panfrost/midgard: Identify inand
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137
1138 /* XXX: Use fmov, not imov, since imov was causing major
1139 * issues with texture precision? XXX research */
1140 ALU_CASE(imov, imov);
1141
1142 ALU_CASE(feq32, feq);
1143 ALU_CASE(fne32, fne);
1144 ALU_CASE(flt32, flt);
1145 ALU_CASE(ieq32, ieq);
1146 ALU_CASE(ine32, ine);
1147 ALU_CASE(ilt32, ilt);
1148 ALU_CASE(ult32, ult);
1149
1150 /* We don't have a native b2f32 instruction. Instead, like many
1151 * GPUs, we exploit booleans as 0/~0 for false/true, and
1152 * correspondingly AND
1153 * by 1.0 to do the type conversion. For the moment, prime us
1154 * to emit:
1155 *
1156 * iand [whatever], #0
1157 *
1158 * At the end of emit_alu (as MIR), we'll fix-up the constant
1159 */
1160
1161 ALU_CASE(b2f32, iand);
1162 ALU_CASE(b2i32, iand);
1163
1164 /* Likewise, we don't have a dedicated f2b32 instruction, but
1165 * we can do a "not equal to 0.0" test. */
1166
1167 ALU_CASE(f2b32, fne);
1168 ALU_CASE(i2b32, ine);
1169
1170 ALU_CASE(frcp, frcp);
1171 ALU_CASE(frsq, frsqrt);
1172 ALU_CASE(fsqrt, fsqrt);
1173 ALU_CASE(fexp2, fexp2);
1174 ALU_CASE(flog2, flog2);
1175
1176 ALU_CASE(f2i32, f2i);
1177 ALU_CASE(f2u32, f2u);
1178 ALU_CASE(i2f32, i2f);
1179 ALU_CASE(u2f32, u2f);
1180
1181 ALU_CASE(fsin, fsin);
1182 ALU_CASE(fcos, fcos);
1183
1184 ALU_CASE(iand, iand);
1185 ALU_CASE(ior, ior);
1186 ALU_CASE(ixor, ixor);
1187 ALU_CASE(inot, inand);
1188 ALU_CASE(ishl, ishl);
1189 ALU_CASE(ishr, iasr);
1190 ALU_CASE(ushr, ilsr);
1191
1192 ALU_CASE(b32all_fequal2, fball_eq);
1193 ALU_CASE(b32all_fequal3, fball_eq);
1194 ALU_CASE(b32all_fequal4, fball_eq);
1195
1196 ALU_CASE(b32any_fnequal2, fbany_neq);
1197 ALU_CASE(b32any_fnequal3, fbany_neq);
1198 ALU_CASE(b32any_fnequal4, fbany_neq);
1199
1200 ALU_CASE(b32all_iequal2, iball_eq);
1201 ALU_CASE(b32all_iequal3, iball_eq);
1202 ALU_CASE(b32all_iequal4, iball_eq);
1203
1204 ALU_CASE(b32any_inequal2, ibany_neq);
1205 ALU_CASE(b32any_inequal3, ibany_neq);
1206 ALU_CASE(b32any_inequal4, ibany_neq);
1207
1208 /* For greater-or-equal, we lower to less-or-equal and flip the
1209 * arguments */
1210
1211 case nir_op_fge:
1212 case nir_op_fge32:
1213 case nir_op_ige32:
1214 case nir_op_uge32: {
1215 op =
1216 instr->op == nir_op_fge ? midgard_alu_op_fle :
1217 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1218 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1219 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1220 0;
1221
1222 /* Swap via temporary */
1223 nir_alu_src temp = instr->src[1];
1224 instr->src[1] = instr->src[0];
1225 instr->src[0] = temp;
1226
1227 break;
1228 }
1229
1230 /* For a few special csel cases not handled by NIR, we can opt to
1231 * bitwise. Otherwise, we emit the condition and do a real csel */
1232
1233 case nir_op_b32csel: {
1234 if (nir_is_fzero_constant(instr->src[2].src)) {
1235 /* (b ? v : 0) = (b & v) */
1236 op = midgard_alu_op_iand;
1237 nr_inputs = 2;
1238 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1239 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1240 op = midgard_alu_op_iandnot;
1241 nr_inputs = 2;
1242 instr->src[1] = instr->src[0];
1243 instr->src[0] = instr->src[2];
1244 } else {
1245 op = midgard_alu_op_fcsel;
1246
1247 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1248 nr_inputs = 2;
1249
1250 /* Figure out which component the condition is in */
1251
1252 unsigned comp = instr->src[0].swizzle[0];
1253
1254 /* Make sure NIR isn't throwing a mixed condition at us */
1255
1256 for (unsigned c = 1; c < nr_components; ++c)
1257 assert(instr->src[0].swizzle[c] == comp);
1258
1259 /* Emit the condition into r31.w */
1260 emit_condition(ctx, &instr->src[0].src, false, comp);
1261
1262 /* The condition is the first argument; move the other
1263 * arguments up one to be a binary instruction for
1264 * Midgard */
1265
1266 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1267 }
1268 break;
1269 }
1270
1271 default:
1272 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1273 assert(0);
1274 return;
1275 }
1276
1277 /* Midgard can perform certain modifiers on output ofa n ALU op */
1278 midgard_outmod outmod =
1279 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1280
1281 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1282
1283 if (instr->op == nir_op_fmax) {
1284 if (nir_is_fzero_constant(instr->src[0].src)) {
1285 op = midgard_alu_op_fmov;
1286 nr_inputs = 1;
1287 outmod = midgard_outmod_pos;
1288 instr->src[0] = instr->src[1];
1289 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1290 op = midgard_alu_op_fmov;
1291 nr_inputs = 1;
1292 outmod = midgard_outmod_pos;
1293 }
1294 }
1295
1296 /* Fetch unit, quirks, etc information */
1297 unsigned opcode_props = alu_opcode_props[op].props;
1298 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1299
1300 /* src0 will always exist afaik, but src1 will not for 1-argument
1301 * instructions. The latter can only be fetched if the instruction
1302 * needs it, or else we may segfault. */
1303
1304 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1305 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1306
1307 /* Rather than use the instruction generation helpers, we do it
1308 * ourselves here to avoid the mess */
1309
1310 midgard_instruction ins = {
1311 .type = TAG_ALU_4,
1312 .ssa_args = {
1313 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1314 .src1 = quirk_flipped_r24 ? src0 : src1,
1315 .dest = dest,
1316 }
1317 };
1318
1319 nir_alu_src *nirmods[2] = { NULL };
1320
1321 if (nr_inputs == 2) {
1322 nirmods[0] = &instr->src[0];
1323 nirmods[1] = &instr->src[1];
1324 } else if (nr_inputs == 1) {
1325 nirmods[quirk_flipped_r24] = &instr->src[0];
1326 } else {
1327 assert(0);
1328 }
1329
1330 bool is_int = midgard_is_integer_op(op);
1331
1332 midgard_vector_alu alu = {
1333 .op = op,
1334 .reg_mode = midgard_reg_mode_full,
1335 .dest_override = midgard_dest_override_none,
1336 .outmod = outmod,
1337
1338 /* Writemask only valid for non-SSA NIR */
1339 .mask = expand_writemask((1 << nr_components) - 1),
1340
1341 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1342 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1343 };
1344
1345 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1346
1347 if (!is_ssa)
1348 alu.mask &= expand_writemask(instr->dest.write_mask);
1349
1350 ins.alu = alu;
1351
1352 /* Late fixup for emulated instructions */
1353
1354 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1355 /* Presently, our second argument is an inline #0 constant.
1356 * Switch over to an embedded 1.0 constant (that can't fit
1357 * inline, since we're 32-bit, not 16-bit like the inline
1358 * constants) */
1359
1360 ins.ssa_args.inline_constant = false;
1361 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1362 ins.has_constants = true;
1363
1364 if (instr->op == nir_op_b2f32) {
1365 ins.constants[0] = 1.0f;
1366 } else {
1367 /* Type pun it into place */
1368 uint32_t one = 0x1;
1369 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1370 }
1371
1372 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1373 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1374 ins.ssa_args.inline_constant = false;
1375 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1376 ins.has_constants = true;
1377 ins.constants[0] = 0.0f;
1378 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1379 } else if (instr->op == nir_op_inot) {
1380 /* ~b = ~(b & b), so duplicate the source */
1381 ins.ssa_args.src1 = ins.ssa_args.src0;
1382 ins.alu.src2 = ins.alu.src1;
1383 }
1384
1385 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1386 /* To avoid duplicating the lookup tables (probably), true LUT
1387 * instructions can only operate as if they were scalars. Lower
1388 * them here by changing the component. */
1389
1390 uint8_t original_swizzle[4];
1391 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1392
1393 for (int i = 0; i < nr_components; ++i) {
1394 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1395
1396 for (int j = 0; j < 4; ++j)
1397 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1398
1399 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1400 emit_mir_instruction(ctx, ins);
1401 }
1402 } else {
1403 emit_mir_instruction(ctx, ins);
1404 }
1405 }
1406
1407 #undef ALU_CASE
1408
1409 static void
1410 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1411 {
1412 /* TODO: half-floats */
1413
1414 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1415 /* Fast path: For the first 16 uniforms, direct accesses are
1416 * 0-cycle, since they're just a register fetch in the usual
1417 * case. So, we alias the registers while we're still in
1418 * SSA-space */
1419
1420 int reg_slot = 23 - offset;
1421 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1422 } else {
1423 /* Otherwise, read from the 'special' UBO to access
1424 * higher-indexed uniforms, at a performance cost. More
1425 * generally, we're emitting a UBO read instruction. */
1426
1427 midgard_instruction ins = m_load_uniform_32(dest, offset);
1428
1429 /* TODO: Don't split */
1430 ins.load_store.varying_parameters = (offset & 7) << 7;
1431 ins.load_store.address = offset >> 3;
1432
1433 if (indirect_offset) {
1434 emit_indirect_offset(ctx, indirect_offset);
1435 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1436 } else {
1437 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1438 }
1439
1440 emit_mir_instruction(ctx, ins);
1441 }
1442 }
1443
1444 static void
1445 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1446 {
1447 /* First, pull out the destination */
1448 unsigned dest = nir_dest_index(ctx, &instr->dest);
1449
1450 /* Now, figure out which uniform this is */
1451 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1452 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1453
1454 /* Sysvals are prefix uniforms */
1455 unsigned uniform = ((uintptr_t) val) - 1;
1456
1457 /* Emit the read itself -- this is never indirect */
1458 emit_uniform_read(ctx, dest, uniform, NULL);
1459 }
1460
1461 static void
1462 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1463 {
1464 unsigned offset, reg;
1465
1466 switch (instr->intrinsic) {
1467 case nir_intrinsic_discard_if:
1468 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1469
1470 /* fallthrough */
1471
1472 case nir_intrinsic_discard: {
1473 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1474 struct midgard_instruction discard = v_branch(conditional, false);
1475 discard.branch.target_type = TARGET_DISCARD;
1476 emit_mir_instruction(ctx, discard);
1477
1478 ctx->can_discard = true;
1479 break;
1480 }
1481
1482 case nir_intrinsic_load_uniform:
1483 case nir_intrinsic_load_input:
1484 offset = nir_intrinsic_base(instr);
1485
1486 bool direct = nir_src_is_const(instr->src[0]);
1487
1488 if (direct) {
1489 offset += nir_src_as_uint(instr->src[0]);
1490 }
1491
1492 reg = nir_dest_index(ctx, &instr->dest);
1493
1494 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1495 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1496 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1497 /* XXX: Half-floats? */
1498 /* TODO: swizzle, mask */
1499
1500 midgard_instruction ins = m_load_vary_32(reg, offset);
1501
1502 midgard_varying_parameter p = {
1503 .is_varying = 1,
1504 .interpolation = midgard_interp_default,
1505 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1506 };
1507
1508 unsigned u;
1509 memcpy(&u, &p, sizeof(p));
1510 ins.load_store.varying_parameters = u;
1511
1512 if (direct) {
1513 /* We have the offset totally ready */
1514 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1515 } else {
1516 /* We have it partially ready, but we need to
1517 * add in the dynamic index, moved to r27.w */
1518 emit_indirect_offset(ctx, &instr->src[0]);
1519 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1520 }
1521
1522 emit_mir_instruction(ctx, ins);
1523 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1524 /* Constant encoded as a pinned constant */
1525
1526 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1527 ins.has_constants = true;
1528 ins.has_blend_constant = true;
1529 emit_mir_instruction(ctx, ins);
1530 } else if (ctx->is_blend) {
1531 /* For blend shaders, a load might be
1532 * translated various ways depending on what
1533 * we're loading. Figure out how this is used */
1534
1535 nir_variable *out = NULL;
1536
1537 nir_foreach_variable(var, &ctx->nir->inputs) {
1538 int drvloc = var->data.driver_location;
1539
1540 if (nir_intrinsic_base(instr) == drvloc) {
1541 out = var;
1542 break;
1543 }
1544 }
1545
1546 assert(out);
1547
1548 if (out->data.location == VARYING_SLOT_COL0) {
1549 /* Source color preloaded to r0 */
1550
1551 midgard_pin_output(ctx, reg, 0);
1552 } else if (out->data.location == VARYING_SLOT_COL1) {
1553 /* Destination color must be read from framebuffer */
1554
1555 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1556 ins.load_store.swizzle = 0; /* xxxx */
1557
1558 /* Read each component sequentially */
1559
1560 for (int c = 0; c < 4; ++c) {
1561 ins.load_store.mask = (1 << c);
1562 ins.load_store.unknown = c;
1563 emit_mir_instruction(ctx, ins);
1564 }
1565
1566 /* vadd.u2f hr2, zext(hr2), #0 */
1567
1568 midgard_vector_alu_src alu_src = blank_alu_src;
1569 alu_src.mod = midgard_int_zero_extend;
1570 alu_src.half = true;
1571
1572 midgard_instruction u2f = {
1573 .type = TAG_ALU_4,
1574 .ssa_args = {
1575 .src0 = reg,
1576 .src1 = SSA_UNUSED_0,
1577 .dest = reg,
1578 .inline_constant = true
1579 },
1580 .alu = {
1581 .op = midgard_alu_op_u2f,
1582 .reg_mode = midgard_reg_mode_half,
1583 .dest_override = midgard_dest_override_none,
1584 .mask = 0xF,
1585 .src1 = vector_alu_srco_unsigned(alu_src),
1586 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1587 }
1588 };
1589
1590 emit_mir_instruction(ctx, u2f);
1591
1592 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1593
1594 alu_src.mod = 0;
1595
1596 midgard_instruction fmul = {
1597 .type = TAG_ALU_4,
1598 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1599 .ssa_args = {
1600 .src0 = reg,
1601 .dest = reg,
1602 .src1 = SSA_UNUSED_0,
1603 .inline_constant = true
1604 },
1605 .alu = {
1606 .op = midgard_alu_op_fmul,
1607 .reg_mode = midgard_reg_mode_full,
1608 .dest_override = midgard_dest_override_none,
1609 .outmod = midgard_outmod_sat,
1610 .mask = 0xFF,
1611 .src1 = vector_alu_srco_unsigned(alu_src),
1612 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1613 }
1614 };
1615
1616 emit_mir_instruction(ctx, fmul);
1617 } else {
1618 DBG("Unknown input in blend shader\n");
1619 assert(0);
1620 }
1621 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1622 midgard_instruction ins = m_load_attr_32(reg, offset);
1623 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1624 ins.load_store.mask = (1 << instr->num_components) - 1;
1625 emit_mir_instruction(ctx, ins);
1626 } else {
1627 DBG("Unknown load\n");
1628 assert(0);
1629 }
1630
1631 break;
1632
1633 case nir_intrinsic_store_output:
1634 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1635
1636 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1637
1638 reg = nir_src_index(ctx, &instr->src[0]);
1639
1640 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1641 /* gl_FragColor is not emitted with load/store
1642 * instructions. Instead, it gets plonked into
1643 * r0 at the end of the shader and we do the
1644 * framebuffer writeout dance. TODO: Defer
1645 * writes */
1646
1647 midgard_pin_output(ctx, reg, 0);
1648
1649 /* Save the index we're writing to for later reference
1650 * in the epilogue */
1651
1652 ctx->fragment_output = reg;
1653 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1654 /* Varyings are written into one of two special
1655 * varying register, r26 or r27. The register itself is selected as the register
1656 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1657 *
1658 * Normally emitting fmov's is frowned upon,
1659 * but due to unique constraints of
1660 * REGISTER_VARYING, fmov emission + a
1661 * dedicated cleanup pass is the only way to
1662 * guarantee correctness when considering some
1663 * (common) edge cases XXX: FIXME */
1664
1665 /* If this varying corresponds to a constant (why?!),
1666 * emit that now since it won't get picked up by
1667 * hoisting (since there is no corresponding move
1668 * emitted otherwise) */
1669
1670 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1671
1672 if (constant_value) {
1673 /* Special case: emit the varying write
1674 * directly to r26 (looks funny in asm but it's
1675 * fine) and emit the store _now_. Possibly
1676 * slightly slower, but this is a really stupid
1677 * special case anyway (why on earth would you
1678 * have a constant varying? Your own fault for
1679 * slightly worse perf :P) */
1680
1681 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1682 attach_constants(ctx, &ins, constant_value, reg + 1);
1683 emit_mir_instruction(ctx, ins);
1684
1685 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1686 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1687 emit_mir_instruction(ctx, st);
1688 } else {
1689 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1690
1691 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1692 }
1693 } else {
1694 DBG("Unknown store\n");
1695 assert(0);
1696 }
1697
1698 break;
1699
1700 case nir_intrinsic_load_alpha_ref_float:
1701 assert(instr->dest.is_ssa);
1702
1703 float ref_value = ctx->alpha_ref;
1704
1705 float *v = ralloc_array(NULL, float, 4);
1706 memcpy(v, &ref_value, sizeof(float));
1707 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1708 break;
1709
1710 case nir_intrinsic_load_viewport_scale:
1711 case nir_intrinsic_load_viewport_offset:
1712 emit_sysval_read(ctx, instr);
1713 break;
1714
1715 default:
1716 printf ("Unhandled intrinsic\n");
1717 assert(0);
1718 break;
1719 }
1720 }
1721
1722 static unsigned
1723 midgard_tex_format(enum glsl_sampler_dim dim)
1724 {
1725 switch (dim) {
1726 case GLSL_SAMPLER_DIM_2D:
1727 case GLSL_SAMPLER_DIM_EXTERNAL:
1728 return TEXTURE_2D;
1729
1730 case GLSL_SAMPLER_DIM_3D:
1731 return TEXTURE_3D;
1732
1733 case GLSL_SAMPLER_DIM_CUBE:
1734 return TEXTURE_CUBE;
1735
1736 default:
1737 DBG("Unknown sampler dim type\n");
1738 assert(0);
1739 return 0;
1740 }
1741 }
1742
1743 static void
1744 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1745 {
1746 /* TODO */
1747 //assert (!instr->sampler);
1748 //assert (!instr->texture_array_size);
1749 assert (instr->op == nir_texop_tex);
1750
1751 /* Allocate registers via a round robin scheme to alternate between the two registers */
1752 int reg = ctx->texture_op_count & 1;
1753 int in_reg = reg, out_reg = reg;
1754
1755 /* Make room for the reg */
1756
1757 if (ctx->texture_index[reg] > -1)
1758 unalias_ssa(ctx, ctx->texture_index[reg]);
1759
1760 int texture_index = instr->texture_index;
1761 int sampler_index = texture_index;
1762
1763 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1764 switch (instr->src[i].src_type) {
1765 case nir_tex_src_coord: {
1766 int index = nir_src_index(ctx, &instr->src[i].src);
1767
1768 midgard_vector_alu_src alu_src = blank_alu_src;
1769
1770 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1771
1772 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1773 /* For cubemaps, we need to load coords into
1774 * special r27, and then use a special ld/st op
1775 * to copy into the texture register */
1776
1777 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1778
1779 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1780 emit_mir_instruction(ctx, move);
1781
1782 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1783 st.load_store.unknown = 0x24; /* XXX: What is this? */
1784 st.load_store.mask = 0x3; /* xy? */
1785 st.load_store.swizzle = alu_src.swizzle;
1786 emit_mir_instruction(ctx, st);
1787
1788 } else {
1789 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1790
1791 midgard_instruction ins = v_fmov(index, alu_src, reg);
1792 emit_mir_instruction(ctx, ins);
1793 }
1794
1795 break;
1796 }
1797
1798 default: {
1799 DBG("Unknown source type\n");
1800 //assert(0);
1801 break;
1802 }
1803 }
1804 }
1805
1806 /* No helper to build texture words -- we do it all here */
1807 midgard_instruction ins = {
1808 .type = TAG_TEXTURE_4,
1809 .texture = {
1810 .op = TEXTURE_OP_NORMAL,
1811 .format = midgard_tex_format(instr->sampler_dim),
1812 .texture_handle = texture_index,
1813 .sampler_handle = sampler_index,
1814
1815 /* TODO: Don't force xyzw */
1816 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1817 .mask = 0xF,
1818
1819 /* TODO: half */
1820 //.in_reg_full = 1,
1821 .out_full = 1,
1822
1823 .filter = 1,
1824
1825 /* Always 1 */
1826 .unknown7 = 1,
1827
1828 /* Assume we can continue; hint it out later */
1829 .cont = 1,
1830 }
1831 };
1832
1833 /* Set registers to read and write from the same place */
1834 ins.texture.in_reg_select = in_reg;
1835 ins.texture.out_reg_select = out_reg;
1836
1837 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1838 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1839 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1840 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1841 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1842 } else {
1843 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1844 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1845 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1846 }
1847
1848 emit_mir_instruction(ctx, ins);
1849
1850 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1851
1852 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1853 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1854 ctx->texture_index[reg] = o_index;
1855
1856 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1857 emit_mir_instruction(ctx, ins2);
1858
1859 /* Used for .cont and .last hinting */
1860 ctx->texture_op_count++;
1861 }
1862
1863 static void
1864 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1865 {
1866 switch (instr->type) {
1867 case nir_jump_break: {
1868 /* Emit a branch out of the loop */
1869 struct midgard_instruction br = v_branch(false, false);
1870 br.branch.target_type = TARGET_BREAK;
1871 br.branch.target_break = ctx->current_loop_depth;
1872 emit_mir_instruction(ctx, br);
1873
1874 DBG("break..\n");
1875 break;
1876 }
1877
1878 default:
1879 DBG("Unknown jump type %d\n", instr->type);
1880 break;
1881 }
1882 }
1883
1884 static void
1885 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1886 {
1887 switch (instr->type) {
1888 case nir_instr_type_load_const:
1889 emit_load_const(ctx, nir_instr_as_load_const(instr));
1890 break;
1891
1892 case nir_instr_type_intrinsic:
1893 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1894 break;
1895
1896 case nir_instr_type_alu:
1897 emit_alu(ctx, nir_instr_as_alu(instr));
1898 break;
1899
1900 case nir_instr_type_tex:
1901 emit_tex(ctx, nir_instr_as_tex(instr));
1902 break;
1903
1904 case nir_instr_type_jump:
1905 emit_jump(ctx, nir_instr_as_jump(instr));
1906 break;
1907
1908 case nir_instr_type_ssa_undef:
1909 /* Spurious */
1910 break;
1911
1912 default:
1913 DBG("Unhandled instruction type\n");
1914 break;
1915 }
1916 }
1917
1918 /* Determine the actual hardware from the index based on the RA results or special values */
1919
1920 static int
1921 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1922 {
1923 if (reg >= SSA_FIXED_MINIMUM)
1924 return SSA_REG_FROM_FIXED(reg);
1925
1926 if (reg >= 0) {
1927 assert(reg < maxreg);
1928 int r = ra_get_node_reg(g, reg);
1929 ctx->work_registers = MAX2(ctx->work_registers, r);
1930 return r;
1931 }
1932
1933 switch (reg) {
1934 /* fmov style unused */
1935 case SSA_UNUSED_0:
1936 return REGISTER_UNUSED;
1937
1938 /* lut style unused */
1939 case SSA_UNUSED_1:
1940 return REGISTER_UNUSED;
1941
1942 default:
1943 DBG("Unknown SSA register alias %d\n", reg);
1944 assert(0);
1945 return 31;
1946 }
1947 }
1948
1949 static unsigned int
1950 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1951 {
1952 /* Choose the first available register to minimise reported register pressure */
1953
1954 for (int i = 0; i < 16; ++i) {
1955 if (BITSET_TEST(regs, i)) {
1956 return i;
1957 }
1958 }
1959
1960 assert(0);
1961 return 0;
1962 }
1963
1964 static bool
1965 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1966 {
1967 if (ins->ssa_args.src0 == src) return true;
1968 if (ins->ssa_args.src1 == src) return true;
1969
1970 return false;
1971 }
1972
1973 /* Determine if a variable is live in the successors of a block */
1974 static bool
1975 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1976 {
1977 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1978 midgard_block *succ = bl->successors[i];
1979
1980 /* If we already visited, the value we're seeking
1981 * isn't down this path (or we would have short
1982 * circuited */
1983
1984 if (succ->visited) continue;
1985
1986 /* Otherwise (it's visited *now*), check the block */
1987
1988 succ->visited = true;
1989
1990 mir_foreach_instr_in_block(succ, ins) {
1991 if (midgard_is_live_in_instr(ins, src))
1992 return true;
1993 }
1994
1995 /* ...and also, check *its* successors */
1996 if (is_live_after_successors(ctx, succ, src))
1997 return true;
1998
1999 }
2000
2001 /* Welp. We're really not live. */
2002
2003 return false;
2004 }
2005
2006 static bool
2007 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2008 {
2009 /* Check the rest of the block for liveness */
2010
2011 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2012 if (midgard_is_live_in_instr(ins, src))
2013 return true;
2014 }
2015
2016 /* Check the rest of the blocks for liveness recursively */
2017
2018 bool succ = is_live_after_successors(ctx, block, src);
2019
2020 mir_foreach_block(ctx, block) {
2021 block->visited = false;
2022 }
2023
2024 return succ;
2025 }
2026
2027 static void
2028 allocate_registers(compiler_context *ctx)
2029 {
2030 /* First, initialize the RA */
2031 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2032
2033 /* Create a primary (general purpose) class, as well as special purpose
2034 * pipeline register classes */
2035
2036 int primary_class = ra_alloc_reg_class(regs);
2037 int varying_class = ra_alloc_reg_class(regs);
2038
2039 /* Add the full set of work registers */
2040 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2041 for (int i = 0; i < work_count; ++i)
2042 ra_class_add_reg(regs, primary_class, i);
2043
2044 /* Add special registers */
2045 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2046 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2047
2048 /* We're done setting up */
2049 ra_set_finalize(regs, NULL);
2050
2051 /* Transform the MIR into squeezed index form */
2052 mir_foreach_block(ctx, block) {
2053 mir_foreach_instr_in_block(block, ins) {
2054 if (ins->compact_branch) continue;
2055
2056 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2057 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2058 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2059 }
2060 if (midgard_debug & MIDGARD_DBG_SHADERS)
2061 print_mir_block(block);
2062 }
2063
2064 /* Let's actually do register allocation */
2065 int nodes = ctx->temp_count;
2066 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2067
2068 /* Set everything to the work register class, unless it has somewhere
2069 * special to go */
2070
2071 mir_foreach_block(ctx, block) {
2072 mir_foreach_instr_in_block(block, ins) {
2073 if (ins->compact_branch) continue;
2074
2075 if (ins->ssa_args.dest < 0) continue;
2076
2077 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2078
2079 int class = primary_class;
2080
2081 ra_set_node_class(g, ins->ssa_args.dest, class);
2082 }
2083 }
2084
2085 for (int index = 0; index <= ctx->max_hash; ++index) {
2086 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2087
2088 if (temp) {
2089 unsigned reg = temp - 1;
2090 int t = find_or_allocate_temp(ctx, index);
2091 ra_set_node_reg(g, t, reg);
2092 }
2093 }
2094
2095 /* Determine liveness */
2096
2097 int *live_start = malloc(nodes * sizeof(int));
2098 int *live_end = malloc(nodes * sizeof(int));
2099
2100 /* Initialize as non-existent */
2101
2102 for (int i = 0; i < nodes; ++i) {
2103 live_start[i] = live_end[i] = -1;
2104 }
2105
2106 int d = 0;
2107
2108 mir_foreach_block(ctx, block) {
2109 mir_foreach_instr_in_block(block, ins) {
2110 if (ins->compact_branch) continue;
2111
2112 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2113 /* If this destination is not yet live, it is now since we just wrote it */
2114
2115 int dest = ins->ssa_args.dest;
2116
2117 if (live_start[dest] == -1)
2118 live_start[dest] = d;
2119 }
2120
2121 /* Since we just used a source, the source might be
2122 * dead now. Scan the rest of the block for
2123 * invocations, and if there are none, the source dies
2124 * */
2125
2126 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2127
2128 for (int src = 0; src < 2; ++src) {
2129 int s = sources[src];
2130
2131 if (s < 0) continue;
2132
2133 if (s >= SSA_FIXED_MINIMUM) continue;
2134
2135 if (!is_live_after(ctx, block, ins, s)) {
2136 live_end[s] = d;
2137 }
2138 }
2139
2140 ++d;
2141 }
2142 }
2143
2144 /* If a node still hasn't been killed, kill it now */
2145
2146 for (int i = 0; i < nodes; ++i) {
2147 /* live_start == -1 most likely indicates a pinned output */
2148
2149 if (live_end[i] == -1)
2150 live_end[i] = d;
2151 }
2152
2153 /* Setup interference between nodes that are live at the same time */
2154
2155 for (int i = 0; i < nodes; ++i) {
2156 for (int j = i + 1; j < nodes; ++j) {
2157 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2158 ra_add_node_interference(g, i, j);
2159 }
2160 }
2161
2162 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2163
2164 if (!ra_allocate(g)) {
2165 DBG("Error allocating registers\n");
2166 assert(0);
2167 }
2168
2169 /* Cleanup */
2170 free(live_start);
2171 free(live_end);
2172
2173 mir_foreach_block(ctx, block) {
2174 mir_foreach_instr_in_block(block, ins) {
2175 if (ins->compact_branch) continue;
2176
2177 ssa_args args = ins->ssa_args;
2178
2179 switch (ins->type) {
2180 case TAG_ALU_4:
2181 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2182
2183 ins->registers.src2_imm = args.inline_constant;
2184
2185 if (args.inline_constant) {
2186 /* Encode inline 16-bit constant as a vector by default */
2187
2188 ins->registers.src2_reg = ins->inline_constant >> 11;
2189
2190 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2191
2192 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2193 ins->alu.src2 = imm << 2;
2194 } else {
2195 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2196 }
2197
2198 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2199
2200 break;
2201
2202 case TAG_LOAD_STORE_4: {
2203 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2204 /* TODO: use ssa_args for store_vary */
2205 ins->load_store.reg = 0;
2206 } else {
2207 bool has_dest = args.dest >= 0;
2208 int ssa_arg = has_dest ? args.dest : args.src0;
2209
2210 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2211 }
2212
2213 break;
2214 }
2215
2216 default:
2217 break;
2218 }
2219 }
2220 }
2221 }
2222
2223 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2224 * use scalar ALU instructions, for functional or performance reasons. To do
2225 * this, we just demote vector ALU payloads to scalar. */
2226
2227 static int
2228 component_from_mask(unsigned mask)
2229 {
2230 for (int c = 0; c < 4; ++c) {
2231 if (mask & (3 << (2 * c)))
2232 return c;
2233 }
2234
2235 assert(0);
2236 return 0;
2237 }
2238
2239 static bool
2240 is_single_component_mask(unsigned mask)
2241 {
2242 int components = 0;
2243
2244 for (int c = 0; c < 4; ++c)
2245 if (mask & (3 << (2 * c)))
2246 components++;
2247
2248 return components == 1;
2249 }
2250
2251 /* Create a mask of accessed components from a swizzle to figure out vector
2252 * dependencies */
2253
2254 static unsigned
2255 swizzle_to_access_mask(unsigned swizzle)
2256 {
2257 unsigned component_mask = 0;
2258
2259 for (int i = 0; i < 4; ++i) {
2260 unsigned c = (swizzle >> (2 * i)) & 3;
2261 component_mask |= (1 << c);
2262 }
2263
2264 return component_mask;
2265 }
2266
2267 static unsigned
2268 vector_to_scalar_source(unsigned u, bool is_int)
2269 {
2270 midgard_vector_alu_src v;
2271 memcpy(&v, &u, sizeof(v));
2272
2273 /* TODO: Integers */
2274
2275 midgard_scalar_alu_src s = {
2276 .full = !v.half,
2277 .component = (v.swizzle & 3) << 1
2278 };
2279
2280 if (is_int) {
2281 /* TODO */
2282 } else {
2283 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2284 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2285 }
2286
2287 unsigned o;
2288 memcpy(&o, &s, sizeof(s));
2289
2290 return o & ((1 << 6) - 1);
2291 }
2292
2293 static midgard_scalar_alu
2294 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2295 {
2296 bool is_int = midgard_is_integer_op(v.op);
2297
2298 /* The output component is from the mask */
2299 midgard_scalar_alu s = {
2300 .op = v.op,
2301 .src1 = vector_to_scalar_source(v.src1, is_int),
2302 .src2 = vector_to_scalar_source(v.src2, is_int),
2303 .unknown = 0,
2304 .outmod = v.outmod,
2305 .output_full = 1, /* TODO: Half */
2306 .output_component = component_from_mask(v.mask) << 1,
2307 };
2308
2309 /* Inline constant is passed along rather than trying to extract it
2310 * from v */
2311
2312 if (ins->ssa_args.inline_constant) {
2313 uint16_t imm = 0;
2314 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2315 imm |= (lower_11 >> 9) & 3;
2316 imm |= (lower_11 >> 6) & 4;
2317 imm |= (lower_11 >> 2) & 0x38;
2318 imm |= (lower_11 & 63) << 6;
2319
2320 s.src2 = imm;
2321 }
2322
2323 return s;
2324 }
2325
2326 /* Midgard prefetches instruction types, so during emission we need to
2327 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2328 * if this is the second to last and the last is an ALU, then it's also 1... */
2329
2330 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2331 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2332
2333 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2334 bytes_emitted += sizeof(type)
2335
2336 static void
2337 emit_binary_vector_instruction(midgard_instruction *ains,
2338 uint16_t *register_words, int *register_words_count,
2339 uint64_t *body_words, size_t *body_size, int *body_words_count,
2340 size_t *bytes_emitted)
2341 {
2342 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2343 *bytes_emitted += sizeof(midgard_reg_info);
2344
2345 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2346 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2347 *bytes_emitted += sizeof(midgard_vector_alu);
2348 }
2349
2350 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2351 * mind that we are a vector architecture and we can write to different
2352 * components simultaneously */
2353
2354 static bool
2355 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2356 {
2357 /* Each instruction reads some registers and writes to a register. See
2358 * where the first writes */
2359
2360 /* Figure out where exactly we wrote to */
2361 int source = first->ssa_args.dest;
2362 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2363
2364 /* As long as the second doesn't read from the first, we're okay */
2365 if (second->ssa_args.src0 == source) {
2366 if (first->type == TAG_ALU_4) {
2367 /* Figure out which components we just read from */
2368
2369 int q = second->alu.src1;
2370 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2371
2372 /* Check if there are components in common, and fail if so */
2373 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2374 return false;
2375 } else
2376 return false;
2377
2378 }
2379
2380 if (second->ssa_args.src1 == source)
2381 return false;
2382
2383 /* Otherwise, it's safe in that regard. Another data hazard is both
2384 * writing to the same place, of course */
2385
2386 if (second->ssa_args.dest == source) {
2387 /* ...but only if the components overlap */
2388 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2389
2390 if (dest_mask & source_mask)
2391 return false;
2392 }
2393
2394 /* ...That's it */
2395 return true;
2396 }
2397
2398 static bool
2399 midgard_has_hazard(
2400 midgard_instruction **segment, unsigned segment_size,
2401 midgard_instruction *ains)
2402 {
2403 for (int s = 0; s < segment_size; ++s)
2404 if (!can_run_concurrent_ssa(segment[s], ains))
2405 return true;
2406
2407 return false;
2408
2409
2410 }
2411
2412 /* Schedules, but does not emit, a single basic block. After scheduling, the
2413 * final tag and size of the block are known, which are necessary for branching
2414 * */
2415
2416 static midgard_bundle
2417 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2418 {
2419 int instructions_emitted = 0, instructions_consumed = -1;
2420 midgard_bundle bundle = { 0 };
2421
2422 uint8_t tag = ins->type;
2423
2424 /* Default to the instruction's tag */
2425 bundle.tag = tag;
2426
2427 switch (ins->type) {
2428 case TAG_ALU_4: {
2429 uint32_t control = 0;
2430 size_t bytes_emitted = sizeof(control);
2431
2432 /* TODO: Constant combining */
2433 int index = 0, last_unit = 0;
2434
2435 /* Previous instructions, for the purpose of parallelism */
2436 midgard_instruction *segment[4] = {0};
2437 int segment_size = 0;
2438
2439 instructions_emitted = -1;
2440 midgard_instruction *pins = ins;
2441
2442 for (;;) {
2443 midgard_instruction *ains = pins;
2444
2445 /* Advance instruction pointer */
2446 if (index) {
2447 ains = mir_next_op(pins);
2448 pins = ains;
2449 }
2450
2451 /* Out-of-work condition */
2452 if ((struct list_head *) ains == &block->instructions)
2453 break;
2454
2455 /* Ensure that the chain can continue */
2456 if (ains->type != TAG_ALU_4) break;
2457
2458 /* According to the presentation "The ARM
2459 * Mali-T880 Mobile GPU" from HotChips 27,
2460 * there are two pipeline stages. Branching
2461 * position determined experimentally. Lines
2462 * are executed in parallel:
2463 *
2464 * [ VMUL ] [ SADD ]
2465 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2466 *
2467 * Verify that there are no ordering dependencies here.
2468 *
2469 * TODO: Allow for parallelism!!!
2470 */
2471
2472 /* Pick a unit for it if it doesn't force a particular unit */
2473
2474 int unit = ains->unit;
2475
2476 if (!unit) {
2477 int op = ains->alu.op;
2478 int units = alu_opcode_props[op].props;
2479
2480 /* TODO: Promotion of scalars to vectors */
2481 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2482
2483 if (!vector)
2484 assert(units & UNITS_SCALAR);
2485
2486 if (vector) {
2487 if (last_unit >= UNIT_VADD) {
2488 if (units & UNIT_VLUT)
2489 unit = UNIT_VLUT;
2490 else
2491 break;
2492 } else {
2493 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2494 unit = UNIT_VMUL;
2495 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2496 unit = UNIT_VADD;
2497 else if (units & UNIT_VLUT)
2498 unit = UNIT_VLUT;
2499 else
2500 break;
2501 }
2502 } else {
2503 if (last_unit >= UNIT_VADD) {
2504 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2505 unit = UNIT_SMUL;
2506 else if (units & UNIT_VLUT)
2507 unit = UNIT_VLUT;
2508 else
2509 break;
2510 } else {
2511 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2512 unit = UNIT_SADD;
2513 else if (units & UNIT_SMUL)
2514 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2515 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2516 unit = UNIT_VADD;
2517 else
2518 break;
2519 }
2520 }
2521
2522 assert(unit & units);
2523 }
2524
2525 /* Late unit check, this time for encoding (not parallelism) */
2526 if (unit <= last_unit) break;
2527
2528 /* Clear the segment */
2529 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2530 segment_size = 0;
2531
2532 if (midgard_has_hazard(segment, segment_size, ains))
2533 break;
2534
2535 /* We're good to go -- emit the instruction */
2536 ains->unit = unit;
2537
2538 segment[segment_size++] = ains;
2539
2540 /* Only one set of embedded constants per
2541 * bundle possible; if we have more, we must
2542 * break the chain early, unfortunately */
2543
2544 if (ains->has_constants) {
2545 if (bundle.has_embedded_constants) {
2546 /* ...but if there are already
2547 * constants but these are the
2548 * *same* constants, we let it
2549 * through */
2550
2551 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2552 break;
2553 } else {
2554 bundle.has_embedded_constants = true;
2555 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2556
2557 /* If this is a blend shader special constant, track it for patching */
2558 if (ains->has_blend_constant)
2559 bundle.has_blend_constant = true;
2560 }
2561 }
2562
2563 if (ains->unit & UNITS_ANY_VECTOR) {
2564 emit_binary_vector_instruction(ains, bundle.register_words,
2565 &bundle.register_words_count, bundle.body_words,
2566 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2567 } else if (ains->compact_branch) {
2568 /* All of r0 has to be written out
2569 * along with the branch writeout.
2570 * (slow!) */
2571
2572 if (ains->writeout) {
2573 if (index == 0) {
2574 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2575 ins.unit = UNIT_VMUL;
2576
2577 control |= ins.unit;
2578
2579 emit_binary_vector_instruction(&ins, bundle.register_words,
2580 &bundle.register_words_count, bundle.body_words,
2581 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2582 } else {
2583 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2584 bool written_late = false;
2585 bool components[4] = { 0 };
2586 uint16_t register_dep_mask = 0;
2587 uint16_t written_mask = 0;
2588
2589 midgard_instruction *qins = ins;
2590 for (int t = 0; t < index; ++t) {
2591 if (qins->registers.out_reg != 0) {
2592 /* Mark down writes */
2593
2594 written_mask |= (1 << qins->registers.out_reg);
2595 } else {
2596 /* Mark down the register dependencies for errata check */
2597
2598 if (qins->registers.src1_reg < 16)
2599 register_dep_mask |= (1 << qins->registers.src1_reg);
2600
2601 if (qins->registers.src2_reg < 16)
2602 register_dep_mask |= (1 << qins->registers.src2_reg);
2603
2604 int mask = qins->alu.mask;
2605
2606 for (int c = 0; c < 4; ++c)
2607 if (mask & (0x3 << (2 * c)))
2608 components[c] = true;
2609
2610 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2611
2612 if (qins->unit == UNIT_VLUT)
2613 written_late = true;
2614 }
2615
2616 /* Advance instruction pointer */
2617 qins = mir_next_op(qins);
2618 }
2619
2620
2621 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2622 if (register_dep_mask & written_mask) {
2623 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2624 break;
2625 }
2626
2627 if (written_late)
2628 break;
2629
2630 /* If even a single component is not written, break it up (conservative check). */
2631 bool breakup = false;
2632
2633 for (int c = 0; c < 4; ++c)
2634 if (!components[c])
2635 breakup = true;
2636
2637 if (breakup)
2638 break;
2639
2640 /* Otherwise, we're free to proceed */
2641 }
2642 }
2643
2644 if (ains->unit == ALU_ENAB_BRANCH) {
2645 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2646 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2647 bytes_emitted += sizeof(midgard_branch_extended);
2648 } else {
2649 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2650 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2651 bytes_emitted += sizeof(ains->br_compact);
2652 }
2653 } else {
2654 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2655 bytes_emitted += sizeof(midgard_reg_info);
2656
2657 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2658 bundle.body_words_count++;
2659 bytes_emitted += sizeof(midgard_scalar_alu);
2660 }
2661
2662 /* Defer marking until after writing to allow for break */
2663 control |= ains->unit;
2664 last_unit = ains->unit;
2665 ++instructions_emitted;
2666 ++index;
2667 }
2668
2669 /* Bubble up the number of instructions for skipping */
2670 instructions_consumed = index - 1;
2671
2672 int padding = 0;
2673
2674 /* Pad ALU op to nearest word */
2675
2676 if (bytes_emitted & 15) {
2677 padding = 16 - (bytes_emitted & 15);
2678 bytes_emitted += padding;
2679 }
2680
2681 /* Constants must always be quadwords */
2682 if (bundle.has_embedded_constants)
2683 bytes_emitted += 16;
2684
2685 /* Size ALU instruction for tag */
2686 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2687 bundle.padding = padding;
2688 bundle.control = bundle.tag | control;
2689
2690 break;
2691 }
2692
2693 case TAG_LOAD_STORE_4: {
2694 /* Load store instructions have two words at once. If
2695 * we only have one queued up, we need to NOP pad.
2696 * Otherwise, we store both in succession to save space
2697 * and cycles -- letting them go in parallel -- skip
2698 * the next. The usefulness of this optimisation is
2699 * greatly dependent on the quality of the instruction
2700 * scheduler.
2701 */
2702
2703 midgard_instruction *next_op = mir_next_op(ins);
2704
2705 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2706 /* As the two operate concurrently, make sure
2707 * they are not dependent */
2708
2709 if (can_run_concurrent_ssa(ins, next_op) || true) {
2710 /* Skip ahead, since it's redundant with the pair */
2711 instructions_consumed = 1 + (instructions_emitted++);
2712 }
2713 }
2714
2715 break;
2716 }
2717
2718 default:
2719 /* Texture ops default to single-op-per-bundle scheduling */
2720 break;
2721 }
2722
2723 /* Copy the instructions into the bundle */
2724 bundle.instruction_count = instructions_emitted + 1;
2725
2726 int used_idx = 0;
2727
2728 midgard_instruction *uins = ins;
2729 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2730 bundle.instructions[used_idx++] = *uins;
2731 uins = mir_next_op(uins);
2732 }
2733
2734 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2735
2736 return bundle;
2737 }
2738
2739 static int
2740 quadword_size(int tag)
2741 {
2742 switch (tag) {
2743 case TAG_ALU_4:
2744 return 1;
2745
2746 case TAG_ALU_8:
2747 return 2;
2748
2749 case TAG_ALU_12:
2750 return 3;
2751
2752 case TAG_ALU_16:
2753 return 4;
2754
2755 case TAG_LOAD_STORE_4:
2756 return 1;
2757
2758 case TAG_TEXTURE_4:
2759 return 1;
2760
2761 default:
2762 assert(0);
2763 return 0;
2764 }
2765 }
2766
2767 /* Schedule a single block by iterating its instruction to create bundles.
2768 * While we go, tally about the bundle sizes to compute the block size. */
2769
2770 static void
2771 schedule_block(compiler_context *ctx, midgard_block *block)
2772 {
2773 util_dynarray_init(&block->bundles, NULL);
2774
2775 block->quadword_count = 0;
2776
2777 mir_foreach_instr_in_block(block, ins) {
2778 int skip;
2779 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2780 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2781
2782 if (bundle.has_blend_constant) {
2783 /* TODO: Multiblock? */
2784 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2785 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2786 }
2787
2788 while(skip--)
2789 ins = mir_next_op(ins);
2790
2791 block->quadword_count += quadword_size(bundle.tag);
2792 }
2793
2794 block->is_scheduled = true;
2795 }
2796
2797 static void
2798 schedule_program(compiler_context *ctx)
2799 {
2800 allocate_registers(ctx);
2801
2802 mir_foreach_block(ctx, block) {
2803 schedule_block(ctx, block);
2804 }
2805 }
2806
2807 /* After everything is scheduled, emit whole bundles at a time */
2808
2809 static void
2810 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2811 {
2812 int lookahead = next_tag << 4;
2813
2814 switch (bundle->tag) {
2815 case TAG_ALU_4:
2816 case TAG_ALU_8:
2817 case TAG_ALU_12:
2818 case TAG_ALU_16: {
2819 /* Actually emit each component */
2820 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2821
2822 for (int i = 0; i < bundle->register_words_count; ++i)
2823 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2824
2825 /* Emit body words based on the instructions bundled */
2826 for (int i = 0; i < bundle->instruction_count; ++i) {
2827 midgard_instruction *ins = &bundle->instructions[i];
2828
2829 if (ins->unit & UNITS_ANY_VECTOR) {
2830 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2831 } else if (ins->compact_branch) {
2832 /* Dummy move, XXX DRY */
2833 if ((i == 0) && ins->writeout) {
2834 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2835 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2836 }
2837
2838 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2839 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2840 } else {
2841 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2842 }
2843 } else {
2844 /* Scalar */
2845 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2846 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2847 }
2848 }
2849
2850 /* Emit padding (all zero) */
2851 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2852
2853 /* Tack on constants */
2854
2855 if (bundle->has_embedded_constants) {
2856 util_dynarray_append(emission, float, bundle->constants[0]);
2857 util_dynarray_append(emission, float, bundle->constants[1]);
2858 util_dynarray_append(emission, float, bundle->constants[2]);
2859 util_dynarray_append(emission, float, bundle->constants[3]);
2860 }
2861
2862 break;
2863 }
2864
2865 case TAG_LOAD_STORE_4: {
2866 /* One or two composing instructions */
2867
2868 uint64_t current64, next64 = LDST_NOP;
2869
2870 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2871
2872 if (bundle->instruction_count == 2)
2873 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2874
2875 midgard_load_store instruction = {
2876 .type = bundle->tag,
2877 .next_type = next_tag,
2878 .word1 = current64,
2879 .word2 = next64
2880 };
2881
2882 util_dynarray_append(emission, midgard_load_store, instruction);
2883
2884 break;
2885 }
2886
2887 case TAG_TEXTURE_4: {
2888 /* Texture instructions are easy, since there is no
2889 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2890
2891 midgard_instruction *ins = &bundle->instructions[0];
2892
2893 ins->texture.type = TAG_TEXTURE_4;
2894 ins->texture.next_type = next_tag;
2895
2896 ctx->texture_op_count--;
2897
2898 if (!ctx->texture_op_count) {
2899 ins->texture.cont = 0;
2900 ins->texture.last = 1;
2901 }
2902
2903 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2904 break;
2905 }
2906
2907 default:
2908 DBG("Unknown midgard instruction type\n");
2909 assert(0);
2910 break;
2911 }
2912 }
2913
2914
2915 /* ALU instructions can inline or embed constants, which decreases register
2916 * pressure and saves space. */
2917
2918 #define CONDITIONAL_ATTACH(src) { \
2919 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2920 \
2921 if (entry) { \
2922 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2923 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2924 } \
2925 }
2926
2927 static void
2928 inline_alu_constants(compiler_context *ctx)
2929 {
2930 mir_foreach_instr(ctx, alu) {
2931 /* Other instructions cannot inline constants */
2932 if (alu->type != TAG_ALU_4) continue;
2933
2934 /* If there is already a constant here, we can do nothing */
2935 if (alu->has_constants) continue;
2936
2937 /* It makes no sense to inline constants on a branch */
2938 if (alu->compact_branch || alu->prepacked_branch) continue;
2939
2940 CONDITIONAL_ATTACH(src0);
2941
2942 if (!alu->has_constants) {
2943 CONDITIONAL_ATTACH(src1)
2944 } else if (!alu->inline_constant) {
2945 /* Corner case: _two_ vec4 constants, for instance with a
2946 * csel. For this case, we can only use a constant
2947 * register for one, we'll have to emit a move for the
2948 * other. Note, if both arguments are constants, then
2949 * necessarily neither argument depends on the value of
2950 * any particular register. As the destination register
2951 * will be wiped, that means we can spill the constant
2952 * to the destination register.
2953 */
2954
2955 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2956 unsigned scratch = alu->ssa_args.dest;
2957
2958 if (entry) {
2959 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2960 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2961
2962 /* Force a break XXX Defer r31 writes */
2963 ins.unit = UNIT_VLUT;
2964
2965 /* Set the source */
2966 alu->ssa_args.src1 = scratch;
2967
2968 /* Inject us -before- the last instruction which set r31 */
2969 mir_insert_instruction_before(mir_prev_op(alu), ins);
2970 }
2971 }
2972 }
2973 }
2974
2975 /* Midgard supports two types of constants, embedded constants (128-bit) and
2976 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2977 * constants can be demoted to inline constants, for space savings and
2978 * sometimes a performance boost */
2979
2980 static void
2981 embedded_to_inline_constant(compiler_context *ctx)
2982 {
2983 mir_foreach_instr(ctx, ins) {
2984 if (!ins->has_constants) continue;
2985
2986 if (ins->ssa_args.inline_constant) continue;
2987
2988 /* Blend constants must not be inlined by definition */
2989 if (ins->has_blend_constant) continue;
2990
2991 /* src1 cannot be an inline constant due to encoding
2992 * restrictions. So, if possible we try to flip the arguments
2993 * in that case */
2994
2995 int op = ins->alu.op;
2996
2997 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2998 switch (op) {
2999 /* These ops require an operational change to flip
3000 * their arguments TODO */
3001 case midgard_alu_op_flt:
3002 case midgard_alu_op_fle:
3003 case midgard_alu_op_ilt:
3004 case midgard_alu_op_ile:
3005 case midgard_alu_op_fcsel:
3006 case midgard_alu_op_icsel:
3007 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3008 default:
3009 break;
3010 }
3011
3012 if (alu_opcode_props[op].props & OP_COMMUTES) {
3013 /* Flip the SSA numbers */
3014 ins->ssa_args.src0 = ins->ssa_args.src1;
3015 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3016
3017 /* And flip the modifiers */
3018
3019 unsigned src_temp;
3020
3021 src_temp = ins->alu.src2;
3022 ins->alu.src2 = ins->alu.src1;
3023 ins->alu.src1 = src_temp;
3024 }
3025 }
3026
3027 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3028 /* Extract the source information */
3029
3030 midgard_vector_alu_src *src;
3031 int q = ins->alu.src2;
3032 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3033 src = m;
3034
3035 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3036 int component = src->swizzle & 3;
3037
3038 /* Scale constant appropriately, if we can legally */
3039 uint16_t scaled_constant = 0;
3040
3041 /* XXX: Check legality */
3042 if (midgard_is_integer_op(op)) {
3043 /* TODO: Inline integer */
3044 continue;
3045
3046 unsigned int *iconstants = (unsigned int *) ins->constants;
3047 scaled_constant = (uint16_t) iconstants[component];
3048
3049 /* Constant overflow after resize */
3050 if (scaled_constant != iconstants[component])
3051 continue;
3052 } else {
3053 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3054 }
3055
3056 /* We don't know how to handle these with a constant */
3057
3058 if (src->mod || src->half || src->rep_low || src->rep_high) {
3059 DBG("Bailing inline constant...\n");
3060 continue;
3061 }
3062
3063 /* Make sure that the constant is not itself a
3064 * vector by checking if all accessed values
3065 * (by the swizzle) are the same. */
3066
3067 uint32_t *cons = (uint32_t *) ins->constants;
3068 uint32_t value = cons[component];
3069
3070 bool is_vector = false;
3071 unsigned mask = effective_writemask(&ins->alu);
3072
3073 for (int c = 1; c < 4; ++c) {
3074 /* We only care if this component is actually used */
3075 if (!(mask & (1 << c)))
3076 continue;
3077
3078 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3079
3080 if (test != value) {
3081 is_vector = true;
3082 break;
3083 }
3084 }
3085
3086 if (is_vector)
3087 continue;
3088
3089 /* Get rid of the embedded constant */
3090 ins->has_constants = false;
3091 ins->ssa_args.src1 = SSA_UNUSED_0;
3092 ins->ssa_args.inline_constant = true;
3093 ins->inline_constant = scaled_constant;
3094 }
3095 }
3096 }
3097
3098 /* Map normal SSA sources to other SSA sources / fixed registers (like
3099 * uniforms) */
3100
3101 static void
3102 map_ssa_to_alias(compiler_context *ctx, int *ref)
3103 {
3104 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3105
3106 if (alias) {
3107 /* Remove entry in leftovers to avoid a redunant fmov */
3108
3109 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3110
3111 if (leftover)
3112 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3113
3114 /* Assign the alias map */
3115 *ref = alias - 1;
3116 return;
3117 }
3118 }
3119
3120 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3121 * texture pipeline */
3122
3123 static bool
3124 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3125 {
3126 bool progress = false;
3127
3128 mir_foreach_instr_in_block_safe(block, ins) {
3129 if (ins->type != TAG_ALU_4) continue;
3130 if (ins->compact_branch) continue;
3131
3132 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3133 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3134 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3135
3136 mir_remove_instruction(ins);
3137 progress = true;
3138 }
3139
3140 return progress;
3141 }
3142
3143 /* Combines the two outmods if possible. Returns whether the combination was
3144 * successful */
3145
3146 static bool
3147 midgard_combine_outmod(midgard_outmod *main, midgard_outmod overlay)
3148 {
3149 if (overlay == midgard_outmod_none)
3150 return true;
3151
3152 if (*main == overlay)
3153 return true;
3154
3155 if (*main == midgard_outmod_none) {
3156 *main = overlay;
3157 return true;
3158 }
3159
3160 if (*main == midgard_outmod_pos && overlay == midgard_outmod_sat) {
3161 *main = midgard_outmod_sat;
3162 return true;
3163 }
3164
3165 if (overlay == midgard_outmod_pos && *main == midgard_outmod_sat) {
3166 *main = midgard_outmod_sat;
3167 return true;
3168 }
3169
3170 return false;
3171 }
3172
3173 static bool
3174 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3175 {
3176 bool progress = false;
3177
3178 mir_foreach_instr_in_block_safe(block, ins) {
3179 if (ins->type != TAG_ALU_4) continue;
3180 if (!OP_IS_MOVE(ins->alu.op)) continue;
3181
3182 unsigned from = ins->ssa_args.src1;
3183 unsigned to = ins->ssa_args.dest;
3184
3185 /* We only work on pure SSA */
3186
3187 if (to >= SSA_FIXED_MINIMUM) continue;
3188 if (from >= SSA_FIXED_MINIMUM) continue;
3189 if (to >= ctx->func->impl->ssa_alloc) continue;
3190 if (from >= ctx->func->impl->ssa_alloc) continue;
3191
3192 /* Also, if the move has source side effects, we're not sure
3193 * what to do. Destination side effects we can handle, though.
3194 */
3195
3196 midgard_vector_alu_src src =
3197 vector_alu_from_unsigned(ins->alu.src2);
3198 unsigned mask = squeeze_writemask(ins->alu.mask);
3199 bool is_int = midgard_is_integer_op(ins->alu.op);
3200
3201 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3202
3203 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3204 if (v->ssa_args.dest == from) {
3205 if (v->type == TAG_ALU_4) {
3206 midgard_outmod final = v->alu.outmod;
3207
3208 if (!midgard_combine_outmod(&final, ins->alu.outmod))
3209 continue;
3210
3211 v->alu.outmod = final;
3212 }
3213
3214 v->ssa_args.dest = to;
3215 progress = true;
3216 }
3217 }
3218
3219 mir_remove_instruction(ins);
3220 }
3221
3222 return progress;
3223 }
3224
3225 static bool
3226 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3227 {
3228 bool progress = false;
3229
3230 mir_foreach_instr_in_block_safe(block, ins) {
3231 if (ins->type != TAG_ALU_4) continue;
3232 if (!OP_IS_MOVE(ins->alu.op)) continue;
3233
3234 unsigned from = ins->ssa_args.src1;
3235 unsigned to = ins->ssa_args.dest;
3236
3237 /* Make sure it's a familiar type of special move. Basically we
3238 * just handle the special dummy moves emitted by the texture
3239 * pipeline. TODO: verify. TODO: why does this break varyings?
3240 */
3241
3242 if (from >= SSA_FIXED_MINIMUM) continue;
3243 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3244 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3245
3246 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3247 if (v->ssa_args.dest == from) {
3248 v->ssa_args.dest = to;
3249 progress = true;
3250 }
3251 }
3252
3253 mir_remove_instruction(ins);
3254 }
3255
3256 return progress;
3257 }
3258
3259 /* The following passes reorder MIR instructions to enable better scheduling */
3260
3261 static void
3262 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3263 {
3264 mir_foreach_instr_in_block_safe(block, ins) {
3265 if (ins->type != TAG_LOAD_STORE_4) continue;
3266
3267 /* We've found a load/store op. Check if next is also load/store. */
3268 midgard_instruction *next_op = mir_next_op(ins);
3269 if (&next_op->link != &block->instructions) {
3270 if (next_op->type == TAG_LOAD_STORE_4) {
3271 /* If so, we're done since we're a pair */
3272 ins = mir_next_op(ins);
3273 continue;
3274 }
3275
3276 /* Maximum search distance to pair, to avoid register pressure disasters */
3277 int search_distance = 8;
3278
3279 /* Otherwise, we have an orphaned load/store -- search for another load */
3280 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3281 /* Terminate search if necessary */
3282 if (!(search_distance--)) break;
3283
3284 if (c->type != TAG_LOAD_STORE_4) continue;
3285
3286 /* Stores cannot be reordered, since they have
3287 * dependencies. For the same reason, indirect
3288 * loads cannot be reordered as their index is
3289 * loaded in r27.w */
3290
3291 if (OP_IS_STORE(c->load_store.op)) continue;
3292
3293 /* It appears the 0x800 bit is set whenever a
3294 * load is direct, unset when it is indirect.
3295 * Skip indirect loads. */
3296
3297 if (!(c->load_store.unknown & 0x800)) continue;
3298
3299 /* We found one! Move it up to pair and remove it from the old location */
3300
3301 mir_insert_instruction_before(ins, *c);
3302 mir_remove_instruction(c);
3303
3304 break;
3305 }
3306 }
3307 }
3308 }
3309
3310 /* Emit varying stores late */
3311
3312 static void
3313 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3314 /* Iterate in reverse to get the final write, rather than the first */
3315
3316 mir_foreach_instr_in_block_safe_rev(block, ins) {
3317 /* Check if what we just wrote needs a store */
3318 int idx = ins->ssa_args.dest;
3319 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3320
3321 if (!varying) continue;
3322
3323 varying -= 1;
3324
3325 /* We need to store to the appropriate varying, so emit the
3326 * move/store */
3327
3328 /* TODO: Integrate with special purpose RA (and scheduler?) */
3329 bool high_varying_register = false;
3330
3331 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3332
3333 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3334 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3335
3336 mir_insert_instruction_before(mir_next_op(ins), st);
3337 mir_insert_instruction_before(mir_next_op(ins), mov);
3338
3339 /* We no longer need to store this varying */
3340 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3341 }
3342 }
3343
3344 /* If there are leftovers after the below pass, emit actual fmov
3345 * instructions for the slow-but-correct path */
3346
3347 static void
3348 emit_leftover_move(compiler_context *ctx)
3349 {
3350 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3351 int base = ((uintptr_t) leftover->key) - 1;
3352 int mapped = base;
3353
3354 map_ssa_to_alias(ctx, &mapped);
3355 EMIT(fmov, mapped, blank_alu_src, base);
3356 }
3357 }
3358
3359 static void
3360 actualise_ssa_to_alias(compiler_context *ctx)
3361 {
3362 mir_foreach_instr(ctx, ins) {
3363 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3364 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3365 }
3366
3367 emit_leftover_move(ctx);
3368 }
3369
3370 static void
3371 emit_fragment_epilogue(compiler_context *ctx)
3372 {
3373 /* Special case: writing out constants requires us to include the move
3374 * explicitly now, so shove it into r0 */
3375
3376 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3377
3378 if (constant_value) {
3379 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3380 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3381 emit_mir_instruction(ctx, ins);
3382 }
3383
3384 /* Perform the actual fragment writeout. We have two writeout/branch
3385 * instructions, forming a loop until writeout is successful as per the
3386 * docs. TODO: gl_FragDepth */
3387
3388 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3389 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3390 }
3391
3392 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3393 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3394 * with the int8 analogue to the fragment epilogue */
3395
3396 static void
3397 emit_blend_epilogue(compiler_context *ctx)
3398 {
3399 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3400
3401 midgard_instruction scale = {
3402 .type = TAG_ALU_4,
3403 .unit = UNIT_VMUL,
3404 .inline_constant = _mesa_float_to_half(255.0),
3405 .ssa_args = {
3406 .src0 = SSA_FIXED_REGISTER(0),
3407 .src1 = SSA_UNUSED_0,
3408 .dest = SSA_FIXED_REGISTER(24),
3409 .inline_constant = true
3410 },
3411 .alu = {
3412 .op = midgard_alu_op_fmul,
3413 .reg_mode = midgard_reg_mode_full,
3414 .dest_override = midgard_dest_override_lower,
3415 .mask = 0xFF,
3416 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3417 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3418 }
3419 };
3420
3421 emit_mir_instruction(ctx, scale);
3422
3423 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3424
3425 midgard_vector_alu_src alu_src = blank_alu_src;
3426 alu_src.half = true;
3427
3428 midgard_instruction f2u8 = {
3429 .type = TAG_ALU_4,
3430 .ssa_args = {
3431 .src0 = SSA_FIXED_REGISTER(24),
3432 .src1 = SSA_UNUSED_0,
3433 .dest = SSA_FIXED_REGISTER(0),
3434 .inline_constant = true
3435 },
3436 .alu = {
3437 .op = midgard_alu_op_f2u8,
3438 .reg_mode = midgard_reg_mode_half,
3439 .dest_override = midgard_dest_override_lower,
3440 .outmod = midgard_outmod_pos,
3441 .mask = 0xF,
3442 .src1 = vector_alu_srco_unsigned(alu_src),
3443 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3444 }
3445 };
3446
3447 emit_mir_instruction(ctx, f2u8);
3448
3449 /* vmul.imov.quarter r0, r0, r0 */
3450
3451 midgard_instruction imov_8 = {
3452 .type = TAG_ALU_4,
3453 .ssa_args = {
3454 .src0 = SSA_UNUSED_1,
3455 .src1 = SSA_FIXED_REGISTER(0),
3456 .dest = SSA_FIXED_REGISTER(0),
3457 },
3458 .alu = {
3459 .op = midgard_alu_op_imov,
3460 .reg_mode = midgard_reg_mode_quarter,
3461 .dest_override = midgard_dest_override_none,
3462 .mask = 0xFF,
3463 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3464 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3465 }
3466 };
3467
3468 /* Emit branch epilogue with the 8-bit move as the source */
3469
3470 emit_mir_instruction(ctx, imov_8);
3471 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3472
3473 emit_mir_instruction(ctx, imov_8);
3474 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3475 }
3476
3477 static midgard_block *
3478 emit_block(compiler_context *ctx, nir_block *block)
3479 {
3480 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3481 list_addtail(&this_block->link, &ctx->blocks);
3482
3483 this_block->is_scheduled = false;
3484 ++ctx->block_count;
3485
3486 ctx->texture_index[0] = -1;
3487 ctx->texture_index[1] = -1;
3488
3489 /* Add us as a successor to the block we are following */
3490 if (ctx->current_block)
3491 midgard_block_add_successor(ctx->current_block, this_block);
3492
3493 /* Set up current block */
3494 list_inithead(&this_block->instructions);
3495 ctx->current_block = this_block;
3496
3497 nir_foreach_instr(instr, block) {
3498 emit_instr(ctx, instr);
3499 ++ctx->instruction_count;
3500 }
3501
3502 inline_alu_constants(ctx);
3503 embedded_to_inline_constant(ctx);
3504
3505 /* Perform heavylifting for aliasing */
3506 actualise_ssa_to_alias(ctx);
3507
3508 midgard_emit_store(ctx, this_block);
3509 midgard_pair_load_store(ctx, this_block);
3510
3511 /* Append fragment shader epilogue (value writeout) */
3512 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3513 if (block == nir_impl_last_block(ctx->func->impl)) {
3514 if (ctx->is_blend)
3515 emit_blend_epilogue(ctx);
3516 else
3517 emit_fragment_epilogue(ctx);
3518 }
3519 }
3520
3521 if (block == nir_start_block(ctx->func->impl))
3522 ctx->initial_block = this_block;
3523
3524 if (block == nir_impl_last_block(ctx->func->impl))
3525 ctx->final_block = this_block;
3526
3527 /* Allow the next control flow to access us retroactively, for
3528 * branching etc */
3529 ctx->current_block = this_block;
3530
3531 /* Document the fallthrough chain */
3532 ctx->previous_source_block = this_block;
3533
3534 return this_block;
3535 }
3536
3537 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3538
3539 static void
3540 emit_if(struct compiler_context *ctx, nir_if *nif)
3541 {
3542 /* Conditional branches expect the condition in r31.w; emit a move for
3543 * that in the _previous_ block (which is the current block). */
3544 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3545
3546 /* Speculatively emit the branch, but we can't fill it in until later */
3547 EMIT(branch, true, true);
3548 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3549
3550 /* Emit the two subblocks */
3551 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3552
3553 /* Emit a jump from the end of the then block to the end of the else */
3554 EMIT(branch, false, false);
3555 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3556
3557 /* Emit second block, and check if it's empty */
3558
3559 int else_idx = ctx->block_count;
3560 int count_in = ctx->instruction_count;
3561 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3562 int after_else_idx = ctx->block_count;
3563
3564 /* Now that we have the subblocks emitted, fix up the branches */
3565
3566 assert(then_block);
3567 assert(else_block);
3568
3569 if (ctx->instruction_count == count_in) {
3570 /* The else block is empty, so don't emit an exit jump */
3571 mir_remove_instruction(then_exit);
3572 then_branch->branch.target_block = after_else_idx;
3573 } else {
3574 then_branch->branch.target_block = else_idx;
3575 then_exit->branch.target_block = after_else_idx;
3576 }
3577 }
3578
3579 static void
3580 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3581 {
3582 /* Remember where we are */
3583 midgard_block *start_block = ctx->current_block;
3584
3585 /* Allocate a loop number, growing the current inner loop depth */
3586 int loop_idx = ++ctx->current_loop_depth;
3587
3588 /* Get index from before the body so we can loop back later */
3589 int start_idx = ctx->block_count;
3590
3591 /* Emit the body itself */
3592 emit_cf_list(ctx, &nloop->body);
3593
3594 /* Branch back to loop back */
3595 struct midgard_instruction br_back = v_branch(false, false);
3596 br_back.branch.target_block = start_idx;
3597 emit_mir_instruction(ctx, br_back);
3598
3599 /* Mark down that branch in the graph. Note that we're really branching
3600 * to the block *after* we started in. TODO: Why doesn't the branch
3601 * itself have an off-by-one then...? */
3602 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3603
3604 /* Find the index of the block about to follow us (note: we don't add
3605 * one; blocks are 0-indexed so we get a fencepost problem) */
3606 int break_block_idx = ctx->block_count;
3607
3608 /* Fix up the break statements we emitted to point to the right place,
3609 * now that we can allocate a block number for them */
3610
3611 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3612 mir_foreach_instr_in_block(block, ins) {
3613 if (ins->type != TAG_ALU_4) continue;
3614 if (!ins->compact_branch) continue;
3615 if (ins->prepacked_branch) continue;
3616
3617 /* We found a branch -- check the type to see if we need to do anything */
3618 if (ins->branch.target_type != TARGET_BREAK) continue;
3619
3620 /* It's a break! Check if it's our break */
3621 if (ins->branch.target_break != loop_idx) continue;
3622
3623 /* Okay, cool, we're breaking out of this loop.
3624 * Rewrite from a break to a goto */
3625
3626 ins->branch.target_type = TARGET_GOTO;
3627 ins->branch.target_block = break_block_idx;
3628 }
3629 }
3630
3631 /* Now that we've finished emitting the loop, free up the depth again
3632 * so we play nice with recursion amid nested loops */
3633 --ctx->current_loop_depth;
3634 }
3635
3636 static midgard_block *
3637 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3638 {
3639 midgard_block *start_block = NULL;
3640
3641 foreach_list_typed(nir_cf_node, node, node, list) {
3642 switch (node->type) {
3643 case nir_cf_node_block: {
3644 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3645
3646 if (!start_block)
3647 start_block = block;
3648
3649 break;
3650 }
3651
3652 case nir_cf_node_if:
3653 emit_if(ctx, nir_cf_node_as_if(node));
3654 break;
3655
3656 case nir_cf_node_loop:
3657 emit_loop(ctx, nir_cf_node_as_loop(node));
3658 break;
3659
3660 case nir_cf_node_function:
3661 assert(0);
3662 break;
3663 }
3664 }
3665
3666 return start_block;
3667 }
3668
3669 /* Due to lookahead, we need to report the first tag executed in the command
3670 * stream and in branch targets. An initial block might be empty, so iterate
3671 * until we find one that 'works' */
3672
3673 static unsigned
3674 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3675 {
3676 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3677
3678 unsigned first_tag = 0;
3679
3680 do {
3681 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3682
3683 if (initial_bundle) {
3684 first_tag = initial_bundle->tag;
3685 break;
3686 }
3687
3688 /* Initial block is empty, try the next block */
3689 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3690 } while(initial_block != NULL);
3691
3692 assert(first_tag);
3693 return first_tag;
3694 }
3695
3696 int
3697 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3698 {
3699 struct util_dynarray *compiled = &program->compiled;
3700
3701 midgard_debug = debug_get_option_midgard_debug();
3702
3703 compiler_context ictx = {
3704 .nir = nir,
3705 .stage = nir->info.stage,
3706
3707 .is_blend = is_blend,
3708 .blend_constant_offset = -1,
3709
3710 .alpha_ref = program->alpha_ref
3711 };
3712
3713 compiler_context *ctx = &ictx;
3714
3715 /* TODO: Decide this at runtime */
3716 ctx->uniform_cutoff = 8;
3717
3718 /* Assign var locations early, so the epilogue can use them if necessary */
3719
3720 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3721 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3722 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3723
3724 /* Initialize at a global (not block) level hash tables */
3725
3726 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3727 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3728 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3729 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3730 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3731 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3732 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3733
3734 /* Record the varying mapping for the command stream's bookkeeping */
3735
3736 struct exec_list *varyings =
3737 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3738
3739 nir_foreach_variable(var, varyings) {
3740 unsigned loc = var->data.driver_location;
3741 unsigned sz = glsl_type_size(var->type, FALSE);
3742
3743 for (int c = 0; c < sz; ++c) {
3744 program->varyings[loc + c] = var->data.location;
3745 }
3746 }
3747
3748 /* Lower gl_Position pre-optimisation */
3749
3750 if (ctx->stage == MESA_SHADER_VERTEX)
3751 NIR_PASS_V(nir, nir_lower_viewport_transform);
3752
3753 NIR_PASS_V(nir, nir_lower_var_copies);
3754 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3755 NIR_PASS_V(nir, nir_split_var_copies);
3756 NIR_PASS_V(nir, nir_lower_var_copies);
3757 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3758 NIR_PASS_V(nir, nir_lower_var_copies);
3759 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3760
3761 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3762
3763 /* Optimisation passes */
3764
3765 optimise_nir(nir);
3766
3767 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3768 nir_print_shader(nir, stdout);
3769 }
3770
3771 /* Assign sysvals and counts, now that we're sure
3772 * (post-optimisation) */
3773
3774 midgard_nir_assign_sysvals(ctx, nir);
3775
3776 program->uniform_count = nir->num_uniforms;
3777 program->sysval_count = ctx->sysval_count;
3778 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3779
3780 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3781 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3782
3783 nir_foreach_function(func, nir) {
3784 if (!func->impl)
3785 continue;
3786
3787 list_inithead(&ctx->blocks);
3788 ctx->block_count = 0;
3789 ctx->func = func;
3790
3791 emit_cf_list(ctx, &func->impl->body);
3792 emit_block(ctx, func->impl->end_block);
3793
3794 break; /* TODO: Multi-function shaders */
3795 }
3796
3797 util_dynarray_init(compiled, NULL);
3798
3799 /* MIR-level optimizations */
3800
3801 bool progress = false;
3802
3803 do {
3804 progress = false;
3805
3806 mir_foreach_block(ctx, block) {
3807 progress |= midgard_opt_copy_prop(ctx, block);
3808 progress |= midgard_opt_copy_prop_tex(ctx, block);
3809 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3810 }
3811 } while (progress);
3812
3813 /* Schedule! */
3814 schedule_program(ctx);
3815
3816 /* Now that all the bundles are scheduled and we can calculate block
3817 * sizes, emit actual branch instructions rather than placeholders */
3818
3819 int br_block_idx = 0;
3820
3821 mir_foreach_block(ctx, block) {
3822 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3823 for (int c = 0; c < bundle->instruction_count; ++c) {
3824 midgard_instruction *ins = &bundle->instructions[c];
3825
3826 if (!midgard_is_branch_unit(ins->unit)) continue;
3827
3828 if (ins->prepacked_branch) continue;
3829
3830 /* Parse some basic branch info */
3831 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3832 bool is_conditional = ins->branch.conditional;
3833 bool is_inverted = ins->branch.invert_conditional;
3834 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3835
3836 /* Determine the block we're jumping to */
3837 int target_number = ins->branch.target_block;
3838
3839 /* Report the destination tag. Discards don't need this */
3840 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3841
3842 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3843 int quadword_offset = 0;
3844
3845 if (is_discard) {
3846 /* Jump to the end of the shader. We
3847 * need to include not only the
3848 * following blocks, but also the
3849 * contents of our current block (since
3850 * discard can come in the middle of
3851 * the block) */
3852
3853 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3854
3855 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3856 quadword_offset += quadword_size(bun->tag);
3857 }
3858
3859 mir_foreach_block_from(ctx, blk, b) {
3860 quadword_offset += b->quadword_count;
3861 }
3862
3863 } else if (target_number > br_block_idx) {
3864 /* Jump forward */
3865
3866 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3867 midgard_block *blk = mir_get_block(ctx, idx);
3868 assert(blk);
3869
3870 quadword_offset += blk->quadword_count;
3871 }
3872 } else {
3873 /* Jump backwards */
3874
3875 for (int idx = br_block_idx; idx >= target_number; --idx) {
3876 midgard_block *blk = mir_get_block(ctx, idx);
3877 assert(blk);
3878
3879 quadword_offset -= blk->quadword_count;
3880 }
3881 }
3882
3883 /* Unconditional extended branches (far jumps)
3884 * have issues, so we always use a conditional
3885 * branch, setting the condition to always for
3886 * unconditional. For compact unconditional
3887 * branches, cond isn't used so it doesn't
3888 * matter what we pick. */
3889
3890 midgard_condition cond =
3891 !is_conditional ? midgard_condition_always :
3892 is_inverted ? midgard_condition_false :
3893 midgard_condition_true;
3894
3895 midgard_jmp_writeout_op op =
3896 is_discard ? midgard_jmp_writeout_op_discard :
3897 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3898 midgard_jmp_writeout_op_branch_cond;
3899
3900 if (!is_compact) {
3901 midgard_branch_extended branch =
3902 midgard_create_branch_extended(
3903 cond, op,
3904 dest_tag,
3905 quadword_offset);
3906
3907 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3908 } else if (is_conditional || is_discard) {
3909 midgard_branch_cond branch = {
3910 .op = op,
3911 .dest_tag = dest_tag,
3912 .offset = quadword_offset,
3913 .cond = cond
3914 };
3915
3916 assert(branch.offset == quadword_offset);
3917
3918 memcpy(&ins->br_compact, &branch, sizeof(branch));
3919 } else {
3920 assert(op == midgard_jmp_writeout_op_branch_uncond);
3921
3922 midgard_branch_uncond branch = {
3923 .op = op,
3924 .dest_tag = dest_tag,
3925 .offset = quadword_offset,
3926 .unknown = 1
3927 };
3928
3929 assert(branch.offset == quadword_offset);
3930
3931 memcpy(&ins->br_compact, &branch, sizeof(branch));
3932 }
3933 }
3934 }
3935
3936 ++br_block_idx;
3937 }
3938
3939 /* Emit flat binary from the instruction arrays. Iterate each block in
3940 * sequence. Save instruction boundaries such that lookahead tags can
3941 * be assigned easily */
3942
3943 /* Cache _all_ bundles in source order for lookahead across failed branches */
3944
3945 int bundle_count = 0;
3946 mir_foreach_block(ctx, block) {
3947 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3948 }
3949 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3950 int bundle_idx = 0;
3951 mir_foreach_block(ctx, block) {
3952 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3953 source_order_bundles[bundle_idx++] = bundle;
3954 }
3955 }
3956
3957 int current_bundle = 0;
3958
3959 mir_foreach_block(ctx, block) {
3960 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3961 int lookahead = 1;
3962
3963 if (current_bundle + 1 < bundle_count) {
3964 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3965
3966 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3967 lookahead = 1;
3968 } else {
3969 lookahead = next;
3970 }
3971 }
3972
3973 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3974 ++current_bundle;
3975 }
3976
3977 /* TODO: Free deeper */
3978 //util_dynarray_fini(&block->instructions);
3979 }
3980
3981 free(source_order_bundles);
3982
3983 /* Report the very first tag executed */
3984 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3985
3986 /* Deal with off-by-one related to the fencepost problem */
3987 program->work_register_count = ctx->work_registers + 1;
3988
3989 program->can_discard = ctx->can_discard;
3990 program->uniform_cutoff = ctx->uniform_cutoff;
3991
3992 program->blend_patch_offset = ctx->blend_constant_offset;
3993
3994 if (midgard_debug & MIDGARD_DBG_SHADERS)
3995 disassemble_midgard(program->compiled.data, program->compiled.size);
3996
3997 return 0;
3998 }