panfrost: Respect backwards branches in RA
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .abs = src->abs,
258 .negate = src->negate,
259 .rep_low = 0,
260 .rep_high = 0,
261 .half = 0, /* TODO */
262 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
263 };
264
265 return alu_src;
266 }
267
268 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
269
270 static midgard_instruction
271 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
272 {
273 midgard_instruction ins = {
274 .type = TAG_ALU_4,
275 .ssa_args = {
276 .src0 = SSA_UNUSED_1,
277 .src1 = src,
278 .dest = dest,
279 },
280 .alu = {
281 .op = midgard_alu_op_fmov,
282 .reg_mode = midgard_reg_mode_full,
283 .dest_override = midgard_dest_override_none,
284 .mask = 0xFF,
285 .src1 = vector_alu_srco_unsigned(zero_alu_src),
286 .src2 = vector_alu_srco_unsigned(mod)
287 },
288 };
289
290 return ins;
291 }
292
293 /* load/store instructions have both 32-bit and 16-bit variants, depending on
294 * whether we are using vectors composed of highp or mediump. At the moment, we
295 * don't support half-floats -- this requires changes in other parts of the
296 * compiler -- therefore the 16-bit versions are commented out. */
297
298 //M_LOAD(load_attr_16);
299 M_LOAD(load_attr_32);
300 //M_LOAD(load_vary_16);
301 M_LOAD(load_vary_32);
302 //M_LOAD(load_uniform_16);
303 M_LOAD(load_uniform_32);
304 M_LOAD(load_color_buffer_8);
305 //M_STORE(store_vary_16);
306 M_STORE(store_vary_32);
307 M_STORE(store_cubemap_coords);
308
309 static midgard_instruction
310 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
311 {
312 midgard_branch_cond branch = {
313 .op = op,
314 .dest_tag = tag,
315 .offset = offset,
316 .cond = cond
317 };
318
319 uint16_t compact;
320 memcpy(&compact, &branch, sizeof(branch));
321
322 midgard_instruction ins = {
323 .type = TAG_ALU_4,
324 .unit = ALU_ENAB_BR_COMPACT,
325 .prepacked_branch = true,
326 .compact_branch = true,
327 .br_compact = compact
328 };
329
330 if (op == midgard_jmp_writeout_op_writeout)
331 ins.writeout = true;
332
333 return ins;
334 }
335
336 static midgard_instruction
337 v_branch(bool conditional, bool invert)
338 {
339 midgard_instruction ins = {
340 .type = TAG_ALU_4,
341 .unit = ALU_ENAB_BRANCH,
342 .compact_branch = true,
343 .branch = {
344 .conditional = conditional,
345 .invert_conditional = invert
346 }
347 };
348
349 return ins;
350 }
351
352 static midgard_branch_extended
353 midgard_create_branch_extended( midgard_condition cond,
354 midgard_jmp_writeout_op op,
355 unsigned dest_tag,
356 signed quadword_offset)
357 {
358 /* For unclear reasons, the condition code is repeated 8 times */
359 uint16_t duplicated_cond =
360 (cond << 14) |
361 (cond << 12) |
362 (cond << 10) |
363 (cond << 8) |
364 (cond << 6) |
365 (cond << 4) |
366 (cond << 2) |
367 (cond << 0);
368
369 midgard_branch_extended branch = {
370 .op = op,
371 .dest_tag = dest_tag,
372 .offset = quadword_offset,
373 .cond = duplicated_cond
374 };
375
376 return branch;
377 }
378
379 typedef struct midgard_bundle {
380 /* Tag for the overall bundle */
381 int tag;
382
383 /* Instructions contained by the bundle */
384 int instruction_count;
385 midgard_instruction instructions[5];
386
387 /* Bundle-wide ALU configuration */
388 int padding;
389 int control;
390 bool has_embedded_constants;
391 float constants[4];
392 bool has_blend_constant;
393
394 uint16_t register_words[8];
395 int register_words_count;
396
397 uint64_t body_words[8];
398 size_t body_size[8];
399 int body_words_count;
400 } midgard_bundle;
401
402 typedef struct compiler_context {
403 nir_shader *nir;
404 gl_shader_stage stage;
405
406 /* Is internally a blend shader? Depends on stage == FRAGMENT */
407 bool is_blend;
408
409 /* Tracking for blend constant patching */
410 int blend_constant_number;
411 int blend_constant_offset;
412
413 /* Current NIR function */
414 nir_function *func;
415
416 /* Unordered list of midgard_blocks */
417 int block_count;
418 struct list_head blocks;
419
420 midgard_block *initial_block;
421 midgard_block *previous_source_block;
422 midgard_block *final_block;
423
424 /* List of midgard_instructions emitted for the current block */
425 midgard_block *current_block;
426
427 /* The index corresponding to the current loop, e.g. for breaks/contineus */
428 int current_loop;
429
430 /* Constants which have been loaded, for later inlining */
431 struct hash_table_u64 *ssa_constants;
432
433 /* SSA indices to be outputted to corresponding varying offset */
434 struct hash_table_u64 *ssa_varyings;
435
436 /* SSA values / registers which have been aliased. Naively, these
437 * demand a fmov output; instead, we alias them in a later pass to
438 * avoid the wasted op.
439 *
440 * A note on encoding: to avoid dynamic memory management here, rather
441 * than ampping to a pointer, we map to the source index; the key
442 * itself is just the destination index. */
443
444 struct hash_table_u64 *ssa_to_alias;
445 struct set *leftover_ssa_to_alias;
446
447 /* Actual SSA-to-register for RA */
448 struct hash_table_u64 *ssa_to_register;
449
450 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
451 struct hash_table_u64 *hash_to_temp;
452 int temp_count;
453 int max_hash;
454
455 /* Just the count of the max register used. Higher count => higher
456 * register pressure */
457 int work_registers;
458
459 /* Used for cont/last hinting. Increase when a tex op is added.
460 * Decrease when a tex op is removed. */
461 int texture_op_count;
462
463 /* Mapping of texture register -> SSA index for unaliasing */
464 int texture_index[2];
465
466 /* If any path hits a discard instruction */
467 bool can_discard;
468
469 /* The number of uniforms allowable for the fast path */
470 int uniform_cutoff;
471
472 /* Count of instructions emitted from NIR overall, across all blocks */
473 int instruction_count;
474
475 /* Alpha ref value passed in */
476 float alpha_ref;
477
478 /* The index corresponding to the fragment output */
479 unsigned fragment_output;
480
481 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
482 unsigned sysvals[MAX_SYSVAL_COUNT];
483 unsigned sysval_count;
484 struct hash_table_u64 *sysval_to_id;
485 } compiler_context;
486
487 /* Append instruction to end of current block */
488
489 static midgard_instruction *
490 mir_upload_ins(struct midgard_instruction ins)
491 {
492 midgard_instruction *heap = malloc(sizeof(ins));
493 memcpy(heap, &ins, sizeof(ins));
494 return heap;
495 }
496
497 static void
498 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
499 {
500 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
501 }
502
503 static void
504 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
505 {
506 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
507 }
508
509 static void
510 mir_remove_instruction(struct midgard_instruction *ins)
511 {
512 list_del(&ins->link);
513 }
514
515 static midgard_instruction*
516 mir_prev_op(struct midgard_instruction *ins)
517 {
518 return list_last_entry(&(ins->link), midgard_instruction, link);
519 }
520
521 static midgard_instruction*
522 mir_next_op(struct midgard_instruction *ins)
523 {
524 return list_first_entry(&(ins->link), midgard_instruction, link);
525 }
526
527 static midgard_block *
528 mir_next_block(struct midgard_block *blk)
529 {
530 return list_first_entry(&(blk->link), midgard_block, link);
531 }
532
533
534 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
535 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
536
537 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
538 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
539 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
540 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
541 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
542 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
543
544
545 static midgard_instruction *
546 mir_last_in_block(struct midgard_block *block)
547 {
548 return list_last_entry(&block->instructions, struct midgard_instruction, link);
549 }
550
551 static midgard_block *
552 mir_get_block(compiler_context *ctx, int idx)
553 {
554 struct list_head *lst = &ctx->blocks;
555
556 while ((idx--) + 1)
557 lst = lst->next;
558
559 return (struct midgard_block *) lst;
560 }
561
562 /* Pretty printer for internal Midgard IR */
563
564 static void
565 print_mir_source(int source)
566 {
567 if (source >= SSA_FIXED_MINIMUM) {
568 /* Specific register */
569 int reg = SSA_REG_FROM_FIXED(source);
570
571 /* TODO: Moving threshold */
572 if (reg > 16 && reg < 24)
573 printf("u%d", 23 - reg);
574 else
575 printf("r%d", reg);
576 } else {
577 printf("%d", source);
578 }
579 }
580
581 static void
582 print_mir_instruction(midgard_instruction *ins)
583 {
584 printf("\t");
585
586 switch (ins->type) {
587 case TAG_ALU_4: {
588 midgard_alu_op op = ins->alu.op;
589 const char *name = alu_opcode_names[op];
590
591 if (ins->unit)
592 printf("%d.", ins->unit);
593
594 printf("%s", name ? name : "??");
595 break;
596 }
597
598 case TAG_LOAD_STORE_4: {
599 midgard_load_store_op op = ins->load_store.op;
600 const char *name = load_store_opcode_names[op];
601
602 assert(name);
603 printf("%s", name);
604 break;
605 }
606
607 case TAG_TEXTURE_4: {
608 printf("texture");
609 break;
610 }
611
612 default:
613 assert(0);
614 }
615
616 ssa_args *args = &ins->ssa_args;
617
618 printf(" %d, ", args->dest);
619
620 print_mir_source(args->src0);
621 printf(", ");
622
623 if (args->inline_constant)
624 printf("#%d", ins->inline_constant);
625 else
626 print_mir_source(args->src1);
627
628 if (ins->has_constants)
629 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
630
631 printf("\n");
632 }
633
634 static void
635 print_mir_block(midgard_block *block)
636 {
637 printf("{\n");
638
639 mir_foreach_instr_in_block(block, ins) {
640 print_mir_instruction(ins);
641 }
642
643 printf("}\n");
644 }
645
646
647
648 static void
649 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
650 {
651 ins->has_constants = true;
652 memcpy(&ins->constants, constants, 16);
653
654 /* If this is the special blend constant, mark this instruction */
655
656 if (ctx->is_blend && ctx->blend_constant_number == name)
657 ins->has_blend_constant = true;
658 }
659
660 static int
661 glsl_type_size(const struct glsl_type *type, bool bindless)
662 {
663 return glsl_count_attribute_slots(type, false);
664 }
665
666 /* Lower fdot2 to a vector multiplication followed by channel addition */
667 static void
668 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
669 {
670 if (alu->op != nir_op_fdot2)
671 return;
672
673 b->cursor = nir_before_instr(&alu->instr);
674
675 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
676 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
677
678 nir_ssa_def *product = nir_fmul(b, src0, src1);
679
680 nir_ssa_def *sum = nir_fadd(b,
681 nir_channel(b, product, 0),
682 nir_channel(b, product, 1));
683
684 /* Replace the fdot2 with this sum */
685 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
686 }
687
688 static int
689 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
690 {
691 switch (instr->intrinsic) {
692 case nir_intrinsic_load_viewport_scale:
693 return PAN_SYSVAL_VIEWPORT_SCALE;
694 case nir_intrinsic_load_viewport_offset:
695 return PAN_SYSVAL_VIEWPORT_OFFSET;
696 default:
697 return -1;
698 }
699 }
700
701 static void
702 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
703 {
704 int sysval = -1;
705
706 if (instr->type == nir_instr_type_intrinsic) {
707 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
708 sysval = midgard_nir_sysval_for_intrinsic(intr);
709 }
710
711 if (sysval < 0)
712 return;
713
714 /* We have a sysval load; check if it's already been assigned */
715
716 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
717 return;
718
719 /* It hasn't -- so assign it now! */
720
721 unsigned id = ctx->sysval_count++;
722 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
723 ctx->sysvals[id] = sysval;
724 }
725
726 static void
727 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
728 {
729 ctx->sysval_count = 0;
730
731 nir_foreach_function(function, shader) {
732 if (!function->impl) continue;
733
734 nir_foreach_block(block, function->impl) {
735 nir_foreach_instr_safe(instr, block) {
736 midgard_nir_assign_sysval_body(ctx, instr);
737 }
738 }
739 }
740 }
741
742 static bool
743 midgard_nir_lower_fdot2(nir_shader *shader)
744 {
745 bool progress = false;
746
747 nir_foreach_function(function, shader) {
748 if (!function->impl) continue;
749
750 nir_builder _b;
751 nir_builder *b = &_b;
752 nir_builder_init(b, function->impl);
753
754 nir_foreach_block(block, function->impl) {
755 nir_foreach_instr_safe(instr, block) {
756 if (instr->type != nir_instr_type_alu) continue;
757
758 nir_alu_instr *alu = nir_instr_as_alu(instr);
759 midgard_nir_lower_fdot2_body(b, alu);
760
761 progress |= true;
762 }
763 }
764
765 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
766
767 }
768
769 return progress;
770 }
771
772 static void
773 optimise_nir(nir_shader *nir)
774 {
775 bool progress;
776
777 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
778 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
779
780 nir_lower_tex_options lower_tex_options = {
781 .lower_rect = true
782 };
783
784 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
785
786 do {
787 progress = false;
788
789 NIR_PASS(progress, nir, nir_lower_var_copies);
790 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
791
792 NIR_PASS(progress, nir, nir_copy_prop);
793 NIR_PASS(progress, nir, nir_opt_dce);
794 NIR_PASS(progress, nir, nir_opt_dead_cf);
795 NIR_PASS(progress, nir, nir_opt_cse);
796 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
797 NIR_PASS(progress, nir, nir_opt_algebraic);
798 NIR_PASS(progress, nir, nir_opt_constant_folding);
799 NIR_PASS(progress, nir, nir_opt_undef);
800 NIR_PASS(progress, nir, nir_opt_loop_unroll,
801 nir_var_shader_in |
802 nir_var_shader_out |
803 nir_var_function_temp);
804
805 /* TODO: Enable vectorize when merged upstream */
806 // NIR_PASS(progress, nir, nir_opt_vectorize);
807 } while (progress);
808
809 /* Must be run at the end to prevent creation of fsin/fcos ops */
810 NIR_PASS(progress, nir, midgard_nir_scale_trig);
811
812 do {
813 progress = false;
814
815 NIR_PASS(progress, nir, nir_opt_dce);
816 NIR_PASS(progress, nir, nir_opt_algebraic);
817 NIR_PASS(progress, nir, nir_opt_constant_folding);
818 NIR_PASS(progress, nir, nir_copy_prop);
819 } while (progress);
820
821 NIR_PASS(progress, nir, nir_opt_algebraic_late);
822 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
823
824 /* Lower mods for float ops only. Integer ops don't support modifiers
825 * (saturate doesn't make sense on integers, neg/abs require dedicated
826 * instructions) */
827
828 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
829 NIR_PASS(progress, nir, nir_copy_prop);
830 NIR_PASS(progress, nir, nir_opt_dce);
831
832 /* We implement booleans as 32-bit 0/~0 */
833 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
834
835 /* Take us out of SSA */
836 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
837 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
838
839 /* We are a vector architecture; write combine where possible */
840 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
841 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
842
843 NIR_PASS(progress, nir, nir_opt_dce);
844 }
845
846 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
847 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
848 * r0. See the comments in compiler_context */
849
850 static void
851 alias_ssa(compiler_context *ctx, int dest, int src)
852 {
853 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
854 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
855 }
856
857 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
858
859 static void
860 unalias_ssa(compiler_context *ctx, int dest)
861 {
862 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
863 /* TODO: Remove from leftover or no? */
864 }
865
866 static void
867 midgard_pin_output(compiler_context *ctx, int index, int reg)
868 {
869 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
870 }
871
872 static bool
873 midgard_is_pinned(compiler_context *ctx, int index)
874 {
875 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
876 }
877
878 /* Do not actually emit a load; instead, cache the constant for inlining */
879
880 static void
881 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
882 {
883 nir_ssa_def def = instr->def;
884
885 float *v = ralloc_array(NULL, float, 4);
886 nir_const_load_to_arr(v, instr, f32);
887 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
888 }
889
890 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
891 * do the inverse) */
892
893 static unsigned
894 expand_writemask(unsigned mask)
895 {
896 unsigned o = 0;
897
898 for (int i = 0; i < 4; ++i)
899 if (mask & (1 << i))
900 o |= (3 << (2 * i));
901
902 return o;
903 }
904
905 static unsigned
906 squeeze_writemask(unsigned mask)
907 {
908 unsigned o = 0;
909
910 for (int i = 0; i < 4; ++i)
911 if (mask & (3 << (2 * i)))
912 o |= (1 << i);
913
914 return o;
915
916 }
917
918 /* Determines effective writemask, taking quirks and expansion into account */
919 static unsigned
920 effective_writemask(midgard_vector_alu *alu)
921 {
922 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
923 * sense) */
924
925 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
926
927 /* If there is a fixed channel count, construct the appropriate mask */
928
929 if (channel_count)
930 return (1 << channel_count) - 1;
931
932 /* Otherwise, just squeeze the existing mask */
933 return squeeze_writemask(alu->mask);
934 }
935
936 static unsigned
937 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
938 {
939 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
940 return hash;
941
942 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
943
944 if (temp)
945 return temp - 1;
946
947 /* If no temp is find, allocate one */
948 temp = ctx->temp_count++;
949 ctx->max_hash = MAX2(ctx->max_hash, hash);
950
951 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
952
953 return temp;
954 }
955
956 static unsigned
957 nir_src_index(compiler_context *ctx, nir_src *src)
958 {
959 if (src->is_ssa)
960 return src->ssa->index;
961 else
962 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
963 }
964
965 static unsigned
966 nir_dest_index(compiler_context *ctx, nir_dest *dst)
967 {
968 if (dst->is_ssa)
969 return dst->ssa.index;
970 else
971 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
972 }
973
974 static unsigned
975 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
976 {
977 return nir_src_index(ctx, &src->src);
978 }
979
980 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
981 * a conditional test) into that register */
982
983 static void
984 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
985 {
986 int condition = nir_src_index(ctx, src);
987
988 /* Source to swizzle the desired component into w */
989
990 const midgard_vector_alu_src alu_src = {
991 .swizzle = SWIZZLE(component, component, component, component),
992 };
993
994 /* There is no boolean move instruction. Instead, we simulate a move by
995 * ANDing the condition with itself to get it into r31.w */
996
997 midgard_instruction ins = {
998 .type = TAG_ALU_4,
999 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1000 .ssa_args = {
1001 .src0 = condition,
1002 .src1 = condition,
1003 .dest = SSA_FIXED_REGISTER(31),
1004 },
1005 .alu = {
1006 .op = midgard_alu_op_iand,
1007 .reg_mode = midgard_reg_mode_full,
1008 .dest_override = midgard_dest_override_none,
1009 .mask = (0x3 << 6), /* w */
1010 .src1 = vector_alu_srco_unsigned(alu_src),
1011 .src2 = vector_alu_srco_unsigned(alu_src)
1012 },
1013 };
1014
1015 emit_mir_instruction(ctx, ins);
1016 }
1017
1018 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1019 * pinning to eliminate this move in all known cases */
1020
1021 static void
1022 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1023 {
1024 int offset = nir_src_index(ctx, src);
1025
1026 midgard_instruction ins = {
1027 .type = TAG_ALU_4,
1028 .ssa_args = {
1029 .src0 = SSA_UNUSED_1,
1030 .src1 = offset,
1031 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1032 },
1033 .alu = {
1034 .op = midgard_alu_op_imov,
1035 .reg_mode = midgard_reg_mode_full,
1036 .dest_override = midgard_dest_override_none,
1037 .mask = (0x3 << 6), /* w */
1038 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1039 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1040 },
1041 };
1042
1043 emit_mir_instruction(ctx, ins);
1044 }
1045
1046 #define ALU_CASE(nir, _op) \
1047 case nir_op_##nir: \
1048 op = midgard_alu_op_##_op; \
1049 break;
1050
1051 static void
1052 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1053 {
1054 bool is_ssa = instr->dest.dest.is_ssa;
1055
1056 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1057 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1058 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1059
1060 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1061 * supported. A few do not and are commented for now. Also, there are a
1062 * number of NIR ops which Midgard does not support and need to be
1063 * lowered, also TODO. This switch block emits the opcode and calling
1064 * convention of the Midgard instruction; actual packing is done in
1065 * emit_alu below */
1066
1067 unsigned op;
1068
1069 switch (instr->op) {
1070 ALU_CASE(fadd, fadd);
1071 ALU_CASE(fmul, fmul);
1072 ALU_CASE(fmin, fmin);
1073 ALU_CASE(fmax, fmax);
1074 ALU_CASE(imin, imin);
1075 ALU_CASE(imax, imax);
1076 ALU_CASE(umin, umin);
1077 ALU_CASE(umax, umax);
1078 ALU_CASE(fmov, fmov);
1079 ALU_CASE(ffloor, ffloor);
1080 ALU_CASE(fround_even, froundeven);
1081 ALU_CASE(ftrunc, ftrunc);
1082 ALU_CASE(fceil, fceil);
1083 ALU_CASE(fdot3, fdot3);
1084 ALU_CASE(fdot4, fdot4);
1085 ALU_CASE(iadd, iadd);
1086 ALU_CASE(isub, isub);
1087 ALU_CASE(imul, imul);
1088 ALU_CASE(iabs, iabs);
1089
1090 /* XXX: Use fmov, not imov, since imov was causing major
1091 * issues with texture precision? XXX research */
1092 ALU_CASE(imov, fmov);
1093
1094 ALU_CASE(feq32, feq);
1095 ALU_CASE(fne32, fne);
1096 ALU_CASE(flt32, flt);
1097 ALU_CASE(ieq32, ieq);
1098 ALU_CASE(ine32, ine);
1099 ALU_CASE(ilt32, ilt);
1100 ALU_CASE(ult32, ult);
1101
1102 /* We don't have a native b2f32 instruction. Instead, like many
1103 * GPUs, we exploit booleans as 0/~0 for false/true, and
1104 * correspondingly AND
1105 * by 1.0 to do the type conversion. For the moment, prime us
1106 * to emit:
1107 *
1108 * iand [whatever], #0
1109 *
1110 * At the end of emit_alu (as MIR), we'll fix-up the constant
1111 */
1112
1113 ALU_CASE(b2f32, iand);
1114 ALU_CASE(b2i32, iand);
1115
1116 /* Likewise, we don't have a dedicated f2b32 instruction, but
1117 * we can do a "not equal to 0.0" test. */
1118
1119 ALU_CASE(f2b32, fne);
1120 ALU_CASE(i2b32, ine);
1121
1122 ALU_CASE(frcp, frcp);
1123 ALU_CASE(frsq, frsqrt);
1124 ALU_CASE(fsqrt, fsqrt);
1125 ALU_CASE(fexp2, fexp2);
1126 ALU_CASE(flog2, flog2);
1127
1128 ALU_CASE(f2i32, f2i);
1129 ALU_CASE(f2u32, f2u);
1130 ALU_CASE(i2f32, i2f);
1131 ALU_CASE(u2f32, u2f);
1132
1133 ALU_CASE(fsin, fsin);
1134 ALU_CASE(fcos, fcos);
1135
1136 ALU_CASE(iand, iand);
1137 ALU_CASE(ior, ior);
1138 ALU_CASE(ixor, ixor);
1139 ALU_CASE(inot, inot);
1140 ALU_CASE(ishl, ishl);
1141 ALU_CASE(ishr, iasr);
1142 ALU_CASE(ushr, ilsr);
1143
1144 ALU_CASE(b32all_fequal2, fball_eq);
1145 ALU_CASE(b32all_fequal3, fball_eq);
1146 ALU_CASE(b32all_fequal4, fball_eq);
1147
1148 ALU_CASE(b32any_fnequal2, fbany_neq);
1149 ALU_CASE(b32any_fnequal3, fbany_neq);
1150 ALU_CASE(b32any_fnequal4, fbany_neq);
1151
1152 ALU_CASE(b32all_iequal2, iball_eq);
1153 ALU_CASE(b32all_iequal3, iball_eq);
1154 ALU_CASE(b32all_iequal4, iball_eq);
1155
1156 ALU_CASE(b32any_inequal2, ibany_neq);
1157 ALU_CASE(b32any_inequal3, ibany_neq);
1158 ALU_CASE(b32any_inequal4, ibany_neq);
1159
1160 /* For greater-or-equal, we lower to less-or-equal and flip the
1161 * arguments */
1162
1163 case nir_op_fge:
1164 case nir_op_fge32:
1165 case nir_op_ige32:
1166 case nir_op_uge32: {
1167 op =
1168 instr->op == nir_op_fge ? midgard_alu_op_fle :
1169 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1170 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1171 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1172 0;
1173
1174 /* Swap via temporary */
1175 nir_alu_src temp = instr->src[1];
1176 instr->src[1] = instr->src[0];
1177 instr->src[0] = temp;
1178
1179 break;
1180 }
1181
1182 case nir_op_b32csel: {
1183 op = midgard_alu_op_fcsel;
1184
1185 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1186 nr_inputs = 2;
1187
1188 /* Figure out which component the condition is in */
1189
1190 unsigned comp = instr->src[0].swizzle[0];
1191
1192 /* Make sure NIR isn't throwing a mixed condition at us */
1193
1194 for (unsigned c = 1; c < nr_components; ++c)
1195 assert(instr->src[0].swizzle[c] == comp);
1196
1197 /* Emit the condition into r31.w */
1198 emit_condition(ctx, &instr->src[0].src, false, comp);
1199
1200 /* The condition is the first argument; move the other
1201 * arguments up one to be a binary instruction for
1202 * Midgard */
1203
1204 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1205 break;
1206 }
1207
1208 default:
1209 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1210 assert(0);
1211 return;
1212 }
1213
1214 /* Fetch unit, quirks, etc information */
1215 unsigned opcode_props = alu_opcode_props[op];
1216 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1217
1218 /* Initialise fields common between scalar/vector instructions */
1219 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1220
1221 /* src0 will always exist afaik, but src1 will not for 1-argument
1222 * instructions. The latter can only be fetched if the instruction
1223 * needs it, or else we may segfault. */
1224
1225 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1226 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1227
1228 /* Rather than use the instruction generation helpers, we do it
1229 * ourselves here to avoid the mess */
1230
1231 midgard_instruction ins = {
1232 .type = TAG_ALU_4,
1233 .ssa_args = {
1234 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1235 .src1 = quirk_flipped_r24 ? src0 : src1,
1236 .dest = dest,
1237 }
1238 };
1239
1240 nir_alu_src *nirmods[2] = { NULL };
1241
1242 if (nr_inputs == 2) {
1243 nirmods[0] = &instr->src[0];
1244 nirmods[1] = &instr->src[1];
1245 } else if (nr_inputs == 1) {
1246 nirmods[quirk_flipped_r24] = &instr->src[0];
1247 } else {
1248 assert(0);
1249 }
1250
1251 midgard_vector_alu alu = {
1252 .op = op,
1253 .reg_mode = midgard_reg_mode_full,
1254 .dest_override = midgard_dest_override_none,
1255 .outmod = outmod,
1256
1257 /* Writemask only valid for non-SSA NIR */
1258 .mask = expand_writemask((1 << nr_components) - 1),
1259
1260 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1261 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1262 };
1263
1264 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1265
1266 if (!is_ssa)
1267 alu.mask &= expand_writemask(instr->dest.write_mask);
1268
1269 ins.alu = alu;
1270
1271 /* Late fixup for emulated instructions */
1272
1273 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1274 /* Presently, our second argument is an inline #0 constant.
1275 * Switch over to an embedded 1.0 constant (that can't fit
1276 * inline, since we're 32-bit, not 16-bit like the inline
1277 * constants) */
1278
1279 ins.ssa_args.inline_constant = false;
1280 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1281 ins.has_constants = true;
1282
1283 if (instr->op == nir_op_b2f32) {
1284 ins.constants[0] = 1.0f;
1285 } else {
1286 /* Type pun it into place */
1287 uint32_t one = 0x1;
1288 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1289 }
1290
1291 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1292 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1293 ins.ssa_args.inline_constant = false;
1294 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1295 ins.has_constants = true;
1296 ins.constants[0] = 0.0f;
1297 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1298 }
1299
1300 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1301 /* To avoid duplicating the lookup tables (probably), true LUT
1302 * instructions can only operate as if they were scalars. Lower
1303 * them here by changing the component. */
1304
1305 uint8_t original_swizzle[4];
1306 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1307
1308 for (int i = 0; i < nr_components; ++i) {
1309 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1310
1311 for (int j = 0; j < 4; ++j)
1312 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1313
1314 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1315 emit_mir_instruction(ctx, ins);
1316 }
1317 } else {
1318 emit_mir_instruction(ctx, ins);
1319 }
1320 }
1321
1322 #undef ALU_CASE
1323
1324 static void
1325 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1326 {
1327 /* TODO: half-floats */
1328
1329 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1330 /* Fast path: For the first 16 uniforms, direct accesses are
1331 * 0-cycle, since they're just a register fetch in the usual
1332 * case. So, we alias the registers while we're still in
1333 * SSA-space */
1334
1335 int reg_slot = 23 - offset;
1336 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1337 } else {
1338 /* Otherwise, read from the 'special' UBO to access
1339 * higher-indexed uniforms, at a performance cost. More
1340 * generally, we're emitting a UBO read instruction. */
1341
1342 midgard_instruction ins = m_load_uniform_32(dest, offset);
1343
1344 /* TODO: Don't split */
1345 ins.load_store.varying_parameters = (offset & 7) << 7;
1346 ins.load_store.address = offset >> 3;
1347
1348 if (indirect_offset) {
1349 emit_indirect_offset(ctx, indirect_offset);
1350 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1351 } else {
1352 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1353 }
1354
1355 emit_mir_instruction(ctx, ins);
1356 }
1357 }
1358
1359 static void
1360 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1361 {
1362 /* First, pull out the destination */
1363 unsigned dest = nir_dest_index(ctx, &instr->dest);
1364
1365 /* Now, figure out which uniform this is */
1366 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1367 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1368
1369 /* Sysvals are prefix uniforms */
1370 unsigned uniform = ((uintptr_t) val) - 1;
1371
1372 /* Emit the read itself -- this is never indirect */
1373 emit_uniform_read(ctx, dest, uniform, NULL);
1374 }
1375
1376 static void
1377 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1378 {
1379 unsigned offset, reg;
1380
1381 switch (instr->intrinsic) {
1382 case nir_intrinsic_discard_if:
1383 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1384
1385 /* fallthrough */
1386
1387 case nir_intrinsic_discard: {
1388 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1389 struct midgard_instruction discard = v_branch(conditional, false);
1390 discard.branch.target_type = TARGET_DISCARD;
1391 emit_mir_instruction(ctx, discard);
1392
1393 ctx->can_discard = true;
1394 break;
1395 }
1396
1397 case nir_intrinsic_load_uniform:
1398 case nir_intrinsic_load_input:
1399 offset = nir_intrinsic_base(instr);
1400
1401 bool direct = nir_src_is_const(instr->src[0]);
1402
1403 if (direct) {
1404 offset += nir_src_as_uint(instr->src[0]);
1405 }
1406
1407 reg = nir_dest_index(ctx, &instr->dest);
1408
1409 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1410 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1411 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1412 /* XXX: Half-floats? */
1413 /* TODO: swizzle, mask */
1414
1415 midgard_instruction ins = m_load_vary_32(reg, offset);
1416
1417 midgard_varying_parameter p = {
1418 .is_varying = 1,
1419 .interpolation = midgard_interp_default,
1420 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1421 };
1422
1423 unsigned u;
1424 memcpy(&u, &p, sizeof(p));
1425 ins.load_store.varying_parameters = u;
1426
1427 if (direct) {
1428 /* We have the offset totally ready */
1429 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1430 } else {
1431 /* We have it partially ready, but we need to
1432 * add in the dynamic index, moved to r27.w */
1433 emit_indirect_offset(ctx, &instr->src[0]);
1434 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1435 }
1436
1437 emit_mir_instruction(ctx, ins);
1438 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1439 /* Constant encoded as a pinned constant */
1440
1441 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1442 ins.has_constants = true;
1443 ins.has_blend_constant = true;
1444 emit_mir_instruction(ctx, ins);
1445 } else if (ctx->is_blend) {
1446 /* For blend shaders, a load might be
1447 * translated various ways depending on what
1448 * we're loading. Figure out how this is used */
1449
1450 nir_variable *out = NULL;
1451
1452 nir_foreach_variable(var, &ctx->nir->inputs) {
1453 int drvloc = var->data.driver_location;
1454
1455 if (nir_intrinsic_base(instr) == drvloc) {
1456 out = var;
1457 break;
1458 }
1459 }
1460
1461 assert(out);
1462
1463 if (out->data.location == VARYING_SLOT_COL0) {
1464 /* Source color preloaded to r0 */
1465
1466 midgard_pin_output(ctx, reg, 0);
1467 } else if (out->data.location == VARYING_SLOT_COL1) {
1468 /* Destination color must be read from framebuffer */
1469
1470 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1471 ins.load_store.swizzle = 0; /* xxxx */
1472
1473 /* Read each component sequentially */
1474
1475 for (int c = 0; c < 4; ++c) {
1476 ins.load_store.mask = (1 << c);
1477 ins.load_store.unknown = c;
1478 emit_mir_instruction(ctx, ins);
1479 }
1480
1481 /* vadd.u2f hr2, abs(hr2), #0 */
1482
1483 midgard_vector_alu_src alu_src = blank_alu_src;
1484 alu_src.abs = true;
1485 alu_src.half = true;
1486
1487 midgard_instruction u2f = {
1488 .type = TAG_ALU_4,
1489 .ssa_args = {
1490 .src0 = reg,
1491 .src1 = SSA_UNUSED_0,
1492 .dest = reg,
1493 .inline_constant = true
1494 },
1495 .alu = {
1496 .op = midgard_alu_op_u2f,
1497 .reg_mode = midgard_reg_mode_half,
1498 .dest_override = midgard_dest_override_none,
1499 .mask = 0xF,
1500 .src1 = vector_alu_srco_unsigned(alu_src),
1501 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1502 }
1503 };
1504
1505 emit_mir_instruction(ctx, u2f);
1506
1507 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1508
1509 alu_src.abs = false;
1510
1511 midgard_instruction fmul = {
1512 .type = TAG_ALU_4,
1513 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1514 .ssa_args = {
1515 .src0 = reg,
1516 .dest = reg,
1517 .src1 = SSA_UNUSED_0,
1518 .inline_constant = true
1519 },
1520 .alu = {
1521 .op = midgard_alu_op_fmul,
1522 .reg_mode = midgard_reg_mode_full,
1523 .dest_override = midgard_dest_override_none,
1524 .outmod = midgard_outmod_sat,
1525 .mask = 0xFF,
1526 .src1 = vector_alu_srco_unsigned(alu_src),
1527 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1528 }
1529 };
1530
1531 emit_mir_instruction(ctx, fmul);
1532 } else {
1533 DBG("Unknown input in blend shader\n");
1534 assert(0);
1535 }
1536 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1537 midgard_instruction ins = m_load_attr_32(reg, offset);
1538 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1539 ins.load_store.mask = (1 << instr->num_components) - 1;
1540 emit_mir_instruction(ctx, ins);
1541 } else {
1542 DBG("Unknown load\n");
1543 assert(0);
1544 }
1545
1546 break;
1547
1548 case nir_intrinsic_store_output:
1549 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1550
1551 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1552
1553 reg = nir_src_index(ctx, &instr->src[0]);
1554
1555 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1556 /* gl_FragColor is not emitted with load/store
1557 * instructions. Instead, it gets plonked into
1558 * r0 at the end of the shader and we do the
1559 * framebuffer writeout dance. TODO: Defer
1560 * writes */
1561
1562 midgard_pin_output(ctx, reg, 0);
1563
1564 /* Save the index we're writing to for later reference
1565 * in the epilogue */
1566
1567 ctx->fragment_output = reg;
1568 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1569 /* Varyings are written into one of two special
1570 * varying register, r26 or r27. The register itself is selected as the register
1571 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1572 *
1573 * Normally emitting fmov's is frowned upon,
1574 * but due to unique constraints of
1575 * REGISTER_VARYING, fmov emission + a
1576 * dedicated cleanup pass is the only way to
1577 * guarantee correctness when considering some
1578 * (common) edge cases XXX: FIXME */
1579
1580 /* If this varying corresponds to a constant (why?!),
1581 * emit that now since it won't get picked up by
1582 * hoisting (since there is no corresponding move
1583 * emitted otherwise) */
1584
1585 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1586
1587 if (constant_value) {
1588 /* Special case: emit the varying write
1589 * directly to r26 (looks funny in asm but it's
1590 * fine) and emit the store _now_. Possibly
1591 * slightly slower, but this is a really stupid
1592 * special case anyway (why on earth would you
1593 * have a constant varying? Your own fault for
1594 * slightly worse perf :P) */
1595
1596 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1597 attach_constants(ctx, &ins, constant_value, reg + 1);
1598 emit_mir_instruction(ctx, ins);
1599
1600 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1601 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1602 emit_mir_instruction(ctx, st);
1603 } else {
1604 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1605
1606 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1607 }
1608 } else {
1609 DBG("Unknown store\n");
1610 assert(0);
1611 }
1612
1613 break;
1614
1615 case nir_intrinsic_load_alpha_ref_float:
1616 assert(instr->dest.is_ssa);
1617
1618 float ref_value = ctx->alpha_ref;
1619
1620 float *v = ralloc_array(NULL, float, 4);
1621 memcpy(v, &ref_value, sizeof(float));
1622 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1623 break;
1624
1625 case nir_intrinsic_load_viewport_scale:
1626 case nir_intrinsic_load_viewport_offset:
1627 emit_sysval_read(ctx, instr);
1628 break;
1629
1630 default:
1631 printf ("Unhandled intrinsic\n");
1632 assert(0);
1633 break;
1634 }
1635 }
1636
1637 static unsigned
1638 midgard_tex_format(enum glsl_sampler_dim dim)
1639 {
1640 switch (dim) {
1641 case GLSL_SAMPLER_DIM_2D:
1642 case GLSL_SAMPLER_DIM_EXTERNAL:
1643 return TEXTURE_2D;
1644
1645 case GLSL_SAMPLER_DIM_3D:
1646 return TEXTURE_3D;
1647
1648 case GLSL_SAMPLER_DIM_CUBE:
1649 return TEXTURE_CUBE;
1650
1651 default:
1652 DBG("Unknown sampler dim type\n");
1653 assert(0);
1654 return 0;
1655 }
1656 }
1657
1658 static void
1659 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1660 {
1661 /* TODO */
1662 //assert (!instr->sampler);
1663 //assert (!instr->texture_array_size);
1664 assert (instr->op == nir_texop_tex);
1665
1666 /* Allocate registers via a round robin scheme to alternate between the two registers */
1667 int reg = ctx->texture_op_count & 1;
1668 int in_reg = reg, out_reg = reg;
1669
1670 /* Make room for the reg */
1671
1672 if (ctx->texture_index[reg] > -1)
1673 unalias_ssa(ctx, ctx->texture_index[reg]);
1674
1675 int texture_index = instr->texture_index;
1676 int sampler_index = texture_index;
1677
1678 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1679 switch (instr->src[i].src_type) {
1680 case nir_tex_src_coord: {
1681 int index = nir_src_index(ctx, &instr->src[i].src);
1682
1683 midgard_vector_alu_src alu_src = blank_alu_src;
1684
1685 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1686
1687 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1688 /* For cubemaps, we need to load coords into
1689 * special r27, and then use a special ld/st op
1690 * to copy into the texture register */
1691
1692 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1693
1694 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1695 emit_mir_instruction(ctx, move);
1696
1697 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1698 st.load_store.unknown = 0x24; /* XXX: What is this? */
1699 st.load_store.mask = 0x3; /* xy? */
1700 st.load_store.swizzle = alu_src.swizzle;
1701 emit_mir_instruction(ctx, st);
1702
1703 } else {
1704 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1705
1706 midgard_instruction ins = v_fmov(index, alu_src, reg);
1707 emit_mir_instruction(ctx, ins);
1708 }
1709
1710 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1711
1712 break;
1713 }
1714
1715 default: {
1716 DBG("Unknown source type\n");
1717 //assert(0);
1718 break;
1719 }
1720 }
1721 }
1722
1723 /* No helper to build texture words -- we do it all here */
1724 midgard_instruction ins = {
1725 .type = TAG_TEXTURE_4,
1726 .texture = {
1727 .op = TEXTURE_OP_NORMAL,
1728 .format = midgard_tex_format(instr->sampler_dim),
1729 .texture_handle = texture_index,
1730 .sampler_handle = sampler_index,
1731
1732 /* TODO: Don't force xyzw */
1733 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1734 .mask = 0xF,
1735
1736 /* TODO: half */
1737 //.in_reg_full = 1,
1738 .out_full = 1,
1739
1740 .filter = 1,
1741
1742 /* Always 1 */
1743 .unknown7 = 1,
1744
1745 /* Assume we can continue; hint it out later */
1746 .cont = 1,
1747 }
1748 };
1749
1750 /* Set registers to read and write from the same place */
1751 ins.texture.in_reg_select = in_reg;
1752 ins.texture.out_reg_select = out_reg;
1753
1754 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1755 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1756 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1757 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1758 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1759 } else {
1760 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1761 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1762 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1763 }
1764
1765 emit_mir_instruction(ctx, ins);
1766
1767 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1768
1769 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1770 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1771 ctx->texture_index[reg] = o_index;
1772
1773 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1774 emit_mir_instruction(ctx, ins2);
1775
1776 /* Used for .cont and .last hinting */
1777 ctx->texture_op_count++;
1778 }
1779
1780 static void
1781 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1782 {
1783 switch (instr->type) {
1784 case nir_jump_break: {
1785 /* Emit a branch out of the loop */
1786 struct midgard_instruction br = v_branch(false, false);
1787 br.branch.target_type = TARGET_BREAK;
1788 br.branch.target_break = ctx->current_loop;
1789 emit_mir_instruction(ctx, br);
1790
1791 DBG("break..\n");
1792 break;
1793 }
1794
1795 default:
1796 DBG("Unknown jump type %d\n", instr->type);
1797 break;
1798 }
1799 }
1800
1801 static void
1802 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1803 {
1804 switch (instr->type) {
1805 case nir_instr_type_load_const:
1806 emit_load_const(ctx, nir_instr_as_load_const(instr));
1807 break;
1808
1809 case nir_instr_type_intrinsic:
1810 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1811 break;
1812
1813 case nir_instr_type_alu:
1814 emit_alu(ctx, nir_instr_as_alu(instr));
1815 break;
1816
1817 case nir_instr_type_tex:
1818 emit_tex(ctx, nir_instr_as_tex(instr));
1819 break;
1820
1821 case nir_instr_type_jump:
1822 emit_jump(ctx, nir_instr_as_jump(instr));
1823 break;
1824
1825 case nir_instr_type_ssa_undef:
1826 /* Spurious */
1827 break;
1828
1829 default:
1830 DBG("Unhandled instruction type\n");
1831 break;
1832 }
1833 }
1834
1835 /* Determine the actual hardware from the index based on the RA results or special values */
1836
1837 static int
1838 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1839 {
1840 if (reg >= SSA_FIXED_MINIMUM)
1841 return SSA_REG_FROM_FIXED(reg);
1842
1843 if (reg >= 0) {
1844 assert(reg < maxreg);
1845 int r = ra_get_node_reg(g, reg);
1846 ctx->work_registers = MAX2(ctx->work_registers, r);
1847 return r;
1848 }
1849
1850 switch (reg) {
1851 /* fmov style unused */
1852 case SSA_UNUSED_0:
1853 return REGISTER_UNUSED;
1854
1855 /* lut style unused */
1856 case SSA_UNUSED_1:
1857 return REGISTER_UNUSED;
1858
1859 default:
1860 DBG("Unknown SSA register alias %d\n", reg);
1861 assert(0);
1862 return 31;
1863 }
1864 }
1865
1866 static unsigned int
1867 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1868 {
1869 /* Choose the first available register to minimise reported register pressure */
1870
1871 for (int i = 0; i < 16; ++i) {
1872 if (BITSET_TEST(regs, i)) {
1873 return i;
1874 }
1875 }
1876
1877 assert(0);
1878 return 0;
1879 }
1880
1881 static bool
1882 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1883 {
1884 if (ins->ssa_args.src0 == src) return true;
1885 if (ins->ssa_args.src1 == src) return true;
1886
1887 return false;
1888 }
1889
1890 /* Determine if a variable is live in the successors of a block */
1891 static bool
1892 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1893 {
1894 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1895 midgard_block *succ = bl->successors[i];
1896
1897 /* If we already visited, the value we're seeking
1898 * isn't down this path (or we would have short
1899 * circuited */
1900
1901 if (succ->visited) continue;
1902
1903 /* Otherwise (it's visited *now*), check the block */
1904
1905 succ->visited = true;
1906
1907 mir_foreach_instr_in_block(succ, ins) {
1908 if (midgard_is_live_in_instr(ins, src))
1909 return true;
1910 }
1911
1912 /* ...and also, check *its* successors */
1913 if (is_live_after_successors(ctx, succ, src))
1914 return true;
1915
1916 }
1917
1918 /* Welp. We're really not live. */
1919
1920 return false;
1921 }
1922
1923 static bool
1924 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1925 {
1926 /* Check the rest of the block for liveness */
1927
1928 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1929 if (midgard_is_live_in_instr(ins, src))
1930 return true;
1931 }
1932
1933 /* Check the rest of the blocks for liveness recursively */
1934
1935 bool succ = is_live_after_successors(ctx, block, src);
1936
1937 mir_foreach_block(ctx, block) {
1938 block->visited = false;
1939 }
1940
1941 return succ;
1942 }
1943
1944 static void
1945 allocate_registers(compiler_context *ctx)
1946 {
1947 /* First, initialize the RA */
1948 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1949
1950 /* Create a primary (general purpose) class, as well as special purpose
1951 * pipeline register classes */
1952
1953 int primary_class = ra_alloc_reg_class(regs);
1954 int varying_class = ra_alloc_reg_class(regs);
1955
1956 /* Add the full set of work registers */
1957 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1958 for (int i = 0; i < work_count; ++i)
1959 ra_class_add_reg(regs, primary_class, i);
1960
1961 /* Add special registers */
1962 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1963 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1964
1965 /* We're done setting up */
1966 ra_set_finalize(regs, NULL);
1967
1968 /* Transform the MIR into squeezed index form */
1969 mir_foreach_block(ctx, block) {
1970 mir_foreach_instr_in_block(block, ins) {
1971 if (ins->compact_branch) continue;
1972
1973 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1974 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1975 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1976 }
1977 if (midgard_debug & MIDGARD_DBG_SHADERS)
1978 print_mir_block(block);
1979 }
1980
1981 /* Let's actually do register allocation */
1982 int nodes = ctx->temp_count;
1983 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1984
1985 /* Set everything to the work register class, unless it has somewhere
1986 * special to go */
1987
1988 mir_foreach_block(ctx, block) {
1989 mir_foreach_instr_in_block(block, ins) {
1990 if (ins->compact_branch) continue;
1991
1992 if (ins->ssa_args.dest < 0) continue;
1993
1994 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1995
1996 int class = primary_class;
1997
1998 ra_set_node_class(g, ins->ssa_args.dest, class);
1999 }
2000 }
2001
2002 for (int index = 0; index <= ctx->max_hash; ++index) {
2003 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2004
2005 if (temp) {
2006 unsigned reg = temp - 1;
2007 int t = find_or_allocate_temp(ctx, index);
2008 ra_set_node_reg(g, t, reg);
2009 }
2010 }
2011
2012 /* Determine liveness */
2013
2014 int *live_start = malloc(nodes * sizeof(int));
2015 int *live_end = malloc(nodes * sizeof(int));
2016
2017 /* Initialize as non-existent */
2018
2019 for (int i = 0; i < nodes; ++i) {
2020 live_start[i] = live_end[i] = -1;
2021 }
2022
2023 int d = 0;
2024
2025 mir_foreach_block(ctx, block) {
2026 mir_foreach_instr_in_block(block, ins) {
2027 if (ins->compact_branch) continue;
2028
2029 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2030 /* If this destination is not yet live, it is now since we just wrote it */
2031
2032 int dest = ins->ssa_args.dest;
2033
2034 if (live_start[dest] == -1)
2035 live_start[dest] = d;
2036 }
2037
2038 /* Since we just used a source, the source might be
2039 * dead now. Scan the rest of the block for
2040 * invocations, and if there are none, the source dies
2041 * */
2042
2043 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2044
2045 for (int src = 0; src < 2; ++src) {
2046 int s = sources[src];
2047
2048 if (s < 0) continue;
2049
2050 if (s >= SSA_FIXED_MINIMUM) continue;
2051
2052 if (!is_live_after(ctx, block, ins, s)) {
2053 live_end[s] = d;
2054 }
2055 }
2056
2057 ++d;
2058 }
2059 }
2060
2061 /* If a node still hasn't been killed, kill it now */
2062
2063 for (int i = 0; i < nodes; ++i) {
2064 /* live_start == -1 most likely indicates a pinned output */
2065
2066 if (live_end[i] == -1)
2067 live_end[i] = d;
2068 }
2069
2070 /* Setup interference between nodes that are live at the same time */
2071
2072 for (int i = 0; i < nodes; ++i) {
2073 for (int j = i + 1; j < nodes; ++j) {
2074 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2075 ra_add_node_interference(g, i, j);
2076 }
2077 }
2078
2079 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2080
2081 if (!ra_allocate(g)) {
2082 DBG("Error allocating registers\n");
2083 assert(0);
2084 }
2085
2086 /* Cleanup */
2087 free(live_start);
2088 free(live_end);
2089
2090 mir_foreach_block(ctx, block) {
2091 mir_foreach_instr_in_block(block, ins) {
2092 if (ins->compact_branch) continue;
2093
2094 ssa_args args = ins->ssa_args;
2095
2096 switch (ins->type) {
2097 case TAG_ALU_4:
2098 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2099
2100 ins->registers.src2_imm = args.inline_constant;
2101
2102 if (args.inline_constant) {
2103 /* Encode inline 16-bit constant as a vector by default */
2104
2105 ins->registers.src2_reg = ins->inline_constant >> 11;
2106
2107 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2108
2109 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2110 ins->alu.src2 = imm << 2;
2111 } else {
2112 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2113 }
2114
2115 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2116
2117 break;
2118
2119 case TAG_LOAD_STORE_4: {
2120 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2121 /* TODO: use ssa_args for store_vary */
2122 ins->load_store.reg = 0;
2123 } else {
2124 bool has_dest = args.dest >= 0;
2125 int ssa_arg = has_dest ? args.dest : args.src0;
2126
2127 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2128 }
2129
2130 break;
2131 }
2132
2133 default:
2134 break;
2135 }
2136 }
2137 }
2138 }
2139
2140 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2141 * use scalar ALU instructions, for functional or performance reasons. To do
2142 * this, we just demote vector ALU payloads to scalar. */
2143
2144 static int
2145 component_from_mask(unsigned mask)
2146 {
2147 for (int c = 0; c < 4; ++c) {
2148 if (mask & (3 << (2 * c)))
2149 return c;
2150 }
2151
2152 assert(0);
2153 return 0;
2154 }
2155
2156 static bool
2157 is_single_component_mask(unsigned mask)
2158 {
2159 int components = 0;
2160
2161 for (int c = 0; c < 4; ++c)
2162 if (mask & (3 << (2 * c)))
2163 components++;
2164
2165 return components == 1;
2166 }
2167
2168 /* Create a mask of accessed components from a swizzle to figure out vector
2169 * dependencies */
2170
2171 static unsigned
2172 swizzle_to_access_mask(unsigned swizzle)
2173 {
2174 unsigned component_mask = 0;
2175
2176 for (int i = 0; i < 4; ++i) {
2177 unsigned c = (swizzle >> (2 * i)) & 3;
2178 component_mask |= (1 << c);
2179 }
2180
2181 return component_mask;
2182 }
2183
2184 static unsigned
2185 vector_to_scalar_source(unsigned u)
2186 {
2187 midgard_vector_alu_src v;
2188 memcpy(&v, &u, sizeof(v));
2189
2190 midgard_scalar_alu_src s = {
2191 .abs = v.abs,
2192 .negate = v.negate,
2193 .full = !v.half,
2194 .component = (v.swizzle & 3) << 1
2195 };
2196
2197 unsigned o;
2198 memcpy(&o, &s, sizeof(s));
2199
2200 return o & ((1 << 6) - 1);
2201 }
2202
2203 static midgard_scalar_alu
2204 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2205 {
2206 /* The output component is from the mask */
2207 midgard_scalar_alu s = {
2208 .op = v.op,
2209 .src1 = vector_to_scalar_source(v.src1),
2210 .src2 = vector_to_scalar_source(v.src2),
2211 .unknown = 0,
2212 .outmod = v.outmod,
2213 .output_full = 1, /* TODO: Half */
2214 .output_component = component_from_mask(v.mask) << 1,
2215 };
2216
2217 /* Inline constant is passed along rather than trying to extract it
2218 * from v */
2219
2220 if (ins->ssa_args.inline_constant) {
2221 uint16_t imm = 0;
2222 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2223 imm |= (lower_11 >> 9) & 3;
2224 imm |= (lower_11 >> 6) & 4;
2225 imm |= (lower_11 >> 2) & 0x38;
2226 imm |= (lower_11 & 63) << 6;
2227
2228 s.src2 = imm;
2229 }
2230
2231 return s;
2232 }
2233
2234 /* Midgard prefetches instruction types, so during emission we need to
2235 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2236 * if this is the second to last and the last is an ALU, then it's also 1... */
2237
2238 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2239 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2240
2241 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2242 bytes_emitted += sizeof(type)
2243
2244 static void
2245 emit_binary_vector_instruction(midgard_instruction *ains,
2246 uint16_t *register_words, int *register_words_count,
2247 uint64_t *body_words, size_t *body_size, int *body_words_count,
2248 size_t *bytes_emitted)
2249 {
2250 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2251 *bytes_emitted += sizeof(midgard_reg_info);
2252
2253 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2254 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2255 *bytes_emitted += sizeof(midgard_vector_alu);
2256 }
2257
2258 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2259 * mind that we are a vector architecture and we can write to different
2260 * components simultaneously */
2261
2262 static bool
2263 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2264 {
2265 /* Each instruction reads some registers and writes to a register. See
2266 * where the first writes */
2267
2268 /* Figure out where exactly we wrote to */
2269 int source = first->ssa_args.dest;
2270 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2271
2272 /* As long as the second doesn't read from the first, we're okay */
2273 if (second->ssa_args.src0 == source) {
2274 if (first->type == TAG_ALU_4) {
2275 /* Figure out which components we just read from */
2276
2277 int q = second->alu.src1;
2278 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2279
2280 /* Check if there are components in common, and fail if so */
2281 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2282 return false;
2283 } else
2284 return false;
2285
2286 }
2287
2288 if (second->ssa_args.src1 == source)
2289 return false;
2290
2291 /* Otherwise, it's safe in that regard. Another data hazard is both
2292 * writing to the same place, of course */
2293
2294 if (second->ssa_args.dest == source) {
2295 /* ...but only if the components overlap */
2296 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2297
2298 if (dest_mask & source_mask)
2299 return false;
2300 }
2301
2302 /* ...That's it */
2303 return true;
2304 }
2305
2306 static bool
2307 midgard_has_hazard(
2308 midgard_instruction **segment, unsigned segment_size,
2309 midgard_instruction *ains)
2310 {
2311 for (int s = 0; s < segment_size; ++s)
2312 if (!can_run_concurrent_ssa(segment[s], ains))
2313 return true;
2314
2315 return false;
2316
2317
2318 }
2319
2320 /* Schedules, but does not emit, a single basic block. After scheduling, the
2321 * final tag and size of the block are known, which are necessary for branching
2322 * */
2323
2324 static midgard_bundle
2325 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2326 {
2327 int instructions_emitted = 0, instructions_consumed = -1;
2328 midgard_bundle bundle = { 0 };
2329
2330 uint8_t tag = ins->type;
2331
2332 /* Default to the instruction's tag */
2333 bundle.tag = tag;
2334
2335 switch (ins->type) {
2336 case TAG_ALU_4: {
2337 uint32_t control = 0;
2338 size_t bytes_emitted = sizeof(control);
2339
2340 /* TODO: Constant combining */
2341 int index = 0, last_unit = 0;
2342
2343 /* Previous instructions, for the purpose of parallelism */
2344 midgard_instruction *segment[4] = {0};
2345 int segment_size = 0;
2346
2347 instructions_emitted = -1;
2348 midgard_instruction *pins = ins;
2349
2350 for (;;) {
2351 midgard_instruction *ains = pins;
2352
2353 /* Advance instruction pointer */
2354 if (index) {
2355 ains = mir_next_op(pins);
2356 pins = ains;
2357 }
2358
2359 /* Out-of-work condition */
2360 if ((struct list_head *) ains == &block->instructions)
2361 break;
2362
2363 /* Ensure that the chain can continue */
2364 if (ains->type != TAG_ALU_4) break;
2365
2366 /* According to the presentation "The ARM
2367 * Mali-T880 Mobile GPU" from HotChips 27,
2368 * there are two pipeline stages. Branching
2369 * position determined experimentally. Lines
2370 * are executed in parallel:
2371 *
2372 * [ VMUL ] [ SADD ]
2373 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2374 *
2375 * Verify that there are no ordering dependencies here.
2376 *
2377 * TODO: Allow for parallelism!!!
2378 */
2379
2380 /* Pick a unit for it if it doesn't force a particular unit */
2381
2382 int unit = ains->unit;
2383
2384 if (!unit) {
2385 int op = ains->alu.op;
2386 int units = alu_opcode_props[op];
2387
2388 /* TODO: Promotion of scalars to vectors */
2389 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2390
2391 if (!vector)
2392 assert(units & UNITS_SCALAR);
2393
2394 if (vector) {
2395 if (last_unit >= UNIT_VADD) {
2396 if (units & UNIT_VLUT)
2397 unit = UNIT_VLUT;
2398 else
2399 break;
2400 } else {
2401 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2402 unit = UNIT_VMUL;
2403 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2404 unit = UNIT_VADD;
2405 else if (units & UNIT_VLUT)
2406 unit = UNIT_VLUT;
2407 else
2408 break;
2409 }
2410 } else {
2411 if (last_unit >= UNIT_VADD) {
2412 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2413 unit = UNIT_SMUL;
2414 else if (units & UNIT_VLUT)
2415 unit = UNIT_VLUT;
2416 else
2417 break;
2418 } else {
2419 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2420 unit = UNIT_SADD;
2421 else if (units & UNIT_SMUL)
2422 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2423 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2424 unit = UNIT_VADD;
2425 else
2426 break;
2427 }
2428 }
2429
2430 assert(unit & units);
2431 }
2432
2433 /* Late unit check, this time for encoding (not parallelism) */
2434 if (unit <= last_unit) break;
2435
2436 /* Clear the segment */
2437 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2438 segment_size = 0;
2439
2440 if (midgard_has_hazard(segment, segment_size, ains))
2441 break;
2442
2443 /* We're good to go -- emit the instruction */
2444 ains->unit = unit;
2445
2446 segment[segment_size++] = ains;
2447
2448 /* Only one set of embedded constants per
2449 * bundle possible; if we have more, we must
2450 * break the chain early, unfortunately */
2451
2452 if (ains->has_constants) {
2453 if (bundle.has_embedded_constants) {
2454 /* ...but if there are already
2455 * constants but these are the
2456 * *same* constants, we let it
2457 * through */
2458
2459 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2460 break;
2461 } else {
2462 bundle.has_embedded_constants = true;
2463 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2464
2465 /* If this is a blend shader special constant, track it for patching */
2466 if (ains->has_blend_constant)
2467 bundle.has_blend_constant = true;
2468 }
2469 }
2470
2471 if (ains->unit & UNITS_ANY_VECTOR) {
2472 emit_binary_vector_instruction(ains, bundle.register_words,
2473 &bundle.register_words_count, bundle.body_words,
2474 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2475 } else if (ains->compact_branch) {
2476 /* All of r0 has to be written out
2477 * along with the branch writeout.
2478 * (slow!) */
2479
2480 if (ains->writeout) {
2481 if (index == 0) {
2482 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2483 ins.unit = UNIT_VMUL;
2484
2485 control |= ins.unit;
2486
2487 emit_binary_vector_instruction(&ins, bundle.register_words,
2488 &bundle.register_words_count, bundle.body_words,
2489 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2490 } else {
2491 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2492 bool written_late = false;
2493 bool components[4] = { 0 };
2494 uint16_t register_dep_mask = 0;
2495 uint16_t written_mask = 0;
2496
2497 midgard_instruction *qins = ins;
2498 for (int t = 0; t < index; ++t) {
2499 if (qins->registers.out_reg != 0) {
2500 /* Mark down writes */
2501
2502 written_mask |= (1 << qins->registers.out_reg);
2503 } else {
2504 /* Mark down the register dependencies for errata check */
2505
2506 if (qins->registers.src1_reg < 16)
2507 register_dep_mask |= (1 << qins->registers.src1_reg);
2508
2509 if (qins->registers.src2_reg < 16)
2510 register_dep_mask |= (1 << qins->registers.src2_reg);
2511
2512 int mask = qins->alu.mask;
2513
2514 for (int c = 0; c < 4; ++c)
2515 if (mask & (0x3 << (2 * c)))
2516 components[c] = true;
2517
2518 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2519
2520 if (qins->unit == UNIT_VLUT)
2521 written_late = true;
2522 }
2523
2524 /* Advance instruction pointer */
2525 qins = mir_next_op(qins);
2526 }
2527
2528
2529 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2530 if (register_dep_mask & written_mask) {
2531 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2532 break;
2533 }
2534
2535 if (written_late)
2536 break;
2537
2538 /* If even a single component is not written, break it up (conservative check). */
2539 bool breakup = false;
2540
2541 for (int c = 0; c < 4; ++c)
2542 if (!components[c])
2543 breakup = true;
2544
2545 if (breakup)
2546 break;
2547
2548 /* Otherwise, we're free to proceed */
2549 }
2550 }
2551
2552 if (ains->unit == ALU_ENAB_BRANCH) {
2553 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2554 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2555 bytes_emitted += sizeof(midgard_branch_extended);
2556 } else {
2557 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2558 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2559 bytes_emitted += sizeof(ains->br_compact);
2560 }
2561 } else {
2562 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2563 bytes_emitted += sizeof(midgard_reg_info);
2564
2565 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2566 bundle.body_words_count++;
2567 bytes_emitted += sizeof(midgard_scalar_alu);
2568 }
2569
2570 /* Defer marking until after writing to allow for break */
2571 control |= ains->unit;
2572 last_unit = ains->unit;
2573 ++instructions_emitted;
2574 ++index;
2575 }
2576
2577 /* Bubble up the number of instructions for skipping */
2578 instructions_consumed = index - 1;
2579
2580 int padding = 0;
2581
2582 /* Pad ALU op to nearest word */
2583
2584 if (bytes_emitted & 15) {
2585 padding = 16 - (bytes_emitted & 15);
2586 bytes_emitted += padding;
2587 }
2588
2589 /* Constants must always be quadwords */
2590 if (bundle.has_embedded_constants)
2591 bytes_emitted += 16;
2592
2593 /* Size ALU instruction for tag */
2594 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2595 bundle.padding = padding;
2596 bundle.control = bundle.tag | control;
2597
2598 break;
2599 }
2600
2601 case TAG_LOAD_STORE_4: {
2602 /* Load store instructions have two words at once. If
2603 * we only have one queued up, we need to NOP pad.
2604 * Otherwise, we store both in succession to save space
2605 * and cycles -- letting them go in parallel -- skip
2606 * the next. The usefulness of this optimisation is
2607 * greatly dependent on the quality of the instruction
2608 * scheduler.
2609 */
2610
2611 midgard_instruction *next_op = mir_next_op(ins);
2612
2613 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2614 /* As the two operate concurrently, make sure
2615 * they are not dependent */
2616
2617 if (can_run_concurrent_ssa(ins, next_op) || true) {
2618 /* Skip ahead, since it's redundant with the pair */
2619 instructions_consumed = 1 + (instructions_emitted++);
2620 }
2621 }
2622
2623 break;
2624 }
2625
2626 default:
2627 /* Texture ops default to single-op-per-bundle scheduling */
2628 break;
2629 }
2630
2631 /* Copy the instructions into the bundle */
2632 bundle.instruction_count = instructions_emitted + 1;
2633
2634 int used_idx = 0;
2635
2636 midgard_instruction *uins = ins;
2637 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2638 bundle.instructions[used_idx++] = *uins;
2639 uins = mir_next_op(uins);
2640 }
2641
2642 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2643
2644 return bundle;
2645 }
2646
2647 static int
2648 quadword_size(int tag)
2649 {
2650 switch (tag) {
2651 case TAG_ALU_4:
2652 return 1;
2653
2654 case TAG_ALU_8:
2655 return 2;
2656
2657 case TAG_ALU_12:
2658 return 3;
2659
2660 case TAG_ALU_16:
2661 return 4;
2662
2663 case TAG_LOAD_STORE_4:
2664 return 1;
2665
2666 case TAG_TEXTURE_4:
2667 return 1;
2668
2669 default:
2670 assert(0);
2671 return 0;
2672 }
2673 }
2674
2675 /* Schedule a single block by iterating its instruction to create bundles.
2676 * While we go, tally about the bundle sizes to compute the block size. */
2677
2678 static void
2679 schedule_block(compiler_context *ctx, midgard_block *block)
2680 {
2681 util_dynarray_init(&block->bundles, NULL);
2682
2683 block->quadword_count = 0;
2684
2685 mir_foreach_instr_in_block(block, ins) {
2686 int skip;
2687 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2688 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2689
2690 if (bundle.has_blend_constant) {
2691 /* TODO: Multiblock? */
2692 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2693 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2694 }
2695
2696 while(skip--)
2697 ins = mir_next_op(ins);
2698
2699 block->quadword_count += quadword_size(bundle.tag);
2700 }
2701
2702 block->is_scheduled = true;
2703 }
2704
2705 static void
2706 schedule_program(compiler_context *ctx)
2707 {
2708 allocate_registers(ctx);
2709
2710 mir_foreach_block(ctx, block) {
2711 schedule_block(ctx, block);
2712 }
2713 }
2714
2715 /* After everything is scheduled, emit whole bundles at a time */
2716
2717 static void
2718 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2719 {
2720 int lookahead = next_tag << 4;
2721
2722 switch (bundle->tag) {
2723 case TAG_ALU_4:
2724 case TAG_ALU_8:
2725 case TAG_ALU_12:
2726 case TAG_ALU_16: {
2727 /* Actually emit each component */
2728 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2729
2730 for (int i = 0; i < bundle->register_words_count; ++i)
2731 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2732
2733 /* Emit body words based on the instructions bundled */
2734 for (int i = 0; i < bundle->instruction_count; ++i) {
2735 midgard_instruction *ins = &bundle->instructions[i];
2736
2737 if (ins->unit & UNITS_ANY_VECTOR) {
2738 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2739 } else if (ins->compact_branch) {
2740 /* Dummy move, XXX DRY */
2741 if ((i == 0) && ins->writeout) {
2742 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2743 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2744 }
2745
2746 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2747 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2748 } else {
2749 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2750 }
2751 } else {
2752 /* Scalar */
2753 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2754 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2755 }
2756 }
2757
2758 /* Emit padding (all zero) */
2759 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2760
2761 /* Tack on constants */
2762
2763 if (bundle->has_embedded_constants) {
2764 util_dynarray_append(emission, float, bundle->constants[0]);
2765 util_dynarray_append(emission, float, bundle->constants[1]);
2766 util_dynarray_append(emission, float, bundle->constants[2]);
2767 util_dynarray_append(emission, float, bundle->constants[3]);
2768 }
2769
2770 break;
2771 }
2772
2773 case TAG_LOAD_STORE_4: {
2774 /* One or two composing instructions */
2775
2776 uint64_t current64, next64 = LDST_NOP;
2777
2778 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2779
2780 if (bundle->instruction_count == 2)
2781 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2782
2783 midgard_load_store instruction = {
2784 .type = bundle->tag,
2785 .next_type = next_tag,
2786 .word1 = current64,
2787 .word2 = next64
2788 };
2789
2790 util_dynarray_append(emission, midgard_load_store, instruction);
2791
2792 break;
2793 }
2794
2795 case TAG_TEXTURE_4: {
2796 /* Texture instructions are easy, since there is no
2797 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2798
2799 midgard_instruction *ins = &bundle->instructions[0];
2800
2801 ins->texture.type = TAG_TEXTURE_4;
2802 ins->texture.next_type = next_tag;
2803
2804 ctx->texture_op_count--;
2805
2806 if (!ctx->texture_op_count) {
2807 ins->texture.cont = 0;
2808 ins->texture.last = 1;
2809 }
2810
2811 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2812 break;
2813 }
2814
2815 default:
2816 DBG("Unknown midgard instruction type\n");
2817 assert(0);
2818 break;
2819 }
2820 }
2821
2822
2823 /* ALU instructions can inline or embed constants, which decreases register
2824 * pressure and saves space. */
2825
2826 #define CONDITIONAL_ATTACH(src) { \
2827 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2828 \
2829 if (entry) { \
2830 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2831 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2832 } \
2833 }
2834
2835 static void
2836 inline_alu_constants(compiler_context *ctx)
2837 {
2838 mir_foreach_instr(ctx, alu) {
2839 /* Other instructions cannot inline constants */
2840 if (alu->type != TAG_ALU_4) continue;
2841
2842 /* If there is already a constant here, we can do nothing */
2843 if (alu->has_constants) continue;
2844
2845 CONDITIONAL_ATTACH(src0);
2846
2847 if (!alu->has_constants) {
2848 CONDITIONAL_ATTACH(src1)
2849 } else if (!alu->inline_constant) {
2850 /* Corner case: _two_ vec4 constants, for instance with a
2851 * csel. For this case, we can only use a constant
2852 * register for one, we'll have to emit a move for the
2853 * other. Note, if both arguments are constants, then
2854 * necessarily neither argument depends on the value of
2855 * any particular register. As the destination register
2856 * will be wiped, that means we can spill the constant
2857 * to the destination register.
2858 */
2859
2860 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2861 unsigned scratch = alu->ssa_args.dest;
2862
2863 if (entry) {
2864 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2865 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2866
2867 /* Force a break XXX Defer r31 writes */
2868 ins.unit = UNIT_VLUT;
2869
2870 /* Set the source */
2871 alu->ssa_args.src1 = scratch;
2872
2873 /* Inject us -before- the last instruction which set r31 */
2874 mir_insert_instruction_before(mir_prev_op(alu), ins);
2875 }
2876 }
2877 }
2878 }
2879
2880 /* Midgard supports two types of constants, embedded constants (128-bit) and
2881 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2882 * constants can be demoted to inline constants, for space savings and
2883 * sometimes a performance boost */
2884
2885 static void
2886 embedded_to_inline_constant(compiler_context *ctx)
2887 {
2888 mir_foreach_instr(ctx, ins) {
2889 if (!ins->has_constants) continue;
2890
2891 if (ins->ssa_args.inline_constant) continue;
2892
2893 /* Blend constants must not be inlined by definition */
2894 if (ins->has_blend_constant) continue;
2895
2896 /* src1 cannot be an inline constant due to encoding
2897 * restrictions. So, if possible we try to flip the arguments
2898 * in that case */
2899
2900 int op = ins->alu.op;
2901
2902 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2903 /* Flip based on op. Fallthrough intentional */
2904
2905 switch (op) {
2906 /* These ops require an operational change to flip their arguments TODO */
2907 case midgard_alu_op_flt:
2908 case midgard_alu_op_fle:
2909 case midgard_alu_op_ilt:
2910 case midgard_alu_op_ile:
2911 case midgard_alu_op_fcsel:
2912 case midgard_alu_op_icsel:
2913 case midgard_alu_op_isub:
2914 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2915 break;
2916
2917 /* These ops are commutative and Just Flip */
2918 case midgard_alu_op_fne:
2919 case midgard_alu_op_fadd:
2920 case midgard_alu_op_fmul:
2921 case midgard_alu_op_fmin:
2922 case midgard_alu_op_fmax:
2923 case midgard_alu_op_iadd:
2924 case midgard_alu_op_imul:
2925 case midgard_alu_op_feq:
2926 case midgard_alu_op_ieq:
2927 case midgard_alu_op_ine:
2928 case midgard_alu_op_iand:
2929 case midgard_alu_op_ior:
2930 case midgard_alu_op_ixor:
2931 /* Flip the SSA numbers */
2932 ins->ssa_args.src0 = ins->ssa_args.src1;
2933 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2934
2935 /* And flip the modifiers */
2936
2937 unsigned src_temp;
2938
2939 src_temp = ins->alu.src2;
2940 ins->alu.src2 = ins->alu.src1;
2941 ins->alu.src1 = src_temp;
2942
2943 default:
2944 break;
2945 }
2946 }
2947
2948 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2949 /* Extract the source information */
2950
2951 midgard_vector_alu_src *src;
2952 int q = ins->alu.src2;
2953 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2954 src = m;
2955
2956 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2957 int component = src->swizzle & 3;
2958
2959 /* Scale constant appropriately, if we can legally */
2960 uint16_t scaled_constant = 0;
2961
2962 /* XXX: Check legality */
2963 if (midgard_is_integer_op(op)) {
2964 /* TODO: Inline integer */
2965 continue;
2966
2967 unsigned int *iconstants = (unsigned int *) ins->constants;
2968 scaled_constant = (uint16_t) iconstants[component];
2969
2970 /* Constant overflow after resize */
2971 if (scaled_constant != iconstants[component])
2972 continue;
2973 } else {
2974 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2975 }
2976
2977 /* We don't know how to handle these with a constant */
2978
2979 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2980 DBG("Bailing inline constant...\n");
2981 continue;
2982 }
2983
2984 /* Make sure that the constant is not itself a
2985 * vector by checking if all accessed values
2986 * (by the swizzle) are the same. */
2987
2988 uint32_t *cons = (uint32_t *) ins->constants;
2989 uint32_t value = cons[component];
2990
2991 bool is_vector = false;
2992 unsigned mask = effective_writemask(&ins->alu);
2993
2994 for (int c = 1; c < 4; ++c) {
2995 /* We only care if this component is actually used */
2996 if (!(mask & (1 << c)))
2997 continue;
2998
2999 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3000
3001 if (test != value) {
3002 is_vector = true;
3003 break;
3004 }
3005 }
3006
3007 if (is_vector)
3008 continue;
3009
3010 /* Get rid of the embedded constant */
3011 ins->has_constants = false;
3012 ins->ssa_args.src1 = SSA_UNUSED_0;
3013 ins->ssa_args.inline_constant = true;
3014 ins->inline_constant = scaled_constant;
3015 }
3016 }
3017 }
3018
3019 /* Map normal SSA sources to other SSA sources / fixed registers (like
3020 * uniforms) */
3021
3022 static void
3023 map_ssa_to_alias(compiler_context *ctx, int *ref)
3024 {
3025 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3026
3027 if (alias) {
3028 /* Remove entry in leftovers to avoid a redunant fmov */
3029
3030 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3031
3032 if (leftover)
3033 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3034
3035 /* Assign the alias map */
3036 *ref = alias - 1;
3037 return;
3038 }
3039 }
3040
3041 #define AS_SRC(to, u) \
3042 int q##to = ins->alu.src2; \
3043 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
3044
3045 /* Removing unused moves is necessary to clean up the texture pipeline results.
3046 *
3047 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
3048
3049 static void
3050 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
3051 {
3052 mir_foreach_instr_in_block_safe(block, ins) {
3053 if (ins->type != TAG_ALU_4) continue;
3054
3055 if (ins->alu.op != midgard_alu_op_fmov) continue;
3056
3057 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3058
3059 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3060
3061 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3062
3063 mir_remove_instruction(ins);
3064 }
3065 }
3066
3067 /* The following passes reorder MIR instructions to enable better scheduling */
3068
3069 static void
3070 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3071 {
3072 mir_foreach_instr_in_block_safe(block, ins) {
3073 if (ins->type != TAG_LOAD_STORE_4) continue;
3074
3075 /* We've found a load/store op. Check if next is also load/store. */
3076 midgard_instruction *next_op = mir_next_op(ins);
3077 if (&next_op->link != &block->instructions) {
3078 if (next_op->type == TAG_LOAD_STORE_4) {
3079 /* If so, we're done since we're a pair */
3080 ins = mir_next_op(ins);
3081 continue;
3082 }
3083
3084 /* Maximum search distance to pair, to avoid register pressure disasters */
3085 int search_distance = 8;
3086
3087 /* Otherwise, we have an orphaned load/store -- search for another load */
3088 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3089 /* Terminate search if necessary */
3090 if (!(search_distance--)) break;
3091
3092 if (c->type != TAG_LOAD_STORE_4) continue;
3093
3094 /* Stores cannot be reordered, since they have
3095 * dependencies. For the same reason, indirect
3096 * loads cannot be reordered as their index is
3097 * loaded in r27.w */
3098
3099 if (OP_IS_STORE(c->load_store.op)) continue;
3100
3101 /* It appears the 0x800 bit is set whenever a
3102 * load is direct, unset when it is indirect.
3103 * Skip indirect loads. */
3104
3105 if (!(c->load_store.unknown & 0x800)) continue;
3106
3107 /* We found one! Move it up to pair and remove it from the old location */
3108
3109 mir_insert_instruction_before(ins, *c);
3110 mir_remove_instruction(c);
3111
3112 break;
3113 }
3114 }
3115 }
3116 }
3117
3118 /* Emit varying stores late */
3119
3120 static void
3121 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3122 /* Iterate in reverse to get the final write, rather than the first */
3123
3124 mir_foreach_instr_in_block_safe_rev(block, ins) {
3125 /* Check if what we just wrote needs a store */
3126 int idx = ins->ssa_args.dest;
3127 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3128
3129 if (!varying) continue;
3130
3131 varying -= 1;
3132
3133 /* We need to store to the appropriate varying, so emit the
3134 * move/store */
3135
3136 /* TODO: Integrate with special purpose RA (and scheduler?) */
3137 bool high_varying_register = false;
3138
3139 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3140
3141 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3142 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3143
3144 mir_insert_instruction_before(mir_next_op(ins), st);
3145 mir_insert_instruction_before(mir_next_op(ins), mov);
3146
3147 /* We no longer need to store this varying */
3148 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3149 }
3150 }
3151
3152 /* If there are leftovers after the below pass, emit actual fmov
3153 * instructions for the slow-but-correct path */
3154
3155 static void
3156 emit_leftover_move(compiler_context *ctx)
3157 {
3158 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3159 int base = ((uintptr_t) leftover->key) - 1;
3160 int mapped = base;
3161
3162 map_ssa_to_alias(ctx, &mapped);
3163 EMIT(fmov, mapped, blank_alu_src, base);
3164 }
3165 }
3166
3167 static void
3168 actualise_ssa_to_alias(compiler_context *ctx)
3169 {
3170 mir_foreach_instr(ctx, ins) {
3171 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3172 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3173 }
3174
3175 emit_leftover_move(ctx);
3176 }
3177
3178 static void
3179 emit_fragment_epilogue(compiler_context *ctx)
3180 {
3181 /* Special case: writing out constants requires us to include the move
3182 * explicitly now, so shove it into r0 */
3183
3184 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3185
3186 if (constant_value) {
3187 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3188 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3189 emit_mir_instruction(ctx, ins);
3190 }
3191
3192 /* Perform the actual fragment writeout. We have two writeout/branch
3193 * instructions, forming a loop until writeout is successful as per the
3194 * docs. TODO: gl_FragDepth */
3195
3196 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3197 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3198 }
3199
3200 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3201 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3202 * with the int8 analogue to the fragment epilogue */
3203
3204 static void
3205 emit_blend_epilogue(compiler_context *ctx)
3206 {
3207 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3208
3209 midgard_instruction scale = {
3210 .type = TAG_ALU_4,
3211 .unit = UNIT_VMUL,
3212 .inline_constant = _mesa_float_to_half(255.0),
3213 .ssa_args = {
3214 .src0 = SSA_FIXED_REGISTER(0),
3215 .src1 = SSA_UNUSED_0,
3216 .dest = SSA_FIXED_REGISTER(24),
3217 .inline_constant = true
3218 },
3219 .alu = {
3220 .op = midgard_alu_op_fmul,
3221 .reg_mode = midgard_reg_mode_full,
3222 .dest_override = midgard_dest_override_lower,
3223 .mask = 0xFF,
3224 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3225 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3226 }
3227 };
3228
3229 emit_mir_instruction(ctx, scale);
3230
3231 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3232
3233 midgard_vector_alu_src alu_src = blank_alu_src;
3234 alu_src.half = true;
3235
3236 midgard_instruction f2u8 = {
3237 .type = TAG_ALU_4,
3238 .ssa_args = {
3239 .src0 = SSA_FIXED_REGISTER(24),
3240 .src1 = SSA_UNUSED_0,
3241 .dest = SSA_FIXED_REGISTER(0),
3242 .inline_constant = true
3243 },
3244 .alu = {
3245 .op = midgard_alu_op_f2u8,
3246 .reg_mode = midgard_reg_mode_half,
3247 .dest_override = midgard_dest_override_lower,
3248 .outmod = midgard_outmod_pos,
3249 .mask = 0xF,
3250 .src1 = vector_alu_srco_unsigned(alu_src),
3251 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3252 }
3253 };
3254
3255 emit_mir_instruction(ctx, f2u8);
3256
3257 /* vmul.imov.quarter r0, r0, r0 */
3258
3259 midgard_instruction imov_8 = {
3260 .type = TAG_ALU_4,
3261 .ssa_args = {
3262 .src0 = SSA_UNUSED_1,
3263 .src1 = SSA_FIXED_REGISTER(0),
3264 .dest = SSA_FIXED_REGISTER(0),
3265 },
3266 .alu = {
3267 .op = midgard_alu_op_imov,
3268 .reg_mode = midgard_reg_mode_quarter,
3269 .dest_override = midgard_dest_override_none,
3270 .mask = 0xFF,
3271 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3272 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3273 }
3274 };
3275
3276 /* Emit branch epilogue with the 8-bit move as the source */
3277
3278 emit_mir_instruction(ctx, imov_8);
3279 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3280
3281 emit_mir_instruction(ctx, imov_8);
3282 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3283 }
3284
3285 static midgard_block *
3286 emit_block(compiler_context *ctx, nir_block *block)
3287 {
3288 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3289 list_addtail(&this_block->link, &ctx->blocks);
3290
3291 this_block->is_scheduled = false;
3292 ++ctx->block_count;
3293
3294 ctx->texture_index[0] = -1;
3295 ctx->texture_index[1] = -1;
3296
3297 /* Add us as a successor to the block we are following */
3298 if (ctx->current_block)
3299 midgard_block_add_successor(ctx->current_block, this_block);
3300
3301 /* Set up current block */
3302 list_inithead(&this_block->instructions);
3303 ctx->current_block = this_block;
3304
3305 nir_foreach_instr(instr, block) {
3306 emit_instr(ctx, instr);
3307 ++ctx->instruction_count;
3308 }
3309
3310 inline_alu_constants(ctx);
3311 embedded_to_inline_constant(ctx);
3312
3313 /* Perform heavylifting for aliasing */
3314 actualise_ssa_to_alias(ctx);
3315
3316 midgard_emit_store(ctx, this_block);
3317 midgard_eliminate_orphan_moves(ctx, this_block);
3318 midgard_pair_load_store(ctx, this_block);
3319
3320 /* Append fragment shader epilogue (value writeout) */
3321 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3322 if (block == nir_impl_last_block(ctx->func->impl)) {
3323 if (ctx->is_blend)
3324 emit_blend_epilogue(ctx);
3325 else
3326 emit_fragment_epilogue(ctx);
3327 }
3328 }
3329
3330 if (block == nir_start_block(ctx->func->impl))
3331 ctx->initial_block = this_block;
3332
3333 if (block == nir_impl_last_block(ctx->func->impl))
3334 ctx->final_block = this_block;
3335
3336 /* Allow the next control flow to access us retroactively, for
3337 * branching etc */
3338 ctx->current_block = this_block;
3339
3340 /* Document the fallthrough chain */
3341 ctx->previous_source_block = this_block;
3342
3343 return this_block;
3344 }
3345
3346 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3347
3348 static void
3349 emit_if(struct compiler_context *ctx, nir_if *nif)
3350 {
3351 /* Conditional branches expect the condition in r31.w; emit a move for
3352 * that in the _previous_ block (which is the current block). */
3353 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3354
3355 /* Speculatively emit the branch, but we can't fill it in until later */
3356 EMIT(branch, true, true);
3357 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3358
3359 /* Emit the two subblocks */
3360 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3361
3362 /* Emit a jump from the end of the then block to the end of the else */
3363 EMIT(branch, false, false);
3364 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3365
3366 /* Emit second block, and check if it's empty */
3367
3368 int else_idx = ctx->block_count;
3369 int count_in = ctx->instruction_count;
3370 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3371 int after_else_idx = ctx->block_count;
3372
3373 /* Now that we have the subblocks emitted, fix up the branches */
3374
3375 assert(then_block);
3376 assert(else_block);
3377
3378 if (ctx->instruction_count == count_in) {
3379 /* The else block is empty, so don't emit an exit jump */
3380 mir_remove_instruction(then_exit);
3381 then_branch->branch.target_block = after_else_idx;
3382 } else {
3383 then_branch->branch.target_block = else_idx;
3384 then_exit->branch.target_block = after_else_idx;
3385 }
3386 }
3387
3388 static void
3389 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3390 {
3391 /* Remember where we are */
3392 midgard_block *start_block = ctx->current_block;
3393
3394 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3395 * single current_loop variable, maybe we need a stack */
3396
3397 int loop_idx = ++ctx->current_loop;
3398
3399 /* Get index from before the body so we can loop back later */
3400 int start_idx = ctx->block_count;
3401
3402 /* Emit the body itself */
3403 emit_cf_list(ctx, &nloop->body);
3404
3405 /* Branch back to loop back */
3406 struct midgard_instruction br_back = v_branch(false, false);
3407 br_back.branch.target_block = start_idx;
3408 emit_mir_instruction(ctx, br_back);
3409
3410 /* Mark down that branch in the graph */
3411 midgard_block_add_successor(ctx->current_block, start_block);
3412
3413 /* Find the index of the block about to follow us (note: we don't add
3414 * one; blocks are 0-indexed so we get a fencepost problem) */
3415 int break_block_idx = ctx->block_count;
3416
3417 /* Fix up the break statements we emitted to point to the right place,
3418 * now that we can allocate a block number for them */
3419
3420 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3421 mir_foreach_instr_in_block(block, ins) {
3422 if (ins->type != TAG_ALU_4) continue;
3423 if (!ins->compact_branch) continue;
3424 if (ins->prepacked_branch) continue;
3425
3426 /* We found a branch -- check the type to see if we need to do anything */
3427 if (ins->branch.target_type != TARGET_BREAK) continue;
3428
3429 /* It's a break! Check if it's our break */
3430 if (ins->branch.target_break != loop_idx) continue;
3431
3432 /* Okay, cool, we're breaking out of this loop.
3433 * Rewrite from a break to a goto */
3434
3435 ins->branch.target_type = TARGET_GOTO;
3436 ins->branch.target_block = break_block_idx;
3437 }
3438 }
3439 }
3440
3441 static midgard_block *
3442 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3443 {
3444 midgard_block *start_block = NULL;
3445
3446 foreach_list_typed(nir_cf_node, node, node, list) {
3447 switch (node->type) {
3448 case nir_cf_node_block: {
3449 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3450
3451 if (!start_block)
3452 start_block = block;
3453
3454 break;
3455 }
3456
3457 case nir_cf_node_if:
3458 emit_if(ctx, nir_cf_node_as_if(node));
3459 break;
3460
3461 case nir_cf_node_loop:
3462 emit_loop(ctx, nir_cf_node_as_loop(node));
3463 break;
3464
3465 case nir_cf_node_function:
3466 assert(0);
3467 break;
3468 }
3469 }
3470
3471 return start_block;
3472 }
3473
3474 /* Due to lookahead, we need to report the first tag executed in the command
3475 * stream and in branch targets. An initial block might be empty, so iterate
3476 * until we find one that 'works' */
3477
3478 static unsigned
3479 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3480 {
3481 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3482
3483 unsigned first_tag = 0;
3484
3485 do {
3486 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3487
3488 if (initial_bundle) {
3489 first_tag = initial_bundle->tag;
3490 break;
3491 }
3492
3493 /* Initial block is empty, try the next block */
3494 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3495 } while(initial_block != NULL);
3496
3497 assert(first_tag);
3498 return first_tag;
3499 }
3500
3501 int
3502 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3503 {
3504 struct util_dynarray *compiled = &program->compiled;
3505
3506 midgard_debug = debug_get_option_midgard_debug();
3507
3508 compiler_context ictx = {
3509 .nir = nir,
3510 .stage = nir->info.stage,
3511
3512 .is_blend = is_blend,
3513 .blend_constant_offset = -1,
3514
3515 .alpha_ref = program->alpha_ref
3516 };
3517
3518 compiler_context *ctx = &ictx;
3519
3520 /* TODO: Decide this at runtime */
3521 ctx->uniform_cutoff = 8;
3522
3523 /* Assign var locations early, so the epilogue can use them if necessary */
3524
3525 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3526 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3527 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3528
3529 /* Initialize at a global (not block) level hash tables */
3530
3531 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3532 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3533 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3534 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3535 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3536 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3537 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3538
3539 /* Record the varying mapping for the command stream's bookkeeping */
3540
3541 struct exec_list *varyings =
3542 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3543
3544 nir_foreach_variable(var, varyings) {
3545 unsigned loc = var->data.driver_location;
3546 unsigned sz = glsl_type_size(var->type, FALSE);
3547
3548 for (int c = 0; c < sz; ++c) {
3549 program->varyings[loc + c] = var->data.location;
3550 }
3551 }
3552
3553 /* Lower gl_Position pre-optimisation */
3554
3555 if (ctx->stage == MESA_SHADER_VERTEX)
3556 NIR_PASS_V(nir, nir_lower_viewport_transform);
3557
3558 NIR_PASS_V(nir, nir_lower_var_copies);
3559 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3560 NIR_PASS_V(nir, nir_split_var_copies);
3561 NIR_PASS_V(nir, nir_lower_var_copies);
3562 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3563 NIR_PASS_V(nir, nir_lower_var_copies);
3564 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3565
3566 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3567
3568 /* Optimisation passes */
3569
3570 optimise_nir(nir);
3571
3572 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3573 nir_print_shader(nir, stdout);
3574 }
3575
3576 /* Assign sysvals and counts, now that we're sure
3577 * (post-optimisation) */
3578
3579 midgard_nir_assign_sysvals(ctx, nir);
3580
3581 program->uniform_count = nir->num_uniforms;
3582 program->sysval_count = ctx->sysval_count;
3583 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3584
3585 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3586 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3587
3588 nir_foreach_function(func, nir) {
3589 if (!func->impl)
3590 continue;
3591
3592 list_inithead(&ctx->blocks);
3593 ctx->block_count = 0;
3594 ctx->func = func;
3595
3596 emit_cf_list(ctx, &func->impl->body);
3597 emit_block(ctx, func->impl->end_block);
3598
3599 break; /* TODO: Multi-function shaders */
3600 }
3601
3602 util_dynarray_init(compiled, NULL);
3603
3604 /* Schedule! */
3605 schedule_program(ctx);
3606
3607 /* Now that all the bundles are scheduled and we can calculate block
3608 * sizes, emit actual branch instructions rather than placeholders */
3609
3610 int br_block_idx = 0;
3611
3612 mir_foreach_block(ctx, block) {
3613 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3614 for (int c = 0; c < bundle->instruction_count; ++c) {
3615 midgard_instruction *ins = &bundle->instructions[c];
3616
3617 if (!midgard_is_branch_unit(ins->unit)) continue;
3618
3619 if (ins->prepacked_branch) continue;
3620
3621 /* Parse some basic branch info */
3622 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3623 bool is_conditional = ins->branch.conditional;
3624 bool is_inverted = ins->branch.invert_conditional;
3625 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3626
3627 /* Determine the block we're jumping to */
3628 int target_number = ins->branch.target_block;
3629
3630 /* Report the destination tag. Discards don't need this */
3631 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3632
3633 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3634 int quadword_offset = 0;
3635
3636 if (is_discard) {
3637 /* Jump to the end of the shader. We
3638 * need to include not only the
3639 * following blocks, but also the
3640 * contents of our current block (since
3641 * discard can come in the middle of
3642 * the block) */
3643
3644 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3645
3646 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3647 quadword_offset += quadword_size(bun->tag);
3648 }
3649
3650 mir_foreach_block_from(ctx, blk, b) {
3651 quadword_offset += b->quadword_count;
3652 }
3653
3654 } else if (target_number > br_block_idx) {
3655 /* Jump forward */
3656
3657 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3658 midgard_block *blk = mir_get_block(ctx, idx);
3659 assert(blk);
3660
3661 quadword_offset += blk->quadword_count;
3662 }
3663 } else {
3664 /* Jump backwards */
3665
3666 for (int idx = br_block_idx; idx >= target_number; --idx) {
3667 midgard_block *blk = mir_get_block(ctx, idx);
3668 assert(blk);
3669
3670 quadword_offset -= blk->quadword_count;
3671 }
3672 }
3673
3674 /* Unconditional extended branches (far jumps)
3675 * have issues, so we always use a conditional
3676 * branch, setting the condition to always for
3677 * unconditional. For compact unconditional
3678 * branches, cond isn't used so it doesn't
3679 * matter what we pick. */
3680
3681 midgard_condition cond =
3682 !is_conditional ? midgard_condition_always :
3683 is_inverted ? midgard_condition_false :
3684 midgard_condition_true;
3685
3686 midgard_jmp_writeout_op op =
3687 is_discard ? midgard_jmp_writeout_op_discard :
3688 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3689 midgard_jmp_writeout_op_branch_cond;
3690
3691 if (!is_compact) {
3692 midgard_branch_extended branch =
3693 midgard_create_branch_extended(
3694 cond, op,
3695 dest_tag,
3696 quadword_offset);
3697
3698 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3699 } else if (is_conditional || is_discard) {
3700 midgard_branch_cond branch = {
3701 .op = op,
3702 .dest_tag = dest_tag,
3703 .offset = quadword_offset,
3704 .cond = cond
3705 };
3706
3707 assert(branch.offset == quadword_offset);
3708
3709 memcpy(&ins->br_compact, &branch, sizeof(branch));
3710 } else {
3711 assert(op == midgard_jmp_writeout_op_branch_uncond);
3712
3713 midgard_branch_uncond branch = {
3714 .op = op,
3715 .dest_tag = dest_tag,
3716 .offset = quadword_offset,
3717 .unknown = 1
3718 };
3719
3720 assert(branch.offset == quadword_offset);
3721
3722 memcpy(&ins->br_compact, &branch, sizeof(branch));
3723 }
3724 }
3725 }
3726
3727 ++br_block_idx;
3728 }
3729
3730 /* Emit flat binary from the instruction arrays. Iterate each block in
3731 * sequence. Save instruction boundaries such that lookahead tags can
3732 * be assigned easily */
3733
3734 /* Cache _all_ bundles in source order for lookahead across failed branches */
3735
3736 int bundle_count = 0;
3737 mir_foreach_block(ctx, block) {
3738 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3739 }
3740 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3741 int bundle_idx = 0;
3742 mir_foreach_block(ctx, block) {
3743 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3744 source_order_bundles[bundle_idx++] = bundle;
3745 }
3746 }
3747
3748 int current_bundle = 0;
3749
3750 mir_foreach_block(ctx, block) {
3751 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3752 int lookahead = 1;
3753
3754 if (current_bundle + 1 < bundle_count) {
3755 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3756
3757 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3758 lookahead = 1;
3759 } else {
3760 lookahead = next;
3761 }
3762 }
3763
3764 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3765 ++current_bundle;
3766 }
3767
3768 /* TODO: Free deeper */
3769 //util_dynarray_fini(&block->instructions);
3770 }
3771
3772 free(source_order_bundles);
3773
3774 /* Report the very first tag executed */
3775 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3776
3777 /* Deal with off-by-one related to the fencepost problem */
3778 program->work_register_count = ctx->work_registers + 1;
3779
3780 program->can_discard = ctx->can_discard;
3781 program->uniform_cutoff = ctx->uniform_cutoff;
3782
3783 program->blend_patch_offset = ctx->blend_constant_offset;
3784
3785 if (midgard_debug & MIDGARD_DBG_SHADERS)
3786 disassemble_midgard(program->compiled.data, program->compiled.size);
3787
3788 return 0;
3789 }