338 if (sysval < 0)
339 return;
340
341 /* We have a sysval load; check if it's already been assigned */
342
343 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
344 return;
345
346 /* It hasn't -- so assign it now! */
347
348 unsigned id = ctx->sysval_count++;
349 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
350 ctx->sysvals[id] = sysval;
351 }
352
353 static void
354 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
355 {
356 ctx->sysval_count = 0;
357
358 nir_foreach_function(function, shader) {
359 if (!function->impl) continue;
360
361 nir_foreach_block(block, function->impl) {
362 nir_foreach_instr_safe(instr, block) {
363 midgard_nir_assign_sysval_body(ctx, instr);
364 }
365 }
366 }
367 }
368
369 static bool
370 midgard_nir_lower_fdot2(nir_shader *shader)
371 {
372 bool progress = false;
373
374 nir_foreach_function(function, shader) {
375 if (!function->impl) continue;
376
377 nir_builder _b;
378 nir_builder *b = &_b;
379 nir_builder_init(b, function->impl);
380
381 nir_foreach_block(block, function->impl) {
382 nir_foreach_instr_safe(instr, block) {
383 if (instr->type != nir_instr_type_alu) continue;
384
385 nir_alu_instr *alu = nir_instr_as_alu(instr);
386 midgard_nir_lower_fdot2_body(b, alu);
387
388 progress |= true;
389 }
390 }
391
392 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
393
394 }
395
396 return progress;
397 }
398
399 static void
400 optimise_nir(nir_shader *nir)
401 {
402 bool progress;
403 unsigned lower_flrp =
404 (nir->options->lower_flrp16 ? 16 : 0) |
405 (nir->options->lower_flrp32 ? 32 : 0) |
406 (nir->options->lower_flrp64 ? 64 : 0);
407
408 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
409 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
410 NIR_PASS(progress, nir, nir_lower_idiv);
411
412 nir_lower_tex_options lower_tex_1st_pass_options = {
413 .lower_rect = true,
414 .lower_txp = ~0
415 };
416
417 nir_lower_tex_options lower_tex_2nd_pass_options = {
418 .lower_txs_lod = true,
419 };
420
421 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
422 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
423
424 do {
425 progress = false;
426
427 NIR_PASS(progress, nir, nir_lower_var_copies);
428 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
429
430 NIR_PASS(progress, nir, nir_copy_prop);
431 NIR_PASS(progress, nir, nir_opt_dce);
432 NIR_PASS(progress, nir, nir_opt_dead_cf);
433 NIR_PASS(progress, nir, nir_opt_cse);
434 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
435 NIR_PASS(progress, nir, nir_opt_algebraic);
436 NIR_PASS(progress, nir, nir_opt_constant_folding);
437
438 if (lower_flrp != 0) {
439 bool lower_flrp_progress = false;
440 NIR_PASS(lower_flrp_progress,
441 nir,
442 nir_lower_flrp,
443 lower_flrp,
444 false /* always_precise */,
445 nir->options->lower_ffma);
446 if (lower_flrp_progress) {
447 NIR_PASS(progress, nir,
448 nir_opt_constant_folding);
449 progress = true;
450 }
451
452 /* Nothing should rematerialize any flrps, so we only
453 * need to do this lowering once.
454 */
455 lower_flrp = 0;
456 }
457
458 NIR_PASS(progress, nir, nir_opt_undef);
459 NIR_PASS(progress, nir, nir_opt_loop_unroll,
460 nir_var_shader_in |
461 nir_var_shader_out |
462 nir_var_function_temp);
463
464 NIR_PASS(progress, nir, nir_opt_vectorize);
465 } while (progress);
466
467 /* Must be run at the end to prevent creation of fsin/fcos ops */
468 NIR_PASS(progress, nir, midgard_nir_scale_trig);
469
470 do {
471 progress = false;
472
473 NIR_PASS(progress, nir, nir_opt_dce);
474 NIR_PASS(progress, nir, nir_opt_algebraic);
475 NIR_PASS(progress, nir, nir_opt_constant_folding);
476 NIR_PASS(progress, nir, nir_copy_prop);
477 } while (progress);
478
479 NIR_PASS(progress, nir, nir_opt_algebraic_late);
480
481 /* We implement booleans as 32-bit 0/~0 */
482 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
483
484 /* Now that booleans are lowered, we can run out late opts */
485 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
486
487 /* Lower mods for float ops only. Integer ops don't support modifiers
488 * (saturate doesn't make sense on integers, neg/abs require dedicated
489 * instructions) */
490
491 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
492 NIR_PASS(progress, nir, nir_copy_prop);
493 NIR_PASS(progress, nir, nir_opt_dce);
494
495 /* Take us out of SSA */
496 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
497 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
498
499 /* We are a vector architecture; write combine where possible */
500 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
501 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
502
503 NIR_PASS(progress, nir, nir_opt_dce);
504 }
505
506 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
507 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
508 * r0. See the comments in compiler_context */
509
510 static void
511 alias_ssa(compiler_context *ctx, int dest, int src)
512 {
513 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
514 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
515 }
516
517 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
518
519 static void
520 unalias_ssa(compiler_context *ctx, int dest)
521 {
522 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
523 /* TODO: Remove from leftover or no? */
524 }
525
526 /* Do not actually emit a load; instead, cache the constant for inlining */
527
528 static void
529 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
530 {
531 nir_ssa_def def = instr->def;
532
533 float *v = rzalloc_array(NULL, float, 4);
534 nir_const_load_to_arr(v, instr, f32);
535 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
536 }
537
538 static unsigned
539 nir_src_index(compiler_context *ctx, nir_src *src)
540 {
541 if (src->is_ssa)
542 return src->ssa->index;
543 else {
544 assert(!src->reg.indirect);
545 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
546 }
547 }
548
549 static unsigned
550 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
551 {
552 return nir_src_index(ctx, &src->src);
553 }
554
555 static bool
556 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
557 {
558 unsigned comp = src->swizzle[0];
559
560 for (unsigned c = 1; c < nr_components; ++c) {
561 if (src->swizzle[c] != comp)
562 return true;
563 }
564
565 return false;
566 }
567
568 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
569 * output of a conditional test) into that register */
570
571 static void
572 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
573 {
574 int condition = nir_src_index(ctx, src);
575
576 /* Source to swizzle the desired component into w */
577
578 const midgard_vector_alu_src alu_src = {
579 .swizzle = SWIZZLE(component, component, component, component),
580 };
581
582 /* There is no boolean move instruction. Instead, we simulate a move by
583 * ANDing the condition with itself to get it into r31.w */
584
585 midgard_instruction ins = {
586 .type = TAG_ALU_4,
587
588 /* We need to set the conditional as close as possible */
589 .precede_break = true,
590 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
591
592 .ssa_args = {
593 .src0 = condition,
594 .src1 = condition,
595 .dest = SSA_FIXED_REGISTER(31),
596 },
597
598 .alu = {
599 .op = midgard_alu_op_iand,
600 .outmod = midgard_outmod_int_wrap,
601 .reg_mode = midgard_reg_mode_32,
602 .dest_override = midgard_dest_override_none,
603 .mask = (0x3 << 6), /* w */
604 .src1 = vector_alu_srco_unsigned(alu_src),
605 .src2 = vector_alu_srco_unsigned(alu_src)
606 },
607 };
608
609 emit_mir_instruction(ctx, ins);
610 }
611
612 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
613 * r31 instead */
614
615 static void
616 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
617 {
618 int condition = nir_src_index(ctx, &src->src);
619
620 /* Source to swizzle the desired component into w */
621
622 const midgard_vector_alu_src alu_src = {
623 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
624 };
625
626 /* There is no boolean move instruction. Instead, we simulate a move by
627 * ANDing the condition with itself to get it into r31.w */
628
629 midgard_instruction ins = {
630 .type = TAG_ALU_4,
631 .precede_break = true,
632 .ssa_args = {
633 .src0 = condition,
634 .src1 = condition,
635 .dest = SSA_FIXED_REGISTER(31),
636 },
637 .alu = {
638 .op = midgard_alu_op_iand,
639 .outmod = midgard_outmod_int_wrap,
640 .reg_mode = midgard_reg_mode_32,
641 .dest_override = midgard_dest_override_none,
642 .mask = expand_writemask(mask_of(nr_comp)),
643 .src1 = vector_alu_srco_unsigned(alu_src),
644 .src2 = vector_alu_srco_unsigned(alu_src)
645 },
646 };
647
648 emit_mir_instruction(ctx, ins);
649 }
650
651
652
653 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
654 * pinning to eliminate this move in all known cases */
655
656 static void
657 emit_indirect_offset(compiler_context *ctx, nir_src *src)
658 {
659 int offset = nir_src_index(ctx, src);
660
661 midgard_instruction ins = {
662 .type = TAG_ALU_4,
663 .ssa_args = {
664 .src0 = SSA_UNUSED_1,
665 .src1 = offset,
666 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
667 },
668 .alu = {
669 .op = midgard_alu_op_imov,
670 .outmod = midgard_outmod_int_wrap,
671 .reg_mode = midgard_reg_mode_32,
672 .dest_override = midgard_dest_override_none,
673 .mask = (0x3 << 6), /* w */
674 .src1 = vector_alu_srco_unsigned(zero_alu_src),
675 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
676 },
677 };
678
679 emit_mir_instruction(ctx, ins);
680 }
681
682 #define ALU_CASE(nir, _op) \
683 case nir_op_##nir: \
684 op = midgard_alu_op_##_op; \
685 break;
686
687 #define ALU_CASE_BCAST(nir, _op, count) \
688 case nir_op_##nir: \
689 op = midgard_alu_op_##_op; \
690 broadcast_swizzle = count; \
691 break;
692 static bool
693 nir_is_fzero_constant(nir_src src)
694 {
695 if (!nir_src_is_const(src))
696 return false;
697
698 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
699 if (nir_src_comp_as_float(src, c) != 0.0)
700 return false;
701 }
702
703 return true;
704 }
705
706 static void
707 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
708 {
709 bool is_ssa = instr->dest.dest.is_ssa;
710
711 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
712 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
713 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
714
715 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
716 * supported. A few do not and are commented for now. Also, there are a
717 * number of NIR ops which Midgard does not support and need to be
718 * lowered, also TODO. This switch block emits the opcode and calling
719 * convention of the Midgard instruction; actual packing is done in
720 * emit_alu below */
721
722 unsigned op;
723
724 /* Number of components valid to check for the instruction (the rest
725 * will be forced to the last), or 0 to use as-is. Relevant as
726 * ball-type instructions have a channel count in NIR but are all vec4
727 * in Midgard */
728
729 unsigned broadcast_swizzle = 0;
730
731 switch (instr->op) {
732 ALU_CASE(fadd, fadd);
733 ALU_CASE(fmul, fmul);
734 ALU_CASE(fmin, fmin);
735 ALU_CASE(fmax, fmax);
736 ALU_CASE(imin, imin);
737 ALU_CASE(imax, imax);
738 ALU_CASE(umin, umin);
739 ALU_CASE(umax, umax);
740 ALU_CASE(ffloor, ffloor);
741 ALU_CASE(fround_even, froundeven);
742 ALU_CASE(ftrunc, ftrunc);
743 ALU_CASE(fceil, fceil);
744 ALU_CASE(fdot3, fdot3);
745 ALU_CASE(fdot4, fdot4);
746 ALU_CASE(iadd, iadd);
747 ALU_CASE(isub, isub);
748 ALU_CASE(imul, imul);
749
750 /* Zero shoved as second-arg */
751 ALU_CASE(iabs, iabsdiff);
752
753 ALU_CASE(mov, imov);
754
755 ALU_CASE(feq32, feq);
756 ALU_CASE(fne32, fne);
757 ALU_CASE(flt32, flt);
758 ALU_CASE(ieq32, ieq);
759 ALU_CASE(ine32, ine);
760 ALU_CASE(ilt32, ilt);
761 ALU_CASE(ult32, ult);
762
763 /* We don't have a native b2f32 instruction. Instead, like many
764 * GPUs, we exploit booleans as 0/~0 for false/true, and
765 * correspondingly AND
766 * by 1.0 to do the type conversion. For the moment, prime us
767 * to emit:
768 *
769 * iand [whatever], #0
770 *
771 * At the end of emit_alu (as MIR), we'll fix-up the constant
772 */
773
774 ALU_CASE(b2f32, iand);
775 ALU_CASE(b2i32, iand);
776
777 /* Likewise, we don't have a dedicated f2b32 instruction, but
778 * we can do a "not equal to 0.0" test. */
779
780 ALU_CASE(f2b32, fne);
781 ALU_CASE(i2b32, ine);
782
783 ALU_CASE(frcp, frcp);
784 ALU_CASE(frsq, frsqrt);
785 ALU_CASE(fsqrt, fsqrt);
786 ALU_CASE(fexp2, fexp2);
787 ALU_CASE(flog2, flog2);
788
789 ALU_CASE(f2i32, f2i_rtz);
790 ALU_CASE(f2u32, f2u_rtz);
791 ALU_CASE(i2f32, i2f_rtz);
792 ALU_CASE(u2f32, u2f_rtz);
793
794 ALU_CASE(fsin, fsin);
795 ALU_CASE(fcos, fcos);
796
797 /* Second op implicit #0 */
798 ALU_CASE(inot, inor);
799 ALU_CASE(iand, iand);
800 ALU_CASE(ior, ior);
801 ALU_CASE(ixor, ixor);
802 ALU_CASE(ishl, ishl);
803 ALU_CASE(ishr, iasr);
804 ALU_CASE(ushr, ilsr);
805
806 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
807 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
808 ALU_CASE(b32all_fequal4, fball_eq);
809
810 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
811 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
812 ALU_CASE(b32any_fnequal4, fbany_neq);
813
814 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
815 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
816 ALU_CASE(b32all_iequal4, iball_eq);
817
818 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
819 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
820 ALU_CASE(b32any_inequal4, ibany_neq);
821
822 /* Source mods will be shoved in later */
823 ALU_CASE(fabs, fmov);
824 ALU_CASE(fneg, fmov);
825 ALU_CASE(fsat, fmov);
826
827 /* For greater-or-equal, we lower to less-or-equal and flip the
828 * arguments */
829
830 case nir_op_fge:
831 case nir_op_fge32:
832 case nir_op_ige32:
833 case nir_op_uge32: {
834 op =
835 instr->op == nir_op_fge ? midgard_alu_op_fle :
836 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
837 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
838 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
839 0;
840
841 /* Swap via temporary */
842 nir_alu_src temp = instr->src[1];
843 instr->src[1] = instr->src[0];
844 instr->src[0] = temp;
845
846 break;
847 }
848
849 case nir_op_b32csel: {
850 /* Midgard features both fcsel and icsel, depending on
851 * the type of the arguments/output. However, as long
852 * as we're careful we can _always_ use icsel and
853 * _never_ need fcsel, since the latter does additional
854 * floating-point-specific processing whereas the
855 * former just moves bits on the wire. It's not obvious
856 * why these are separate opcodes, save for the ability
857 * to do things like sat/pos/abs/neg for free */
858
859 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
860 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
861
862 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
863 nr_inputs = 2;
864
865 /* Emit the condition into r31 */
866
867 if (mixed)
868 emit_condition_mixed(ctx, &instr->src[0], nr_components);
869 else
870 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
871
872 /* The condition is the first argument; move the other
873 * arguments up one to be a binary instruction for
874 * Midgard */
875
876 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
877 break;
878 }
879
880 default:
881 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
882 assert(0);
883 return;
884 }
885
886 /* Midgard can perform certain modifiers on output of an ALU op */
887 unsigned outmod;
888
889 if (midgard_is_integer_out_op(op)) {
890 outmod = midgard_outmod_int_wrap;
891 } else {
892 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
893 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
894 }
895
896 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
897
898 if (instr->op == nir_op_fmax) {
899 if (nir_is_fzero_constant(instr->src[0].src)) {
900 op = midgard_alu_op_fmov;
901 nr_inputs = 1;
902 outmod = midgard_outmod_pos;
903 instr->src[0] = instr->src[1];
904 } else if (nir_is_fzero_constant(instr->src[1].src)) {
905 op = midgard_alu_op_fmov;
906 nr_inputs = 1;
907 outmod = midgard_outmod_pos;
908 }
909 }
910
911 /* Fetch unit, quirks, etc information */
912 unsigned opcode_props = alu_opcode_props[op].props;
913 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
914
915 /* src0 will always exist afaik, but src1 will not for 1-argument
916 * instructions. The latter can only be fetched if the instruction
917 * needs it, or else we may segfault. */
918
919 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
920 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
921
922 /* Rather than use the instruction generation helpers, we do it
923 * ourselves here to avoid the mess */
924
925 midgard_instruction ins = {
926 .type = TAG_ALU_4,
927 .ssa_args = {
928 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
929 .src1 = quirk_flipped_r24 ? src0 : src1,
930 .dest = dest,
931 }
932 };
933
934 nir_alu_src *nirmods[2] = { NULL };
935
936 if (nr_inputs == 2) {
937 nirmods[0] = &instr->src[0];
938 nirmods[1] = &instr->src[1];
939 } else if (nr_inputs == 1) {
940 nirmods[quirk_flipped_r24] = &instr->src[0];
941 } else {
942 assert(0);
943 }
944
945 /* These were lowered to a move, so apply the corresponding mod */
946
947 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
948 nir_alu_src *s = nirmods[quirk_flipped_r24];
949
950 if (instr->op == nir_op_fneg)
951 s->negate = !s->negate;
952
953 if (instr->op == nir_op_fabs)
954 s->abs = !s->abs;
955 }
956
957 bool is_int = midgard_is_integer_op(op);
958
959 midgard_vector_alu alu = {
960 .op = op,
961 .reg_mode = midgard_reg_mode_32,
962 .dest_override = midgard_dest_override_none,
963 .outmod = outmod,
964
965 /* Writemask only valid for non-SSA NIR */
966 .mask = expand_writemask(mask_of(nr_components)),
967
968 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle)),
969 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle)),
970 };
971
972 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
973
974 if (!is_ssa)
975 alu.mask &= expand_writemask(instr->dest.write_mask);
976
977 ins.alu = alu;
978
979 /* Late fixup for emulated instructions */
980
981 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
982 /* Presently, our second argument is an inline #0 constant.
983 * Switch over to an embedded 1.0 constant (that can't fit
984 * inline, since we're 32-bit, not 16-bit like the inline
985 * constants) */
986
987 ins.ssa_args.inline_constant = false;
988 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
989 ins.has_constants = true;
990
991 if (instr->op == nir_op_b2f32) {
992 ins.constants[0] = 1.0f;
993 } else {
994 /* Type pun it into place */
995 uint32_t one = 0x1;
996 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
997 }
998
999 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1000 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1001 /* Lots of instructions need a 0 plonked in */
1002 ins.ssa_args.inline_constant = false;
1003 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1004 ins.has_constants = true;
1005 ins.constants[0] = 0.0f;
1006 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1007 } else if (instr->op == nir_op_inot) {
1008 /* ~b = ~(b & b), so duplicate the source */
1009 ins.ssa_args.src1 = ins.ssa_args.src0;
1010 ins.alu.src2 = ins.alu.src1;
1011 }
1012
1013 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1014 /* To avoid duplicating the lookup tables (probably), true LUT
1015 * instructions can only operate as if they were scalars. Lower
1016 * them here by changing the component. */
1017
1018 uint8_t original_swizzle[4];
1019 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1020
1021 for (int i = 0; i < nr_components; ++i) {
1022 /* Mask the associated component, dropping the
1023 * instruction if needed */
1024
1025 ins.alu.mask = (0x3) << (2 * i);
1026 ins.alu.mask &= alu.mask;
1027
1028 if (!ins.alu.mask)
1029 continue;
1030
1031 for (int j = 0; j < 4; ++j)
1032 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1033
1034 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle));
1035 emit_mir_instruction(ctx, ins);
1036 }
1037 } else {
1038 emit_mir_instruction(ctx, ins);
1039 }
1040 }
1041
1042 #undef ALU_CASE
1043
1044 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1045 * optimized) versions of UBO #0 */
1046
1047 static void
1048 emit_ubo_read(
1049 compiler_context *ctx,
1050 unsigned dest,
1051 unsigned offset,
1052 nir_src *indirect_offset,
1053 unsigned index)
1054 {
1055 /* TODO: half-floats */
1056
1057 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1058 /* Fast path: For the first 16 uniforms, direct accesses are
1059 * 0-cycle, since they're just a register fetch in the usual
1060 * case. So, we alias the registers while we're still in
1061 * SSA-space */
1062
1063 int reg_slot = 23 - offset;
1064 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1065 } else {
1066 /* Otherwise, read from the 'special' UBO to access
1067 * higher-indexed uniforms, at a performance cost. More
1068 * generally, we're emitting a UBO read instruction. */
1069
1070 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1071
1072 /* TODO: Don't split */
1073 ins.load_store.varying_parameters = (offset & 7) << 7;
1074 ins.load_store.address = offset >> 3;
1075
1076 if (indirect_offset) {
1077 emit_indirect_offset(ctx, indirect_offset);
1078 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1079 } else {
1080 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1081 }
1082
1083 /* TODO respect index */
1084
1085 emit_mir_instruction(ctx, ins);
1086 }
1087 }
1088
1089 static void
1090 emit_varying_read(
1091 compiler_context *ctx,
1092 unsigned dest, unsigned offset,
1093 unsigned nr_comp, unsigned component,
1094 nir_src *indirect_offset)
1095 {
1096 /* XXX: Half-floats? */
1097 /* TODO: swizzle, mask */
1098
1099 midgard_instruction ins = m_ld_vary_32(dest, offset);
1100 ins.load_store.mask = mask_of(nr_comp);
1101 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1102
1103 midgard_varying_parameter p = {
1104 .is_varying = 1,
1105 .interpolation = midgard_interp_default,
1106 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1107 };
1108
1109 unsigned u;
1110 memcpy(&u, &p, sizeof(p));
1111 ins.load_store.varying_parameters = u;
1112
1113 if (indirect_offset) {
1114 /* We need to add in the dynamic index, moved to r27.w */
1115 emit_indirect_offset(ctx, indirect_offset);
1116 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1117 } else {
1118 /* Just a direct load */
1119 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1120 }
1121
1122 emit_mir_instruction(ctx, ins);
1123 }
1124
1125 static void
1126 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1127 {
1128 unsigned dest;
1129 /* Figure out which uniform this is */
1130 int sysval = sysval_for_instr(ctx, instr, &dest);
1131 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1132
1133 /* Sysvals are prefix uniforms */
1134 unsigned uniform = ((uintptr_t) val) - 1;
1135
1136 /* Emit the read itself -- this is never indirect */
1137 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1138 }
1139
1140 /* Reads RGBA8888 value from the tilebuffer and converts to a RGBA32F register,
1141 * using scalar ops functional on earlier Midgard generations. Newer Midgard
1142 * generations have faster vectorized reads. This operation is for blend
1143 * shaders in particular; reading the tilebuffer from the fragment shader
1144 * remains an open problem. */
1145
1146 static void
1147 emit_fb_read_blend_scalar(compiler_context *ctx, unsigned reg)
1148 {
1149 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1150 ins.load_store.swizzle = 0; /* xxxx */
1151
1152 /* Read each component sequentially */
1153
1154 for (unsigned c = 0; c < 4; ++c) {
1155 ins.load_store.mask = (1 << c);
1156 ins.load_store.unknown = c;
1157 emit_mir_instruction(ctx, ins);
1158 }
1159
1160 /* vadd.u2f hr2, zext(hr2), #0 */
1161
1162 midgard_vector_alu_src alu_src = blank_alu_src;
1163 alu_src.mod = midgard_int_zero_extend;
1164 alu_src.half = true;
1165
1166 midgard_instruction u2f = {
1167 .type = TAG_ALU_4,
1168 .ssa_args = {
1169 .src0 = reg,
1170 .src1 = SSA_UNUSED_0,
1171 .dest = reg,
1172 .inline_constant = true
1173 },
1174 .alu = {
1175 .op = midgard_alu_op_u2f_rtz,
1176 .reg_mode = midgard_reg_mode_16,
1177 .dest_override = midgard_dest_override_none,
1178 .mask = 0xF,
1179 .src1 = vector_alu_srco_unsigned(alu_src),
1180 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1181 }
1182 };
1183
1184 emit_mir_instruction(ctx, u2f);
1185
1186 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1187
1188 alu_src.mod = 0;
1189
1190 midgard_instruction fmul = {
1191 .type = TAG_ALU_4,
1192 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1193 .ssa_args = {
1194 .src0 = reg,
1195 .dest = reg,
1196 .src1 = SSA_UNUSED_0,
1197 .inline_constant = true
1198 },
1199 .alu = {
1200 .op = midgard_alu_op_fmul,
1201 .reg_mode = midgard_reg_mode_32,
1202 .dest_override = midgard_dest_override_none,
1203 .outmod = midgard_outmod_sat,
1204 .mask = 0xFF,
1205 .src1 = vector_alu_srco_unsigned(alu_src),
1206 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1207 }
1208 };
1209
1210 emit_mir_instruction(ctx, fmul);
1211 }
1212
1213 static void
1214 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1215 {
1216 unsigned offset = 0, reg;
1217
1218 switch (instr->intrinsic) {
1219 case nir_intrinsic_discard_if:
1220 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1221
1222 /* fallthrough */
1223
1224 case nir_intrinsic_discard: {
1225 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1226 struct midgard_instruction discard = v_branch(conditional, false);
1227 discard.branch.target_type = TARGET_DISCARD;
1228 emit_mir_instruction(ctx, discard);
1229
1230 ctx->can_discard = true;
1231 break;
1232 }
1233
1234 case nir_intrinsic_load_uniform:
1235 case nir_intrinsic_load_ubo:
1236 case nir_intrinsic_load_input: {
1237 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1238 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1239
1240 /* Get the base type of the intrinsic */
1241 nir_alu_type t = nir_intrinsic_type(instr);
1242 t = nir_alu_type_get_base_type(t);
1243
1244 if (!is_ubo) {
1245 offset = nir_intrinsic_base(instr);
1246 }
1247
1248 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1249
1250 nir_src *src_offset = nir_get_io_offset_src(instr);
1251
1252 bool direct = nir_src_is_const(*src_offset);
1253
1254 if (direct)
1255 offset += nir_src_as_uint(*src_offset);
1256
1257 /* We may need to apply a fractional offset */
1258 int component = instr->intrinsic == nir_intrinsic_load_input ?
1259 nir_intrinsic_component(instr) : 0;
1260 reg = nir_dest_index(ctx, &instr->dest);
1261
1262 if (is_uniform && !ctx->is_blend) {
1263 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1264 } else if (is_ubo) {
1265 nir_src index = instr->src[0];
1266
1267 /* We don't yet support indirect UBOs. For indirect
1268 * block numbers (if that's possible), we don't know
1269 * enough about the hardware yet. For indirect sources,
1270 * we know what we need but we need to add some NIR
1271 * support for lowering correctly with respect to
1272 * 128-bit reads */
1273
1274 assert(nir_src_is_const(index));
1275 assert(nir_src_is_const(*src_offset));
1276
1277 /* TODO: Alignment */
1278 assert((offset & 0xF) == 0);
1279
1280 uint32_t uindex = nir_src_as_uint(index) + 1;
1281 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1282 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1283 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL);
1284 } else if (ctx->is_blend) {
1285 /* For blend shaders, load the input color, which is
1286 * preloaded to r0 */
1287
1288 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1289 emit_mir_instruction(ctx, move);
1290 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1291 midgard_instruction ins = m_ld_attr_32(reg, offset);
1292 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1293 ins.load_store.mask = mask_of(nr_comp);
1294
1295 /* Use the type appropriate load */
1296 switch (t) {
1297 case nir_type_int:
1298 case nir_type_uint:
1299 case nir_type_bool:
1300 ins.load_store.op = midgard_op_ld_attr_32i;
1301 break;
1302 case nir_type_float:
1303 ins.load_store.op = midgard_op_ld_attr_32;
1304 break;
1305 default:
1306 unreachable("Attempted to load unknown type");
1307 break;
1308 }
1309
1310 emit_mir_instruction(ctx, ins);
1311 } else {
1312 DBG("Unknown load\n");
1313 assert(0);
1314 }
1315
1316 break;
1317 }
1318
1319 case nir_intrinsic_load_output:
1320 assert(nir_src_is_const(instr->src[0]));
1321 reg = nir_dest_index(ctx, &instr->dest);
1322
1323 if (ctx->is_blend) {
1324 /* TODO: MRT */
1325 emit_fb_read_blend_scalar(ctx, reg);
1326 } else {
1327 DBG("Unknown output load\n");
1328 assert(0);
1329 }
1330
1331 break;
1332
1333 case nir_intrinsic_load_blend_const_color_rgba: {
1334 assert(ctx->is_blend);
1335 reg = nir_dest_index(ctx, &instr->dest);
1336
1337 /* Blend constants are embedded directly in the shader and
1338 * patched in, so we use some magic routing */
1339
1340 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1341 ins.has_constants = true;
1342 ins.has_blend_constant = true;
1343 emit_mir_instruction(ctx, ins);
1344 break;
1345 }
1346
1347 case nir_intrinsic_store_output:
1348 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1349
1350 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1351
1352 reg = nir_src_index(ctx, &instr->src[0]);
1353
1354 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1355 /* gl_FragColor is not emitted with load/store
1356 * instructions. Instead, it gets plonked into
1357 * r0 at the end of the shader and we do the
1358 * framebuffer writeout dance. TODO: Defer
1359 * writes */
1360
1361 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1362 emit_mir_instruction(ctx, move);
1363
1364 /* Save the index we're writing to for later reference
1365 * in the epilogue */
1366
1367 ctx->fragment_output = reg;
1368 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1369 /* Varyings are written into one of two special
1370 * varying register, r26 or r27. The register itself is
1371 * selected as the register in the st_vary instruction,
1372 * minus the base of 26. E.g. write into r27 and then
1373 * call st_vary(1) */
1374
1375 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1376 emit_mir_instruction(ctx, ins);
1377
1378 /* We should have been vectorized, though we don't
1379 * currently check that st_vary is emitted only once
1380 * per slot (this is relevant, since there's not a mask
1381 * parameter available on the store [set to 0 by the
1382 * blob]). We do respect the component by adjusting the
1383 * swizzle. */
1384
1385 unsigned component = nir_intrinsic_component(instr);
1386
1387 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1388 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1389 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1390 emit_mir_instruction(ctx, st);
1391 } else {
1392 DBG("Unknown store\n");
1393 assert(0);
1394 }
1395
1396 break;
1397
1398 case nir_intrinsic_load_alpha_ref_float:
1399 assert(instr->dest.is_ssa);
1400
1401 float ref_value = ctx->alpha_ref;
1402
1403 float *v = ralloc_array(NULL, float, 4);
1404 memcpy(v, &ref_value, sizeof(float));
1405 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1406 break;
1407
1408 case nir_intrinsic_load_viewport_scale:
1409 case nir_intrinsic_load_viewport_offset:
1410 emit_sysval_read(ctx, &instr->instr);
1411 break;
1412
1413 default:
1414 printf ("Unhandled intrinsic\n");
1415 assert(0);
1416 break;
1417 }
1418 }
1419
1420 static unsigned
1421 midgard_tex_format(enum glsl_sampler_dim dim)
1422 {
1423 switch (dim) {
1424 case GLSL_SAMPLER_DIM_1D:
1425 case GLSL_SAMPLER_DIM_BUF:
1426 return MALI_TEX_1D;
1427
1428 case GLSL_SAMPLER_DIM_2D:
1429 case GLSL_SAMPLER_DIM_EXTERNAL:
1430 return MALI_TEX_2D;
1431
1432 case GLSL_SAMPLER_DIM_3D:
1433 return MALI_TEX_3D;
1434
1435 case GLSL_SAMPLER_DIM_CUBE:
1436 return MALI_TEX_CUBE;
1437
1438 default:
1439 DBG("Unknown sampler dim type\n");
1440 assert(0);
1441 return 0;
1442 }
1443 }
1444
1445 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1446 * was successful */
1447
1448 static bool
1449 pan_attach_constant_bias(
1450 compiler_context *ctx,
1451 nir_src lod,
1452 midgard_texture_word *word)
1453 {
1454 /* To attach as constant, it has to *be* constant */
1455
1456 if (!nir_src_is_const(lod))
1457 return false;
1458
1459 float f = nir_src_as_float(lod);
1460
1461 /* Break into fixed-point */
1462 signed lod_int = f;
1463 float lod_frac = f - lod_int;
1464
1465 /* Carry over negative fractions */
1466 if (lod_frac < 0.0) {
1467 lod_int--;
1468 lod_frac += 1.0;
1469 }
1470
1471 /* Encode */
1472 word->bias = float_to_ubyte(lod_frac);
1473 word->bias_int = lod_int;
1474
1475 return true;
1476 }
1477
1478 static enum mali_sampler_type
1479 midgard_sampler_type(nir_alu_type t)
1480 {
1481 switch (nir_alu_type_get_base_type(t)) {
1482 case nir_type_float:
1483 return MALI_SAMPLER_FLOAT;
1484 case nir_type_int:
1485 return MALI_SAMPLER_SIGNED;
1486 case nir_type_uint:
1487 return MALI_SAMPLER_UNSIGNED;
1488 default:
1489 unreachable("Unknown sampler type");
1490 }
1491 }
1492
1493 static void
1494 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1495 unsigned midgard_texop)
1496 {
1497 /* TODO */
1498 //assert (!instr->sampler);
1499 //assert (!instr->texture_array_size);
1500
1501 /* Allocate registers via a round robin scheme to alternate between the two registers */
1502 int reg = ctx->texture_op_count & 1;
1503 int in_reg = reg, out_reg = reg;
1504
1505 /* Make room for the reg */
1506
1507 if (ctx->texture_index[reg] > -1)
1508 unalias_ssa(ctx, ctx->texture_index[reg]);
1509
1510 int texture_index = instr->texture_index;
1511 int sampler_index = texture_index;
1512
1513 /* No helper to build texture words -- we do it all here */
1514 midgard_instruction ins = {
1515 .type = TAG_TEXTURE_4,
1516 .texture = {
1517 .op = midgard_texop,
1518 .format = midgard_tex_format(instr->sampler_dim),
1519 .texture_handle = texture_index,
1520 .sampler_handle = sampler_index,
1521
1522 /* TODO: Regalloc it in */
1523 .swizzle = SWIZZLE_XYZW,
1524 .mask = 0xF,
1525
1526 /* TODO: half */
1527 .in_reg_full = 1,
1528 .out_full = 1,
1529
1530 .sampler_type = midgard_sampler_type(instr->dest_type),
1531 }
1532 };
1533
1534 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1535 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1536 int index = nir_src_index(ctx, &instr->src[i].src);
1537 int nr_comp = nir_src_num_components(instr->src[i].src);
1538 midgard_vector_alu_src alu_src = blank_alu_src;
1539
1540 switch (instr->src[i].src_type) {
1541 case nir_tex_src_coord: {
1542 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1543 /* texelFetch is undefined on samplerCube */
1544 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1545
1546 /* For cubemaps, we need to load coords into
1547 * special r27, and then use a special ld/st op
1548 * to select the face and copy the xy into the
1549 * texture register */
1550
1551 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1552
1553 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1554 emit_mir_instruction(ctx, move);
1555
1556 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1557 st.load_store.unknown = 0x24; /* XXX: What is this? */
1558 st.load_store.mask = 0x3; /* xy */
1559 st.load_store.swizzle = alu_src.swizzle;
1560 emit_mir_instruction(ctx, st);
1561
1562 ins.texture.in_reg_swizzle = swizzle_of(2);
1563 } else {
1564 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1565
1566 midgard_instruction mov = v_mov(index, alu_src, reg);
1567 mov.alu.mask = expand_writemask(mask_of(nr_comp));
1568 emit_mir_instruction(ctx, mov);
1569
1570 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1571 /* Texel fetch opcodes care about the
1572 * values of z and w, so we actually
1573 * need to spill into a second register
1574 * for a texel fetch with register bias
1575 * (for non-2D). TODO: Implement that
1576 */
1577
1578 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1579
1580 midgard_instruction zero = v_mov(index, alu_src, reg);
1581 zero.ssa_args.inline_constant = true;
1582 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1583 zero.has_constants = true;
1584 zero.alu.mask = ~mov.alu.mask;
1585 emit_mir_instruction(ctx, zero);
1586
1587 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1588 } else {
1589 /* Non-texel fetch doesn't need that
1590 * nonsense. However we do use the Z
1591 * for array indexing */
1592 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1593 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1594 }
1595 }
1596
1597 break;
1598 }
1599
1600 case nir_tex_src_bias:
1601 case nir_tex_src_lod: {
1602 /* Try as a constant if we can */
1603
1604 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1605 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1606 break;
1607
1608 /* Otherwise we use a register. To keep RA simple, we
1609 * put the bias/LOD into the w component of the input
1610 * source, which is otherwise in xy */
1611
1612 alu_src.swizzle = SWIZZLE_XXXX;
1613
1614 midgard_instruction mov = v_mov(index, alu_src, reg);
1615 mov.alu.mask = expand_writemask(1 << COMPONENT_W);
1616 emit_mir_instruction(ctx, mov);
1617
1618 ins.texture.lod_register = true;
1619
1620 midgard_tex_register_select sel = {
1621 .select = in_reg,
1622 .full = 1,
1623
1624 /* w */
1625 .component_lo = 1,
1626 .component_hi = 1
1627 };
1628
1629 uint8_t packed;
1630 memcpy(&packed, &sel, sizeof(packed));
1631 ins.texture.bias = packed;
1632
1633 break;
1634 };
1635
1636 default:
1637 unreachable("Unknown texture source type\n");
1638 }
1639 }
1640
1641 /* Set registers to read and write from the same place */
1642 ins.texture.in_reg_select = in_reg;
1643 ins.texture.out_reg_select = out_reg;
1644
1645 emit_mir_instruction(ctx, ins);
1646
1647 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1648
1649 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1650 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1651 ctx->texture_index[reg] = o_index;
1652
1653 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1654 emit_mir_instruction(ctx, ins2);
1655
1656 /* Used for .cont and .last hinting */
1657 ctx->texture_op_count++;
1658 }
1659
1660 static void
1661 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1662 {
1663 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1664 * generic tex in some cases (which confuses the hardware) */
1665
1666 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1667
1668 if (is_vertex && instr->op == nir_texop_tex)
1669 instr->op = nir_texop_txl;
1670
1671 switch (instr->op) {
1672 case nir_texop_tex:
1673 case nir_texop_txb:
1674 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1675 break;
1676 case nir_texop_txl:
1677 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1678 break;
1679 case nir_texop_txf:
1680 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1681 break;
1682 case nir_texop_txs:
1683 emit_sysval_read(ctx, &instr->instr);
1684 break;
1685 default:
1686 unreachable("Unhanlded texture op");
1687 }
1688 }
1689
1690 static void
1691 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1692 {
1693 switch (instr->type) {
1694 case nir_jump_break: {
1695 /* Emit a branch out of the loop */
1696 struct midgard_instruction br = v_branch(false, false);
1697 br.branch.target_type = TARGET_BREAK;
1698 br.branch.target_break = ctx->current_loop_depth;
1699 emit_mir_instruction(ctx, br);
1700
1701 DBG("break..\n");
1702 break;
1703 }
1704
1705 default:
1706 DBG("Unknown jump type %d\n", instr->type);
1707 break;
1708 }
1709 }
1710
1711 static void
1712 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1713 {
1714 switch (instr->type) {
1715 case nir_instr_type_load_const:
1716 emit_load_const(ctx, nir_instr_as_load_const(instr));
1717 break;
1718
1719 case nir_instr_type_intrinsic:
1720 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1721 break;
1722
1723 case nir_instr_type_alu:
1724 emit_alu(ctx, nir_instr_as_alu(instr));
1725 break;
1726
1727 case nir_instr_type_tex:
1728 emit_tex(ctx, nir_instr_as_tex(instr));
1729 break;
1730
1731 case nir_instr_type_jump:
1732 emit_jump(ctx, nir_instr_as_jump(instr));
1733 break;
1734
1735 case nir_instr_type_ssa_undef:
1736 /* Spurious */
1737 break;
1738
1739 default:
1740 DBG("Unhandled instruction type\n");
1741 break;
1742 }
1743 }
1744
1745
1746 /* ALU instructions can inline or embed constants, which decreases register
1747 * pressure and saves space. */
1748
1749 #define CONDITIONAL_ATTACH(src) { \
1750 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1751 \
1752 if (entry) { \
1753 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1754 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1755 } \
1756 }
1757
1758 static void
1759 inline_alu_constants(compiler_context *ctx)
1760 {
1761 mir_foreach_instr(ctx, alu) {
1762 /* Other instructions cannot inline constants */
1763 if (alu->type != TAG_ALU_4) continue;
1764
1765 /* If there is already a constant here, we can do nothing */
1766 if (alu->has_constants) continue;
1767
1768 /* It makes no sense to inline constants on a branch */
1769 if (alu->compact_branch || alu->prepacked_branch) continue;
1770
1771 CONDITIONAL_ATTACH(src0);
1772
1773 if (!alu->has_constants) {
1774 CONDITIONAL_ATTACH(src1)
1775 } else if (!alu->inline_constant) {
1776 /* Corner case: _two_ vec4 constants, for instance with a
1777 * csel. For this case, we can only use a constant
1778 * register for one, we'll have to emit a move for the
1779 * other. Note, if both arguments are constants, then
1780 * necessarily neither argument depends on the value of
1781 * any particular register. As the destination register
1782 * will be wiped, that means we can spill the constant
1783 * to the destination register.
1784 */
1785
1786 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1787 unsigned scratch = alu->ssa_args.dest;
1788
1789 if (entry) {
1790 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1791 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1792
1793 /* Force a break XXX Defer r31 writes */
1794 ins.unit = UNIT_VLUT;
1795
1796 /* Set the source */
1797 alu->ssa_args.src1 = scratch;
1798
1799 /* Inject us -before- the last instruction which set r31 */
1800 mir_insert_instruction_before(mir_prev_op(alu), ins);
1801 }
1802 }
1803 }
1804 }
1805
1806 /* Midgard supports two types of constants, embedded constants (128-bit) and
1807 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1808 * constants can be demoted to inline constants, for space savings and
1809 * sometimes a performance boost */
1810
1811 static void
1812 embedded_to_inline_constant(compiler_context *ctx)
1813 {
1814 mir_foreach_instr(ctx, ins) {
1815 if (!ins->has_constants) continue;
1816
1817 if (ins->ssa_args.inline_constant) continue;
1818
1819 /* Blend constants must not be inlined by definition */
1820 if (ins->has_blend_constant) continue;
1821
1822 /* src1 cannot be an inline constant due to encoding
1823 * restrictions. So, if possible we try to flip the arguments
1824 * in that case */
1825
1826 int op = ins->alu.op;
1827
1828 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1829 switch (op) {
1830 /* These ops require an operational change to flip
1831 * their arguments TODO */
1832 case midgard_alu_op_flt:
1833 case midgard_alu_op_fle:
1834 case midgard_alu_op_ilt:
1835 case midgard_alu_op_ile:
1836 case midgard_alu_op_fcsel:
1837 case midgard_alu_op_icsel:
1838 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1839 default:
1840 break;
1841 }
1842
1843 if (alu_opcode_props[op].props & OP_COMMUTES) {
1844 /* Flip the SSA numbers */
1845 ins->ssa_args.src0 = ins->ssa_args.src1;
1846 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1847
1848 /* And flip the modifiers */
1849
1850 unsigned src_temp;
1851
1852 src_temp = ins->alu.src2;
1853 ins->alu.src2 = ins->alu.src1;
1854 ins->alu.src1 = src_temp;
1855 }
1856 }
1857
1858 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1859 /* Extract the source information */
1860
1861 midgard_vector_alu_src *src;
1862 int q = ins->alu.src2;
1863 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1864 src = m;
1865
1866 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1867 int component = src->swizzle & 3;
1868
1869 /* Scale constant appropriately, if we can legally */
1870 uint16_t scaled_constant = 0;
1871
1872 if (midgard_is_integer_op(op)) {
1873 unsigned int *iconstants = (unsigned int *) ins->constants;
1874 scaled_constant = (uint16_t) iconstants[component];
1875
1876 /* Constant overflow after resize */
1877 if (scaled_constant != iconstants[component])
1878 continue;
1879 } else {
1880 float original = (float) ins->constants[component];
1881 scaled_constant = _mesa_float_to_half(original);
1882
1883 /* Check for loss of precision. If this is
1884 * mediump, we don't care, but for a highp
1885 * shader, we need to pay attention. NIR
1886 * doesn't yet tell us which mode we're in!
1887 * Practically this prevents most constants
1888 * from being inlined, sadly. */
1889
1890 float fp32 = _mesa_half_to_float(scaled_constant);
1891
1892 if (fp32 != original)
1893 continue;
1894 }
1895
1896 /* We don't know how to handle these with a constant */
1897
1898 if (src->mod || src->half || src->rep_low || src->rep_high) {
1899 DBG("Bailing inline constant...\n");
1900 continue;
1901 }
1902
1903 /* Make sure that the constant is not itself a
1904 * vector by checking if all accessed values
1905 * (by the swizzle) are the same. */
1906
1907 uint32_t *cons = (uint32_t *) ins->constants;
1908 uint32_t value = cons[component];
1909
1910 bool is_vector = false;
1911 unsigned mask = effective_writemask(&ins->alu);
1912
1913 for (int c = 1; c < 4; ++c) {
1914 /* We only care if this component is actually used */
1915 if (!(mask & (1 << c)))
1916 continue;
1917
1918 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1919
1920 if (test != value) {
1921 is_vector = true;
1922 break;
1923 }
1924 }
1925
1926 if (is_vector)
1927 continue;
1928
1929 /* Get rid of the embedded constant */
1930 ins->has_constants = false;
1931 ins->ssa_args.src1 = SSA_UNUSED_0;
1932 ins->ssa_args.inline_constant = true;
1933 ins->inline_constant = scaled_constant;
1934 }
1935 }
1936 }
1937
1938 /* Map normal SSA sources to other SSA sources / fixed registers (like
1939 * uniforms) */
1940
1941 static void
1942 map_ssa_to_alias(compiler_context *ctx, int *ref)
1943 {
1944 /* Sign is used quite deliberately for unused */
1945 if (*ref < 0)
1946 return;
1947
1948 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
1949
1950 if (alias) {
1951 /* Remove entry in leftovers to avoid a redunant fmov */
1952
1953 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
1954
1955 if (leftover)
1956 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
1957
1958 /* Assign the alias map */
1959 *ref = alias - 1;
1960 return;
1961 }
1962 }
1963
1964 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
1965 * texture pipeline */
1966
1967 static bool
1968 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
1969 {
1970 bool progress = false;
1971
1972 mir_foreach_instr_in_block_safe(block, ins) {
1973 if (ins->type != TAG_ALU_4) continue;
1974 if (ins->compact_branch) continue;
1975
1976 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1977 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
1978
1979 mir_remove_instruction(ins);
1980 progress = true;
1981 }
1982
1983 return progress;
1984 }
1985
1986 /* Dead code elimination for branches at the end of a block - only one branch
1987 * per block is legal semantically */
1988
1989 static void
1990 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1991 {
1992 bool branched = false;
1993
1994 mir_foreach_instr_in_block_safe(block, ins) {
1995 if (!midgard_is_branch_unit(ins->unit)) continue;
1996
1997 /* We ignore prepacked branches since the fragment epilogue is
1998 * just generally special */
1999 if (ins->prepacked_branch) continue;
2000
2001 /* Discards are similarly special and may not correspond to the
2002 * end of a block */
2003
2004 if (ins->branch.target_type == TARGET_DISCARD) continue;
2005
2006 if (branched) {
2007 /* We already branched, so this is dead */
2008 mir_remove_instruction(ins);
2009 }
2010
2011 branched = true;
2012 }
2013 }
2014
2015 static bool
2016 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2017 {
2018 /* abs or neg */
2019 if (!is_int && src.mod) return true;
2020
2021 /* swizzle */
2022 for (unsigned c = 0; c < 4; ++c) {
2023 if (!(mask & (1 << c))) continue;
2024 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2025 }
2026
2027 return false;
2028 }
2029
2030 static bool
2031 mir_nontrivial_source2_mod(midgard_instruction *ins)
2032 {
2033 unsigned mask = squeeze_writemask(ins->alu.mask);
2034 bool is_int = midgard_is_integer_op(ins->alu.op);
2035
2036 midgard_vector_alu_src src2 =
2037 vector_alu_from_unsigned(ins->alu.src2);
2038
2039 return mir_nontrivial_mod(src2, is_int, mask);
2040 }
2041
2042 static bool
2043 mir_nontrivial_outmod(midgard_instruction *ins)
2044 {
2045 bool is_int = midgard_is_integer_op(ins->alu.op);
2046 unsigned mod = ins->alu.outmod;
2047
2048 if (is_int)
2049 return mod != midgard_outmod_int_wrap;
2050 else
2051 return mod != midgard_outmod_none;
2052 }
2053
2054 static bool
2055 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2056 {
2057 bool progress = false;
2058
2059 mir_foreach_instr_in_block_safe(block, ins) {
2060 if (ins->type != TAG_ALU_4) continue;
2061 if (!OP_IS_MOVE(ins->alu.op)) continue;
2062
2063 unsigned from = ins->ssa_args.src1;
2064 unsigned to = ins->ssa_args.dest;
2065
2066 /* We only work on pure SSA */
2067
2068 if (to >= SSA_FIXED_MINIMUM) continue;
2069 if (from >= SSA_FIXED_MINIMUM) continue;
2070 if (to >= ctx->func->impl->ssa_alloc) continue;
2071 if (from >= ctx->func->impl->ssa_alloc) continue;
2072
2073 /* Constant propagation is not handled here, either */
2074 if (ins->ssa_args.inline_constant) continue;
2075 if (ins->has_constants) continue;
2076
2077 if (mir_nontrivial_source2_mod(ins)) continue;
2078 if (mir_nontrivial_outmod(ins)) continue;
2079
2080 /* We're clear -- rewrite */
2081 mir_rewrite_index_src(ctx, to, from);
2082 mir_remove_instruction(ins);
2083 progress |= true;
2084 }
2085
2086 return progress;
2087 }
2088
2089 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2090 * the move can be propagated away entirely */
2091
2092 static bool
2093 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2094 {
2095 /* Nothing to do */
2096 if (comp == midgard_outmod_none)
2097 return true;
2098
2099 if (*outmod == midgard_outmod_none) {
2100 *outmod = comp;
2101 return true;
2102 }
2103
2104 /* TODO: Compose rules */
2105 return false;
2106 }
2107
2108 static bool
2109 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2110 {
2111 bool progress = false;
2112
2113 mir_foreach_instr_in_block_safe(block, ins) {
2114 if (ins->type != TAG_ALU_4) continue;
2115 if (ins->alu.op != midgard_alu_op_fmov) continue;
2116 if (ins->alu.outmod != midgard_outmod_pos) continue;
2117
2118 /* TODO: Registers? */
2119 unsigned src = ins->ssa_args.src1;
2120 if (src >= ctx->func->impl->ssa_alloc) continue;
2121 assert(!mir_has_multiple_writes(ctx, src));
2122
2123 /* There might be a source modifier, too */
2124 if (mir_nontrivial_source2_mod(ins)) continue;
2125
2126 /* Backpropagate the modifier */
2127 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2128 if (v->type != TAG_ALU_4) continue;
2129 if (v->ssa_args.dest != src) continue;
2130
2131 /* Can we even take a float outmod? */
2132 if (midgard_is_integer_out_op(v->alu.op)) continue;
2133
2134 midgard_outmod_float temp = v->alu.outmod;
2135 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2136
2137 /* Throw in the towel.. */
2138 if (!progress) break;
2139
2140 /* Otherwise, transfer the modifier */
2141 v->alu.outmod = temp;
2142 ins->alu.outmod = midgard_outmod_none;
2143
2144 break;
2145 }
2146 }
2147
2148 return progress;
2149 }
2150
2151 static bool
2152 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
2153 {
2154 bool progress = false;
2155
2156 mir_foreach_instr_in_block_safe(block, ins) {
2157 if (ins->type != TAG_ALU_4) continue;
2158 if (!OP_IS_MOVE(ins->alu.op)) continue;
2159
2160 unsigned from = ins->ssa_args.src1;
2161 unsigned to = ins->ssa_args.dest;
2162
2163 /* Make sure it's simple enough for us to handle */
2164
2165 if (from >= SSA_FIXED_MINIMUM) continue;
2166 if (from >= ctx->func->impl->ssa_alloc) continue;
2167 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
2168 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
2169
2170 bool eliminated = false;
2171
2172 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2173 /* The texture registers are not SSA so be careful.
2174 * Conservatively, just stop if we hit a texture op
2175 * (even if it may not write) to where we are */
2176
2177 if (v->type != TAG_ALU_4)
2178 break;
2179
2180 if (v->ssa_args.dest == from) {
2181 /* We don't want to track partial writes ... */
2182 if (v->alu.mask == 0xF) {
2183 v->ssa_args.dest = to;
2184 eliminated = true;
2185 }
2186
2187 break;
2188 }
2189 }
2190
2191 if (eliminated)
2192 mir_remove_instruction(ins);
2193
2194 progress |= eliminated;
2195 }
2196
2197 return progress;
2198 }
2199
2200 /* The following passes reorder MIR instructions to enable better scheduling */
2201
2202 static void
2203 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2204 {
2205 mir_foreach_instr_in_block_safe(block, ins) {
2206 if (ins->type != TAG_LOAD_STORE_4) continue;
2207
2208 /* We've found a load/store op. Check if next is also load/store. */
2209 midgard_instruction *next_op = mir_next_op(ins);
2210 if (&next_op->link != &block->instructions) {
2211 if (next_op->type == TAG_LOAD_STORE_4) {
2212 /* If so, we're done since we're a pair */
2213 ins = mir_next_op(ins);
2214 continue;
2215 }
2216
2217 /* Maximum search distance to pair, to avoid register pressure disasters */
2218 int search_distance = 8;
2219
2220 /* Otherwise, we have an orphaned load/store -- search for another load */
2221 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2222 /* Terminate search if necessary */
2223 if (!(search_distance--)) break;
2224
2225 if (c->type != TAG_LOAD_STORE_4) continue;
2226
2227 /* Stores cannot be reordered, since they have
2228 * dependencies. For the same reason, indirect
2229 * loads cannot be reordered as their index is
2230 * loaded in r27.w */
2231
2232 if (OP_IS_STORE(c->load_store.op)) continue;
2233
2234 /* It appears the 0x800 bit is set whenever a
2235 * load is direct, unset when it is indirect.
2236 * Skip indirect loads. */
2237
2238 if (!(c->load_store.unknown & 0x800)) continue;
2239
2240 /* We found one! Move it up to pair and remove it from the old location */
2241
2242 mir_insert_instruction_before(ins, *c);
2243 mir_remove_instruction(c);
2244
2245 break;
2246 }
2247 }
2248 }
2249 }
2250
2251 /* If there are leftovers after the below pass, emit actual fmov
2252 * instructions for the slow-but-correct path */
2253
2254 static void
2255 emit_leftover_move(compiler_context *ctx)
2256 {
2257 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2258 int base = ((uintptr_t) leftover->key) - 1;
2259 int mapped = base;
2260
2261 map_ssa_to_alias(ctx, &mapped);
2262 EMIT(mov, mapped, blank_alu_src, base);
2263 }
2264 }
2265
2266 static void
2267 actualise_ssa_to_alias(compiler_context *ctx)
2268 {
2269 mir_foreach_instr(ctx, ins) {
2270 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2271 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2272 }
2273
2274 emit_leftover_move(ctx);
2275 }
2276
2277 static void
2278 emit_fragment_epilogue(compiler_context *ctx)
2279 {
2280 /* Special case: writing out constants requires us to include the move
2281 * explicitly now, so shove it into r0 */
2282
2283 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2284
2285 if (constant_value) {
2286 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2287 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2288 emit_mir_instruction(ctx, ins);
2289 }
2290
2291 /* Perform the actual fragment writeout. We have two writeout/branch
2292 * instructions, forming a loop until writeout is successful as per the
2293 * docs. TODO: gl_FragDepth */
2294
2295 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2296 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2297 }
2298
2299 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
2300 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
2301 * with the int8 analogue to the fragment epilogue */
2302
2303 static void
2304 emit_blend_epilogue(compiler_context *ctx)
2305 {
2306 /* vmul.fmul.none.fulllow hr48, r0, #255 */
2307
2308 midgard_instruction scale = {
2309 .type = TAG_ALU_4,
2310 .unit = UNIT_VMUL,
2311 .inline_constant = _mesa_float_to_half(255.0),
2312 .ssa_args = {
2313 .src0 = SSA_FIXED_REGISTER(0),
2314 .src1 = SSA_UNUSED_0,
2315 .dest = SSA_FIXED_REGISTER(24),
2316 .inline_constant = true
2317 },
2318 .alu = {
2319 .op = midgard_alu_op_fmul,
2320 .reg_mode = midgard_reg_mode_32,
2321 .dest_override = midgard_dest_override_lower,
2322 .mask = 0xFF,
2323 .src1 = vector_alu_srco_unsigned(blank_alu_src),
2324 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2325 }
2326 };
2327
2328 emit_mir_instruction(ctx, scale);
2329
2330 /* vadd.f2u_rte.pos.low hr0, hr48, #0 */
2331
2332 midgard_vector_alu_src alu_src = blank_alu_src;
2333 alu_src.half = true;
2334
2335 midgard_instruction f2u_rte = {
2336 .type = TAG_ALU_4,
2337 .ssa_args = {
2338 .src0 = SSA_FIXED_REGISTER(24),
2339 .src1 = SSA_UNUSED_0,
2340 .dest = SSA_FIXED_REGISTER(0),
2341 .inline_constant = true
2342 },
2343 .alu = {
2344 .op = midgard_alu_op_f2u_rte,
2345 .reg_mode = midgard_reg_mode_16,
2346 .dest_override = midgard_dest_override_lower,
2347 .outmod = midgard_outmod_pos,
2348 .mask = 0xF,
2349 .src1 = vector_alu_srco_unsigned(alu_src),
2350 .src2 = vector_alu_srco_unsigned(blank_alu_src),
2351 }
2352 };
2353
2354 emit_mir_instruction(ctx, f2u_rte);
2355
2356 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2357 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2358 }
2359
2360 static midgard_block *
2361 emit_block(compiler_context *ctx, nir_block *block)
2362 {
2363 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2364 list_addtail(&this_block->link, &ctx->blocks);
2365
2366 this_block->is_scheduled = false;
2367 ++ctx->block_count;
2368
2369 ctx->texture_index[0] = -1;
2370 ctx->texture_index[1] = -1;
2371
2372 /* Add us as a successor to the block we are following */
2373 if (ctx->current_block)
2374 midgard_block_add_successor(ctx->current_block, this_block);
2375
2376 /* Set up current block */
2377 list_inithead(&this_block->instructions);
2378 ctx->current_block = this_block;
2379
2380 nir_foreach_instr(instr, block) {
2381 emit_instr(ctx, instr);
2382 ++ctx->instruction_count;
2383 }
2384
2385 inline_alu_constants(ctx);
2386 embedded_to_inline_constant(ctx);
2387
2388 /* Perform heavylifting for aliasing */
2389 actualise_ssa_to_alias(ctx);
2390
2391 midgard_pair_load_store(ctx, this_block);
2392
2393 /* Append fragment shader epilogue (value writeout) */
2394 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2395 if (block == nir_impl_last_block(ctx->func->impl)) {
2396 if (ctx->is_blend)
2397 emit_blend_epilogue(ctx);
2398 else
2399 emit_fragment_epilogue(ctx);
2400 }
2401 }
2402
2403 if (block == nir_start_block(ctx->func->impl))
2404 ctx->initial_block = this_block;
2405
2406 if (block == nir_impl_last_block(ctx->func->impl))
2407 ctx->final_block = this_block;
2408
2409 /* Allow the next control flow to access us retroactively, for
2410 * branching etc */
2411 ctx->current_block = this_block;
2412
2413 /* Document the fallthrough chain */
2414 ctx->previous_source_block = this_block;
2415
2416 return this_block;
2417 }
2418
2419 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2420
2421 static void
2422 emit_if(struct compiler_context *ctx, nir_if *nif)
2423 {
2424 /* Conditional branches expect the condition in r31.w; emit a move for
2425 * that in the _previous_ block (which is the current block). */
2426 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2427
2428 /* Speculatively emit the branch, but we can't fill it in until later */
2429 EMIT(branch, true, true);
2430 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2431
2432 /* Emit the two subblocks */
2433 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2434
2435 /* Emit a jump from the end of the then block to the end of the else */
2436 EMIT(branch, false, false);
2437 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2438
2439 /* Emit second block, and check if it's empty */
2440
2441 int else_idx = ctx->block_count;
2442 int count_in = ctx->instruction_count;
2443 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2444 int after_else_idx = ctx->block_count;
2445
2446 /* Now that we have the subblocks emitted, fix up the branches */
2447
2448 assert(then_block);
2449 assert(else_block);
2450
2451 if (ctx->instruction_count == count_in) {
2452 /* The else block is empty, so don't emit an exit jump */
2453 mir_remove_instruction(then_exit);
2454 then_branch->branch.target_block = after_else_idx;
2455 } else {
2456 then_branch->branch.target_block = else_idx;
2457 then_exit->branch.target_block = after_else_idx;
2458 }
2459 }
2460
2461 static void
2462 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2463 {
2464 /* Remember where we are */
2465 midgard_block *start_block = ctx->current_block;
2466
2467 /* Allocate a loop number, growing the current inner loop depth */
2468 int loop_idx = ++ctx->current_loop_depth;
2469
2470 /* Get index from before the body so we can loop back later */
2471 int start_idx = ctx->block_count;
2472
2473 /* Emit the body itself */
2474 emit_cf_list(ctx, &nloop->body);
2475
2476 /* Branch back to loop back */
2477 struct midgard_instruction br_back = v_branch(false, false);
2478 br_back.branch.target_block = start_idx;
2479 emit_mir_instruction(ctx, br_back);
2480
2481 /* Mark down that branch in the graph. Note that we're really branching
2482 * to the block *after* we started in. TODO: Why doesn't the branch
2483 * itself have an off-by-one then...? */
2484 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2485
2486 /* Find the index of the block about to follow us (note: we don't add
2487 * one; blocks are 0-indexed so we get a fencepost problem) */
2488 int break_block_idx = ctx->block_count;
2489
2490 /* Fix up the break statements we emitted to point to the right place,
2491 * now that we can allocate a block number for them */
2492
2493 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2494 mir_foreach_instr_in_block(block, ins) {
2495 if (ins->type != TAG_ALU_4) continue;
2496 if (!ins->compact_branch) continue;
2497 if (ins->prepacked_branch) continue;
2498
2499 /* We found a branch -- check the type to see if we need to do anything */
2500 if (ins->branch.target_type != TARGET_BREAK) continue;
2501
2502 /* It's a break! Check if it's our break */
2503 if (ins->branch.target_break != loop_idx) continue;
2504
2505 /* Okay, cool, we're breaking out of this loop.
2506 * Rewrite from a break to a goto */
2507
2508 ins->branch.target_type = TARGET_GOTO;
2509 ins->branch.target_block = break_block_idx;
2510 }
2511 }
2512
2513 /* Now that we've finished emitting the loop, free up the depth again
2514 * so we play nice with recursion amid nested loops */
2515 --ctx->current_loop_depth;
2516 }
2517
2518 static midgard_block *
2519 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2520 {
2521 midgard_block *start_block = NULL;
2522
2523 foreach_list_typed(nir_cf_node, node, node, list) {
2524 switch (node->type) {
2525 case nir_cf_node_block: {
2526 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2527
2528 if (!start_block)
2529 start_block = block;
2530
2531 break;
2532 }
2533
2534 case nir_cf_node_if:
2535 emit_if(ctx, nir_cf_node_as_if(node));
2536 break;
2537
2538 case nir_cf_node_loop:
2539 emit_loop(ctx, nir_cf_node_as_loop(node));
2540 break;
2541
2542 case nir_cf_node_function:
2543 assert(0);
2544 break;
2545 }
2546 }
2547
2548 return start_block;
2549 }
2550
2551 /* Due to lookahead, we need to report the first tag executed in the command
2552 * stream and in branch targets. An initial block might be empty, so iterate
2553 * until we find one that 'works' */
2554
2555 static unsigned
2556 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2557 {
2558 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2559
2560 unsigned first_tag = 0;
2561
2562 do {
2563 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2564
2565 if (initial_bundle) {
2566 first_tag = initial_bundle->tag;
2567 break;
2568 }
2569
2570 /* Initial block is empty, try the next block */
2571 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2572 } while(initial_block != NULL);
2573
2574 assert(first_tag);
2575 return first_tag;
2576 }
2577
2578 int
2579 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2580 {
2581 struct util_dynarray *compiled = &program->compiled;
2582
2583 midgard_debug = debug_get_option_midgard_debug();
2584
2585 compiler_context ictx = {
2586 .nir = nir,
2587 .stage = nir->info.stage,
2588
2589 .is_blend = is_blend,
2590 .blend_constant_offset = -1,
2591
2592 .alpha_ref = program->alpha_ref
2593 };
2594
2595 compiler_context *ctx = &ictx;
2596
2597 /* TODO: Decide this at runtime */
2598 ctx->uniform_cutoff = 8;
2599
2600 /* Initialize at a global (not block) level hash tables */
2601
2602 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2603 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2604 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2605 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2606 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2607
2608 /* Record the varying mapping for the command stream's bookkeeping */
2609
2610 struct exec_list *varyings =
2611 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2612
2613 unsigned max_varying = 0;
2614 nir_foreach_variable(var, varyings) {
2615 unsigned loc = var->data.driver_location;
2616 unsigned sz = glsl_type_size(var->type, FALSE);
2617
2618 for (int c = 0; c < sz; ++c) {
2619 program->varyings[loc + c] = var->data.location + c;
2620 max_varying = MAX2(max_varying, loc + c);
2621 }
2622 }
2623
2624 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2625 * (so we don't accidentally duplicate the epilogue since mesa/st has
2626 * messed with our I/O quite a bit already) */
2627
2628 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2629
2630 if (ctx->stage == MESA_SHADER_VERTEX)
2631 NIR_PASS_V(nir, nir_lower_viewport_transform);
2632
2633 NIR_PASS_V(nir, nir_lower_var_copies);
2634 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2635 NIR_PASS_V(nir, nir_split_var_copies);
2636 NIR_PASS_V(nir, nir_lower_var_copies);
2637 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2638 NIR_PASS_V(nir, nir_lower_var_copies);
2639 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2640
2641 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2642
2643 /* Optimisation passes */
2644
2645 optimise_nir(nir);
2646
2647 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2648 nir_print_shader(nir, stdout);
2649 }
2650
2651 /* Assign sysvals and counts, now that we're sure
2652 * (post-optimisation) */
2653
2654 midgard_nir_assign_sysvals(ctx, nir);
2655
2656 program->uniform_count = nir->num_uniforms;
2657 program->sysval_count = ctx->sysval_count;
2658 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2659
2660 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2661 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2662
2663 nir_foreach_function(func, nir) {
2664 if (!func->impl)
2665 continue;
2666
2667 list_inithead(&ctx->blocks);
2668 ctx->block_count = 0;
2669 ctx->func = func;
2670
2671 emit_cf_list(ctx, &func->impl->body);
2672 emit_block(ctx, func->impl->end_block);
2673
2674 break; /* TODO: Multi-function shaders */
2675 }
2676
2677 util_dynarray_init(compiled, NULL);
2678
2679 /* MIR-level optimizations */
2680
2681 bool progress = false;
2682
2683 do {
2684 progress = false;
2685
2686 mir_foreach_block(ctx, block) {
2687 progress |= midgard_opt_pos_propagate(ctx, block);
2688 progress |= midgard_opt_copy_prop(ctx, block);
2689 progress |= midgard_opt_copy_prop_tex(ctx, block);
2690 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2691 }
2692 } while (progress);
2693
2694 /* Nested control-flow can result in dead branches at the end of the
2695 * block. This messes with our analysis and is just dead code, so cull
2696 * them */
2697 mir_foreach_block(ctx, block) {
2698 midgard_opt_cull_dead_branch(ctx, block);
2699 }
2700
2701 /* Schedule! */
2702 schedule_program(ctx);
2703
2704 /* Now that all the bundles are scheduled and we can calculate block
2705 * sizes, emit actual branch instructions rather than placeholders */
2706
2707 int br_block_idx = 0;
2708
2709 mir_foreach_block(ctx, block) {
2710 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2711 for (int c = 0; c < bundle->instruction_count; ++c) {
2712 midgard_instruction *ins = bundle->instructions[c];
2713
2714 if (!midgard_is_branch_unit(ins->unit)) continue;
2715
2716 if (ins->prepacked_branch) continue;
2717
2718 /* Parse some basic branch info */
2719 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2720 bool is_conditional = ins->branch.conditional;
2721 bool is_inverted = ins->branch.invert_conditional;
2722 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2723
2724 /* Determine the block we're jumping to */
2725 int target_number = ins->branch.target_block;
2726
2727 /* Report the destination tag */
2728 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2729
2730 /* Count up the number of quadwords we're
2731 * jumping over = number of quadwords until
2732 * (br_block_idx, target_number) */
2733
2734 int quadword_offset = 0;
2735
2736 if (is_discard) {
2737 /* Jump to the end of the shader. We
2738 * need to include not only the
2739 * following blocks, but also the
2740 * contents of our current block (since
2741 * discard can come in the middle of
2742 * the block) */
2743
2744 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2745
2746 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2747 quadword_offset += quadword_size(bun->tag);
2748 }
2749
2750 mir_foreach_block_from(ctx, blk, b) {
2751 quadword_offset += b->quadword_count;
2752 }
2753
2754 } else if (target_number > br_block_idx) {
2755 /* Jump forward */
2756
2757 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2758 midgard_block *blk = mir_get_block(ctx, idx);
2759 assert(blk);
2760
2761 quadword_offset += blk->quadword_count;
2762 }
2763 } else {
2764 /* Jump backwards */
2765
2766 for (int idx = br_block_idx; idx >= target_number; --idx) {
2767 midgard_block *blk = mir_get_block(ctx, idx);
2768 assert(blk);
2769
2770 quadword_offset -= blk->quadword_count;
2771 }
2772 }
2773
2774 /* Unconditional extended branches (far jumps)
2775 * have issues, so we always use a conditional
2776 * branch, setting the condition to always for
2777 * unconditional. For compact unconditional
2778 * branches, cond isn't used so it doesn't
2779 * matter what we pick. */
2780
2781 midgard_condition cond =
2782 !is_conditional ? midgard_condition_always :
2783 is_inverted ? midgard_condition_false :
2784 midgard_condition_true;
2785
2786 midgard_jmp_writeout_op op =
2787 is_discard ? midgard_jmp_writeout_op_discard :
2788 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2789 midgard_jmp_writeout_op_branch_cond;
2790
2791 if (!is_compact) {
2792 midgard_branch_extended branch =
2793 midgard_create_branch_extended(
2794 cond, op,
2795 dest_tag,
2796 quadword_offset);
2797
2798 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2799 } else if (is_conditional || is_discard) {
2800 midgard_branch_cond branch = {
2801 .op = op,
2802 .dest_tag = dest_tag,
2803 .offset = quadword_offset,
2804 .cond = cond
2805 };
2806
2807 assert(branch.offset == quadword_offset);
2808
2809 memcpy(&ins->br_compact, &branch, sizeof(branch));
2810 } else {
2811 assert(op == midgard_jmp_writeout_op_branch_uncond);
2812
2813 midgard_branch_uncond branch = {
2814 .op = op,
2815 .dest_tag = dest_tag,
2816 .offset = quadword_offset,
2817 .unknown = 1
2818 };
2819
2820 assert(branch.offset == quadword_offset);
2821
2822 memcpy(&ins->br_compact, &branch, sizeof(branch));
2823 }
2824 }
2825 }
2826
2827 ++br_block_idx;
2828 }
2829
2830 /* Emit flat binary from the instruction arrays. Iterate each block in
2831 * sequence. Save instruction boundaries such that lookahead tags can
2832 * be assigned easily */
2833
2834 /* Cache _all_ bundles in source order for lookahead across failed branches */
2835
2836 int bundle_count = 0;
2837 mir_foreach_block(ctx, block) {
2838 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2839 }
2840 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2841 int bundle_idx = 0;
2842 mir_foreach_block(ctx, block) {
2843 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2844 source_order_bundles[bundle_idx++] = bundle;
2845 }
2846 }
2847
2848 int current_bundle = 0;
2849
2850 /* Midgard prefetches instruction types, so during emission we
2851 * need to lookahead. Unless this is the last instruction, in
2852 * which we return 1. Or if this is the second to last and the
2853 * last is an ALU, then it's also 1... */
2854
2855 mir_foreach_block(ctx, block) {
2856 mir_foreach_bundle_in_block(block, bundle) {
2857 int lookahead = 1;
2858
2859 if (current_bundle + 1 < bundle_count) {
2860 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2861
2862 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2863 lookahead = 1;
2864 } else {
2865 lookahead = next;
2866 }
2867 }
2868
2869 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2870 ++current_bundle;
2871 }
2872
2873 /* TODO: Free deeper */
2874 //util_dynarray_fini(&block->instructions);
2875 }
2876
2877 free(source_order_bundles);
2878
2879 /* Report the very first tag executed */
2880 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2881
2882 /* Deal with off-by-one related to the fencepost problem */
2883 program->work_register_count = ctx->work_registers + 1;
2884
2885 program->can_discard = ctx->can_discard;
2886 program->uniform_cutoff = ctx->uniform_cutoff;
2887
2888 program->blend_patch_offset = ctx->blend_constant_offset;
2889
2890 if (midgard_debug & MIDGARD_DBG_SHADERS)
2891 disassemble_midgard(program->compiled.data, program->compiled.size);
2892
2893 return 0;
2894 }